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Abstract

If C is a convex body in Rn and X a k-dimensional linear subspace of Rn, we denote

by S(C,X) the shadow boundary of C over X which is defined as the collection of all

points which belong to C and to one of its tangent (n − k)-flats orthogonal to X . For

almost all directions in R3, the shadow boundary is a curve encompassing the body C.

It has been established long ago by G.

Ewald, D.G. Larman and C.A. Rogers

[11] that, for every given C, S(C,X)

is almost always a topological (k − 1)-

sphere. As a follow on from this result,

in 1974 Peter McMullen asked whether

most of these shadow boundaries would

have finite “length” [15]. This is already

shown to be true for polytopes and also

true for general convex bodies when the

dimension of the subspaceX is 1 or n−1.

Here we show that almost all shadow

boundaries have finite “length” whatever

the dimension k, 1 ≤ k < n, of the sub-

space X .

The set of shadow boundaries of in-

finite “length” has also been considered in the context of Baire category. In 1989,



P. Gruber and H. Sorger proved that, in the Baire category sense, most pairs (C,X),

whereC is a convex body in Rn andX an (n−1)-dimensional subspace of Rn, produce

shadow boundaries S(C,X) of infinite length. Here we show that this result also holds

for pairs (C,X) where X is a k-dimensional subspace, 1 ≤ k < n. We also consider

the length of increasing paths in the 1-skeleton of a convex body.

We conclude with observations and open questions arising from the work on

shadow boundaries of the first two chapters.
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Chapter 1

Almost all shadow boundaries have

finite length

1.1 Introduction

1.1.1 Background / Premise

Following up on a research problem of 1957, Klee asked if the boundary of a d-

dimensional convex body could contain line segments in all directions [10]. In 1960

McMinn [12] answered this question by showing that:

The set D of directions of line segments lying on the boundary of a 3-dimensional

convex body is contained in the union of the ranges of a countable family of Lips-

chitz functions each on the 1-dimensional closed unit ball B1 to the surface of the

2-dimensional unit sphere S2. By virtue of the Lipschitz nature of these functions, they

possess total differentials (Lebesgue measure) almost everywhere and their ranges are

compact and have finite one dimensional measure.

Besicovitch followed with a simplification of his proof in 1963 [13]. Finally

Ewald, Larman and Rogers generalised the result to n dimensions in their 1970 publi-

cation [11]. Specifically, they proved:

Theorem (Ewald, Larman and Rogers [11])



If 1 ≤ r ≤ n− 1 and K a convex body in En, the points ±G(F ), corresponding to the

r-flats F in En meeting the boundary of K in a set of linear dimension r, form a set on

Inr of σ-finite r(n− r − 1)-dimensional Hausdorff measure.

The shadow boundary of a convex body over a subspace X of Rn is the set of

points of its boundary which project onto the boundary of its shadow on X . We call a

shadow boundary sharp if its projection is injective.

From Ewald, Larman and Rogers’ result we know that almost all shadow bound-

aries are sharp.

The aim of this chapter is to prove a further property of these sharp shadow bound-

aries which was first suggested at a workshop in Oberwolfach in 1974 by Peter Mc-

Mullen. He asked whether sharp shadow boundaries also have finite length.

This was answered in the affirmative by Peter Steenaerts in 1985 [7] for the cases

where X is an l-dimensional subspace of En and l = 1 or n− 1. See Appendix A for a

translation of [7] to English.

The work in this chapter generalises this result to shadow boundaries over sub-

spaces of any dimension l, where 1 ≤ l ≤ n.

1.1.2 Basic Construction

Consider a convex body C in R3. We will use the cube and the sphere as examples

to illustrate certain properties. Choose a two-dimensional subspace X of R3, say the

horizontal plane R2.

The first step in constructing the shadow boundary of C over X is to orthogonally

project C onto X . In the case of a sphere, the projection would be a disc and in the

case of a cube with one of its faces parallel to X , we would get a square.

Now take the relative boundary of this projection and apply the inverse projection

map to it. For the sphere, the relative boundary of the projection is a circle, which will

12



map to an infinite hollow cylinder. In the case of the cube, we are mapping the outline

of a square to an infinite box with empty interior. Both of these are oriented with their

axis of symmetry being vertical. See Figure 1.1.

Figure 1.1: Shadow boundary of sphere and cube

The shadow boundary of our convex body with respect to the subspace given is

defined as the intersection of the inverse projection we have just described and the orig-

inal body C. The sphere’s shadow boundary will be a circle on its boundary (equator)

and the shadow boundary of the cube will be the union of its four vertical faces.

Looking at our two examples, there is an obvious difference between the end re-

sults. A circle is a 1-dimensional curve in R2, whereas the shadow boundary of the

cube is a 2-dimensional compact surface in R3. Another way of looking at it is that

corresponding to each point of the relative boundary of the projection, there is a unique

point on the shadow boundary of the sphere, but for the cube there is an entire line

segment. This illustrates the notion that a shadow boundary can be sharp.
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Formally: A shadow boundary of a convex body is sharp if the projection map

restricted to the shadow boundary is injective.

Here, the sphere has a sharp shadow boundary whereas the cube does not. How-

ever, if you consider the shadow boundary of the cube in other directions then it will

almost always be sharp (i.e. always except for a negligible number of directions.

Namely the directions contained in the three planes parallel to its faces).

1.1.3 Notation

• Rk = lin{e1, e2, ..., ek} ⊂ Rn.

• On denotes the normalised Haar measure on the orthogonal group O(n).

Definition 1. If G is a locally compact group then a left invariant Haar measure

on G is a Borel measure µ satisfying the following conditions:

i) µ(xE) = µ(E) for every x ∈ G and every measurable E ⊆ G.

ii) µ(U) > 0 for every nonempty open set U ⊆ G.

iii) µ(K) <∞ for every compact set K ⊆ G.

This measure is right invariant if property i) is replaced by

i) µ(Ex) = µ(E) for every x ∈ G and every measurable E ⊆ G.

If this measure is both right and left invariant it is known as the Haar measure.

• Γ(k) is the set of all k-dimensional linear subspaces of Rn.

• Γ(k, l) is the set {(X, Y ) ∈ Γ(k)× Γ(l) : X ⊂ Y }, for 0 ≤ k ≤ l ≤ n.

• The measures γ(k) on Γ(k) and γ(k, l) on Γ(k, l) are given by:

γ(k)[M ] = On{r ∈ O(n) : r[Rk] ∈M} where M ⊂ Γ(k),

γ(k, l)[N ] = On{r ∈ O(n) : (r[Rk], r[Rl]) ∈ N} where N ⊂ Γ(k, l).

14



• H n is the n-dimensional Hausdorff measure.

• L n is the n-dimensional Lebesgue measure.

• Lip(f) is the Lipschitz constant of a mapping f .

• πX denotes the orthogonal projection of Rn onto a subspace X ∈ Rn.

• X⊥ denotes the kernel of the map πX .

• Wi(C) denotes the ith Minkowski Quermass integral of the convex bodyC in Rn.

Quermass integrals are related to the concept of mixed volumes. See Chapter 4

in R. Schneider [22].

Using this notation, we may now formally define shadow boundaries, intermediate

shadow boundaries and the sets of subspaces producing sharp shadow boundaries.

Definition 2. S(C,X) = {p ∈ C : (p+X⊥) ∩ int(C) = ∅} = C ∩ π−1
X [rel bd(πXC)]

is the shadow boundary of C over X .

Definition 3. P(C, k) = {X ∈ Γ(k) : πX |S(C,X) is injective} is the set of subsets X in

Γ(k) for which the shadow boundary S(C,X) is sharp.

Definition 4. σ(C,X) = (πX |S(C,X))
−1, σ(C,X) : relbd(πXC) → S(C,X) for X ∈

P(C, k), is the lifting map onto the shadow boundary.

Definition 5. S(C,X, Y ) = (πYC) ∩ π−1
X (relbd πXC) for (X, Y ) ∈ Γ(k, l) is the

intermediate shadow boundary of C over (X, Y ).

Definition 6. P(C, k, l) = Γ(k, l) ∩ [P(C, k) × P(C, l)], for (X, Y ) ∈ Γ(k, l).

P(C, k, l) is the set of pairs (X, Y ) for which the intermediate shadow boundary

S(C,X, Y ) is sharp. πX |S(C,X,Y ) carries S(C,X, Y ) homeomorphically onto relbd

πXC.

σ(C,X, Y ) is the inverse of πX |S(C,X,Y ) and σ(C,X) = σ(C, Y ) ◦ σ(C,X, Y )

holds for all (X, Y ) ∈ P(C, k, l).
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1.1.4 Outline

We shall prove:

Theorem 1. Let C be a convex body in Rn and define the maps ϕ(C, l) : Γ(l) →

[0,∞], for l ∈ {1, ... , n− 1}, by ϕ(C, l)[X] = H l−1
(
S(C,X)

)
. Then each ϕ(C, l) is

γ(l)-measurable, and satisfies
∫
ϕ(C, l) dγ(l) ≤ a(l, n)Wn−l+1(C).

ϕ(C, l)[X] represents the (l − 1)-dimensional Hausdorff measure of the shadow

boundary of C over X and a(l, n) is a constant independent of C. This theorem says

that, averaged over all l-dimensional subspaces X , the (l − 1)-dimensional Hausdorff

measure of the shadow boundary of a given convex body C is less than or equal to

a(l, n)Wn−l+1(C), a constant multiple ofC’s (n−l+1)-dimensional Quermass integral.

Corollary 1. Almost all shadow boundaries have finite “length”.

To prove Theorem 1, we shall use the fact that the average length of the shadow

boundary of a convex polytope in direction X , over all subspaces X ∈ Γ(l), is finite

and can be expressed in terms of Quermass integrals (Lemma 1.2.2).

We will then relate the length of the shadow boundary of a convex body to the

length of the relative boundary of its projection by proving that the lifting maps σ(C,X)

are rectifiable for all C and almost all X ∈ P(C, l) (Theorem 2).

This will require us first to show that the lifting maps σ(C,X, Y ) are rectifiable for

all (X, Y ) ∈ P(C, l, l + 1) (Proposition 1) using the concept of intermediate shadow

boundary (introduced above) as well as the Lebesgue area (which we shall prove is

equivalent to the Hausdorff measure in our case) and its lower semi-continuity property.

This will then allow us to prove (Proposition 2) that given ε > 0 there exist a

constant b and a compact subset M[C|(X, Y )] of the relative boundary of the projection

of C which satisfy the following conditions:

• σ(C,X, Y )[M[C|(X, Y )]] covers all but ε of the intermediate shadow boundary

S(C,X, Y ) of C and
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• σ(C,X, Y ) restricted to M[C|(X, Y )] has Lipschitz constant less than or equal

to b.

From here we will show that this is also true for shadow boundaries (Proposition 3)

and, using induction on the dimension l, we will deduce the rectifiability of the lifting

maps σ(C,X) (Theorem 2).

It will then remain to show that the average measure of the l-dimensional shadow

boundary of C is bounded. By approximating convex bodies by polytopes we will be

able to use our estimate of Lemma 1.2.2, combined with the rectifiability of σ(C,X)

and the lower semi-continuity of the Lebesgue area, to obtain the desired result (Theo-

rem 1).

1.2 Preliminary Results
Almost all shadow boundaries are sharp (Ewald, Larman and Rogers [11] and Zalgaller

[8]):

Lemma 1.2.1. For every convex body C and every pair of integers (k, l) with 0 ≤ k ≤

l ≤ n, we have:

γ(k)[P(C, k)] = 1, (1.1)

γ(k, l)[P(C, k, l)] = 1. (1.2)

Proof. is quoted in [8]

For Y ∈ Γ(l), set ∆(Y ) = {X ∈ Γ(k) : X ⊂ Y } and notice that the orthogonal

group O(n) acts naturally on ∆(Y ).

If A ⊂ Γ(k, l) is a Borel set, it follows from Fubini’s Theorem that∫
Y ∈Γ(l)

(
δ(Y )[AY ]

)
dγ(l)[Y ] = γ(k, l)[A], (1.3)

where we have written AY = {X ∈ ∆(Y ) : (X, Y ) ∈ A} and δ(Y ) stands for

the O(Y )-invariant Radon measure on ∆(Y ). Let us set P(Y ) = {X ∈ ∆(Y ) :

17



πX |S(C,X,Y ) is injective} and use (1.2) and (1.3) in order to establish

γ(k, l)[P(C, k, l)] =

∫
P(C,l)

ϕ dγ(l) = γ(l)[P(C, l)] = 1,

where ϕ stands for δ(Y )[P(Y )]. This proves the claim in (1.2).

As with many questions relating to convex bodies, the case of polytopes is covered

separately. The following lemma shows that almost all shadow boundaries of convex

polytopes have finite length and gives a precise value for their average measure given a

convex polytope P .

Lemma 1.2.2. For every pair of integers k, l, with 0 ≤ k < l ≤ n, there is a number

α(k, l) > 0 such that the equation∫
H k−1

(
S(P,X, Y )

)
dγ(k, l)[X, Y ] = α(k, l)Wn−k+1(P )

holds for each n-polytope P ⊂ Rn.

Proof. For Y ∈ Γ(l) write ∆(Y ) = {X ∈ Γ(k) : X ⊂ Y } and O(Y ) = {ρ ∈ O(n) :

ρ(Y ) = Y }.

Denote by δ(Y ) the normalised regular O(Y )-invariant outer Borel measure on

∆(Y ). The function (X, Y ) 7→ H k−1
(
S(P,X, Y )

)
is continuous on P(P, k, l) and

therefore is γ(k, l)-measurable.

Consider the set F (Y ) of all (k − 1)-dimensional faces of the polytope πY (P ),

Y ∈ Γ(l). Let α(Y,G) be the exterior angle of πY (P ) at G ∈ F (Y ) in Y . The

incidence function εY : ∆(Y )× F (Y )→ {0, 1} is given by

εY (X,G) = 1, if [affG+X] ∩ relint
(
πY (P )

)
= ∅ and

εY (X,G) = 0, otherwise.

Let ∆0(Y ) = {X ∈ ∆(Y ) : (X, Y ) ∈ P(P, k, l)}. Using Fubini’s Theorem,

the definition and properties of εY (X,G) and the relation between the exterior angle

18



α(Y,G) and the Quermass integral Wn−k+1(P ) [22], we establish∫
Γ(k,l)

H k−1 [S(P,X, Y )] dγ(k, l)(X, Y )

=

∫
Γ(l)

[ ∫
∆0(Y )

H k−1[S(P,X, Y )] dδ(Y )(X)
]

dγ(l)(Y )

=

∫
Γ(l)

[ ∑
G∈F (Y )

H k−1(G)

∫
∆(Y )

εY (X,G) dδ(Y )[X]
]

dγ(l)(Y )

=

∫
Γ(l)

[ ∑
G∈F (Y )

H k−1(G)α(Y,G)
]

dγ(l)[Y ]

= b(k, l)

∫
Γ(l)

Wl−k+1(πY (P )) dγ(l)(Y )

= a(k, l)Wn−k+1(P ),

where b(k, l) and a(k, l) > 0 do not depend on the polytope P .

1.3 Lebesgue Area and Rectifiability
Definition 7. A continuous mapping f : Rk → Rn is said to be polyhedral if and only

if the domain of f can be triangulated so that f maps each simplex of the triangulation

affinely onto a rectilinear simplex of n-space.

Definition 8. The Lebesgue area LP (f) of a continuous map f : P → Rn, where

P ⊂ Rk for some k, is defined as the lower limit of the areas of polyhedral maps

approximating f .(Where any sensible definition of area gives the same result for the

areas of polyhedral maps).

Definition 9. A function f : Rk → Rn is said to be lower semi-continuous if at each

point a ∈ Rk and for each h < f(a) there is a neighbourhood V of a such that

h < f(x) for each x ∈ V .

By definition, the Lebesgue area is lower semi-continuous.

We now introduce the notion of rectifiability which arises in geometric measure

theory. Most references to rectifiability found seem to be in the works of Federer. He

gives various definitions of rectifiability for sets. We shall only state the one we require

and shall introduce the concept of a rectifiable map.
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Definition 10. A set F ⊂ Rn is called (H k, k)-rectifiable if there exist Lipschitz maps

fi : Rk → Rn, i = 1, 2, ... such that:

H k
(
F \ ∪∞i=1fi(Rk)

)
= 0.

Definition 11. Let A ⊂ Rn be a Borel set and f : A → Rn a continuous map. f is

H k-rectifiable if there exists a sequence (Mi)i∈N of compact sets Mi ⊂ A, such that

H k
(
Im(f) \ ∪{f [Mi] : i ∈ N}

)
= 0,

f |Mi
is Lipschitzian for all i.

Definition 12. A surface above some set A ⊂ Rk is a continuous map f : A → Rk+1,

which satisfies

[f(x)− x] ∈ lin{ek+1}, for every x ∈ A.

Notice that if the surface f is H k-rectifiable in the sense of Definition 11 and also

satisfies H k
(
Im(f)

)
<∞, then Im(f) is a (H k, k)-rectifiable set.

The converse however does not hold. Here is an example to illustrate this fact:

Example 1. Choose a compact set F ⊂ [0, 1] with positive Lebesgue measure such that

F contains no intervals. For t ∈ [0, 1], consider the distance d(t, F ) = inf{|t − y| :

y ∈ F} and the number f(t) = 1 − d(t, F ). The graph G of the function g, given by

g(x) =
∫ x

0
f(t) dt, is a C1-curve of finite arclength in R2. Now, let ρ ∈ SO(2) be a

rotation carrying e1 to (1/
√

2)(e1 − e2), and π : R2 → R1 the orthogonal projection

onto the x-axis. P = π(ρG) has finite length and for every x ∈ P we find exactly

one point which satisfies πσ(x) = x, where σ is the lifting map onto ρG. Note that

ρG = Im(σ) is (H 1, 1)-rectifiable, whereas σ : P → R2 is not H 1-rectifiable, due to

our choice of F . Similar examples exist in higher dimensions.

Lemma 1.3.1. If P ⊂ Rk is a k-polyhedron and f : P → Rk+1 is a surface above P

with finite Lebesgue area LP (f), then LP (f) = H k
(
Im(f)

)
and furthermore, Im(f)

is (H k, k)-rectifiable.
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We shall not include a proof of this result as [4] is devoted entirely to this task.

Definition 13. Given a surface f : P → Rk+1 and a rectilinear triangulation F [9] of

the k-polyhedron P ⊂ Rk, we say that f is a piecewise linear surface over P , relative

to F , if f |s is the restriction of some affine map for every k-simplex s ∈ F .

Definition 14. Consider a piecewise linear surface f : P → Rk+1, relative to some

triangulation F of the k-polyhedron P ⊂ Rk. Given any set M of real numbers, we

define the set:

Λ(f,M) =
∑
{H k(f [s]) : s ∈ F ,Lip(f |s) ∈M}.

A subdivision argument shows that Λ(f,M) does not depend on the specific tri-

angulation F .

Lemma 1.3.2. Consider a k-polyhedron P ⊂ Rk and a surface f : P → Rk+1 over P.

Assume that f is not H k-rectifiable whereas F = Im(f) is (H k, k)-rectifiable.

Then there exist numbers α > 0 and ε(c) > 0, for every c ∈ [1,∞[, such that

each piecewise linear surface g : P → Rk+1 with ||f(x)− g(x)|| ≤ ε(c) for all x ∈ P

satisfies

Λ(g, [c,∞[) ≥ α.

To prove this lemma we require the following results by Federer [1].

Lemma (3.2.18 in [1])

If W is a (H m,m)-rectifible and H m-measurable subset of Rn, and if 1 < λ < ∞,

then there exist compact subsets K1, K2, ... of Rm and Lipschitzian maps ψ1, ψ2, ... of

Rm into Rn such that ψ1(K1), ψ2(K2), ... are disjoint subsets of W with

H m[W \ ∪∞i=1ψi(Ki)] = 0,

and, for each positive integer i,

Lip (ψi) ≤ λ, ψi|Ki is univalent, Lip[(ψi|Ki)
−1] ≤ λ,

λ−1|v| ≤ |〈v,Dψi(a)〉| ≤ λ|v| for a ∈ Ki, v ∈ Rm.
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In this context, univalent is equivalent to bijective.

Theorem (3.1.16 in [1])

If A ⊂ Rm, f : A→ Rn and

ap lim supx→a|f(x)− f(a)|/|x− a| <∞,

for L m almost all x in A, then for each ε > 0 there exists a map g : Rm → Rn of class

1 such that

L m(A \ {x : f(x) = g(x)}) < ε.

Here L m stands for the m-dimensional Lebesgue measure. We refer the reader to

page 159 in [1] for a definition of the approximate lim sup used above.

Proof. of Lemma 3.2.

Since F is (H k, k)-rectifiable we may use Lemma 3.2.18 and Theorem 3.1.16 in [1] to

find sequences (Ui)i∈N, (ϕi)i∈N and (Ki)i∈N such that Ui is open in Rk, ϕi : Ui → Rk+1

is a C1-embedding and the sets Ki ⊂ Ui are compact and satisfy ϕi[Ki] ⊂ F as well

as H k(F \ ∪{ϕi[Ki] : i ∈ N}) = 0.

Denote by π : Rk+1 → Rk the orthogonal projection and write Ai = {p ∈ Ki : the

derivativeD(π◦ϕi)(p) of π◦ϕi is not bijective}. Ai is compact and the inverse mapping

theorem produces an open set Vi ⊂ Ui such that Ki \ Ai lies in Vi, and (π ◦ ϕi)|Vi is a

C1-immersion.

Let Wi = (π ◦ ϕi)[Vi]. For each p ∈ Wi, denote by gi(p) the unique point in

π−1(p) ∩ ϕi[Vi]. For all k-dimensional polyhedra Q ⊂ Wi, gi|Q is Lipschitz. Hence, if

f fails to be H k-rectifiable, we obtain an index i ∈ N and a positive number α which

satisfy

H k(ϕi[Ai]) = 2α.

Since the Jacobian of π ◦ ϕi vanishes everywhere on Ai, it follows that H k(π ◦

ϕi[Ai]) = 0.

22



Thus we can associate to every number c ∈ [1,∞[ an open set O(c) ⊂ Wi with

(π ◦ ϕi[Ai]) ⊂ O(c) and

ckH k[O(c)] < α/2. (1.4)

Since H k is a radon measure in Rk+1, there exists a k-polyhedron Q(c) in O(c) such

that

H k
(
ϕi[Ai] ∩ f [Q(c)]

)
> 3α/2. (1.5)

If Lemma 1.3.2 did not hold, then there would be a sequence (gi)i∈N of piecewise

linear surfaces over P with limi→∞ gi = f uniformly and Λ(gi, [c,∞[) < α, for all i.

Here c stands for the number introduced in (1.4) above. We may now write

H k(gi[Q]) = Λ
(
gi|Q, [1,∞[

)
= Λ

(
gi|Q, [1, c[

)
+ Λ

(
gi|Q, [c,∞[

)
< ckH k(Q) + α < 3α/2.

Lemma 1.3.1 implies that 3α/2 ≥ LQ(f |Q) = H k
(
f [Q]

)
which contradicts (1.5).

Therefore Lemma 1.3.2 must hold.

1.4 Intermediate Shadow Boundaries

1.4.1 Polytopes

Definition 15. For 0 < ρ < τ < ∞, denote by P(ρ, τ) the collection of all polytopes

P ⊂ Rn with ρBn < P < τ Bn.

Definition 16. Consider the spaces

B(l) = {(p,X) ∈ Sn−1 × Γ(l) : p ∈ X}, where 1 ≤ l ≤ n,

B(k, l) = {(p,X, Y ) ∈ Sn−1 × Γ(k, l) : p ∈ X}, where 1 ≤ k ≤ l ≤ n.

Let C ⊂ Rn be a convex body with o ∈ int(C), then for M ⊂ B(l) and X ∈ Γ(l),

we write

M[C|X] = {p ∈ relbd[πX(C)] : (p/‖p‖, X) ∈M}.
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Similarly, for N ⊂ B(k, l) and (X, Y ) ∈ Γ(k, l), we write

N[C|(X, Y )] = {p ∈ relbd[πX(C)] : [p/‖p‖, (X, Y )] ∈ N}.

The next Lemma asserts that the shadow boundary S(P,X, Y ) of a polytope P ∈

P(ρ, τ) cannot be steep in too many places.

Lemma 1.4.1. Given integers k, l with 1 ≤ k < l ≤ n and positive numbers ε, ρ, τ with

ρ < τ , we find a number c = c(k, l, ε, ρ, τ) ≥ 1 and for each polytope P ∈ P(ρ, τ) a

compact set N = N(P, k, l, ε) ⊂ B(k, l) which satisfy:

(1) N[P |(X, Y )] 6= ∅ ⇒ (X, Y ) ∈ P(P, k, l).

(2) N[P |(X, Y )] is the union of those faces F of πX(P ) for which

Lip(σ(P,X, Y )|F ) ≤ c.

(3) A = {(X, Y ) ∈ P(P, k, l) : H k−1
(
S(P,X, Y )\σ(P,X, Y )(N[P |(X, Y )])

)
≥ ε}

is γ(k, l)-measurable, with γ(k, l)[A] < ε.

Proof. For Y ∈ Γ(l) and h ∈ [0, l], let us write:

∆(Y, h) = {X ∈ Γ(h) : X ⊂ Y } and O(Y, h) = {ρ ∈ O(h) : ρY = Y }.

Consider the normalised regular O(Y, h)-invariant outer Borel measure δ(Y, h) on

∆(Y, h) and the spaces:

∆0 =
{
Y ∈ ∆(Rl, l − 1) : {el−k+1, ... , el} ⊂ Y

}
,

∆1 =
{
X ∈ ∆(Rl, k) : X⊥ ∩ lin{el−k+1, ... , el} = {0}

}
.

If X ∈ (∆(Rl, k) \ ∆1), then the map πX |lin{el−k+1,... ,el} is injective and has an

inverse σX defined on a subspace of X . Associate to M ⊂ ∆0 and b ∈ [1,∞[, the

collections:

S(M) = {X ∈ ∆(Rl, k) : ∃ a flat Y ∈M with X ⊂ Y } and

Sb(M) = {X ∈ S(M) \∆1 : Lip(σX) ≤ b}.
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Using the notation from Lemma 1.2.2, choose a positive number a such that

a(k, l)Wn−k+1(P ) ≤ a for all polytopes P ∈ P(ρ, τ). A simple calculation shows

that there exists a number c ∈ [1,∞[ for which

δ(Rl, k)[Sc(M)] > (1− ε2/a) δ(Rl, k)[S(M)], (1.6)

whenever M ⊂ ∆0 is a closed subset.

Now, given a polytope P ∈ P(ρ, τ) and a pair (X, Y ) of spaces in P(P, k, l),

write

F (P, Y ) = {Z : Z is a (k − 1)-dimensional face of πY (P )},

F (P ;X, Y ) = {U ∈ F (P, Y ) : [aff(U) +X] ∩ [relint πY (P )] = ∅} and

Fc(P ;X, Y ) = {U ∈ F (P ;X, Y ) : Lip[σ(P,X, Y )|πX(U)] ≤ c}.

Let us also associate to every face U ∈ F (P, Y ) the spaces:

G(P ;U, Y ) = {X ∈ ∆(Y, k) : [aff(U) +X] ∩ [relint πY (P )] = ∅} and

Gc(P ;U, Y ) = {X ∈ ∆(Y, k) : Lip[σ(P,X, Y )|πX(U)] ≤ c},

and denote by α(P ;U, Y ) the exterior angle of πY (P ) at U , measured in the space Y .

With B(k, l) according to Definition 16, consider the space N′ ⊂ B(k, l) defined by

N′[P |(X, Y )] =

 ∪{πX(U) : U ∈ Fc(P ;X, Y )} if (X, Y ) ∈ P(P, k, l)

∅ otherwise

and the space

A′(P ) =
{
ξ ∈ P(P, k, l) : H k−1

[
S(P, ξ) \ σ(P, ξ)(N′[P |ξ])

]
≥ ε
}
,

which is γ(k, l)-measurable. We now proceed to show that

γ(k, l)[A′(P )] < ε ∀P ∈P(ρ, τ). (1.7)

Indeed, assume that some polytope P ∈ P(ρ, τ) does not satisfy (1.7) and write for

ξ ∈ P(P, k, l),

H(ξ) = F (P, ξ) \ Fc(P, ξ) as well as

ϕ(ξ) = Σ{H k−1(S) : S ∈ H(ξ)}.
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Our assumption about P implies:∫
P(P,k,l)

ϕ(X, Y ) dγ(k, l) ≥ ε γ(k, l)[A′(P )] ≥ ε2. (1.8)

However, statement (1.6) leads to∫
P(P,k,l)

ϕ (X, Y ) dγ(k, l)

=

∫
Γ(l)

[ ∫
∆(Y,k)

Σ{H k−1(U) dδ(Y, k) : U ∈ H(X, Y )}
]

dγ(l)[Y ]

=

∫
Γ(l)

[
Σ{H k−1(U)δ(Y, k)[G(P ;U, Y ) \Gc(P ;U, Y )] : U ∈ F (P, Y )}

]
dγ(l)[Y ]

< (ε2/a)

∫
Γ(l)

[
Σ{H k−1(U)α(P ;U, Y ) : U ∈ F (P, Y )}

]
dγ(l)[Y ]

= (ε2/a)a(k, l)Wn−k+1(P ) ≤ ε2,

which contradicts (1.8), so (1.7) is established.

Hence we can associate to each polytope P ∈ P(ρ, τ) a compact set N(P ) ⊂

N′(P ) which satisfies, for all ξ ∈ P(P, k, l), either N[P |ξ] = ∅ or N[P |ξ] = N′[P |ξ]

and furthermore, γ(k, l)[A(P )] < ε. Here we have written A(P ) = {ξ ∈ P(P, k, l) :

H k−1(S(P, ξ) \ σ(P, ξ)[N[P |ξ]]) ≥ ε}. Lemma 1.4.1 follows, with the above choice

of c and N(P ), P ∈P(ρ, τ).

1.4.2 Smooth Convex Bodies

1.4.2.1 Rectifiability of σ(C, ξ)

Definition 17. If C and D are compact convex sets in Rn with aff(C) = aff(D), o ∈

int(C), denote by ρ (C,D) : relbd (C) → relbd (D) the radial projection, for which

ρ (C,D)[x] ∈ pos{x}, whenever x belongs to relbd (C).

Definition 18. A convex body C is called smooth, if every point p ∈ relbd (C) lies in a

unique supporting hyperplane of C.

Lemma 1.4.2. LetC ⊂ Rn be a smooth convex body with o ∈ int(C). Given λ ∈ ]1,∞[

and l ∈ {1, ... , n}, we can find a number ε(C, λ, l) > 0 such that

Lip[ρ (πXC,D)] ≤ λ and Lip[ρ (D, πXC)] ≤ λ, (1.9)
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wheneverD is a convex body in some spaceX ∈ Γ(l) with o ∈ relint(D) and aff(D) =

X , which satisfies d(D, πX(C)) ≤ ε(C, λ, l). Here, d(·, ·) stands for the Hausdorff

distance between compact subsets of X .

We are interested in the measurability properties of the function ξ 7→

H l−1[S(C, ξ)], ξ ∈ P(C, l, l + 1), associated with a convex body C ∈ Rn. To

this end, we study the Lebesgue area L(C, ξ) of the lifting map σ(C, ξ) and remember

its lower semicontinuity.

Definition 19. Consider a convex body C ⊂ Rn with o ∈ int(C), and associate to

every l ∈ {1, ... , n − 1} and every ξ = (X, Y ) ∈ P(C, l, l + 1) the space D(C, ξ) of

all polytopes D ⊂ X with o ∈ relint(D).

Remembering Definition 17, for each D ∈ D(C, ξ), we define the maps C(C,D)

and C̃(C,D) by

C(C,D) = σ(C, ξ) ◦ ρ (D, πXC),

C̃(C,D)[p] = p+ [σ(C, ξ)[q]− q], p ∈ relbd (D), q = ρ (D, πXC)[p].

Notice that C̃(C,D) is a surface above relbd(D).

Definition 20. For a convex body C and a polytope D ∈ D(C, ξ) define

L(C,D) = Σ{LS

(
C(C,D)|S

)
: S ∈ F (D)},

L(C, ξ) = lim sup{L(C,D) : D ∈ D(C, ξ)},

where F (D) stands for the collection of all (l − 1)-dimensional faces of D, and LS

denotes the Lebesgue area above S.

It has been established that L(C,D) = L(C, ξ), whenever C is smooth and D

belongs to D(C, ξ). We shall only need the following weaker statement:

Lemma 1.4.3. Given a smooth convex body C ⊂ Rn with o ∈ int(C) and numbers

l ∈ {1, ... , n− 1} and µ > 1, we find a number δ > 0 such that the inequality

(1/µ) H l−1[S(C, ξ)] ≤ L(C,D) ≤ µH l−1[S(C, ξ)], (1.10)
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holds for every ξ = (X, Y ) ∈ P(C, l, l + 1) and every body D ∈ D(C, ξ) with

d(D, πXC) ≤ δ.

Proof. Choose λ > 1 with λ2(l−1) < µ and let δ = ε(C, λ, l) from Lemma 1.4.2. It

is enough to assume ξ = (Rl,Rl+1). Given some D ∈ D(C, ξ) with d(D, πXC) ≤ δ,

write C̄ = π−1(relbd πXC), D̄ = π−1(relbdD) where π : Rl+1 → Rl is the orthogonal

projection.

Lemma 1.4.2 implies that there exists an open neighbourhood N of 1 in R such

that:

U = {νp+ αel+1 : ν ∈ N, p ∈ relbd(D), α ∈ R}

is a neighbourhood of D̄ in Rl+1 and the map ϕ, defined by

ϕ (νp+ αel+1) = νρ(D, πXC)[p] + αel+1

is a Lipschitz homeomorphism between U and some neighbourhood V of C̄, with

Lip(ϕ) < λ and Lip(ϕ−1) < λ.

It follows from Lemma 1.3.1 that LS

[
C̃(C,D)|S

]
= H l−1

[
C̃(C,D)[S]

]
for each

face S in F (D). Recall that C̃(C,D) = ϕ−1 ◦ C(C,D) and using transformation

formulae for the Hausdorff measure and the Lebesgue area under Lipschitz maps we

see that:

(1/λ)l−1LS

(
C(C,D)|S

)
≤ LS

(
C̃(C,D)|S

)
≤ λl−1LS

(
C(C,D)|S

)
and

(1/λ)l−1H l−1
(
C(C,D)[S]

)
≤H l−1

(
C̃(C,D)[S]

)
≤ λl−1H l−1

(
C(C,D)[S]

)
from which we can establish that the following inequality

(1/µ) H l−1
(
C(C,D)[S]

)
≤ LS

(
C(C,D)|S

)
≤ µH l−1

(
C(C,D)[S]

)
, (1.11)

holds for every face S ∈ F (D). Fubini’s Theorem for Lebesgue measure implies that

H k+1(Im(f)) = 0, whenever P ⊂ Rk is a polytope and f : P → Rk+1 is a surface.

Consequently, we obtian that H l−1(C̃(C,D)[S ∩T ]) = 0 for each pair S, T of (l− 1)-

faces, with T 6= S. Since ϕ is Lipschitzian, we also have H l−1(C(C,D)[S ∩ T ]) =
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0. This leads to H l−1(S(C,Rl,Rl+1)) = Σ{H l−1(C(C,D)[S]) : S ∈ F (D)} and

together with (1.11), to a proof of Lemma 1.4.3.

Notice that Lemma 1.4.3 implies that:

H l−1(S(C, ξ)) = L(C, ξ), for every ξ ∈ P(C, l, l + 1).

Proposition 1. The lifting map σ(C, ξ) is H l−1-rectifiable for every smooth convex

body C in Rn, every number l ∈ {1, ... , n − 1} and γ(l, l + 1)-almost every ξ ∈

P(C, l, l + 1).

Proof. Following Definition 20, associate to each convex body C ⊂ Rn with o ∈ intC,

the map L(C) : P(C, l, l + 1)→]o,∞], given by L(C)[ξ] = L(C, ξ).

Claim:

L(C) is lower semicontinuous. (1.12)

Suppose this is false. We may choose a sequence (ξk)k∈N in P(C, l, l + 1), con-

verging to ξ ∈ P(C, l, l + 1), such that

[
L(C, ξ)/ lim

k→∞
L(C, ξk)

]
= µ > 1.

With δ as in Lemma 1.4.3, consider a sequence (rk)k∈N in O(n) which satisfies

lim
k→∞

rk = Id(Rn) and rk(ξk) = ξ, for every k.

Pick an element D ∈ D(C, ξ) with d(D, πXC) < δ and d(D, πX(k)(C)) < δ for

all k, then [C
(
rk(C), D

)
]k∈N converges to C(C,D) uniformly. The lower semicontinu-

ity of the Lebesgue area leads to

LS

[
C(C,D)|S

]
≤ lim inf{LS

[
C
(
rk(C), D

)
|S
]

: k →∞},

and with Lemma 1.4.3, to

µL(C, ξ) ≤ (1/µ) lim{L(rkC, ξ) : k →∞}

= (1/µ) lim{L(C, ξk) : k →∞},
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which contradicts the definition of µ. Which proves our claim, statement (1.12).

Next, consider a sequence (Pi)i∈N of n-polytopes in Rn, converging to C. Lemma

1.2.1 tells us that

R0 = P(C, l, l + 1) ∩ ∩{P(Pi, l, l + 1) : i ∈ N}

is a Borel set with γ(l, l + 1)[R0] = 1. Given the equations

H l−1[S(Pi, ξ)] = L(Pi, ξ) = L(Pi, D) for all i, ξ and D ∈ D(Pi, ξ),

we have:

L(C, ξ) ≤ lim inf{L(Pi, ξ) : i→∞}, when ξ ∈ R0. (1.13)

Now, Fatou’s Lemma, together with Lemma 1.2.2, produce the inequality∫
R0

L(C) dγ(l, l + 1) ≤ lim inf
{∫

R0

L(Pi) dγ(l, l + 1) : i→∞
}

= a(l, l + 1)Wn−k+1(C) <∞,

and therefore

γ(l, l + 1)
[
{ξ ∈ R0 : L(C)(ξ) <∞}

]
= 1. (1.14)

Choose numbers ρ, τ such that Pi ∈ P(ρ, τ) for every i ∈ N. Lemma 1.4.1

provides numbers cj = c(l, l + 1, (1/j), ρ, τ) and compact sets Nij = N(Pi, l, l +

1, (1/j)) which satisfy its conditions (1) - (3). Define the following abbreviations:

Nj = lim sup{Nij : i→∞},

N = lim sup{Nj : j →∞},

Aij = P(Pi, l, l + 1) \ A[N(Pi, l, l + 1, 1/j)],

Aj = lim sup{Aij : i→∞},

A = lim sup{Aj : j →∞},

R1 = {ξ ∈ R0 : L(C)(ξ) <∞},

R2 = R1 ∩ A,
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whereA[N(Pi, l, l+1, 1/j)] is defined as in Lemma 1.4.1. Combine (1.14) with Lemma

1.4.1 to establish the equation

γ(l, l + 1)[R2] = γ(l, l + 1)[A] = 1. (1.15)

It remains to show that

σ(C, ξ) is H l−1-rectifiable for every ξ = (X, Y ) ∈ A. (1.16)

Choose a polytope D ∈ D(C, ξ) and remember that ρ(D, πXC)|S is a C1-

diffeomorphism for each facet S ∈ F (D), so it is enough for us to establish that

C̃(C,D)|S is always H l−1-rectifiable. (1.17)

Since ξ ∈ R1, it follows that LS(C̃(C,D)|S) < ∞ and, with Lemma 1.3.1, that

C̃(C,D)[S] is (H l−1, l − 1)-rectifiable. So by Lemma 1.3.2, if (1.16) does not hold,

we can find a number α > 0 such that Λ(f, [c,∞[) ≥ α, for each c ∈ [1,∞[ and every

piecewise linear surface f : S → [Y ∩ π−1
X (S)] close enough to C̃(C,D)|S .

Since ρ(πXC,D) is a Lipschitz map, there exists a number β > 0 for which

Λ
[
σ(P, ξ), [b,∞[

]
≥ β, (1.18)

whenever b ∈ [1,∞[, P ⊂ Rn is a polytope close to C and ξ lies in the space P(P, l, l+

1).

Notice that ξ ∈ Aj for some j > 1/β and choose a strictly increasing sequence

of numbers ik, k ∈ N such that ξ ∈ Aik,j for all k. This leads to limk→∞ Pik = C,

ξ ∈ P(Pi, l, l + 1), Λ
[
σ(Pik , ξ), [c,∞[

]
≤ 1/j for every integer k, contrary to (1.18).

And thus, statement (1.16) and hence Proposition 1 are established.

1.4.2.2 Approximation of Shadow Boundaries by Rectifiable Sets

Now that we have shown that the lifting map σ(C, ξ) is rectifiable, we wish to find the

sets M (as defined in Definition 16) which will approximate our projection well and on

which the lifting map will have bounded Lipschitz constant.

31



Definition 21. Given a smooth convex body C ⊂ Rn and integers i, j, l, write:

T(C, l, i, j) = {ξ = (X, Y ) ∈ P(C, l, l + 1) : ∃ a compact set M ⊂ relbd πXC

such that Lip[σ(C, ξ)|M ] ≤ i and H l−1
(
S(C, ξ) \ σ(C, ξ)[M ]

)
≤ 1/j}

Lemma 1.4.4. Each of the sets T(C, l, i, j), defined above, are closed in P(C, l, l+ 1).

Proof. Consider a sequence (ξk)k∈N in T(C, l, i, j), converging to some element ξ ∈

P(C, l, l+ 1). If we write ξk = (Xk, Yk) and ξ = (X, Y ), we can choose a compact set

Mk ⊂ relbd πXkC which satisfies

Lip
[
σ(C, ξk)|Mk

]
≤ i and H l−1

(
S(C, ξk) \ σ(C, ξk)[Mk]

)
≤ 1/j. (1.19)

By taking a subsequence, if necessary, we may assume that (Mk)k∈N converges to a

compact set M ⊂ relbd πXC. Clearly, Lip[σ(C, ξ)|M ] ≤ i.

If Lemma 1.4.4 did not hold, it would follow that

H l−1
(
S(C, ξ) \ σ(C, ξ)[M ]

)
> λ2/j, for some number λ > 1. (1.20)

As in the proof of Proposition 1, consider a sequence (rk)k∈N in the group O(n), such

that lim{rk : k →∞} = Id(Rn) and rk(ξk) = ξ, for all k.

Using the notation from Lemma 1.4.3, choose an element D ∈ D(C, ξ) which

satisfies: d
(
D, πX(rkC)

)
≤ δ(C, λ, l) for all large enough numbers k and also:

H l−1
(
∪ {C(C,D)[S] : S ∈ F0(D)}

)
≥ λ2/j, where F0(D) = {S ∈ F (D) :

M ∩ ρ (D, πXC)[S] = ∅}.

Remember that relbd πXC \M is open in relbdπXC and that for all S ∈ F0(D)

and for all large enough k,

ρ
(
D, πX(rkC)[S]

)
∩ rk(Mk) = ∅. (1.21)

Hence, we can use (1.11) from the proof of Lemma 1.4.3, together with the lower
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semicontinuity of Lebesgue area to get:

H l−1
(
∪ {C

(
rk(C), D

)
[S] : S ∈ F0(D)}

)
≥ 1/λ

∑
S∈F0(D)

LS(C
(
rk(C), D

)
|S)

≥ 1/λ
∑

S∈F0(D)

LS(C(C,D)|S)

≥ (1/λ)2H l−1
(
∪ {C(C,D)[S] : S ∈ F0(D)}

)
> 1/j,

when k is large enough. Remembering (1.21), this would imply that:

1/j < H l−1
(
∪ {C

(
rk(C), D

)
[S] : S ∈ F0(D)}

)
< H l−1

(
S(C, ξk) \ σ(C, ξk)[Mk]

)
which contradicts (1.19). Thus (1.20) does not hold and Lemma 1.4.4 follows.

We now proceed to select the sets M ⊂ relbd (πXC) in a measurable way.

Lemma 1.4.5. Let π : Rr × Rs → Rr be the orthogonal projection. Consider a Borel

set A ⊂ Rr and associate to every x ∈ A a family K(x) of non-empty compact sets in

Rs, such that:

∪{K(x) : x ∈ A} is bounded, (1.22)

and whenever a sequence (xi)i∈N in A converges to x ∈ A, and the sequence (Bi)i∈N,

with Bi ∈ K(xi) converges to some compact set B ⊂ Rs, then

B ∈ K(x). (1.23)

Then there exists a Borel set M ⊂ Rr × Rs which satisfies:

M ∩ π−1(x) ∈ K(x) for all x ∈ A.

Proof. Set W = {x ∈ Rs : 0 ≤ 〈x, ei〉 ≤ 1,∀ i} and Mp = {(1/2)p(W + t) : t ∈

Zs}, p ∈ N. Let Φp be the collection of all finite subsets of Mp. For C ∈ Φp, write:

t(C) = {W ∈Mp−1 : ∃ a cube V ∈ C such that V ⊂ W}
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and choose a linear ordering ≤p on each Φp such that:

∪C ⊂ ∪D ⇒ C ≤p D, for C,D in Φp, and (1.24)

C ≤p D always implies t(C) ≤(p−1) t(D). (1.25)

Given a compact set K ⊂ Rs and a number p ∈ N, consider the collection

ϕ(K, p) = {W ∈ Mp : K ∩ W 6= ∅} and observe that ϕ(K, p) always lies in the

collection Φp and, by equation (1.22), so does ψ(x, p) = max{ϕ(K, p) : K ∈ K(x)}.

With Rp(C) = {x ∈ A : ψ(x, p) = C} we derive from (1.23) and (1.24) that

Rp(C) is a closed set in ∪{Rp(D) : D ∈ Φp, D ≥ C} for all C ∈ Φp. Hence, we have

Mp = ∪{Rp(C)× [∪C] : C ∈ Φp} as well as M = ∩{Mp : p ∈ N} are Borel sets.

This, together with (1.23) leads to M ∩ π−1(x) ∈ K(x), whenever x ∈ A, and

Lemma 1.4.5 follows.

Proposition 2. Consider a smooth convex body C ∈ Rn with o ∈ int(C), an integer

l ∈ {1, ... , n − 1} and a number ε > 0. There exists an element b ∈ [1,∞[ and a

compact set M ⊂ B(l, l + 1) such that

Lip
(
σ(C, ξ)|M[C|ξ]

)
≤ b, ∀ ξ ∈ P(C, l, l + 1), and (1.26)

γ(l, l + 1){ξ ∈ P(C, l, l + 1) : H l−1
(
S(C, ξ) \ σ(C, ξ)

[
M[C|ξ]

])
≥ ε} ≤ ε. (1.27)

Proof. Choose an integer j > 0 with (1/j) < ε. Lemma 1.4.4 and Proposition 1

establish the equation

γ(l, l + 1)
[
∪ {T(C, l, i, j) : i ∈ N}

]
= 1,

which implies γ(l, l + 1)
[
T(C, l, i, j)

]
> 1 − ε, for some i ∈ N. Set τ(p,X, Y ) =

(X, Y ) which determines a fibration τ : B(l, l + 1)→ Γ(l, l + 1). Notice that none of

the spaces

K′(ξ) = {K ⊂ τ−1(ξ) : K is compact, Lip(σ(C, ξ)|K[C|ξ]) ≤ i,

H l−1(S(C, ξ) \ σ(C, ξ)
[
K[C|ξ]

]
) ≤ 1/j}
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are empty, for any ξ ∈ T(C, l, i, j). With r = dim Γ(l, l + 1), we find a finite cov-

ering (Ui)
t
i=1 of T(C, l, i, j) by pairwise disjoint Borel sets and sequences of home-

omorphisms: ϕi : Ui → Vi ⊂ Rr, ψi : [τ−1(Ui)] → Wi ⊂ Rr+s, which satisfy

π ◦ ψi(x) = ϕi ◦ τ(x), whenever x ∈ τ−1(Ui). Here π : Rr+s → Rr denotes the

orthogonal projection. Lemma 1.4.5 produces a Borel set M′ ⊂ B(l, l + 1), such that

Lip(σ(C, ξ)|M′[C|ξ]) ≤ i, if ξ ∈ P(C, l, l + 1), and (1.28)

γ(l, l+1){ξ ∈ P(C, l, l+1) : H l−1
(
S(C, ξ)\σ(C, ξ)(M′[C|ξ])

)
> 1/j} < ε. (1.29)

If we write

d[(p,X, Y ), (p′, X ′, Y ′)] = d(p, p′) + d(X ∩ Bn, X ′ ∩ Bn) + d(Y ∩ Bn, Y ′ ∩ Bn),

we obtain an O(n)-invariant metric d on the space B(l, l + 1). Let β(l, l + 1) be the

corresponding [dim B(l, l + 1)]-dimensional normalised Hausdorff measure. A Fubini

type theorem leads to

β(l, l + 1)[N] =

∫
H l−1[N ∩ τ−1(ξ)]d γ(l, l + 1)(ξ).

Since β(l, l+ 1) is regular, there exists a compact set M ⊂M′ for which the properties

(1.28) and (1.29) also hold. Proposition 4.2 follows.

So we have shown that for any smooth convex body C in Rn and a given integer

1 ≤ l < n, we can find a set M ⊂ B(l, l + 1) which defines subsets M[C|ξ] of the

relative boundary of the projection of C onto X such that:

• For almost every ξ ∈ Γ(l, l + 1), σ(C, ξ)(M[C|ξ]) covers almost all of the inter-

mediate shadow boundary of C, and

• The lifting map σ(C, ξ) restricted to the sets M[C|ξ] is Lipschitz for every ξ such

that the intermediate shadow boundary is sharp.

This result only relates to intermediate shadow boundaries and as such leads to

the induction process used in the following section to prove our result in the case of

shadow boundaries.
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1.5 Bodies of Positive Span
Definition 22. The convex body C has positive span η > 0 if there exists a convex body

D ⊂ Rn such that C = D + η Bn. Notice that in particular that C is smooth.

Definition 23. Let C ⊂ Rn be a convex body with o ∈ int (C). For 1 ≤ k < l ≤ n,

ε > 0, P ⊂ B(k), Q ⊂ B(k, l) and R ⊂ B(l) write:

F(C,P, ε) = {X ∈ P(C, k) : H k−1
(
S(C,X) \ σ(C,X)

[
P[C|X]

])
> ε}

G(C,Q, ε) = {(X, Y ) ∈ P(C, k, l) :

H k−1
(
S(C,X, Y ) \ σ(C,X, Y )

[
Q[C|(X, Y )]

])
> ε}

G(C, πXR, ε) = {(X, Y ) ∈ P(C, k, l) :

H k−1
(
S(C,X, Y ) \ σ(C,X)

[
πXR[C|Y ]

])
> ε}

Lemma 1.5.1. Let C ⊂ Rn be a convex body with o ∈ int (C) and positive span η.

Given ε ∈ ]0, 1[ and l ∈ {1, ... , n − 1}, we find a number x = x(C, l, ε) such that

whenever O ⊂ B(l + 1) is an open set with γ(l + 1)
[
F(C,O,x)

]
< x, it will satisfy

the inequality

γ(l, l + 1)
[
G
(
C, πXO, ε

)]
< ε.

Proof. For Y ∈ Γ(l + 1), define:

∆(Y ) = {X ∈ Γ(l) : X ⊂ Y } and O(Y ) = {ρ ∈ O(n) : ρ(Y ) = Y },

and let δ(Y ) denote the normalised O(Y )-invarient outer Borel measure on ∆(Y ). De-

fine also: ∆0(Y ) = {X ∈ ∆(Y ) : (X, Y ) ∈ P(C, l, l + 1)}.

Letting

∆(Y,O, β) = {X ∈ ∆0(Y ) : H l−1
(
S(C,X) \ σ(C,X)

[
πX(O[C|Y ])

])
> β},

we will establish that there exists a number k ≥ 1 such that the inequality:

δ(Y )[∆(Y,O, β)] ≤ (k/β)H l
(
S(C, Y ) \ σ(C, Y )

[
O[C|Y ]

])
, (1.30)
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holds for all Y ∈ P(C, l + 1), every open set O ⊂ B(l + 1) and every β > 0.

With a(k) = (L k(Bk)/2k) ∈ ]0,∞[ where Bk is the k-dimensional unit ball, we

define the outer measures H k
µ , µ > 0, k ∈ {0, 1, ... , n} over Rn by setting

H k
µ (M) = a(k) inf{

∑
u∈ν

[τ(u)]k : ν is a countable covering of M,

such that τ(u) = diam(u) ≤ µ,∀u ∈ ν}.

Take α = H l
(
S(C, Y ) \ σ(C, Y )

[
O[C|Y ]

])
, and let us choose a decreasing

sequence (µi)i∈N and an increasing sequence (αi)i∈N of real numbers which satisfy

lim
i→∞

µi = 0, lim
i→∞

αi = α, as well as αi > H l
µi

(
S(C, Y ) \ σ(C, Y )

[
O[C|Y ]

])
.

Remember that limµ→0 H k
µ (M) = H k(M). Let νi be a countable covering of

S(C, Y ) \ σ(C, Y )
[
O[C|Y ]

]
by open convex sets, such that τ(u) ≤ µi for all u ∈ νi

and a(l)Σ{
(
τ(u)

)l
: u ∈ νi} ≤ αi. Define the real valued functions ψi on the space

∆0(Y ) by

ψi(X) =
∑
{τ
[
u ∩

(
S(C,X) \ σ(C,X)

[
πX(O[C|Y ])

])]l−1
: u ∈ νi}

and notice that ψi is always δ(Y )-measureable. Define

ξ(u,X) = 1 if u ∩
(
S(C,X) \ σ(C,X)

[
πX(O[C|Y ])

])
6= ∅

ξ(u,X) = 0 otherwise,

from which we obtain the inequality∫
∆0(Y )

ψi d(δY ) ≤
∑
{
∫

∆0(Y )

[τ(u)]l−1ξ(u,X) d(δ(Y )[X]) : u ∈ νi},

and therefore ∫
∆0(Y )

ψi d(δY ) ≤
∑
{[τ(u)]l−1δ(Y )[E(u)] : u ∈ νi},

where E(u) = {X ∈ ∆0(Y ) : ξ(u,X) = 1}.
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Since C has positive span η, the outer normal map [24] n : bd(C) → Sn−1 of C

satisfies Lip(n) ≤ 1/η. If the point

p ∈ u ∩
(
S(C,X) \ σ(C,X)

[
πX(O[C|Y ])

])
,

then the outer normal vector n[p] lies in π−1
Y [X], hence we obtain

E(u) ⊂ F (u) = {X ∈ ∆0(Y ) : π−1
Y [X] ∩ n[u] 6= ∅}.

In view of Lip(n) ≤ 1/η, we find a spherical ball of diameter 2τ(u)/η, containing

n[u] and a constant λ > 0, independent of Y , O and β such that

δ(Y )[F (u)] ≤ λτ(u), for all u ∈ νi and for all i ∈ N. (1.31)

Since the inequality ψi(X) > β/a(l − 1) holds for every element X in the Borel

set Di = {X ∈ ∆0(Y ) : H l−1
(
S(C,X) \ σ(C,X)

[
πX(O[C|Y ])

])
> β}, we derive

from (1.31) the fact that

β δ(Y )[Di] ≤ a(l − 1)

∫
∆0(Y )

ψi dδ(Y ) ≤ λ
∑
u∈νi

[τ(u)]l ≤ λ a(l − 1)αi.

Remembering that (Di)i∈N is an ascending sequence with ∪{Di : i ∈ N} =

∆(Y,O, β), we obtain (1.30) with k = λ a(l − 1). We write x = x(C, l, ε) = ε2/2k

and choose an open set O ⊂ B(l + 1), which satisfies δ(Y )[A] < x, where A = {Y ∈

P(C, l + 1) : H l
(
S(C, Y ) \ σ(C, Y )[O[C|Y ]

])
> x}.

We now derive from (1.30), for the space B = {(X, Y ) ∈ P(C, l, l + 1) :

H l−1
(
S(C,X) \ σ(C,X)

[
πX(O[C|Y ])

])
> ε} the inequality:

γ(l, l + 1)[B] = γ(l + 1)[A] +

∫
δ(Y )[∆(Y,O, ε)]d γ(l + 1)(Y )

< x + (k/ε)x < x + ε/2 < ε.

where integration extends over the space P(C, l + 1) \ A. Lemma 5.1 follows.

Proposition 3. Consider a convex body C ⊂ Rn with o ∈ int(C) and positive span η.

Given elements l ∈ {1, ... , n− 1} and ε ∈ ]0,∞[, we find a number e = e(C, l, ε) > 1
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and a compact set P = P(C, l, ε) ⊂ B(l) such that

γ(l)[F(C,P, ε)] < ε and (1.32)

Lip
(
σ(C,X)|P[C|X]

)
≤ e whenever X ∈ P(C, l). (1.33)

Proof. By induction on n− l, where the case n− l = 1 is covered by Proposition 2.

For the inductive step with (n − l) ≥ 2, we pick a number ε1 from ]0, ε/2[

and determine x = x(C, l, ε1) according to Lemma 1.5.1. We may assume that

x ≤ ε1 and obtain, by the inductive assumption, an element ē ∈ ]1,∞[, together with

a compact set P̄ ⊂ B(l + 1), which satisfy γ(l + 1)
[
F(C, P̄,x)

]
< x as well as

Lip
(
σ(C, Y )|P̄[C|Y ]

)
≤ ē for all Y ∈ P(C, l + 1).

Next, we choose a number ε2 such that ε2ē
(l−1) < ε1 and determine b = b(C, l, ε2)

and M = M(C, l, ε2) according to Proposition 2. Consider the Borel sets:

A1 = {(X, Y ) ∈ P(C, l, l + 1) : H l−1
(
S(C,X) \ σ(C,X)

[
πXP̄[C|Y ]

])
≤ ε1} and

A2 = {(X, Y ) ∈ P(C, l, l + 1) :

H l−1
(
S(C,X, Y ) \ σ(C,X, Y )

[
M[C|(X, Y )]

])
< ε2}.

They satisfy the inequalities: γ(l, l + 1)[Ai] ≥ 1− εi since, by Lemma 1.5.1:

γ(l, l + 1)
[
G
(
C, πXP̄, ε1

)]
= {(X, Y ) ∈ P(C, l, l + 1) :

H l−1
(
S(C,X) \ σ(C,X)

[
πXP̄[C|Y ]

])
> ε1}

< ε1

and by Proposition 2:

{(X, Y ) ∈ P(C, l, l + 1) :

H l−1
(
S(C,X, Y ) \ σ(C,X, Y )

[
M[C|(X, Y )]

])
≥ ε2} ≤ ε2.

Due to the regularity of γ(l, l + 1), we obtain a compact set A0 in A1 ∩ A2 with

γ(l, l + 1)[A0] ≥ 1− ε1 − ε2 > 1− ε.
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Let τ : Γ(l, l + 1) → Γ(l) be the projection defined by τ(X, Y ) = X . A Fubini type

theorem for the fiber bundle
(
Γ(l, l + 1), τ,Γ(l)

)
leads to:

γ(l)[B0] > 1− ε, where B0 = τ [A0]. (1.34)

Now let us establish that

∃ a Borel measurable map ϕ : B0 → A0 for which τ ◦ ϕ = IdB0 . (1.35)

Similarly to the proof of Proposition 2, we choose a decomposition (Ui)1≤i≤t of

B0 by Borel sets and sequences of homeomorphisms ϕi : Ui → Vi ⊂ Rr and ψi :

(τ−1Ui) → Wi ⊂ Rr+s, such that π ◦ ψi = ϕi ◦ τ , always. Here, r = dim(Γ(l)),

r + s = dim(Γ(l, l + 1)) and π : Rr+s → Rr denotes the orthogonal projection.

By applying Lemma 1.4.5 to the sets Vi and the systems K(ϕix) = {ψi(ξ) : ξ ∈

A0 ∩ τ−1x}, x ∈ Ui, we obtain a Borel set L ⊂ Ao such that L∩ τ−1(x) is a singleton,

for every x ∈ Bo. A map ϕ which satisfies (1.35) can be constructed by setting L ∩

τ−1(x) = {ϕx}.

Look at the Borel set D = {(p,X) ∈ B(l) : (p,X, Y ) ∈ M and (p, Y ) ∈

P̄, with ϕ(X) = (X, Y )}. We want to establish that

F(C,D, ε) ∩B0 = ∅. (1.36)

Suppose not, then we can choose X ∈
[
F
(
C,D, ε

)
∩ B0

]
and write ϕ(X) = (X, Y ).

Since X ∈ B0 and Im(ϕ) ∈ A0 ⊂ A1 ∩ A2, it follows that ϕ(X) ∈ A0 and hence

ϕ(X) = (X, Y ) ∈ A1 ∩ A2. Thus, the following inequalities hold for X:

H l−1
(
S(C,X) \ σ(C,X)[πXP̄[C|Y ]]

)
≤ ε1 and

H l−1
(
S(C,X, Y ) \ σ(C,X, Y )[M[C|(X, Y )]]

)
≤ ε2 < ε2ē

(l−1) < ε1

We also have D[C|X] ⊂M[C|(X, Y )]∩ πX
[
P̄[C|Y ]

]
by definition of D. There-

fore:

H l−1
(
S(C,X) \ σ(C,X)[D[C|X]]

)
≤ ε1 < ε

contradicting our choice of X , and therefore (1.36) is established.
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Next, we shall derive from the definitions of D,M and P̄ that

Lip
(
σ(C,X)|D[C|X]

)
≤ ē b, ∀X ∈ P(C, l). (1.37)

We know that Lip
(
σ(C, Y )|P̄[C|Y ]

)
≤ ē, where ē ∈]1,∞[ and

Lip
(
σ(C,X, Y )|M[C|(X, Y )]

)
≤ b where b ∈ [1,∞[. Hence

Lip
(
σ(C,X)|D[C|X]

)
= Lip

(
σ(C, Y ) ◦ σ(C,X, Y )|D[C|X]

)
≤ ēb,

since D[C|X] ⊂M[C|(X, Y )] ∩ πX
[
P̄[C|Y ]

]
.

Pick a real number e = e(C, l, ε) ∈ ]ēb,∞[ and a compact set P = P(C, l, ε) ⊂

D. In view of (1.34) and (1.36), we know that γ(l)[F(C,D, ε)] < ε and therefore,

γ(l)[F(C,P, ε)] < ε also. In addition, (1.37) implies that Lip
(
σ(C,X)|P[C|X]

)
≤ e,

for all X ∈ P(C, l). Thus, we may conclude that e(C, l, ε) and P(C, l, ε) satisfy the

requirements of Proposition 3.

The relative boundary of the projection of C onto X has finite H l−1 measure.

Hence, since the lifting map σ(C,X) is Lipschitz on M[C|X] which covers the entire

relative boundary of πXC bar a set of measure zero (Proposition 3) we can now con-

clude that almost all shadow boundaries of convex bodies with positive span have finite

length.

1.6 Principal Results
Definition 24. Associate to every convex body C ∈ Rn and every number l ∈

{1, ... , n− 1} the space

P0(C, l) = {X ∈ P(C, l) : σ(C,X) is rectifiable}.

Theorem 2. γ(l)[P0(C, l)] = 1 for every convex body C in Rn and every integer

l ∈ {1, 2, ... , n− 1}.
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Proof. We may assume that o ∈ int (C) and begin with the case where:

(1) C has positive span.

Given a sequence (εi)i∈N of positive numbers converging to zero, we construct

the elements ei = ei(C, l, εi) ∈ ]1,∞[ and the compact sets Pi = Pi(C, l, εi)

according to Proposition 3. By this same Proposition, we obtain the inequality

γ(l)[N] ≤ lim infi→∞ γ(l)[Ni] = 0, where we have written Ni = F(C,Pi, εi) and

N = lim infi→∞Ni. Proposition 3 also implies that P0(C, l) ⊃ (P(C, l) \ N), and

Theorem 2 is established under assumption (1).

If we now drop this assumption for C, we observe that C1 = C + Bn has positive

span. Therefore it is enough to prove that:

(2) P0(C1, l) ⊂ P0(C, l).

For X ∈ P0(C1, l), set C̄ = πX(C), C̄1 = πXC1, and let ν : Rn → C be

the nearest point map of C, ν̄ the nearest point map of C̄. Each of the collections

Ai = {p ∈ relbd C̄: there exists an l-dimensional Euclidean ball B ⊂ C̄ of radius 1/i,

such that p ∈ relbd(B)} is compact. A classical statement in convex geometry [17]

establishes the equality

H l−1(relbd(C̄) \ ∪{Ai : i ∈ N}) = 0.

Furthermore, ν̄i = ν̄|Bi is a homeomorphism between Bi = relbd(C̄1) ∩ ν̄−1[Ai]

and Ai, with Lip(ν̄−1
i ) ≤ i. Since X belongs to P0(C1, l), we obtain a sequence

(Mj)j∈N of compact sets in relbd(C̄1), such that H l−1(S(C1, X) \ ∪{σ(C1, X)[Mj] :

j ∈ N}) = 0, as well as λj := Lip (σ(C1, X)[Mj]) <∞, always.

With Nij = Ai ∩ ν̄[Mj], we notice that σ(C,X)|Nij
= (ν ◦ σ(C1, X) ◦ ν̄−1

i )|Nij

and consequently, Lip(σ(C,X)|Nij
) ≤ iλj. In addition,

H l−1(S(C,X) \ ∪{σ(C,X)[Nij] : i, j ∈ N})

≤H l−1(S(C1, X) \ ∪{σ(C1, X)[Mj] : j ∈ N}) = 0.

This implies that X ∈ P0(C, l).
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Therefore (2) holds and Theorem 2 follows.

Proof. of Theorem 1.

We assume that o ∈ int(C), and choose a sequence (Qj)j∈N of polytopes in Rn, con-

verging to C. With the notation of Definition 24, for a given l, set P = P0(C, l) ∩

∩{P0(Qj, l) : j ∈ N}, and by Theorem 2, Fatou’s Lemma and Lemma 1.2.2, notice

that it is sufficient to establish that:

ϕ(C, l)|P is lower semicontinuous and (1.38)

ϕ(C, l)[X] ≤ lim inf
j→∞

ϕ(Qj, l)[X], for every X ∈ P. (1.39)

Given X ∈ P and a sequence (Xi)i∈N in P, converging to X , we pick elements

ri ∈ O(n), i ∈ N, such that limi→∞ ri = Id(Rn) and ri(Xi) = X , always. Now we

consider an l-simplex S ⊂ X with o ∈ relint(S). Denote by F (S) the collection of

all (l − 1)-dimensional faces of S. For every P ∈ F (S), choose an affine map ϕP :

Rl−1 → X , which carries the standard (l − 1)-simplex T = conv{0, e1, e2, ... , el−1}

onto P . Associate to every element P of F (S) the maps α(P ), β(i, P ) and γ(j, P ),

i, j ∈ N, defined by

α(P ) = σ(C,X) ◦ ρ(S, πXC) ◦ ϕP |T

β(i, P ) = σ(riC,X) ◦ ρ(S, πX [riC]) ◦ ϕP |T

γ(j, P ) = σ(Qj, X) ◦ ρ(S, πXQj) ◦ ϕP |T .

where ρ(S, πX ·) is the radial projection introduced in Definition 17. Let I l−1 be

the (l − 1)-dimensional integral geometric measure in Rn [5] and denote by γX(ψ)

the stable integral geometric area [5] of the continuous map ψ : T → Rn over

X ⊂ T . It follows from the definition of P that α(P ), β(i, P ) and γ(j, P ) are H l−1-

rectifiable, for every i, j and P . Hence, (8) on p312 in [5] and the fact that the equations

I l−1(ψ[X]) = γX(ψ) hold whenever ψ is a continuous map and ψ|X is Lipshchitz [see

Note following proof], lead to:

H l−1
(
Im(τ)

)
= I l−1

(
Im(τ)

)
= γT (τ), (1.40)
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for all τ ∈ {α(P )} ∪ {β(i, P ) : i ∈ N, P ∈ F (S)} ∪ {γ(j, P ) : j ∈ N, P ∈ F (S)}.

The lower semicontinuity of the integral geometric area [5] and equation (1.40)

imply that

H l−1
(
S(C,X)

)
=

∑
P∈F (S)

H l−1
(
Im(α(P )

)
=

∑
P∈F (S)

γT
(
α(P )

)
=

∑
P∈F (S)

lim inf
i→∞

γT
(
β(i, P )

)
≤ lim inf

i→∞

∑
P∈F (S)

H l−1
(
Im(β(i, P ))

)
= lim inf

i→∞
H l−1

(
S(C,Xi)

)
.

Hence (1.38) follows.

At the same time, we obtain:

H l−1
(
S(C,X)

)
=

∑
P∈F (S)

γT
(
α(P )

)
≤

∑
P∈F (S)

lim inf
j→∞

γT
(
γ(j, P )

)
≤ lim inf

j→∞
H l−1

(
S(Qj, X)

)
,

and (1.39) is established too.

The proof of Theorem 1 is thus completed.

Note

The purpose of this note is to justify the statement made prior to equation (1.40).

In [5] Federer defines the integralgeometric measure and the stable integralgeo-

metric area. Our statement relies on a combination of properties also present in his

paper. Here we state the relevant properties and explain how they are used. Define the
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following:

Lk is the k-dimensional Lebesgue measure on En;

Gn is the group of orthogonal transformations of En;

R is an element of Gn;

φn is the Haar measure over Gn;

pkn is the projection of En onto Ek s.t. pkn(x) = (x1, . . . , xk) ∈ Ek where

x = (x1, . . . , xn) ∈ En;

N(f,X, y) is the number of elements in the set X ∩ {x | f(x) = y}, for a

function f, a set X and a point y;

β(n, k) =
α(k) · α(n− k)

α(n) ·
(
n
k

) , where α(k) is the volume of the k-dimensional

unit ball;

S(f,X, y) is the stable multiplicity. S(f,X, y) = lim inf
g→f

N(g,X, y).

The k-dimensional integralgeometric stable area on Cn(X) is defined as

β(n, k)−1 ·
∫
Gn

∫
Ek
S(pkn ◦R ◦ f,X, z)dLkzdφnR.

The k-dimensional integralgeometric Favard measure is defined as

F k
n (X) = β(n, k)−1 ·

∫
Gn

∫
Ek
N(pkn ◦R,X, y)dLkydφnR. (1.41)

This implies that the integralgeometric measure of f(X) is equal to

F k
n (f(X)) = β(n, k)−1 ·

∫
Gn

∫
Ek
N(pkn ◦R ◦ f,X, y)dLkydφnR. (1.42)

We also know that

S(h,X, z) = N(h,X, z),

for Lk almost all z in Ek whenever h is a Lipschitz map in Ck(X).

Hence, when f is a Lipschitz map in Cn(X):

β(n, k)−1 ·
∫
Gn

∫
Ek
S(pkn ◦R ◦ f,X, z)dLkzdφnR

= β(n, k)−1 ·
∫
Gn

∫
Ek
N(pkn ◦R ◦ f,X, y)dLkydφnR
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Hence the k-dimension integralgoemetric area of the continuous function ψ over

X is equal to the integralgeometric measure of the image of ψ.

Using the notation of our theorem this is equivalent to I l−1(ψ[X]) = γX(ψ)

when ψ is a continuous map and ψ|X is Lipshchitz.
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Chapter 2

Baire category and shadow boundaries

of infinite length

2.1 Introduction
In this chapter we introduce the notion of Baire category and expand some previous

results relating to shadow boundaries.

2.1.1 Baire category

René Baire introduced the notion of a Baire space and Baire categories at the end of

the 19th century. Here are some fundamental definitions.

Definition 25. A nowhere dense set is a set whose closure has empty interior.

Definition 26. A set is of first Baire category if it is the countable union of nowhere

dense sets. A set that is not of first Baire category is of second Baire category.

Definition 27. The complement of a set of first Baire category is called a residual set.

Definition 28. A space is Baire if every set of first Baire category has a complement of

second Baire category.

Definition 29. If a property holds for all elements of a Baire space except for those of

a set of first Baire category we say that the property holds for most elements and that

the elements having the property are typical.



The Baire Category Theorem gives sufficient conditions for a space to be Baire.

We will use the statement below.

Baire Category Theorem: Any complete metric space is a Baire space.

2.1.2 Shadow Boundaries of Typical Convex Bodies. Measure

Properties [18]

In [18], Gruber and Sorger consider shadow boundaries of convex bodies in Ed pro-

duced by (d− 1)-dimensional subspaces. Looking at pairs (C,X) where C is a convex

body in Ed and X is a (d − 1)-dimensional linear subspace, they show that for most

pairs (in the Baire category sense cf. Definition 29) the shadow boundary S(C,X) is

sharp and has infinite (d− 2)-dimensional Hausdorff measure.

In the next two sections we look at extensions of this result to other sets of sub-

spaces.

2.2 Shadow Boundaries over Directions Within a Hy-

perplane
The motivation behind this extension is to apply it to increasing paths in the one skele-

ton of a convex body.

2.2.1 Notation

Sd−1 denotes the (d− 1)-dimensional unit sphere in Ed

Γ(d−1) is the set of all (d−1)-dimensional linear subspaces of Rd. IfX ∈ Γ(d−1)

then there is x̄ ∈ Sd−1 orthogonal to X .

S(C,X) is the shadow boundary of C over X .

C is the set of all convex bodies in Ed.

δH is the Hausdorff metric on the space of all non empty compact sets in Ed, in

particular over C .
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H d denotes the d-dimensional Hausdorff measure.

Given a (d−1)-dimensional subspace L in Ed let Sd−2
L be the (d−2)-dimensional

unit sphere in Ed such that Sd−2
L ⊂ L.

ΓL(d−1) is the set of all (d−1)-dimensional linear subspaces of Rd orthogonal to

L. That is the (d−1)-dimensional linear subspaces of Rd which contain the complement

of L.

Let S be the set of all pairs (C,X) ∈ C × Γ(d − 1) for which S(C,X) is sharp

and SL be the set of all pairs (C,X) ∈ C × ΓL(d− 1) for which S(C,X) is sharp.

Definition 30. We say that a class G of open sets forms a basis for the open sets of a

topological space Ω if each of these sets of Ω is a union of sets from G.

2.2.2 Basic Properties

Property 1. Let X and Y be Baire spaces such that Y has a countable basis, and let

R ⊂ X×Y be residual. Then for most x ∈ X , the set {y ∈ Y : (x, y) ∈ R} is residual

in Y .

Property 2. Let X, Y be Baire spaces and let R ⊂ X be residual. Then R × Y is

residual in the Baire space X × Y .

Property 3. IfR is residual in a Baire spaceX and S is residual inR then S is residual

in X .

Property 4. The set of strictly convex bodies is residual in C [19] and since SL con-

tains the set {C ∈ C : C is strictly convex} × ΓL(d− 1) by Property 2:

SL is residual in C × ΓL(d− 1). (2.1)

Property 5. Let C,Ci ∈ C , i = 1, 2, ..., be such that Ci → C. If zi ∈ bd Ci, i =

1, 2, . . . , and zi → z, say, then z ∈ bd C.

Definition 31. When (C,X) ∈ SL, the natural parametrization of S(C,X) is defined

by the function f = fC,X : πX(S(C,X)) → S(C,X) such that for x ∈ πX(S(C,X))

we have πX(f(x)) = x. f is bijective and continuous.
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Definition 32. A parametrization of S(C,X) is defined by any function mapping a

(d− 2)-dimensional topological sphere onto S(C,X).

Definition 33. We say two parametrizations f : S → S(C,X), g : T → S(C,X) of

S(C,X) are equivalent if there is a homeomorphism h : S → T such that f = g ◦ h.

Proposition 4. Let (C,X), (Ci, Xi) ∈ SL, i = 1, 2, ... be such that (Ci, Xi)→ (C,X).

Then there are continuous bijective parametrizations g of S(C,X) (equivalent to fC,X)

and gi of S(Ci, Xi) (equivalent to fCi,Xi) respectively, all defined on the same (d− 2)-

dimensional sphere and such that gi → g uniformly.

Proof. Proposition (5) in [18] shows that this result holds for pairs (C,X),

(Ci, Xi) ∈ S , i = 1, 2, . . .. Since any pair belonging to SL also belongs to S , Propo-

sition (5) in [18] implies Proposition 4.

Due to certain limitations of Hausdorff measure we need to introduce the (d− 2)-

dimensional integral geometric stable area γd−2 and some of its properties (for a

precise definition we refer the reader to [5]). The properties below are drawn from the

work of H. Federer. For Properties 6 and 8 see [5] p. 325; for Property 7 see [33] p.

182; for Property 9 see [5] p. 319.

Let S be a (d − 2)-dimensional topological sphere in Ed. Then the following

properties hold:

Property 6. If S is a triangulated polytopal sphere and g : S → Ed is continuous,

injective and affine on each simplex of S, then

H d−2(g(S)) = γd−2(g).

Property 7. If g : S → Ed is continuous and injective, then

H d−2(g(S)) ≥ γd−2(g).
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Property 8. If g : S → Ed and gi : S → Ed, i = 1, 2, ..., are continuous and gi → g

uniformly on S, then

γd−2(g) ≤ lim inf
i→∞

γd−2(gi).

Property 9. If T is another (d− 2)-dimensional topological sphere in Ed and h : T →

S a homeomorphism, then

γd−2(g) = γd−2(g ◦ h).

2.2.3 Main Result

Theorem 3. Given a (d − 1)-dimensional subspace L in Ed, let Sd−2 be contained in

L. Then for most pairs (C,X) ∈ C × ΓL(d − 1) the shadow boundary S(C,X) is

sharp and has infinite (d− 2)-dimensional Hausdorff measure.

Here ‘most’ is used in the sense of definition 29. Our proof requires the following

result:

Lemma 2.2.1. For n = 1, 2, ..., the set of pairs (Q,X) ∈ SL where Q is a convex

polytope and for which H d−2(S(Q,X)) > n holds is dense in SL.

We shall prove the following, which implies Lemma 2.2.1.

Lemma 2.2.2. Let (P,X) ∈ SL, P a polytope. Then there are polytopes Pi, i =

1, 2, ..., with (Pi, X) ∈ SL, Pi → P , H d−2(S(Pi, X))→ +∞.

Proof. Without loss of generality we may assume that the origin o is contained in the

interior of πXP . Let ρ denote the radial projection of X \ {o} onto the the relative

boundary S = πXS(P,X) of πXP . Clearly, the following holds:

Property 10. There exists a constant α > 1 such that:

If T is a (closed) convex surface in X containing πXP and contained in 2πXP ,

then

(1/α)‖x− y‖ ≤ ‖ρ(x)− ρ(y)‖ ≤ α ‖x− y‖ for x, y ∈ T (2.2)
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For i = 1, 2, ... let Si be a simplicial convex surface in X with the following

properties:

i) each facet F of Si has diameter < 1/i2,

ii) Si contains πXP and is contained in (3/2)πXP ,

iii) ‖x− ρ(x)‖ < 1/i for each x ∈ Si.

Choose a point a in the relative interior of each F and to each a assign a point b

outside Si such that:

Property 11. b is close enough to a for the line segments joining different b’s to inter-

sect rel int(conv(Si)).

The simplicial convex surface Ti constructed from Si by replacing each F by the

(d−1)-dimensional simplices obtained by connecting the boundary simplices of F with

b, has the following properties:

i) each facet of Ti has diameter < 1/i2,

ii) Ti contains πXP and is contained in 2πXP ,

iii) ‖x− ρ(x)‖ < 1/i for each x ∈ Ti.

Define a function hi : Ti → R as follows hi(x) = 0 for x on the boundary of any

facet F of Si, hi(b) = 1/i and interpolate linearly in between. Clearly,

max{|hi(x)| : x ∈ Ti} = 1/i (2.3)

and with Property 11 i) this shows that:

Property 12. Each facet of the polytopal surface {x + hi(x)x̄ : x ∈ Ti} has slope

(gradient) at least i with respect to X (where x̄ is the unit vector perpendicular to X).
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To the natural parametization fP,X of S(P,X) there corresponds a function e :

S = πX(S(P,X))→ R such that

fP,X(x) = x+ e(x)x̄ for x ∈ S.

The slopes of facets of S(P,X) are bounded by β say. Then (2.2) and Property

11 ii) imply that each facet of the polytopal surface {x + e(r(x))x̄ : x ∈ Ti} has slope

≤ αβ with respect to X . With Property 12 this shows that each facet of the polytopal

surface

Ui = {x+ (e(r(x)) + hi(x))x̄ : x ∈ Ti} has slope ≥ i− αβ,

and therefore

H d−2(Ui) ≥ (1 + (i− αβ)2)1/2H d−2(Ti)

≥ (1 + (i− αβ)2)1/2H d−2(S)→ +∞ as i→∞

From Property 11 iii) and (2.3) we have that

δH(S(P,X), Ui) < 2/i. (2.4)

Define

Pi = conv({v ∈ vert P, v /∈ S(P,X)} ∪ Ui).

Then by Property 11 ii) S(Pi, X) = Ui and therefore (Pi, X) ∈ SL. The definition of

Pi together with (2.4) imply δH (P, Pi) → 0 as i → ∞. Since S(Pi, X) = Ui, (2.4)

shows that H d−2(S(Pi, X))→ +∞ as i→∞. Thus Lemma 2.2.2 holds.

Definition 34. For n = 1, 2, ..., let

SL,n = {(C,X) ∈ SL : γd−2(fC,X) ≤ n}.

Proof. of Thm 3

Statement 1. SL,n is closed in SL.
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Pick a sequence of pairs (Ci, Xi) ∈ SL,n, i = 1, 2, ... converging to (C,X) ∈ SL.

We need to show that (C,X) ∈ SL,n. By Proposition 4 there are continuous bijective

parametrizations g of S(C,X) equivalent to fC,X and gi of S (Ci, Xi) equivalent to

fCi,Xi all defined on the same (d− 2)-dimensional sphere S ⊂ X and such that gi → g

uniformly on S. By Property 8 and Property 9 we have:

γd−2(fC,X) = γd−2(g) ≤ lim inf
i→∞

γd−2(gi) = lim inf
i→∞

γd−2(fCi,Xi) ≤ n

Hence (C,X) ∈ SL,n, which proves Statement 1.

Next we show:

Statement 2. SL,n has empty interior in SL.

Suppose the opposite. By Lemma 2.2.1 we may choose a pair (Q,X) ∈ SL,n

with H d−2(S(Q,X)) > n where Q is a simplicial polytope. As πX(S(Q,X)) can be

considered as a triangulated (d− 2)-dimensional sphere in X , Property 6 yields:

γd−2(fQ,X) = H d−2(S(Q,X)) > n.

Hence (Q,X) /∈ SL,n which is a contradiction. Hence, Statement 2 is established.

From Statements 1 and 2, we get that SL,n is nowhere dense for n = 1, 2, ... thus:

SL \
∞⋃
n=1

SL,n = {(C,X) ∈ SL : γd−2(fC,X) ≤ n} is residual in SL

Applying Property 7 we see that {(C,X) ∈ SL : H d−2(S(C,X)) = ∞} is residual

in SL and therefore residual in C × ΓL(d− 1) by Property 3 and equation (2.1).

This concludes the proof of Theorem 3.

2.2.4 Applications

In [16], Larman and Rogers show the existence of increasing paths on the 1-skeleton

of convex bodies. A corollary to Theorem 1 will show the existence of such paths with

infinite length.
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First, an introduction to increasing paths:

Let l be a linear function on Ed and letL be the (d−1)-dimensional linear subspace

such that l(x) = a for all x ∈ L, where a ∈ R is a constant.

Definition 35. The 1-skeleton of a convex body C in Ed is the set of all points of C that

are not the centre of any 2-dimensional spherical ball contained in C.

Definition 36. The exposed 1-skeleton of C is the set of points of C which belong to a

tangent plane to C whose total intersection with C is of linear dimension 0 or 1.

Theorem 4. (Larman and Rogers [16])

Let L be a non-constant linear function on Ed and let K be a convex body in Ed. Then

there are continuous maps s1, s2 of the closed interval [0, 1] to the exposed one-skeleton

of K with

L(si(0)) = inf
k∈K

L(k)

L(si(t1)) < L(si(t2)), when 0 ≤ t1 < t2 ≤ 1,

L(si(1)) = sup
k∈K

L(k) for i = 1, 2.

Further, the paths can be separated by a (d − 1)-dimensional plane, in that a plane π

can be chosen such that the sets

si(t), 0 < t < 1 for i = 1, 2

lie in opposite open half-spaces determined by π.

Using Theorem 3 we show that for most pairs (C,L) there are increasing paths on

the 1-skeleton of a convex body which have infinite length.

Corollary 2. For most pairs (C,L) ∈ C × Γ(d− 1) there exists an increasing path in

the 1-skeleton of C from m = {c ∈ C : l(c) = mink∈C l(k)} to M = {c ∈ C : l(c) =

maxk∈C l(k)} of infinite length.
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Proof. In fact there are at least two! Theorem 3 tells us that given L, most pairs

(C,X) ∈ C × ΓL(d− 1) produce sharp shadow boundaries with infinite length.

A sharp shadow boundary is simply a closed path on the 1-skeleton of C. The sets

m and M are contained in hyperplanes L1 and L2, respectively, both parallel to L. A

shadow boundary over a subspace orthogonal to L will intersect m and M . Thus if we

decompose our shadow boundary into four distinct paths such that:

p1 = S(C,X) ∩ L1

p2 = S(C,X) ∩ L2

p3, p4 = remaining sections,

then p3 and p4 are increasing paths on the 1-skeleton of C.

2.3 Shadow Boundaries over Subspaces of all Dimen-

sions

We now look at another generalisation of Gruber and Sorger’s result on shadow bound-

aries.

It has been shown in [18] that: For most pairs (C,X) ∈ C × Γ(d− 1) the shadow

boundary S(C,X) is sharp and has infinite (d − 2)-dimensional Hausdorff measure.

We wish to extend this result to shadow boundaries over subspaces of any dimension

2 ≤ l < d. Our aim is to prove that:

Theorem 5. For most pairs (C,X) ∈ C×Γ(l), where 2 ≤ l < d, the shadow boundary

S(C,X) is sharp and has infinite (l − 1)-dimensional Hausdorff measure.

2.3.1 Notation

Definition 37. Let S (l) denote the set of all pairs (C,X) ∈ C×Γ(l) such that S(C,X)

is sharp.

56



Definition 38. The natural parametrisation of S(C,X) for (C,X) ∈ S (l) is defined

by the function f = fC,X : πX(S(C,X))→ S(C,X) such that for x ∈ πX(S(C,X)))

we have πX(f(x)) = x. f is bijective and continuous.

Definition 39. A parametrisation of S(C,X) is defined by a function mapping an (l−1)-

dimensional topological sphere onto S(C,X).

2.3.2 Preliminary Results

Proposition 5. Given a constant 2 ≤ l < d, let (C,X), (Ci, Xi) ∈ S (l), i = 1, 2, ...

with (Ci, Xi) → (C,X). Then there are continuous one-to-one parametrisations g of

S(C,X) (equivalent to fC,X) and gi of S(Ci, Xi) (equivalent to fCi,Xi) respectively, all

defined on the same (l − 1)-dimensional sphere and such that gi → g uniformly.

Proof. The proof of this result is based on the proof of (5) in [18].

Assume the origin o lies in the interior of C and Ci for all i = 1, 2, ... This is

definitely achievable by applying the same translation to all bodies and, if need be,

deleting finitely many pairs (Ci, Xi). Then there exists an (l − 1)-dimensional sphere

S in X , centered at o and contained in C and all Ci.

We may now assume that no Xi is parallel to X (deleting finitely many pairs if

necessary).

Define the parametrisation g : S → S(C,X), g(x) = z, as follows: if y is the

intersection point of the half ray originating at o in direction x and πX(S(C,X)), then

z is the unique point in S(C,X) such that πXz = y. Define gi : S → S(Ci, Xi)

similarly.

Clearly, g, gi, i = 1, 2, ... are equivalent to fC,X , fCi,Xi respectively. Since

S(C,X),S(Ci, Xi) are sharp, g, gi are one-to-one. Need to show:

x, xi ∈ S(i = 1, 2, ...)xi → x implies gi(xi)→ g(x). (2.5)

As Ci → C, the sequence (gi(xi)), i = 1, 2, ... is bounded. Hence it suffices to show

that any convergent subsequence of (gi(xi)) has limit g(x). Let (gik(xik)) converge to

z, say. By Property 5, z ∈ bd C.
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Now, the support planes of Cik through gik(xik) parallel to x̄ik converge to the

support plane of C through z parallel to x̄. This implies

yik = πXik (gik(xik))→ y = πX(z) ∈ πX(S(C,X)).

Therefore, the radial projection centered at o of yik onto S converges to the radial

projection of y. Now, the radial projection of yik is xik and xik → x therefore the radial

projection of y onto S is x. The definition of g shows that z = g(x), thus proving (2.5).

A similar argument yields that

g, gi, i = 1, 2, ... are continuous on S.

It remains to show that

gi → g uniformly on S. (2.6)

If this were false there would exist

ε > 0 such that for some xik ∈ S, (k = 1, 2, ...) |gik(xik)− g(xik)| ≥ ε. (2.7)

The compactness of S implies that there exists a convergent subsequence of (xik). After

renumbering, let us assume (xik) converges to x, say. Then gik(xik) → g(x) by (2.5)

and the continuity of g implies g(xik)→ g(x). The last two statements contradict (2.7)

therefore (2.6) holds.

The proof of Proposition 5 is thus complete.

Direct consequences of this are:

Proposition 6. For any (C,X) ∈ S (l) the natural parametrisation fC,X of S(C,X)

is continuous and one-to-one.

Proposition 7. If (C,X), (Ci, Xi) ∈ S (l), i = 1, 2, ..., and (Ci, Xi) → (C,X), then

S(Ci, Xi)→ S(C,X).

We now introduce a few properties of the (l − 1)-dimensional integral geometric

stable area γl−1. For Properties 6 and 8 see [5] p. 325; for Property 7 see [33] p. 182;
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for Property 9 see [5] p. 319.

Let S be a (l − 1)-dimensional topological sphere in Ed. Then the following

properties hold:

Property 13. If S is a triangulated polytopal sphere and g : S → Ed is continuous,

injective and affine on each simplex of S, then

H l−1(g(S)) = γl−1(g).

Property 14. If g : S → Ed is continuous and injective, then

H l−1(g(S)) ≥ γl−1(g).

Property 15. If g : S → Ed and gi : S → Ed, i = 1, 2, ..., are continuous and gi → g

uniformly on S, then

γl−1(g) ≤ lim inf
i→∞

γl−1(gi).

Property 16. If T is another (l−1)-dimensional topological sphere in Ed and h : T →

S a homeomorphism, then

γl−1(g) = γl−1(g ◦ h).

2.3.3 Main Result

The proof of Theorem 5 requires the following lemma

Lemma 2.3.1. The set of pairs (Q,X) ∈ S (l) where Q is a convex polytope and for

which H l−1(S(Q,X)) > n holds is dense in S (l), (n = 1, 2, ...).

We shall prove the following which implies Lemma 2.3.1

Lemma 2.3.2. Let (P,X) ∈ S (l), P a polytope. Then there are polytopes Pi, i =

1, 2, ..., with (Pi, X) ∈ S (l), Pi → P and H l−1(S(P,X))→ +∞.
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Proof. Without loss of generality, let o ∈ πXP . Let ρ be the radial projection ofX\{o}

onto the relative bound S = πX(S(P,X)) of πXP . There exists a constant α > 1 such

that the following holds:

Let T be a closed convex surface in X containing πXP and contained in 2πXP .

Then:

(1/α)‖x− y‖ ≤ ‖ρ(x)− ρ(y)‖ ≤ α‖x− y‖ for x, y ∈ T. (2.8)

(‖ ‖ stands for the euclidean norm).

For i = 1, 2, ..., define simplicial convex surfaces Si in X with the following

properties:

i) Each facet F of Si has diameter < 1/i2,

ii) Si contains πXP and is contained in (3/2)πXP ,

iii) ‖x− ρ(x)‖ < 1/i for each x ∈ Si.

For each F of Si pick a point a in its relative interior. To each a assign a point

b outside of Si close enough for the line segments joining different bs to intersect the

relative interior of conv(Si) and such that the following holds:

Property 17. We can construct a surface Ti by replacing each facet F of Si by the

(l − 1)-dimensional simplex formed by joining the boundary simplices of F with b. Ti

has properties

i) Each facet of Ti has diameter < 1/i2,

ii) Ti contains πXP and is contained in 2πXP ,

iii) ‖x− ρ(x)‖ < 1/i for each x ∈ Ti.

Define the function hi : Ti → R by hi(x) = 0 if x ∈ bdF for some F of Si and

hi(b) = 1/i, interpolate linearly in between. Clearly,

max{|hi(x)| : x ∈ Ti} = 1/i. (2.9)
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Consider the polytopal surface {x + hi(x)x̄ : x ∈ Ti} (where x̄ is the unit vector

perpendicular to X). By Property 17 i):

each of its facets has slope > 1/i with respect to X. (2.10)

There exists a function e : πX(S(P,X)) → R corresponding to the natural parametri-

sation fP,X of S(P,X) such that

fP,X(x) = x+ e(x)x̄ for x ∈ πX(S(P,X)). (2.11)

As P is a polytope, the slopes of the facets of S(P,X) are bounded by a constant,

β say. By (2.8) and Property 17 ii), each facet of the polytopal surface {x+ e(ρ(x))x̄ :

x ∈ Ti} has slope ≤ αβ with respect to X . Define

Ui = {x+ (e(ρ(x)) + hi(x))x̄ : x ∈ Ti}. (2.12)

The previous inequality along with (2.10) show that each facet of Ui has slope≥ i−αβ

with respect to X . This implies:

H l−1(Ui) ≥ (1 + (i− αβ)2)1/2H l−1(Ti)

≥ (1 + (i− αβ)2)1/2H l−1(πX(S(P,X)))

→ +∞ as i→∞.

(Note: the (l − 1) Hausdorff measure of the sets Ui, Ti and πX(S(P,X)) is equivalent

to their (l − 1)-dimensional surface area.) Property 17 iii) and equation (2.9) imply

δH (S(P,X), Ui) < 2/i. (2.13)

Define the sets

Pi = conv({v ∈ vert P, v /∈ S(P,X)} ∪ Ui).

Then by Property 17 ii), S(Pi, X) = Ui which implies (Pi, X) ∈ S (l). The definition

of Pi and equation (2.13) yield δH (P, Pi) → 0 as i → ∞. Since S(Pi, X) = Ui,
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equation (2.13) implies H l−1(S(Pi, X)) = Ui → +∞ as i → ∞. Thus Proposition

2.3.2 holds.

Proof. of Theorem 5

Define, for n = 1, 2, ..., the sets

Sn(l) = {(C,X) ∈ S (l) : γl−1(fC,X) ≤ n}.

We first show

Sn(l) is closed in S (l). (2.14)

Let (Ci, Xi) ∈ Sn(l), i = 1, 2, ..., converge to (C,X) ∈ S (l), then it suffices

to show (C,X) ∈ Sn(l). Proposition 5 implies there exist one-to-one continuous

parametrisations g of S(C,X) equivalent to fC,X and gi of S(Ci, Xi) equivalent to

fCi,Xi all defined on the same (l− 1)-dimensional sphere S ⊂ X and such that gi → g

uniformly on S.

Properties 15 and 16 imply

γl−1(fC,X) = γl−1(g) ≤ lim inf
i→∞

γl−1(gi) = lim inf
i→∞

γl−1(fCi,Xi) ≤ n.

Therefore (C,X) ∈ Sn(l) which completes the proof of (2.14).

We now show

Sn(l) has empty interior in S (l). (2.15)

Assume the converse. By Proposition 2.3.1 we can choose a pair (Q,X) ∈ Sn(l) with

H l−1(S(Q,X)) > nwhereQ is a simplicial polytope. We may consider πX(S(Q,X))

as a triangulated (l − 1)-dimensional sphere in X and by Property 13 γl−1(fQ,X) =

H l−1(S(Q,X)) > n. Therefore (Q,X) /∈ Sn(l) which contradicts our assumption.

The proof of (2.15) is thus complete.

Statements (2.14) and (2.15) imply

S (l) \ ∪∞n=1Sn(l) = {(C,X) ∈ S (l) : γl−1(fC,X) =∞} is residual in S (l).
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Then Property 14 implies that the set {(C,X) ∈ S (l) : H l−1(S(C,X)) = ∞} is

residual in S (l) and therefore also residual in C × Γ(l − 1).

2.4 Connections
Intuitively, these results may seem to contradict the results of the previous chapter.

Here we shall reconcile this apparent contradiction.

Our measure theory results state that given a convex body C and a dimension

l ≤ d almost all shadow boundaries S(C,X), where X ∈ Γ(l), have finite (l − 1)-

dimensional Hausdorff measure. Here almost all means the property holds except on a

set of measure zero.

Our Baire category results state that for most pairs (C,X), where C is a convex

body in Ed and X is an l-dimensional linear subspace, the shadow boundary S(C,X)

has infinite length. Here most means the property holds for all elements except those

of a set of first Baire category.

The most obvious way to reconcile these two perspectives would be the existence

of a set of first Baire category of measure 1. It is possible to construct nowhere dense

sets with positive measure and as a set of first Baire category is the countable union of

nowhere dense sets it is possible to find a set of first Baire category with measure 1.

An example of such a nowhere dense set is the Smith-Volterra-Cantor set. It is

constructed similarly to the typical Cantor set by removing successively smaller open

intervals from the unit interval. Starting with the interval [0, 1] the first step consists in

removing an interval of length a quarter centered at 1/2. The remaining set is[
0,

3

8

]
∪
[

5

8
, 1

]
.

Next we remove a sixteenth from each of the remaining intervals leaving[
0,

5

32

]
∪
[

7

32
,
3

8

]
∪
[

5

8
,
25

32

]
∪
[

27

32
, 1

]
.
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The general step is to remove an interval of length 1/22n from the center of each

of the 2n−1 intervals created at the previous step.

The resulting set is nowhere dense as it contains no intervals. The total measure

of intervals removed from [0, 1] is

∞∑
n=1

2n−1(1/22n) =
1

4
+

1

8
+

1

16
+

1

32
+ . . . =

1

2
.

Thus the measure of the set remaining is 1/2.

This construction can be adapted to remove intervals of length α1/22n, where α is

a constant, which will in turn vary the measure of the remaining set to reach any value

less than 1.

Thus it is not a contradiction for almost all shadow boundaries to have finite length

and most of them to have infinite length.

64



Chapter 3

Further work

In this chapter I have collected all other problems considered throughout my PhD.

Most arise from work presented previously, mostly from our work on finite shadow

boundaries. As it has been said by a contributor to our main results one has a duty

to pose the questions prompted by one’s work in order to enable successors to know

where to start.

3.1 Increasing paths of finite length on the 1-skeleton of

a convex body

3.1.1 Existence of increasing paths on the 1-skeleton of a convex

body

Having shown that almost all shadow boundaries have finite length we questioned

whether our result or method could be used to show that other structures on the bound-

ary of a convex body have finite length.

The first of these was proving that increasing paths in the 1-skeleton of a convex

body have finite length.

Definition 40. The 1-skeleton of a convex body C in Ed is the set of points of C that

are not the centre of any 2-dimensional spherical ball contained in C.

In 1971, Larman and Rogers proved the existence of strictly increasing paths in



the 1-skeleton of a convex body. They conjectured:

Conjecture 1. [16]

Let L be a non-constant linear function on Ed. Let e0 be an extreme point of a convex

body K in Ed. Then there is a continuous map s of the closed interval [0, 1] to the

1-skeleton of K with

s(0) = e0,

L(s(t1)) < L(s(t2)), when 0 ≤ t1 < t2 ≤ 1,

L(s(1)) = sup
k∈K

L(k).

They were unable to reach a firm opinion as to the truth or falsehood of this state-

ment. (A counterexample to this conjecture was later found by S. Gallivan [21] who

constructed a three dimensional convex body with an extreme point from which there

is no strictly increasing path).

They instead proved a refinement of this result concerning the exposed 1-skeleton

of a convex body.

Definition 41. A point e of a convex body C belongs to the exposed 1-skeleton of C if

it lies in a plane tangent to C, whose total intersection with C is of linear dimension 0

or 1.

Theorem 6. [16]

Let L be a non-constant linear function on Ed and let K be a convex body in Ed. Then

there are continuous maps s1, s2 of the closed interval [0, 1] to the exposed one-skeleton

of K with

L(si(0)) = inf
k∈K

L(k)

L(si(t1)) < L(si(t2)), when 0 ≤ t1 < t2 ≤ 1,

L(si(1)) = sup
k∈K

L(k) for i = 1, 2.
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Further, the paths can be separated by a (d − 1)-dimensional plane, in that a plane π

can be chosen such that the sets

si(t), 0 < t < 1 for i = 1, 2,

lie in opposite open half-spaces determined by π.

Both of these statements are generalisations of the paths produced by the simplex

algorithm for convex polytopes.

Simplex Algorithm

If L is a linear function on Ed and if v0 is a vertex of a convex polytope P , then there is

a finite sequence of vertices v0, v1, v2, . . . , vm of P , the line segments

v0v1, v1v2, . . . , vm−1vm

being edges of P , with

L(v0) < L(v1) < . . . < L(vm) = sup
p∈P

L(p).

3.1.2 Can we always find an increasing path of finite length in the

1-skeleton of a convex body?

Increasing paths in the 1-skeleton of a convex polytope are composed of vertices and

edges like the one described above. Vertices do not contribute to the total measure of a

path as they are of dimension 0. Convex polytopes are bounded and hence all of their

edges have measure less than or equal to the diameter of the polytope.

Thus increasing paths on the 1-skeleton of a convex polytope, being composed of

a finite number of finite length edges, have finite length.

Question 1. Can this be extended to general convex bodies?
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Sharp shadow boundaries of a convex body over 2-dimensional subspaces are con-

tained in its 1-skeleton. Given an appropriate linear function on the space, these sharp

shadow boundaries can be decomposed into four sections, two of which will be increas-

ing paths as defined above.

As we are only interested in sharp shadow boundaries over 2-dimensional sub-

spaces, from now on the term shadow boundary will strictly refer to sharp shadow

boundaries over 2-dimensional subspaces.

Clearly, there are many more paths in the 1-skeleton of a convex body than there

are sharp shadow boundaries. This is true as sharp shadow boundaries are paths in the

1-skeleton and paths are not restricted to points belonging to the intersection of C with

tangent planes orthogonal to the subspace corresponding to the shadow boundary.

We would like to show

Conjecture 2. Given a linear function on the space En and a convex body C, there is

a continuous map s of the closed interval [0, 1] to the 1-skeleton of C with

L(s(0)) = inf
k∈C

L(k),

L(s(t1)) = L(s(t2)), when 0 ≤ t1 < t2 ≤ 1,

L(s(1)) = sup
k∈C

L(k) and

H 1(L(s[0, 1])) < ∞.

3.1.3 Applying Theorem 1

This could seem like a rather straightforward objective as we are simply looking to

show the existence of increasing paths of finite length rather than say anything about

the proportion of them which have finite length. As mentioned before, sharp shadow

boundaries are paths in the 1-skeleton and almost all of them have finite length thus it

should be straightforward to prove our conjecture.

However, our proof that almost all shadow boundaries have finite length relies on

an upper bound on the average measure of the shadow boundaries of a convex body

over all subspaces of a particular dimension.
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Given a convex body C and a linear function L on the space En, the shadow

boundaries of C corresponding to increasing paths are limited to those over subspaces

orthogonal to the plane π : L(x) = 0.

Unfortunately, this set of directions has measure zero within En. Hence it could

be contained in the set of measure zero of ‘bad’ directions. This would mean that

no shadow boundaries corresponding to directions within this hyperplane have finite

length. Hence we can not directly guarantee the existence of an increasing path of

finite length.

3.1.4 Adapting the proof of Theorem 1

Since simply applying our result is not possible, the next approach is to prove an anal-

ogous result for the average length of shadow boundaries over the directions within a

hyperplane.

The proof of Theorem 1 in Chapter 1 relies on approximating our given convex

body by a sequence of polytopes. Then we use the fact that the average measure of the

shadow boundary of a convex polytope is equal to a constant multiple of its Quermass

integral (Lemma 1.2.2).

Unfortunately, this result again relies on an average over all directions within Rn

and there is no straightforward way to adapt the proof to directions within a hyperplane.

To summarise:

Although we know increasing paths on polytopes have finite length, we can not

infer a bound on this length. This means that although we can approximate a convex

body by polytopes with finite increasing paths there is nothing to say this sequence will

tend to a finite path on the boundary of the convex body.
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3.2 Is there a convex body with a plane of bad direc-

tions?
The idea here is to find out if there is a way of bounding the length of shadow bound-

aries corresponding to increasing paths on the 1-skeleton of polytopes approximating a

convex body.

If yes, then there is an equivalent of Lemma 1.2.2 for shadow boundaries over

subspaces orthogonal to a fixed hyperplane. Thus the method used in Chapter 1 can be

used.

If no, the method used in Chapter 1 can not be applied and we need a different

approach.

Formally, we wish to answer the following:

Question 2. Given a non constant linear function L on En, can we find a sequence of

polytopes (Pi)
∞
i=1 converging to a convex body C such that the shadow boundaries of

Pi over subspaces orthogonal to π are unbounded as i→∞?

Here π denotes the plane where L is identically 0, that is π = {x : L(x) = 0}. A

subsidiary question would be:

Question 3. Given a non constant linear function L, two tac planes t1 and t2 parallel

to π and a number M , can we construct a polytope such that all increasing paths from

t1 to t2 are longer than M?

Let us look at the problem in three dimensions. We need to find structures which

induce long paths. An example of a shadow boundary with infinite measure is that

constructed from the graph of x sin(1/x).

Example 1. See Figure 3.1.

Take a cylinder and map the graph of x sin(1/x) onto its curved face such that the

x-axis is parallel to the circular faces. Now remove the cylinder to leave the curved

graph of x sin(1/x). Taking the convex hull of the graph we obtain a 3-dimensional
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Figure 3.1: Infinite shadow boundary

convex body. Taking the linear 2-dimensional subspace X to be parallel to the x-

axis, we construct the shadow boundary over X . The resulting shadow boundary is

the graph of x sin(1/x) near the origin which is known to have infinite 1-dimensional

measure.

In general, oscillating paths (as constructed above) as well as spirals can lead to

long (or infinite) paths. See Figure 3.2.

3.2.1 Triangle structure - initial examples

We consider the following facial structure (Fig 3.3):

The idea behind this structure is that any increasing path will have to travel a long

distance sideways in order to cover a short vertical distance. By altering the number of

points and the “flatness” of the triangles we can increase the distance travelled to reach
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Figure 3.2: Oscillating and spiral paths

Figure 3.3: Uniform mesh

L

a certain height. In particular, by increasing the flatness as we tend to maxx∈C L(x) we

will get infinite paths (Fig 3.4).

Question 4. Can we construct polytopes with this facial structure which approximate

a convex body?

This would imply that each vertex of the structure in Figures 3.3 or 3.4 lies on the

boundary of the convex body being approximated and that no extra edges which would

‘short circuit’ our long path structure are created.

Applying this structure to the cylinder while respecting the two conditions above
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Figure 3.4: Scaled mesh

L

leads to the construction of a non convex polytope. Hence this is not a viable approxi-

mation.

An attempt on the sphere using a slightly modified structure (in which the

points on each level become closer to account for the fact that the radii of the

circles corresponding to each level are decreasing) is equally unsuccessful due

to convexity breaking down. This can easily be seen by looking at a trian-

gle from our structure placed in the sphere with its vertices on the boundary.

Figure 3.5:
The plane containing this triangle

intersects the sphere in a disc (see Fig

3.5). In order to preserve convexity, the

triangle neighbouring the first one along

its long edge must not lie within the cap

cut by the plane containing the first trian-

gle. As the vertices of all the triangles in

our structure must lie on the boundary of the sphere, we can not maintain the propor-

tions of the triangles.
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This observation about the shape of the intersection cut by the plane containing

the initial triangle means the body required must have ellipsoidal section when cut by

a plane close to the boundary. Examples of such bodies can be obtained by rotating a

2-dimensional parabola around its y-axis to obtain a ‘bowl’ shaped body. The linear

function on the space would increase as y tends to zero. As the main length contribution

to the infinite paths considered is determined by the behaviour close to the maximal

value of L, adapting our structure to these bowls would be sufficient.

3.2.2 Essential Conditions

These initial examples lead us to consider which conditions need to be satisfied and

which convex body might allow us to construct approximating polytopes which satisfy

them.

L

ai

ai+1

ai+2

bi

bi+1

bi+2

ci

ci+1

ci+2

ci+3

di

di+1

di+2

Let us define the sequences a1, bi, ci, di and ri, where

di is the vertical distance from o (i.e. the bottom of the bowl);

ri is the radius of the bowl at level di;

ci is the distance between two vertices on level di;

bi is the distance between a vertex on level di and the corresponding edge on level di+1;

ai is the diagonal distance between a vertex on level di and one on level di+1.

What needs to be satisfied?

1. Convexity
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2.
∑

i ai = ∞ and
∑

i bi < ∞, where ai is the diagonal distance between levels i

and i+ 1 and bi is the vertical distance between levels i and i+ 1

3. a2
i = b2

i + c2
i and ci = ri sin(π/c), where c is the number of points on each level,

ci is the distance between two points on level i and ri is the ’radius’ at each level.

Each of these conditions leads to different ways of approaching the problem.

Convexity is assured if the gradient of bi is greater than that of bi+1. There is also a

distinction to be made between bis being part of a ‘downward’ triangle and those being

part of an ‘upward’ triangle. The latter having a longer length than the former. The

equations bellow refer to the case of a ‘bow-tie’ (OM) and of a lozenge (♦) respectively:

f(ri)[ri+1 − ri+2h] + f(ri+1)[ri+2h− rih] + f(ri+2)[rih− ri+1] > 0, (3.1)

f(ri)[ri+1h− ri+2] + f(ri+1)[ri+2 − ri] + f(ri+2)[ri − ri+1h] > 0; (3.2)

where ri is the radius at level di and h = cos π
c

where c is the number of points on each

level.

It has been suggested that the ais should behave similarly to 1/i whereas the bis

should behave like 1/i2. This may be a bit ambitious and so it is suggested ai = 1/iα

and bi = 1/iβ , where 0 < α < 1, β > 1 are constants.

Setting ai and bi as above and using the conditions listed above to determine val-

ues for ri or α or β was attempted by solving a system of equations using the software

package Mathematica, but this didn’t lead to anything conclusive.

After all these observations, the approach with the most chance of success seems

to be defining the ris recursively.

This means picking a function which might work and values for r1 and r2. From

these, the gradient of the face between r1 and r2 and where it will intersect the curve of
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the function can be calculated. Thus the next ri can be picked to be below this second

point of intersection and therefore guarantee convexity.

This process has been executed with x2 and x3 for various values of r1 and r2,

using Mathematica to calculate the values by recursion. Mathematica sets the value

ri+2 to be the ‘smaller’ intersection point of the line determined by ri and ri+1 and the

curve f(x) = x2.

Unfortunately, these trials have not lead to anything conclusive as all trials have

lead to finite paths. This reinforces our initial impression that given a convex body and

a non constant linear function on the space there are increasing paths in the 1-skeleton

of finite length.

3.3 Vanishing Line Segments
Continuing to focus on structures on the boundary of convex bodies, we look back at

Ewald, Larman and Rogers paper [11] in which they show:

Theorem 7. Thm 2 in [11]

If K is a convex body in En, the set S, of end points of the vectors drawn from the

origin in the directions of line segments on the surface of K, is a set of σ-finite (n− 2)-

dimensional Hausdorff measure on the (n− 1)-dimensional surface of the unit ball.

Similar results on the measure of the set of r-dimensional balls on the boundary

of a convex body were shown in the same paper. These results led to the conclusion

that almost all shadow boundaries are sharp. An extension of the set of directions of

line segments on the boundary of a convex body is to consider the set of directions of

vanishing line segments.

Definition 42. Let k˜ be a boundary point of a convex body K in Ed and H(k˜) be a

support plane of K at k˜ which does not contain a line segment of K. For each ε > 0

let H(ε, k˜) denote the hyperplane parallel to H(k˜) and at distance ε from H(k˜) which

lies on the same side of H(k˜) as K.
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Let W (H(ε, k˜) ∩K) denote the minimal width of H(ε, k˜) ∩K in H(ε, k˜). H∗(k˜)

denotes the (n− 1)-dimensional subspace parallel to H(k˜).

If u˜ ∈ H∗(k˜) let W (u,H(ε, k˜) ∩K) denote the width of H(ε, k˜) ∩K in direction

u˜. If

lim
ε→0

W (H(ε, k˜) ∩K)

W (u˜, H(ε, k˜) ∩K)
= 0,

we say that u˜ is the direction of a vanishing line segment of K.

The questions we’d like to answer are:

Question 5. Is it true that the set of directions of vanishing line segments on the surface

of a convex body has σ-finite (d − 2)-dimensional Hausdorff measure / zero (d − 1)-

dimensional Hausdorff measure?

Question 6. If we look at a particular hyperplane, is it true that the set of directions

of vanishing line segments orthogonal to this plane have zero (d − 2)-dimensional

measure?

We start by outlining at the proof of the result for line segments.

3.3.1 Outline of proof of Theorem 7

Let P be the collection of all pairs of parallel planes such that each plane of the pair

is parallel to one of the coordinate planes, meets the perpendicular coordinate axis in a

rational point and meets K in an interior point. Clearly P is countable.

Each line segment on the boundary will meet both planes of some pair in P , say

π0 and π1. Then this line segment will lie on the boundary of the least convex cover of

(π0 ∩K) ∪ (π1 ∩K) and meet π0 and π1.

Some subtleties later, we can now reduce the problem to a purely (n − 1)-

dimensional one by projecting the configuration orthogonally onto π0. If K0, K1 are

(n− 1)-dimensional convex bodies in π0, π1 write

K∗0 = K0, K
∗
1 = K1 − e1, K

∗
1 is the projection of K1 onto π0 and
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L∗ = {x1 − x0 : x0, x1 are points of contact of parallel tac planes to K∗0 , K
∗
1}.

Then it suffices to show H n−2(L∗) is finite.

Apply Lemma 5 in [11] to the vector sum K∗ = K∗0 + K∗1 . For sufficiently small

ε > 0 we can cover K∗ by a sequence of caps C1, . . . , Cm each with minimal width

lying between 2ε and 36(n− 1)ε and with
m∑
i=1

Vn−1(Ci) < ε∆, where ∆ is independent of ε.

Show L∗ ⊂ ∪mi=1(C
(1)
i − C

(0)
i ) where C(0)

i , C
(1)
i are caps cuts from K∗0 , K

∗
1 , re-

spectively, by the closed half space Hi(ti) which cuts Ci from K∗.

Show C
(1)
i − C

(0)
i is contained in the set Di

By Lemma 7 in [11] Di can be covered by a system of Ni spherical balls of diam-

eter di. Then ∪mi=1Di and hence L∗ will be covered by a system of N1 balls of diameter

d1, N2 balls of diameter d2,. . . , Nm balls of diameter dm. This covering depends on

ε > 0 but is valid for ε arbitrarily small thus

H n−2(L∗) is finite.

3.3.2 Approach

Is there a way of picking out the directions of vanishing line segments and covering

them by a cap covering as in the proof of Theorem 7?

We would potentially need to cover a slightly bigger region but economically

enough to get finite measure. The current covering may well be suitable to cover van-

ishing line segments as well as line segments on the boundary.

The proof of Theorem 7 relies on ‘catching’ line segments between a pair of paral-

lel planes. Here, the only representative of a vanishing line segment on the boundary is

a point. This does not give us any information about whether a vanishing line segment

occurs at that point or not and if one does, there is no indication as to its direction.

The information we need is contained in the caps of vanishing line segments. Is

there a way of ‘catching’ these caps in the same way line segments are caught in the
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proof of Theorem 7? Is there a way of making the vanishing line segments ‘appear’

somehow?

3.3.3 Representing a vanishing line segment by a line segment on

the bounding hyperplane of its cap

Associate to a cap cut from K by a plane H(ε, k˜) corresponding to a vanishing line

segment in direction u˜ the maximal line segment in direction u˜ contained in H(ε, k˜) ∩

K.

This line segment would certainly indicate the direction of the vanishing line seg-

ment but it would not be on the surface of K. The covering used in the proof of

Theorem 7 covers more than just the boundary of the convex body. For a given ε > 0,

it actually covers K \ Kε, where Kε is the inner parallel body of K at distance ε. So

potentially, the line segment would be contained in the existing covering. However, the

line segment would depend on the value of ε chosen to determine the cap. As the proof

relies on the covering working for all values of ε, and in particular as ε → 0, the two

limiting processes may interfere with each other and it is not obvious that the covering

would be valid.

3.3.4 Adding tangent line segments in the direction of vanishing

line segments at the points of the boundary at which they oc-

cur

The idea here is to make the vanishing line segments ‘appear’ on the boundary in order

to adapt the existing proof more easily.

Essentially, a new body is created by adding tangent line segments in the direction

of vanishing line segments at the points of the boundary at which they occur. The new

convex body is constructed by taking the convex hull ofK and this set of additional line

segments. Applying the proof of Theorem 7 to this new body should yield the result

required.
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The problem with this method is determining whether these new line segments

will interfere with any existing line segments or vanishing line segments. If this is the

case our measure would be invalid as it would not be taking into account all the line

segments and vanishing line segments present on the original body.

Suggestions to solve this problem are to:

• Determine a ratio between the minimum width and width in direction u˜ of a van-

ishing line segment cap which is small enough to guarantee no other vanishing

line segments or line segments intersect the cap. If δ > 0 is our ratio, then since

lim
ε→0

W (H(ε, k˜) ∩K)

W (u˜, H(ε, k˜) ∩K)
= 0,

for δ > 0 there exists ε > 0 such that

W (H(ε, k˜) ∩K)

W (u˜, H(ε, k˜) ∩K)
< δ.

• Once caps are fixed (by the ratio described above or otherwise), look at a cap

cut by H(ε, k˜). Take the planes t1, t2 tangent to K at either end of the maximal

line segment in direction u˜ contained in K ∩ H(ε, k˜). Then the end points of

the tangent line segment at k˜ in direction u˜ are determined by the tangent planes

t1, t2.

Figure 3.6: Adding a tangent line segment

It is however not clear how one would determine a suitable ratio.
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3.3.5 Classifying caps by size

As stated above, given δ > 0 for each vanishing line segment there exists ε > 0 such

that
W (H(ε, k˜) ∩K)

W (u˜, H(ε, k˜) ∩K)
< δ. (3.3)

Then each vanishing line segment has a unique cap assigned to it. These caps

have the characteristic of being ‘long’ in direction u˜ (the direction of the vanishing line

segment they represent). They may therefore be classified into classes Vm defined as

follows,

Vm = {u˜ : W (u˜, H(ε, k˜) ∩K) ≥ 1/m for ε s.t.(3.3) holds}, m = 1, 2, 3, . . . .

The set of planes dividing the space can then be considered in pairs at distance

1/m of each other. Proving each set Vm has finite measure will lead to the set of all

direction having finite measure.

3.3.6 Cone of directions

The distinguishing feature of the caps corresponding to vanishing line segments is that

they are ‘slim’.

Assume a given cap is caught by a pair of parallel planes p1 and p2, say. Then

the set H(ε, k˜) ∩ K is also intersected by the planes p1 and p2. The line segments

p1 ∩H(ε, k˜) ∩K and p2 ∩H(ε, k˜) ∩K define a trapezium in H(ε, k˜) ∩K. Looking

at the directions of the line segments with an end point in p1 ∩H(ε, k˜) ∩K and one in

p2 ∩ H(ε, k˜) ∩ K we obtain Figure 3.7. This is defined as the cone of directions of a

cap.

In the case of a vanishing line segment cap, this cone should have a rather small

principal angle. The line segments p1 ∩H(ε, k˜)∩K and p2 ∩H(ε, k˜)∩K should also

have length much smaller than 1/m. Could something be said about the caps caught

by looking at the line segments described above? Could the cone of directions be used

in some way?
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One thing that needs to be taken into account is that the pair of planes will not

necessarily intersect the cap orthogonally to u˜. In which case we would get something

like Figure 3.7. The principal angle of the cone of directions is largest when the planes

intersect the cap at right angles to u˜. As the principal angle gets smaller the thiner the

cap is, considering values of the principal angle smaller than or equal to that when the

planes the cap orthogonally to u˜ would be sufficient.

Figure 3.7: Cone of directions

3.4 Conclusion/Future outlook
To conclude:

One could ask whether increasing paths on the 1-skeleton of a convex body (as

described in [16]) have finite length? This is clearly true in the case of convex polytopes

given that these paths are composed of a finite number of edges of finite length (the

simplex algorithm implies the finite number of edges and the length of each edge is

bounded by the diameter of the body and is therefore finite).

However, extending this to general convex bodies using the results we have just

shown is not straightforward as averaging takes place over a hyperplane rather than

over the entire space.

A possible extension would be to prove that the lifting maps σ(C,X) are Lipschitz

rather than rectifiable. This would obviously not be true for all shadow boundaries

given the limitations we encountered proving rectifiability.

Another area of interest is vanishing line segments. These are defined by:
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Definition: Given a point k on the boundary of a convex body C, define H(k)

to be the support hyperplane to C at k. Looking at caps cut from C by hyperplanes

H(ε, k) parallel to and at distance ε from H(k), if there exists a direction u such that

lim
ε→0

min width of (H(ε, k) ∩ C)

width in direction u of (H(ε, k) ∩ C)
= 0,

then we say u is the direction of a vanishing line segment of C.

We know that the set of directions of line segments on the boundary of a convex

body has σ-finite (n − 2)-dimensional measure. The question is whether the set of

directions of vanishing line segments of a convex body have zero (n− 1)-dimensional

measure.

The study of vanishing line segments is closely linked to showing that the lifting

maps of shadow boundaries are Lipschitz. In fact, the Lipschitz property would imply

the vanishing line segment result.
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Appendix A

Average measure of the shadow

boundaries of convex bodies.

Mittlere Schattengrenzenlänge konvexer Körper

P. Steenaerts

Translation by L. Jottrand.

A.1 Introduction and problem statement

We place ourselves in n-dimensional Euclidean space En. We take a point o ∈ En to

be the origin and points x ∈ En are referred to by their position vector. Our basis is an

orthonormal system of vectors {ei}ni=1, 〈ej, ei〉 = δij . A convex body K ∈ En is taken

to be a compact convex set of points with non empty interior.

For a fixed direction, assign to each convex body the measure of its shadow bound-

ary in that direction. From this we obtain a functional over the class of all convex

bodies. In “Lichtgrenzen und Leichtsinn” [23], Blaschke remarked that this functional

varies discontinuously in the transition from polytopes to smooth convex bodies. The

starting point of this work is a problem posed by P. McMullen [15] in 1974 concern-

ing the average measure of shadow boundaries of convex bodies in 3-dimensional Eu-

clidean space.

In the following we will answer this question more generally by studying two n-



dimensional variables. A key fact is taken from the result that the average measure of

shadow boundaries (as well as the measures of shadow boundaries in a given direction)

in the transition from polytopes to smooth convex bodies is lower semi-continuous.

Along with this comes a new substantial additivity property of the Lebesgue area.

Take K ⊂ En a convex body with o ∈ int K and let n ≥ 3. Denote by Γn1 the

compact (n − 1)-dimensional Grassmann manifold of all lines through the origin o of

En. For G ∈ ΓN1 , we define

Σ(K,G) := {x |x ∈ bd(K), (x+G) ∩ int(K) = ∅} and

Π(K,G) := relbd (πG(K)),

where πG : En → F is the normal projection in direction G onto the subspace F of En,

where F is the orthogonal complement of G.

Σ(K,G) is called the shadow boundary of K in direction G. Clearly

πG(Σ(K,G)) = Π(K,G).

We say Σ(K,G) is sharp when πG, restricted to Σ(K,G), is a homomorphism

between Σ(K,G) and Π(K,G). Furthermore, γn1 is the normalised Haar measure on

Γn1 and so γn1 (Γn1 ) = 1

Set Γ0(K) := {G |G ∈ Γn1 ,Σ(K,G) is sharp}. λnn−2 is the (n − 2)-dimensional

Hausdorff measure in En.

Definition 43.

α(K) :=

∫
Γn1

λnn−2[Σ(K,G)]dγn1 .

β(K) :=

∫
Γn1

λnn−2[Π(K,G)]dγn1 .

α(K) is the average measure of the shadow boundary of K. β(K) is the average mea-

sure of the relative boundary of the normal projection ofK onto an (n−1)-dimensional

plane.
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Finally, set

q(K) := α(K)/β(K),

and further, let B be a ball and P an n-polytope. Then McMullen’s problem can be

stated thus for all convex bodies K ⊂ En:

1 = q(B) ≤ q(K) ≤ q(P )?

Often, the proof of these two inequalities is sufficient. We will prove them in the case

of smooth convex bodies K.

A.2 Calculating q(P ) for n-polytopes P
First, we will show that the functional q takes a constant value over the class of all

n-polytopes.

A.2.1 β(P )

We use Cauchy’s projection formula (see H. Hadwiger [24]):

ωn

∫
Γn1

W ′
1(πG(P ))dγn1 = ωn−1W2(P ).

ωk denotes the volume of the k-dimensional unit ball, i.e. ωk = πk/2/Γ(1 + k/2).

Wv is the vth Minkowski Quermassintegral relative to En−1. Applying the equality

(n− 1)W ′
1(πG(P )) = λnn−2[Π(P,G)] the projection formula yields

β(P ) =
(n− 1)ωn−1

ωn
W2(P ) =

(n− 1)ωn−1

nωn
M(P ),

where M represents the integral of the average curvatures.

A.2.2 α(P )

∆i(P ) is the set of i-dimensional faces of P , 0 ≤ i ≤ n−1; r ∈ ∆n−2(P ), r = f1∩f2,

where f1, f2 ∈ ∆n−1(P ); n1, n2 are the outer normal vectors on f1 and f2, ϑr is the

exterior angle of the face r.

α(P ) =
1

nωn

∑
r∈∆n−2(P )

g(r)λnn−2(r), with g(r) =
nωn
π

ϑr.
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It follows that:

α(P ) =
1

π

∑
r∈∆n−2(P )

ϑrλ
n
n−2(r).

From Steiner’s formula we have that the volume of the outer parallel body Aρ of

A at distance ρ, (0 ≤ ρ <∞):

V (Aρ) =
n∑
ν=0

(
n

ν

)
Wν(A)ρν .

A direct calculation gives:

V (Pρ) = . . .+
∑

r∈∆n−2(P )

ϑrρ
2

2
λnn−2(r) + . . .

Through comparison it follows:
(
n
2

)
W2(P ) = 1

2

∑
r∈∆n−2(P ) ϑrλ

n
n−2(r) and from this:

α(P ) = (n(n− 1)/π)W2(P ) = ((n− 1)/π)M(P ).

A.2.3 From 2.1 and 2.2:

Lemma A.2.1. For all n-polytope P ⊂ En we have: q(P ) = nωn/πωn−1.

Remark:

For n ≥ 3, we know from J. Rätz [25] that nωn/ωn−1 ≥ 4; whereby it effectively

follows that q(P ) > 1.

A.3 Measure theoretic foundations
In this section we will establish several measure theoretic facts which will help us with

our problem.

A.3.1 The measurability of Γ0(K) with respect to γn1
Lemma A.3.1. Γ0(K) is a Borel set in Γn1 . Further, it is a Gδ set.

Proof. For i ∈ N, set:

Xi = {G ∈ Γn1 : ∃ a line segment S(G) ⊂ bdK,with length `(S(G)) ≥ 1/i

and aff(S(G))− aff(S(G)) = G}

Here, affA stands for the affine hull of the set A. Now we may easily conclude:
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1. Xi is compact for all i,

2. ∪∞i=1Xi = Γn1 \ Γ0(K).

Lemma A.3.2. We have γn1 (Γ0(K)) = 1 and thereby γn1 (Γn1 \ Γ0(K)) = 0.

Proof. This follow directly from a work by Ewald, Larman and Rogers [11].

A.3.2 The measure space (Γ0(K),B, γ0)

B is the family of Borel sets in the space Γ0(K).

B′ := {Γ0(K) ∩ Y |Y ⊂ Γn1 , Y is a Borel set in Γn1}.

Lemma A.3.3. B = B′

Proof. Due to general measure theory.

From Lemmas A.3.1 and A.3.3, it follows that any X ∈ B is a Borel set in Γn1 ;

set γ0(X) := γn1 (X); from this arises the measure space (Γ0(K),B, γ0) which we will

simply denote by Γ0(K) from now on.

A.3.3 The Hausdorff measure λnk

For the definition and elementary properties of the k-dimensional Hausdorff measures

λnk in En (k ∈ N, 1 ≤ k ≤ n) we refer to H. Federer [1].

It is common knowledge that all Borel sets in En are λnk -measurable and so, in

particular Π(K,G) and Σ(K,G) are λnk -measurable for g ∈ Γ0(K) and k = n− 2. If

Π(K,G) lies in En−1, it follows from the Hausdorff measure’s immersion invariance

that λnn−2(Π(K,G)) = λn−1
n−2(Π(K,G)); compare with C. A. Rogers [20], pp. 50 and

53.
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A.4 Main conjecture and Consequences

A.4.1 Main Conjecture

K ⊂ En is a convex body. The functionals defined in the introduction can now be

defined thus:

α(K) :=

∫
Γ0(K)

λnn−2(Σ(K,G))dγ0 and

β(K) :=

∫
Γ0(K)

λnn−2(Π(K,G))dγ0.

ForG ∈ Γ0(K) we define g(K,G) := λnn−2(Π(K,G)) = (n−1)W ′
1(πG(K)); g is

continuous in both arguments (relative to the Blaschke-Hausdorff metric and the topol-

ogy on Γ0(K) respectively). As a constant multiple of the Minkowski Quermassintegral

W2(K), β(K) =
∫

Γ0(K)
g(K,G)dγ0 is a continuous function of K (see the calculation

of β(K) in section 2.1). For G ∈ Γ0(K) we define f(K,G) := λnn−2(Σ(K,G)).

Theorem 8. Main Conjecture:

f(K,G) is polyhedrally lower semi-continuous in the first argument and lower semi-

continuous in the second. This means:

a) Pi n-polytopes, Pi → K(i→∞), G ∈ ∩∞i=1Γ0(Pi) ∩ Γ0(K)

⇒ f(K,G) ≤ lim infi→∞ f(Pi, G).

b) Gi, G ∈ Γ0(K), Gi → G(i→∞)⇒ f(K,G) ≤ lim infi→∞ f(K,Gi).

A.4.2 Implications

We henceforth assume G ∈ Γ0(K).

1. 0 < g(K,G) ≤ f(K,G) ≤ ∞. The second inequality follows roughly

from Corollary 11 in H. Federer [1], p. 176, if we consider that Π(K,G) =

πG(Σ(K,G)) and Lip πG ≤ 1, where Lip πG denotes the Lipschitz constant of

the projection mapping πG.
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2. As a lower semi-continuous function in the second argument, f(K,G) is

(Γ0(K),B, γ0)-measurable and thus α(K) =
∫

Γ0(K)
f(K,G)dγ0 exists.

3. 0 < β(K) ≤ α(K) ≤ ∞. This follows from the monotonicity of the integral.

4. α(K) is a polygonally lower semi continuous function of K.

Proof. Pi n-polytopes, Pi → K (i → ∞), G ∈ Γ0 := ∩∞i=1Γ0(Pi) ∩ Γ0(K). Γ0

is a Gδ set relative to Γ0(K) and γ0(Γ0) = 1.

α(K) =

∫
Γ0(K)

f(K,G)dγ0 =

∫
Γ0

f(K,G)dγ0

≤
∫

Γ0)

lim inf
i→∞

f(Pi, G)dγ0 ≤ lim inf
i→∞

∫
Γ0

f(Pi, G)dγ0

= lim inf
i→∞

∫
Γ0(Pi)∩Γ0(K)

f(Pi, G)dγ0 = lim inf
i→∞

α(Pi).

Each step is due to the following respectively: γ0(Γ0(K) \ Γ0) = 0, the polyhe-

dral lower semi-continuity of f in the first argument and the monotonicity of the

integral, Fatou’s Lemma and finally to γ0[(Γ0(Pi) ∩ Γ0(K)) \ Γ0] = 0.

5. q(K) = α(K)/β(K) is a polyhedral lower semi continuous function of K since

q(K) is the quotient of a polyhedral lower semi-continuous and a continuous

function.

From these observations we immediately get the solution to McMullen’s Problem:

Choose a sequence of n-polytopes Pi, with Pi → K (i→∞)⇒

q(K) ≤ lim inf
i→∞

q(Pi) =
nωn
π ωn−1

.

A.5 Shadow boundary convergence

A.5.1 Convergence of shadow boundaries approximations

Let K ⊂ En be a convex body, Pi are n-polytopes with Pi → K (i→∞), furthermore

o ∈ int K ∩ (∩∞i=1int Pi); G ∈ Γ0. In this section we will show that the shadow
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boundaries on Pi in direction G converge to the shadow boundaries on K in direction

G.

We may take G = lin{en} and F := lin{e1, . . . , en−1} (by the notation linA we

understand the linear hull of the set A). Choose an (n − 1)-simplex ∆ ⊂ F , with

o ∈ relint ∆. Without loss of generality, we may assume ∆ ⊂ ∩∞i=1Pi ∩ K and let

S := relbd ∆.

For x ∈ S and i ∈ N, set:

p(x) := pos{x} ∩Π(K,G) and pi(x) := pos{x} ∩Π(Pi, G).

where posA denotes the positive hull of the set A. πG|Σ(K,G) is the restriction of πG to

Σ(K,G). πG|Σ(K,G) is a homeomorphism between Σ(K,G) and Π(K,G). σ(K,G) :

Π(K,G)→ Σ(K,G), σ(K,G) := (πG|Σ(K,G))
−1; σ(Pi, G) is defined similarly.

Define a mapping ϕ : S → En and for each i ∈ N a mapping ϕi : S → En as

follows:

ϕ(x) := σ(K,G)[p(x)], ϕi(x) := σ(Pi, G)[pi(x)]

ϕ, ϕi are homeomorphisms between S and S and Σ(Pi, G) respectively. Using some

elementary convergence properties we can easily establish:

Lemma A.5.1. ϕi → ϕ (i→∞) uniformly on S.

A.5.2 Convergence of shadow boundaries on linear approxima-

tions

Take G,Gi ∈ Γ0(K), Gi → G (i → ∞). In this case we prove that the shadow

boundaries of K in direction Gi converge to the shadow boundary of K in direction G.

G,F, S and the mappings p, ϕ and σ(K,G) are as in Section A.5.1. Fi is the

hyperplane orthogonal to Gi through o. (δi)i∈N is a sequence of proper rotations of En

about o, with δi(F ) = Fi for all i ∈ N which converge to the identity on En. (For

example take δi to be a rotation around o such that in the 2-dimensional plane defined
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by G and Gi, the angle of rotation is equal to the angle between between G and Gi).

Si := δi(S).

For x ∈ Si and all i ∈ N, we define qi(x) := pos{x}∩Π(K,Gi) and ψi : S → En

by ψi(x) := σ(K,Gi)[qi(δi(x))]. The definition of σ(K,Gi) is clear from the definition

of σ(K,G). ψi is a homeomorphism between S and Σ(K,Gi).

Lemma A.5.2. ψi → ϕ (i→∞) uniformly on S.

Proof. Instead of a complete analysis of convergence considerations, we will provide

an outline of a proof:

Take x ∈ S at random; without loss of generality, we may assume ψi(x)→ y (i→

∞), y ∈ bdK; as Gi → G (i → ∞) and because (ψi(x) + Gi) ∩ intK = ∅, it follows

that (y + G) ∩ intK = ∅ ⇒ y ∈ Σ(K,G). Finally, show simultaneously y = ϕ(x).

Uniform convergence is achieved indirectly.

A.6 Lebesgue area and Hausdorff measure

A.6.1 The concept of Lebesgue area

k, n ∈ N, k ≤ n; I ⊂ En denotes a fixed compact, polyhedral k-cell (not necessarily

convex).

Ck,n(I) := {f : I → En | f continuous}

Definition 44. p ∈ Ck,n(I) is called polyhedral if I can be triangulated such that

p maps each simplex of the triangulation barycentrically (affinely) onto a ‘linearly

equivalent’ simplex in En.

Each ‘linearly equivalent’ simplex in En has an elementary k-dimensional mea-

sure. That is its k-dimensional Hausdorff measure can be calculated from the coordi-

nates of its vertices using appropriate determinants. Applying this to polyhedral func-

tions, all sensible definitions of the area give the same result: every simplex of a given

triangulation of I will be assigned the elementary k-dimensional measure of its image
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in En, then these values will be added over all simplices of the triangulation. This

results in Lnk(p; I).

In the following we shall lay out the relevant definitions and lemmas. Additionally,

we refer the reader to H. Federer [2], pp. 90-94 and S. Saks [6], pp. 164-165.

The class of polyhedral functions lies densely in Ck,n(I) relative to the topology

of uniform convergence. Now let f ∈ Ck,n(I) be arbitrary.

Definition 45. Lnk(f ; I) := inf{lim infi→∞ L
n
k(pi; I) | (pi)i∈N a sequence of polyhe-

dral functions in Ck,n(I), with pi → f (i → ∞) uniformly on I}. Lnk(f ; I) is the

k-dimensional Lebesgue area of f over I .

Lemma A.6.1. f, fi ∈ Ck,n(I), i ∈ N, fi → f (i→∞) uniformly on I

⇒ Lnk(f ; I) ≤ lim infi→∞ L
n
k(fi; I).

This means that the Lebesgue area of uniform approximations in Ck,n(I) is lower

semicontinuous.

Proof. See extract from S. Saks [6] mentioned above.

A.6.2 Connection with the Hausdorff measure

f ∈ Ck,n(I); y ∈ En;N(f ; y) denotes the number of elements (may be∞) of the set

{x ∈ I|f(x) = y};N(f ; y) is the multiplicity function of y in f .

Definition 46.

N∗nk (f) :=

∫
En
N(f ; y) dλnk(y).

N∗nk (f) is the k-dimensional Hausdorff area of f .

Lemma A.6.2. Each of the following statements imply

N∗nk (f) = Lnk(f).

i) f is a Lipschitz mapping,

ii) k = 2.

Proof. See the reference to H. Federer [2] mentioned above.
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A.6.3 Non parametric surfaces

f : En → R is fexed; define a function f̄ : En → En+1, by f̄(x) = (x1, . . . , xn, f(x))

for x = (x1, . . . , xn) ∈ En. W ⊂ En is finitely rectilinearly triangulable. If W is an

n-complex, f̄ defines an n-dimensional non parametric surface over W and it follows

that:

Lemma A.6.3.

Ln+1
n (f̄ ;W ) = λn+1

n (f̄(W ))

Proof. This is the main result in one of H. Federer’s works [4].

A.6.4 Core measure theoretic problem

From the preliminaries above it is possible to reduce the main conjecture (see Section

A.4) to a purely measure theoretic problem.

K ⊂ En is a convex body with o ∈ intK;G ∈ Γ0(K). In addition, the assumptions

and notation from Section A.5.1 apply.

KEY QUESTION: Does it follow that λnn−2(ϕ(S)) = Lnn−2(ϕ;S)? (A.1)

The accuracy of (A.1), and Lemma A.6.1 would validate part a) of the main conjecture.

For part b) we will argue using the notation from section A.5.2 and, amongst others,

the application of (A.1), Lemma A.6.1 and the “movement invariance” of the Lebesgue

area as follows:

λnn−2(ϕ(S)) = Lnn−2(ϕ; s) ≤ lim inf
i→∞

Lnn−2(ψi;S)

= lim inf
i→∞

Lnn−2(ψi ◦ (δi|s)−1; δi(S))

= lim inf
i→∞

Lnn−2(σ(K,Gi) ◦ qi; δi(S))

= lim inf
i→∞

λnn−2(ψi(S))

with which part b) of the main conjecture is established.
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A.6.5 Two helpful statements

The same notation as in section A.6.1 holds. Sj, j ∈ {1, . . . , n} stands for an (n− 2)-

face of ∆. Then:

Lemma A.6.4.

λnn−2(ϕ(S)) =
n∑
j=1

λnn−2(ϕ(Sj)).

Proof.

λnn−2(ϕ(S)) = λnn−2(ϕ(S1 ∪ · · · ∪ Sn))

= λnn−2(ϕ(S1) ∪ · · · ∪ ϕ(Sn))

=
n∑
j=1

λnn−2(ϕ(Sj)).

The last inequality is based on the fact that, for j 6= k, we have λnn−2(ϕ(Sj) ∩

ϕ(Sk)) = 0. Set U := Sj ∩Sk; U is an (n− 3)-face of ∆. With the injectivity of ϕ and

the embedding invariance of the Hausdorff measure, it follows:

λnn−2(ϕ(Sj) ∩ ϕ(Sk)) = λnn−2(ϕ(Sj ∩ Sk)) = λnn−2(ϕ(U)) = λn−1
n−2(ϕ(U)).

Intermediate observations: For x ∈ U we decompose ϕ(x) into two components,

namely ϕ(x) := (p(x), h(x)). p(x) is the component in the (n − 2)-plane which goes

through U and o; h(x) the component in the direction lin{en}. Define δ : U → EN

as follows δ(x) := (x, h(x)) and τ : δ(U) → ϕ(U) as τ(δ(x)) := ϕ(x). τ is a

Lipschitz mapping (since p naturally has the Lipschitz property). Using Corollary 11 in

H. Federer [1], p176, the embedding invariance of the Hausdorff measure and induction

from Statement 2 in I. P. Natanson [26], p332, we get:

λn−1
n−2(ϕ(U)) = λn−1

n−2(τ(δ(U)))) ≤ (Lip τ)n−2λn−1
n−2(δ(U))

= (Lip τ)n−2λn−2
n−2(δ(U)) = (Lip τ)n−2Ln−2(δ(U)) = 0

with which the proof of Lemma A.6.4 is complete. Ln−2 denotes the (n − 2)-

dimensional Lebesgue measure.
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Observe now the analog construction to the intermediate study with T instead of

U , where T is an (n− 2)-face of ∆. It follows:

Lemma A.6.5.

Ln−1
n−2(δ;T ) = Lnn−2(δ;T ).

Proof. Set En−1 := aff T+ lin {en}, where + denotes Minkowski addition; En−1 is an

(n − 1)-dimensional surface in En. T is an (n − 2)-simplex, δ : T → En−1. Finally,

π denotes the orthogonal projection of En onto En−1. Lnn−2(δ;T ) ≤ Ln−1
n−2(δ;T ) is

trivial. Ln−1
n−2(δ;T ) ≥ Lnn−2(δ;T ) comes from the fundamental fact that the orthogonal

projection will at most reduce elementary volumes.

A.7 An additivity property of Lebesgue area

A.7.1 Smoothness of continuous functions

P is an n-polytope in En; f : P → R is continuous; for x ∈ P we define f̄ : P → En+1

as f̄(x) := (x, f(x)). g : En → R is an extension of f ; ḡ(x) := (x, g(x)) for x ∈ En;

ḡ : En → En+1. For the natural number i write Bn
1/i := {y ∈ En| ||y|| < 1/i}.

gi : En → R is given by gi(x) := (in/ωn)
∫
Bn

1/i
g(x + z) dLn(z), where Ln is the

Lebesgue measure over En. For x ∈ En, set ḡi(x) := (x, gi(x)); ḡi : En → En+1.

Lemma A.7.1. For all i ∈ N, gi is a Lipschitz mapping over all compact subsets

B ⊂ En, in particular over P .

Proof. We give a proof only for P , as we are only studying gi over the compact subset

B ⊃ P1, where P1 is the outer parallel body of P at distance 1. x, y ∈ P are chosen at

random; set A(x, y) := |gi(x) − gi(y)|/||x − y||; it suffices to show that A(x, y) ≤ c,

where c is a constant independent of x and y. We may assume that x and y are close to

each other, say ||x − y|| < 2/i. Using an elementary approximation, it follows easily

that:

A(x, y) ≤ (2imax |g|B|ωn−1/ωn) := c
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Lemma A.7.2. a) gi → g (i → ∞) uniformly on P and also gi → f (i → ∞)

uniformly on P .

b) Ln+1
n (ḡi;P )→ Ln+1

n (ḡ;P ) = Ln+1
n (f̄ ;P ) (i→∞).

Proof. a) comes from the uniform continuity of g on P1.

b) is Theorem 3.8 in R. N. Tompson [27] p398.

A further application of the method in Lemma A.7.1 on a Lipschitz mapping gives,

as we will see in what follows, a C1 function.

For p ∈ En, ρ > 0 and an Ln-integrable function f : En → R we set Bn
ρ (p) :=

{q ∈ En| ||q − p|| ≤ ρ} and fρ : En → R with fρ(p) :=
∫
Bnρ (p)

f(x) dLn(x).

Lemma A.7.3. f : En → R is a Lipschitz function⇒ fρ is continuously differentiable

for all ρ > 0.

Proof. This is a well known property of the mean function fρ (compare definition 6.15

and Remark 6.16 in H. Federer [3]).

A.7.2 Helpful fact from Alpert-Toralballa

P ⊂ En is an n-polytope; f : P → R, f ∈ C1; f̄ : P → En+1 with f̄(x) := (x, f(x))

for all x ∈ P .

Lemma A.7.4. Under the conditions stated above there is a unique sequence of piece-

wise linear simplicial non-parametric functions h̄i inscribed in f̄(P ) with

Ln+1
n (h̄i;P )→ Ln+1

n (f̄ ;P ) (i→∞)

Proof. Follows directly from Theorems 1) and 2) in L. I. Alpert- L. V. Toralballa [29],

where the idea of “unique sequence” is defined.

For our purposes, we still need to assert that the h̄is converge uniformly to f̄ (i→

∞) over P . To construct h̄i, L. I. Alpert and L. V. Toralballa did as follows: (Ci)i∈N

is a sequence of finite simplicial components of P with mesh size 1/i; the simplices
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involved will then be called “right-angled” (definition in [29]). The existence of such

components for n > 3 is, however, an open question. Lemma 6.12 in [28] with some

slight changes from [29] can help towards this point. hi : P → R is the piecewise

linear function belonging to Ci, that is: hi(p) = f(p) for p ∈ ∆0(Ci) and is affine in

between. ∆0(Ci) denotes the vertex set of Ci. For x ∈ P , we define h̄i : P → En+1 by

h̄i(x) := (x, hi(x)). First, it follows easily:

Lemma A.7.5. hi → f, h̄i → f̄ (i → ∞) uniformly on P and the h̄is are piecewise

linear and non-parametric

Let us summarise the results of the current section: P ⊂ En is an n-polytope,

f : P → R is continuous; for any function r : P → R, we define r̄ : P → En+1 by

r̄ := (x, r(x)) for all x ∈ P . Then we have

Lemma A.7.6. For the definition of the Lebesgue area of non-parametric functions f̄ ,

one can limit oneself to non-parametric approximating polyhedric functions p̄v, that

is: there exists a sequence of piecewise linear functions pv : P → R, v ∈ N, with the

following properties:

1. p̄v → f̄ (v →∞) uniformly on P ,

2. Ln+1
n (p̄v;P )→ Ln+1

n (f̄ ;P ) (v →∞).

Proof. Use Lemmas A.7.1 to A.7.5.

A.7.3 Additivity statement

In the following we will show that under subdivision of the domain of definition, the

Lebesgue area behaves additively. Similar results have until now only been known for

a few special cases (see J. Serrin [30], p440). In the context of our work, this additivity

property has great significance.

P ⊂ En is an n-polytope; for X ⊂ bd P , F (X) is the space of all continuous

functions f : X → R with the supremum norm || · ||X . If X is a polyhedron, we
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denote by F0(X) ⊂ F (X) the subspace of all existing piecewise linear functions. For

f ∈ F0(X), denote by I(F ) the (n− 1)-dimensional elementary geometric content of

the graphs Γ(f) ⊂ En+1 of f . Now, f ∈ F (X) and ϕ : N → F0(X) is a sequence

in F0(X), with lini→∞||ϕ(i) − f || = 0. Set λ(ϕ, f) := lim infi→∞ I(ϕ(i)); then we

define

LX(f) := inf{λ(ϕ, f)|ϕ is a sequence in F0(X), with lim
i→∞
||ϕ(i)− f || = 0}

Statement 3. X1 and X2 are proper polyhedra in bdP , with int(X1 ∩X2) = ∅;

f : X1 ∪X2 → R is continuous. Then

LX1(f |X1) + LX2(f |X2) = LX1∪X2(f).

Here, intZ means the interior of Z ⊂ bdP relative to the topology on bdP . The

statement above, in conjunction with Lemmas A.7.6 and A.6.5, directly produces the

following:

Corollary 3. If X1 and X2 are facets of P (i.e. (n− 1)-faces) then we also have:

Ln+1
n−1(f̄ ;X1) + Ln+1

n−1(f̄ ;X2) = Ln+1
n−1(f̄ ;X1 ∪X2)

Remark 1. A straightforward inductive argument shows that statement 7.1 as well as

the corollary are valid for any finite number of polyhedric subsets in bdP , respectively,

facets of P .

Proof. of Statement 1.

a) Trivially, we have : LX1(f |X1) + LX2(f |X2) ≤ LX1∪X2(f).

b) Conversely: If one of the values on the left side is infinite we are done. So from now

on we can assume that LX1(f |X1) and LX2(f |X2) are finite.

If our statement is false, there is f ∈ F (X1 ∪X2) and ε > 0 in R such that:

LX1(f |X1) + LX2(f |X2) + 3ε < LX1∪X2(f). (A.2)
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Let δ > 0 is a real number with the property:

2δ λnn−2(X1 ∩X2) < ε. (A.3)

For i ∈ {1, 2}, we set fi := f |Xi ; gi ∈ F0(Xi) is chosen such that ‖gi − fi‖XI ≤

δ/4 and I(gi) ≤ LXI (fi) + ε. We choose α > 0 so that all h ∈ {f, g1, g2} and all p, q

in the area of definition of h, with ‖p− q‖ ≤ α, give: |h(p)− h(q)| ≤ δ/4. ‖p− q‖ is

the euclidian distance between p and q.

Choose a simplicial decomposition C of X1 ∪ X2 so that Xi is triangulated by

a subcomplex Ci of C , gi is affine over each simplex of Ci and the diameter of each

simplex of C is at most equal to α. C0 := C1 ∩ C2 is then a triangulation of X0 :=

X1 ∩X2.

Here < is a linear ordering of the vertex set ∆0(C ) of C . D denotes the set of all

(n− 1)-simplices x ∈ ∆n−1(C ), for which x∩X0 6= φ. ∆n−1(C ) stands for the set of

all (n− 1)-simplices of C . Eventually after further subdivisions of C , one can assume

that for all x ∈ D, x ∩X0 is an edge k(x) of x. At first, x ∩X0 could be the union of

multiple edges of various dimensions in x.

For x ∈ D, `(x) := conv(∆0(x)\k(x)), where convA denotes the convex hull of

the set A. For 0 < β < 1 we set

U(x, β) := U{p+ β(x− p)|p ∈ k(x)}.

m(x) is the convex hull of `(x) ∪ {n(x)}, where n(x) is the centre of gravity of k(x).

Here<1 is the ordering of the vertex set ∆0(m(x)) of k(x) induced by<; <2 it the

linear ordering of ∆0(m(x)) in which n(x) precedes any other vertex and the ordering

of ∆0(`(x)) is induced by <.

C ′(x) is the natural simplicial decomposition of k(x) ×m(x) with respect to <1

and<2 (compare S. Eilenberg - N. Steenrod [31], p.66-67). ϕ(x, β) is the combinatorial

isomorphism from k(x) × m(x) onto U(x, β), by which (p, n(x)) is mapped onto p

(p ∈ ∆0(k(x))) and (p, q) is mapped onto the vertex of U(x, β) on the segment [p, q],

where p ∈ ∆0(k(x)) and q ∈ ∆0(l(x)).
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C ′(x, β) is the simplical decomposition of U(x, β) isomorphic to C ′(x) conveyed

by ϕ(x, β). Set U(β) := ∪{U(x, β)|x ∈ D} and C ′(β) := ∪{C ′(x, β)|x ∈ D}. Now

we immediately have:

U(β) is a neighbourhood of X0 in X1 ∪X2,

C ′(β) is a simplical decomposition of U(β). (A.4)

We define a piecewise linear mapping g(β) : X1 ∪ X2 → R : for p ∈

cl[(X1 ∪ X2)\U(β)] we set g(β)[p] := (g1 ∪ g2)[p]; for p ∈ ∆0(C0), we have

g(β)[p] := 1
2
(g1(p) + g2(p)) and g(β) is defined by linear interpolation over the sim-

plices of C ′(β). We want to show, there exists β > 0 s.t.

I(g(β)) ≤ LX1(f |X1) + LX2(f |X2) + 3ε (A.5)

and ‖g(β)− f‖X1∪X2 ≤ δ hold. (A.6)

If this holds for all δ > 0 which satisfies equation (A.3), then since (A.5) and (A.6)

contradict (A.2), our statement is proved.

First, we take care of the proof of (A.6). p is a point fromX1∪X2, say p ∈ X1. To

begin with, take p not belonging to U(β) then, from our assumptions, g(β)[p] = g1(p)

and |g(β)[p] − f(p)| = |g1(p) − f(p)| ≤ δ/4. No p is a vertex of a simplex of C ′(β).

In the case p /∈ C0 ⊂ C ′(β) we again have g(β)[p] = 1
2
(g1(p) + g2(p)) hence

|g(β)[p]− f(p)| ≤ 1

2
[|g1(p)− f(p)|+ |g2(p)− f(p)] ≤ δ/4.

Now p is a random point in a simplex x of C ′(β). As the diameter of x is at

most α, for each vertex q from x, |f(p) − f(q)| ≤ δ/4 holds. From the observations

above, |f(q)− g(β)[p]| ≤ δ/4 also holds for all q ∈ ∆0(x). q1, . . . , qk are the vertices

of x. There are non negative numbers αi (i = 1, . . . , k) with
∑k

i=1 αi = 1 and p =∑k
i=1 αiqi. From this:
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|g(β)[p]− f(p)| =
∣∣∣ k∑
i=1

αi [g(β)[qi]− f(qi)] +
k∑
i=1

αi [f(qi)− f(p)]
∣∣∣

≤
k∑
i=1

αi δ/4 +
k∑
i=1

αi δ/4 = δ/2,

and (A.6) follows.

It remains to show (A.5). We have

I(g(β)) = I(g1) + I(g2) +
∑

1

(I(g(β)|y)− I(g1|y) +
∑

2

(I(g(β)|y)− I(g2|y)

where
∑

i for i = {1, 2} denotes summation over y ∈ ∆n−1C ′(β), with y ⊂ Xi. To

prove (A.5), it suffices to show that for each x ∈ D, x ⊂ Xi and y ∈ ∆n−1C ′(x), there

exists a function h(y) :]0, 1[→ R, with limβ→0 h(y)[β] = 0 such that the following

holds:

I(g(β)|y(β))− I(gi|y(β)) ≤
δ

n− 1
λnn−2(k(x)) + h(y)[β]. (A.7)

Here y(β) ∈ C ′(β) is the simplex from whichϕ(x, β) is produced. I(g(β)|y(β)) is

simply the elementary geometric content of the (n− 1)-simplex which lies above y(β)

in the graph of g(β).

To show (A.7), we first look at the case where k(x) is (n − 2)-dimensional.

We assume i = 1. D(β) is the graph of g(β)|y(β), D1(β) is the graph of g1|y(β).

D(β) and D1(β) are (n − 1)-simplices. D1 := limβ→0D1(β) is an (n − 2)-simplex

equivalent to the section of the graph of g1 above k(x). Here, limβ→0 I(D1(β)) =

I(limβ→0D1(β)) = 0 and to prove (A.7), it suffices to show that:

lim
β→0

I(D(β)) ≤ δ

n− 1
λnn−2(k(x)), (A.8)

holds.

We can assume that D := limβ→0D(β) is an (n − 1)-simplex. (q1, . . . , qn−1)

is an ordering of the vertices of k(x) for which D has the following vertices:

(q1, g1(q1)), . . . , (qi, g1(qi)), (qi,
1
2
(g1(qi)+g2(qi))), . . . , (qn−1,

1
2
(g1(qn−1)+g2(qn−1)))

102



for some suitable i ∈ {1, . . . , n − 1}. D0 is the simplex with the vertices

q1, . . . , qi, (qi, s), qi+1, . . . , qn−1 where we have set s := 1
2
(g1(qi) + g2(qi)) − g1(qi)

and (qj, 0) is identified with qj for j ∈ {1, . . . , n− 1}.

Notice that |s| = 1
2
|g1(qi) − g2(qi)| = 1

2
|g1(qi) − f(qi) + f(qi) − g2(qi)| ≤ δ/4

holds. We want to show that D and D0 have the same (n − 1)-dimensional content.

We assume k(x) lies in En−2 and regard D, as well as D0, as a subset of En−1. Now q

is a point in k(x). E ⊂ En−1 is a 2-dimensional plane through q, qi and qi + en−1; we

assume q 6= qi.

Set s := E ∩ k(x). The endpoints of the line segment s are qi and a point r ∈

conv{q1, . . . , qi−1, qi+1, . . . , qn−1}. Fix α ∈ ]0, 1[ so that q = αqi + (1 − α)r holds,

assume q 6= r. D∩E is a triangle with the vertices (qi, g1(qi)), (qi,
1
2
(gi(qi)+g2(qi))), r

′

where r′ ∈ D is the point with π(r′) = r. π : En−1 → En−2 denotes here the

orthogonal projection.

D ∩ (q + Ren−1) is a line segment of length α|s|, where α = ‖q − r‖/‖qi − r‖.

Similarly, we find thatD0∩ (q+Ren−1) is a line segment of length α|s|. From Fubini’s

Theorem, we then have:

λnn−2(D) = λnn−2(D0) ≤ (1/n− 1)λnn−2(k(x)) δ/4

and (A.7) follows in this case. Notice as well that λnn−2(D) = I(D) =

I(limβ→0D(β)) = limβ→0 I(D(β)) holds, from which (A.8) follows immediately.

If k(x) is less than (n − 2)-dimensional, limβ→0D(β) and limβ→0D0(β) are at most

(n− 2)-dimensional and we conclude:

lim
β→0

I(D(β)) = I(lim
β→0

D(β)) = 0.

So (A.8) also holds in this case. Hence Statement A.7.1 is established.

A.7.4 Lebesgue area and Hausdorff measure on polytopes

P and R are (n − 1)-polytopes in En−1, with intP ∩ intR 6= ∅, say o ∈ intP ∩ intR.

p : bdP → bdR is the radial projection from o; naturally, p is a Lipschitz mapping.
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s ⊂ bdP is polyhedric; Q := p(s);Q ⊂ bdR is polyhedric. f : Q → R is continuous;

f̄ : Q→ En is defined by f̄(x) := (x, f(x)) for x ∈ Q. Then the following holds:

Lemma A.7.7. Lnn−2(f̄ ;Q) = Lnn−2(f̄ ◦ p; s).

We will do without the proof of this statement as it is awkward and technical.

From now on, we adopt the conditions from the beginning of section A.6.4. S

stands for the relative boundary of ∆ relative to F . Furthermore, P is an (n − 1)-

polytope in F with o ∈ T := relbdP . ϕ(x) = (p(x), h(x)), where p : S → Π(K,G)

denotes the radial projection from o and h(x) is the en component of ϕ(x), h : S → R.

κP : S → T denotes the radial projection from o and ϕP : T → En is defined for all

y ∈ T by ϕP (y) := (y, h(κ−1
P (y))). We now have:

Lemma A.7.8. Lnn−2(ϕP ◦ κP ;S) = λnn−2((ϕP ◦ κP )(S))

Proof. Pi (i = 1, . . . ,m) are the facets ((n− 2)-faces) of P .

λnn−2((ϕP ◦ κP )(S)) = λnn−2(ϕP (T )) = λnn−2(ϕP (P1 ∪ · · · ∪ Pm))

=
m∑
i=1

λnn−2(ϕP (Pi)) =
m∑
i=1

λn−1
n−2(ϕP (Pi)) =

m∑
i=1

Ln−1
n−2(ϕP ;Pi)

=
m∑
i=1

Lnn−2(ϕP ;Pi) = Lnn−2(ϕP ;T ) = Lnn−2(ϕP ◦ κP ;S).

The non trivial implications come from the proof of Lemma A.6.4 with ϕP instead of δ;

the imbedding invariance of the Hausdorff measure; Lemma A.6.3, with n− 2 instead

of n; Lemma 6.5 with ϕP instead of S; the Corollary and Remark to Statement A.7.1

with n instead of n+ 1 and finally, from Lemma A.7.7 with several substitutions.

A.8 Smooth polyhedral approximation
The aim of this section is, based on Lemma A.7.8, by approximating a convex body K

by polyhedra, to find a positive answer to our key question (A.1). In addition though,

we must assume that K is smooth which means that each point on the boundary of K

belongs to a distinct supporting hyperplane.
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A.8.1 Approximation statement

The following is crucial to the subsequent work.

Statement 4. K ⊂ En is a smooth convex body with o ∈ intK. (Pi)i∈N denotes a

sequence of n-polytopes with Pi ⊃ K and Pi → K (i→∞). πi : bdK →bdPi denotes

the radial projection from o; ε > 0. Then there exists i0 ∈ N such that for all i ∈ N

with i ≥ i0, the following holds

1− ε ≤ Lip (πi, π
−1
i ) ≤ 1 + ε.

Proof. The last line in the statement above says that the Lipschitz constant of πi as well

as that of π−1
i lie within the given bounds. We will only sketch here the proof for the

right hand side; the rest follows similarly.

Contrapositive:

There is ε > 0 such that for all i0 ∈ N there exists an i ≥ i0 with Lip πi > 1 + ε.

Possibly by choosing a subsequence of (Pi)iinN, we may assume Lip πi > 1 + ε

for all i ∈ N. Therefore, there exist xi, yi ∈ bdK, xi 6= yi for all i with

‖πi(xi)− πi(yi)‖
‖xi − yi‖

> 1 + ε. (A.9)

Gi := aff{xi, yi};Hi := aff{πi(xi), πi(yi)};Ei := aff{o,Gi} = aff{o,Hi}. Without

loss of generality, we can assume:

xi → p, yi → q (i→∞), p, q ∈ bdK.

Case 1: p 6= q.

Trivially, it holds that: πi(xi)→ p and πi(yi)→ q (i→∞) so

lim
i→∞

‖πi(xi)− πi(yi)‖
‖xi − yi‖

=
‖p− q‖
‖p− q‖

= 1.

contradicting (A.9).

Case 2: p = q.

Possibly after choosing a subsequence, we can assume Gi → G,Hi → H,Ei →
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E (i→∞), where G,H are straight lines and E := aff{o,G}.

Properties of G and H

1) p ∈ G ∩H , trivially.

2) G ⊂ TpK, where TpK is the (n − 1)-dimensional plane tangent to K at p.

Otherwise, G cuts a chord from K of length g (g > 0) which implies one can

find i0 ∈ N such that Gi, for i ≥ i0 cuts a chord from K of length gi ≥ g/2.

Now, gi = ‖xi − yi‖ which contradicts the fact that (‖xi − yi‖)i∈N converges to

0.

3) H ⊂ TpK. Otherwise, H cuts a chord conv{p, q} from K, q ∈ bdK, of positive

length (H∩ intK 6= ∅). For all δ > 0 there exists i0(δ) ∈ N so that for i ≥

i0, i ∈ N we have Hi∩ bdK = {pi, qi}, where pi ∈ Uδ(p), qi ∈ Uδ(q). Here

Uδ(p) denotes the open δ-ball at p. Look at all the chords of K with an endpoint

in Uδ(p) and Uδ(q). `δ is the infimum of their length. As δ decreases `δ grows

and for δ small enough `δ > 0. If πi(xi) → p, πi(yi) → p (i → ∞) there exists

j0(δ) ∈ N such that for i ≥ j0, ‖πi(xi) − πi(yi)‖ < `δ holds. This implies

that for i ≥ max{i0, j0} we have Hi∩ bdPi has at least 3 elements which is a

contradiction.

4) H = G; since H ⊂ E ∩ TpK = G.

Pick a linear isometry ϕi : Ei → E with ϕi(o) = o, ϕi(xi) ∈ pos{p}. In addition,

set ϕi(Gi) := Ḡi, ϕi(Hi) := H̄i. Without loss of generality, we may assume

Ḡi → Ḡ, H̄i → H̄ (i → ∞) where Ḡ and H̄ are straight lines in E through p.

FromG = H it follows directly that Ḡ = H̄ . From this we conclude immediately

that o /∈ Ḡ. As one can easily see and laboriously show using analytic geometry

on the 2-dimensional plane E, it holds that:

‖ϕi(πi(xi))− ϕi(πi(yi))‖
‖ϕi(xi)− ϕi(yi)‖

→ 1 (i→∞).
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By considering the isometry property of ϕi, this contradicts equation (A.9) and

statement A.8.1 holds.

A.8.2 Conclusions

K ⊂ EN is a smooth convex body with o ∈ intK; ε > 0. According to Statement A.8.1,

there exists an n-polytope P ⊂ En with o ∈ intP and 1 − ε ≤ Lip (π, π−1) ≤ 1 + ε,

where π : bdP → bdK is the radial projection from o. For appropriate P this is

equivalent to:

(1− ε)‖x− y‖ ≤ ‖π(x)− π(y)‖ ≤ (1 + ε)‖x− y‖ and

(1− ε)‖π(x)− π(y)‖ ≤ ‖x− y‖ ≤ (1 + ε)‖π(x)− π(y)‖

for all x, y in bdP . Pick an n-simplex ∆ ⊂ En with o ∈ int∆ and ∆ ⊂ intK∩ intP ;

S := bd∆. ZP denotes the cylinder in En+1 over the boundary of P , α : ZP → bdP is

the normal projection. ZK is the cylinder in En+1 over the boundary of K. π̄ : ZP →

ZK induces an extension of π on ZP by π̄(z) = π̄(α(z)+λzen+1) := π(α(z))+λzen+1

for z ∈ ZP . π̄ is one to one and naturally:

(1− ε)‖z − w‖ ≤ ‖π̄(z)− π̄(w)‖ ≤ (1 + ε)‖z − w‖ and

(1− ε)‖π̄(z)− π̄(w)‖ ≤ ‖z − w‖ ≤ (1 + ε)‖π̄(z)− π̄(w)‖

hold for all z, w ∈ ZP . In short: 1− ε ≤ Lip (π, π−1) ≤ 1 + ε.

f : S → ZP is continuous. By Ln+1
n−1(f ;S) we understand the (n−1)-dimensional

Lebesgue area of f over S, which we can also define using approximating Lips-

chitz mappings instead of polyhedric functions. L∗n+1
n−1 (f ;S) is defined similarly, al-

though the approximating Lipschitz function lj used must also satisfy the condition

that Im(lj) ⊂ ZP , where Im(lj) is the image of S in En+1 under the mapping lj .

Lemma A.8.1. L∗n+1
n−1 (f ;S) = Ln+1

n−1(f ;S).
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Proof. a) L∗n+1
n−1 (f ;S) ≥ Ln+1

n−1(f ;S) is trivial.

b) Pick a sequence of polyhedric functions pi : S → En+1, with pi → f (i→∞)

uniformly on S and Ln+1
n−1(pi;S) → Ln+1

n−1(f ;S) (i → ∞). Without loss of generality

we may assume that for all i ∈ N Im(pi) lies outside ZP . ν : En+1 → ZP is the “nearest

point map” relative to ZP . Based on the Busemann-Feller Lemmas, ν is a contraction

(see Lemma 3 on page 35 in P. McMullen - G. C. Shepard [32] where on p. 31 there is

also the definition of the nearest point map). Naturally, ν ◦ pi is a Lipschitz map for all

i ∈ N and ν ◦ pi → f (i→∞) uniformly on S.

⇒ L∗n+1
n−1 (f ;S) ≤ lim inf

i→∞
Ln+1
n−1(ν ◦ pi;S)

= lim inf
i→∞

∫
En+1

N(ν ◦ pi; y) dλn+1
n−1(y).

The last equality is a generalisation of Lemma A.6.2 i) (see Theorem 6.18 in H. Federer

[3]).

Ci is a simplicial decomposition of S into (n− 1)-simplices Sj (j = 1, . . . , ni) so

that pi is affine and one to one over each simplex Sj . So it is true that:

L∗n+1
n−1 (f ;S) ≤ lim inf

i→∞

∫
En+1

[ ni∑
j=1

N(ν ◦ pi|Sj; y)
]
dλn+1

n−1(y)

= lim inf
i→∞

ni∑
j=1

[ ∫
En+1

N(ν ◦ pi|Sj; y) dλn+1
n−1(y)

]
= lim inf

i→∞

ni∑
j=1

[ ∫
pi(Sj)

Jn−1(ν) dLn−1(y)
]
,

where Ln−1 denotes the (n − 1)-dimensional Lebesgue measure. Here Jn−1(ν) is the

Jacobian area distortion factor for ν; which means Jn−1(ν)|w∈pi(Sj) gives the ratio of the

(n− 1)-dimensional Hausdorff measure of the image and pre-image of any cube under

the linear derivative ν ′|w : aff pi(Sj)→ En+1 of ν at the point w (since ν is a Lipschitz

mapping, ν ′ exists almost everywhere). This last observation follows directly from

Theorem 5.9 and Definitions 2.7 and 2.8 in H. Federer [33]. Since ν is a contraction, it
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obviously holds that 0 ≤ Jn−1(ν) ≤ 1. Along with this, we get

L∗n+1
n−1 (f ;S) ≤ lim inf

i→∞

ni∑
j=1

λn+1
n−1(pi(Sj)) = lim inf

i→∞
Ln+1
n−1(pi;S)

= lim
i→∞

Ln+1
n−1(pi;S) = Ln+1

n−1(f ;S).

Remark 2. Lemma A.8.1 gives the corresponding result in the case where f is a con-

tinuous mapping from S to ZK .

Lemma A.8.2.

1

(1 + ε)n−1
Ln+1
n−1(f ;S) ≤ Ln+1

n−1(π̄ ◦ f ;S) ≤ (1 + ε)n−1Ln+1
n−1(f ;S).

Proof. By Lemma 8.1, there exist Lipschitz functions fi : S → ZP , with fi → F (i→

∞) uniformly on S and Ln+1
n−1(fi;S) → Ln+1

n−1(f ;S) (i → ∞). The mappings π̄ ◦ fi :

S → ZK are Lipschitz for all i ∈ N and we have π̄ ◦ fi → π̄ ◦ f (i → ∞) uniformly

on S. With the generalisation of Lemma A.6.2 i) already mentionned in the proof of

Lemma A.8.1, the one to one ness of π̄ and the fact that Lip π̄ ≤ 1+ε, we easily obtain:

Ln+1
n−1(π̄ ◦ f ;S) ≤ lim inf

i→∞
Ln+1
n−1(π̄ ◦ fi;S)

= lim inf
i→∞

∫
En+1

N(π̄ ◦ fi; y) dλn+1
n−1(y)

= lim inf
i→∞

∫
En+1

N(fi; π̄
−1(y)) dλn+1

n−1(y)

≤ (1 + ε)n−1 lim inf
i→∞

∫
En+1

N(fi; π̄
−1(y)) dλn+1

n−1(π̄−1(y))

= (1 + ε)n−1 lim inf
i→∞

Ln+1
n−1(fi;S)

= (1 + ε)n−1 lim
i→∞

Ln+1
n−1(fi;S)

= (1 + ε)n−1Ln+1
n−1(f ;S),

with this the right hand side is established. The left hand side follows analogously.

The corresponding facts, as shown above for the Lebesgue area, can now be shown

for the Hausdorff measure.
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Lemma A.8.3.

1

(1 + ε)n−1
λn+1
n−1(f(S)) ≤ λn+1

n−1((π̄ ◦ f)(S)) ≤ (1 + ε)n−1λn+1
n−1(f(S)).

Proof. Follows directly from Lip (π̄, π̄−1) ≤ 1 + ε.

A.9 Main statement and further questions

A.9.1 Main statement

Under certain conditions on the convex bodies taken into consideration, we succeed

in proving McMullen’s conjecture. For the exact problem statement, in particular the

definition of the function q, refer to the introduction.

Theorem 9. Main Theorem

For all smooth convex bodies K ⊂ En we have:

1 ≤ q(K) ≤ nωn
π ωn−1

Proof. By considering the main conjecture and the measure theoretic Key question

(A.1), it suffices to show

Lnn−1(ϕ;S) = λnn−2(ϕ(S))

Therefore, we adopt the conditions in section A.6.4.

1) If both sides of the inequality are infinite there is nothing to show.

2) Both sides are finite:

Contrapositive: |Lnn−2(ϕ;S) − λnn−2(ϕ(S))| = δ > 0. F := lin{e1, . . . , en−1}.

Statement A.8.1 with n − 1 instead of n and πG(K) for K (see introduction)

guarantee that for each ε > 0 there exists an (n − 1)-polytope Pε ⊂ F , with

o ∈ intPε and 1 − ε ≤ Lip (Pε, P
−1
ε ) ≤ 1 + ε, where Pε : relbdPε → Π(K,G)

denotes the radial projection from o; note that as well as K, πG(K) is smooth.

Based on Lemmas A.8.2 and A.8.3, with n instead of n+1, ϕPε ◦κPε instead of f
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anf ϕ instead of π̄ ◦ f , we can pick ε > 0 such that the following two statements

hold:

|Lnn−2(ϕ;S)− Lnn−2(ϕPε ◦ κPε ;S)| < δ/2 and

|λnn−2(ϕ(S))− λnn−2((ϕPε ◦ κPε)(S))| < δ/2,

where ϕPε and κPε are defined similarly to ϕP and κP from section A.7.4. From

this we can conclude directly:

Lnn−2(ϕPε ◦ κPε ;S) 6= λnn−2((ϕPε ◦ κPε)(S)),

which contradicts Lemma A.7.8.

3) One side is finite and the other is infinite is impossible by Lemmas A.8.2, A.8.3

(with the same switches as in 2) above) and Lemma A.7.8 (with Pε instead of P ).

A.9.2 Conclusions and further questions

1) “Long shadow boundaries are rare”. K ⊂ En is as always a smooth convex

body. As q(K) = α(K)/β(K) from our main statement and β(K) (as a constant

multiple of the Minkowski Quermass integral W2(K)) are both finite, it follows

immediately that α(K) <∞.

Set Λ := {G|G ∈ Γo(K); f(K,G) = ∞}. F (K,G) was defined in section

A.4.1. Since f(K,G) is lower semi continuous in the second argument due to b)

of the main conjecture, for a fixed K we have:

Corollary 4. Λ is γ0-measurable and γ0(Λ) = 0.

For the definition of γ0 refer back to section A.3.2.

2) The question corresponding to McMullen’s problem for (n − 2)-dimensional

projections and hence 1-dimensional shadow boundaries (topological circumfer-

ence) can be solved similarly. It is in fact easier and can be done without the

111



smoothness of K. Instead of λnn−2 and Lnn−2 take λn1 and Ln1 . The corresponding

key question for the proof of the main conjecture results from a direct generali-

sation of Lemma A.6.2 ii) or the main conjecture follows directly, without using

Lebesgue area, from the fact that λn1 agrees with the natural arc length, which

is lower semi continuous over approximations. Compare with Remark β), page

164 in F. Hausdorff [34] and Result 5.8, page 20 in H. Busemann [35].

For polytopes, take the analog function q and the same constant values as in the

problem solved above (see H. Hadwiger [36]).

3) The case of k-dimensional projections and (n − k − 1)-dimensional shadow

boundaries, for 1 < k < n − 2 is harder and is being worked on sucessfully

by D. G. Larman and P. Mani.

4) Open questions: Out of the numerous problems, we pick two.

a) Can the smoothness property of the convex body K in the approximation

statement and in the main statement be left out?

b) When do we have equality in the main statement, ie: which convex body

aside from the ball satisfy q(K) = 1 and which along with polytopes are

characterised by q(K) = πωn−1?
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Verlag, Berlin-Göttingen-Heidelberg, 1957.
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veröffentlichtes Manuskript, Bern, 1976.

116


