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Abstract

Quantum information theory has attracted much interest in the last decade. The
cause of this interest is twofold: the exciting applications that the theory promises,
such as the realization of quantum computers, but also the possibility that perhaps
the theory will enable us to solve the mysteries of quantum physics. In this thesis
we touched a wide variety of topics with the modest motivation that perhaps, at
the very least, one could get a little more insight into the conceptual problems.
Our motivation led us to carry out the work presented in this thesis. We explore
entanglement properties of light in the context of quantum memories. Quantum
memories are set to be a crucial component of future quantum computers. In the
short and medium term, the development of effective quantum memories would
pave the way for the implementation of a variety of quantum information protocols.
For the applications it is important to be able to store entanglement. In this thesis
we investigate the storage of two mode Gaussian states of light in a QND feedback
quantum memory and we examine the question whether it is better to store the
state already entangled or whether is better to store a squeezed state which is
only entangled after storage. We then turn to a study of some aspects of the
theory of SIC-POVMs (Symmetric Informationally Complete Positive Operator
Valued Measures). SIC-POVMs potentially have numerous application in quantum
information. They have been constructed mathematically in every dimension≤ 67.
But it remains an open question whether they can be constructed in every finite
dimension. In this thesis we describe an analogy between coherent states of a
continuous variables systems and SIC-POVMs in a discrete system. We then go on
to examine the Galois group of the extension field generated by the components of
the SIC-POVM fiducial vector. We prove a number of theorems about this group.
We then go on to actually calculate the group for a SIC-POVM in dimension 6 and
show that it has a number of interesting properties. We speculate that this line
of research may make a useful contribution to an eventual proof of the existence
of SIC-POVMs. Finally we investigate quantum communication via spin chains.
One of the key requirements for a functioning quantum information processor is
the ability to transport quantum information from one location to another. Spin
chains are a tool which might be used for this purpose. There have been many
proposals recently which showed that under fairly general conditions spin chains
communicate quantum information with arbitrarily high fidelity. However, so far
there have not been many proposals addressing the problem of communicating as
much quantum information as possible. In this thesis we address this problem and
describe a method which achieves a high transmission rate for long spin chains.
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CHAPTER 1

Overview

1.1. Motivation

The interpretation of quantum mechanics is one of the most controversial topics

in science. There are numerous interpretations each opposing all the others. Per-

haps the controversy surrounding quantum mechanics is best expressed by Christo-

pher Fuchs in [1]:

But how did this come about? What is the cause of this year-

after-year sacrifice to the “great mystery?” Whatever it is, it

cannot be for want of a self-ordained solution: Go to any meet-

ing, and it is like being in a holy city in great tumult. You will

find all the religions with all their priests pitted in holy war—the

Bohmians [2], the Consistent Historians [3], the Transactional-

ists [4], the Spontaneous Collapseans [5], the Einselectionists [6],

the Contextual Objectivists [7,8], the outright Everettics [9,10]

and many more beyond that. They all declare to see the light,

the ultimate light. Each tells us that if we will accept their

solution as our savior, then we too will see the light.

He suggests that the reason for all this disagreement is because of a failure to realize

that quantum mechanics is a theory of information:

So, throw the existing axioms of quantum mechanics away and

start afresh! But how to proceed? I myself see no alternative

but to contemplate deep and hard the tasks, the techniques, and

the implications of quantum information theory. The reason is

simple, and I think inescapable. Quantum mechanics has always

11



12 1. OVERVIEW

been about information. It is just that the physics community

has somehow forgotten this.

So as Fuchs sees it, quantum information is not just a branch of quantum mechanics

but almost is quantum mechanics (“almost” because he does think that there is a

“little more” to quantum mechanics than just information). Whether one accepts

Fuchs’ view or not quantum information is certainly very important.

Information theory began in the 1940s with discussions between Shannon and

Turing during the Second World War [11]. At the time, Shannon and Turing

were both engaged in military work on cryptography. However, they were both

looking forward into the future and thinking about communication, computation

and more speculatively artificial intellegence. Their work has had a major impact

on the subsequent development of science and technology. In particular, it led

to Shannon’s classical information theory. Shannon gave his famous formula for

measuring the amount the information:

H = −
n∑
i=1

pi log2 pi, (1.1.1)

where n is the number of possible messages and pi is the probability of the ith

message. The striking fact is that this formula is nothing but the formula for

classical entropy, and indeed H is often called the Shannon entropy. His theory

gives rise to the idea that information can be viewed as something physical. Like

any other physical quantity, it has a unit called the bit (short for “binary digits”)

defined to be the information content of a message consisting of a single symbol

equal to 0 or 1 and occurring with equal probability.

After the pioneering work of Shannon and Turing, the field of information grew

explosively. During the course of this development devices were made smaller and

smaller. This led to a worry about what would happen when the size of the indi-

vidual components approached atomic dimensions so that quantum effects became

important. However, in the 1980s a number of people began to think that the

quantum effects can be turned into an advantage [11]. This led to the three key
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papers by Feynman which discussed the simulation of physics using a quantum

computer [12], by Deutsch which showed that a quantum computer could be much

faster than classical computer for some calculations [13] and by Bennett and Bras-

sard which showed that quantum mechanics could be used to give a much more

secure method for key-distribution in cryptography [14]. These papers founded the

field of quantum information.

Quantum information exploits the distinctive features of quantum mechanics to

perform tasks which would be either impossible to perform classically or which, at

least, is not known how to achieve classically. In particular, quantum information

exploits superposition principle. A classical bit can be only one of two states: 0

or 1. A quantum bit (a qubit) by contrast can be in an arbitrary superposition of

these states α|0〉 + β|1〉 where α and β are arbitrary complex numbers satisfying

the condition |α|2 + |β|2 = 1. It also exploits entanglement. Suppose Alice and

Bob both have a classical bit, then their bit can be in one of the 4 states: 00, 01,

10 or 11. In quantum mechanics other states are possible. For example the state

1√
2
(|00〉 + |11〉). This state cannot even be written as a product of two quantum

superposition states of Alice’s qubit and Bob’s qubit. A state of this kind is said

to be entangled. The possibility of entanglement plays a crucial role in quantum

information.

1.2. Plan of this thesis

In this thesis we examine three particular problems that arise in quantum infor-

mation theory: entanglement storage with Gaussian states in continuous variable

systems, SIC-POVMs (symmetric informationally complete positive operator val-

ued measures) and quantum communication using spin chains.

The plan of the thesis is as follows. In Part 1 we give an introduction to Gauss-

ian states and discrete and continuous variable systems. However, we would like

to point out that Section 4.3, although in the introduction, contains (unpublished)
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original material. Specifically, we argue that a SIC-POVM can be regarded as a dis-

crete analogue of a coherent state POVM (positive operator valued measure). The

reason we put this in the introduction is that it is foundational and highly relevant

to the elementary properties of Gaussian states. It is also one of the motivations

for the work in Part 3.

In Part 2, we treat the first of our three problems. The problem is concerned

with quantum memories. One important application of a quantum memory is to

quantum communication over long distances. In such communication a quantum

memory is used as part of a quantum repeater to counter the effects of attenuation.

In our research we considered the problem whether it is better to entangle a state

before storing it or whether, instead, it is better to entangle it after storing it in

a quantum memory. We present our results in two sections. The first of these,

Section 5.3.1, has been published. The second part of our results in Section 5.3.2

is original, unpublished work.

In Part 3 we discuss the application of Galois theory to SIC-POVMs. SIC-

POVMs are interesting for many reasons. One reason is that they are a central part

of the programme of Chris Fuchs mentioned above to formulate quantum mechanics

as a theory of information [15,16]. This reveals many interesting properties of the

known SIC-POVMs. We illustrate these properties for the case of dimension 6 in

Section 6.4. A more detailed analysis of dimensions 4− 16 and 19, 24, 28, 35, 48 can

be found in our paper [17].

In Part 4 we discuss quantum communication using a spin chain. In Section

7.2 we present a result for maximizing the fidelity of an arbitrarily long spin chains.

Although this was a significant result it was not published. This was due to the

fact that we later discovered that a very similar result had already been published

in [18]. However we think that it is worth presenting this result in this thesis since

it is independent work. We then present another result in Section 7.3 which has

been published in [19]. In this work we considered communicating qubits along a

chain where the state of the chain is represented by a superposition of approximate



1.2. PLAN OF THIS THESIS 15

Gaussian wavepackets. We found a bound for maximum achievable transmission

rate. This also is a significant result as it is an important problem to increase the

number of signals that one can put on the chain successively to achieve efficient

quantum communication.





Part 1

Introduction to Discrete and

Continuous Variable Systems





CHAPTER 2

Continuous variable systems

Quantum Mechanical systems are described by operators on a Hilbert space.

The state of a system is represented by a density matrix ρ which has two defining

properties

ρ ≥ 0, (2.0.1)

Tr[ρ] = 1. (2.0.2)

The first property expressed in Eq. (2.0.1) states that the eigenvalues of any density

matrix ρ are equal to or greater than zero. Such matrices are said to be positive

semi-definite positive matrices. The second property states that the trace of a

density matrix is always 1.

The observables of a quantum system are described by operators. An important

property of these operators is that they are Hermitian. An operator Â is said to

be Hermitian if it is equal to its Hermitian-adjoint where by the Hermitian-adjoint

we mean the transpose of the matrix obtained by taking the complex conjugate of

the matrix elements of the original matrix Â. That is

Â = Â†, (2.0.3)

where Â† is the Hermitian-adjoint of Â. This implies that the eigenvalues of a

Hermitian operator are real and therefore can be interpreted as a possible outcomes

of a measurement. The expectation value of a measurement of an observable Â is

given by

〈Â〉 = Tr[ρÂ]. (2.0.4)

19
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The operators describing the observables may have finitely or infinitely many

eigenvectors depending on the given observable. If one is interested in the spin of

an electron, for instance, then the corresponding operator will have finitely many

eigenvalues. If, on the other hand one is interested in position or momentum observ-

ables then the corresponding operators will have a continuum of eigenvalues. The

former case is referred to as discrete variables systems and the latter as continuous

variables (CV) systems. The fundamental distinction between discrete and CV sys-

tems is that for a discrete system the Hilbert space is finite dimensional while for a

CV system it is infinite dimensional and therefore hard to handle mathematically.

2.1. Hilbert space representation

CV systems can be described in terms of creation and annihilation operators.

In this thesis we are concerned with the states of the radiation field with a finite

number of modes. Let N be the number of modes. For the kth mode we have a

creation operator â†k and an annihilation operator âk. The creation and annihilation

operators are non-Hermitian and satisfy the commutation relation

[âj , â
†
k] = δjk. (2.1.1)

The product â†kâk is Hermitian and it is defined to be the photon number operator

n̂k. The eigenvectors of the number operators are the number states |n1, . . . , nN 〉

and they form a countable basis for an infinite dimensional Hilbert space. Therefore

any other state can be written in terms of number sates |n1, . . . , nN 〉 such that

n̂k|n1, . . . , nN 〉 = nk|n1, . . . , nN 〉. (2.1.2)

Number states can be generated by acting on the vacuum state |0 . . . 0〉 by the

creation operators â†k:

|n1, . . . , nN 〉 =
(â†1)n1 . . . (â†N )nN√

n1! . . . nN !
|0 . . . 0〉. (2.1.3)
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The effect of creation and annihilation operators on number states is given by

â†k|n1, . . . , nN 〉 =
√
nk + 1|n1, . . . , nk + 1, . . . , nN 〉,

âk|n1, . . . , nN 〉 =
√
nk|n1, . . . , nk − 1, . . . , nN 〉. (2.1.4)

Number states are useful if one is interested in the number of photons of a

given system. However in a number state the expectation values of the electric and

the magnetic field strengths are zero everywhere. We would like to find a state

in which the expectation values of the electric and magnetic field strengths are

non zero and oscillate sinusoidally as in a classical electromagnetic wave. Coherent

states |α1, . . . , αN 〉 have this property and such states are given by

|α1, . . . , αN 〉 = e−
1
2 (|α1|2+···+|αN |2)

∞∑
n1,...,nN=0

αn1
1 . . . αnNN√
n1! . . . nN !

|n1, . . . , nN 〉, (2.1.5)

The parameters α1, . . . , αN are complex and they are related to the amplitude of

the field. The expectation value of the photon number operator n̂k is

〈α1, . . . , αN |n̂k|α1, . . . , αN 〉 = |αk|2, (2.1.6)

and so |αk|2 is the average photon number of the field. Coherent states are the

eigenstates of the annihilation operator. Although they span the Hilbert space

they do not form a basis because they are overcomplete (in other words, they are

not linearly independent).

For every mode of a given quantized bosonic field there is a pair of operators,

called quadratures x̂ and p̂. The quadratures are associated with the amplitude of

the field, they are dimensionless and, unlike creation and annihilation operators,

they can be measured. They can be expressed in terms of âk and â†k

x̂k = âk + â†k, (2.1.7)

p̂k = −i(âk − â†k), (2.1.8)
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with the canonical commutation relations (CCR)

[x̂j , p̂k] = 2iδjk, (2.1.9)

where j, k label the mode. It is often convenient to group quadratures of an n-mode

field as a canonical vector in the following way

r̂ = (x̂1, p̂1, . . . , x̂n, p̂n)T . (2.1.10)

The CCR can be written as

[̂rk, r̂l] = 2iΩkl, (2.1.11)

where Ω is the symplectic form

Ω =
n⊕
i=1

ω, ω =

 0 1

−1 0

 . (2.1.12)

Displacement Operators are an important set of unitary operators defined in

terms of quadratures and the symplectic form by

D̂r = eir
TΩr̂, (2.1.13)

where r is a real vector with 2n components

r = (x1, p1, . . . , xn, pn)T (2.1.14)

Alternatively, displacement operators can be expressed in terms of creation and

annihilation operators as

D̂α = eiα
TΩα̂, (2.1.15)

where α is a complex vector with 2n components

α = (α1, α
∗
1, . . . , αn, α

∗
n)T , (2.1.16)
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with

αi = xi + ipi, (2.1.17)

where xi and pi are being the components of real vector r given in (2.1.14). The

operator vector α̂ is

α̂ = (â1, â
†
1, . . . , ân, â

†
n)T . (2.1.18)

Fig.1 shows the action of a displacement operator D̂x,p in phase space. It displaces

the vacuum state at (0, 0) to (x, p).

D
`

x,p

Hx,pL

x

p

Figure 1. The displacement operator D̂x,p takes the vacuum state
at the origin to a point (x, p) in phase space.
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All operators of the form eiθD̂r form a group called the Weyl-Heisenberg

group [20].

Displacement operators form a basis in the operator space that is orthogonal

relative to the Hilbert-Schmidt inner product. For any two operators Â and B̂ the

Hilbert-Schmidt inner product is

〈Â, B̂〉 = Tr[Â†B̂]. (2.1.19)

If Â and B̂ are Hermitian, then the Hibert-Schmidt inner product is

〈Â, B̂〉 = Tr[ÂB̂]. (2.1.20)

The inner product for the displacement operators is given by

〈D̂†r, D̂r′〉 = (2π)nδ(r− r′). (2.1.21)

So we have the following orthogonality condition

Tr[D̂†rD̂r′ ] = (2π)nδ(r− r′). (2.1.22)

The displacement operators correspond to the shifting of the quadratures in

phase space:

D̂rr̂D̂†r = r̂ + r. (2.1.23)

In terms of the creation and annihilation operator vector α̂:

D̂αα̂†D̂†α = α̂† + α∗, (2.1.24)

and

D̂αα̂D̂†α = α̂ + α. (2.1.25)
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2.2. Phase space representation

We now turn our attention to the phase space representation of continuous

variables systems. Another way of formulating quantum mechanics with continu-

ous variables systems is to represent the system in a real valued, 2n-dimensional

phase space. This formulation is analogous to classical mechanics. Classically a

probability distribution on phase space Γ(x, p) where x is the position and p is the

momentum, describes the state of a stochastic system. The time evolution of this

function is given by Liouville equation

∂Γ
∂t

= {H,Γ}, (2.2.1)

where H is the classical Hamiltonian and {., .} is the Poisson bracket:

{H,Γ} =
∂H

∂x

∂Γ
∂p
− ∂Γ
∂x

∂H

∂p
. (2.2.2)

In analogy to a classical mechanical probability distribution Γ(x, p), there are

functions on phase space that can be interpreted as a probability distribution for

quantum-mechanical continuous variable systems. One such function is the Husimi

function discovered by [21] and studied extensively in connection with quantum

mechanical systems. It can be shown that the Husimi function is a positive valued

function and can be interpreted as a probability distribution for an arbitrary quan-

tum state (see references [22–24] and the references cited therein). In this thesis,

however, we are interested in a quasi-probabability distribution, the Wigner func-

tion. The Wigner function may have negative values and this is why it is referred

to as a quasi-probability distribution. However, for Gaussian states the Wigner

function is always positive as will be explained in the next section.

The Wigner function is defined to be the Weyl transform of the density matrix

ρ

W (x, p) = ρW (x, p), (2.2.3)
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where the Weyl transform ρW (x,p) is given by

ρW (x,p) =
∫
dye

i
~py〈x− 1

2
y|ρ|x+

1
2
y〉, (2.2.4)

where x, y, p ∈ R. The expectation value of an observable Â in the phase space

representation is given by

〈Â〉 =
∫
dxdpW (x, p)ÂW (x,p). (2.2.5)

The fact that the displacement operators form a basis in the operator space provides

us with another way of looking at the Wigner function. Since the displacement

operators are a basis, any operator Â can be expanded in terms of them as

Â =
∫
f(r)D̂rdr. (2.2.6)

First multiplying both sides by D̂†r′ then taking the trace of the product of the

operators on both sides we get

Tr[D̂†r′Â] =
∫
f(r)Tr[D̂†r′D̂r]dr. (2.2.7)

By using the orthogonality condition in (2.1.22), we obtain the following expression

for f(r)

f(r′) =
1

(2π)n
Tr[D̂†r′Â]. (2.2.8)

Substituting this into eqn (2.2.6) we have

Â =
1

(2π)n

∫
Tr[D̂†rÂ]D̂rdr. (2.2.9)

Note that D̂†r = D̂−r and similarly D̂r = D̂†−r. This follows immediately from the

fact that in Eqn. (2.1.13) all the operators in the exponential are Hermitian. Using

this property of D̂r together with changing the dummy index −r to r and replacing



2.3. SYMPLECTIC TRANSFORMATIONS IN CV SYSTEMS 27

the operator Â by the density operator ρ we obtain

ρ =
1

(2π)n

∫
Tr[D̂rρ]D̂†rdr. (2.2.10)

The expression Tr[D̂rρ] is known as the characteristic function and plays an im-

portant role in CV systems. For every density operator there is a characteristic

function χ associated with it

χρ(r) = Tr[D̂rρ]. (2.2.11)

It is possible to obtain the characteristic function by taking the Fourier transform

of the Wigner function by applying a general formula given by

W (r′) =
1
π2

∫
χρ(r)eir

TΩr′dr (2.2.12)

This expression can be derived by taking the Weyl transform given in Eq. (2.2.4)

of the density matrix ρ.

2.3. Symplectic transformations in CV systems

A matrix S is a real symplectic matrix iff

STΩS = Ω. (2.3.1)

The set of all such operators acting on phase space form a group. The set is closed

under matrix multiplication:

(SS′)TΩSS′ = S′
T

STΩSS′ = S′
T

ΩS′ = Ω. (2.3.2)

If we take the determinant of both sides of Eq. (2.3.1) we find that S is non-singular:

detSTΩS = det Ω

⇒ (detS)2 = 1⇒ detS = ±1. (2.3.3)
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Since S is non-singular it has an inverse S−1. It is easy to see that S−1 is in the

symplectic group:

(S−1)TΩS−1 = (S−1)TSTΩSS−1 = (SS−1)TΩSS−1 = Ω. (2.3.4)

The operators D̂r perform translations in phase space. So we have

χD̂r′ρD̂
†
r′

(r) = χρ(r + r′). (2.3.5)

Corresponding to every S ∈ Sp(2n,R) there is a unitary US such that

χUSρU†S
(r) = χρ(Sr). (2.3.6)

We also have

USD̂rU
†
S = D̂Sr. (2.3.7)

One important example of such an operator is the squeezing operator US(η). For a

one-mode state we have

US(η) = eη(â†
2
−â2).

where η is the squeezing parameter and in general it can be complex. However,

here we consider a real parameter for simplicity. The main ingredient to gener-

ate entanglement in CV systems is squeezed light. In laboratories it is generated

by optical processes such as optical parametric oscillation and four-wave mixing.

Theoretically we apply a squeezing operator on the state of light. Squeezing light

corresponds to increasing uncertainty in one quadrature while decreasing it in the

other. Heisenberg’s uncertainty relation tells us

∆x∆p ≥ 1.
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A coherent state is a minimum uncertainty state with ∆x = ∆p = 1. Acting on

a coherent state with US(η) generates a squeezed state with ∆x = η and ∆p = 1
η .

These states have simple representations in the phase space. For instance this graph

Dx

Dp x

p

shows a single-mode coherent state with ∆p = ∆x, while this one

Dx

Dp x

p

shows a single-mode squeezed coherent state with ∆p = 2∆x.

We now give the following theorem [25] which plays an important role in ma-

nipulation of Gaussian states.
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Theorem 1. Williamson Theorem. For any 2n-dimensional real, symmetric,

positive matrix σ there exists S ∈ Sp(2n,R) such that a symplectic diagonalization

defined as

STσS = ν (2.3.8)

is possible, with

ν =
n⊕
i=1

νi 0

0 νi

 (2.3.9)

where ν is a positive definite 2n-dimensional matrix. The νi are the symplectic

eigenvalues of σ.

Proof. Define an anti-symmetric matrix M = σ−
1
2 Ωσ−

1
2 . Then there exists

an orthogonal matrix R such that

RTMR =

 0 E

−E 0

 (2.3.10)

where E is a positive semi-definite n× n diagonal matrix. It is straightforward to

obtain the following

F

 0 E

−E 0

F = Ω where F =

E− 1
2 0

0 E−
1
2

 (2.3.11)

In terms of σ this reads

FRTσ−
1
2 Ωσ−

1
2RF = Ω (2.3.12)

Define S = σ−
1
2RF . Then ST = FRTσ−

1
2 and so

STΩS = Ω (2.3.13)
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It follows from the definition of S that

STσS = FRT IRF = F 2. (2.3.14)

So if we define

ν = F 2 =

E−1 0

0 E−1

 , (2.3.15)

we have

STσS = ν. (2.3.16)

�

In our investigation of entanglement storage in quantum memories, described

in Chapter 5.2 we often need to calculate the symplectic eigenvalues. This can be

done using the following result.

Proposition 1. The symplectic eigenvalues of σ are the (ordinary) eigenvalues

of the matrix |iΩσ|.

Proof. This follows from the definition of a symplectic matrix given in Eq.

(2.3.1) and from the symplectic diagonalization in Eq. (2.3.8). First note that

ST (−Ω2)σS = ν since −Ω2 = I. Then multiplying both sides by −iΩ on the left,

we get

−iΩSTΩ(−Ωσ)S = −iΩν. (2.3.17)

Multiplying Eq. (2.3.1) by S−1 on the right both sides we get STΩ = ΩS−1

then multiplying it again by Ω on the left on both sides we have ΩSTΩ = −S−1.

Substituting this in the above equation we get

− i(−S−1)(−Ωσ)S = −iΩν,

S−1(−iΩσ)S = −iΩν.
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On the LHS we have a similarity transformation which leaves the eigenvalues of

iΩσ unchanged. �

2.4. Bosonic Gaussian states

A state ρ is said to be Gaussian if its characteristic function χ is Gaussian. In

other words, if

χρ(r) = eir
TΩde−rTΩTσΩr, (2.4.1)

where the vector r is the points in phase space given in Eq. (2.1.14) and Ω is

the symplectic form given in Eq. (2.1.12) and d is the vector whose length is the

distance between the origin and the peak of the Gaussian state in phase space. The

matrix σ is called the covariance matrix and is a real, symmetric matrix whose

entries are given in terms of the expectation values of the canonical operators r̂

described in Eq. (2.1.10).

One of the nice features of a Gaussian state is that it is fully determined by

the first and second moments:

dk = 〈r̂k〉,

σkl =
〈r̂kr̂l + r̂lr̂k〉

2
− 〈r̂k〉〈r̂l〉. (2.4.2)

The dk are the components of vector d. The second moments, σkl are the compo-

nents of the covariance matrix, σ in Eq. (2.4.1). The covariance matrix σ describes

the shape of the Gaussian wavepacket. It also gives the “distortion” in the Gauss-

ian wavepacket which determines the entanglement in systems with many modes.

In other words, entangling a Gaussian state affects only the covariance matrix and

therefore knowledge of the covariance matrix suffices to measure entanglement. The

uncertainty relation for a multi-mode system is given by

σ + iΩ ≥ 0. (2.4.3)
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Proposition 2. The positivity of the density matrix and the commutation

relation given in Eq. (2.1.11) impose the following condition on the covariance

matrix: a real, symmetric matrix σ is a covariance matrix if and only if it satisfies

the uncertainty relation given in Eq. (2.4.3).

Proof. Let ŷ =
∑
k(r̂k − rk)vk be a non-Hermitian operator where vk is

a complex vector with 2n components. Then ŷ† =
∑
l v
∗
l (r̂l − rl) and ŷ†ŷ is a

Hermitian operator, and Tr[ρŷ†ŷ] ≥ 0. This means that we have

Tr[ρŷ†ŷ] =
∑
k,l

v∗l Tr[ρ(r̂k − rk)(r̂l − rl)]vk ≥ 0

=
∑
k,l

v∗l (Tr[ρr̂kr̂l]− rkrl)vk ≥ 0

=
∑
k,l

v∗l (〈r̂kr̂l〉 − rkrl)vk ≥ 0

We define an operator τ with elements τkl = (〈r̂kr̂l〉 − rkrl). Then

Tr[ρŷ†ŷ] ≥ 0⇒ 〈v, τv〉 ≥ 0⇒ τ ≥ 0. (2.4.4)

It is easy to see that τ = σ+iΩ. We have r̂lr̂k = r̂kr̂l−2iΩkl from the commutation

relation in Eq. (2.1.11). Substituting this into Eq. (2.4.2), we get

σkl = 〈r̂kr̂l〉 − iΩkl − rkrl

⇒ 〈r̂kr̂l〉 − rkrl = σkl + iΩkl

⇒ τ̂kl = σkl + iΩkl. (2.4.5)

�

Together the uncertainty principle and the Williamson theorem imply ν + iΩ ≥

0. To see this, we take the symplectic transformation of Eq. (2.4.3):

STσS + iSTΩS ≥ 0 =⇒ ν + iΩ ≥ 0 (2.4.6)
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This amounts to

νi ≥ 1 ∀ i = 1, . . . n. (2.4.7)

In this thesis, we are interested in two-mode Gaussian states. The covariance

matrix for such states is

σ =

 α γ

γT β

 , (2.4.8)

where α,β and γ can be any 2× 2 matrices in general. However, there is a conve-

nient way of writing σ: For any CM σ we can find a local symplectic operator [26]

Sl = S1 ⊕ S2 such that

STl σSl = σsf =



a 0 c+ 0

0 a 0 c−

c+ 0 b 0

0 c− 0 b


. (2.4.9)

In this form α,β and γ are simple matrices: α =

a 0

0 a

 ,β =

b 0

0 b

 and γ =

c+ 0

0 c−

. The quantity det σ is invariant under symplectic transformations [27].

This means that det σ is determined by the parameters a, b and c±. Another

symplectic invariant that is determined by these parameters is ∆(σ) given by

∆(σ) = det α + det β + 2 det γ. (2.4.10)

The symplectic eigenvalues can be expressed in terms of ∆(σ):

ν±(σ) =

√
∆(σ)±

√
∆(σ)2 − 4 det σ

2
. (2.4.11)
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This expression together with Eq. (2.4.7) imply

∆(σ) ≤ 1 + det σ. (2.4.12)

In Chapter 5.2 we will use these result to quantify the amount of entanglement in

two-mode Gaussian states.

Gaussian states are an important ingredient of quantum optical processes for

both their mathematical simplicity and experimental feasibility. The Wigner func-

tion described in the previous section is a classical probability distribution for all

Gaussian states. We can easily calculate the characteristic function and then the

Wigner function of any state but this significantly simplifies for Gaussian states

since we only have a quadratic expression in the exponential. Below we illustrate

the correspondence between the density matrix, the characteristic function and the

Wigner function of a single mode coherent state.

2.4.1. Example: Wigner and characteristic functions of a coherent

state. The simplest example of a Gaussian state is a one-mode coherent state. For

a one-mode coherent state we have α = (α, α∗)T , Ω =

 0 1

−1 0

 and α̂ = (â, â†)T

Eq. (2.1.15) becomes

Dα = eαâ
†−α∗â = e−

1
2 |α|

2
eαâ

†
e−α

∗â, (2.4.13)

where we used Baker-Campbell-Haussdorf formula e[Â,B̂] = eÂeB̂e−
1
2 [Â,B̂] to obtain

the final expression. The density matrix ρ for such a system is

ρ = |α〉〈α|. (2.4.14)

The characteristic function is

χρ(α′) = Tr[Dα′ |α〉〈α|]. (2.4.15)
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First, we find an expression for Dα′ |α〉:

Dα′ |α〉 = e−
1
2 |α
′|2e−α

∗′αeα
′â† |α〉, (2.4.16)

where we used the fact that the coherent states are the eigenstates of â so that

â|α〉 = α|α〉. To evaluate eα
′â† |α〉 we use the definition of a coherent state in terms

of number states as given in Eq. (2.1.5) and expand the exponential:

eα
′â† |α〉 =

(
1 + α′â† +

1
2!

(α′â†)2 +
1
3!

(α′â†)3 + · · ·+ 1
m!

(α′â†)m + . . .
)
e−

1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉.

Using Eq. (2.1.4) we have

eα
′
â†|α〉 = e−

1
2 |α|

2
∞∑

n,m=0

αnα′m√
n!m!

√
(n+ 1)(n+ 2) . . . (n+m)|n+m〉 (2.4.17)

= e−
1
2 |α|

2
∞∑

n,m=0

αnα′m√
n!m!

√
(n+m)!

n!
|n+m〉 (2.4.18)

= e−
1
2 |α|

2
∞∑

n,m=0

αnα′m

n!m!

√
(n+m)!|n+m〉, (2.4.19)

where we used the fact that

(n+ 1)(n+ 2) . . . (n+m− 1)(n+m) =
(n+m)!

n!
.

We can simplify this by defining a new index k = n+m with k : 0→∞ since both

n,m : 0→∞. Also, m = k − n and n : 0→ k, and we have

eα
′â† |α〉 = e−

1
2 |α|

2
∞∑
k=0

k∑
n=0

αnα′
k−n

n!(k − n)!

√
k!|k〉

= e−
1
2 |α|

2
∞∑
k=0

( k∑
n=0

k!
n!(k − n)!

αnα′
k−n
) 1√

k!
|k〉,

where the sum in brackets is a binomial expansion of the form: (x+y)s =
∑s
r=0

s!
r!(s−r)!x

rys−r,

so we have

eα
′a† |α〉 = e−

1
2 |α|

2
∞∑
k=0

(α+ α′)k√
k!

|k〉. (2.4.20)
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We can write Eq. (2.1.5) as follows

|α+ α′〉 = e−
1
2 |α+α′|2

∞∑
n=0

(α+ α′)n√
n!

|n〉

⇒
∞∑
n=0

(α+ α′)n√
n!

|n〉 = e
1
2 |α+α′|2 |α+ α′〉,

by simply replacing α by α+α′. Substituting this into the RHS of Eq. (2.4.20) we

get

eα
′a† |α〉 = e−

1
2 |α|

2
e

1
2 |α+α′|2 |α+ α′〉. (2.4.21)

Going back to the Eq. (2.4.16) we now have

Dα′ |α〉 = e−
1
2 |α
′|2e−α

′∗αe−
1
2 |α|

2
e

1
2 |α+α′|2 |α+ α′〉. (2.4.22)

The terms in the exponential simplify to − 1
2 (αα′

∗ − α∗α′), which is equal to

− 1
2 〈α, α

′〉. So we have

Dα′ |α〉 = e−
1
2 〈α,α

′〉|α+ α′〉, (2.4.23)

and so

χρ(α′) = e−
1
2 〈α,α

′〉〈α|α+ α′〉. (2.4.24)

The overlap in the above expression is

〈α|α+ α′〉 = e−
1
2 |α|

2
e−

1
2 |α+α′|2

∞∑
n=0

∞∑
m=0

α∗
n

(α+ α′)m√
n!m!

〈n|m〉

= e−
1
2 |α|

2
e−

1
2 |α+α′|2

∞∑
n=0

(
α∗(α+ α′)

)n
n!

= e−
1
2 |α|

2
e−

1
2 |α+α′|2eα

∗(α+α′)

= e
1
2 (α∗α′−αα′

∗
)e−

1
2 |α
′|2 , (2.4.25)
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and

e−
1
2 〈α,α

′〉〈α|α+ α′〉 = eα
∗α′−αα′

∗

e−
1
2 |α
′|2 . (2.4.26)

So

χρ(α′) = eα
∗α′−αα′

∗

e−
1
2 |α
′|2 . (2.4.27)

In the phase space representation the characteristic function above can be written

as a function of x′ and p′ by simply replacing α′ = x′ + ip′ and α = x+ ip

χρ(x′, p′) = ei(xp
′−x′p)e−

1
2 (x′

2
+p′

2
) (2.4.28)

We can now obtain the Wigner function of χρ(x′, p′) by using Eq. (2.2.12)

W (x′′, p′′) =
1
π2

∫ ∞
−∞

∫ ∞
−∞

χρ(x′, p′)ei(x
′,p′)Ω(x′′,p′′)T dx′dp′ (2.4.29)

Evaluating this Gaussian integral we obtain the Wigner function

W (x′′, p′′) =
2
π
e−

1
2

(
(x−x′′)2+(p−p′′)2

)
. (2.4.30)

In Fig.2 we give an example of a graph of W (x′′, p′′).
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Figure 2. Wigner function, W (x′′, p′′), with x = 5, p = 1.





CHAPTER 3

Discrete systems

In the last chapter we introduced the phase space representation of a CV sys-

tem. It is interesting to ask how much of this generalizes to the case of a discrete

system. The short answer is quite a lot but not entirely.

One of the differences is that the canonical commutation relations do not hold

in discrete systems. Nevertheless, we can define discrete displacement operators

and symplectic unitaries.

3.1. Discrete displacement operators

There is no perfect analogy between the discrete systems and the CV systems.

The CCR in Eq. (2.1.9) cannot be satisfied in discrete systems. This is easily seen

as follows. Suppose Eq. (2.1.9) could be satisfied in discrete systems. Then

x̂kp̂k − p̂kx̂k = 2iI,

taking the trace of both sides we have

Tr[x̂kp̂k]− Tr[p̂kx̂k] = 2id,

where d is the dimension of the Hilbert space. From the cyclic property of trace we

have Tr[x̂kp̂k] = Tr[p̂kx̂k] so we have

0 = 2id,

which is impossible. So for a finite dimension d there is no analogue of the CCR.

41
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We can, however, have displacement operators in discrete systems whose action

is similar to the operators, eipx̂, e−ixp̂ in CV systems. In a CV system we have

eipx̂|x〉 = eipx|x〉,

e−ix
′p̂|x〉 = |x+ x′〉. (3.1.1)

Suppose we have a finite dimensional system with a basis |0〉, . . . , |d− 1〉. Define X

as

X|0〉 = |1〉,

X|1〉 = |2〉,

. . . ,

X|d− 1〉 = X|0〉.

So

Xr′ |r〉 = |r + r′〉, (3.1.2)

in analogy to Eq. (3.1.1). Similarly, we can define an operator Z such that

Z|r〉 = ωr|r〉, (3.1.3)

where ω = e
2πi
d and Zr

′ |r〉 = ωr
′r|r〉. So the operator Zr

′
is like eipx̂ of Eqn.

(3.1.1). For CV systems the CCR imply

eipx̂e−ixp̂ = eixpe−ixp̂eipx̂, (3.1.4)

where we used Baker–Campbell–Hausdorff formula. For discrete systems we have

ZrXs = ωrsXsZr. (3.1.5)

So although we don’t have a discrete analogue of x̂, p̂ we do have a discrete analogue

of the unitaries eipx̂, e−ixp̂.
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The displacement operators in the discrete case are defined as

Dp = τp1p2Xp1Zp2 , (3.1.6)

where τ = −e iπd and the subscript p is a vector whose components are p1, p2 and

is the position vector of a point in discrete phase space. Notice that when d is even

τd = −1. It is therefore convenient to define d̄:

d̄ =


d if d is odd

2d if d is even
. (3.1.7)

Then the components p1 and p2 run from 0 to d̄− 1.

There are several reasons for introducing τ in the definition of displacement

operators in Eq. (3.1.6). If we did not introduce it the expression for the product of

two displacement operators in Eq. (3.1.8) below would not involve the symplectic

form but instead some more complicated expression involving vectors p and q.

The role of τ becomes even more important when we go on to consider discrete

symplectic transformations in the next section. It can be seen from the Eq. (3.2.6)

that τ enters into the definition of a symplectic unitary in an essential way.

We have the following relationships,

DpDq = τ 〈p,q〉Dp+q=̇Dp+q, (3.1.8)

where the notation, =̇, means ‘up to a phase’, and

D†p = D−p, (3.1.9)

where the symplectic form in Eq. (3.1.8) is defined by

〈p,q〉 = p2q1 − p1q2, (3.1.10)

with 〈p,p〉 = 0. Notice also that the symplectic form is anti-symmetric, that is

〈p,q〉 = −〈q,p〉. It is also worth remarking that the symplectic form in a discrete
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variable system is the same as the symplectic form in a CV system, given by Eq.

(2.1.12). Although one can have multi-mode discrete variable systems [28], in this

thesis we are considering one-mode discrete variable systems only. For such a system

we can see that

(
p1 p2

)
Ω

q1

q2

 = p2q1 − p1q2 = 〈p,q〉, (3.1.11)

so the expression for the symplectic form in the discrete case is formally the same

as in the CV case.

As in the CV case the displacement operators form a group called the Weyl-

Heisenberg group or sometimes the generalized Pauli group [20,29]. They also form

a basis for operator space. Thus an arbitrary operator Â is uniquely expressed as

Â =
d−1∑

p1,p2=0

ApDp. (3.1.12)

We also have

Tr[DpD
†
q] = dδp,q, (3.1.13)

and so

Âp =
1
d
Tr[ÂD†p]. (3.1.14)

For a density matrix ρ,

ρp =
1
d
Tr[ρD†p], (3.1.15)

is a discrete analogue of the characteristic function. It is possible to obtain the

Wigner function by taking the Fourier transform of ρp [30]. It may seem that

the analogy between the discrete and CV systems is perfect. However this is not

the case. The discrete analogue of the Wigner function may not be a real valued

function for even dimensions. Suppose we try to write down the Eq. (2.2.4) for a
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finite dimension d:

W (x, p) =
d−1∑
y=0

ωpy〈x− 1
2
y|ρ|x+

1
2
y〉 (3.1.16)

where x, y, p ∈ Zd. The problem here is the number 1
2 . We need to find a number

a ∈ Zd such that 2a = 1 mod d. If d is odd this question can be solved. For

instance, if d = 5 we can take a = 3, if d = 7 we can take a = 4 etc. However

if d is even then the equation 2a = 1 mod d has no solution. There has been

considerable effort to get around this problem [31]. However, these efforts have not

led a satisfactory definition of the Wigner function for even dimensions.

3.2. Symplectic transformations in discrete systems

In the CV case we introduced symplectic matrices S with the property that

STΩS = Ω. We define symplectic matrices in the discrete case in the same way to

be matrices

F =

α β

γ δ

 , (3.2.1)

with α, β, γ, δ ∈ Zd̄, such that

FTΩF = Ω mod d̄, (3.2.2)

or, equivalently,

〈Fp, Fq〉 = 〈p,q〉, ∀ p,q. (3.2.3)

The necessary and sufficient condition for F to have this property is

detF = 1 mod d̄. (3.2.4)

We denote the group of symplectic matrices SL(2,Zd̄).

We saw that in the CV case for each symplectic matrix S there is a unitary

US such that USDrU
†
S = DSr. It can be shown [32] that the same is true in the
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discrete case: for each F ∈ SL(2,Zd̄) there is a unitary UF such that

UFDpU
†
F = DFp, (3.2.5)

for all p. This equation relates the action of 2 × 2 matrix F on the points p in

discrete phase space to the action of unitary operator UF on the Hilbert space. To

give an explicit expression for UF consider first symplectic matrices such that β,

in Eq. (3.2.1), is relatively prime to d̄ (we say F is a prime matrix in that case).

The fact that β is relatively prime to d̄ means that ∃ β−1 ∈ Zd̄ such that ββ−1 = 1

mod d̄. We have

UF =
1√
d

∑
τβ
−1(αs2−2rs+δr2)|r〉〈s|, (3.2.6)

where d is the dimension of the Hilbert space and |r〉, |s〉 are the standard basis

vectors. Notice that the only matrix element of F , in Eq. (3.2.1), that does not

appear in Eq. (3.2.6) is γ. This is not so surprising if we consider the fact that β

is coprime with d̄ together with the property in Eq. (3.2.4) determines γ. In other

words, γ is fixed by α, β, δ.

Remark 1. Note that number β in Eq.(3.2.6) is not a fraction. We will explain

this point by a simple example. Suppose d̄ = d = 5 and β = 3. If we were dealing

with ordinary integers we would argue:

3x = 0 =⇒ x = 0× 1
3

=⇒ x = 0. (3.2.7)

where 1
3 is the inverse of 3. In Z5, however, inverse of 3 is not a fraction. So

what is the inverse of 3 in Z5? To answer this question we need to see how Z5 is

defined. We say two numbers are equivalent if their difference is a multiple of 5

e.g. if 15-10=5 then 10 and 15 are equivalent. An equivalence class is a set of all

integers equivalent to some given integer e.g. the equivalence class of 10 (denoted

as 1̄0 is 1̄0 = {· · · − 10,−5, 0, 5, 10, . . . }. Z5 consists of five equivalence classes

Z5 = {0̄, 1̄, 2̄, 3̄, 4̄}.
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where

0̄ = {0, 5, 10, 15, . . . } ∪ {0,−5,−10,−15, . . . },

1̄ = {1, 6, 11, 16, . . . } ∪ {−4,−9,−14,−19, . . . },

2̄ = {2, 7, 12, 17, . . . } ∪ {−3,−8,−13,−18 . . . },

3̄ = {3, 8, 13, 18, . . . } ∪ {−2,−7,−12,−17 . . . },

4̄ = {4, 9, 14, 19, . . . } ∪ {−1,−6,−11,−16 . . . }.

Any element ā has an inverse in Zd̄ iff ā× ā−1 = 1 since 1̄ is the identity element.

To find the inverse of 3 in Z5 we solve the equation

3̄ā = 1̄. (3.2.8)

In other words for some element ā in the set {0̄, 1̄, 2̄, 3̄, 4̄} we will obtain 1̄ when

multiplied by 3̄. We’ll do it by trial and error:

3̄× 0̄ = 0̄,

3̄× 1̄ = 3̄,

3̄× 2̄ = 6̄ = 1̄.

So we found the inverse of 3̄ to be 2̄ in Z5. This means that if we take any element

in the set 3̄ and another in the set 2̄ and multiply them we will always get an element

in the set 1̄. In general we drop the bar on the integer and use a instead of ā, e.g.

we write 3a = 1 mod 5 rather than 3̄ā = 1̄. In general we can find the inverse of

a number a mod d̄ if and only if a is coprime to d̄ [33,34].

If F is a non-prime symplectic matrix then we can always find two symplectic

prime matrices F1, F2 such that F = F1F2 and so UF = UF1UF2 [32]. We can then

use Eq. (3.2.6) together with the relation given below in Eq. (3.2.18) to calculate

UF1UF2 .
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In this thesis, we will also need the concept of an anti-symplectic matrix. This

is a matrix

F =

α β

γ δ

 , (3.2.9)

with

detF = −1 mod d̄. (3.2.10)

For every such F there is a corresponding anti-unitary UF such that

UFDpU
†
F = DFp. (3.2.11)

Remark 2. Recall that a unitary is linear,

U(z|ψ〉+ w|φ〉) = zU |ψ〉+ wU |φ〉. (3.2.12)

An anti-unitary is anti-linear,

U(z|ψ〉+ w|φ〉) = z∗U |ψ〉+ w∗U |φ〉. (3.2.13)

In fact if U is an anti-unitary there is always a unitary V such that

U |ψ〉 = V |ψ∗〉

U†|ψ〉 = V T |ψ∗〉. (3.2.14)

Basically, an anti-unitary is a complex conjugation followed by a unitary.

The set of all symplectic and anti-symplectic matrices is denoted ESL(2,Zd̄).If

F is anti-symplectic we have

UF = UFJUJ , (3.2.15)
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where

J =

1 0

0 −1

 , (3.2.16)

and

UJ |ψ〉 = |ψ∗〉. (3.2.17)

FJ is symplectic, so the unitary UFJ can be calculated using Eqn. (3.2.6).

For any two arbitrary symplectic or anti-symplectic matrices, F,G ∈ ESL(2,Zd̄),

we have the following relations:

UFUG=̇UFG, (3.2.18)

U†F =̇UF−1 , (3.2.19)

UFDp = DFpUF , (3.2.20)

U†FDpUF = DF−1p. (3.2.21)

We have introduced two kinds of unitaries: the displacement operators Dp and

the symplectic unitaries UF . If we act with both kinds of unitaries we obtain a

larger group called the Clifford Group, C(d) [35–41], which consists of all unitaries

of the form

eiθDpUF , (3.2.22)

where eiθ is an arbitrary phase. If we allow F in this expression to be any matrix in

ESL(2,Zd̄), this gives us the extended Clifford group, EC(d) [32]. This definition is

for the single-mode case in discrete phase space. The Clifford group is also defined

for multi-mode discrete systems. For a good discussion of the differences between

the single-mode and multi-mode cases see [28]. The Clifford group was originally

introduced into quantum information in connection with quantum error correction
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by [35–41]. The application to quantum error correction depends on the multi-

mode Clifford group. The application of the single-mode Clifford group to the SIC

problem is discussed in [32].



CHAPTER 4

Measurements

It is an interesting question to ask if there is a finite dimensional analogue of

Gaussian states for discrete systems. In this chapter we show that symmetric in-

formationally complete positive operator valued measures (SIC-POVMs) in discrete

systems are analogous to coherent state POVMs in CV systems. [42].

We first give a brief introduction to POVMs in general. Then in Section 4.2 we

introduce SIC-POVMS and in Section 4.3 we draw an analogy between the coherent

states in CV case and SIC-POVMs in the discrete case.

4.1. Generalized observables: PVMs and POVMs

Traditionally, an observable was considered to be a self-adjoint operator, Â.

Such an operator can be written in terms of its eigenvalues. If the eigenvalues of Â

are discrete then we can write,

Â =
∑
r

λr|r〉〈r|, (4.1.1)

where λr is the nth eigenvalue and |r〉 is the corresponding eigenvector. If, on the

other hand, the eigenvalues are continuous then we can write,

Â =
∫
λ|λ〉〈λ|dλ, (4.1.2)

where we now write the eigenvector corresponding to λ as |λ〉. For simplicity we

are confining ourselves to the case where the eigenvectors are non-degenerate and

spectrum is either purely discrete or purely continuous.

If the state of the system described by the density matrix ρ, then:

51
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(1) In the discrete case the probability of getting measurement outcome λr is

〈r|ρ|r〉.

(2) In the continuous case the probability of getting measurement outcome λ

is 〈λ|ρ|λ〉.

In the 1970s [43, 44] a more general concept of observable was introduced. To

understand this let us go back to our consideration of a self-adjoint operator and

in the discrete case write

Er = |r〉〈r|. (4.1.3)

The Er are a set of rank-1 projection operators with the following properties:

(1) The number of Er is equal to the dimension of the Hilbert space.

(2) The Er are orthogonal,

Tr[ErEs] = δrs. (4.1.4)

.

(3) The Er satisfy the completeness relation,

∑
Er = I (4.1.5)

.

(4) If the system is in a state described by the density matrix ρ then the

probability, Pr, of getting measurement outcome λr is

Pr = Tr[ρEr] (4.1.6)

In the continuous case we have the same statements except that the Kronecker-delta

is replaced by the Dirac-delta and the sum is replaced with an integral. Such a set

of operators Er is called a PVM (Projection Valued Measure). The corresponding

measurement is called a Von Neumann measurement [45].
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In the more general concept of observable introduced in he 1970s, the PVM is

replaced with a POVM (Positive Operator Valued Measure). In a POVM we drop

the requirement that the Er be the projection operators and only require that they

be positive semi-definite. We no longer require that the number of Er be equal to

the dimension of the Hilbert space. However, we still do require items (3) and (4)

on the above list. Thus a discrete POVM is a set of positive semi-definite operators

Er with the properties

(1) The Er satisfy the completeness relation,
∑
Er = I.

(2) If the system is in a state described by the density matrix ρ then the

probability of getting measurement outcome λr is Tr[ρEr].

A continuous POVM is defined similarly replacing the sum with an integral. Notice

that it is essential for the Er the positive semi-definite since otherwise the proba-

bility of a measurement outcome could be negative. It is also essential that the Er

satisfy the completeness relation since otherwise the probabilities would not sum

to 1.

4.1.1. Informationally complete POVMs. The more general concept of a

POVM measurement has many applications [43,44,46]. In this thesis we are inter-

ested in POVMs with the property of informational completeness. A Von Neumann

measurement does not give enough information to reconstruct the density matrix.

However, there exist POVMs such that a knowledge of probabilities is sufficient

to reconstruct the density matrix. Such POVMs are said to be informationally

complete (IC) [47–49].

Assume the system is discrete with Hilbert space dimension d. For an IC POVM

we must have at least d2 elements, i.e. we must have n ≥ d2. To see this consider

the number of real independent parameters needed to specify ρ. Diagonally there

are d real parameters r1, . . . , rd. There are 2 × 1
2d(d − 1) real parameters in the

upper triangle: d − 1 complex parameters in the first row, d − 2 in the second

row and so on, all with 2 real numbers. The numbers in the lower triangle are

the conjugates of the numbers in the upper triangle so the real numbers in upper
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triangle are the same as the real numbers in the lower triangle. So in total there

are d + d(d − 1) = d2 real parameters. However, they are not all independent

because Tr[ρ] = 1 means r1 + · · · + rd = 1 =⇒ rd = 1 − r1 − · · · − rd−1. So

in total there are d2 − 1 real independent parameters that fix ρ. The equations

P0 = Tr[ρE0], . . . , Pn−1 = Tr[ρEn−1] are not independent either because

Tr[ρ
∑
r

Er] = Tr[ρ] = 1. (4.1.7)

So there are no more than n− 1 independent equations. If the POVM is informa-

tionally complete the number of independent equations must be the same as the

number of independent parameters. So we must have n ≥ d2. An IC-POVM is said

to be minimal if n = d2.

4.1.2. Weyl-Heisenberg POVMs. An important class of POVMs are POVMs

that are covariant under the action of Weyl-Heisenberg (WH) group which we in-

troduced in Chapter 2 (CV case) and Chapter 3 (discrete case).

A WH covariant POVM is one in which all the POVM elements are obtained

from a single POVM element by acting with displacement operators. The single

POVM element which is used to generate the POVM is called the fiducial element.

Thus in the CV case the POVM elements are

Er = DrED
†
r (4.1.8)

while in the discrete case they are

Ep = DpED
†
p (4.1.9)

where E is the fiducial element.
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4.1.3. The coherent state POVM. One important example of a WH POVM

in the CV case is the coherent state POVM. In the one-mode case we take the fidu-

cial element to be

E = K|0〉〈0| (4.1.10)

where |0〉 is the vacuum state and K is a normalization constant (which we show

below in Section 4.3, Eq. (4.3.13) to be 1
2π ). Since we are restricting ourselves to

the one-mode case rT = (x, p) and so acting with displacement operators we get

Ex,p = K|x, p〉〈x, p|. (4.1.11)

If the state of the system is described by the density matrix ρ then the corresponding

probability distribution is

Q(x, p) = Tr[ρEx,p] = K〈x, p|ρ|x, p〉. (4.1.12)

This is the well-known Q-function of quantum optics [50,51].

4.2. SIC-POVMs

It is interesting to ask if one can define a discrete analogue of a coherent state

POVM. We are going to argue in the next section that a SIC-POVM (Symmetric

Informationally Complete POVM) can be considered to be a such an analogue.

SIC-POVMs were first introduced by Zauner in his dissertation [52]. Subsequently

it attracted much interest [32,52–61] in the literature.

A SIC-POVM is a special kind of minimal IC POVM. It has the following

properties

(1) Each Er is rank-1.

(2) Tr[Er] = A ∀r, where A is a fixed constant.

(3) Tr[ErEs] = B ∀r 6= s, where B is a fixed constant.

The symmetry requirement (2) and (3) means that the Er are spread out evenly

over the generalized Bloch body, which means SIC-POVMs are the best minimal
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IC POVMs from the point of view of tomography. It is also the reason why they

are useful in the other applications listed in the Section 1.1 of this thesis.

We will first show that A = 1
d and B = 1

d2(d+1) then prove that any POVM

with the properties 1–3 is informationally complete. Properties (1) and (2) imply

that we can write

Er = A|ψr〉〈ψr|, (4.2.1)

where |ψr〉 are normalized vectors. Taking the trace of both sides of Eq. (4.1.5) we

have

d2A = d⇒ A =
1
d
. (4.2.2)

Multiplying both sides of Eq. (4.1.5) by Es and taking the trace we have

∑
r

Tr[ErEs] = Tr[Es],

T r[E2
s ] +

∑
r 6=s

Tr[ErEs] = Tr[Es].

Using both Eq. (4.2.1) and Eq. (4.2.2) we get

1
d2

+ (d2 − 1)B =
1
d
⇒ B =

1
d2(d+ 1)

The Eq. (4.1.6) holds for any POVM. We now derive an expression for the density

matrix ρ in terms of probabilities to show that for a SIC-POVM we have a bijection.

First we define an operator Ēr such that Tr[ĒrEs] = δrs. It is straightforward

algebra to show that this is true if Ēr = d(d + 1)Er − I. Since Er are a basis for

the operator space we can write ρ =
∑
r λrEr for some λr. So we have

Tr[ρĒs] =
∑
r

λrTr[ErĒs] =
∑
r

λrδrs = λs. (4.2.3)

We also have

Tr[ρĒs] = Tr[ρ(d(d+ 1)Es − I)] = d(d+ 1)Tr[ρEs]− Tr[ρI] = d(d+ 1)Ps − 1
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⇒ λs = d(d+ 1)Ps − 1

⇒ ρ =
∑
s

(
d(d+ 1)Ps − 1

)
Es. (4.2.4)

where Ps is given by Eq. (4.1.6).

A nice way of thinking about SIC-POVMs is to consider the geometry of a

quantum state space. For a 2 dimensional Hilbert space an arbitrary quantum

state can be represented by a real vector in a 3 dimensional Bloch sphere. A SIC-

POVM in d = 2 has 4 elements which are represented as vectors on Bloch sphere.

These vectors form a tetrahedron on the Bloch sphere. In higher dimensions the

situation is a little more complicated. One can still represent a quantum state by a

real vector [55,62–65]. However, the vectors no longer lie in a sphere but in a much

more geometrically complicated convex body which is sometimes called the Bloch

body. The Bloch body is contained in side a hyper-sphere. The pure states are the

points where the Bloch body meets the inclosing hyper-sphere. A SIC-POVM is a

regular symplex inside the body. The vertices are the rank-1 projectors dEr and

they lie on the manifold of pure states (i.e. the intersection of Bloch body with the

enclosing hyper-sphere) [55].

The vast majority of known SIC-POVMs are in fact WH POVMs. To construct

a WH SIC-POVM we find a single vector |ψ〉 such that

|〈ψ|Dp|ψ〉| =


1 if p = 0

1√
d+1

if p 6= 0.
(4.2.5)

Applying the displacement operators gives us a WH SIC-POVM

Ep =
1
d
Dp|ψ〉〈ψ|D†p. (4.2.6)

The vector |ψ〉 is called the fiducial vector.
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4.3. A finite dimensional analogue of coherent states: SIC-POVMs

We are now going to argue that a WH SIC-POVM is a discrete analogue of

a coherent state POVM. This means that if we write the elements of a WH SIC-

POVM in the form

Ep =
1
d
|ψp〉〈ψp|, (4.3.1)

then the vectors |ψp〉 can be considered to be discrete analogues of the coherent

states |x, p〉. It also means that the probability distribution Tr[ρEp] can be con-

sidered to be a discrete analogue of the Q-function. Note that the informational

completeness means that this probability distribution completely determines the

state.

The crucial point in our analogy is that within the class of WH POVMs the

elements of SIC-POVMs in the discrete case and the coherent states in the CV

case are as nearly orthogonal as possible, in a sense we will, now, explain. Recall

that for a PVM one has Tr[ErEs] = 0, whenever r 6= s. Distinct PVM elements

thus orthogonal. It is impossible to construct a WH POVM for which this is true.

However, one might ask for a WH POVM for which the overlaps between distinct

elements is as small as possible. We will say that the POVM that satisfies this

condition is as nearly orthogonal as possible.

We need to make this statement quantitative. For the discrete case we consider

the sum

∑
p6=q

(Tr[EpEq])2. (4.3.2)

We will say that a POVM which minimizes this sum is as nearly orthogonal as

possible.

In the CV case we cannot simply replace the sum by an integral as the expres-

sion which results is infinite. So instead we consider the following quantities

εx =
(∫

x2Tr[EEx,p]dxdp
) 1

2
,
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εp =
(∫

p2Tr[EEx,p]dxdp
) 1

2
. (4.3.3)

We will say that a POVM which minimizes the product εxεp is as nearly orthogonal

as possible. We also require the POVM to be symmetric in the sense that εx = εp.

4.3.1. Discrete case. We restrict ourselves to one-mode WH POVMs. First

note that the index vector r in Eq. (4.1.8) is (x, p)T for a one-mode system. Then

we have Eq. (4.1.8) as

Ex,p = Dx,pED
†
x,p. (4.3.4)

Using this expression we write an expression for the overlap between two arbitrary

POVM elements corresponding to r = (x, p)T and r′ = (x′, p′)T

Ex+x′,p+p′ = Dx′,p′Ex,pD
†
x′,p′ . (4.3.5)

Furthermore, we require the following properties:

(1) The fiducial element E is proportional to a rank-1 projector, so that

E = K|ψ〉〈ψ|, (4.3.6)

for some normalization constant K and pure state |ψ〉.

(2) The POVM elements are as close to orthogonal as possible, in the sense

that the sum

∑
x′ 6=x,p′ 6=p

(
Tr[Ex,pEx′p′ ]

)2

(4.3.7)

is as small as possible.

We then use the following result, proved in [61]:

Theorem 2. Suppose Ai is a positive semi-definite operator and Tr[A2
i ] = 1

then

∑
i 6=j

(Tr[AiAj ])2 ≥ d2(d− 1)
d+ 1

, (4.3.8)
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with the equality if and only if

(1) Ai is a rank 1 projector

(2) Tr[AiAj ] = 1
d+1 , ∀i 6= j.

We use this result to show that
∑
x,p(Tr[Ex,pEx′,p′ ])

2 ≥ d−1
d2(d+1) and that the

lower bound is achieved if and only if Tr[Ex,pEx′,p′ ] = 1
d2(d+1) when x 6= x′ and

p 6= p′.

First note that Tr[E2] is not 1 but it is Tr[E] = K. Moreover the trace of

every other POVM element is also K since

Tr[Ex,p] = Tr[Dx,pED
†
x,p] = Tr[E], (4.3.9)

where we used the cyclic property of trace and the fact that DD† = I. Taking the

trace of both sides of Eq. (4.1.5) we obtain

∑
x,p

Tr[Ex,p] = Tr[I],

∑
x,p

Tr[E] = d,

d2Tr[E] = d,

d2K = d,

K =
1
d
,

⇒ Tr[E2
x,p] =

1
d2
.

So if we define Ai = dEx,p then we get Tr[E2
x,p] = 1 as required by the theorem.

Then substituting Ex,p for Ai in the Eq. (4.3.8) we have

∑
x 6=x′,p6=p′

(Tr[dEx,pdEx′,p′ ])2 =
∑

x 6=x′,p 6=p′
d4(Tr[Ex,pEx′,p′ ])2 ≥ d2(d− 1)

d+ 1

⇒
∑

x 6=x′,p6=p′
(Tr[Ex,pEx′,p′ ])2 ≥ d− 1

d2(d+ 1)
. (4.3.10)
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The lower bound for Ex,p follows from Eq. (2)

Tr[dEx,pdEx′,p′ ] =
1

d+ 1
⇒ Tr[Ex,pEx′,p′ ] =

1
d2(d+ 1)

. (4.3.11)

When we substitute Eq. (4.3.6) into Eq. (4.3.11) we find that the following condi-

tion is imposed on the fiducial vector |ψ〉:

|〈ψ|Dx,p|ψ〉|2 =


1 if x = p = 0

1
d+1 otherwise

(4.3.12)

This shows that the elements of a WH POVM are rank-1 and as close to orthogonal

as possible if and only if it is a WH SIC-POVM.

4.3.2. CV case. Now we turn to CV systems. In CV systems the first re-

quirement expressed in Eq. (4.3.6) remains almost exactly the same except K 6= 1
d .

So for the CV system we have

E = K ′|ψ〉〈ψ|. (4.3.13)

where

K ′ = Tr[E] =
∫
Tr[EEx,p]dxdp,

K ′ = K ′
2
∫
|〈ψ|Dx,p|ψ〉|2dxdp,

= K ′
2
∫
ei(x

′′−x′)〈ψ|x′〉〈x+ x′|ψ〉〈ψ|x+ x′′〉〈x′′|ψ〉dxdpdx′dx′′,

= 2πK ′
2
,

⇒ K ′ =
1

2π
. (4.3.14)

So the Eq. (4.3.13) is

E =
1

2π
|ψ〉〈ψ|. (4.3.15)

The second condition expressed in Eq. (4.3.7), however, needs to be changed slightly

because the sum in Eq. (4.3.7) becomes a divergent integral. First note that
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Tr[Ex,pEx′,p′ ] = Tr[EEx,p]. This follows from Eq. (4.3.5) and from the cyclic

property of the trace. Substituting Eq. (4.3.15) into Eq. (4.3.3) gives

ε2x =
1

4π2

∫
x2|〈ψ|Dx,p|ψ〉|2dxdp. (4.3.16)

We can rewrite the displacement operator Dα given in Eq. (2.4.13) replacing α by

x + ip and â by 1
2 (x̂ + ip̂) in the LHS of Eq.(2.4.13) then using Baker-Campbell-

Hausdorff formula together with Eq.(2.1.11) to get Dx,p = e−2ixpeixp̂e−ipx̂. Also

note that 〈ψ|Dx,p|ψ〉 =
∫
〈ψ|x′〉〈x′|Dx,p|ψ〉dx′, where 〈x′|Dx,p|ψ〉 = e−2ixpe−ix

′p〈x′+

x|ψ〉. In the final step we used 〈x|x̂|ψ〉 = x〈x|ψ〉 and 〈x|p̂|ψ〉 = −2i ∂∂x 〈x|ψ〉 together

with the Taylor series. So, now we have

ε2x =
1

4π2

∫
x2ei(x

′′−x′)〈ψ|x′〉〈x+ x′|ψ〉〈ψ|x+ x′′〉〈x′′|ψ〉dxdpdx′dx′′. (4.3.17)

The result of this integral is

ε2x =
1
π

(∆x)2. (4.3.18)

Similarly

ε2p =
1
π

(∆p)2. (4.3.19)

So we have

εxεp =
1
π

∆x∆p. (4.3.20)

So the requirement for minimizing εxεp amounts to the requirement for minimizing

∆x∆p. So |ψ〉 must be a minimum uncertainty state. Since we also require εx = εp

it follows that |ψ〉 must be a coherent state.

WH SICs in a discrete system and coherent states in a CV system have in

common the property that they are the rank-1 WH covariant POVMs for which

the POVM elements are as near to orthogonal as possible.
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4.4. Conclusion

We have shown that there is a sense in which WH SIC vectors |ψp〉 can be

regarded as a discrete analogue of coherent states |x, p〉. They are both covariant

under the action of the WH group (discrete in the one case, continuous in the

other). Also the vectors are as close to orthogonal as possible in the sense we have

explained. Of course, one should not make too much of this analogy as there are also

some important differences. One obvious difference is that, while there is a simple

analytic expression for a coherent state, no such expression is known for a SIC.

Although a SIC is highly symmetric in the sense that the overlaps Tr[EpEq] are

constant for p 6= q, the expressions for the known SIC vectors are very complicated.

Of course it is possible that a simple analytic expression will eventually be found,

however, no such expression is currently known.

Our analogy means in particular that the SIC probabilities Tr[ρEp] can be re-

garded as a discrete analogue of the Q-function. However, this analogy should not

be pushed too far. Although it is true that the coherent state POVM is informa-

tionally complete in a mathematical sense, in actual practice the Wigner function

is much more suitable for tomography. This is because the Q-function is obtained

by smoothing the Wigner function and as a result it is insensitive to a lot of the

fine detail in the quantum state [50,51]. On the other hand a SIC-POVM, when it

can be experimentally realized, is very suitable for tomography. So from the point

of view of tomograpohy the probability distribution Tr[ρEp] might be considered

more analogous to the Wigner function than it is to Q-function.
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CHAPTER 5

Entanglement with continuous variable systems

The concept of entanglement was first discussed in the EPR paper in 1935 [66].

It should be noted, however, the word entanglement was first explicitly used by

Schrödinger in a paper [67] which appeared a few months after the EPR paper

and in which Schrödinger further developped the implications. In their paper,

Einstein-Podolsky-Rosen considered a system with continuous variables. However

early experiments in entanglement used discrete variables (typically, polarization of

photons). The first experiments on entanglement came in the 1980s, whereas the

EPR thought experiment was demonstrated only in 1992 [68]. In general there had

been a bias for working with discrete variables rather than continuous variables in

the early development of quantum information and quantum computation fields.

One of the main reasons for this is the fact that qubits are analogues of the classical

bits in digital classical computers. Another reason for working with discrete vari-

ables is that they only involve a finite dimensional Hilbert space which is easier to

handle mathematically. However, although infinite dimensional Hilbert space for

a CV system is in general hard to handle mathematically, there is a class of CV

states, Gaussian states, which are much easier to handle mathematically. They are

also easy to implement in the laboratory. Consequently, in recent years there has

been a lot of interest and developments in CV systems [27,69–77]. They have been

used to demonstrate quantum teleportation [78], teleportation networks [79], quan-

tum key distribution [80] as well as quantum memories [81, 82]. The generation

of CV entanglement has also seen spectacular advances. Furthermore, CV sys-

tems such as optomechanical [83,84] and nano-electro-mechanical resonators [85]

hold cosiderable promise for high precision sensing at the quantum limit. Although

67
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there are theoretical reasons why it would be desirable to explore non-Gaussian

resources [86], all such advances are still mainly centred on Gaussian states (essen-

tially because first and second-order interactions in the field operators are easier to

implement in practice).

Entangled quantum states are important resources for quantum information

processing. Gaussian states have nice properties that enable us to generate and

manipulate entanglement in the laboratory, and whose separability can be assessed

analytically. In fact, an important criterion for entanglement is the Peres-Horodecki

criterion which states that the positivity of the partial transpose is, in general,

necessary but not sufficient for separability. In other words ρPT 6≥ 0 then ρ is

entangled. If, on the other hand, ρPT ≥ 0 then ρ may or may not be separable.

However, for two-mode Gaussian states the positivity of the partially transposed

density matrix is necessary and sufficient for the separability of the state. This has

very nice implications for the covariance matrix and its symplectic eigenvalues. It

has been shown that one of the implications is that if at least one of the symplectic

eigenvalues νj of the covariance matrix σ of the partially transposed ρ is less than

1 then the Gaussian state corresponding to the covariance matrix is entangled.

Moreover, the entanglement increases as the symplectic eigenvalue (that are < 1)

decrease. In this chapter we review some essential background material regarding

the entanglement of two-mode Gaussian states. In Section 5.2 we go on to apply

these ideas to obtain some results concerning entanglement storage in a quantum

memory (published in Yadsan-Appleby and Serafini [87]).

5.1. Entanglement criterion for Gaussian states

It was shown in [88,89] that the negativity of the partially transposed density

matrix is a sufficient condition for the corresponding state to be entangled. This is

called the Peres-Horodecki criterion. Reference [89] showed that this was not only

a sufficient but also a necessary condition for all 2× 2 and 2× 3 systems. However,

in general if the partial transposition of the density matrix is positive then the state
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may or may not be entangled. In other words, in general, it is not straightforward

to say whether a state is separable or not. However this problem greatly simplifies

for Gaussian states. It can be seen from Eq. (2.2.4) that if we work in the position

basis then the effect of transposition on the Wigner function is given by

ρ→ ρT ⇐⇒ W (q, p)→W (q,−p).

So in the position basis transposition of the density matrix is equivalent to reflecting

phase space in the x-axis. Similarly, for a two-mode Gaussian state the effect of

partial transposition (in the position basis) on the Wigner function is

ρ→ ρPT ⇐⇒ W (q1, p1, q2, p2)→W (q1, p1, q2,−p2).

This together with the uncertainty relation imply that Peres-Horodecki separabil-

ity criterion is a necessary and sufficient condition for all Gaussian states to be

separable and therefore it is also necessary and sufficient condition for all Gaussian

states to be entangled [90].

The partial transposition matrix that takes



p1

q1

p2

q2


to



p1

q1

p2

−q2


is

T = Diag[1, 1, 1,−1]. (5.1.1)

Or,

T = I ⊕ σz, (5.1.2)

where σz is the usual Pauli matrix. The following theorem is the crucial result

proved in [27, 90]. For the convenience of the reader we give the version of the

proof given in [27].
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Theorem 3. PPT Criterion for two-mode Gaussian states. A two-

mode Gaussian state is separable if and only if its partial transposition is positive

semi-definite.

Let ρ̃ = ρPT . The Peres-Horodecki criterion tells us that if ρ̃ is negative then

ρ is entangled. We need to prove that for a Gaussian state it is also true that if ρ̃

positive semi-definite then ρ is separable. Let σ and σ̃ be the covariance matrices

corresponding to ρ and ρ̃ respectively. Recall Eq. (2.4.8)

σ =

 α γ

γT β

 . (5.1.3)

We then have

σ̃ = TσT =

 α̃ γ̃

γ̃T β̃

 , (5.1.4)

with

α̃ = α, γ̃ = γσz, β̃ = σzβσz, (5.1.5)

where we used the Eq. (5.3.14) for T . Note that this means det α̃ = det α,det β̃ =

det β and det γ̃ = −det γ. We then need to prove the following lemma.

Lemma 1. Two-mode Gaussian states with det γ ≥ 0 are separable.

Proof. We first assume det γ > 0. We use a local symplectic operation to

reduce σ to the standard form of Eq. (2.4.9):

σsf =



a 0 c+ 0

0 a 0 c−

c+ 0 b 0

0 c− 0 b


, (5.1.6)
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where it can be assumed that a ≥ b and c+ ≥ c− > 0. Now define the local

symplectic operation Sl = Diag[
√
xy, 1√

xy ,
√

y
x ,
√

x
y ] where

x =

√
c+a+ c−b

c−a+ c+b
,

y =

√√√√√√ a
x + bx−

(
(ax − bx)2 + 4c2−

) 1
2

ax+ b
x −

(
(ax− b

x )2 + 4c2−
) 1

2
,

and let

σ′ = STl σsfSl (5.1.7)

It can now be shown by direct calculation that σ′ can be diagonalized by a rotation

matrix of the form

R =



cos θ 0 − sin θ 0

0 cos θ 0 − sin θ

sin θ 0 cos θ 0

0 sin θ 0 cos θ


. (5.1.8)

Notice that this is only possible because c+ and c− have the same sign. Also the

smallest eigenvalue of σ′ is degenerate:

σd = Rσ′RT = Diag[κ1, κ2, κ−, κ−] (5.1.9)

with κ1 ≥ κ− and κ2 ≥ κ−. The uncertainty principle, σd + iΩ ≥ 0 implies that

κ− ≥ 1. So all the eigenvalues of σd are greater than 1, that is σd ≥ I.

We now appeal to the fact [91,92] that if the ordinary eigenvalues of a CM are

all ≥ 1 (as is the case with σd) then the P -function is nonnegative and not more

singular than δ-function. This means that if ρd is the density matrix corresponding

to the σd then we can write

ρd =
∫

C2
d2α1d

2α2P (α1, α2)(|α1〉〈α1| ⊗ |α2〉〈α2|), (5.1.10)
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where P is nonnegative. It follows that ρd is a convex combination of the separable

states |α1〉〈α1| ⊗ |α2〉〈α2|. Since ρ is obtained from ρd by applying local unitaries

we conclude that ρ is separable.

We now need to consider the case when det γ = 0. For this case we can use a

slightly modified version of the above argument. In Eq. (5.1.6) we can assume that

c− = 0. We then define Sl = Diag[
√
a, 1√

a
,
√
b, 1√

b
] and

σ′ = STl σsfSl =



a2 0
√
abc+ 0

0 1 0 0
√
abc+ 0 b2 0

0 0 0 1


. (5.1.11)

We then apply the uncertainty principle σ′+ iΩ ≥ 0 to deduce σ′ ≥ I. The rest of

the argument goes exactly as before. �

We now are ready to prove Theorem 3.

Proof. Suppose ρ̃ is a state. Then there are 2 possibilities: 1. det γ ≥ 0.

Then we know ρ is separable by the Lemma 1. 2. det γ < 0. Then det γ̃ > 0 since

det γ̃ = −det γ. So ρ̃ is separable by the Lemma 1. We now appeal to the fact

that the partial transposition of a separable state is also a separable state. Since ρ

is the partial transpose of ρ̃, and since ρ̃ is a separable state, it follows that ρ is a

separable state. �

We can use the Theorem just proved to give the criterion for ρ to be entangled

in terms of the symplectic eigenvalues of σ̃. We know that ρ is separable if and

only if ρ̃ is positive semi-definite, i.e. if and only if σ̃ + iΩ ≥ 0. In view of Eq.

(2.4.7) this means that ρ is separable if and only if ν̃i ≥ 1 for all i, where ν̃i are the

symplectic eigenvalues of σ̃. Equivalently, ρ is entangled if and only if ν̃i < 1 for

some i.

5.1.1. A measure of entanglement: logarithmic negativity. The partial

transposition does not change the trace so that Tr[ρ] = Tr[ρ̃] = 1, however, it does
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change the eigenvalues (the state is entangled if at least one of the eigenvalues

of ρ̃ is negative). The negativity N (ρ), is defined to be the sum of the moduli

of the negative eigenvalues of ρ̃ and is used to quantify the entanglement in ρ

[93]. Let λ1, . . . , λj be the non-negative eigenvalues and µ1, . . . , µk be the negative

eigenvalues of ρ̃. Then,

Tr[ρ̃] = (λ1 + · · ·+ λj) + (µ1 + · · ·+ µk) = 1

=⇒ Tr[ρ̃] = (λ1 + · · ·+ λj)− (|µ1|+ · · ·+ |µk|) = 1. (5.1.12)

The negativity of a quantum state with a density matrix ρ is defined to be

N (ρ) =
Tr[|ρ̃|]− 1

2
(5.1.13)

where |ρ̃| =
√
ρ̃2 =⇒ Tr[|ρ̃|] = (λ1 + · · · + λj) + (|µ1| + · · · + |µk|). Substituting

this and Eq. (5.1.12) into Eq. (5.1.13) we have

N (ρ) =
1
2

(
(λ1 + · · ·+ λj) + (|µ1|+ · · ·+ |µk|)

)
−
(

(λ1 + · · ·+ λj)− (|µ1|+ · · ·+ |µk|)
)

=⇒ N (ρ) = |µ1|+ · · ·+ |µk|. (5.1.14)

The logarithmic negativity EN (ρ) is defined to be

EN (ρ) = log[Tr[|ρ̃|]]. (5.1.15)

We now prove the following theorem which expresses N (ρ) and EN (ρ) for a

two-mode Gaussian state in terms of the symplectic eigenvalues of σ̃. To prove this

we follow the discussion in [27].

Theorem 4. Let ν̃+ ≥ ν̃− be the symplectic eigenvalues of σ̃. Then

N (ρ̃) = Max
(

0,
1− ν̃−

2ν̃−

)
, (5.1.16)

EN (ρ̃) = Max
(

0,− log ν̃−
)
. (5.1.17)
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Proof. Suppose first of all that det γ ≥ 0 then as shown in the previous

section there is no entanglement and ν̃− ≥ 1. So the result holds in this case.

For the case det γ < 0, first note that for a partially transposed ρ the symplectic

invariants given in Eq. (2.4.10) and Eq. (2.4.11) become

∆(σ) = det α + det β + 2 det γ, (5.1.18)

∆(σ̃) = det α + det β − 2 det γ, (5.1.19)

and

ν̃± =

√
∆(σ̃)±

√
∆(σ̃)2 − 4 det σ

2
. (5.1.20)

As was shown in Eq. (2.4.7), the uncertainty relation implies ν− ≥ 1. It is easy to

see that ν̃+ ≥ ν− ≥ 1:√
∆(σ̃) +

√
∆(σ̃)2 − 4 det σ

2
≥
√

∆(σ̃)
2

>

√
∆(σ)

2
≥

√
∆(σ)−

√
∆(σ)2 − 4 det σ

2

(5.1.21)

where we also used the fact that det γ < 0 =⇒ ∆(σ) ≥ ∆(σ̃).

Now, to calculate EN we apply a symplectic transformation to diagonalize σ:

σ̃D = ST σ̃S = Diag[ν̃−, ν̃−, ν̃+, ν̃+]. (5.1.22)

Let ρ̃ and ρ̃D be the matrices (not necessarily density matrices) corresponding to

σ̃ and σ̃D respectively. We have Tr[|ρ̃D|] = Tr[|ρ̃|] since ρ̃D = U†S ρ̃US . Also,

ρ̃D = ρ̃− ⊗ ρ̃+ =⇒ Tr[|ρ̃D|] = Tr[|ρ̃−|]Tr[|ρ̃+|] (5.1.23)

where ρ̃± is a thermal state given by

ρ̃± =
2

ν̃± + 1

inf∑
n=0

( ν̃± − 1
ν̃± + 1

)n
|n〉〈n|. (5.1.24)
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Using the binomial theorem we find that

Tr[|ρ̃±|] =
2

|ν̃± + 1| − |ν̃± − 1|
. (5.1.25)

By inspection we can see that if ν̃+ ≥ 1 then Tr[ρ̃+] = 1 and if ν̃− ≥ 1 then

Tr[ρ̃−] = 1. If ν̃− < 1 then |ν̃− + 1| = ν̃− + 1 because ν̃− ≥ 0 by theorem 1

and |ν̃− − 1| = 1 − ν̃−. So substituting this into the expression above we obtain

Tr[|ρ̃−|] = 1
ν̃−

. To summarize, we have

Tr[|ρ̃+|] = 1 always, (5.1.26)

and

Tr[|ρ̃−|] =


1 if ν̃− ≥ 1

1
ν̃−

if ν̃− < 1
. (5.1.27)

So

Tr[|ρ̃|] = Max
(

1,
1
ν̃−

)
, (5.1.28)

implying

N (ρ̃) = Max
(

0,
1− ν̃−

2ν̃−

)
, (5.1.29)

and

EN (ρ̃) = Max
(

0,− log ν̃−
)
. (5.1.30)

�

In Section 5.2 we calculate amount of entanglement for storage in quantum

memories using the expression above. We also rely on a result shown in [94] for a

two-mode Gaussian state:
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Theorem 5. Let ν̃+ ≥ ν̃− be the symplectic eigenvalues of σ̃. Then

ν̃2
− ≥ λ1λ2. (5.1.31)

where λ1 and λ2 are the smallest ordinary eigenvalues of σ.

Proof. First note that from Proposition 1 we have that the symplectic eigen-

values ν̃± are the ordinary eigenvalues of |iΩσ̃|. Also the ν̃2
− is smallest eigenvalue

of both Ω̃TσΩ̃σ and σ
1
2 Ω̃TσΩ̃σ

1
2 with Ω̃ = TΩT . This means that the quantity

〈e|σ 1
2 Ω̃TσΩ̃σ

1
2 |e〉 is a function of a set of all unit vectors |e〉 in Rn (in R4 for a two-

mode Gaussian state). Moreover as we vary |e〉 the smallest value of this function

is ν̃2
−. So that we can define ν̃2

− as follows:

ν̃2
− = inf

|||e〉||=1
〈e|σ 1

2 Ω̃TσΩ̃σ
1
2 |e〉. (5.1.32)

We can also define ν̃2
− as

ν̃2
− = inf

|||e〉=1||
〈eσ|σ

1
2 |eσ〉〈e|σ|e〉, (5.1.33)

where

|eσ〉 =
1√
〈e|σ|e〉

Ω̃σ
1
2 |e〉, (5.1.34)

with 〈e|σ 1
2 |e〉 = 0 and 〈eσ|eσ〉 = 0. Then we have

〈e|σ 1
2 |eσ〉 =

1√
〈e|σ|e〉

〈e|σ 1
2 Ω̃σ

1
2 |e〉 = 0. (5.1.35)

since σ
1
2 Ω̃σ

1
2 is antisymmetric. We can define a bigger set varying a more general

vector, that is independent of |e〉, |e′〉 but still imposing the same condition as we

imposed on |eσ〉: 〈e|σ
1
2 |e′〉 = 0. Then we have the following inequality

ν̃2
− ≥ inf

|||e〉||=|||e′〉||=1
〈e′|σ|e′〉〈e|σ|e〉. (5.1.36)

The RHS of this inequality is in fact product of the two smallest ordinary eigenvalues

of σ. This is straightforward to see. We write |e〉 and |e′〉 as a superposition of
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vectors |1〉 and |2〉 corresponding to the eigenvectors of the smallest eigenvalues λ1

and λ2 respectively. So |e〉 = cos θ|1〉+ sin θ|2〉 and |e′〉 = cosφ|1〉+ sinφ|2〉. Then,

〈e|σ 1
2 |e〉 = λ1 cos2 θ + λ2 sin2 θ (5.1.37)

and

〈e′|σ 1
2 |e′〉 = λ1 cos2 φ+ λ2 sin2 φ. (5.1.38)

We can eliminate cosφ and sinφ using

〈e|σ|e′〉 =
√
λ1 cos θ cosφ+

√
λ2 sin θ sinφ = 0, (5.1.39)

implying

cosφ = −k
√
λ2

cos θ
, (5.1.40)

and

sinφ =
k
√
λ1

sin θ
, (5.1.41)

for some k. So we have

cos2 φ+ sin2 φ = k2
( λ2

cosθ
+

λ1

sin2 θ

)
= 1, (5.1.42)

implying

k2 =
sin2 θ cos2 θ

λ1 cos2 θ + λ2 sin2 θ
. (5.1.43)

Substituting this into 〈e′|σ 1
2 |e′〉 we get

〈e′|σ 1
2 |e′〉 = k2λ1λ2

( 1
cos2 θ

+
1

sin2 θ

)
(5.1.44)

=
sin2 θ cos2 θ

λ1 cos2 θ + λ2 sin2 θ
λ1λ2

( 1
cos2 θ

+
1

sin2 θ

)
(5.1.45)
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=
λ1λ2

λ1 cos2 θ + λ2 sin2 θ
(5.1.46)

Then

〈e′|σ|e′〉〈e|σ|e〉 =
λ1λ2

λ1 cos2 θ + λ2 sin2 θ
(λ1 cos2 θ + λ2 sin2 θ) (5.1.47)

= λ1λ2. (5.1.48)

Hence the inequality in Eq. (5.1.36) becomes

ν̃2
− ≥ λ1λ2. (5.1.49)

�

In Chapter 5.2 we use this inequality to identify a region for which the entan-

glement is maximum in the context of quantum memories.

5.1.2. Gaussian channels. A Gaussian channel is a channel which gives a

Gaussian state as output whenever a Gaussian is fed in as input. In this section we

are going to derive an expression for the most general possible Gaussian channel

on the CM σ.

The effect of a general Gaussian channel on the density matrix ρ is given by

ρ→ TrA[U†ρ⊗ ρAU ], (5.1.50)

where ρA is the Gaussian state of an ancilla and U is a symplectic unitary. The role

of ρA is to allow us to model interaction with the environment. In particular, it

allows us to model the effect of decoherence. Note that, since in the CM description

tensor products correspond to direct sums, partial tracing is equivalent to taking

the main submatrix corresponding to the reduced degrees of freedom. Thus in

terms of covariance matrices we have

σ → [ST (σ ⊕ σA)S]11 (5.1.51)
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where σ is the CM of ρ, σA is the CM of ρA, S is the symplectic matrix corre-

sponding to the unitary U and subscript 11 signifies that we take the top left hand

block of the matrix. Let

S =

x y

z w

 , σ =

σ0 0

0 σA

 . (5.1.52)

Then we have

STσS =

xT zT

yT wT


σ0 0

0 σA


x y

z w



=

xT zT

yT wT


σ0x σ0y

σAz σAw



=

xTσ0x + zTσAz xTσ0y + zTσAw

yTσ0x + wTσAz yTσ0y + wTσAw

 (5.1.53)

So,

[

xTσ0x + zTσAz xTσ0y + zTσAw

yTσ0x + wTσAz yTσ0y + wTσAw

]11 = xTσ0x + zTσAz (5.1.54)

where x = X and zTσAz = Y . So the most general Gaussian channel is given by

σ → XTσX + Y. (5.1.55)

This is the expression we wanted to derive. However, we are still not finished

because we cannot put just any pair of matrices X and Y in this equation as the

uncertainty principle Eq. (2.4.3) imposes some restrictions. To see this observe

first of all Eq. (2.3.1) implies

ST

Ω0 0

0 ΩA

S =

Ω0 0

0 ΩA

 . (5.1.56)
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Evaluating the RHS of this equation we find

ST

Ω0 0

0 ΩA

S =

xT zT

yT wT


Ω0x Ω0y

ΩAz ΩAw


(5.1.57)

implying

xTΩ0x + zTΩAz xTΩ0y + zTΩAw

yTΩ0x + wTΩAz yTΩ0y + wTΩAw

 =

Ω0 0

0 ΩA

 . (5.1.58)

So

xTΩ0x + zTΩAz = Ω0 (5.1.59)

From σA + iΩA ≥ 0 we have

zTσAz + izTΩAz ≥ 0

=⇒ Y + izTΩAz ≥ 0

=⇒ izTΩAz ≥ −Y. (5.1.60)

Multiplying both sides of Eq. (6.3.84) by i we get

ixTΩ0x + izTΩAz = iΩ0

=⇒ izTΩAz = iΩ0 − ixTΩ0x. (5.1.61)

Eq. (5.1.60) implies

iΩ0 − ixTΩ0 ≥ −Y, (5.1.62)

or

iΩ0 − ixTΩ0 + Y ≥ 0. (5.1.63)
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This is the constraint that X and Y have to satisfy due to the uncertainty princi-

ple. These results will play a crucial role in our discussion in the next section of

entanglement storage in an atomic cloud.

We describe the evolution inside the atomic cloud by the equation σ → XTσX+

Y where

X = Diag[e−
Γ1
2 t, e−

Γ1
2 t, e−

Γ2
2 t, e−

Γ1
2 t], (5.1.64)

Y = Diag[(2n+ 1)(1− e−Γ1t), (2n+ 1)(1− e−Γ1t), (2m+ 1)(1− e−Γ2t), (2m+ 1)(1− e−Γ2t)],

(5.1.65)

with

n =
1

e
ωst
kTn − 1

, m =
1

e
ωst
kTm − 1

. (5.1.66)

The X and Y operators model the interaction of the two modes with independent

Markovian baths with average photon numbers n and m, respectively, and loss

rates Γ1 and Γ2 (depending on the strength of the system-bath interaction). Eq.

(5.1.66) gives the relationship between the temperatures of the two independent

baths and their average numbers of excitations (according to the standard Bose-

Einstein statistics). We also describe the entanglement process using a beam splitter

by the equation

σ → RTσR, (5.1.67)

whereR is the rotation matrix given in Eq.(5.3.6). In the beam splitter the evolution

is unitary. There is no interaction with the environment and so Y = 0.

5.2. Entanglement storage in CV quantum memories

In this chapter we investigate entanglement generation and storage in the con-

text of QND-feedback quantum memories where we use symplectic eigenvalues of

the covariance matrix of corresponding state to measure the amount of entangle-

ment. In particular, we examine the question whether in a quantum memory it is



82 5. ENTANGLEMENT WITH CONTINUOUS VARIABLE SYSTEMS

better to store states that are already entangled or whether it is better to only en-

tangle them after storage. Some of the work in this Chapter has been published in

Yadsan-Appleby and Serafini [87]. We are considering general Gaussian dissipative

channels (encompassing the description of thermalisation by contact with reservoir)

acting on Gaussian states. We describe two different quantum optical situations. In

the context of quantum memories the first case is analogous to storing squeezing,

while the second case would correspond to storing entanglement. In the former

case, the squeezed light is entangled using a beam splitter after interacting with

the environment. In the latter case, the squeezed light is entangled using a beam

splitter and then it interacts with the environment. Given a fixed amount of noise,

we then compare decoherence produced in the two cases in terms of final entan-

glement. This enables us to identify optimized strategies to create entanglement

depending on the noise and system parameters.

5.2.1. Quantum memories. One of the foundational results of quantum in-

formation is the no cloning theorem. The theorem states that the quantum state

of a system cannot be copied. This constitutes a challenge for quantum infor-

mation processes where one wants to store information for later use. A quantum

memory is such a system that stores quantum states faithfully. There are many

different approaches to implement such a system, depending on the task that the

memory is to perform. Some of these approaches are; optical delay lines and cavi-

ties, electromagnetic induced transparency (EIT) [95,96], Duan, Lukin, Cirac and

Zoller (DLCZ) protocol which is the basis for Raman memory in atomic gases [97],

photon-echo quantum memory [98–100], atomic frequency combs (AFC) [101],

off-resonant Faraday interaction between light and atoms, also known as quantum

nondemolition (QND)-Faraday intereaction [102,103]. Perhaps one of their most

important application is quantum repeaters [104–106]. They have also applications

in deterministic single photon sources [107–109], loophole-free Bell test [110,111],

communication complexity and protocols requiring local operations and classical

communication (LOCC) [112–116], precision measurements [104]. Performance
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criteria for a quantum memory are the fidelity, the efficiency, storage time, band-

width, capacity to store multiple photons and dimensionality, wavelength [104].

This thesis is concerned with the applications that exploit QND-Faraday in-

teractions. Using this approach a protocol for storing a quantum state of photons

in an atomic cloud has been constructed [81]. The incident light interacted with

a two-level atomic cloud which consisted of caesium atoms. The transmitted light

was measured and then the state of measured light was mapped back onto the

atomic cloud. The fidelity achieved was 70%. This is better than what could be

achieved classically, by measuring and re-preparing the state. The classical fidelity

is the maximal fidelity that can be achieved by measure and prepare strategies. For

a set of coherent states equally distributed in phase space, that equals to 1/2 [76].

For squeezed states and finite distributions of first moments, it can be calculated

by semi-definite-programming [117,118].

The latest developments in this approach are discussed in [103]. Most recently,

[82] implemented a quantum memory to store EPR entangled states. These were

multi-photon states and two-mode squeezed by 6dB. The storage time was about

1ms and the fidelity was 0.52±0.02 which exceeds the best possible classical value.

The specific question we investigate in this thesis is whether the resulting state

will be more entangled if we first store the light and entangle it only when we need

to use it or first entangle it then store it. More explicitly “given that the state is

squeezed, in the presence of noise can we improve the generation of entanglement

by choosing the timing of a passive operation?” The answer turns out to be “yes

the timing of the entanglement affects the amount of entanglement in the resulting

state”. In the next chapter, we investigate this protocol further and we identify

optimized strategies to create entanglement depending on noise parameters. First

we give a brief description of light storage in atomic clouds.

5.2.2. Storing light in atomic clouds. A cloud of atoms at room tempera-

ture can be used to store quantum continuous variables in certain conditions. Each

atom of such clouds acts like a qubit, where the relevant two quantum levels are two
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distinct electronic states. Such degrees of freedom are also called pseudo-spins, in

analogy with the electron spin 1/2. By the Holstein-Primakoff construction, which

we will now sketch, the angular momentum operators to which the field quadratures

couple can be regarded as approximately canonical for a large number of pseudo-

spins. In fact, collective pseudo-spins in the cloud are described by sums of Pauli

operators, each defined in the Hilbert space of one atom:

σ
(a)
k =

N∑
j=1

σ
(j)
k ,

where k = x, y, z and

[σ(a)
+ , σ

(a)
− ] = 2σ(a)

z .

Here, σ(a)
+ = σ

(a)
x + iσ

(a)
y and σ

(a)
− = σ

(a)
x − iσ(a)

y .

If N , the number of spins in the cloud, is very large and if the cloud is very

polarised along the z axis (which may be achieved by preparing all the atoms in

the ground state), then σ
(a)
z can be replaced by its mean value:

[σ(a)
+ , σ

(a)
− ] ≈ 2〈σ(a)

z 〉I .

Then we can define an operator a such that

a =
1√
c
σ

(a)
− , a† =

1√
c
σ

(a)
+ ,

and so

⇒ [a, a†] ≈ I. (5.2.1)

So, the system behaves like a CV system to a good approximation. Let us finally

define the atomic canonical quadrature operators:

X̂A =
a+ a†√

2
,
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P̂A =
a− a†

i
√

2
.

In the following, we will further approximate the description of the atoms as a

continuum of canonical operators X̂(z) and P̂ (z), where the variable z, representing

the spatial direction along the direction of propagation of a light beam through the

atomic ensemble.

5.2.3. The dynamics of a quantum memory. We will now briefly describe

the operation (storage and retrieval) of an atomic cloud quantum memory. We will

mainly follow the treatment found in [103].

A Quantum Non-Demolition interaction (or Faraday interaction) is an interac-

tion between the light and atomic cloud in which every atom is a Λ system. In a Λ

system each atom is a 3-level system as shown in Fig. 3 below. In this description

there is no coupling between the states |0〉 and |1〉. The state |0〉 is coherently

coupled to state |e〉 through the electromagnetic field, with a coupling constant g,

and the state |e〉 is in turn coupled to another state |1〉. In a Λ system the levels of

excited state |e〉 are only virtually populated and so can be eliminated via adiabatic

elimination. After adiabatic elimination, the Hamiltonian for such a system is given

by

Ĥ = −
∫
κ(z)P̂L(z)P̂A(z)dz, (5.2.2)

where P̂A(z) is the collective atomic pseudo-spin operator defined in the previous

section, and P̂L is the quadrature of light at position z along the direction of

propagation of light. The constant κ is the coupling constant given by

κ2 =
∫ T

0

dt
|Ω(t)|2

2∆2

∫
dz|g(z)|2, (5.2.3)

T is the time that takes the light pulse to pass through the atomic cloud, Ω is

the Rabi frequency driven by the classical laser while g(z) is the coherent dipole

coupling strength at position z.
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Figure 3. A three level atom.

As an aside, let us mention that the term “QND” interaction comes from the

fact that, in principle, such an interaction would allow one to measure the state

of the atoms by measuring the state of light. To see this, let the state of the

atomic cloud be |ψA〉, suppose that we want to know P̂A and that the atom-light

Hamiltonian is given by P̂AP̂L. Assume that the initial combined state of the

atomic cloud and the light is |ψA〉 ⊗ |X ′L〉, with X̂L|X ′L〉 = X ′L|X ′L〉. Then after

time t the combined state evolves as

e−iĤt|ψA〉 ⊗ |X ′L〉 =
∫
dPAψA(PA)e−iκP̂AP̂Lt|PA〉 ⊗ |X ′L〉

=
∫
dPAψA(PA)|PA〉 ⊗ e−iκPAP̂Lt|X ′L〉

=
∫
dPAψA(PA)|PA〉 ⊗ |X ′L + κtPA〉 . (5.2.4)
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So the resulting state of the measurement of X̂L is |X ′L + κtPA〉. This means

that the state of the atomic cloud |ψA〉 collapses into |PA〉 with probability density

|ψA(PA)|2, thus realising the quantum non demolition measurement process.

One passage of QND interacting light through the atomic ensemble leads to

the following input-output relationships:

X̂L,out = X̂L,in + κP̂A,t0 ,

P̂L,out = P̂L,in ,

X̂A,tf = X̂A,t0 + κP̂L,in ,

P̂A,tf = P̂A,t0 ,

where the subscripts in and out indicate the quadratures corresponding to the states

of the light beam as it enters and leaves the atomic cloud respectively, and the times

t0 and tf indicate the quadratures corresponding to the state of the atomic cloud

initially (just before the light beam enters the cloud), and finally (after the light

beam has left the cloud respectively).

An ideal storage process needs to map the input light operators into the final

atomic ones. This is done by resorting to a feedback loop, where the output light

is measured by a balanced homodyne detection to adjust the operators X̂A and

P̂A. The feedback loop is described by the following process. Firstly, X̂L,out is

measured, then P̂A,tf is displaced to P̂A,tf + hζ, where h is the feedback gain and

ζ is the measurement outcome. Including the feedback loop we hence have

P̂A,tf → P̂A,tf + hX̂L,out = P̂A,t0 + hX̂L,in + hκP̂A,t0 , (5.2.5)

we choose h = − 1
κ so that

P̂A,tf → −
1
κ
X̂L,in . (5.2.6)
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So, for the storage with feedback we have

X̂A,tf = X̂A,t0 + κP̂L,in, (5.2.7)

P̂A,tf = − 1
κ
X̂L,in. (5.2.8)

This input–output relations hold when spontaneous emission and losses are ne-

glected, which we are referring to as the ‘ideal memory’ case.

For retrieval, two passages of light go through the cell, and a phase shifter is

applied to light between the two passages through the cloud [75]. One has then

(with primed operators referring to the retrieval step of the memory operation):

X̂ ′L,out = −X̂ ′A,t0 , (5.2.9)

P̂ ′L,out = −κX̂ ′L,in − P̂ ′A,t0 . (5.2.10)

For the storage and retrieval, one has then simply to chain the two input-output

relationships above, setting X̂A,tf = X̂ ′A,t0 and P̂A,tf = P̂ ′A,t0 to obtain

X̂ ′L,out = −X̂A,t0 − κP̂L,in, (5.2.11)

P̂ ′L,out = κX̂ ′L,in +
1
κ
X̂L,in. (5.2.12)

We also apply a final phase shift (X̂L,out = P̂ ′L,out and P̂L,out = −X̂ ′L,out), for

ease of notation:

X̂L,out = κX̂ ′L,in +
1
κ
X̂L,in, (5.2.13)

P̂L,out = X̂A,t0 + κP̂L,in. (5.2.14)

Let us now consider the corresponding CM:

σL,out =

2κ2〈X̂ ′2L,in〉+ 2
κ2 〈X̂2

L,in〉 〈{X̂L,t0 , P̂L,in}〉

〈{X̂L,t0 , P̂L,in}〉 2〈X̂2
A,t0
〉+ 2κ2〈P̂ 2

L,in〉

 , (5.2.15)
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which can be written as

σL,out = XσL,inX
T + Y , (5.2.16)

where σL,in is the CM of light before storage and retrieval in the memory, and

X =

 1
κ 0

0 κ

 , (5.2.17)

Y =

2κ2〈X̂ ′L,in〉 0

0 2〈X̂2
A,t0
〉

 . (5.2.18)

Ideally, one could set Y = 0 by squeezing the quadratures X̂A and X̂L, thus ob-

taining perfect storage and retrieval upon setting κ = 1.

5.3. Would one rather store squeezing or entanglement in CV quantum

memories?

We consider following two cases. One could either store an entangled state

and retrieve it directly from the memory, or rather store two separate single-mode

squeezed states and then combine them with a beam splitter to generate the final

entangled state. The first case corresponds to entangling the squeezed light first and

then storing it and the second case corresponds to storing the squeezed light first

and only entangling it when we want to use the state. Let ρ0 be the initial state, ρa

be the final state for the first case and ρb be the final state of the second case where

subscript a stands for after indicating storage after entanglement and subscript b

stands for before indicating storage before entanglement. Let the CM corresponding

to ρ0 be σ0, the CM corresponding to ρa be σa and the CM corresponding to ρb

be σb. Then the noise in the two system is described as

σa = XRσ0R
TXT + Y

σb = RXσ0X
TRT +RY RT (5.3.1)



90 5. ENTANGLEMENT WITH CONTINUOUS VARIABLE SYSTEMS

(a)
 

 

 

 

Figure 4. The two cases being compared: in (a), the state is
stored in the memory cells after the beam splitter has mixed and
entangled the single-mode squeezed states; in (b), the state is
stored before the entangling beam-splitting action. We assume
that all the noise is imputable to the storage and retrieval pro-
cesses.

where X and Y are given in Eq. (5.1.64) and Eq. (5.1.65) respectively. The matrix

R describes the action of the beam-splitter.

In the following we first consider ideal or nearly ideal memories and then noisy

memories.

5.3.1. Ideal memories. The work we present in this section has been pre-

sented in Yadsan-Appleby and Serafini [87]. For ideal memories [77] we define X

and Y as follows:

X = Diag[1, 1, 1, 1]

Y = Diag[yq1, 0, yq2, 0] (5.3.2)

where yq1 =
(
1 − 1

Z2
1

)
∆AT1 is the noise in the first quadrature and yq2 =

(
1 −

1
Z2

2

)
∆AT2 is the noise in the second quadrature. Here, the parameters Z1 and Z2

depend on the optical detuning of the swap interaction and take the value
√

6.4 [82]

and ∆AT1, ∆AT2 are the initial variances of one of the quadratures of the collective
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atomic pseudo-spin in the two memory cells. We also define the CM σ0 as

σ0 = Diag[sN1,
N1

s
,
N2

s
,N2s] (5.3.3)

with s ≥ 1, N1 ≥ 1 and N2 ≥ 1. For N1 = N2 = 1 this CM describes two

pure single-mode squeezed states with optical phases chosen so as to optimize the

production of entanglement by a 50:50 beam-splitter [94]. Given that

1
s2
≤ N2

N1
≤ s2 (5.3.4)

we have

yq2 ≥ yq1 ⇐⇒ EN (ρa) ≥ EN (ρb). (5.3.5)

Proof. Define

Rθ =

 cos θI sin θI

− sin θI cos θI

 ,

R0 = I,

Rπ
4

= R =
1√
2

 I I

−I I

 . (5.3.6)

We also define following matrices

σθ = Rσ0R
T +RθY R

T
θ ,

σ0 = σa,

σ π
4

= σb, (5.3.7)

where σθ interpolates over θ continuously between θ = 0 and θ = π
4 . This means

that the symplectic eigenvalues and hence the logarithmic negativity also inter-

polate over θ since they are functions of symplectic invariants ∆(σ̃θ) and det σθ.
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From Eq. (5.1.20) we have

ν̃2
−(θ) =

∆(σ̃θ)−
√

∆2(σ̃θ)− 4 det σθ
2

. (5.3.8)

Differentiating this we get

dν̃2
−(θ)
dθ

= k(yq2 − yq1), (5.3.9)

where

k =
N1N2(N1s− N2

s )− ν̃2
−(θ)(N1

s −N2s)√
∆2(σ̃)− 4 det σθ

cos 2θ. (5.3.10)

First note that Eq. (5.3.4) implies k ≥ 0. Then yq2 ≥ yq1 implies ν̃2
−(θ) is an

increasing function and yq2 ≤ yq1 implies ν̃2
−(θ) is a decreasing function by Eq.

(5.3.9). �

It follows from Eq. (5.3.5) that, under the adopted configuration of optical

phases, storing entanglement is advantageous over storing single-mode squeezing if

the noise acting on the second quadrature is larger than the noise acting on the first

quadrature, and vice versa. In other words, the optimal storage is the one whereby

the variance of the noisier quadrature is the larger before the storage takes place,

and hence is the more robust in the face of the noise.

5.3.2. Noisy memories. In the work presented in this section we consider

the same experimental situation as in Fig. 4 with the different region of parameter

space and analyzing it using a different method. In this case we define the matrix

Y in Eq. (5.1.65) as

Y = Diag[1− λ2, 1− λ2, 1− µ2, 1− µ2], (5.3.11)

taking n = m = 0 in Eq. (5.1.66) with λ = e−
Γ1t
2 , µ = e−

Γ2t
2 . We also rewrite

matrix X in Eq. (5.1.64) in terms of λ and µ:

X = Diag[λ, λ, µ, µ]. (5.3.12)
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We take the initial CM σ0 to be

σ0 = Diag[r,
1
r
,

1
s
, s], (5.3.13)

where r and s are squeezing parameters. The effect of noise on the σ0 is described

as before, in Eq. (5.3.1) with the resulting states with CMs σa and σb. It fol-

lows from the Eq. (5.1.30) that the smallest symplectic eigenvalue of the CM, σ̃,

corresponding the partially transposed state is the state that has the maximum

entanglement. The effect of partial transposition on σa and σb is

σ̃b = TσbT,

σ̃a = TσaT. (5.3.14)

where T is given in Eq. (5.1.1). In Proposition 1 we have shown that the symplectic

eigenvalues of σ are the same as the ordinary eigenvalues of |iΩσ|. Furthermore

calculating the eigenvalues of (iΩσ)2 rather than |iΩσ| of considerably reduces the

amount of algebra. Multiplying Eq. (5.3.14) by iΩ then squaring it we get the

partially transposed symplectic eigenvalues, ν̃2
b and ν̃2

a:

ν̃2
b = (iΩσ̃b)2 = −Ωσ̃bΩσ̃b = −ΩTσbTΩTσbT,

ν̃2
a = (iΩσ̃a)2 = −Ωσ̃aΩσ̃a = −ΩTσaTΩTσaT. (5.3.15)

We found and simplified the following expressions. Note that the symplectic eigen-

values come in pairs by the definition given in Eq. (2.3.8). So for a two-mode

Gaussian state we have two symplectic eigenvalues. Below are the expressions for

the two systems we have described in section 5.2.

ν̃2
b1 = (1− λ2 + rλ2)(1− µ2 + sµ2),

ν̃2
b2 =

(−r − λ2 + rλ2)(−s− µ2 + sµ2)
rs

.
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and

ν̃2
a1 =

1
8rs

(
2sλ2 + λ4 − 2sλ4 + 2sµ2 + 2λ2µ2 + µ4 − 2sµ4 + r2s((−2 + s)λ4 + 2µ2

+ (−2 + s)µ4 + 2λ2(1 + sµ2)) + 2r(λ2 − λ4 + µ2 − µ4 + s2(λ2 − λ4 + µ2 − µ4)

+s(4 + 3λ4 − 4µ2 + 3µ4 − 2λ2(2 + µ2))
)
−
(

(−16rs(−2r − λ2 + 2rλ2 − rsλ2

+ (−1 + 2r − rs+ 2(−1 + r)(−1 + s)λ2)µ2)(−2s− λ2 + 2sλ2 − rsλ2

+ (−1 + 2s− rs+ 2(−1 + r)(−1 + s)λ2)µ2) + ((λ2 + µ2)2 + 2s(λ2 − λ4 + µ2 − µ4)

+ r2s((−2 + s)λ4 + 2µ2 + (−2 + s)µ4 + 2λ2(1 + sµ2)) + 2r(λ2 − λ4 + µ2 − µ4

+ s2(λ2 − λ4 + µ2 − µ4) + s(4− 4λ2 + 3λ4 − 2(2 + λ2)µ2 + 3µ4)))2)))
) 1

2
,

ν̃2
a2 =

1
8rs

(
2sλ2 + λ4 − 2sλ4 + 2sµ2 + 2λ2µ2 + µ4 − 2sµ4 + r2s((−2 + s)λ4 + 2µ2

+ (−2 + s)µ4 + 2λ2(1 + sµ2)) + 2r(λ2 − λ4 + µ2 − µ4 + s2(λ2 − λ4 + µ2 − µ4)

+s(4 + 3λ4 − 4µ2 + 3µ4 − 2λ2(2 + µ2))
)

+
(

(−16rs(−2r − λ2 + 2rλ2 − rsλ2

+ (−1 + 2r − rs+ 2(−1 + r)(−1 + s)λ2)µ2)(−2s− λ2 + 2sλ2 − rsλ2

+ (−1 + 2s− rs+ 2(−1 + r)(−1 + s)λ2)µ2) + ((λ2 + µ2)2 + 2s(λ2 − λ4 + µ2 − µ4)

+ r2s((−2 + s)λ4 + 2µ2 + (−2 + s)µ4 + 2λ2(1 + sµ2)) + 2r(λ2 − λ4 + µ2 − µ4

+ s2(λ2 − λ4 + µ2 − µ4) + s(4− 4λ2 + 3λ4 − 2(2 + λ2)µ2 + 3µ4)))2)))
) 1

2
.

We could not simplify these expressions further. However, we investigated the

numerical values of the entanglement in the two cases. First we calculated

fν̃2
b
(λ, µ) =

√
Min[Eigenvalues[iΩσ̃biΩσ̃b]],

fν̃2
a
(λ, µ) =

√
Min[Eigenvalues[iΩσ̃aiΩσ̃a]],
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Figure 5. The difference in the amount of entanglement between
the two cases where we used the values r=3,s=2

then

δEN (λ, µ) = − log2[fν̃2
b
(λ, µ)] + log2[fν̃2

a
(λ, µ)].

5.3.3. First approach. The most direct approach is to simply plot the graphs

of δEN against λ and µ for different choices of r and s. A typical graph is given in

Fig. 5.

The purple plane represents the zero plane. The blue graph is the difference

in entanglement between the two cases. The region above the horizontal plane

represents the region where δEN > 0 and therefore in this region it is better to

store squeezing . The region below the purple plane is when δEN < 0 meaning that

in this region it is better to store entanglement. The trouble with this approach

is that one gets a wide variety of graphs and it is difficult to make any general

statements.



96 5. ENTANGLEMENT WITH CONTINUOUS VARIABLE SYSTEMS

5.3.4. Second approach. By making suitable approximations we find a sim-

ple analytic expression for a region in the λ, µ plane where it is certainly better to

entangle after storage. For values of λ, µ outside of this region we cannot say (using

this analysis) whether or not it is better to entangle after storage. Let e1e2 be the

product of two smallest ordinary eigenvalues of σb. Then for definitions of X,Y

given in Eq. (5.3.12) and Eq. (5.3.11) the inequality in Eq. (5.1.31) for the case

σb becomes an equality (this can be seen by a direct calculation of Eq. (5.3.1) ):

ν̃2
b = e1e2(σb).

This means that if we can identify a region for which

e1e2(σa) > e1e2(σb), (5.3.16)

holds then we also know the region ν̃2
a > ν̃2

b by the following inequality:

ν̃2
a ≥ e1e2(σa) > e1e2(σb) = ν̃2

b . (5.3.17)

Note that for the region where e1e2(σa) < e1e2(σb), Eq. (5.3.17) may or may

not hold. This region had not been analyzed in this thesis. Below we give a brief

summary of our strategy for identifying a region for which Eq. (5.3.16) holds.

• We consider the special case n = m = 0.

• We found the symplectic and ordinary eigenvalues of σb and σa. They

correspond to storing squeezing and storing entanglement respectively. In

the former case there is decoherence before beamsplitter and in the latter

there is decoherence after beamsplitter.

• We did a little algebra to get the expressions for the ordinary eigenvalues

of σb and σa.

• We identified the smallest two ordinary eigenvalues of σb with the condi-

tion r > s > 1.
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• We showed that for n = m = 0 the square of the smallest symplectic

eigenvalue of σb is equal to the product of the two smallest ordinary

eigenvalues of σb.

• Identifying the two smallest ordinary eigenvalues of σa was algebraically

tricky. We had to impose another condition s > 2 − 1
r to simplify the

problem.

• For this special case we looked at the difference between the product of

two smallest eigenvalues of σa and the product of two smallest eigenvalues

σb. We found a boundary for the region where storing squeezing is better

than storing entanglement.

The ordinary eigenvalues of σb are

eb1 = 1 + λ2
(1
r
− 1
)
,

eb2 = 1 + λ2(r − 1),

eb3 = 1 + µ2
(1
s
− 1
)
,

eb4 = 1 + µ2(s− 1).

The ordinary eigenvalues of σa are

ea1 =1 +
1− 2r + rs

4r
(λ2 + µ2)−

√(1− 2r + rs

4r

)2

(λ2 + µ2)2 +
(r − 1)(s− 1)

r
λ2µ2,

(5.3.18)

ea2 =1 +
1− 2r + rs

4r
(λ2 + µ2) +

√(1− 2r + rs

4r

)2

(λ2 + µ2)2 +
(r − 1)(s− 1)

r
λ2µ2,

ea3 =1 +
1− 2s+ rs

4s
(λ2 + µ2)−

√(1− 2s+ rs

4s

)2

(λ2 + µ2)2 +
(r − 1)(s− 1)

s
λ2µ2,

ea4 =1 +
1− 2s+ rs

4s
(λ2 + µ2) +

√(1− 2s+ rs

4s

)2

(λ2 + µ2)2 +
(r − 1)(s− 1)

s
λ2µ2.

(5.3.19)

We impose the following conditions:

1)r > s > 1,
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2)s > 2− 1
r
. (5.3.20)

First observe that Condition 1) implies eb1 < 1 and eb3 < 1 whereas eb2 > 1 and

eb2 > 1. So we can immediately see that the smallest two eigenvalues of σb are eb1

and eb3 . After a little algebra the product of two smallest ordinary eigenvalues of

σb can be written as

eb1eb3 = 1− (1− 1
r

)λ2 − (1− 1
s

)µ2 +
(r − 1)(s− 1)

rs
λ2µ2. (5.3.21)

It is not as easy to inspect the smallest two ordinary eigenvalues of σa. We use

the following method. Observe that all the expressions in Eq. (5.3.19) are of the

form:

ea1 = k −
√

∆k,

ea2 = k +
√

∆k,

ea3 = p−
√

∆p,

ea4 = p+
√

∆p.

where we define

k = 1 +
1− 2r + rs

4r
(λ2 + µ2),

p = 1 +
1− 2s+ rs

4s
(λ2 + µ2),

∆k =
(1− 2r + rs

4r

)2

(λ2 + µ2)2 +
(r − 1)(s− 1)

r
λ2µ2,

∆p =
(1− 2s+ rs

4s

)2

(λ2 + µ2)2 +
(r − 1)(s− 1)

s
λ2µ2.

We now show that the smallest two eigenvalues are k −
√

∆k and p −
√

∆p. We

can immediately see that

k −
√

∆k < k +
√

∆k,

p−
√

∆p < p+
√

∆p. (5.3.22)
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Next we notice that the Condition 1) in Eq. (5.3.20) implies k < p and
√

∆k <
√

∆p. To see this we first rewrite k and p as

k = 1 +
1
4

(1
r

+ s− 2
)
,

p = 1 +
1
4

(1
s

+ r − 2
)
.

We only need to compare the terms 1
r + s and 1

s + r since all other terms are the

same.

s < r ⇒ 1
r
<

1
s
⇒ 1

r
+ s <

1
s

+ r.

So

k < p. (5.3.23)

We also notice that ∆k is of the form k2 + c and ∆p is p2 + c′. We now know that

k < p. It is also easily seen that Condition 1 Eq. (5.3.20) implies c < c′ so that

k2 + c < p2 + c′. That gives us:

√
∆k <

√
∆p. (5.3.24)

The inequalities in (5.3.23) and (5.3.24) together imply:

k +
√

∆k < p+
√

∆p.

We can now dismiss p+
√

∆p as it is the greatest eigenvalue. Of the remaining 3 we

can say that k −
√

∆k is one of the smallest since it is smaller than both p−
√

∆p

and k+
√

∆k. We need to find out which of the remaining 2 is smaller. We do that

by showing k +
√

∆k > 1 and p−
√

∆p < 1.

√
∆k >

1− 2r + rs

4r

⇒ k +
√

∆k > k +
1− 2r + rs

4r
= 1 +

1− 2r + rs

4r
+

1− 2r + rs

4r

= 1 + 2
1− 2r + rs

4r
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⇒ k +
√

∆k > 1 + 2
1− 2r + rs

4r
(5.3.25)

⇒ k +
√

∆k > 1.

Similarly,

√
∆p >

1− 2s+ rs

4s

⇒ −
√

∆p < −1− 2s+ rs

4s
⇒ p−

√
∆p < p− 1− 2s+ rs

4s

⇒ p−
√

∆p < 1 +
1− 2s+ rs

4s
− 1− 2s+ rs

4s
= 1⇒ p−

√
∆p < 1.

So k+
√

∆k > p−
√

∆p. We conclude that the smallest two eigenvalues of σa are:

ea1 = k −
√

∆k,

ea3 = p−
√

∆p.

and so, the product of 2 smallest ordinary eigenvalues of σa:

ea1ea3 =

(
1 +

1− 2r + rs

4r
(λ2 + µ2)−

√(1− 2r + rs

4r

)2

(λ2 + µ2)2 +
(r − 1)(s− 1)

r
λ2µ2

)
(

1 +
1− 2s+ rs

4s
(λ2 + µ2)−

√(1− 2s+ rs

4s

)2

(λ2 + µ2)2 +
(r − 1)(s− 1)

s
λ2µ2

)
.

We now find the region of r and s for which ea1ea3 > eb1eb3 . We define A,B,C

as follows:

A = 1− (1− 1
r

)λ2 − (1− 1
s

)µ2 +
(r − 1)(s− 1)

rs
λ2µ2,

B =

(
1 +

1− 2r + rs

4r
(λ2 + µ2)−

(
(
1− 2r + rs

4r
)2(λ2 + µ2)2 +

(r − 1)(s− 1)
r

λ2µ2
) 1

2

)
,

C =

(
1 +

1− 2s+ rs

4s
(λ2 + µ2)−

(
(
1− 2s+ rs

4s
)2(λ2 + µ2)2 +

(r − 1)(s− 1)
s

λ2µ2
) 1

2

)
.

We want to identify the regions where

BC −A > 0
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Note that B and C are of the form

√
a+ b ≤

√
a+
√
b.

The square roots in ea1ea3 have the same form as above. So we can say√
(
1− 2r + rs

4r
)2(λ2 + µ2)2 +

(r − 1)(s− 1)
r

λ2µ2 ≤
√

(
1− 2r + rs

4r
)2(λ2 + µ2)2 +

√
(r − 1)(s− 1)

r
λ2µ2

−
√

1− 2r + rs

4r
)2(λ2 + µ2)2 +

(r − 1)(s− 1)
r

λ2µ2 ≥ −
√

1− 2r + rs

4r
)2(λ2 + µ2)2 +

√
(r − 1)(s− 1)

r
λ2µ2

⇒ 1 +
1− 2r + rs

4r
(λ2 + µ2)−

(√
(
1− 2r + rs

4r
)2(λ2 + µ2)2 +

(r − 1)(s− 1)
r

λ2µ2
)
≥

1 +
1− 2r + rs

4r
(λ2 + µ2)−

(√
(
1− 2r + rs

4r
)2(λ2 + µ2)2 +

√
(r − 1)(s− 1)

r
λ2µ2

)

⇒ B ≥ 1− λµ
√

(r − 1)(s− 1)
r

.

Similarly,

C ≥ 1− λµ
√

(r − 1)(s− 1)
s

.

Then,

BC −A =
(

1− λµ
√

(r − 1)(s− 1)
r

)(
1− λµ

√
(r − 1)(s− 1)

s

)
−
(

1− (1− 1
r

)λ2 − (1− 1
s

)µ2 +
(r − 1)(s− 1)

rs
λ2µ2

)
= −λµ

(√ (r − 1)(s− 1)
r

+

√
(r − 1)(s− 1)

s

)
+ λ2µ2(r − 1)(s− 1)(

1√
rs
− 1
rs

)

+ (1− 1
r

)λ2 + (1− 1
s

)µ2.

Consider the term with λ2µ2:

√
rs < rs⇒ 1√

rs
>

1
rs
⇒
( 1√

rs
− 1
rs

)
> 0.
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It follows that

BC −A > BC −A− λ2µ2(r − 1)(s− 1)
( 1√

rs
− 1
rs

)
.

which gives the following inequality below.

(
r − 1
r

)λ2 + (
s− 1
s

)µ2 −
√

(r − 1)(s− 1)
rs

(
√
r +
√
s)λµ+ (r − 1)(s− 1)(

1√
rs
− 1
rs

)λ2µ2 >

(
r − 1
r

)λ2 + (
s− 1
s

)µ2 −
√

(r − 1)(s− 1)
rs

(
√
r +
√
s)λµ. (5.3.26)

This is simpler to handle because RHS is a quadratic in λ and µ. We can now find

a bound for λ and µ in terms of r and s. Define x =
√

r−1
r λ y =

√
s−1
s µ. Then

we can write RHS of 5.3.26 as follows:

x2 + y2 − xy(
√
r +
√
s) = y2(

x2

y2
− x

y
(
√
r +
√
s) + 1).

Let t = x
y . Then,

t2 − (
√
r +
√
s)t+ 1 = 0⇒ t =

(
√
r +
√
s)±

√
(
√
r +
√
s)2 − 4

2
.

Substituting λ and µ we have,

t =
x

y
=

√
r−1
r√
s−1
s

λ

µ

⇒

√
r−1
r√
s−1
s

λ

µ
=

(
√
r +
√
s)±

√
(
√
r +
√
s)2 − 4

2

⇒ λ

µ
=

√
s−1
s√
r−1
r

(
√
r +
√
s)±

√
(
√
r +
√
s)2 − 4

2
.

This means that,

λ

µ
>

√
s−1
s√
r−1
r

(
√
r +
√
s) +

√
(
√
r +
√
s)2 − 4

2
⇒ BC −A > 0,
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λ

µ
<

√
s−1
s√
r−1
r

(
√
r +
√
s)−

√
(
√
r +
√
s)2 − 4

2
⇒ BC −A > 0.

(5.3.27)

We conclude that given the Conditions 1) and 2) we have

ea1ea3 > eb1eb3 ⇒ ν̃2
a > ν̃2

b .

for the regions of λ and µ given in (5.3.27). If λ and µ satisfy the Eq. (5.3.27) then

storing squeezing is better than storing entanglement. In the next section we will

derive an improved treatment which makes fewer approximations.

5.3.5. Improved second approach. If we let r = s then Eq. (5.3.27) be-

comes,

λ

µ
>
√
r +
√
r − 1⇒ BC −A > 0 ,

λ

µ
<
√
r −
√
r − 1⇒ BC −A > 0.

As r goes to infinity the first one of above equations will get bigger and bigger the

second one will get nearer and nearer to zero. This suggests that our bound is not

very good. We will try to improve it by not making some of the approximation we

made previously. We had

BC −A =
(

1− λµ
√

(r − 1)(s− 1)
r

)(
1− λµ

√
(r − 1)(s− 1)

s

)
−
(

1− (1− 1
r

)λ2 − (1− 1
s

)µ2 +
(r − 1)(s− 1)

rs
λ2µ2

)
= −λµ

(√ (r − 1)(s− 1)
r

+

√
(r − 1)(s− 1)

s

)
+ λ2µ2(r − 1)(s− 1)(

1√
rs
− 1
rs

)

+ (1− 1
r

)λ2 + (1− 1
s

)µ2. (5.3.28)
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where we dropped the λ2µ2 term altogether because this term is always greater

than zero. We have

BC −A > BC −A− λ2µ2(r − 1)(s− 1)(
1√
rs
− 1
rs

). (5.3.29)

We showed that

BC −A− λ2µ2(r − 1)(s− 1)(
1√
rs
− 1
rs

) > 0. (5.3.30)

We now want to include λ2 and µ2 term to identify the region for which the in-

equality BC −A > 0 holds. We can write 5.3.30 as follows:

κ(λ, µ) = a2λ2 + b2µ2 − 2cλµ+ d2λ2µ2 > 0. (5.3.31)

where

a =

√
1− 1

r
,

b =

√
1− 1

s
,

c =
1
2

(√ (r − 1)(s− 1)
r

+

√
(r − 1)(s− 1)

s

)
,

d =

√
(r − 1)(s− 1)(

1√
rs
− 1
rs

).

Eq. (5.3.31) is the difference between the product of two smallest eigenvalues the

covariance matrices corresponding to the two cases; storage after entanglement and

storage before entanglement. Completing the squares, this can be written as

κ(λ, µ) = (aλ+ bµ)2 +
(
dλµ− c+ ab

d

)2

− (c+ ab)2

d2
. (5.3.32)

Note that κ(λ, µ) has the form

x2 + y2 = z2.

We display this information graphically in Fig. 6 and Fig. 7. Fig. 6 is a 3−D graph

of κ(λ, µ) and Fig. 7 is a contour graph. The yellow region in Fig. 7 is the region
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Figure 6. The blue graph is the graph of κ(λ, µ) with r = 3, s =
2 and λ, µ : 0 → 1. The purple plane is the zero plane and it
is there so that we can see the regions of blue graph for which
κ(λ, µ) ≥ 0 clearly.

where κ(λ, µ) is greater than zero and where we can consequently say for sure that

it is better to store squeezing. In the purple region in Fig. 7 the approximations

we made in deriving our inequality in Eq. (5.3.31) mean that we are unable to say

for sure which is better: to store squeezing or entanglement. Of course we know

from our first approach that there is a subset of purple region where it is better to

store entanglement but approximations in this approach mean that we cannot give

its boundary using this approach.

We conclude this section by deriving analytic parametric equations for the

boundary curve dividing the purple and yellow regions in Fig. 7. Define

aλ+ bµ = R cos θ, (5.3.33)

dλµ− c+ ab

d
= R sin θ, (5.3.34)
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Figure 7. Contour graph of κ(λ, µ) with r = 3, s = 2 and
λ, µ : 0→ 1. The yellow region is where κ(λ, µ) ≥ 0 and therefore
it is the region for which storing squeezing yields more entangle-
ment. The purple region is where κ(λ, µ) ≤ 0 which, due to our
approximations we made in deriving κ(λ, µ) ≥ 0, does not neces-
sarily imply that storing entanglement is better in this region.

with 0 ≤ θ ≤ 2π. Then we can write Eq. (5.3.31) as

R2 cos2 θ +R2 sin2 θ ≥ (c+ ab)2

d2

⇒ R2 ≥ (c+ ab)2

d2

⇒ R ≥ c+ ab

d
. (5.3.35)

From Eq. (5.3.33) we have

µ =
R cos θ − aλ

b
. (5.3.36)
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Substituting this into Eq. (5.3.34) we get

λ2 − R cos θ
a

λ+
b

ad

(c+ ab

d
+R sin θ

)
= 0.

Solving this for λ we get

λ =
1
2a

(
R cos θ ±

√
R2 cos2 θ − 4ab

d

(c+ ab

d
+R sin θ

))
.

Then substituting this into Eq. (5.3.36) we obtain the following expression for µ:

µ =
1
2b

(
R cos θ ±

√
R2 cos2 θ − 4ab

d

(c+ ab

d
+R sin θ

))
.

We are particularly interested in the line for which

R =
c+ ab

d
, (5.3.37)

as this gives the boundary of the region in which (5.3.31) holds. We call this value

R0. Substituting this into equations for λ and µ we get

λ =
1
2a

(
R0 cos θ ±

√
R2

0 cos2 θ − 4ab
d
R0(1 + sin θ)

)
,

µ =
1
2b

(
R0 cos θ ∓

√
R2

0 cos2 θ − 4ab
d
R0(1 + sin θ)

)
. (5.3.38)

These two parametric equations giving λ and µ in terms of the parameter θ specify

the boundary curve between the purple and yellow regions in Fig. 7. In Fig. 8 we

plot the boundary curve. For one choice of the sign we get the equation for the

lower boundary curve; with the other choice of the sign we get the upper boundary

curve.

5.4. Summary

We have considered continuous variable quantum memories operated in spin

clouds by QND feedback. We have shown that given that we impose the conditions
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Figure 8. The boundary curve between yellow and purple region
in Fig. 7 with r = 3, s = 2, λ, µ : 0 → 1 and θ : −π2 → 0. The
lower boundary curve is obtained when we choose the first pair of
signs (+ for λ and − for µ) in Eq. (5.3.38) and the upper curve
boundary is obtained when we choose the other pair (− for λ and
+ for µ) of signs.

in Eq. (5.3.20) on the squeezing parameters, in the presence of noise we can iden-

tify a region of the parameters, r, s, λ, µ where storing squeezing first yields more

entanglement in the resulting state.

Our result could have significant impact as operational guidelines for the storage

and retrieval of continuous variable entanglement, which will be an ubiquitous

prerequisite in the areas of quantum communication and information processing

alike.
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CHAPTER 6

Galois theory and SIC-POVMs

6.1. SIC existence problem

In Chapter 4 we argued that a SIC-POVM can be regarded as a discrete ana-

logue of a coherent state POVM and that a SIC fiducial vector can be regarded as

a discrete analogue of a coherent state.

SIC-POVMs are interesting for many other reasons. In particular, they have ap-

plications to quantum tomography [60,119–121], quantum cryptography [59,122–

125], quantum communication [126–130] and Kochen-Specker arguments [131].

They also have applications classically to high precision radar [129, 132, 133]

and speech recognition [134]. They have been realized experimentally [123, 135]

and further experiments have been proposed [136, 137]. They also play an im-

portant role in the “Qbist” approach to the interpretation of quantum mechan-

ics [15, 16, 138–140]. Unfortunately, in spite of much effort, it is still not proven

that they exist in every dimension. SICs have been constructed numerically in every

dimension less than or equal to 67 and many dimensions greater than the 67 (this is

still work in progress [141]). Exact expressions have been found in 2-15,19,24,35,48

(see [142] and references cited therein), dimension 16 [143] and dimension 28 [144].

This encourages the conjecture that SICs actually exist in every finite dimension.

However, that is only a conjecture.

In this chapter we describe some work we did on the Galois symmetries of SIC-

POVMs. We will give a review of Galois theory in Section 6.2. However, before

going into details, we will explain in general terms, why Galois theory might be

expected to be relevant to this problem.

111
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A SIC fiducial vector is a solution to a set of equations

|〈ψ|Dp|ψ〉|2 =


1 if p = 0

1
d+1 if p 6= 0.

(6.1.1)

as we saw in Eq. (4.2.5). It can be seen that these are degree 4 polynomial equations

in the real and imaginary parts of the components of |ψ〉. One can see at once that

the system is greatly overdetermined for d > 2 since one has d2 equations for only

2d real variables. It is therefore surprising that we are able to find solutions at all.

The fact that we are, for at least d ≤ 67, suggests there is some special feature of

the equations that is responsible for a solution. Finding that special feature may

be the key to proving existence.

The motivation for our work here is the striking fact [142–144] that all known

exact fiducials are expressible in radicals. This tells us that the corresponding

Galois group is of a very special kind, namely a solvable group. This suggested to

us that we might find the special feature responsible for SICs existing in spite of

the over-determination of the equations by studying the Galois group.

When we embarked on this work, we hoped that it might lead to a solution

to the existence problem. This did not happen. However, we did find a lot of

interesting mathematical structure which we hope will be found useful in future

work on this problem.

We now give a brief introduction to Galois theory, stating the basic facts that

we relied on in this problem.

6.2. Galois theory

Galois Theory is about polynomials and their solutions. The ancient Greeks

originally assumed that every number can be written as a fraction (or rational

number). But then they found that
√

2 (the solution to the polynomial x2 − 2)

cannot be written as a fraction. Subsequently it was found that the same is true

of
√
n, for every integer n which is not a perfect square. Numbers like

√
2 or
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3
√

2 or
5
√√

3 + 3
√

2 + 7
√

11 which we build up by taking roots are called radicals.

The question was: can the solution to every polynomial equation be written in

radicals? It was found that polynomials up to degree 4 have solutions expressible

in radicals [145].

Lagrange thought that it was possible to derive a general formula for degree

5 (and greater than 5) polynomials. However he could not find such a formula.

Subsequently Galois showed that it was impossible to find a general formula for

quintics because not all quintics had solutions in radicals. He did this by defining

what is now called the Galois group of the polynomial. He then showed that the

polynomial is solvable in radicals if and only if the Galois group is a solvable group

(we define the term “solvable group” below). Then he showed that there are quintics

such that their Galois group is not a solvable group.

Note that here the word “solvable” does not indicate the group itself is solvable

in some special sense but only indicates that the polynomial corresponding to the

group is solvable in radicals.

Let us now give the precise definition of a solvable group. The simplest example

of a solvable group is an Abelian group—i.e. a group in which the multiplication is

commutative so that for any two elements g1, g2 of the group G we have g1g2 = g2g1.

To give a general definition of a solvable group we first need to introduce the concept

of a normal subgroup and a quotient group [146].

Let G be any group and H subgroup. H is said to be a normal subgroup of G

if, given any h ∈ H and g ∈ G, ghg−1 ∈ H.

If H is a normal subgroup of G then we can define the quotient group G/H.

We do this as follows. For each g ∈ G we define

gH = {gh : h ∈ H}. (6.2.1)

The set gH is said to be a coset. The fact that H is a normal subgroup of G means

that if x1 ∈ g1H and x2 ∈ g2H then x1x2 ∈ g1g2H. Consequently, we can define a
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group multiplication law on the cosets:

g1Hg2H = g1g2H. (6.2.2)

With this multiplication rule the set of all cosets, denoted G/H, becomes a group

with identity eH (where e is the identity of G) and where the inverse of gH is g−1H.

G/H is called quotient group of G with respect to H.

We now return to the task of explaining what a solvable group is. After an

Abelian group the next simplest example of a solvable group is a group G which

has a normal subgroup H such that H and G/H are both Abelian. More generally

still, a group G is solvable if it has a chain of subgroups H1,H2, . . .Hi such that

H1 ⊆ H2 ⊆ · · · ⊆ Hi ⊆ G, (6.2.3)

where each subgroup is a normal subgroup of the one immediately to the right, and

if H1 together with the quotient groups,

G/Hi,Hi/Hi−1 . . . ,H2/H1, (6.2.4)

is Abelian. If there is no chain as in Eq. (6.2.3) then the group G is said to be not

solvable.

After Galois there were many developments. Kronecker showed that an ex-

tension field has an Abelian group if and only if it is either a cyclotomic field or a

subfield of a cyclotomic field (where by a cyclotomic field we mean a field generated

by a number of the form ei2nπ, i.e. by a root of unity). He then wanted to have

a similar characterization for the quadratic fields (which are the fields generated

by numbers of the form
√
n where n is an integer), however he could not manage

it. He called this his “youthful dream”. It was also discovered that numbers like

e and π are not solutions to any polynomial equation. Such numbers are called

transcendental.

However, the detailed analysis of these ideas is out of the scope of this thesis.

Our interest in Galois Theory arises from the fact that the components of all known
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fiducial vectors are expressible in terms of radicals. This suggests that the fields

generated by these radicals have corresponding Galois groups that are solvable.

Using this idea we have discovered some interesting features of the structure of

SIC-POVMs in the discrete case.

In the next section we give some relevant definitions and explain with simple

examples, how Galois Theory works in principle. After that we apply these ideas

to the SIC problem.

6.2.1. Number fields and their extensions. The most familiar examples

of number fields are the rational numbers Q, the real numbers R and the complex

numbers C. However, these are not the only examples. Let us begin by giving a

formal definition of a number field (or simply field as we shall call it from now on).

A field F is a set of objects that satisfies the following axioms under the two binary

operations, addition and multiplication.

(1) Multiplication is distributive over addition: x(y + z) = xy + xz

(2) Addition and multiplication are commutative: if x, y ∈ F then x+y = y+x

and x× y = y × x.

(3) Addition and multiplication are associative: if x, y, z ∈ F then (x+y)+z =

x+ (y + z) and (x× y)× z = x× (y × z).

(4) An additive identity 0 ∈ F exists such that x+0 = 0+x = x for all x ∈ F.

A multiplicative identity 1 ∈ F exists such that 1× x = x× 1 = x for all

x ∈ F.

(5) An additive and a multiplicative inverse x−1 ∈ F exists such that x+x−1 =

0 and x× x−1 = 1 for all x ∈ F.

If a field F is contained in a field E we say that E is an extension field of F and F

is a subfield of E. In this thesis we are concerned with extension fields E such that

Q ⊆ E ⊆ C. There are other examples of fields, for instance, Zp where p is a prime

number. Galois theory also applies to them but we are not concerned with them

in this thesis. We now list the kinds of complex numbers included in C.
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(1) The set of all rational numbers and the numbers of the form a+ bi where

a, b ∈ Q included in the C.

(2) Radicals, that is the numbers obtained from rational numbers by use of

arithmetic operations: addition, subtraction, multiplication, division and

taking by arbitrary roots (square roots, cube roots, etc.). For example:√ √
2+
√

5

3+(2+3i)
1
3

.

(3) Algebraic numbers which are the roots of a polynomial. Not all algebraic

numbers can be written in terms of radicals. For instance there are quintic

polynomials whose roots are not expressible in radicals.

(4) Transcendental numbers are the numbers that are not algebraic, in other

words, they are not the roots of any polynomial. For example: e or π.

If an extension of the rationals consists entirely of radicals then we say that it is a

radical extension. If it consists entirely of algebraic numbers then we say that it is

an algebraic extension. If it is not algebraic (meaning that some of its elements are

transcendental) then we say that it is a transcendental extension.

6.2.1.1. Field extensions. The basic idea for constructing field extensions is

present in the way we obtain complex numbers from the real numbers. The set

of real numbers R does not contain the roots of x2 + 1, so we define a number i.

We then define the field of complex numbers to be C = R(i) which contains the

combination of all numbers of the form a+ bi where a, b ∈ R. R(i) is closed under

addition, subtraction, multiplication and division and therefore it is a field. This

is easy to see by straightforward arithmetic. Suppose we multiply two arbitrary

numbers in R(i): (a+ bi)(c+ di) = ac+ (bc+ ad)i+ bdi2 = (ac− bd) + (bc+ ad)i

which is of the form a′ + b′i. Similarly, it can be shown that addition, subtraction

and division will produce numbers of the same form. Consider another polynomial

for an example: x2 + x + 1. The roots of this polynomial are e
2πi
3 , e

4πi
3 and are

not in Q. So we extend Q to include ω = e
2πi
3 . Define E = Q(ω) to consist of all

combinations of the form a+ bω with a, b ∈ Q. It can, again by simple arithmetic,

be shown that Q(ω) is closed under all four operations and therefore it is a field.
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For instance multiplying two arbitrary elements in this field we have

(a+ bω)(c+ dω) = ac+ (bc+ ad)ω + bdω2

= ac+ (bc+ ad)ω + bd(−1− ω)

= (ac− bd) + (bc+ ad− bd)ω (6.2.5)

which is of the form a′ + b′ω.

This idea generalizes. Let F be an extension of the rationals and a be an

algebraic number that is not in F. We define the minimal polynomial of a over F

which is the lowest degree polynomial with all its coefficients in F and a as one of its

roots and for which the leading coefficient is equal to 1. The minimal polynomial

is unique. This is easy to see. Suppose there were two such polynomials

xn + c1x
n−1 + · · ·+ cn−1x+ cn (6.2.6)

xn + c′1x
n−1 + · · ·+ c′n−1x+ c′n (6.2.7)

with c1, . . . , cn ∈ F. Then a would also be a root of the difference of these polyno-

mials

(c1 − c′1)xn−1 + · · ·+ (cn−1 − c′n−1)x (6.2.8)

implying that a is a root of a non-zero polynomial of degree less than n, contrary

to assumption. We define F(a) to consist of all combinations of the form

r0 + r1a+ · · ·+ rn−1a
n−1 (6.2.9)

where r0, . . . , rn−1 ∈ F. If we multiply two such expressions we get an expression

involving powers of a up to a2n−2 but using the fact that an = −c1an−1 − · · · −

cn−1a−cn. We can rewrite it in terms of powers up to an−1. So F(a) is closed under

multiplication. It can also be shown [147] that F(a) is closed under division. It is

obviously closed under addition and subtraction. It is therefore a field generated
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by a. We can repeat this construction to build a tower of the fields:

E1 = F(a1)

E2 = E1(a2) = F(a1, a2)

. . .

En = En−1(an) = F(a1, a2, . . . , an) (6.2.10)

If we add the generators ai in different order the resulting field will not be affected.

One important field property is the degree of a field. The degree of a field is

determined by the minimal polynomial of its generators. For instance, consider a

single generator a, generating the field F(a). Then the degree of this field is the

same as the degree of the minimal polynomial of a. For a field En(a1, . . . , an) with

n generators let d1, . . . , dn be the degrees of the field extensions. Then the degree

d of the field En is given by d = d1 × d2 × · · · × dn.

6.2.1.2. Galois extensions. We are particularly interested in extension fields

with some special properties. Let E be an extension field of the base field F.

E is said to be separable if the minimal polynomial of each element of E over F

has no repeated roots.

Remark 3. It can be shown that all extensions of Q are automatically separa-

ble. [145,147]

An extension is said to be normal if every polynomial with coefficients in F

which has one root in E has all its roots in E.

A Galois extension is an extension which is both normal and separable.

Example. Consider the extension Q(2
1
4 ). The minimal polynomial of 2

1
4

over Q is f(x) = x4 − 2. So Q(2
1
4 ) consists of all combinations of the form r0 +

r12
1
4 + r22

2
4 + r32

3
4 with r0, r1, r2, r3 ∈ Q. The degree of the extension field is

4. Now f(x) factors completely in C. Consider its factors: f(x) = (x + 2
1
4 )(x −

2
1
4 )(x+ i2

1
4 )(x− i2 1

4 ). However, i /∈ Q(2
1
4 ). The factorization of f(x) over Q(2

1
4 ) is
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f(x) = (x+2
1
4 )(x−2

1
4 )(x2 +2

1
4 ). It follows that Q(2

1
4 ) is not a normal extension of

Q. To construct a normal extension of Q containing i we use the following theorem.

Theorem 6. The field E = F(a1, . . . , an) is a normal extension if and only if

the minimal polynomials of a1, . . . , an over F factor completely in E.

In our example, Q(2
1
4 ), suppose we add another generator, i, to get E =

Q(2
1
4 , i). The minimal polynomial g(x) of i over Q is g(x) = x2 + 1. Now, both

polynomials factor completely in E : f(x) = (x+ 2
1
4 )(x−2

1
4 )(x+ i2

1
4 )(x− i2 1

4 ) and

g(x) = (x+ i)(x− i). So E is a normal extension of Q. The degree of E is 4×2 = 8.

6.2.2. Galois group. In order to define the Galois group we need to introduce

the idea of a field automorphism. The most familiar example of a field automor-

phism is complex conjugation. This is a map from C to C with the following

properties. In the first place it is one-to-one (meaning that distinct elements are

mapped to distinct elements) and onto (meaning that every element is the image

of some element under the map). This is expressed by saying that the map is bi-

jective. In the second place the map leaves the reals unchanged. In the third place,

it preserves multiplication and addition (i.e. (z1z2)∗ = z∗1z
∗
2 , (z1 + z2)∗ = z∗1 + z∗2).

The only other automorphism of C which leaves R unchanged is the identity map.

Complex conjugation and the identity form a group called the Galois group of C

as an extension of R. This generalizes to the case of an arbitrary field extension,

the only difference being that in the general case the Galois group is usually more

complicated.

Let E be an extension field of the base field F. A Galois automorphism of E

over F is a function g such that g : E→ E with the following properties:

(1) It is bijective.

(2) It leaves the elements of F unchanged: g(z) = z, ∀ z ∈ F.

(3) It preserves the field operations: g(zω) = g(z)g(ω) and g(z+ω) = g(z) +

g(ω), ∀ z, ω ∈ E.
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Note that property 3 implies that

g(0) = 0,

g(1) = 1,

g
(1
z

)
=

1
g(z)

g(−z) = −g(z). (6.2.11)

The Galois group G of E over F, denoted GF(E), is the set of all Galois auto-

morphisms that map E onto itself leaving the base field fixed.

The above definition of Galois group applies to all extensions. If, however, the

extension E is a Galois extension of F then the degree of E is the same as the order

of the Galois group GF(E) (where by the order of group we mean the number of

elements it contains).

Also, if E is a Galois extension of F then the subgroups of GF(E) are in bijective

correspondence with fields K such that F ⊆ K ⊆ E (i.e. to each subgroup there

corresponds exactly one K and vice versa). The correspondence is defined as follows.

Let H be a subgroup of GF(E). We associate to H the field

KH = {z ∈ E : h(z) = z,∀h ∈ H}. (6.2.12)

where KH is the fixed field of H. On the other hand let K be any field such that

F ⊆ K ⊆ E. Then we associate to K the subgroup

HK = {h ∈ GF(E) : h(z) = z,∀z ∈ K}. (6.2.13)

The maps K→ HK and H → KH are mutually inverse. The map is order reversing:

H1 ⊆ H2 ⇐⇒ KH1 ⊇ KH2 . In other words the bigger the field is the smaller the

group gets. Also H is a normal subgroup of GF(E) if and only if KH is a normal

extension of F.
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6.2.3. Constructing the Galois group. Suppose we want to calculate the

Galois group GF(E) of the Galois extension E = F(a1, . . . , an). Firstly, observe that

each element in E can be written as a linear combination of the terms of the form

am1
1 × · · ·× amnn with coefficients in F. So if we know the numbers g(a1), . . . , g(an),

where g is a Galois automorphism, we know g(z) for every z ∈ E.

Fact 1. A Galois automorphism is completely specified by its action on the

field generatos. Secondly, let fj(x) be the minimal polynomial of aj over Q. Since

the extension is Galois, fj(x) factors completely over E with no repeated roots:

fj(x) = (x− a(1)
j )(x− a(2)

j ) . . . (x− a(m)
j ), (6.2.14)

where a(1)
j = aj . The numbers a(1)

j , . . . , a
(m)
j are called Galois conjugates of aj .

Fact 2. For each Galois conjugate a(t)
j there is a Galois automorphism g such

that g(aj) = a
(t)
j .

Remark 4. Another way of looking at the action of g on aj is that each g

permutes the roots of the polynomials fj(x). This gives us a useful check on our

working.

Using the facts 1 and 2 we can construct the Galois group. Note also that the

number of automorphisms are the same as the degree of the extension field which

gives us a useful check for our working. Constructing the Galois group is quite easy

in principle but can be extremely tedious in practice. Galois himself commented

on this as follows [145]

If you now give me an equation that you have chosen at your

pleasure, and if you want to know if it is or is not solvable by

radicals, I need to do nothing more than to indicate to you the

means of answering your question, without wanting to give my-

self or anyone else the task of doing it. In a word, the calculations

are impractical.

This was also expressed by D.M. Appleby in a private conversation as follows
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In the 19th century no one in their right mind attempted to cal-

culate a Galois group in any but the simplest cases. Kronecker

(one of the major contributors to this subject) talked about cal-

culations which could be done “theoretically”, meaning that he

himself had not attempted to do them.

However, now we have computers (classical) and for this thesis we used the com-

puter program Magma. To illustrate these ideas we conclude this section with two

simple examples where the calculations can be done on a paper.

Example 1. E = Q(2
1
4 , i). The minimal polynomial of 2

1
4 :

f1(x) = x4 − 2 = (x− 2
1
4 )(x+ 2

1
4 )(x− i2 1

4 )(x+ i2
1
4 ), (6.2.15)

and the minimal polynomial of i:

f2(x) = x2 + 1 = (x+ i)(x− i). (6.2.16)

The degree of E is 8. So there are 8 automorphisms which are obtained by setting

g(2
1
4 ) equal to one of the 4 roots of f1(x) and g(i) equal to one of the 2 roots of

f2(x). The group table is given below.

2
1
4 i

g1 2
1
4 i

g2 −2
1
4 i

g3 i2
1
4 i

g4 −i2 1
4 i

g5 2
1
4 −i

g6 −2
1
4 −i

g7 i2
1
4 −i

g8 −i2 1
4 −i

Table 1. Galois group table of extension E in Example 1

We can read off from the table straight away that g1 is the identity element

and g5 is complex conjugation. Notice also that the group elements can be written
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in terms of g3 and g5:

g1 = g4
3 g5 = g5

g2 = g2
3 g6 = g2

3g5

g3 = g3 g7 = g3g5

g4 = g3
3 g8 = g3

3g5

We say that the group is generated by g3, g5 and denote it as

GQ(E) = 〈g3, g5〉. (6.2.17)

Notice also that g3g5 = g5g
3
3 and so the group is not Abelian. However it still is

solvable. Define H0 = 〈e〉 where e = g1 is the identity element, H1 = {e, g1, g3, g
2
3}

and H2 = GQ(E). Then H1 is a normal subgroup of GQ(E) because g5g
r
3g
−1
5 = g3r

3

and H1,H2/H1 are both Abelian. So the group is solvable. Of course we know in

advance that the group is solvable because all the numbers in E are expressible in

radicals.

Example 2. In this example we illustrate subtleties that are not present in

the previous example. Let E = Q(
√

2,
√

2 +
√

2). We build the field up as a tower.

E1 = Q(
√

2)

E2 = Q(
√

2 +
√

2).

The minimal polynomial of
√

2 is f1(x) = x2 − 2 and of
√

2 +
√

2 is f2(x) =

x2 − (2 +
√

2). The degree of E is 4. The subtlety is that f2(x) is the minimal

polynomial of
√

2 +
√

2 over E1, but not over Q. To construct the Galois group we

need the minimal polynomial of
√

2 +
√

2 over Q and this is

f̃2(x) = x4 − 4x+ 2 =
(
x2 − (2 +

√
2)
)(
x2 − (2 +

√
2)
)

⇒ f̃2(x) =
(
x−

√
2 +
√

2
)(
x+

√
2 +
√

2
)(
x−

√
2−
√

2
)(
x+

√
2−
√

2
)
.

(6.2.18)
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So the Galois conjugates of
√

2 +
√

2 are ±
√

2 +
√

2 and ±
√

2−
√

2. Notice that√
2−
√

2 can be expressed in terms of
√

2 +
√

2:√
2−
√

2 = (
√

2− 1)(
√

2 +
√

2).

So the extension is normal. If g is a Galois automorphism then we must have

g(
√

2) = ±
√

2. (6.2.19)

Now consider the action of g on
√

2 +
√

2.

Case 1. g(
√

2) =
√

2. Then g doesn’t change the minimal polynomial of√
2 +
√

2 over E1. So g(
√

2 +
√

2) must be one of the two roots of f2(x):

g(
√

2 +
√

2) = ±
√

2 +
√

2. (6.2.20)

Case 2. g(
√

2) = −
√

2. Then g changes f2(x) to x2 − (2 −
√

2). So g(
√

2 +
√

2)

must be one of the two roots of x2 − (2−
√

2):

g(
√

2 +
√

2) = ±
√

2−
√

2. (6.2.21)

So the Galois group consists of 4 automorphisms as shown in the table below.

Notice that g1 is the identity. Also, the group generator is g3 : g2 = g2
3 and g4 = g3

3 .

√
2

√
2 +
√

2
g1

√
2

√
2 +
√

2
g2

√
2 −

√
2 +
√

2
g3 −

√
2

√
2−
√

2
g4 −

√
2 −

√
2−
√

2
Table 2. Galois group table of extension E in Example 2

So

GQ(E) = 〈g3〉 = {e, g3, g
2
3 , g

3
3}. (6.2.22)

In particular the full group is Abelian.
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6.3. Galois-Clifford correspondence

The work we present here is in Appleby, Yadsan-Appleby and Zauner [17].

Having explained the basic principles of Galois theory we now apply them

to the SIC problem. As the reader will recall that exact fiducial vectors have

been calculated in dimensions 2-16, 19, 24, 28, 35, 48 ( [32, 52–54, 142–144]).

It is a striking fact that the components of all these fiducials are expressible in

terms of radicals. This means that the associated Galois group must be solvable.

This suggested to us that it would be interesting to examine the Galois group. In

particular, there are two groups in the problem: the Galois group and the extended

Clifford group. We would like to understand the relationships between the actions

of these two groups. When we embarked on this work we hoped that this would

provide an insight which would enable us to prove existence. Unfortunately that

did not happen but we did discover a lot of interesting structure which we feel may

be useful in future investigations.

The extended Clifford group EC(d) consists of all unitaries and anti-unitaries

U of the form

U = eiθDpUF (6.3.1)

where Dp is a displacement operator and UF is a symplectic unitary or an anti-

symplectic anti-unitary, with p = (p1, p2)T , a vector in discrete phase space with

components p1, p2 ∈ Zd̄ and F =

α β

γ δ

 whose entries α, β, γ, δ ∈ Zd̄ and detF =

1 for a symplectic unitary and detF = −1 for an anti-symplectic anti-unitary

(please see Chapter 3 for more details).

Recall also that a WH SIC fiducial is a vector which satisfies the equation

|〈ψ|Dp|ψ〉| =


1 if p = 0

1√
d+1

if p 6= 0.
(6.3.2)
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which therefore has he property that the operators

Ep =
1
d
Dp|ψ〉〈ψ|D†p. (6.3.3)

form a WH SIC-POVM.

If |ψ〉 is a WH SIC fiducial and U is any Extended Clifford unitary or anti-

unitary then U |ψ〉 is also a SIC fiducial. We call the set of all fiducials obtained

by acting on |ψ〉 with U ∈ EC(d) the orbit of |ψ〉. This means that any two SIC

vectors |ψ〉 and |φ〉 are on the same orbit if and only if

∃U ∈ EC(d) : |ψ〉 = U |φ〉. (6.3.4)

The EC(d) elements permute the fiducial vectors on the same orbit. In some

dimensions there is only one orbit of the EC(d) but usually there are several as can

be seen in [142]. In the cases where there is more than one orbit, it can happen that

there are Galois group elements which move the vector from one orbit to another,

Scott and Grassl [142] noted that this happens in dimensions 9, 11, 13, 14, 16

(among the cases which have been studied).

We want to find the smallest extension field of Q which contains all the numbers

appearing in the defining Eqs. (6.3.2) and (6.3.3). This means that we require it to

contain the components of the fiducial (obtained from Scott and Grasl [142]), ω and
√
d+ 1. We also want it to contain the matrix elements of U ∈ EC(d). Referring

to Eq. (3.2.22) it can be seen that it must therefore contain
√
d and τ . It will then

contain not only the components of |ψ〉 but also the components of the every other

vector on the same orbit as |ψ〉. Finally, we want it to be a Galois extension of Q

so that we can apply the special results which hold for the Galois extension which

are described in Section 6.2.1.2. Since extensions of Q are automatically separable.

It is enough to require it to be a normal extension of Q. (see Section 6.2.1.2. To

summarize we define E to be the smallest normal extension of Q which contains

components of |ψ〉, τ,
√
d,
√
d+ 1.
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We define G to be the Galois group of the extension E over Q. We will be

particularly interested in the subgroup of G consisting of all automorphisms which

commute with complex conjugation. We denote this subgroup Gc. This subgroup is

important for a number of reasons. One reason is that it takes Hermitian operators

to Hermitian operators. Another reason is that it takes normalized vectors to

normalized vectors.

6.3.1. Action of G on the matrices Dp and UF . Before considering the

action of G on the fiducial vector we need to examine its action on the elements of

EC(d). For all g ∈ G

g(
√
d) = ±

√
d, (6.3.5)

because

g
(
(
√
d)2
)

= d =⇒
(
g(
√
d)
)2 = d =⇒ g(

√
d) = ±

√
d.

We also have

g(τ) = τkg . (6.3.6)

and

g(ω) = ωkg . (6.3.7)

for some kg such that kg and d are coprime. This is because g is an automorphism

only if kg and d are coprime. Since

ωd = 1, (6.3.8)

we must have

(
g(ω)

)d = 1, (6.3.9)
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implying

g(ω) = ωk, (6.3.10)

for some integer k. We can now see why kg and d are coprime by the following

argument: suppose k and d are not coprime. Then there is a number n that divides

both k and d. Let k′ = k/n and d′ = d/n. Then,

g(ω) = ωk = e
2πik
d = e

2πik′
d′ .

implying g(ωd
′
) = 1 and consequently ωd

′
= 1 which is a contradiction.

There is a further question: given k coprime to d is there always a g such that

g(ω) = ωkg? The answer is yes. It can be shown [147] that the degree of the

minimal polynomial of ω is the same as the number of positive integers < d which

are relatively prime to d. It can also be shown that the order of the Galois group

of Q(ω) is equal to the degree of the minimal polynomial of ω. So the number of

Galois automorphisms of Q(ω) is equal to the number of integers relatively prime

to d. So there is one automorphism for each k relatively prime to d.

We are now in a position to explain how a Galois automorphism g acts on the

displacement operators Dp and unitaries and anti-unitaries UF . The result is most

conveniently stated as a theorem.

Theorem 7. We have

g(Dp) = DHgp. (6.3.11)

for all p, and

g(UF )=̇UHgFH−1
g

(6.3.12)
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for all F ∈ SL(2,Zd̄), where =̇ means equal up to a phase and

Hg =

1 0

0 kg


where kg is given in Eq. (6.3.6). If g ∈ Gc we also have

g(UF )=̇UHgFH−1
g
, (6.3.13)

for all anti-symplectic matrices F .

Remark 5. Observe that Hg belongs to GL(2,Zd̄), the group of all 2×2 matrices

with entries in Zd̄ whose determinant is relatively prime to d̄ (the requirement that

the determinant is relatively prime to d̄ means that the matrices are invertible).

However, since kg is not necessarily equal to ±1, Hg will not necessarily belong to

ESL(2,Zd̄).

Proof. We have

Dp = τp1p2

d−1∑
r=0

ωp2r|r + p1〉〈r| (6.3.14)

Acting on both sides of this equation with g we see that

g(Dp) = Dp1,kgp2 = DHgp. (6.3.15)

Now suppose

F =

α β

γ δ

 , (6.3.16)

is a prime symplectic matrix so that

UF =
1√
d

∑
τβ
−1(αs2−2rs+δr2)|r〉〈s|. (6.3.17)



130 6. GALOIS THEORY AND SIC-POVMS

Applying g to both sides of this equation we find

g(UF ) = ± 1√
d

∑
τkgβ

−1(αs2−2rs+δr2)|r〉〈s| (6.3.18)

=̇UHgFH−1
g
. (6.3.19)

Suppose on the other hand F is not a prime matrix. Then F = F1F2 where

F1, F2 are both prime matrices. So

g(UF ) = g(UF1)g(UF2) = UHgF1H
−1
g
UHgF2H

−1
g

= UHgFH−1
g
. (6.3.20)

Finally suppose g ∈ Gc and suppose that F is anti-symplectic. Then for all |φ〉

UF |φ〉=̇UFJ |gc(φ)〉. (6.3.21)

where gc is complex conjugation and where J is the matrix defined in Section 2.5.

Applying g to both sides we find

g(UF |φ〉) = UHgFJH−1
g
|gcg(φ)〉 = UHgFH−1

g
|g(φ)〉. (6.3.22)

Hence

g(UF ) = UHgFH−1
g
. (6.3.23)

�

6.3.2. Action of Gc on the fiducial vector |ψ〉. We now come to the main

point which is the action of Galois group on the fiducial vector |ψ〉. As we noted

above if G does not commute with complex conjugation it does not necessarily

preserve normalization. Since the fiducial vector is normalized by definition we

confine ourselves to automorphisms in the subgroup Gc. We begin by showing that

Gc preserves the fiduciality property. The fiducial vector |ψ〉 satisfies

〈ψ|Dp|ψ〉 =


1 if p = 0

eiθp
√
d+1

if p 6= 0.
(6.3.24)
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If g ∈ Gc then

g(〈ψ|) = 〈g(ψ)|, (6.3.25)

(notice this would not be true if g did not commute with complex conjugation).

Also if eiθ is any phase belonging to F then

|g(eiθ)|2 = g(eiθg−iθ) = 1 (6.3.26)

implying that g(eiθ) is also a phase. Consequently if we apply g to both sides of

Eq. (6.3.24) we find

〈gψ|DHgp|gψ〉 =


1 if p = 0

± g(e
iθp )√
d+1

if p 6= 0
. (6.3.27)

or

〈gψ|Dp|gψ〉 =


1 if p = 0

± eiθ̃p√
d+1

if p 6= 0
(6.3.28)

where eiθ̃p = g
(
e
iθ
H
−1
g p

)
. So |g(ψ)〉 is also a fiducial.

Now let Go be the subset of Gc consisting of g’s such that g(|ψ〉) is on the same

orbit of the extended Clifford group as |ψ〉 (where the subscript o stands for orbit).

For each g ∈ Go there is a Ug ∈ EC(d) such that

g(|ψ〉) = Ug|ψ〉. (6.3.29)

We can write

Ug = DqgUFg . (6.3.30)

for some qg and Fg.

Let Sψ be the stabilizer of |ψ〉, i.e. the set of all unitaries and anti-unitaries

V such that V |ψ〉=̇|ψ〉. Then we can replace Ug with UgV for any V ∈ Sψ. In
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some dimensions every SIC vector lies on the same orbit. In such cases Go = Gc.

For other cases we want to show that Go is a group. To see this observe that if

g1, g2 ∈ Go then

|g1g2(ψ)〉 = g1(Ug2 |ψ〉) = g1(Ug2)g1|ψ〉 = g1(Ug2)Ug1 |ψ〉 (6.3.31)

It follows from Theorem 7 that g1(Ug2) ∈ EC(d). Therefore g1g2 ∈ Go and

Ug1g2=̈g1(Ug2)Ug1 . (6.3.32)

where the notation V =̈V ′ means V = V ′W for some W ∈ Sψ. Also if g ∈ Go we

find, by acting on both sides of

g(|ψ〉) = Ug|ψ〉 (6.3.33)

with g−1, that

|ψ〉 = g−1(Ug)g−1|ψ〉. (6.3.34)

It follows from Theorem 7 that g−1(Ug) ∈ EC(d). So g−1 ∈ Go and

Ug−1=̈(g−1(Ug))† = g−1(U†g ). (6.3.35)

6.3.3. Special form of the unitary Ug. In this section we will show if d is

not divisible by 3 then under certain assumptions which hold in every known case,

it can be assumed that the vector qg in Eq. (6.3.30) is zero, so that

Ug = UFg (6.3.36)

If on the other hand d is divisible by 3 then under the same assumptions it can be

assumed that

Ug = DqgUFg (6.3.37)
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where qg = 0 mod d
3 . Let us now explain the properties which must hold for this

statement to be true. We need to give two definitions.

Definition 1. Canonical Order 3 Unitary. Let F be a symplectic matrix

F such that

Tr[F ] = −1 mod d. (6.3.38)

with F 6= I.Then

(DpUF )3 = I, (6.3.39)

for all p. We say that DpUF is a canonical order 3 unitary.

Remark 6. The requirement that F 6= I is only necessary in d=3 as Tr[I] = −1

mod d if and only if d = 3.

It is an observed fact so far unexplained that for every known WH SIC fiducial

vector |ψ〉 Sψ contains a canonical order 3 unitary [32,52,53].

Definition 2. Displacement Free. We say Sψ is displacement free if it

entirely consists of unitaries and anti-unitaries of the form UF .

It is another observed though unexplained fact that for every known WH SIC

fiducial |ψ〉 there is a SIC fiducial |ψ′〉 on the same orbit as |ψ〉 such that Sψ′ is

displacement free.

The conditions for the statements made in the first paragraph of this section

to be true are that Sψ (a) contains a canonical order 3 unitary (b) is displacement

free. To prove this we will need the following theorem [32].

Theorem 8. If d is odd then DpUG=̇I if and only if p = 0 and G =

1 0

0 1

.

If d is even then DpUG=̇I if and only if

p =

 sd
2

td
2

 ,
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G =

1 + rd sd

td 1 + rd

 , (6.3.40)

for arbitrary integers r, s, t.

We are now ready to prove the main result of this section.

Theorem 9. Let |ψ〉 be a fiducial vector whose stability group Sψ (a) contains

canonical order 3 unitary and (b) is displacement free. Then, for all g ∈ Go, and

taking into account the freedom expressed by Eq. (6.3.40), it is possible to choose

qg and Fg in Eq. (6.3.30) in such a way that

qg =


0 if d is not a multiple of 3

0 mod d
3 if d is a multiple of 3

. (6.3.41)

Proof. Let Sgψ be the stability group of g(|ψ〉). It is a straightforward con-

sequence of the definitions that

U†gSψUg = Sgψ = g(Sψ). (6.3.42)

It is also convenient to define

Sψ = {G ∈ ESL(2,Zd̄) : UG ∈ Sψ}. (6.3.43)

Because Sψ is displacement free it consists of operators UG with G ∈ Sψ.

Now choose a symplectic matrix G ∈ Sψ such that Tr[G] = −1 mod d and

G 6= I (this is possible because we are assuming that Sψ contains a canonical order

3 unitary). It follows from Eq. (6.3.42) that there exist G′ ∈ Sψ such that

g(UG)=̇UgUG′U†g , (6.3.44)

or

UHgGH−1
g

=̇DqgUFgUG′UF−1
g
D−qg (6.3.45)
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After rearranging this becomes

DG̃qg−qg
UG̃FgG′−1F−1

g
=̇I (6.3.46)

where G̃ = HgGH
−1
g . It follows from Theorem 8 that

G̃qg − qg =


0 mod d if d is odd

0 mod d
2 if d is even

. (6.3.47)

Since Tr[G̃] = Tr[G] = −1 mod d we can write

G̃ =

α β

γ −α− 1

 . (6.3.48)

The fact that det G̃ = detG = 1 means α, β, γ must satisfy

α2 + α+ βγ + 1 = 0 mod d̄ (6.3.49)

It is easily verified that−(α+ 2) −β

−γ (α− 1)

 (G̃− I) = 3I mod d̄ (6.3.50)

implying

3qg =


0 mod d if d is odd

0 mod d
2 if d is even

. (6.3.51)

We now analyze this equation case by case.

Case 1 a: d is odd and not divisible by 3 We then have

3qg = 0 mod d

=⇒ qg = 0 mod d. (6.3.52)
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Case 1 b: d is odd and divisible by 3. In this case we have

3qg = 0 mod d

=⇒ qg = 0 mod
d

3
. (6.3.53)

This proves the result for odd dimensions.

For even dimensions we first note that Theorem 8 implies

Ug = DqgUFg = DqgDpUFUFg = Dqg+pUFFg , (6.3.54)

So we are free to replace qg by qg + p and Fg by FFg where

p =

 sd
2

td
2

 , F =

1 + rd sd

td 1 + rd

 (6.3.55)

for arbitrary integers r, s, t.

Case 2 a: d is even and not divisible by 3. We have

3qg = 0 mod
d

2

=⇒ qg = 0 mod
d

2

=⇒ qg =

j d2
k d2

 . (6.3.56)

So we now want to choose p in Eq. (6.3.55) such that q′g = qg + p = 0 mod d.

We have

q′g =

j d2
k d2

+

sd2
td2

 (6.3.57)

We choose s = −j and t = −k to obtain q′g = 0 mod d.

Case 2b: d is even and divisible by 3:

3qg = 0 mod
d

2
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=⇒ qg = 0 mod
d

6

=⇒ qg =

jn
kn

 . (6.3.58)

where we defined n = d
6 . We now want to choose p in Eq. (6.3.55) such that

q′g = qg + p = 0 mod d
3 . We have

q′g =

jn
kn

+

3sn

3tn

 =

(j + 3s)n

(k + 3t)n

 (6.3.59)

If j is even (respectively odd) we choose s even (respectively odd) so that j + 3s is

even. Similarly we can choose t so that k + 3t is even. With these choices q′g = 0

mod d
3 as required. �

6.3.4. Action of Go on the overlaps. Up to now we have been looking at

the action of Go on the fiducial vector |ψ〉. In this section we examine the action of

Go on the phases

eiθp =
√
d+ 1〈ψ|Dp|ψ〉. (6.3.60)

This will lead us to an interesting relation between Go and a subgroup of GL(2,Zd̄)

(see Theorem 11 below). We assume that Sψ contains a canonical order 3 unitary

and is displacement free. We also assume that qg and Fg are chosen as described

in the Theorem 9. We then have the following theorem.

Theorem 10. If g ∈ Go then

g(eiθp) = sω−〈qg,Hgp〉eiθF̃gp (6.3.61)

where

s =
g(
√
d+ 1)√
d+ 1

= ±1 (6.3.62)
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and

F̃g =


F−1
g Hg if detFg = 1

−F−1
g Hg if detFg = −1

. (6.3.63)

Proof. Suppose detFg = 1. Then

g(eiθp) = s
√
d+ 1〈gψ|DHgp|gψ〉 (6.3.64)

= s
√
d+ 1ω−〈qg,Hgp〉〈ψ|DF̃−1

g Hgp
|ψ〉 (6.3.65)

= sω−〈qg,Hgp〉e
iθF̃gp (6.3.66)

Suppose on the other hand detFg = −1. Then

g(eiθp) = s
√
d+ 1〈gψ|DHgp|gψ〉 (6.3.67)

= s
√
d+ 1ω−〈qg,Hgp〉〈gcψ|DJF−1

g Hgp
|gcψ〉 (6.3.68)

= s
√
d+ 1ω−〈qg,Hgp〉gc〈ψ|DF−1

g Hgp
|ψ〉 (6.3.69)

= s
√
d+ 1ω−〈qg,Hgp〉〈ψ|D−F−1

g Hgp
|ψ〉 (6.3.70)

= s
√
d+ 1ω−〈qg,Hgp〉eiθF̃gp (6.3.71)

�

6.3.5. Structure of the group Go. In this section we prove a result concern-

ing the structure of the group Go. Let Nψ be the normalizer of Sψ (i.e. the set of

all G ∈ GL(2,Zd̄) such that GSψG−1 ⊆ Sψ. We now prove the following lemma.

Lemma 2. Let |ψ〉 be a fiducial vector whose stability group Sψ (a) contains

a canonical order 3 unitary and (b) is displacement free. Then F̃g ∈ Nψ for all g

(where F̃g is the matrix defined by Eq. (6.3.63)).
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Proof. Let G ∈ Sψ be arbitrary. Then by the same argument that led to

Eqn. (6.3.46) there exists G′ ∈ Sψ such that

DG̃qg−qg
UG̃FgG′−1F−1

g
=̇I, (6.3.72)

where G̃ = HgGH
−1
g .

Case 1: d is odd.

It follows from Theorem 8 that

HgGH
−1
g FgG

′−1F−1
g = I, (6.3.73)

implying

F̃gGF̃
−1
g = G′ (6.3.74)

So

F̃g ∈ Nψ (6.3.75)

Case 2: d is even. It follows from Theorem 8 that

HgGH
−1
g qg − qg =

sd2
td2

 mod d. (6.3.76)

and

HgGH
−1
g FgG

′−1F−1
g =

1 + rd sd

td 1 + rd

 mod 2d (6.3.77)

where r, s, t = 0, 1. From Theorem 9 we have

HgGH
−1
g qg − qg =


0 mod d if d is not divisible by 3

0 mod d
3 if d is divisible by 3

(6.3.78)



140 6. GALOIS THEORY AND SIC-POVMS

It follows that s = t = 0 and

HgGH
−1
g FgG

′−1F−1
g = P (6.3.79)

where

P =

1 + rd 0

0 1 + rd

 , (6.3.80)

implying

F̃gGF̃
−1
g = PG′ (6.3.81)

where we used the fact that P commutes with Fg and G′. The fact that UP =̇I

means |G′ ∈ Sψ. So F̃g ∈ Nψ. �

We now prove the main result of this section.

Theorem 11. Let |ψ〉 be a fiducial vector whose stability group Sψ (a) contains

canonical order 3 unitary and (b) is displacement free. Then the map f : g → F̃gSψ

is a homomorphism of the group Go into the quotient group Nψ/Sψ

Proof. Let g1, g2 ∈ Go be arbitrary. By Eq. (6.3.32) we have

Ug1g2=̇g1(Ug2)Ug1UL, (6.3.82)

for some L ∈ Sψ. Hence

DHg1qg2+Hg1Fg2H
−1
g1 qg1−qg1g2

UHg1Fg2H
−1
g1 Fg1L

−1F−1
g1g2

=̇I. (6.3.83)

By the same argument that led to Eq. (6.3.74) and Eq. (6.3.81) it follows that

Hg1Fg2H
−1
g1
Fg1 = Fg1g2M, (6.3.84)
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where

M =


L d odd

PL d even.
, (6.3.85)

P being the matrix defined by Eq. (6.3.80). Hence

F̃g1 F̃g2 = MF̃g1g2 = F̃g1g2M
′, (6.3.86)

for some matrix M ′ ∈ Sψ (since Fg1g2 is in the normalizer of Sψ). Consequently

f(g1g2) = f(g1)f(g2), (6.3.87)

implying f is a homomorphism. �

Let G0
o be the kernel of the homomorphism f . Then the result just proved shows

that Go/G0
o is isomorphic to a subgroup of Nψ/Sψ. In Appleby, Yadsan-Appleby

and Zauner [17] we calculate Go for all 27 known exact fiducials with d > 3. We

find

(1) The subgroup of Nψ/Sψ is in fact always Cψ/Sψ where Cψ is the central-

izer of Sψ (i.e. the set of all G ∈ GL(2,Zd̄) which commute with every

element of Sψ).

(2) G0
o is always isomorphic to either Z2 or Z2 ⊕ Z2

.

6.4. Dimension 6 analysis

In the previous sections we proved some general results. In this section we will

illustrate these results by applying them to the exact fiducial in dimension 6 which

is given in Appendix A. We constructed the following field tower

Q ⊆ F ⊆ F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5.
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with

F = Q(a),

F1 = Q(a, a1),

F2 = Q(a, a1, a2),

F3 = Q(a, a1, a2, a3),

F4 = Q(a, a1, a2, a3, a4)

F5 = Q(a, a1, a2, a3, a4, a5). (6.4.1)

where F5 is the smallest normal extension of Q containing the components of the

fiducial, τ = −eπi6 and
√

6 and
√

7 (i.e. the field denoted F in previous sections),

and where the numbers a, a1, a2, a3, a4, a5 are the field generators given by

a =
√

21, (6.4.2)

a1 = i, (6.4.3)

a2 = e
πi
3 , (6.4.4)

a3 =
√

9 +
√

21, (6.4.5)

a4 =
√

3
(
2(−3i+

√
7)
) 1

3 (6.4.6)

a5 =
√

6 (6.4.7)

In the appendix we give an expression for the unnormalized fiducial vector in terms

of these generators. To calculate the full field extension F5 we examine the minimal

polynomials of these numbers over Q. They are

f0(x) = x2 − 21,

f1(x) = x2 + 1,

f2(x) = x2 − x+ 1,

f3(x) = x4 − 18x2 − 3,
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f4(x) = x12 + 432x6 + 2985984,

f5(x) = x2 − 6. (6.4.8)

We now factor every polynomial in every extension field until we have all the roots.

We know that all above polynomials split linearly in F5 however we still need to

analyze how each polynomial splits in every subfield. The reason for this is that

the way these polynomials split in the subfields affect our construction of Galois

group as we will see later. Our results are given in Table 3.
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6.4.1. Calculating the Galois group. To construct the Galois group for

dimension 6 we use the same method in the two examples in section 6.2.3. The

only difference is that the calculations are more complicated here and the use of a

computer algebra program (Magma) is essential. The field is degree 96, so there

are 96 automorphisms. The first step was to calculate all 96 automorphisms using

Magma. We then selected a set of generators that would generate all 96 automor-

phisms. To do this we used a well known property of any group, namely the order

of the full group is divisible by the order of any of its subgroups. In our case, using

Magma we found that the orders of the group elements are 2,3,4,6. We want to

find a set of group elements g1, . . . , gn such that every element of the group can be

written as

gr11 . . . grnn . (6.4.9)

where different choices of the integers r1, . . . , rn give different group elements. We

then picked a list of candidates for which the equation below holds:

|g1| × · · · × |gn| = 96, (6.4.10)

where the notation |gi| denotes the order of group element gi. We tried a few

possible products of the orders that satisfied this equation: 2×3×4×4, 2×2×4×6

and 2×2×2×2×6. We found that the last two of these combinations generate the

full group. We chose the very last one because this combination included complex

conjugation gc as generator (which is convenient to have when constructing the

subgroup Gc). So the full group G is generated by

G = 〈gc, g1, g2, g3, g4〉. (6.4.11)

where gc, g1, g2, g3, g4 are defined in Table 4 and where the orders of group elements

are as follows:

|gc| = 2, |g1| = 2, |g2| = 6, |g3| = 2, |g4| = 2. (6.4.12)
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a a1 a2 a3 a4 a5

gc a −a1 1− a2 a3

(
1
4a2 + 1

24 (a− 3)
)
a2

4 a5

g1 a a1 1− a2 −a3

(
1
4a2 + 1

24 (a− 3)
)
a2

4 a5

g2 a −a1 a2 a3 −a2a4 a5

g3 −a a1 a2
1
3 (4a− 18)a2 + 1

3 (−2a+ 9)a3

(
− 1

4a2 + 1
24 (−a+ 3)

)
a2

4 a5

g4 a a1 a2 a3 a4 −a5

Table 4. Action of the group generators gc, g1, g2, g3 and g4 on
the field generators a, a1, a2, a3, a4, a5

Recall that we defined the subgroup Go of Gc to be the group whose elements

permute the fiduicals on the same orbit. In dimension 6 there is only one orbit and

therefore

Go = Gc

We found that complex conjugation gc commutes with all generators except g3. So

we conclude that the subgroup Gc is generated by gc, g1, g2, g4. In other words,

Gc = 〈gc, g1, g2, g4〉. (6.4.13)

We find that Gc is Abelian and is a normal subgroup of G. Moreover, G/Gc is also

Abelian. So G is a solvable group (which, of course we already knew because the

field F5 is a radical extension of Q). Using the Galois correspondence, we found

that corresponding to the series of groups

〈e〉 ⊆ Gc ⊆ G, (6.4.14)

there is the series of fields

Q ⊆ Q(
√

21) ⊆ F5, (6.4.15)

where Q(
√

21) is the fixed field of Gc. In our paper [17] we show that in all 27 cases

of known exact fiducials for d > 3 Gc is always Abelian and the corresponding fixed
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field is always

Q(
√

(d− 3)(d+ 1)). (6.4.16)

We now turn to the problem of calculating the matrices Fg and F̃g and vectors

qg introduced earlier. We begin by calculating the matrices F̃g. From the Eq.

(6.3.61) we have

g
( 〈ψ|Dp|ψ〉
〈ψ|ψ〉

)
= ω〈qg,Hgp〉

〈ψ|DF̃p|ψ〉
〈ψ|ψ〉

. (6.4.17)

Using Eq. (6.3.6) and Magma we found that

Hgc =

1 0

0 11



Hg1 =

1 0

0 5



Hg2 =

1 0

0 7



Hg4 =

1 0

0 1

 .

For each generator gk we then find the corresponding qgk , F̃gk by simply running

through all the possible choices (using Magma) until we find one which satisfies Eq.

(6.4.17). The result of our calculation is:

qgc =

0

0

 ,

qg1 =

0

0

 ,
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qg2 =

4

2

 ,

qg4 =

0

0

 ,

and

F̃gc =

11 0

0 11

 ,

F̃g1 =

1 5

7 6

 ,

F̃g2 =

3 10

2 1

 ,

F̃g4 =

0 11

1 11

 .

Finally we calculate the matrices Fgk using the Eq. (6.3.63):

Fgc =

1 0

0 11

 ,

Fg1 =

6 11

5 1

 ,

Fg2 =

 7 2

10 3

 ,

Fg4 =

11 1

11 0

 .

We have shown that for dimension 6

• The group Gc is an Abelian, normal subgroup of G
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• The field Ec corresponding to the group Gc under the Galois correspon-

dence is generated by
√

(d− 3)(d+ 1) =
√

21:

Ec = Q(
√

(d− 3)(d+ 1)) (6.4.18)

In our paper we show that the same is true for the 26 other known exact fiducials

for d > 3.

6.5. Conclusion

All the known exact fiducials are expressible in radicals implying that the asso-

ciated Galois group must be solvable. This suggested to us it would be interesting

to examine the structure of the Galois group and its relation to the extended Clif-

ford group in more detail. We first showed that automorphisms in the subgroup

Gc (i.e. automorphisms which commute with complex conjugation) take fiducial

vectors to fiducial vectors. We then examined the subgroup Go ⊆ Gc consisting of

all automorphisms which take |ψ〉 to another fiducial vector on the same orbit. For

each g ∈ Go there is a vector qg and matrix Fg such that

g(|ψ〉)=̇DqgUFg |ψ〉. (6.5.1)

We then showed that if the dimension is not divisible by 3 then subject to certain

assumptions it can be assumed that qg = 0. If the dimension is divisible by 3 then

subject to the same assumption qg = 0 mod d
3 . We then examined the action of

Go on the overlaps. We showed that there is a natural homomorphism of Go into the

quotient group Nψ/Sψ. This means that if G0
o is the kernel of the homomorphism

then Go/G0
o is isomorphic to a subgroup of Nψ/Sψ. Finally we looked at dimension

6 in more detail. We showed Gc is an Abelian, normal subgroup of G and that the

field Ec corresponding to the group Gc is given by Ec = Q(
√

(d− 3)(d+ 1)).

As we discussed earlier the problem of proving SIC existence (or non-existence)

is a very hard one. It has not been solved in spite of all efforts since it was first
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introduced more than 10 years ago. However, it seems possible that the striking

properties of Galois group may contain some important clues.

One of our future interests is to search for other “magic numbers” apart from√
(d− 3)(d+ 1). This is particularly exciting in view of a theorem in Galois theory

which had no direct use in this thesis. The theorem states that every field can be

obtained by using a non-unique single generator. For instance, the same field we

generated for dimension 6 using the generators a, a1, a2, a3, a4, a5 can be generated

by a non-unique, single generator s for which Q(s) = Q(a, a1, a2, a3, a4, a5). It

might be interesting to find single generators using magic numbers that could be

predicted for an arbitrary dimension d. This would mean that we could write down

the field and Galois group without first having have to calculate an exact fiducial.

This could not, by itself solve the SIC existence problem. But it might, perhaps,

take us closer to a solution.
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Quantum Information Processes

with Spin Chains





CHAPTER 7

Spin chains

Quantum communication is an important area of quantum information. It

is concerned with the problem of transferring a quantum state from one place to

another. One of its applications is quantum key distribution. For this application,

photons (what Bose [148] calls flying qubits) are very suitable as they can travel

long distances through optical fibres or empty space. However, another area where

quantum communication would be important is in connecting the different parts of a

quantum computer. In this case the sender and the receiver are separated by a small

distance, perhaps only a few nm. For this purpose Bose has proposed [148, 149]

the use of spin chains as an alternative to the flying qubit approach. His proposal

has attracted much subsequent interest. The idea is to have a 1D array of spins and

then to allow the state placed at one end to be propagated down the chain under the

interactions between the spins. There are two mainstream ideas for exploiting the

spin interactions on a chain. One is to control all the individual couplings, the other

is to let the spins interact naturally under their intrinsic moments. The former is

known as an engineered chain and the latter as an unengineered or unmodulated

chain (the latter is sometimes also referred as a wire because of its similarity to a

classical wire in the sense that the electrical signals sent through a classical wire

are also not controlled). In this thesis we are entirely concerned with unengineered

chains. In terms of achieving a high fidelity, of course, engineered chains would

be preferable. However the price for that is that it is very difficult, in practice, to

have access to individual couplings. For this reason unengineered chains are the

subject of continuing interest. In this chapter we review some essential background

material. Our discussion is mostly based on Bose [148,149].

153
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7.1. Basic principles

We assume that the chain consists of spin-1/2 particles. In general one might

consider a Hamiltonian of the form

−Jijσiσj , (7.1.1)

which allows for interactions between non-adjacent spins. However we assume that

there are only nearest neighbour interactions and that the coupling constant is the

same for every pair. So this reduces to

−
n−1∑
i=1

Jσi.σi+1 (7.1.2)

where n is the length of the chain. Finally we assume that there is a constant

magnetic field B acting in the z direction. This gives us the Hamiltonian

H = −J
n−1∑
i=1

σiσi+1 −
n∑
i=1

Bσzi + C. (7.1.3)

where B is the magnetic field and C is a constant chosen to make the ground

state energy zero (this is just for later convenience). The time evolution operator,

describing the propagation down the chain is given by

T = e−iHt, (7.1.4)

where t is time.

We now define a basis for the full Hilbert space. Let |s1, . . . , sn〉 to be the state

in which the jth spin is up if sj = 1 and down if sj = 0. The states |s1, . . . , sn〉

then give us our desired basis. However we do not need to work with the full

2n dimensional Hilbert space. It is enough to work with an n + 1 dimensional

subspace defined as follows. Observe that the operator S =
∑n
j=1 σjz commutes

with the Hamiltonian. This means that if the state is an eigenstate of S to begin

with, it will remain an eigenstate. In other words, the number of spin up sites

(what we will call the excitation number) is constant. In this section and in Section
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7.2 we confine ourselves to the zero-excitation subspace spanned by a single vector

|e0〉 = |0 . . . 0〉, (7.1.5)

and the single excitation subspace spanned by the vectors

|e1〉 = |10 . . . 0〉

. . .

|en〉 = |00 . . . 1〉. (7.1.6)

We now consider the process of sending a single qubit down the chain. We

assume that Alice at one end of the chain and Bob at the other each have a 2-

dimensional ancilla in their possesion. Suppose that Alice’s ancilla is in the state

|ψA〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (7.1.7)

Alice puts her qubit on the chain and allows it to propagate down the chain. Some

time later Bob takes it off the chain and puts it onto his ancilla. We want to set

things up so that the state Bob ends up with is as close as possible to |ψA〉, where

we measure degree of closeness by a quantity, the fidelity, defined later. We assume

that the state is initially in the state |e0〉. There are then three steps we need to

consider:

(1) The encoding process, in which Alice puts the qubit onto the chain.

(2) The propagation process, in which the qubit travels down the chain.

(3) The decoding process, in which Bob takes the qubit off the chain.

Encoding process. For the encoding process we assume some once and for

all fixed state only involving the first m sites:

|α〉 =
m∑
j=1

αj |ej〉. (7.1.8)



156 7. SPIN CHAINS

We assume, for simplicity, that m = 2, so

|α〉 = α1|e1〉+ α2|e2〉. (7.1.9)

We then define an encoding unitary which takes

|ψA〉 ⊗ |e0〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|e0〉, (7.1.10)

(the initial state of ancilla+chain) to

|0〉 ⊗ (cos
θ

2
|e0〉+ eiφ sin

θ

2
|α〉, (7.1.11)

(state of ancilla+chain after the qubit has been transferred to the chain). We can

do this by defining

|α′〉 = −α2|e1〉+ α1|e2〉, (7.1.12)

orthogonal to |α〉. We can then define a unitary UA which takes

|0〉 ⊗ |e0〉 → |0〉 ⊗ |e0〉,

|1〉 ⊗ |e0〉 → |0〉 ⊗ |α〉,

|0〉 ⊗ |α〉 → |1〉 ⊗ e0〉,

|1〉 ⊗ |α〉 → |1〉 ⊗ |α〉,

and leaves the states |0〉 ⊗ |α′〉, |1〉 ⊗ |α′〉 and |0〉 ⊗ |ej〉, |1〉 ⊗ |ej〉 for j = 3, . . . , n

unchanged. It is easily seen that UA is our desired encoding unitary.

Propagation process. The effect of the time evolution operator is to take

the state in Eq. (7.1.11) to the state

|0〉 ⊗ (cos
θ

2
|e0〉+ eiφ sin

θ

2
T |α〉 (7.1.13)

where we used the fact that e0〉 is the ground state so T |e0〉 = |e0〉.
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Decoding process. We assume Bob is equipped with a once and for all fixed

state

|β〉 = βn−1|en−1〉+ βn|en〉. (7.1.14)

As with the encoding process, we assume for simplicity that Bob only interacts

with the last two spins; the generalization to the case where he interacts with the

last m spins is straightforward. We also define a state

|β′〉 = −βn|en−1 + βn−1|en〉, (7.1.15)

orthogonal to |β〉. By analogy with the encoding unitary UA we then define unitary

UB which takes

|e0〉 ⊗ |0〉 → |e0〉 ⊗ |0〉,

|e0〉 ⊗ |1〉 → |β〉 ⊗ |0〉,

|β〉 ⊗ |0〉 → |e0〉 ⊗ |1〉,

|β〉 ⊗ |1〉 → |β〉 ⊗ |1〉,

and which leaves |β′〉 ⊗ |0〉, |β′〉 ⊗ |1〉 and |ej〉 ⊗ |0〉, |ej〉 ⊗ |1〉 for j = 1, . . . , n − 2

unchanged (where now |0〉, |1〉 are the basis states of Bob’s ancilla). UB is our

decoding unitary. We assume that Bob’s ancilla is initially in the state |0〉. Applying

UB to the state

(cos
θ

2
|e0〉+ eiφ sin

θ

2
T |α〉)⊗ |0〉, (7.1.16)

(where for compactness of notation we have omitted Alice’s ancilla). We find the

final state of the chain+Bob’s ancilla is

|ψf 〉 = (cos
θ

2
|e0〉+ eiφ sin

θ

2
|χ〉)⊗ |0〉+ 〈β|T |α〉eiφ sin

θ

2
|e0〉 ⊗ |1〉, (7.1.17)

where |χ〉 = T |α〉 − 〈|T |α〉|β〉.
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It can be seen that Bob’s qubit will usually be entangled with the chain. So

the reduced density matrix ρB will usually not be a pure state. To calculate ρB it

is convenient to write |ψf 〉 in the form

|ψf 〉 = |χ1〉 ⊗ |0〉+ |χ2〉⊗〉|1〉, (7.1.18)

where

|χ1〉 = cos
θ

2
|e0〉+ eiφ sin

θ

2
|χ〉, (7.1.19)

and

|χ2〉 = 〈β|T |α〉eiφ sin
θ

2
|e0〉. (7.1.20)

So

|ψf 〉〈ψf | = |χ1〉〈χ1| ⊗ |0〉〈0|+ |χ1〉〈χ2| ⊗ |0〉〈1|+ |χ2〉〈χ1| ⊗ |1〉〈0|+ |χ2〉〈χ2| ⊗ |1〉〈1|.

(7.1.21)

Partially tracing out the chain we get

ρB = 〈χ1|χ1〉|0〉〈0|+ 〈χ1|χ2〉|0〉〈1|+ 〈χ2|χ1〉|1〉〈0|+ 〈χ2|χ2〉|1〉〈1|. (7.1.22)

Average fidelity. As our measure of closeness between Alice’s initial state and

|ψA〉 and Bob’s final state ρB we use the fidelity

F = 〈ψA|ρB |ψA〉. (7.1.23)

Using the definitions of |ψA〉, |χ1〉, |χ2〉 and defining 〈β|T |α〉 =
√
peiγ we derive the

following expression for the fidelity F .

F = cos2 θ

2
(1− p sin2 θ

2
) +
√
pe−iγ sin2 θ

2
cos2 θ

2
+
√
peiγ sin2 θ

2
cos2 θ

2
+ p sin4 θ

2

= cos2 θ

2
− p sin2 θ

2
cos2 θ

2
+
√
p sin2 θ

2
cos2 θ

2
(eiφ + e−iφ) + p sin4 θ

2
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= cos2 θ

2
+
√
p sin2 θ

2
cos2 θ

2
2 cos γ + p(sin4 θ

2
− sin2 θ

2
cos2 θ

2
).

We want the average fidelity 〈F 〉:

〈F 〉 =
1

4π

∫
F sin θdθdφ.

So integrating F term by term we have

1
4π

∫ 2π

0

∫ π

0

cos2 θ

2
sin θdθdφ =

1
2

1
4π

∫ 2π

0

∫ π

0

sin2 θ

2
cos2 θ

2
sin θdθdφ =

1
3

1
4π

∫ 2π

0

∫ π

0

(sin4 θ

2
− sin2 θ

2
cos2 θ

2
) sin θdθdφ =

1
6
.

So the average fidelity is

〈F 〉 =
1
2

+
1
3

cos γ
√
p+

1
6
p.

The maximum fidelity is given when γ = 0. This can be achieved by fixing the

magnetic field B. So we have

〈F 〉 =
1
2

+
√
p

3
+
p

6
. (7.1.24)

In the next chapter we maximize p = |〈β|T |α〉|2.

7.2. Maximizing the average fidelity

7.2.1. Analysis. In the preceding chapter we saw that the average fidelity is

given by

〈F 〉 =
1
2

+
√
p

3
+
p

6
, (7.2.1)

where

p = |〈β|T |α〉|2. (7.2.2)
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The average fidelity, therefore, depends on the states |α〉, |β〉 and on the time t

at which Bob takes the qubit off the chain (note that the time dependence of 〈F 〉

comes through the time evolution operator T in Eq. (7.2.2)). In this chapter we

address the problem of finding the maximum achievable fidelity for a suitable choice

of |α〉, |β〉 and t. After completing the work described in this chapter we discovered

that this question had been previously answered by [18]. However, it still seems

worth giving our analysis since our method is a little different.

We write T as follows

T =
n∑

r,s=1

Trs|er〉〈es|. (7.2.3)

We find

〈β|T |α〉 = 〈β̄|M |ᾱ〉, (7.2.4)

where |ᾱ〉, |β̄〉 are the 2-dimensional vectors and M is the matrix given by

|ᾱ〉 =

α1

α2

 , |β̄〉 =

βn−1

βn

 , M =

Tn−1,n Tn−2,2

Tn1 Tn2

 . (7.2.5)

We next observe that by the Schwarz Inequality we have

〈β̄|M |ᾱ〉 ≤ |||β̄〉||||M |ᾱ〉|| = ||M |ᾱ〉||, (7.2.6)

(since |β̄〉 is normalized) where the upper bound is achieved if |β̄〉 is parallel to

M |ᾱ〉. So

max∣∣∣∣|β̄〉∣∣∣∣=1

|〈β̄|M |ᾱ〉| = ||M |ᾱ〉|| =
√
〈ᾱ|M†M |ᾱ〉. (7.2.7)

Now let λt be the maximum eigenvalue of M†M so that

〈ᾱ|M†M |ᾱ〉 ≤ λt for all normalized |ᾱ〉, (7.2.8)
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where we insert the subscript t as a reminder that M†M , and therefore its maximum

eigenvalue λt, depends on t. Moreover the upper bound is achieved if |ᾱ〉 is an

eigenvector corresponding to λt. So

max∣∣∣∣|〈ᾱ∣∣∣∣,∣∣∣∣|β̄〉∣∣∣∣=1

|〈β̄|M |ᾱ〉| =
√
λt. (7.2.9)

We conclude that the maximum achievable average fidelity for a given time t is

max∣∣∣∣|〈ᾱ∣∣∣∣,∣∣∣∣|β̄〉∣∣∣∣=1

〈F 〉 =
1
2

+
1
3

√
λt +

1
6
λt. (7.2.10)

So the problem of maximizing the average fidelity reduces to finding the maximum

of the RHS of Eq. (7.2.10) as t varies. We were not able to tackle this problem

analytically. We were however able to tackle it numerically as described in the next

section.

Note that although we derived this result on the assumption that m = 2, where

m is the number of sites introduced in the states |α〉, |β〉 (see Eq. (7.1.8) and Eq.

(??)), this was only for the sake of simplicity. The result remains valid for m > 2.

7.2.2. Numerical results. We write the Hamiltonian in the form

H = −JH0 −B
n∑
j=1

σjz, (7.2.11)

where

H0 =
n−1∑
i=1

Jσi.σi+1. (7.2.12)

We have

|〈β|T |α〉| = |〈β|e−iHt|α〉|

= |eiBt〈β|eiH0 t̃|α〉|

= |〈β|eiH0 t̃|α〉|,
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where t̃ = Jt. So there is no loss of generality in taking the time evolution operator

to be T = eiH0 t̃ rather than T = eiHt. To calculate T we use analytic expressions

for the eigenvectors and eigenvalues of H0 given in [148]. Let

H0|ξ〉 = Ej |ξj〉, (7.2.13)

with j = 1, . . . , n. Then

T =
n∑
j=1

eiEj t̃|ξj〉〈ξj |. (7.2.14)

Using this it is straight forward to calculate M†M , and its maximum eigenvalue

λt̃ as a function of t̃ using Mathematica. We then used Mathematica to find the

maximum value of λt̃ as t̃ goes to zero to 10, 000. We did this for all values of

n ≤ 30 and for m = 2, 3, 4 (where m is the number of sites contributing to the

states |α〉 and |β〉).

We tabulate our results in Table 5. It can be seen that the maximum achievable

fidelity when m = 4 and n = 30 is 0.98. So the method is potentially a useful way

of communicating quantum information. Of course achieving this in practice might

be difficult because we have to take the qubit off the chain at exactly the right time.

Also it might be difficult to prepare the states |α〉 and |β〉 as required. Finally we

have assumed only nearest neighbour couplings of the spins. In practice there might

be longer range couplings which might significantly change our result. Nevertheless

our data are useful as they give us an idea of what is achievable in principle.



7.3. ACHIEVABLE TRANSMISSION RATES 163

Spin No. m = 2 m = 3 m = 4
t̃ pmax 〈F 〉 t̃ pmax 〈F 〉 t̃ pmax 〈F 〉

5 479.02 1.00000 1.00000 - - - - - -
6 4572.588 1.00000 1.00000 - - - - - -
7 2402.986 0.99992 0.99997 2402.979 1.00000 1.00000 - - -
8 2713.618 0.99986 0.99995 3721.22 1.00000 1.00000 - - -
9 6237.213 0.91887 0.97267 1904.294 0.99986 0.99995 493.197 1.00000 1.00000
10 4285.142 0.99666 0.99889 3411.520 0.99990 0.99997 3411.512 1.00000 1.00000
11 7698.164 0.99175 0.99725 5179.49 0.99773 0.99924 6131.218 0.99997 0.99999
12 2673.507 0.90996 0.96963 2673.48 0.99832 0.99944 3454.58 0.99960 0.99987
13 4948.996 0.96753 0.98913 4949.012 0.98693 0.99564 8076.42 0.99845 0.99948
14 2961.415 0.96795 0.98927 2537.684 0.99941 0.99980 2537.681 0.99945 0.99981
15 4.125 0.72195 0.90355 7908.177 0.94760 0.98241 6649.59 0.99808 0.99936
16 1912.723 0.94414 0.98125 5664.478 0.98090 0.99362 841.536 0.99659 0.99887
17 2816.947 0.92758 0.97563 2816.347 0.94608 0.98190 4.254 0.98650 0.99549
18 886.025 0.85915 0.95216 886.064 0.94776 0.98247 9520.661 0.99466 0.99822
19 4320.69 0.93798 0.97916 4320.65 0.95688 0.98555 4320.14 0.98097 0.99364
20 3494.027 0.85970 0.95235 5296.718 0.97537 0.99176 5296.7 0.98367 0.99455
21 2198.116 0.74474 0.91178 6399.815 0.92767 0.97566 5.318 0.97398 0.99130
22 9288.65 0.87742 0.95847 9288.692 0.93978 0.97977 5.582 0.97052 0.99014
23 4560.679 0.81969 0.93840 9193.457 0.89933 0.96600 5.846 0.96696 0.98894
24 8441.493 0.80753 0.93413 8441.546 0.88185 0.96000 6.109 0.96331 0.98771
25 1107.084 0.82959 0.94187 7505.908 0.87151 0.95643 6.37 0.95960 0.98646
26 8764.488 0.85267 0.94991 3784.929 0.89828 0.96564 6.635 0.95584 0.98520
27 8545.665 0.73901 0.90972 7.094 0.83307 0.94309 6.897 0.95202 0.98391
28 5140.542 0.0.75543 0.91563 5140.583 0.88387 0.96069 7.158 0.94817 0.98261
29 9084.933 0.72046 0.90301 7.614 0.81791 0.93778 7.42 0.94430 0.98130
30 6760.899 0.75931 0.91701 6760.884 0.85363 0.95024 7.681 0.94040 0.97998

Table 5. t̃ = Jt and pmax = λ2
t̃

is the probability and 〈F 〉 is the
average fidelity.

7.3. Achievable transmission rates

The work presented in this section is published in Yadsan-Appleby and Os-

borne [19].

Yet another context where quantum information is manipulated in a Gaussian

form is the use of Gaussian wavepackets in the theory of spin chains. There has been

much interest in spin chains in recent years as they constitute a kind of “quantum

wire” which can be used to connect the different parts of a quantum computer. For

long wires it is advantageous to transmit qubits encoded as Gaussian wave-packets

of delocalized degrees of freedom, where the profile of the probability amplitude on
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the different sites of the chain is a Gaussian distribution. The question then arise

as to how the transmission rate depends on the length of the wire. In this section,

we show that the rate scales like n−
1
3 where n is the length of the wire. This means

that although the transmission rate falls off with increasing length it only falls off

quite slowly. For instance increasing the length by a factor of 1000 only reduces

the rate by a factor of 10 [19].

7.3.1. Communicating Gaussian wavepackets via spin chains. In Sec-

tion 7.2 we discussed the problem of maximizing the average fidelity. However, we

said nothing about the rate at which qubits can be transmitted down the chain.

The most straight forward procedure would be for Alice to put a qubit on the wire

and then to wait for Bob to take it off before transmitting another. However this

procedure will obviously be slow if the chain is long, since the transmission rate will

scale like 1
n where n is the length of the chain. We can try to improve on this by

having more than one qubit on the chain at any time. The more qubits we have on

the chain at once the greater is the transmission rate. On the other hand we cannot

have too many qubits on the chain at once since otherwise they will interfere and

there will be a reduction in fidelity. The problem is therefore how many qubits can

we put on the chain at once and still achieve an acceptable fidelity.

Since the question of transmission rate becomes most important with long

chains we will assume a long chain in this section. As we saw in the previous

section this means that m, length of the encoding and decoding regions, also needs

to be large. We will in fact assume |α〉 and |β〉 defined in the last chapter are

discrete Gaussian wavepackets.

Instead of the Hamiltonian used in the last section, we take the Hamiltonian

to be,

H = J

n−1∑
j=1

(σjxσ
j+1
x + σjyσ

j+1
y ). (7.3.1)
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We define

σj± =
1
2

(σjx ± iσjy). (7.3.2)

So we can write the Hamiltonian H as

H = J

n−1∑
j=1

(σj+σ
j+1
− + σj−σ

j+1
+ ). (7.3.3)

This is often called an XY chain.

It is convenient to reformulate this problem by considering a different physical

situation with electrons hopping on a regular lattice of n sites [150]. This situation

is mathematically equivalent to the many spins on a XY chain. The fact that the

electrons are fermions means that the number of fermions at a given site is either

0 or 1. Let |s1, . . . , sn〉 be the state where the number of fermions at site j is sj . It

is in strict analogy to the state |s1, . . . , sn〉 for the spin chain model where sj = 0

if spin j down and sj = 1 if spin j is up.

Define creation and annihilation operators a†j , aj for each site which satisfy the

anti-commutation relation

{aj , a†k} = δjk,

{aj , ak} = {a†j , a
†
k} = 0. (7.3.4)

a†j creates an electron at site j, aj annihilates an electron at site j. We define |Ω〉 to

be the vacuum state, in which there are no electrons on the lattice and we assume

that aj |Ω〉 = 0 for all j. Then

|s1 . . . sn〉 = (a†1)s1 . . . (a†n)sn |Ω〉. (7.3.5)

It may be worth comparing this model with the photon creation and annihila-

tion operators. In an n mode system we have

[aj , a
†
k] = δjk,
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[aj , ak] = [a†j , a
†
k] = 0. (7.3.6)

where a†j and aj are the photon creation and annihilation operators for mode j. In

the case of photons we can have arbitrarily many photons in mode j. However for

electrons the fact that we have anti-commutation relations instead of CCR means

that (a†j)
2 is zero which in turn means we cannot have more than one electron at

site j. This is because electrons are fermions whereas photons are bosons. For our

electron model we take the Hamiltonian to be

H = J

n−1∑
j=1

a†jaj+1 + a†j+1aj . (7.3.7)

The XY spin chain model and the electron lattice model are physically very

different. However from a mathematical point of view they are really the same. To

see the essential reason why consider the case when there are only two sites. The

spin chain Hamiltonian is then

H = J(σ1
+σ

2
− + σ2

+σ
1
−). (7.3.8)

For the electron lattice model the Hamiltonian is

H = J(a1a
†
2 + a2a

†
1). (7.3.9)

In both cases one has

H|00〉 = 0,

H|11〉 = 0,

H|01〉 = |10〉,

H|10〉 = |01〉.

So the action of the two Hamiltonians on the basis states is identical. It is easily

seen that the same continues to be true when we have n sites instead of only two
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sites. However, although the two models are equivalent, it is easier to work with

the creation and annihilation operators of the electron model.

We next consider the encoding and decoding states |α〉 and |β〉.We take m to

be an integer of order n
1
3 . This is based on the analysis in [151] where it is shown

that the spreading of Gaussian wavepacket is independent of number of sites n, if

m is chosen to be n
1
3 . Define |α〉 to be the truncated discrete Gaussian wavepacket

|α〉 =
1√
N

m∑
j=1

e
−(j−m2 )2

2∆2 +2πikja†j |Ω〉, (7.3.10)

where 1√
N

is a normalization constant and where we assume that 1� ∆� m. It

is convenient to define an operator

g =
1√
N

m∑
j=1

e
−(j−m2 )2

2∆2 +2πikjaj . (7.3.11)

We then have

|α〉 = g†|Ω〉. (7.3.12)

Similarly, we define

|β〉 = h†|Ω〉, (7.3.13)

where

h =
1√
N

m∑
j=n−m+1

e
−
(
j−(n−m2 )

)2

2∆2 +2πikjaj . (7.3.14)

The fact that 1 � ∆ � m means [19, 151] we can take the continuum limit to

deduce that the discrete Gaussian wavepacket propagates, to a good approximation,

without change of shape at group velocity v:

e−Ht|α〉 = g†(t)|Ω〉, (7.3.15)
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where

g†(t) = e−iHtg†eiHt ≈ 1√
N

m∑
j=1

e
−(j−m2 −vt)

2

2∆2 +2πikja†j . (7.3.16)

We will need an expression for the overlap between two such wavepackets g†(t1)|Ω〉

and g†(t2)|Ω〉. We have

〈Ω|g(t1)g†(t2)|Ω〉 = 〈Ω|{g(t1), g†(t2)}|Ω〉 = {g(t1), g†(t2)}, (7.3.17)

where

{g(t1), g†(t2)} =
1√
N

m∑
j=1

e
−(j−m2 −vt1)2

2∆2 −
−(j−m2 −vt2)2

2∆2 . (7.3.18)

Using the continuum limit to approximate this expression by an integral we find

{g(t1), g†(t2)} ≈ e−
v2

4∆2 (t1−t2)2
. (7.3.19)

Notice that when t1 = t2 = t this means {g(t), g†(t)} = 1 (this is actually exact).

7.3.2. Encoding and decoding. We already discussed encoding and decod-

ing unitaries in chapter 7. However we were there working with the assumption

that the number of excitations ≤ 1. We no longer make that assumption so we

need to define the unitaries differently. Suppose the chain interacts with an an-

cilla consisting of a single qubit with basis states |0〉A, |1〉A. Let σ± be the ladder

operators

σ± =
1
2

(σx ± iσy), (7.3.20)

acting on the ancilla (σx, σy being the Pauli matrices as usual). So

{σ+, σ−} = I,

σ+|0〉 = |1〉,

σ−|1〉 = |0〉,
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σ+|1〉 = σ−|0〉 = 0. (7.3.21)

We now consider the interaction Hamiltonian HI :

HI = σ−g
† + σ+g, (7.3.22)

describing the interaction between the ancilla and the chain. Using the fact that

g2 = (g†)2 = σ2
± = 0, (7.3.23)

and

{σ+, σ−} = 1, (7.3.24)

{g, g†} = 1. (7.3.25)

We find

H2
I = σ−σ+g

†g + σ+σ−gg
†,

H3
I = HI . (7.3.26)

We now define the encoding unitary UA to be

UA = ei
π
2HI = 1 +

( ∞∑
n=0

(iπ2 )2n+1

(2n+ 1)!

)
HI +

( ∞∑
n=1

(iπ2 )2n

(2n+ 1)!

)
H2
I

= 1 + (cos
π

2
− 1)H2

I + i sin
π

2
HI

= I −H2
I + iHI . (7.3.27)

Similarly, we define the decoding unitary UB to be

UB = ei
π
2H
′
I = I −H ′I + iH ′I , (7.3.28)
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with

H ′I = σ−h
† + σ+h, (7.3.29)

where h is the operator defined in Eq. (7.3.14) and σ± now refer to Bob’s ancilla.

We find

UA(|0〉 ⊗ |Ω〉) = |0〉 ⊗ |Ω〉

UA(|1〉 ⊗ |Ω〉) = i|0〉 ⊗ g†|Ω〉. (7.3.30)

So if Alice’s qubit is initially in the state

|ψA〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (7.3.31)

After the action of UA we would like the state of the combined system (chain and

ancilla) to be

cos
θ

2
|Ω〉+ eiφ sin

θ

2
g†|Ω〉. (7.3.32)

However, in fact, we have

UA(|ψA〉 ⊗ |Ω〉) = |0〉 ⊗ (cos
θ

2
|Ω〉+ ieiφ sin

θ

2
g†|Ω〉), (7.3.33)

which has an additional i. We fix this problem by applying the unitary matrix1 0

0 −i

 to |ψA〉 before applying UA. We will ignore this complication from now

on.

If we adopt the same procedure described in chapter 7, Bob and Alice now wait

for the center of wavepacket to propagate from the position m
2 to n− m

2 . This will

take time t = n−m
v where v is the group velocity. Bob then applies the decoding

unitary UB . For the reasons explained in [151] this will give us high fidelity if

1 � ∆ � m. We now want to consider a situation where Alice does not wait
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for Bob to take his first qubit off the chain before putting another one on, as this

should give us as a higher transmission rate.

7.3.3. Putting many qubits on the chain. Suppose Alice puts qubits on

the chain at the time intervals of τ , without waiting for Bob to take them off. From

Eq. (7.3.19) we get

{g(rτ), g†(sτ)} ≈ e−
(r−s)2v2τ2

4∆2 . (7.3.34)

This is non-zero. Suppose, to begin with, that it were in fact zero when r 6= s.

Then it can be seen that after Alice has put M qubits on the chain the state of the

first M ancilla+chain is

|0〉 ⊗ · · · ⊗ |0〉 ⊗
(

cos
θ

2
+ eiφ sin

θ

2
g†(Mτ)

)
. . .
(

cos
θ

2
+ eiφ sin

θ

2
g†(τ)

)
|Ω〉.

(7.3.35)

It is straightforward (though tedious) to confirm that when Bob takes the qubits

off the chain he achieves the same fidelity that he would achieve if there was only

ever one qubit on the chain. In short there is no interference between the qubits.

The trouble is, of course, that {g(rτ), g†(sτ)} 6= 0, and so we do get interference.

We find that the state of the chain with M qubits on it is the state given in Eq.

(7.3.35) together with a correction term. The problem is to put a bound to the

correction term.

To simplify the working we confine ourselves to the case where Alice sends

a sequence of states all either |0〉 or |1〉. One can recover the general case by

constructing the appropriate superposition. If Alice sends all |1〉’s then, on the

(wrong!) assumption that {g(rτ), g†(sτ)} = 0 the state of the chain after M qubits

have been added will be

g†(Mτ) . . . g†(τ)|Ω〉. (7.3.36)

If she sends |0〉’s as well as |1〉’s the state will be similar to this except that some

of the g†’s will be missing. We therefore anticipate that the interference problem
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is worst when Alice sends all |1〉’s, as this is when the most Gaussian wavepackets

are packed on to the chain. We therefore focus on the case where Alice sends all

|1〉’s.

We define

ε = {g(0), g†(τ)} ≈ e−
v2τ2

4∆2 , (7.3.37)

so

{g(rτ), g†(sτ)} ≈ ε(r−s)
2
. (7.3.38)

We now build up the state sequentially. Initially the state of the combined system

of Alice’s M ancilla and the chain is

|1 . . . 1〉 ⊗ |Ω〉, (7.3.39)

where the first factor is the state of the first M ancilla. After swapping the first

qubit onto the chain and allowing it to evolve for time τ the state is

|1 . . . 0〉 ⊗ ig†(τ)|Ω〉. (7.3.40)

After swapping the second qubit onto the chain and allowing it to evolve for a

further time τ the state is

i2|1 . . . 100〉 ⊗ g†(τ)g†(2τ)|Ω〉+ iε|1 . . . 110〉 ⊗ g†(τ)|Ω〉. (7.3.41)

As we swap more and more qubit the state gets more and more complicated. How-

ever we do not need to give its detailed form. It is enough to observe that after M

qubits have been swapped in we will have a leading term of the form

|0 . . . 0〉 ⊗ ig†(τ) . . . ig†(Mτ)|Ω〉, (7.3.42)
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and a series of additional terms of the form

εr|s1 . . . sM 〉 ⊗ ig†(j1τ) . . . ig†(jlτ)|Ω〉, (7.3.43)

such that r ≥ 1, and such that in the ancilla state |s1 . . . sM 〉 the sj are not all zero.

This means that we can write the state in the form

|ψ〉 = |P 〉+ |E〉, (7.3.44)

where

|P 〉 = |0 . . . 0〉 ⊗ ig†(τ) . . . ig†(Mτ)|Ω, (7.3.45)

and |E〉 is an error term which is order ε and orthogonal to |P 〉. The problem now

is to put a bound on the error term.

7.3.4. Bounding the error term. We state our result in the form of a the-

orem:

Theorem 12. For small ε,

〈E|E〉 ≤ (M − 1)ε2. (7.3.46)

Proof. The fact that |ψ〉 is normalized and |P 〉 and |E〉 are orthogonal means

that

1 = 〈ψ|ψ〉 = 〈P |P 〉+ 〈E|E〉,

〈E|E〉 = 1− 〈P |P 〉. (7.3.47)

This is a nice result because it means if we are only interested in the norm of the

state |E〉 we do not need to pay any attention to its detailed structure (which is very

complicated), instead we can just calculate it from the norm of |P 〉. To calculate

〈P |P 〉 consider first the case when M = 2. We have

〈P |P 〉 = 〈Ω|g(2τ)g(τ)g†(τ)g†(2τ)|Ω〉
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= {g(τ), g†(τ)}{g(2τ), g†(2τ)} − {g(2τ), g†(τ)}{g(τ), g†(2τ)}

= 1− ε2.

When M = 3 we have

〈P |P 〉 = 〈Ω|g(3τ)g(2τ)g(τ)g†(τ)g†(2τ)g†(3τ)|Ω〉

= {g(τ), g†(τ)}{g(2τ), g†(2τ)}{g(3τ), g†(3τ)}

− {g(2τ), g†(τ)}{g(τ), g†(2τ)}{g(3τ), g†(3τ)}+ 6more terms

= 1− 2ε2 + 2ε6 − ε8.

These two calculations are examples of Wick’s theorem [152]. The theorem states

that for arbitrary M

〈P |P 〉 = 〈Ω|g(Mτ) . . . g(τ)g†(τ) . . . g†(Mτ)|Ω〉

=
∑
σ

sσ{g(τ), g†(σ1τ)}{g(2τ), g†(σ2τ)} . . . {g(Mτ), g†(σMτ)}

=
∑
σ

sσ

M∏
σ=1

ε(r−σr)2
, (7.3.48)

where the sum over all permutations σ of the integers 1, . . . ,M and sσ is the sign

of the permutation (sσ = 1 if σ is even and sσ = −1 if σ is odd). In other words

〈P |P 〉 = detL, (7.3.49)

where

L =



1 ε ε4 . . . ε(M−1)2

ε 1 ε . . . ε(M−2)2

ε4 ε 1 . . . ε(M−3)2

...
...

...
...

ε(M−1)2
ε(M−2)2

ε(M−3)2
. . . 1


. (7.3.50)
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So

〈E|E〉 = 1− detL. (7.3.51)

Define

f(ε) =
1− detL

ε2
. (7.3.52)

We will show that f(ε) ≤M −1 for sufficiently small ε. The only way of generating

an ε2 term when calculating detL is by multiplying two elements = ε with M − 2

elements = 1. So the ε2 terms are all of the form

−(Li,i+1Li+1,i)(
M∏

j 6=i,i+1

Ljj),

the minus sign is because i ⇐⇒ i+ 1 is a negative permutation. It is easy to see

that number of such terms is M − 1. Similarly all ε4 terms are of the form

(Li,i+1Li+1,iLj,j+1Lj+1,j)(
∏

k=i,i+1,j,j+1

Lkk).

The number of such terms is

1 + 2 + · · ·+ (M − 3) =
1
2

(M − 3)(M − 2).

It is easily seen that there are no ε or ε3 terms in detL. So to order ε4

detL = 1− (M − 1)ε2 +
1
2

(M − 3)(M − 2)ε4 +O(ε6)

Then

f(ε) = (M − 1)− (M − 3)(M − 2)
2

ε2 +O(ε4)

Since f ′(0) = 0 and f ′′(0) < 0 we have a maximum at ε = 0. So in the vicinity of

ε = 0

f(ε) ≤M − 1

�
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7.3.5. Transmission rate. The transmission rate is R = 1
τ . The spacing

between the adjacent wavepackets is vτ . So the number of wavepackets on the

chain at any given time is M = n
vτ = nR

v . For the sake of example suppose

∆ = κn
1
3 and M = n

2
3 for some constant κ to be fixed later. The spacing between

the qubits is vτ , so

vτ =
n

M
= n

1
3 (7.3.53)

and

ε = e−
(vτ)2

4∆2 = e−
1

4κ2 (7.3.54)

We now choose κ small enough for Theorem 12 to apply. For the sake of example

suppose that Theorem 12 is true when κ = 0.1 and ε ≈ 10−11. Then

〈E|E〉 ≤ (M − 1)ε2 < n
2
3 e−50 ≈ (10−33n)

2
3 . (7.3.55)

So the error term will be negligible for n� 1033—a condition which will certainly

be satisfied in every physically realistic situation (our spin chains aren’t cosmic).

The fidelity therefore will be high. From Eq. (7.3.53) we see that the transmission

rate R is given by

R =
1
τ

= vn−
1
3 . (7.3.56)

If it should happen that Theorem 12 is not satisfied for κ = 0.1 we simply

choose a smaller value of κ. This will not change our conclusion in that we get a

high fidelity with a transmission rate that scales like n−
1
3 .

We see from this analysis that making the spin chain longer reduces the achiev-

able transmission rate. However, the rate decreases very slowly. For instance mak-

ing the chain 1000 times longer only reduces the rate by a factor of 10.
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7.4. Conclusion

In this chapter we have considered quantum communication with unmodulated

spin chains. We began by reviewing the encoding and decoding processes by which

information is put on the chain at one end and taken off at the other end. We also

described how one calculates the fidelity. We then went on to address the question

what is the maximal fidelity in Section 7.2. It turned out that this question had

already been answered in [18]. However, our method is different from theirs.

In Section 7.3 we turned our attention to a different situation where the state

of the chain was approximated as a Gaussian wavepacket. On the basis of this

description we addressed the question as to what is the achievable transmission

rate. We showed that we get a high fidelity with a transmission rate that scales like

n−
1
3 . Thus, although the rate decrease with increasing chain length, it decreases

quite slowly. This work has been published [19].





Part 5

Summary





CHAPTER 8

Summary

We have explored a wide range of topics and we made a few discoveries which

we hope may prove a moderately useful contribution to the subject.

Firstly, we have investigated a question concerning the CV quantum memo-

ries. Quantum memories are likely to play a very important role in future quantum

computers. On a shorter time scale they are likely to make possible the implemen-

tation of a number of quantum information protocols. For instance in quantum

communication quantum repeaters assisted by good quantum memories may solve

the problem of entanglement distribution. Recently squeezed and entangled states

of light have been successfully stored in quantum memories. In Sections 5.3.1 and

5.3.2 we addressed the question when it is best to store squeezed states and only

entangle them later, and when it is best to store the states already entangled. We

gave an answer to this question in the case of ideal memories. In the case of noisy

memories we gave for a certain class of parameter choice a simple analytical ex-

pression which enables one to determine cases where it is better to entangle after

storage. It would be interesting to develop this approach and give a criterion for

when it is definitely better to entangle before storage. It would also be interesting

to extend our results to other regions of parameter space.

Secondly, we investigated the SIC-POVMs. We began by showing that SIC

fiducials can be regarded as discrete analogs of coherent states in a CV system.

We then turned to an examination of Galois automorphisms of a SIC-POVM. This

work was motivated by the observation that with the exception of dimension 3

the components of SIC fiducials turn out to be expressible in radicals in every case

where an exact fiducial has been calculated. This tells us that the associated Galois
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group must be solvable. We set out to see if there is anything more one can say

about the Galois group. We identified a subgroup Gc, the automorphisms of which

take SIC fiducials to SIC fiducials. We then focused on a subgroup of Gc, Go for

which the automorphisms take the SIC fiducial onto another SIC fiducial on the

same orbit of the extended Clifford group. For each automorphism in this subgroup

one can associate a unitary or anti-unitary in the extended Clifford group. We also

examined the effect of the Galois automorphisms on the overlaps 〈ψ|Dp|ψ〉. We

used this to show that there is a homomorphism of Go into the quotient group

Nψ/Sψ. Finally we made a detailed study of dimension 6 case. We found that

for this case Gc is Abelian and that the field corresponding to Gcunder the Galois

corespondence is Q(
√

(d− 3)(d+ 1)). It turns out that the same is true for every

other exact solution for d > 3 (although we did not show this here).

Finally, we have addressed the question of transmission rate on a spin chain.

We described a protocol whereby Alice and Bob, using a long XY spin chain can

communicate quantum information with arbitrarily high fidelity at a rate of n−
1
3

qubits per unit time. The rate we achieve here for an unengineered chain is much

greater than the previously described rate by [153] for a specially engineered chain.



APPENDIX A

Fiducial Vector in Dimension 6

The exact fiducial vector for dimension 6 can be found in [142]. However, we

calculated the exact fiducial vector |ψ〉 ourselves and used it for our calculations in

this thesis. We calculated the following expression for |ψ〉:

|ψ〉 = ψ0|e0〉+ ψ1p|e1〉+ ψ2p|e2〉. (A.0.1)

where

ψ0 =

√
1
14

(7−
√

21), (A.0.2)

ψ1p =

√
7 +
√

21 +
√

14(−3 +
√

21)
(
− 2(−7 +

√
21) + (1− i

√
3)
√

14(−3 +
√

21)
) 1

3

2× 14
2
3 (1 +

√
−9 + 2

√
21)

1
6

,

(A.0.3)

ψ2p =
1

2× 2
2
3

√
1 +

√
3
7
−
√

2
7

(−3 +
√

21
(√

23− 3
√

21− 3
√

6(−3 +
√

21)

+ i

√
3(3 +

√
21 +

√
6(−3 +

√
21)
) 1

3
, (A.0.4)

|e0〉 =



e01

e02

e03

e04

e03

e02


, |e1〉 =



e11

e12

e13

e12

e11

e14


, |e2〉 =



e11

e14

e11

e12

e13

e12


,
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with

e01 =
1
3

√
1
2

(3 +
√

3), (A.0.5)

e02 = −
1
6 (1 + i)(3i+

√
3)√

2(3 +
√

3)
, (A.0.6)

e03 = −
1
6 (1 + i)(3 + (2 + i)

√
3)√

2(3 +
√

3)
, (A.0.7)

e04 =
1 + i√

6(3 +
√

3)
, (A.0.8)

e11 =
1
2

√
1
3

(3 +
√

3)−
√

3 +
√

3
6

, (A.0.9)

e12 = −1
6

(1 + i)
√

3 +
√

3, (A.0.10)

e13 = −1
4

√
1
3

(3 +
√

3) +

√
3 +
√

3
12

+ i
(
− 1

4

√
1
3

(3 +
√

3) +

√
3 +
√

3
4

)
, (A.0.11)

e14 =
1
4

√
1
3

(3 +
√

3) +

√
3 +
√

3
12

+ i
(
− 1

4

√
1
3

(3 +
√

3) +

√
3 +
√

3
12

)
. (A.0.12)

We then used the components of the first column of the projector Π = |ψ〉〈ψ|

to generate the field F5 described in chapter 6.4. The reason for using the un-

normalized fiducial vector rather than the normalized one was that the field that

contains the components of the normalized fiducial is bigger than F5 and we wanted

to reduce the size of the field. Let the first column of Π be

Π =



Π11

Π21

Π31

Π41

Π51

Π61


. (A.0.13)

Then the components of Π in terms of F5 generators a1, a2, a3, a4, a5 are given by

Π11 =
1

6048
{(756 + 36a+ 84a1 − 60aa1 − 168a1a2 + 120aa1a2 − 252a3 + 36aa3 + 252a1a3 − 36aa1a3



A. FIDUCIAL VECTOR IN DIMENSION 6 185

− 504a1a2a3 + 72aa1a2a3 + 42a1a4 + 2aa1a4 − 84a1a2a4 + 8aa1a2a4 + 42a3a4

− 6aa3a4 + 168a2a3a4 − 36aa2a3a4 + 7a1a
2
4 + aa1a

2
4 + 7a1a2a

2
4 − 5aa1a2a

2
4

− 21a3a
2
4 + 5aa3a

2
4 + 63a2a3a

2
4 − 13aa2a3a

2
4)}

Π21 =
1

6048
{(168 + 24a− 168a1 − 24aa1 − 84a2 − 12aa2 + 84a1a2 + 12aa1a2 + 504a3 − 120aa3

+ 504a1a3 − 120aa1a3 − 252a2a3 + 60aa2a3 − 252a1a2a3 + 60aa1a2a3 − 42a4

− 2aa4 + 42a1a4 − 10aa1a4 + 84a2a4 − 8aa2a4 + 42a1a2a4 + 2aa1a2a4

+ 210a3a4 − 42aa3a4 − 42a1a3a4 + 6aa1a3a4 − 42a2a3a4 + 6aa2a3a4

− 168a1a2a3a4 + 36aa1a2a3a4 + 14a2
4 − 4aa2

4 + 7a1a
2
4 + aa1a

2
4

− 7a2a
2
4 − aa2a

2
4 + 7a1a2a

2
4 − 5aa1a2a

2
4 − 21a3a

2
4 + 5aa3a

2
4

− 42a1a3a
2
4 + 8aa1a3a

2
4 + 63a2a3a

2
4 − 13aa2a3a

2
4

− 21a1a2a3a
2
4 + 5aa1a2a3a

2
4)}

Π31 =
1

6048
{(−672a1 + 48aa1 + 72aa2 + 336a1a2 − 24aa1a2 − 504a3 + 120aa3 + 504a1a3 − 72aa1a3

− 24aa2a3 − 1008a1a2a3 + 216aa1a2a3 + 168a1a4 − 16aa1a4 − 84a1a2a4 + 20aa1a2a4

+ 7a1a
2
4 − 5aa1a

2
4 − 14a1a2a

2
4 + 4aa1a2a

2
4 + 63a3a

2
4 − 13aa3a

2
4 − 42a2a3a

2
4 + 8aa2a3a

2
4)}

Π41 =
1

6048
{(−84 + 60a+ 84a1 − 60aa1 + 168a2 − 120aa2 − 168a1a2 + 120aa1a2 − 252a3 + 36aa3

− 252a1a3 + 36aa1a3 − 42a4 + 10aa4 − 84a1a4 + 8aa1a4 − 42a2a4 − 2aa2a4 + 42a1a2a4

− 10aa1a2a4 + 168a3a4 − 36aa3a4 − 210a1a3a4 + 42aa1a3a4 − 210a2a3a4 + 42aa2a3a4

+ 42a1a2a3a4 − 6aa1a2a3a4 − 7a2
4 + 5aa2

4 − 14a1a
2
4 + 4aa1a

2
4 + 14a2a

2
4 − 4aa2a

2
4 + 7a1a2a

2
4

+ aa1a2a
2
4 − 42a3a

2
4 + 8aa3a

2
4 + 63a1a3a

2
4 − 13aa1a3a

2
4 − 21a2a3a

2
4 + 5aa2a3a

2
4 − 42a1a2a3a

2
4

+ 8aa1a2a3a
2
4)}

Π51 =
1

6048
{(−168a1 − 24aa1 − 756a2 + 180aa2 + 84a1a2 + 12aa1a2 + 504a3 − 120aa3 − 252a2a3 + 60aa2a3

+ 756a1a2a3 − 180aa1a2a3 − 84a1a4 + 8aa1a4 + 42a1a2a4 − 10aa1a2a4 − 168a3a4 + 36aa3a4

+ 210a2a3a4 − 42aa2a3a4 + 7a1a
2
4 − 5aa1a

2
4 − 14a1a2a

2
4 + 4aa1a2a

2
4 + 63a3a

2
4 − 13aa3a

2
4
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− 42a2a3a
2
4 + 8aa2a3a

2
4)}

Π61 =
1

6048
{(672− 48a− 672a1 + 48aa1 − 336a2 + 24aa2 + 336a1a2 − 24aa1a2 − 504a3 + 120aa3

− 504a1a3 + 120aa1a3 − 24aa2a3 − 24aa1a2a3 + 84a4 + 4aa4 − 84a1a4 + 20aa1a4 − 168a2a4

+ 16aa2a4 − 84a1a2a4 − 4aa1a2a4 + 14a2
4 − 4aa2

4 + 7a1a
2
4 + aa1a

2
4 − 7a2a

2
4

− aa2a
2
4 + 7a1a2a

2
4 − 5aa1a2a

2
4 − 21a3a

2
4 + 5aa3a

2
4 − 42a1a3a

2
4 + 8aa1a3a

2
4 + 63a2a3a

2
4

− 13aa2a3a
2
4 − 21a1a2a3a

2
4 + 5aa1a2a3a

2
4)}
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