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ABSTRACT
Many Information Retrieval (IR) models make use of offline
statistical techniques to score documents for ranking over
a single period, rather than use an online, dynamic system
that is responsive to users over time. In this paper, we
explicitly formulate a general Multi Period Information Re-
trieval problem, where we consider retrieval as a stochastic
yet controllable process. The ranking action during the pro-
cess continuously controls the retrieval system’s dynamics,
and an optimal ranking policy is found in order to max-
imise the overall users’ satisfaction over the multiple peri-
ods as much as possible. Our derivations show interesting
properties about how the posterior probability of the docu-
ments relevancy evolves from users feedbacks through clicks,
and provides a plug-in framework for incorporating different
click models. Based on the Multi-Armed Bandit theory, we
propose a simple implementation of our framework using a
dynamic ranking rule that takes rank bias and exploration of
documents into account. We use TREC data to learn a suit-
able exploration parameter for our model, and then analyse
its performance and a number of variants using a search log
data set; the experiments suggest an ability to explore doc-
ument relevance dynamically over time using user feedback
in a way that can handle rank bias.

1. INTRODUCTION
In Information Retrieval (IR) research, we study mathe-

matical models of IR systems because they provide formal
and quantitative tools for us to understand the underlying
retrieval mechanisms, and at the same time, lead to the
development of practical retrieval algorithms and systems.
Mainstream IR theories have been largely devoted to the of-
fline evaluation of corpora to estimate document relevancy,
such as the statistical language models and relevance models
that score a query by analyzing term statistics [33] or link
analysis approaches that look at the long term stabilised
visit rates of web documents [15].

Alternatively, we propose an online approach that is able
to dynamically learn, over multiple periods, the correct rank-
ing of documents for a query with or without any preced-
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ing evaluation. This variation of the IR problem can be
applied in situations where document content is unclear or
incomplete for prior analysis (for instance in collaborative
filtering); where new documents of unknown relevance are
routinely added (such as information filtering); or simply as
a complement to existing data and techniques (web search).
We formally express Multi Period Information Retrieval as:

“An information retrieval system receives a query over
time t = 1 . . . T , where t denotes a single period when the
query is shown to a user. For each period the system re-
turns a set of ranked documents and observes user feedback
in the form of clickthroughs. How do we determine an op-
timal ranking policy sequentially that maximises the overall
user’s satisfaction for that query over the multiple periods of
time?”

Our study in this paper is a theoretical one; we offer a
general solution framework by using an optimal control for-
mulation [3]. Any type of dynamically controlled system
requires a control signal [22], which we regard as the rank
action at time t, where its state, in our case, denotes the
system’s belief about the documents’ relevancy. Some form
of sensor (such as user feedback) is also required so that the
system can adjust its state (thus its belief about the rele-
vancy) to its changing environment. The rank action at a
given time alters the system states by considering the sys-
tem’s dynamics (in this case the time evolution of the belief
about the documents relevancy). As a result, we find that
the optimisation framework is flexible and many click mod-
els, such as [11, 17], can be naturally integrated. It is worth
noting that our theoretical framework is different with re-
gard to the online learning approaches in [28, 32], where the
goal is to optimize over pairwise preference learning, whilst
ours is to estimate the probability of relevance over time,
making it more closely related to the classic information re-
trieval methodologies such as relevance models [25, 20] and
relevance feedback [26].

Under this framework, three critical issues are addressed.
Firstly, the system’s state is represented as the posterior
probability of a document being relevant, and we propose an
iterative update mechanism to update the posterior proba-
bility about the documents relevancy from users’ feedbacks.
The derivation gives insights into how rank bias influences
the evolution of the probability of relevance. Secondly, the
system’s dynamic function is derived, which shows how the
belief (thus the posterior probability) evolves according to
the rank decision made in the past and the user feedback re-
ceived so far. Lastly, equipped with the dynamic function,



we demonstrate its use by developing simple ranking rules
which incorporate the recent results from multi-armed ban-
dit machine research [5]. The dynamic function is flexible
enough to incorporate parameters from a number of click
models, and the degree of exploration used by the ranking
rules can be adjusted.

We conduct two types of experiment. Firstly, experi-
ments incorporating simulated users based on TREC rel-
evance judgement data allow us to tune the algorithm over
a range of parameters and provides some preliminary analy-
sis on the effect of exploration on the performance of various
click models. We follow this experiment by using the Yan-
dex Relevance Prediction Challenge data set to test our al-
gorithm in a realistic, practical setting using search log data
in order to demonstrate its capability in learning relevance
rankings. We also illustrate the flexibility of the model by
testing a number of variants, for instance, a version that
incorporates new documents dynamically and another that
learns from click log data in advance.

This paper is organised as follows: we start with the re-
lated work in Section 2, multi period IR modeling will be
presented in Section 3, Section 4 will discuss and display the
experimental results and the evaluation and conclusions will
be in Section 5.

2. RELATED WORK
The multi period IR problem is a general one and com-

pletely solving it requires various aspects of research. This
section provides a short overview of the related work.

The concept behind multi period information retrieval,
that of dynamically using user feedback to improve a search
ranking over time, is built upon the ideas behind relevance
feedback where the aim is typically to extract information
from the user and use it to update the IR system. Much of
the literature concerns the various methods of acquiring this
information and fall broadly into two categories:

Explicit Where the user directly rates a document or a
search ranking for its relevance (often to the detriment
of the user experience). The Rocchio algorithm is com-
monly used with this form of feedback [26].

Implicit User actions, such as time spent on search page,
clickthroughs and actions following a clickthrough [12],
are recorded whilst users are in the process of satis-
fying their information need. Whilst it is important
that indirect observations of user behaviour must be
interpreted correctly to infer feedback, they have been
shown to correlate with explicit relevance judgements
[14].

For our model we chose clickthroughs as our method of im-
plicit user feedback as it is a measure that is abundant,
cheap, readily available and there has been a plethora or
research into how to interpret them.

Clickthroughs have established themselves as the most
common way to infer user satisfaction for a given IR task
(for instance, web search) [14, 1]; nonetheless, they are not
a perfect representation of user interest and document rel-
evance and are subject to noise and bias [27]. It has been
shown that aside from the relevance of the displayed docu-
ment, the largest influence on whether a user clicked on a
document is its rank [18]. Various click models have been

proposed, from the basic mixture model, examination hy-
pothesis and cascade models [11] (explored in this paper,
along with the dependent click model [17]) to the recent
General Click model [35]; these models being Bayesian rep-
resentations of the probabilities associated with a users typ-
ical behaviour. What these models have in common is that
they attempt to disambiguate what a clickthrough is actu-
ally inferring in the context of a set of search results, and as
such a click model is essential in any dynamic system em-
ploying clickthroughs as implicit feedback, as evidenced on
learning click models in [2].

The key problem in this paper is how to devise optimal
ranking strategies over time which dynamically improves
a ranking algorithm and in the end maximises a certain
expected utility. One of the relevant formulations is the
Multi-Armed Bandit Problem, which is a classic statistical
resource allocation problem. The usual analogy is that of a
casino with multiple one-armed bandit slot machines, each
with a different probability distribution of rewards, and the
problem is to find the best strategy for exploring the dis-
tributions of the bandits, whilst also exploiting the highest
paying bandit. Building on previous work on non-optimal
but asymptotic solutions, [5] designed practical, linear-time
algorithms including the popular UCB (Upper Confidence
Bound) algorithm which much of this work is based on. An-
other important variant is the Exp3 algorithm [6], which is
designed to provide asymptotic performance in the worst
case scenario of an adversary setting the bandit rewards
(rather than stochastic or deterministic rewards).

The UCB algorithm is an ongoing area of research and
has improved variations, offering lower regret bounds (a typ-
ical evaluation metric) and better optimal performance [7,
4]. Also, multi-slot Multi-Armed Bandit (MAB) are another
active area [19], with a particular focus on stochastic algo-
rithms in the adversarial setting. MAB’s are increasingly
being used in IR, such as using one to display web adverts
or news stories [10], and also [23] where the authors used it
to provide a diversified rank solution.

A related theoretical development can be found in [16],
which extends the PRP to cover interactive retrieval, the
goal being to design interactive strategies within a single
search session for a given user. A similar idea to this was
proposed by [9], providing an interactive method of display-
ing diverse results whilst retaining high recall. These two
methods interpret dynamic IR as an interactive, single user
experience, whereas we are instead concerned with the dy-
namics of the IR system itself over time with a population
of users. The term can also refer to the dynamic nature of
document content (such as for news websites), which [13]
exploits in order to improve relevancy rankings.

Other work that focuses on using clickthroughs in an iter-
ative fashion to learn document rankings include [31]’s work
in using clickthroughs in search logs to infer the similarity
between pairs of queries and pairs of documents. More re-
cently, [28, 32] also propose an alternative online algorithm
for learning document rankings via user feedback, a key dif-
ference being their focus on preference learning (pairwise
comparison) as opposed to our focus on probability of rele-
vance and rank bias, which gives our algorithms flexibility
with click models. In this regard, our statistical framework
can be considered as the multi period extension of the classic
relevance retrieval methodologies proposed in [25, 20].



3. MULTI PERIOD IR MODELING

3.1 An Optimal Control Formulation
We investigate a scenario for a given information need

(such as a query) where there are N documents that need
to be ranked. For each time period t (or for each search
of the given query), a fixed number M documents (where
0 < M ≤ N) are retrieved and displayed to the user. The
rank decision (or rank action) is denoted as vector

d(t) = {d1(t), . . . , dM (t)} ∈ {1, . . . , N}M ,

where di(t) is the document retrieved at rank i and at time t
(where di(t) 6= dj(t) ∀ i 6= j).

We view the IR problem as a dynamic and controllable
process, in which the rank action d acts as our input into the
system, and we record clickthroughs R(d(t)) as the output.
Given that we cannot directly observe the probability of
relevance for each document, we can instead observe the
clickthroughs at each rank, which acts as the systems output
signal, and define R(d(t)) as the number of clickthroughs
observed for ranked documents d(t).

The goal of multi period IR is to find the optimal rank
action d∗ that maximises the users satisfaction over time,
e.g., the expected number of clickthroughs (biased by rank)
over time, which is given by

d∗ = (d∗(1), . . . ,d∗(T )) = argmax
d(1)...d(T )

E

[
T∑

t=1

R(d(t))

]

= argmax
d(1)...d(T )

T∑
t=1

E[R(d(t))] (1)

Eq. (1) is a result of assuming that the clickthroughs are
independent and identically distributed (i.i.d.), which is rea-
sonable as for each t the system might receive independent
clicks (note that the clicks over a ranked list may not be
independent) from a random user. It should also be noted
that the expectation is over the probability of click and the
observed clicks random variable, which will be explored fully
in the next section where we will describe an algorithm to
iteratively maximise this expectation.

3.2 Iterative Expectation
We are now concerned with maximising the expected num-

ber of clicks E [R(d(t))], which is achieved when using a rank
action that displays in decreasing order those documents
that have the highest probability of relevance (as defined in
the Probability Ranking Principle [24]). We can estimate
the expected number of clicks for a given ranking by using
a click model.

For a ranking d we have observations over time about the
clickthroughs in different rank positions {Ci(t)}Tt=1, where
C ∈ {0, 1} is a binary variable representing a click. These
can be used to infer the expected clicks over time:

T∑
t=1

E[R(d(t))] =

T∑
t=1

M∑
i=1

∑
Ci(t)

Ci(t)p(Ci(t)|di(t))

=
T∑

t=1

M∑
i=1

p(Ci(t) = 1|di(t)) (2)

However, we do not know whether a user clicking on a docu-
ment was due to the fact that it is relevant or simply because

it has a high ranking position. Mathematically, we assume
that the click is generated by a mixture of two binomial
distributions, where a hidden binary variable is used to rep-
resent the membership, i.e. Si = 0 denotes it is due to the
rank bias at rank i, and Si = 1 due to the document rele-
vance. This results in the following conditional probability
of the click (the time variable t is implied when omitted):

p(Ci|di) = p(Ci|di, Si = 1)p(Si = 1) (3)

+ p(Ci|Si = 0)p(Si = 0)

= p(Ci|di)p(Si = 1) + p(Ci|Si = 0)p(Si = 0)

= rCi
di

(1− rdi)
1−Ciπi + bCi

i (1− bi)1−Ci(1− πi)

Here, three parameters have been defined:

rdi ≡ p(Ci = 1|di), bi ≡ p(Ci = 1|Si = 0), πi ≡ p(Si = 1)
(4)

where rdi is the probability of relevance for document di, bi
is the bias associated with rank i and πi is the probability
that a user will click due to the document’s relevance rather
than blindly due to the rank i.e. the trust the user has in the
search engine. A mixture click model has been similarly de-
fined and evaluated against real click-through data in [11],
and it should be emphasized that the mixture model pre-
sented here is a more general one. A heuristic background
click model in [2] is in fact a case where πi = 1 and bi is con-
sidered as the background click rate, and it can be shown
that other click models such as the Examination Hypothesis
model [11] and Dependent Click model [17] are also special
cases in the formulation by setting different types of param-
eters in Eq. (4).

We have the following EM algorithm to estimate the pa-
rameters up to time T [8]:
E Step:

p(Si|Ci) =
p(Ci|Si)p(Si)

p(Ci|Si = 1)p(Si = 1) + p(Ci|Si = 0)p(Si = 0)
(5)

M Step:

r̂di = p(Ci(T ) = 1|di) =

T∑
t=1

Ci(t)p(Si = 1|Ci(t))

T∑
t=1

p(Si = 1|Ci(t))

(6)

bi = p(Ci(T ) = 1|Si = 0) =

T∑
t=1

Ci(t)p(Si = 0|Ci(t))

T∑
t=1

p(Si = 0|Ci(t))

(7)

πi = p(Si = 1) =
1

T

T∑
t=1

p(Si = 1|Ci(t)) (8)

where the E step is obtained by applying Bayes’ Rule. The
M step can be obtained by maximizing the lower bound of



the following likelihood function:

L({rdi}, {πi}, {bi}) =

T∏
t=1

p(Ci(t)|di) ∝
T∑

t=1

log p(Ci(t)|di)

=

T∑
t=1

log[r
Ci(t)
di

(1− rdi)
1−Ci(t)πi

+ b
Ci(t)
i (1− bi)1−Ci(t)(1− πi)]

≥
T∑

t=1

(
p(Si = 1|Ci(t)) log

r
Ci(t)
di

(1− rdi)
1−Ci(t)πi

p(Si = 1|Ci(t))

+ p(Si = 0|Ci(t)) log
b
Ci(t)
i (1− bi)1−Ci(t)(1− πi)

p(Si = 0|Ci(t))

)
∝

T∑
t=1

(
p(Si = 1|Ci(t)) log(rdi)

Ci(t)(1− rdi)
1−Ci(t)πi

+ p(Si = 0|Ci(t)) log(bi)
Ci(t)(1− bi)1−Ci(t)(1− πi)

)
where the lower bound holds due to Jensen’s inequality [8].
Maximizing the last step with respect to the three parame-
ters respectively obtains the M step.

This algorithm requires iterative steps for each time t and
we can simplify the update procedure for Eq. (6) by fix-
ing the E step and click model parameters πi and bi, and
introducing the following two variables:

αi ≡ p(Si = 1|Ci = 1)

=
p(Ci = 1|Si = 1)p(Si = 1)

p(Ci = 1|Si = 1)p(Si = 1) + p(Ci = 1|Si = 0)p(Si = 0)

=
r̂diπi

r̂diπi + bi(1− πi)
(9)

βi ≡ p(Si = 1|Ci = 0)

=
p(Ci = 0|Si = 1)p(Si = 1)

p(Ci = 0|Si = 1)p(Si = 1) + p(Ci = 0|Si = 0)p(Si = 0)

=
(1− r̂di)πi

(1− r̂di)πi + (1− bi)(1− πi)
(10)

where r̂d is the probability of click for document d estimated
from past observations.

The probability of click Eq. (6) is subsequently updated
by:

r̂di(T ) = p(Ci(T ) = 1|di(T )) =

T∑
t=1

Ci(t)αi(t)
Ci(t)βi(t)

1−Ci(t)

T∑
t=1

αi(t)Ci(t)βi(t)1−Ci(t)

(11)

Which can be iteratively obtained over time, giving us

r̂di(T ) =r̂di(T − 1)
γdi(T − 1)

γdi(T )
+ Ci(T )

(
1− γdi(T − 1)

γdi(T )

)
(12)

where γdi(t) ≡
t∑

k=1

αi(k)Ci(k)βi(k)1−Ci(k) serves as an“effec-

tive”number of impressions, balancing the influence between
the rank bias and probability of relevance.

Analysis: αi and βi are considered as “effective counts”
and differentiate rank positions when receiving a click and

non-click, respectively. αi is an increasing function of i and
is larger if receiving a click on a lower ranked document,
rewarding the fact that a user makes efforts to reach that
rank because it is unlikely that the click is due to the rank
bias. By contrast, if a document is clicked in the top rank,
the effective count is rather small as the click might just be
due to the rank bias, so by the same token we also notice
that βi is a decreasing function with respect to i i.e. for a
higher ranked document, i is small and thus βi is large. If
such a high ranking document is not clicked, we effectively
penalize the document more by adding large βi in the de-
nominator, and as the rank position increases, the penalty
becomes small as well. In summary, a non-click on the doc-
ument at high rank or a click on a low ranked document is
an important observation and should give a large effective
count when updating our belief about the probability of a
click.

Eq. (12) provides the solution to our multi period IR prob-
lem, it is a dynamical function of the probability of rele-
vance, the dynamics of which are relevant to the control
signal d, which is dependent on the previous observations of
clickthroughs. Adjusting parameters πi and bi also allows us
to incorporate some different click models; to illustrate the
flexibility of the proposed framework, in our experiments we
provide alternative schemes by plugging in the Examination
Hypothesis and Dependent Click models introduced in [11,
17].

3.3 Ranking Rule Over Time
Based on the previous section, our multi period informa-

tion retrieval problem can be restated as follows:

d∗ = argmax
d(1)...d(T ))

T∑
t=1

M∑
i=1

p(Ci = 1|di)

= argmax
d(1)...d(T )

T∑
t=1

M∑
i=1

{r̂diπi + bi(1− πi)} (13)

subject to Eq. (12).
The optimisation is subject to the constrained dynamic

function for r̂d. Ideally we wish to seek a dynamic program-
ming solution [3] to find the optimal control rule by modeling
the problem as a Partially Observable Markov Decision Pro-
cess, but this will be the subject of future research. Instead,
an index solution (assigning index scores to documents indi-
vidually and then rank them according to the scores) is pro-
posed to demonstrate the use of the multi period IR formu-
lation by following a multi-armed bandit machine approach.

3.3.1 Iterative Expectation (UCB-IE) Algorithm
The following algorithm is a variant of the popular UCB1

algorithm [5], where we attempt to optimise over the values
for r̂d, which is updated using Eq. (12). We’ve chosen to
proceed with the UCB algorithm due to its simplicity, fa-
miliarity and demonstrative value for our framework, and
leave it to future research to incorporate more complex on-
line learning algorithms.

The UCB-IE algorithm:

1. Set all γd(t) = 1 (to avoid division by zero) and all
r̂d to some prior value between 0 and 1, these priors
could be learned relevancy probabilities or simply a flat
prior of 0.5, either way the outcome will be the same,
all that will be affected is the learning speed. Also, set



parameters πi and bi to that of your click model, and
time step t = 1

2. For all documents d, calculate

Λd = r̂d + λ×

√
2 ln t

γd(t)
(14)

where λ is a constant indicating the preferred degree
of exploration.

3. Set d(t) to be the M documents with the highest Λd

values in decreasing order and display them to the user

4. Record clicks Ci(t) and update variables accordingly,
for i = 1→M

αi(t) =
r̂di(t− 1)πi

r̂di(t− 1)πi + bi(1− πi)

βi(t) =
(1− r̂di(t− 1))πi

(1− r̂d(t− 1))πi + (1− bi)(1− πi)

γdi(t) = γdi(t− 1) + αi(t)
Ci(t)βi(t)

1−Ci(t)

r̂di(t) = r̂di(t− 1)
γdi(t− 1)

γdi(t)
+ Ci(t)

(
1− γdi(t− 1)

γdi(t)

)
5. Repeat steps 2 to 5 for t = 2 . . . T

The Mixed Clicks, Examination Hypothesis and Depen-
dent Click models can be incorporated into the above algo-
rithm by setting the parameters πi and bi accordingly:

Mixed Clicks πi, bi

Examination Hypothesis πi ≡ ηi, bi ≡ 0

Dependent Click Model πi ≡
∏i−1

j=1(1−r̂dj +ηj r̂dj ), bi ≡ 0

where η is a click model specific rank bias parameter.
Using this algorithm, we attempt to learn the optimal

r̂d, representing the documents with the highest probability
of relevance. Due to the rank bias, we adjust the reward
given by a click to reflect the likelihood of the click given its
position, and in a similar way use the effective count γd(t)
rather than the actual number of impressions (such as in
UCB1). Thus, documents that are displayed at lower ranks
will have less ‘impressions’ than higher ranked documents,
and so will still encourage exploration of these documents
into the higher ranks.

Exploration is encouraged by supplementing the proba-
bility of relevance in Eq. (14) with an index term. This
term grows larger with each time step t, or smaller with in-
creasing γ i.e. the term will be small for documents that
are frequently displayed, and will gradually grow larger for
those that are not, until it is large enough to cause the doc-
ument to be displayed. The exploration parameter λ can
be tuned to optimize the amount of exploration that oc-
curs when generating a document ranking, including being
set to 0, causing the UCB-IE algorithm to act myopically
and greedily rank documents in strictly decreasing order of
relevancy.

4. EXPERIMENTS
In the previous section we studied the theoretical prop-

erties of document ranking over time under the assumption
of certain click models. This section continues the study by

evaluating the resulting practical ranking strategies by first
considering a simulation and then using click log data. We
primarily intend to 1) show convergence to an optimal rank-
ing that can maximise evaluation metrics such as MAP and
nDCG over time; 2) determine the benefit of exploration
by contrasting UCB-IE with a myopic variant, and subse-
quently find an ideal value for λ; and 3) demonstrate how
the model can be used in conjunction with typical click log
data to provide good search ranking performance.

Three resulting ranking strategies were evaluated. Namely,
we have the UCB algorithm with Interactive Expectation us-
ing the Mixed-Click (denoted as UCB-IE-MC), Examination
Hypothesis (UCB-IE-EH) and Dependent Click (UCB-IE-
DCM) models. We chose these models as we believe they
reflect the reality well as they have been thoroughly studied
using real clickthrough data (e.g. [11]) and they could be
plugged into our framework.

The ideal evaluation of an online learning algorithm that
incorporates rank bias would require access to an opera-
tional search engine to experiment on. With no access to
one, we have instead performed two evaluations, the first
using simulated users and TREC relevance judgement data,
the second using Yandex click log data, both of which are
explored further in the following subsections.

4.1 TREC Simulation Analysis
We first evaluated whether our model was capable of learn-

ing a correct ranking of documents over time, and also the
effect of exploration on finding an optimal ranking. We
developed an experiment using TREC relevance judgement
data and simulated stochastic users who clicked according
to click models that we set. This allowed us to perform the
experiment in a controlled setting (free of the assumptions
that restricted our click log data experiment) and optimize
and analyse the exploration parameter λ.

To simulate a realistic collection of documents and asso-
ciated relevance values we used ‘TREC 2001 Web Ad Hoc
qrels’ relevance judgements from the TREC-10 Web Ad Hoc
Retrieval Track. We ran the algorithm over 50 different
topics (representing 50 queries), each of which contained
an average of 1408 documents and 41.53 documents judged
relevant (the judged relevance being unknown to the algo-
rithms). Judgements were graded either 0, 1 or 2, which
were normalised to give probability of relevance values 0, 1

2
and 1.

At each time step a ranking of M = 10 documents was
generated by each of the UCB click model variants, and a
simulated user then examined and clicked on the documents
in the ranking according to the corresponding click model.
With no data to learn the click model parameters from, we
set the following click model parameters (the value of 0.8
was picked as it delivered consistent performance across all
click models and topics):

Mixed Click Model πi ≡ 0.8, bi ≡ 0.8i−1

Examination Hypothesis πi ≡ 0.8i−1, bi ≡ 0

Dependent Click Model πi ≡
∏i−1

j=1(1− r̂dj + 0.8j r̂dj ),

bi ≡ 0 (updated at each time step)

For each ranking, we used the underlying TREC rele-
vance judgement to evaluate both the Mean Average Pre-
cision (MAP) and normalized Discounted Cumulative Gain
(nDCG@10) metrics. These were chosen as they are well



MAP

λ 0 0.001 0.01 0.05 0.1 0.2 0.5 1
MC 0.8330 0.8344 0.8388 0.8428 0.8586 0.8849 0.4888 0.1112
EH 0.7979 0.8024 0.8083 0.8391 0.8625 0.8612 0.1875 0.0930

DCM 0.8110 0.8022 0.8118 0.8436 0.8604 0.8576 0.8274 0.6707
nDCG@10

MC 0.9982 0.9977 0.9977 0.9965 0.9914 0.9771 0.6141 0.2364
EH 0.9940 0.9965 0.9942 0.9931 0.9793 0.9331 0.3391 0.2068

DCM 0.9999 0.9999 0.9999 0.9997 0.9993 0.9868 0.9464 0.8056

Table 1: Summary of mean final MAP and nDCG@10 values after T = 500 time steps for each click model
UCB-IE variant, and for each value of the exploration parameter λ. Maximum values are in bold.

regarded in IR research and are optimized when ranking
documents according to the Probability Ranking Principle,
as is our objective function.

We generated rankings for each query over T = 500 time
steps (or query instances) and evaluated MAP and nDCG@10
at each time step. We repeated this experiment 100 times
and averaged out the effect of the stochastic user, and then
repeated the experiment for each of the 50 queries. We av-
eraged our results and repeated the experiment for different
values of λ, the results of which can be seen in Table 1.

From the table we can see that the exploration parameter
λ is indeed essential for tuning the model as performance
when λ = 1 is consistently poor. Conversely, we also see
that in the myopic case (λ = 0) we obtain very good per-
formance, indicating that our framework alone (without any
multi-armed bandit based exploration) is able to learn doc-
ument relevancy over time and generate rankings that give
good MAP and nDCG@10 scores across all click models. As
λ varies from 1 we see a marked improvement that is often
better than the myopic case, before converging to the my-
opic score as λ → 0. This suggests that for larger values of
λ, the model suffers from too much exploration and doesn’t
generate exploitative rankings, whereas there exists an op-
timal amount of exploration that produces better rankings
than the greedy case.

As such, for future experiments we set λ = 0.1 as this
provided good results for each click model in both metrics.
The nDCG@10 metrics showed that smaller values of λ were
optimal, but as the metric was less discriminative we gave
greater focus to the MAP scores instead.

4.2 Click Log Experiment
Following our encouraging simulation analysis, we exper-

imented using a click log data set so that we could 1) use
the click log to learn document relevancies in advance before
generating rankings; 2) use realistic click model parameters
learnt from the data; 3) use the log to evaluate the per-
formance of our algorithm and provide an upper bound to
compare against.

We use the Yandex Relevance Prediction Challenge data
set1, an anonymised search log containing 43,977,859 search
sessions, each containing a query, the documents displayed
at ranks 1 to 10 and any clicks on those documents. No
additional document feature information is given, making
it well suited to our problem definition of learning through
user feedback alone. In addition, the log contained 71,930
relevance judgements for training purposes. For this exper-
iment, we narrowed down the 30,717,251 unique queries to

1http://imat-relpred.yandex.ru/en/

i UCB-IE before Data set UCB-IE after

1 A B* B
2 B E* D

M = 3 C D* E
> M D

E

Table 2: Example demonstrating the restriction of
the data set. A → E are documents chosen by UCB-
IE to display at rank positions i at time t. Bold
indicates that a click occurred for that document at
that position in the dataset, and a star indicates the
information that is used in the UCB-IE update.

1,327 queries that were searched for in over 1000 sessions
and contained at least 10 relevance judgements.

We performed a similar experiment to the TREC simu-
lation, where we used different click model variants of the
UCB-IE algorithm to generate rankings of M = 10 docu-
ments. We restricted our analysis to two values of λ = 0
and 0.1 (learnt from the simulation experiment) so as to
evaluate the effect of exploration, and we used the known
relevance judgements to evaluate MAP and nDCG@10 at
each time step.

In order to demonstrate and evaluate the ability for the
algorithm to learn from existing click data, we repeated the
experiment but introduced a training phase over the first
50% of the data, whereby no rankings were generated but
the ranking and clicks found in the data were interpreted by
the model and used to update r̂d and γd.

4.2.1 Interpreting Clickthroughs in the Data
During the evaluation phase, our model needs to observe

clickthroughs for its generated rankings so that it can up-
date its probability of relevance estimate ready for the next
ranking. In the previous experiment, we achieved this by
simulating a user clicking on documents; in this experiment
we used the clickthroughs contained in the data. Unfortu-
nately, this presented a problem as it was often not the case
that at time t (or session t) the document ranking in the
data set contained a particular document and subsequently
a click event. Initial results showed very poor performance
due to the fact that even when the UCB-IE was discov-
ering relevant documents and displaying them correctly, if
the data set hadn’t displayed the document as well then
no click event would occur and the document would be pe-
nalised by the model update and not shown again. As such,
the algorithm’s effectiveness was hampered by the rankings
contained in the data set.

To counter this we limited the UCB-IE algorithm to only
display documents that were already ranked in the data at



MAP 0% training phase

Upper Bound MC MC-Prior EH EH-Prior DCM DCM-Prior
λ = 0.1 0.7006 ± .056 0.5657 ± .061 0.5636 ± .064 0.5374 ± .062 0.5339 ± .064 0.6320 ± .061 0.6306 ± .061
λ = 0 0.5998 ± .063 0.5997 ± .066 0.5713 ± .064 0.5698 ± .065 0.6368 ± .061 0.6354 ± .063

50% training phase

λ = 0.1 0.7006 ± .056 0.6360 ± .044 0.6353 ± .045 0.6178 ± .046 0.6161 ± .046 0.6582 ± .046 0.6576 ± .047
λ = 0 0.6519 ± .045 0.6519 ± .046 0.6354 ± .046 0.6348 ± .047 0.6614 ± .047 0.6607 ± .047

nDCG@10 0% training phase

Upper Bound MC MC-Prior EH EH-Prior DCM DCM-Prior
λ = 0.1 0.8334 ± .046 0.7248 ± .058 0.7244 ± .057 0.6905 ± .057 0.6900 ± .057 0.7780 ± .056 0.7772 ± .056
λ = 0 0.7466 ± .057 0.7460 ± .057 0.7206 ± .056 0.7208 ± .056 0.7825 ± .056 0.7818 ± .056

50% training phase

λ = 0.1 0.8334 ± .046 0.7248 ± .058 0.7244 ± .057 0.6905 ± .057 0.6900 ± .057 0.7758 ± .056 0.7753 ± .056
λ = 0 0.7466 ± .057 0.7460 ± .057 0.7206 ± .056 0.7208 ± .056 0.7797 ± .056 0.7788 ± .056

Table 3: Mean final MAP and nDCG@10 values ± variance for each UCB-IE click model variant, for both
the explorative (λ = 0.1) and myopic cases (λ = 0), and for different training regimes. Optimal values are in
bold.

time t, but ranked according to its own calculated proba-
bility of relevance. In this way, we were never faced with
the issue of not being able to provide feedback for a ranked
document. In addition, when updating the probability of
relevance we interpret the clickthroughs and rank positions
of the ranking in the dataset, not the ranking generated by
UCB-IE. This is illustrated in Table 2, where the third col-
umn represents the ‘restricted’ ranking that would be gen-
erated, a re-ranking of that found in the data set.

This restricted interpretation leads to the following limi-
tations: 1) We can only perform as well the dataset ranking,
as we are not able to discover different, relevant documents
and receive user feedback on them, thus stifling exploration.
Thus, we consider the ranking in the data set as an upper
bound; 2) Interpreting the clicks in the data rather than the
UCB-IE’s ranking may lead to a slow learning rate, for in-
stance the case where a relevant document is ranked in a
low position in the data but ranked highly by UCB-IE.

4.2.2 Experiment and Analysis
Before running each experiment, we used the query search

log data and relevance judgements to estimate the parame-
ters for each of the click models. The parameter values for
πi and bi were calculated at each rank for each query us-
ing maximum likelihood estimators and simple counts (such
as occurrences of clicks at rank i for relevant documents
etc.). In this way we do not make any prior assumptions
on the click model and the query specific parameters are
able to capture the different characteristics of each query,
for example, the clicking behaviour for navigational queries
is different to that of informational queries [21], although
this simple technique does run the risk of overfitting. A
more sophisticated and accurate method would be to use
probit Bayesian inference [34], although for the purpose of
this experiment this was not necessary.

Another aspect of the model that we wanted to test was
its responsiveness to the addition of new documents during
its run time. Thus, for each click model we introduced two
variants, the original algorithm which adds a new document
whenever it first occurs in the data set, and a ‘Prior’ version
that has a full list of documents in advance. We summarise
the results of our experiments in Table 3:

The ‘Upper Bound’ in the table refers to the ranking found
in the data set. As previously mentioned due to the limita-

tions of interpreting the data set clickthroughs we can not
expect to exceed the upper bound performance, as well as
the fact that we do not know the underlying mechanism
used to rank the documents and that the model used had
access to significantly more information such as document
features. Our experiment is concerned with analysing the
performance of the different click models, the parameter λ
and the ability to incorporate new documents.

Some notable observations: 1) Generally the Examination
Hypothesis model proved a bad fit for the data, whereas the
Dependent Click model performed well; 2) The Dependent
Click Model consistently had the best results, which were
closest to the upper bound 3) The ‘prior’ variants performed
marginally worse than their equivalents, implying that the
algorithm is able to respond to the arrival of new docu-
ments and learn their probability of relevance accordingly
over time; 4) Introducing a training period greatly improved
the scores and demonstrated how the model could be used
to learn from existing click data in a practical application; 5)
As expected, the limitations imposed on interpreting clicks
stifled exploration and we find that the myopic case per-
formed better than the explorative case. Ultimately, this
experiment showed promising but inconclusive results, and
serves to demonstrate the difficulty in evaluating an online
algorithm that is responsive to user behaviour.

5. DISCUSSIONS AND CONCLUSIONS
We have presented a probabilistic optimisation framework

for multi-period information retrieval, where unlike offline
IR techniques, here we have opportunities to learn the rel-
evance of documents over a period of time through the in-
teraction with users (by considering clicks as observations of
relevance). Unlike previous studies, we consider the follow-
ing assumption about the users’ feedback: the probability
of a viewer examining and clicking a document is dependent
on its ranking position and can be described using a click
model. Through the theoretical derivation and analysis, we
showed how the belief about the relevancy of documents
(the posterior probability of being clicked) evolves over time
from the rank-biased user feedback (clicks). Besides the the-
oretical understandings and insights, three click model de-
pendent, practical stochastic ranking strategies have been
demonstrated on the basis of the bandit machine theory.

Using TREC simulations we were able to analyse the strate-



gies and assess the impact of exploration. This informa-
tion informed our next experiment, where we attempted to
demonstrate the performance capabilities of our model and
some variants despite the restrictions imposed by the un-
derlying data set. We also showed that the model could be
used to learn from existing data to boost performance, and
that it is robust to the discovery of new documents.

We will continue to seek appropriate data that could be
used to properly evaluate the algorithms performance, or
the use of a search engine to experiment on, and we will
also continue to determine ways in which to overcome the
limitations of existing data. We could also use more sophis-
ticated techniques to determine the click model parameters,
or plug-in newer click models into the framework and anal-
yse whether there is improved performance.

We are also interested in using document features to pro-
vide context when learning over time, and comparing our
algorithm with learning to rank algorithms. In addition, in
order to decrease the number of time periods it takes to
learn an optimal ranking we intend to use these features to
explore how document similarity could be used to update the
probability of relevance for non ranked documents that are
similar to ranked documents. This could then be expanded
to iteratively learn a diverse and relevant set of documents
over time by making use of the portfolio theory of IR [29].

While helping us develop an insight to the optimal doc-
ument ranking over time, the probabilistic framework has
a number of strong assumptions that may not necessarily
correspond with established observed user browsing prac-
tice, such as maximising the number of clicks. Additionally,
there are limitations on how many click models can be in-
corporated into our general mixed click model, but we are
confident that most mainstream models (some of which we
have demonstrated) can be included. Another drawback is
that the parameters for the plugged-in click model have to
be learned in advance and must fit the observations received
by the algorithm in order to be effective, a non-trivial task
particularly in the absence of relevance judgements.

We could also expand our MAB research further, making
use of Exp3 [6] or a restless bandit (bandits whose distribu-
tions change over time) formulation [30], or one of the im-
proved UCB variants [7, 4], and then conduct an experiment
with changing document relevancies. We are also working
on an optimal dynamic programming solution that can be
approximated using a partially observable Markov decision
process, which should give a firmer theoretical justification
for the optimality of the algorithm.
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