
Probabilistic Group Recommendation
via Information Matching

Jagadeesh Gorla1, Neal Lathia2, Stephen Robertson3, Jun Wang1

1Department of Computer Science, University College London, UK
2Computer Laboratory, University of Cambridge, UK

3Microsoft Research Cambridge, UK
{jgorla,junwang}@cs.ucl.ac.uk, neal.lathia@cl.cam.ac.uk, stephenerobertson@hotmail.co.uk

ABSTRACT
Increasingly, web recommender systems face scenarios where
they need to serve suggestions to groups of users; for exam-
ple, when families share e-commerce or movie rental web
accounts. Research to date in this domain has proposed two
approaches: computing recommendations for the group by
merging any members’ ratings into a single profile, or com-
puting ranked recommendations for each individual that are
then merged via a range of heuristics. In doing so, none of
the past approaches reason on the preferences that arise in
individuals when they are members of a group. In this work,
we present a probabilistic framework, based on the notion
of information matching, for group recommendation. This
model defines group relevance as a combination of the item’s
relevance to each user as an individual and as a member of
the group; it can then seamlessly incorporate any group rec-
ommendation strategy in order to rank items for a set of
individuals. We evaluate the model’s efficacy at generating
recommendations for both single individuals and groups us-
ing the MovieLens and MoviePilot data sets. In both cases,
we compare our results with baselines and state-of-the-art
collaborative filtering algorithms, and show that the model
outperforms all others over a variety of ranking metrics.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Theory, Algorithms

Keywords
Probabilistic Modelling, Group Recommendation

1. INTRODUCTION
In recent years, Collaborative Filtering (CF) algorithms

have become the hallmark of web-based recommender sys-
tems. These techniques compute personalised recommenda-
tions for users by learning from the ratings or interactions
that the users create as they engage with the (movie, mu-
sic, news) content on the system [12, 28]. While traditional
research on recommender systems has focused on finding

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

relevant items for single users, there is an increasing occur-
rence of individual web profiles and accounts being shared
amongst a group of people. For example, a household of
users may share a single movie-rental and recommendation
account, or users of mobile recommender systems may be
seeking locations (e.g., restaurants) for a group of friends to
go to together. Both of these types of scenarios have led
to recent research on group recommendation [16]. Group
recommendation scenarios tend to differ in terms of how
preference data about the group is collected. For example,
in the case of shared household web accounts, the ratings
that the system represents as a single user may actually
reflect a number of people’s preferences; in the case of a
restaurant-recommender system, multiple profiles may need
to be considered simultaneously in order to suitably person-
alise the system’s recommendations. Group recommenda-
tion systems have been used in various forms across the web
to recommend news pages [22], holidays [19], music [8], and
both TV programs and movies [1, 21, 29].

The main challenge behind these scenarios has been that
of computing recommendations from a potentially diverse
set of group members’ ratings. Past approaches have tack-
led this in one of two ways. On the one hand, all group
members’ ratings can be folded into a single profile, which
can then be treated as a unique user that recommendations
should be computed for. Naturally, this approach may bias
its output away from those group members that have the
sparsest profiles. Alternatively, personalised recommenda-
tions can be computed for each group member first, and
the resulting set of ranked recommendations can be merged
into a single list for the group using pre-defined heuristics [3,
16]. This solution assumes that successful group recommen-
dation comes from the strategies used to merge the ranked
lists, without modelling the group as a whole or considering
how individuals’ preferences may differ when they become
part of a group.

In this paper, we tackle the problem of group recommen-
dation for households of users sharing a movie-rental ac-
count. Households may have a varied number of members
and a non-uniform distribution of ratings amongst any mem-
bers. We present a probabilistic model for group recommen-
dation; this model combines the relevance of items to differ-
ent group members with the relevance of items to the group
as a whole. In doing so, we show that higher quality recom-
mendations can be computed by shifting the focus toward
better modelling of group members, rather than merging in-
dividual’s ranked recommendations. In summary, we make
the following contributions:

• We introduce a number of state of the art approaches
to CF (Section 2) and describe the information match-
ing model that can seamlessly compute the probabil-
ity that an item will be relevant to a given user (Sec-
tion 3.1) by reasoning on the user’s preference and the
item’s appeal. Furthermore, the information matching
approach allows for users to be described both in terms
of their ratings as well as any other contextual feature
that is available to the system (e.g., their role in the
household).

• We then use this model to derive a framework for
group recommendation (Section 3.2) that, unlike pre-
vious work—which focuses on merging recommenda-
tions computed for individual users—uses the princi-
ples of information matching in order to compute the
probabilities of items’ relevance to a group, while tak-
ing the entirety of the group into consideration.

• We evaluate (Section 4) the probabilistic model along-
side state-of-the-art CF approaches, including popu-
larity based, neighbourhood, and latent factor mod-
els using household rating data from MoviePilot1. We
find that not only do state-of-the-art methods perform
very poorly in this domain, but the probabilistic model
performs demonstrably better over a range of differ-
ent evaluation metrics. We further provide non-group,
baseline results using the MovieLens dataset to allow
our work to be compared to the research literature.

We believe these results will be useful to practitioners
whose systems may have shared groups of users, includ-
ing: movie rental, e-commerce, and web gaming portals. We
close in Sections 5 and 6 by discussing the key differences
between information matching and CF alongside our future
work.

2. BACKGROUND AND RELATED WORK
In this section, we introduce the problem space that we

address, as well as describing a number of algorithms that we
will compare our proposed model to. Collaborative filtering
(CF) [12, 28] is the mainstream approach to building web
recommender systems: it is based on the assumption that,
as users give ratings for items on a web site, their discovery
of new items can be aided by learning from the ratings that
other users have given. Broadly speaking, CF uses a matrix
of user-item ratings in order to compute predictions for those
items that users have not rated; items can then be ranked,
in descending order, by these predictions.
In the following sections, we describe a baseline and two

state-of-the-art CF algorithms that we will compare against
when we evaluate our approach. First, we use a non-person-
alised, popularity-based, baseline. Next, we compare with
two techniques that pervade the literature in the field: neigh-
bourhood approaches (Section 2.2) and latent factor models
(Section 2.3). Broadly speaking, neighbourhood approaches
are based on the similarity between users or items. The la-
tent factor model, instead, represents the user and item in
the same latent space with a predefined number of hidden
dimensions. This is generally a lower dimensional space and

1Released as part of the Context-Aware Movie
Recommendation Challenge at ACM RecSys 2011:
http://2011.camrachallenge.com/2011

the rating between the user-item pair is predicted by the
proximity of the relevant latent factors. Finally, we discuss
how these algorithms have been used in conjunction with
other heuristics in order to generate recommendations for
groups (Section 2.4), and the methods and challenges re-
lated to evaluating group recommendations (Section 2.5).

2.1 The Popularity Model
The baseline that we test all methods against is a sim-

ple, non-personalised approach based on popularity. The
popularity of an item is defined as being proportional to
the number of ratings that it has received by any user; by
counting ratings, we can rank items in descending order of
popularity. Although this model is very simple, in the ex-
periments that follow we find that it is in-fact very effective
in terms of performance. In the following, we will refer to
this baseline as Pop-item.

2.2 Neighbourhood Models
The k-Nearest Neighbourhood algorithm has been used

in recommender systems research since its inception [10].
There are two different flavours of the algorithm: user and
item-based. The user-based approach represents users as a
sparse, high-dimensional vector of item ratings. The item-
based alternative, instead, represents items as sparse, high
dimensional vectors of user ratings. Both methods operate
by measuring any similarity between the users or items in
order to predict a score for unrated items. In this work,
we use the Apache Mahout library2 implementation of the
user and the item-based methods, which uses the Pearson
correlation to measure similarity.

Specifically, the similarity between a user u and v is mea-
sured as:

sim(u, v) =
Σi∈Iuv (ru,i − r̂u)(rv,i − r̂v)

√

Σi∈Iuv (ru,i − r̂u)
2
√

Σi∈Iuv (rv,i − r̂v)
2

(1)

where Iuv is the set of items rated by both users u, v and
r̂u, r̂v are the average rating of co-rated items of u and v
respectively.

Once similarities have been computed, the predicted rat-
ing for a user-item pair is computed as the similarity-weighted
average of the ratings that (in the item-based approach) the
user has given to the k most similar items or (in the user-
based approach) the ratings that the k most similar users
have given to the item. More formally, the predicted rating
r̂(u, i) for user u and item i, in the user-based approach, is
computed with:

r̂(u, i) = r̄u +
Σk

j=1

(
sim(nj , u)(rnj ,i − ¯rnj

)
)

Σk
j=1sim(nj , u)

(2)

where r̄u is the mean rating of user u, and nj is the jth

neighbour of u. In the following experiments, we set the
neighbourhood size k to 50 for both approaches.

2.3 Latent Factor Model
Many recent recommender algorithms have been based on

latent factor models [17]. The idea behind these models is
to factorize the rating matrix into two lower rank matri-

2http://mahout.apache.org/

ces, one capturing user factors (pu), and one for item fac-
tors (qi). Each user and item is represented over a fixed
f−dimensional feature space, where f is a low-dimensional
parameter to the model. A predicted rating for a user-item
pair (u, i) is then computed with the inner product between
the related factor vectors:

r̂(u, i) = puq
T
i (3)

Majority of recent models learn the factor vectors using
any available ratings and an objective function; in this work,
we follow Koren et al. [17] and learn the vectors’ factors
via a gradient descent objective function. To be consistent
with the literature, we will refer to this model as PureSVD.
It uses f = 150 features which are optimised by running
over 60 iterations. We use the exact implementation used
in [4]. We also reproduced the results reported in [4] using
the ranking evaluation strategies to verify the model before
we conducted our experimentation.

2.4 Group Recommendation
All the above methods can be used to generate recommen-

dations for an individual user. In this section, we describe
the strategies that have been historically implemented in or-
der to produce group recommendations. Broadly speaking,
there are two main strategies used for group recommenda-
tion: (a) creating a group profile by combining the individual
members’ preferences into a single profile and (b) generating
and then aggregating, into a single set of recommendations,
lists for each individual member of the group [16, 3].
Merging Profiles. If we have two users, who have re-

spectively rated {i1, i2} and {i3, i4}, then their group profile
is simply {i1, i2, i3, i4}. If, instead, there is an overlap in the
group member’s ratings, such as if they have rated {i1, i2}
and {i1, i3}, then the merged profile is {mean(i1), i2, i3}.
The resulting profile can then be directly used in any of the
CF algorithms as if it were a single user.
Merging Recommendations. A variety of aggregation

techniques have been proposed in the literature [18, 11, 16,
3]. We use the strategy known as Least Misery (LM). This
approach seeks to minimise the probability that any one
member of the group will strongly dislike the recommen-
dations. More formally, once we have generated a set of
recommendation lists for members of a group G, we set the
relevance score of any item i as the smallest relevance score
from amongst the group’s individual’s relevance scores. This
means that the relevance of an item to a group is the least
satisfied member’s score.
Recent work has compared the two strategies: in [5], the

authors found that the first approach marginally outper-
forms the second when using recipe ratings collected from
a variety of families. In [3], instead, concludes that the LM
strategy outperforms a range of other techniques. In this
work, we use and test both strategies. All of the above ap-
proaches tend to assume that peoples’ preferences do not
change across being alone or being in a group. In this work,
we will revisit this assumption by incorporating group mem-
bership into a probabilistic model: [2] also addressed this as-
pect of groups by explicitly integrating a group disagreement
score into the groups’ relevance rating score.

2.5 Evaluating Recommendations
Empirically measuring the quality of recommendations

has, in the past, fallen into two camps. In the majority of

cases, researchers have measured the accuracy of learning al-
gorithms’ predictions for hidden user ratings [17]. However,
since those predictions will be used to rank items, ranking-
based evaluations of CF have also been used [7]: in this
work, we will focus on the latter, and our proposed model
will be tailored towards ranking rather than predicting user
ratings.

Evaluating the effectiveness of group recommendation al-
gorithms has followed similar approaches to broader CF
evaluations, but has suffered from the lack of available data
on group preferences. Many studies have been conducted
by synthetically creating different groups of various mem-
bers based on user-similarities. For example, [3] studied
the performance of different rank aggregation strategies by
creating groups of different users based on similarities and
generating recommendation lists for individual members and
aggregating the lists. We overcome this by using a dataset
that contains individual user preferences and their group
membership. This dataset, from the German movie-rental
site MoviePilot, was released as part of the Context-Aware
Movie Recommendation Challenge at ACM RecSys 20113

and has been recently used to, for example, identify active
members in a household [6].

3. INFORMATION MATCHING FOR
GROUP RECOMMENDATION

As we noted in the previous section, a key aspect of group
recommendation that is missing is the notion of matching
items to users as a group, rather than as a set of individ-
uals. In this section, we introduce a probabilistic model
that seeks to address this problem. We describe the model
via two steps: first (Section 3.1), we summarise the con-
cept of information matching, and how it can be used for
personalised recommendations to individuals. Then (Sec-
tion 3.2), we augment the information matching model to
include group relevance. In the following section, we then
proceed to evaluate the effectiveness of this model against
all of the algorithms that have been described in Section 2.

3.1 Information Matching
Much like traditional CF, the information matching model

reasons upon users and items [13]. However, it does not rep-
resent these entities as sparse vectors of the numerical rat-
ings they have input or received. Instead, each user and item
is described with a set of binary features. More formally, we
define a vector E = {α1, α2, · · · , αf} of user features, and a
vector F = {β1, β2, · · · , βe} of item features. A user is rep-
resented as u ∈ {0, 1}f , or an f -dimensional binary feature
vector over E, where αk = 1 if u is described by the kth

feature in E. Similarly, each item i is represented with an
e-dimensional binary vector over F . As before, each βl = 1
if i is described using lth feature in F . The model makes
no initial assumptions about what kinds of features exist: in
practice, E and F may differ. In our case, individual users
are described by item-features (i.e., E is the item space),
and we treat users as features for the items (F is the set of
users).

We assume that, as implicitly defined within any domain
of recommendation, there exist directional relevance rela-
tionships between the users and items. User features have

3http://2011.camrachallenge.com/call-for-papers/

a preference toward item features: for example, a user de-
scribed with a“child” feature may prefer items that have the
“cartoon”feature. Similarly, item features have an appeal to-
wards particular user features: as before, an item described
with the “cartoon” feature may appeal to those users with
the“child” feature. We formally define the binary preference
matrix as:

M =

β1 β2 · · · βe

α1 1/0 1/0 · · · 1/0
...

...
...

. . .
...

αf 1/0 1/0 · · · 1/0

Similarly, the binary appeal matrix is defined as:

N =

α1 α2 · · · αl

β1 1/0 1/0 · · · 1/0
...

...
...

. . .
...

βe 1/0 1/0 · · · 1/0

We note that M does not necessarily equal NT . For ex-
ample, a user described with feature “student” may have a
preference for a car described with the“luxury item”feature,
but the car described with the “luxury item” may not have
appeal to users with the “student” feature4.
In practice, the model assumes that varying degrees of

uncertainty exist on features that describe u and i. Thus,
we say that there is a probability that a user is described
with a feature αl, and represent this with P (αl = 1|u). In
our case, we assume that an individual’s rating for an item is
a stochastic function that combines the user-item preference
with the item-user appeal. In other words, given a user u’s
rating r for item l, the feature αl is:

P (αl = 1|u) ≡ P (αl = 1|rl) (4)

We assume that every individual user (and item) feature
has a given Poisson rating distribution over the items (ref.
users) that it describes, and another Poisson rating distri-
bution on the items it does not describe. We opt for the
Poisson distribution since it has successfully been used for
term frequencies in information retrieval ranking [27] and
since ratings tend to be small integers. We further assume
that this user’s ratings are the sole result of this feature de-
scription of items. Similarly, to estimate the item feature
distribution over the kind of users, we assume that the ob-
served ratings on this item are the result only of this item
description of the user. These assumptions are clearly over-
simplifications; we leave more sophisticated models to future
work. Using these conditions, we compute the probability
that the feature αl describes user u as:

P (αl = 1|r) =
P (r|αl = 1)P (αl = 1)
∑

αl∈{0,1} P (r|αl)P (αl)
(5)

where r denotes user u’s rating for the lth item. We similarly
compute P (βm = 1|i) ≡ P (βm = 1|r). The Poisson distri-
butions have parameters λ1, λ0, and a mixture probability
p1; we estimate these mixture parameters using the Expec-
tation Maximisation algorithm [9]. In learning the mixture
parameters values, we assign a“0”rating to all the items that

4This example assumes that, in general, students are not
likely to be able to afford luxury items, and the car manu-
facturer is probably not targeting his product to students.

the user never rated, which implies that the items were not
relevant. While this may not be the case, this is common
practice in CF when rating prediction is not involved [7].
By substituting the estimated mixture parameter values, we
can compute:

P (αl = 1|u) ≡ P (αl = 1|r)

= pl1
e
−λαl1 λr

αl1(

p1e
−λαl1 λr

αl1
+ (1− p1)e

−λαl0 λr
αl0

) (6)

where pl1 = P (αl = 1), λαl1
is the average value of αl if l

describes u, and λαl0
is the average value if the feature αl

does not describe u. We similarly compute the probability
for P (em = 1|i). Finally, we calculate the relevance proba-
bility of a user-item pair (u, i), or P (R = 1|u, i) as derived
in [13]:

P (R = 1|u, i) ∝R

∏

<αl,βm>

P (αl = 1|u)

P (αl = 1)
︸ ︷︷ ︸

part 1

P (βm = 1|i)

P (βm = 1)
︸ ︷︷ ︸

part 2

(7)

Which captures the user description of feature l (Part 1) and
the item description for feature m (Part 2). Once we com-
pute the relevance score for each item for a given user using
Equation 7, we rank all the items based on their probability
of relevance.

In summary, information matching offers a different means
of computing the relevance between a user and an item, by
reasoning on the preference that the user may have for the
item, and the appeal that the item may have for that user.
In the following section, we build on this model so that it
can further include the notion of groups of users.

3.2 Probabilistic Group Recommendation
We now describe how the model above can be augmented

in order to provide group recommendations. We first define
a group, describe different aspects of group recommendation,
our notation, and provide a definition for item relevance to
a group. Then, we describe a framework that uses informa-
tion matching, sets of users, and group ranking strategies to
compute item relevance to groups.

A group is a set of individuals who are set in a shared con-
text (e.g., members of the same household, friends, etc.) and
who may have common interests. Each individual will have
both personal and group preferences: interests that they are
likely to pursue as individuals, which may be unique and
independent from others, and preferences that arise from
being a member of the group, which will thus be shared
with other group members. The relevance of an item to
any given group will vary with the type of group that seeks
recommendations. There are many different types of such
groups that could be defined. For example:

1. Consensus Preference Group. If a group is a set of
friends who want to do something together (e.g., go to
the cinema), then the recommended items should be
relevant to all individuals, or, at least, not disliked by
any one member in those instances where no consensus
is available.

2. Shared Preference Group. For groups that, again,
seek items to be enjoyed together, but with condi-
tions that are more relaxed than consensus preference

groups: recommended items should be relevant to all
members, or at least not disliked by the majority when
no consensus is available.

3. Split Preference Group. If a group consists of
a household who wants recommendations as a unit,
but may “consume” the items at different times (e.g.,
members of a family watching different television pro-
grams), then the relevance of an item will be deter-
mined by whether there exists at least one user who
likes the item.

In the following, we use these notions of group relevance to
extend the information matching probabilistic framework so
that it caters for recommending items to groups. We define
the following hypothesis: The relevance between a group and
an item i is only dependent on the relevance of i to individ-
ual members of the group. Using this hypothesis, we derive
a probabilistic group recommendation framework that not
only includes the preferences of individual users but also in-
tegrates the users preferences when they are in a group while
recommending a set of items.
First, we define the following notation:

1. G is a group containing a set of h users; ℑ is the set
of users ℑ = {u1, u2 · · · , uh}.

2. Rg is the binary group relevance between any group-
item pair. Rg is 1 if the item is relevant to the group,
and 0 otherwise.

3. ℜ is a vector of values containing the relevance of each
user uj ∈ ℑ to a given item i.

In order to recommend a set of items to a group G, we
therefore need to calculate P (Rg = 1|G, i) for each item, or
the probability of relevance between the group G and each
individual item i in collection. We derive this probability
as follows. First, the probability of an item’s relevance to a
group is defined as:

P (Rg = 1|G, i) =
∑

ℜ

P (Rg = 1,ℑ,ℜ|G, i) (8)

The Bayesian transformation allows to rewrite this as:

P (Rg = 1|G, i) =
∑

ℜ

P (Rg = 1|ℑ,ℜ, i, G)
︸ ︷︷ ︸

Part 1

P (ℑ,ℜ|G, i)
︸ ︷︷ ︸

Part 2

(9)

We know that the Rg is dependent only on ℑ,ℜ, i, so we
can ignore G in part 1, since group relevance of an item is
dependent only on the relevance of each individual member
of the group to that item (as per our hypothesis). Similarly,
we can ignore G in part 2 as individual user’s relevance given
an item is independent of the group/groups s/he belongs to:

P (Rg = 1|G, i) = P (Rg = 1)
∑

ℜ

P (ℜ, u1, · · · , uh, i|Rg = 1)P (ℜ|u1, · · · , uh, i) (10)

Assuming that the relevance Rj ∈ ℜ is dependent only on
uj , i and eliminating the constant P (Rg = 1), we can rewrite

the above equation as:

P (Rg = 1|G, i) ∝Rg

∑

ℜ

{
h∏

j=1

P (Rj , uj , i|Rg = 1)

}

︸ ︷︷ ︸

Part 1

{
h∏

j=1

P (Rj |uj , i)

}

︸ ︷︷ ︸

Part 2

(11)

Using Equation 11, we obtain a probabilistic model for group
recommendation that accounts for both group (Part 1) and
user (Part 2) relevance. The Group part of the Equation
11 captures the i relevance to uj when she/he is in a group
where as the Individual captures the relevance of i to uj as
an individual.

Assuming that the group recommendation scenario is to
find items that all members like (i.e., the context is a con-
sensus preference groups), we know that for Rg = 1 then
Rj = 1 for each (uj , i) where uj ∈ G. By turning this im-
plication around, we set P (Rj = 1, uj , i|Rg = 1) = 1 and
P (Rj = 0, uj , i|Rg = 1) = 0. Finally, by substituting these
into Equation 11 we get:

P (Rg = 1|G, i) ∝Rg

h∏

j=1

P (Rj = 1|uj , i) (12)

We note that, by defining the problem space probabilis-
tically, any mechanism to estimate the relevance between a
user-item can be substituted into the framework. For ex-
ample, if the context contains split preference groups, items
could be ranked with:

P (Rg = 1|G, i) ∝Rg

min{P (R1 = 1|u1, i), · · · , P (Rh = 1|uh, i)} (13)

Which captures the concept of Least Misery between the
group members, and is the approach that we adopt in the
following evaluation.

A crucial aspect of the computation of relevance in Equa-
tion 13 is that the probabilities of relevance between all the
users in the group to all the items in the collection must be
comparable, i.e. the probability space in which the proba-
bility of relevance between all user-item pairs is computed
must be the same [24, 23]. This is uniquely achievable by
using the principles of information matching [13]: most of
the traditional relevance ranking functions used in informa-
tion retrieval are not capable of estimating this relevance
because they function on probability event spaces that are
either conditioned on users (queries) [27] or items (docu-
ments) [30].

In summary, we outline the group recommendation algo-
rithm that we have proposed here with the pseudocode in
Algorithms 1 and 2. Algorithm 1 focuses on computing the
user and item description vectors, and facilitates parallelis-
ing the algorithm for large-scale data. Algorithm 2, instead,
computes the relevance of items to groups based on the least
misery relevance of items to each member.

4. EVALUATION
In this section, we evaluate how the information matching

model for group recommendation, introduced in the previ-
ous section, compares to the standard set of CF algorithms
from Section 2: popularity, neighbourhood, and latent factor
models.

Dataset Users Movies Ratings Rating scale Label
MovieLens (100K) 983 1682 100,000 [1-5] ML100K
MovieLens (1 Million) 6,040 3,952 1,000,000 [1-5] ML1m
MoviePilot (Training) 171,670 23,974 4,391,822 [0-100] MPtr
MoviePilot (Evaluation) 594 811 4,482 [0-100] MPEval

Table 1: Dataset Descriptions. The number of users, items, and ratings as well as the two different rating
scales used in each dataset. The “label” column denotes how the algorithms are referenced in the text and
other tables.

Algorithm 1 Separately Calculate User and Item Vectors

Compute each user description vector
for u ∈ Users U do

for l = 1 · · · f do

Eu[l] =
P (αl=1|u)
P (αl=1)

end for
end for
Compute each item description vector
for i ∈ Items I do

for k = 1 · · · e do
Fi[k] =

P (βk=1|i)
P (βk=1)

end for
end for

Algorithm 2 Given group G, Calculate the relevance r̂ for
each item for the group by Least Misery

t = relevance threshold
X = (u, i) ∈ User × Items where r(u, i) ≥ t
for u ∈ G do

for unrated i ∈ Items I do
r̂(u, i) = 1
r̂(G, i) = ∞
for (m,n) ∈ X do

r̂(u, i) = r̂(u, i)× (Eu[l]× Fi[k])
end for
if r̂(G, i) ≥ r̂(u, i) then

r̂(G, i) = r̂(u, i)
end if

end for
end for

Section 4.1 introduces the datasets that we used: a MoviePi-
lot dataset of households’ ratings for movies for group rec-
ommendation, and the widely used MovieLens datasets, that
allow us to provide results that are comparable with the lit-
erature. Section 4.2 describes the methodology and metrics
that we use; finally, Section 4.3 details all the results we
obtained.

4.1 Datasets: MoviePilot and MovieLens
We use three different movie-rating datasets: the two pub-

licly available MovieLens datasets (which differ in size) [20],
and a MoviePilot dataset that was released as part of the
Context-Aware Movie Recommendation 2011 Challenge at
ACM RecSys [1], or CAMRa. We note that the main task
of the first track of the challenge was to address the same
problem5 that we describe here; that is, recommending a
given (mp) set of items to a household of users.

5http://2011.camrachallenge.com/call-for-papers/

The characteristics of the datasets are given in Table 1:
there is a wide range in both the number of users and movies,
and the MoviePilot data uses a 0 to 100 rating scale (as op-
posed to MovieLens’ 1-5 star ratings). Furthermore, the
MoviePilot data contains 290 unique households with be-
tween two to four members: majority of the user-ids have
been assigned to a household. We note that, although previ-
ous research has used the MovieLens data to examine group
recommendation scenarios, these datasets do not include any
explicit group membership data. In the past, researchers
have overcome this by forming implicit groups in the data
[3]. However, since the MoviePilot data does contain group
membership features, we solely use the MovieLens data to
provide results for recommendations to individuals that al-
lows our model to be compared with the CF literature.

4.2 Methodology and Metrics
Given the datasets above, we now describe how we tested

and measured the efficacy of the recommendation algorithms
described in Sections 2 and 3. We tested the algorithms in
two settings: how well they can produce recommendations
for individuals, and how well they produce recommendations
for groups. We then compare these two settings to examine
how much performance is lost between the two scenarios.

Recommendations to Individuals. First, we veri-
fied how our model performs when used to compute rec-
ommendations for individuals, compared to the other ap-
proaches. The main purpose for doing so is two-fold: (a) in
previous sections we posited that better group recommen-
dations could be obtained by more accurate models of group
members, and (b) we demonstrate that we compare against
strong baselines by reproducing results from [4].

In our evaluation, we rank all the items that each tar-
get user has not rated in the training set: for ML100K,
ML1M and MoviePilot we ranked more than 1500, 3800,
23000 items respectively. We then set those test set items
that the user rated higher than a given threshold (e.g., 4
stars or higher on the 1-5 scale) as relevant and all other
items, both those rated below the threshold or not rated at
all, as not relevant. We note that, in doing so, we will tend
to observe very low performance scores. We rank all the
items that were not rated by the user for two reasons: (1)
it is more closer to the task that practical systems must do,
and (2) it produced results with a more accurate distinction
between different models, in terms of performance.

To conduct our experiments with the MovieLens data, we
have randomly divided the datasets into training (60% of
the data) and test sets, making sure that ratings from any
given user are in both training and testing. We repeat this
process five times to compute 5-fold cross validated results.
We also used the MoviePilot data, by disregarding the group
memberships.

Individual Recommendation Metrics. We evaluate
performance with the following ranking metrics. First, for
every user we compute the precision at rank position N de-
fined as:

P@N =
relN
N

(14)

where N is the length of the ranked list and relN is the
number of items with user rating greater than the relevance
threshold rating in the ranked list. The precision metric
evaluates how well a model performs in putting relevant
items in a top-N recommendation list, regardless of its rank.
Second, we measure the Normalised Discounted Cumula-

tive Gain (nDCG). This metric measures the goodness of
ranked list by considering the ratings for the lists’ items
with the discounted cumulative gain (DCG). We denote the
rating that user u gives item i as r(u, i). The discounted cu-
mulative gain for user u at rank N , or DCGu

N , is computed
as:

DCGu
N = r(u, i1) +

N∑

j=2

r(u, ij)

log2(j)
(15)

We denote IDCGu
N as the maximum gain value for the

user that is obtained with the optimal re-ordering of the
N items. We use this value to produce the normalised dis-
counted cumulative gain, nDCGu

N :

nDCGu
N =

DCGu
N

IDCGu
N

(16)

In computing the nDCG score for each user, we assign a
“0” rating to all the items that were not rated by the user,
so that if the model recommends any item that was not
rated by the user it will be penalised. To evaluate the global
performance, we compute the average value of each metric
over all the users. We denote the overall precision and nDCG
at N with P@N , NDCG@N .
Finally, we also compute the system oriented performance

metric Mean Average Precision [14], or MAP, which is de-
fined as:

MAP =
1

|U |

|U|
∑

j=1

1

|Lj |

|Lj |∑

k=1

Precision(RLjk) (17)

where U is the set of users, Lj is the set of relevant items
for the user j and RLjk is the ranked list of items until kth

relevant item for the user j. Precision(RLjk) for user j is
computed using precision@|RLjk|.
Recommendations to Groups. Next, we experiment

with the extent that the algorithms can produce quality rec-
ommendations for groups, using the MoviePilot data. The
methodology that we adopted sought to align itself to the
structure of the CAMRa challenge. The MoviePilot data
contains a set of households H came already divided into
training and evaluation sets: the task of the challenge was
to recommend a specified number of items to each house-
hold; data splitting and the specification of number of items
to recommend to each household was defined by the organ-
isers; the range of number of items recommended to each
household is between 1 and 82. We thus use the training set
(MPtr) to learn the model and rank all the non-rated items
for each user and compare to the evaluation set (MPEval)
for both the recommendation tasks.

Figure 1: Recommending to Individuals. Pre-
cision@5 variance in performance, when using
PureSVD and the IMM on the MovieLens 100k
dataset, as the threshold of relevance is changed.

Group Recommendation Metrics. To evaluate the
quality of group recommendation we use group precision
at rank position mp, grP@mp, for the group recommenda-
tion list and the Mean Average Precision (MAP) for the
group, where mp is the number of items recommended to
each household as defined in the CAMRa data set. Group
MAP is computed as:

gMAP =
1

|H|

|H|
∑

j=1

1

|Lj |

|Lj |∑

k=1

Precision(RLjk) (18)

where H is a set of households, Lj is the set of relevant set
of items for the household j and RLjk is the ranked list of
items until the kth relevant item for Hj . Precision(RLjk)
is computed as the average of the precisions of individual
members of the household Hj .

6

4.3 Experimental Results
Since we will be providing both reference (individual rec-

ommendation) and group recommendation results, in the
following we describe each evaluation strategy separately.
In the final subsection, we compare these two sets of exper-
iments to examine how group and individual recommenda-
tion contexts differ.

4.3.1 Recommendations for Individuals
Table 2 summarises the performance of each model on

different collections, with respect to each evaluation met-
ric, when an item is considered to be relevant if the rating
given by the user is 5 for MovieLens and greater than 70 for
the MoviePilot data. Most notably, we have only reported
MAP scores for the MoviePilot data. The reason for this is
that the performance of the neighbourhood and latent factor
models was close to 07. Furthermore, the simple popularity
based model (Pop-item) often produces better results than

6http://2011.camrachallenge.com/evaluation/
7A similar result was reported on the competition
web page: http://2011.camrachallenge.com/2011/11/
final-evaluation/

Algorithm
Collection Metric k-Item k-User PureSVD Pop-item IMM
ML100K P@5 0.00135 0.006 0.067 0.227 0.267

NDCG@5 0.0036 0.0091 0.0566 0.216 0.245
MAP 0.013 0.041 0.061 0.119 0.156

ML1m P@5 0.00047 0.071 0.093 0.149 0.175
NDCG@5 0.0009 0.094 0.113 0.233 0.234

MAP 0.00677 0.0320 0.063 0.109 0.128
MPEval MAP 0.00061 0.00238 0.004 0.12 0.208

Table 2: Recommending to Individuals. Performance results, in terms of Precision@5, Non-Discounted
Cumulative Gain@5 and MAP, when using the popularity baseline, neighborhood approaches (item and user
based), PureSVD, and the Information Matching Model (IMM) in order to generate recommendations for
individual users.

the personalised alternatives. However, we clearly observe
that the IMM performs better than the all the remaining
models on all the metrics. We also note that the IMM per-
formance on P@10, P@20, NDCG@10, NDCG@20 is also
higher when compared with the other models.
We have also tested the extent that performance on in-

dividual recommendation varies when we change relevance
threshold from 3 to 5 (MovieLens) or 70 to 100 (MoviePilot).
Figure 1 shows the performance of both PureSVD and IMM
across these thresholds: the precision increases as the rele-
vance threshold rating is reduced, but the IMM continues to
show better performance than the PureSVD approach.
In conclusion, the individual recommendation results show

that the two best performing personalised recommender mod-
els are the PureSVD and IMM. In the following section, we
show how similar results emerge in the group recommenda-
tion scenario.

4.3.2 Recommendations for Groups
We evaluate group recommendation with our models when

using both of the previously described strategies: (a) by cre-
ating profile for each group based on merging all members’
ratings, and (b) by merging members’ ranked list of items us-
ing Least Misery strategy. As before, we have also repeated
the experiments for various relevance rating thresholds.
Table 3 summarises the performance of each model; we

exclude the results from both the kNN user- and item-based
approaches as they were all zeroes. Once again, it is clear
that the group recommendation model based on the IMM
outperforms the other two methods.
We note that the MoviePilot data does not contain the

group information for all the users in the training data. So,
when we merge the group profiles the items considered in
training were the items rated by at-least one member who
has a group identifier. As a result, we lack the rating in-
formation of the items that were not rated by any mem-
ber of any group, and the total number of items ranked for
each user is less than the total number potential test item-
scompared to the other two methods. From the Table 3,
we can observe that the performance of the profile aggrega-
tion model is higher than the performance obtained for the
merging ranked lists model. However, the group grP@mp
score is higher for the merging ranked lists model than the
aggregated user profile.

4.3.3 Performance Loss Between Individual
and Group Recommendation

Finally, we measured how much recommendation quality
degrades between the individual and group scenarios. Fig-
ure 2 puts the relative performance between individual and
group recommendation of the PureSVD and IMM (in terms
of P@5), as different relevance rating thresholds were tested.

It is clear that, throughout all approaches, a loss is in-
curred when transitioning from individual to group recom-
mendations. This captures the difficulty of the group recom-
mendation problem, and may be explained by the number of
different assumptions that each algorithm must make. How-
ever, not only does the IMM obtain better results compared
to the PureSVD: it also degrades less when used for group
recommendation. In fact, precision wanes by up to 26%
when IMM is used for group recommendation; the PureSVD
approach, instead, loses between 50 − 95% of the precision
it had for individuals when applied to groups.

5. DISCUSSION
In the previous section, we observed how the IMM out-

performs the latent factor approach, when computing ranked
recommendations for both individuals and groups. In this
section, we further discuss the differences between these al-
gorithms, and how these may affect their performance.

The IMM differentiates itself from latent factor and neigh-
bourhood based collaborative filtering in a number of ways.
First, the model does not require a common feature space.
It allows for the users and items to be modelled indepen-
dently of one another (if necessary), and can incorporate
any available information that is solely specific to users or
items. Unlike dimensionality reduction methods, such as
matrix factorisation, Latent Factor Models [17] and topic
models [15], we do not need to set any specific number of
hidden dimensions in which both the users and items will
be represented. In other words, it does not involve a lower
dimensional representation of features.

This approach to relevance seamlessly captures similari-
ties between users and between items. For a given user-item
pair, the formulation incorporates information about other
users who have the same features (i.e. items) as this user,
and other items which have the same features (i.e. users)
as this item. This means that the ranking function implic-
itly uses information from similar users to this one and from
similar items to the target, through a set of relevant user-
item pairs. So, there is no need to explicitly compute the

Merging Individuals’ Profiles
Model Metric > 70 >80 >90

PureSVD grP@mp 0.00027 0.00013 0.000034
gMAP 0.00416 0.00345 0.00221

Rank Aggregation By Least Misery
Metric > 70 >80 >90

PureSVD grP@mp 0.0015 0.00071 0.0001
gMAP 0.0029 0.0021 0.0017

IMM based Least Misery
Metric > 70 >80 >90

IMM grP@mp 0.142 0.112 0.068
gMAP 0.159 0.147 0.120

Table 3: Group Recommendation. Performance results on the MoviePilot data for varied relevance rating
thresholds. We include group precision (grP@mp) and Group Mean Average Precision (gMAP) for (a)
PureSVD on group profiles that are merged ratings of group members, (b) individual PureSVD results that
were merged with Least Misery, and (c) the group information matching model.

(a) PureSVD (b) IMM

Figure 2: Performance Loss Between Individual and Group Recommendations. We plot, for PureSVD and
IMM, the performance change as the relevance threshold is varied. Note that the rating scales for each
plot are different, and that the PureSVD consistently has a higher loss in performance when used for group
recommendation (compared to when it is used for individual recommendation).

similarities between the users or items, which is the basis
of the user-based approaches [26] and the item-based ap-
proaches [25]. The model is also capable of incorporating
other kinds of features; for example, features of the users
other than the items they like. In principle, the preference
and appeal matrices can map between any sets of features;
we did not pursue this aspect in this work due to the lack
of data. Finally, we note that the two components of the
ranking function 7 (parts 1 and 2 in Equation 4) can be
treated independently of each other. This also facilitates
parallelising the algorithm to run on large scale data sets.

6. CONCLUSION
Web recommender systems are increasingly being applied

to group recommendation scenarios, both in instances where
users may share online accounts or may seek recommenda-
tions for shared activities. Recent research in this domain,
however, has addressed this scenario by computing recom-

mendations for individuals and later merging those recom-
mendations together; in doing so, these approaches exclude
the effect of group dynamics on users’ preferences. There-
fore, we have introduced a probabilistic relevance framework
for group recommendation that can integrate any group rec-
ommendation strategy while taking into account the prefer-
ences of the group as a whole. The model can also include
any group-specific features (e.g., group-type, such as family
or friends) that may not be captured in individual’s profiles:
in future work, we would like to investigate this further. In
particular, future work should seek to understand what ad-
ditional features matter for group recommendation, and to
discover what contextual features may influence a group’s
preferences.

We evaluated our approach, particularly focused on the
Least Misery strategy, using available data that contains the
ratings that users (who belong to given households) have
given to movies. Our future work includes extending this
evaluation to examine other techniques as well. We found

that our information-matching approach outperformed a pop-
ularity based baseline, neighbourhood models, and a latent
factor model across a range of ranking metrics when rec-
ommending to groups: we therefore also tested the model
on the MovieLens dataset for individual recommendations
in order to ensure that our results are aligned with others
reported in the literature.

7. REFERENCES
[1] CAMRa ’11: Proceedings of the 2nd Challenge on

Context-Aware Movie Recommendation, New York,
NY, USA, 2011. ACM.

[2] S. Amer-Yahia, S. B. Roy, A. Chawlat, G. Das, and
C. Yu. Group recommendation: semantics and
efficiency. Proc. VLDB Endow., 2(1):754–765, Aug.
2009.

[3] L. Baltrunas, T. Makcinskas, and F. Ricci. Group
recommendations with rank aggregation and
collaborative filtering. In Proceedings of the fourth
ACM conference on Recommender systems, RecSys
’10, pages 119–126, New York, NY, USA, 2010. ACM.

[4] A. Belloǵın, P. Castells, and I. Cantador.
Precision-oriented evaluation of recommender systems:
an algorithmic comparison. In RecSys, 2011.

[5] S. Berkovsky and J. Freyne. Group-based recipe
recommendations: analysis of data aggregation
strategies. In Proceedings of the fourth ACM
conference on Recommender systems, RecSys ’10,
pages 111–118, New York, NY, USA, 2010. ACM.

[6] P. G. Campos, A. Bellogin, F. Dı́ez, and I. Cantador.
Time feature selection for identifying active household
members. In Proceedings of the 21st ACM
international conference on Information and
knowledge management, CIKM ’12, pages 2311–2314,
New York, NY, USA, 2012. ACM.

[7] P. Cremonesi, Y. Koren, and R. Turrin. Performance
of recommender algorithms on top-n recommendation
tasks. In RecSys, RecSys ’10, 2010.

[8] A. Crossen, J. Budzik, and K. J. Hammond. Flytrap:
intelligent group music recommendation. In
Proceedings of the 7th international conference on
Intelligent user interfaces, IUI ’02, pages 184–185,
New York, NY, USA, 2002. ACM.

[9] A. Dempster, N. Laird, and D. Rubin. Maximum
likelihood from incomplete data via the em algorithm.
J. Royal Statistical Society, Series B, 1977.

[10] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Trans. Inf. Syst.,
22(1):143–177, Jan. 2004.

[11] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In Proceedings
of the 10th international conference on World Wide
Web, WWW ’01, pages 613–622, New York, NY, USA,
2001. ACM.

[12] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Commun. ACM, 35(12):61–70, Dec. 1992.

[13] J. Gorla, S. Robertson, J. Wang, and T. Jambor. A
theory of information matching. CoRR,
abs/1205.5569, 2012.

[14] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. T. Riedl. Evaluating collaborative filtering

recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, Jan. 2004.

[15] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Trans. Inf. Syst., 2004.

[16] A. Jameson and B. Smyth. The adaptive web. chapter
Recommendation to groups, pages 596–627.
Springer-Verlag, Berlin, Heidelberg, 2007.

[17] Y. Koren, R. M. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
IEEE Computer, 2009.

[18] J. Masthoff. Group modeling: Selecting a sequence of
television items to suit a group of viewers. User
Modeling and User-Adapted Interaction, 14(1):37–85,
Feb. 2004.

[19] K. McCarthy, M. Salamó, L. Coyle, L. McGinty,
B. Smyth, and P. Nixon. Cats: A synchronous
approach to collaborative group recommendation. In
FLAIRS Conference, pages 86–91, 2006.

[20] B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and
J. Riedl. Movielens unplugged: experiences with an
occasionally connected recommender system. In
Proceedings of the 8th international conference on
Intelligent user interfaces, IUI ’03, pages 263–266,
New York, NY, USA, 2003. ACM.

[21] M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl.
Polylens: a recommender system for groups of users.
In Proceedings of the seventh conference on European
Conference on Computer Supported Cooperative Work,
ECSCW’01, pages 199–218, Norwell, MA, USA, 2001.

[22] S. Pizzutilo, B. De Carolis, G. Cozzolongo, and
F. Ambruoso. Group modeling in a public space:
methods, techniques, experiences. In Proceedings of
the 5th WSEAS International Conference on Applied
Informatics and Communications, AIC’05, pages
175–180. World Scientific and Engineering Academy
and Society, 2005.

[23] S. Robertson. The unified model revisited. In SIGIR
2003 Workshop on Mathematical/Formal Models in
Information Retrieval, 2003.

[24] S. Robertson. On event spaces and probabilistic
models in information retrieval. Inf. Retr.,
8(2):319–329, Apr. 2005.

[25] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In WWW, 2001.

[26] U. Shardanand and P. Maes. Social information
filtering: algorithms for automating ẅord of moutḧ. In
CHI’95, 1995.

[27] R. Stephen and Z. Hugo. The probabilistic relevance
framework: Bm25 and beyond. Foundations and
Trends in Information Retrieval, 3(4), 2009.

[28] X. Su and T. M. Khoshgoftaar. A survey of
collaborative filtering techniques. Adv. in Artif. Intell.,
2009:4:2–4:2, Jan. 2009.

[29] Z. Yu, X. Zhou, Y. Hao, and J. Gu. Tv program
recommendation for multiple viewers based on user
profile merging. User Modeling and User-Adapted
Interaction, 16(1):63–82, Mar. 2006.

[30] C. Zhai. Statistical language models for information
retrieval: Critical review. Foundations and Trends in
Information Retrieval, 2(3):137–213, 2008.

