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Abstract 

Descending facilitation of nociceptive processing via the rostral ventromedial 

medulla (RVM) has been shown to contribute to behavioural hypersensitivity in a 

number of models of pain. Pain arising from the joints is a significant clinical 

problem, and studies to date have focused largely on the underlying peripheral 

causes. The aim of this study was to investigate the contribution of central 

mechanisms of descending facilitation to pain in a model of joint inflammation. 

To determine if the RVM is activated following ankle injection of Complete Freund’s 

adjuvant (CFA), a model of joint inflammation, pERK immunohistochemistry and 

labelling of active GABAergic synapses were carried out. At 6h post CFA, pERK 

labelling was increased, predominantly within 5-HT expressing neurons. Later, at 3d 

post CFA a decrease in GABAergic transmission was identified. This suggests time 

dependent changes in neuronal function occur within the RVM following joint 

inflammation. Selective lesion of descending 5-HT fibres and mu opioid receptor 

expressing (MOR+) cells of the RVM combined with behavioural studies indicated 

that both descending pathways contribute to mechanical hypersensitivity of the 

ipsilateral hindpaw. As the dorsal horn mechanisms underlying descending 

facilitation are not well understood, microarray analysis was carried out to identify 

changes in dorsal horn gene expression associated with descending facilitation. This 

led to the identification of a number of immune system related genes, including the 

chemokine Cxcl10 and its receptor Cxcr3 suggesting descending facilitation is 

mediated in part by neuronal - immune system interactions. 

These findings demonstrate for the first time that behavioural hypersensitivity in 

joint pain is dependent in part on descending facilitation via the RVM. In addition to 

peripheral pathology and spinal cord sensitisation, brainstem contributions should 

also be taken into account in the study and treatment of joint pain. 
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1.  Introduction 

Pain has an important protective role as it alerts the individual to harmful or 

potentially harmful external stimuli, and provokes prompt behavioural 

responses to minimise injury. The essential role of pain perception for 

survival is most apparent in individuals suffering from a congenital inability 

to feel pain. The absence of this important protective mechanism leads to 

failure to respond to harmful stimuli which can result in severe injuries 

throughout life. Although the sensation of pain is unpleasant, these cases 

illustrate the importance of an intact pain system for the wellbeing of the 

individual (Cox et al., 2006; Goldberg et al., 2007; Verpoorten et al., 2006). 

In contrast to these rare cases of insensitivity to pain, a more widespread 

clinical problem is chronic pain. This is pain which persists after the injury 

has healed or for periods beyond it being useful as a warning signal. Chronic 

pain, lasting for longer than 3 months, is highly prevalent with reports of up 

to 20% incidence in the general population (Breivik et al., 2006; Reid et al., 

2011). Chronic pain is a symptom of many underlying pathologies, including 

arthritis, nerve injury, and cancer. Despite its prevalence, many patients 

suffering from chronic pain receive inadequate relief from existing therapies. 

This has a negative impact on quality of life for the affected individual, and is 

a considerable economic burden for society due to the costs of healthcare 

management and the inability of some chronic pain patients to work (Reid et 

al., 2011). For this reason basic research on the neurobiology of pain and 

identification of potential pharmacological targets remains an important 

goal. 

1.1  Classification of pain 

Pain is defined as an unpleasant sensory and emotional experience 

associated with actual or potential tissue damage, or described in terms of 

such damage (International Association for the Study of Pain, 2011). This 
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precise definition illustrates some important points about the nature of pain. 

Importantly, pain is an experience with both sensory and affective 

components and cannot be considered only in terms of sensory input. In 

addition pain can occur even in the absence of tissue damaging stimuli. It 

has been proposed that there are three main types of pain which differ in 

terms of cause, duration and function (Scholz and Woolf, 2002). 

1. Nociceptive pain occurs in the presence of an acute noxious stimulus. 

This form of pain serves an important protective role in that it alerts the 

individual to tissue damaging stimuli (Basbaum et al., 2009). Nociceptive 

pain is typically of short duration and stops once the noxious stimulus is 

removed.  

2. Pathological pain does not serve a useful biological function. Conditions 

in this category often lead to pain in the absence of noxious input, and 

can be chronic. One widely studied example of a pathological pain 

condition is neuropathic pain, caused by direct lesion of the nervous 

system (Costigan et al., 2009b). A range of other conditions also come 

under this category, which produce the sensation of pain without 

obvious noxious input, such as irritable bowel syndrome and 

fibromyalgia (Woolf, 2010).  

3. Inflammatory pain is caused by inflammation associated with tissue 

damage and has some characteristics in common with both nociceptive 

and pathological pain. Inflammatory pain arises as a direct result of 

tissue injury and therefore like nociceptive pain has a protective role, 

alerting the individual to a physical injury and preventing further 

damage. However it is also problematic for patients, as it can be chronic, 

like many of the pathological pain states. 

Chronic pain conditions are characterised by hyperalgesia, allodynia, and 

spontaneous pain. Hyperalgesia is defined as increased pain from a stimulus 

that normally provokes pain, and allodynia is defined as pain due to a 
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stimulus that does not normally provoke pain (International Association for 

the Study of Pain, 2011). These symptoms arise due to sensitisation of the 

nociceptive system. This is defined as a reduction in the threshold and an 

increase in the magnitude of a response to noxious stimulation, and is driven 

by both peripheral and central mechanisms (Gold and Gebhart, 2010). Table 

1.1 summarises the characteristics of the three forms of pain. 

 Nociceptive Inflammatory Pathological 

Cause Acute noxious stimuli: 
heat, cold, mechanical 

Inflammation caused by 
tissue injury 

Neuropathic: nervous 
system injury 

Others idiopathic, e.g. 
irritable bowel syndrome 

Function Protective function: reflex 
withdrawal 

Protective function: 
reduce further injury, 
promotes repair 

Dysfunctional, serves no 
protective role 

Duration Acute Variable: can be acute or 
chronic 

Chronic 

Sensations Intense heat, cold or 
mechanical pain 

Hyperalgesia 

Allodynia 

Spontaneous pain  

Hyperalgesia 

Allodynia 

Spontaneous pain 

Treatment Not always necessary Reduce peripheral 
inflammation, e.g. non-
steroidal anti-
inflammatories 

Disease modification e.g. 
joint replacement or 
immunosuppression in 
arthritis 

Poor treatment options 
available 

Table 1.1 Characteristics of nociceptive, inflammatory and pathological pain.  

Adapted from Scholz and Woolf, 2002. 

1.2  Overview of the nociceptive system 

Nociceptive stimuli are detected by nociceptors innervating peripheral 

tissues, and are relayed to the dorsal horn of the spinal cord which forms the 

first synapse of the pathway (Hunt and Mantyh, 2001). From here the signal 

is conveyed to the brain which leads to the perception of pain. 
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Understanding the normal function of these peripheral, spinal and 

supraspinal mechanisms is crucial to understanding maladaptations that 

occur in chronic pain states. 

1.2.1 Nociceptors 

The concept of a sensory fibre specific to the detection of tissue damaging 

stimuli was first proposed by Sherrington in 1903 (Sherrington, 1903), 

however the existence of nociceptive specific sensory fibres was only 

demonstrated in the mid-1960s. A subset of thinly myelinated Aδ-fibres 

were identified which responded exclusively to noxious mechanical 

stimulation (Burgess and Perl, 1967). Unmyelinated C-fibres were also 

discovered which were either polymodal nociceptors, responding to a 

variety of noxious stimuli such as heat, cold, chemical and mechanical 

stimulation, or high threshold mechanoreceptors (Bessou and Perl, 1969).  

Aδ-fibres conduct more rapidly than C-fibres, and for this reason the Aδ-

fibres are thought to be responsible for rapid, sharp pain and C-fibres for the 

slow, dull pain that occurs upon noxious stimulation. Aβ-fibres are also 

myelinated and are the largest diameter sensory fibres in the DRG, however 

these do not act as nociceptors, and instead conduct rapidly in response to 

low intensity mechanical stimulation (Julius and Basbaum, 2001; Woolf and 

Ma, 2007). The cell bodies of nociceptors are located in the dorsal root 

ganglion (DRG) or trigeminal ganglion in the case of head and neck areas.   

As with all sensory afferents, nociceptors innervate various peripheral 

tissues including the skin, joints and viscera. The transduction of noxious 

stimuli into an action potential is achieved by the activation of transducer 

molecules on the nociceptor endings by high intensity, tissue damaging 

stimuli. This distinguishes nociceptors from other sensory fibres, which 

express low threshold transducers. Among the nociceptor transducers that 

have been identified are the transient receptor potential (TRP) family of ion 

channels. This includes TRPV1 which is responsible for the transduction of 
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noxious heat, and contributes to inflammatory pain and thermal 

hyperalgesia (Caterina et al., 1999). TRPA1 is activated by noxious cold and 

can also respond to chemical irritants such as formalin and mustard oil, and 

may play a role in mediating mechanical nociception (Vay et al., 2012). 

Another important family of noxious stimuli transducers are the acid sensing 

ion channels (ASICs). These are activated by protons in the extracellular 

environment, which are increased during tissue acidosis and so contribute to 

inflammatory pain (Deval et al., 2010). Recently, a mechanosensitive ion 

channel Piezo has been identified which may contribute to the transduction 

of noxious mechanical stimuli (Kim et al., 2012).  

Activation of these transducer channels leads to depolarisation of the 

membrane, producing a generator potential which is converted into an 

action potential if the stimulus is of large enough magnitude or spread 

(Raouf et al., 2010). Action potentials are propagated along the axon by 

voltage gated sodium channels (Nav). The subtypes Nav 1.7, 1.8, 1.9 are 

present in nociceptors and local anaesthetics act by inhibiting these 

channels (Eijkelkamp et al., 2012). Nav 1.7 plays an important role in 

inflammatory pain (Nassar et al., 2004). Nav 1.8 contributes to transmission 

of noxious heat and mechanical stimuli, and also contributes to cold pain 

sensitivity (Zimmermann et al., 2007).  

Glutamate is the major excitatory neurotransmitter released by nociceptors 

at their terminals in the dorsal horn. However other transmitters are also 

present in nociceptors, allowing them to be classified neurochemically. 

Nociceptors can be divided into a  subpopulation that contain peptides such 

as substance P and calcitonin gene related peptide (CGRP) and those that do 

not (Hunt and Rossi, 1985; Nagy and Hunt, 1982). Non-peptidergic C-fibres 

are associated with the epidermis of the skin whereas peptidergic C-fibres 

are associated with deeper parts of the skin as well as other tissues such as 

the joints and viscera (Todd, 2010). These non-peptidergic C-fibres can be 
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identified histochemically by their ability to bind isolectin B4 (IB4) 

(Plenderleith and Snow, 1993). Figure 1.1 summarises the mechanisms of 

noxious stimuli detection by nociceptors. 

 

Figure 1.1 Detection of noxious stimuli by the nociceptor. 

 1). Specialised ion channels (noxious signal transducers) on the peripheral terminal of the 

nociceptor are activated by noxious stimuli, leading to the generation of a local potential. 

2). Action potentials are generated and propagated along the axon by voltage gated Na+ 

channels and the membrane returns to resting potential via opening of voltage gated K+  

channels. 3). Arrival of the action potential at the central terminal triggers influx of Ca2+ 

which leads to neurotransmitter release in the dorsal horn. The green box and arrows 

highlight the basic mechanisms of peripheral sensitisation (discussed below in section 

1.4.1).  Both the transducer channels and voltage gated Na+ channels can be modulated by 

various peripheral mediators such as cytokines and neurotrophins via their target receptors 

(G protein-coupled receptors and receptor tyrosine kinases) on the peripheral terminals. 

Adapted from Raouf et al., 2010. 

1.2.2 Dorsal horn of the spinal cord and projections to the brain 

Primary afferent fibres terminate in the dorsal horn of the spinal cord, 

forming the first synapse of the pain pathway. Within the dorsal horn is a 

complex circuitry of excitatory and inhibitory interneurons which modulate 

the nociceptive signal before it is relayed to the brain. The gray matter of the 

spinal cord has a precise laminar organisation which was first described by 

Rexed (Rexed, 1952). Nociceptive fibres terminate in the outer laminae of 
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the dorsal horn, within lamina I and II. Peptidergic C-fibres terminate in both 

lamina I and IIo, while non-peptidergic C-fibres terminate mainly in lamina 

IIi. Non-nociceptive Aβ-fibres terminate in deeper layers, from lamina IIi– V 

(Todd, 2010, 2002). Figure 1.2 outlines the distribution of primary afferent 

terminals in the laminae of the dorsal horn. 

Electrophysiological recordings can be used to classify dorsal horn neurons 

on the basis of their responses to peripheral stimulation. Proprioceptive 

dorsal horn neurons respond only to Aα-fibre input. Nociceptive specific (NS) 

neurons respond only to noxious stimulation and are found largely within 

lamina I and II. Wide dynamic range neurons (WDRs) can respond to all 

types of afferent input, both nociceptive and non-nociceptive. These are 

located in the deeper laminae of the dorsal horn (lamina V) (D’Mello and 

Dickenson, 2008). The majority of the neurons within the dorsal horn are 

locally projecting interneurons which play an important role in modulating 

the output of the dorsal horn in response to nociceptive input. Both 

inhibitory and excitatory interneurons are present, with GABA and glycine as 

the main inhibitory transmitters and glutamate as the main excitatory 

transmitter (Todd, 2010). 

Projection neurons in the dorsal horn relay nociceptive information to the 

brain. These are located largely in lamina I (Spike et al., 2003). There are two 

main targets of the lamina I projection neurons. The lateral parabrachial 

area (PB) receives input from lamina I, and from here projects to brain areas 

responsible for the affective components of the pain experience such as the 

central nucleus of the amygdala and the hypothalamus (Gauriau and 

Bernard, 2002). The lateral thalamus (ventroposterior lateral nucleus, VPL, 

and ventroposterior medial nucleus, VPM) also receives input from lamina I 

and from there projects to areas such as the insular (IC) and somatosensory 

(SS) cortices, involved in the sensory-discriminative aspects of pain (Gauriau 

and Bernard, 2004). Other target structures of lamina I projection neurons 
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include the caudal ventrolateral medulla (CVLM), nucleus tractus solitarus 

(NTS) and periaqueductal gray (PAG) (Todd, 2010). Many lamina I projection 

neurons have collateral projections to more than one brain area (Al-Khater 

and Todd, 2009).  

Some projection neurons are also found within the deeper laminae of III – V. 

The projections from the deeper laminae terminate in the medial thalamus 

(central lateral nucleus, CL), which projects to areas such as the anterior 

cingulate cortex (ACC) (Van der Werf et al., 2002). This pathway is implicated 

in the attentional and motivational aspects of the pain experience. Some 

deep projection neurons also terminate in the reticular nuclei, which may 

mediate motor responses associated with pain (Gauriau and Bernard, 2002). 

A summary of the main ascending projection pathways is shown below in 

figure 1.3. This figure indicates ascending pathways that have been 

characterised for the rat, and it is important to note that there may be some 

species differences in the relative importance of these pathways. For 

example, there are fewer direct projections from lamina I to the thalamus in 

the lumbar spinal cord segment in the rat (Al-Khater and Todd, 2009) than in 

the primate (Zhang and Craig, 1997), and the rat has greater numbers of 

projections to the PAG and Pb (Todd, 2010). 

Many projection neurons express the neurokinin 1 (NK1) receptor, which 

binds substance P. These neurons are nociceptive specific (Salter and Henry, 

1991). Depletion of these neurons selectively by the neurotoxin substance P-

saporin prevents the development of behavioural hypersensitivity in models 

of inflammatory and neuropathic pain in the rat (Mantyh et al., 1997; 

Nichols et al., 1999). Furthermore it has been shown that these projection 

neurons are critical to the activation of descending controls in chronic pain 

states (Géranton et al., 2010; Suzuki et al., 2002). 

Dorsal horn projection neurons allow the nociceptive signal to reach the 

brain, where pain is perceived. There are many brain areas activated during 



Chapter 1 

29 

 

acute noxious stimulation. Data from human brain imaging experiments 

during noxious stimulation has shown that some of the most common areas 

activated during painful stimulation are the primary and secondary 

somatosensory, insular, anterior cingulate, and prefrontal cortices and the 

thalamus (Apkarian et al., 2005). In addition to these core regions other 

areas are also activated, depending on the circumstances, including the 

amygdala, hippocampus, basal ganglia (Tracey and Mantyh, 2007). 

Importantly, there is no one brain area that is uniquely activated by painful 

stimulation, and indeed many of these brain areas have also been shown to 

be involved in the detection of non-noxious, novel sensory stimuli. Therefore 

these regions may not form a pain specific network, but rather function in 

the detection of any novel sensory information (Iannetti and Mouraux, 

2010). 

 

Figure 1.2 Termination of primary afferents in the dorsal horn. 

Nociceptors innervate the periphery, and terminate in a structured manner in the dorsal 

horn of the spinal cord. Aδ-fibres terminate largely in lamina I and to a lesser extent in 

lamina II outer (IIo). Peptidergic C-fibres terminate in both lamina I and lamina IIo and non-

peptidergic C-fibres terminate in lamina II inner (IIi). Non-nociceptive Aβ-fibres terminate in 

the deeper laminae (Iii to V), and Aδ hair-follicle fibres terminate on the border of lamina II-

III. Image from Todd, 2010.  

1.2.3 Descending modulation of pain 

The relationship between nociceptive input and pain perception is not 

always linear. Under conditions of danger or stress, pain perception may be 

blunted, or completely abolished even under conditions of extensive noxious 

input (Fields, 2004). One example is that of injured soldiers in battle, many 

of whom do not report feelings of pain until some time after the injury 

(Melzack et al., 1982). Emotional state also has a large effect on pain 

perception, for example it is known that anxiety can increase pain 

perception (Ossipov et al., 2010). These examples demonstrate that 
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nociceptive signalling is subject to top-down modulation by the brain, and 

this provides a mechanism by which the brain can increase or decrease pain 

processing in the dorsal horn depending on the context.  

Early evidence from animals to suggest the existence of a descending 

modulatory system came from studies of spinal cord transection. This 

procedure was found to increase nociceptive reflexes, suggesting the 

presence of a tonic descending inhibitory system (Sherrington, 1906). Later 

it was found that electrical stimulation of the periaqueductal gray (PAG) 

produced analgesia in the unanaesthetised animal (Reynolds, 1969) and 

transection of the spinal cord prevents the inhibitory effects of PAG 

stimulation (Basbaum et al., 1977). This endogenous descending inhibitory 

system is activated in situations of fear or stress when intensely noxious 

input does not produce pain (Siegfried et al., 1990; Terman et al., 1984). The 

PAG is an important site of action of many analgesic drugs such as opiates 

(Herz et al., 1970; Yaksh et al., 1976). 

Information from the PAG is relayed indirectly to the dorsal horn via the 

rostral ventromedial medulla (RVM) to the dorsal horn (Ossipov et al., 2010). 

The RVM consist of two structures, the midline nucleus raphe magnus 

(NRM) and the more dorsal and lateral nucleus reticularis gigantocelluaris 

(GiA) (Fields and Heinricher, 1985). The RVM can exert both inhibitory and 

excitatory effects on spinal nociception. This bidirectional role of the RVM in 

pain processing can be explained in part by the heterogeneity of cells within 

the region. In vivo electrophysiological experiments have allowed for the 

classification of three cell types in the RVM depending on their firing 

properties immediately prior to the tail flick reflex in response to heat (Fields 

et al., 1983). ON cells show a brief burst in firing prior to the reflex, OFF cells 

show a decrease in firing and NEUTRAL cells show no alteration in their firing 

pattern. It has therefore been suggested that the ON cells are facilitatory 

and OFF cells are inhibitory in the modulation of the nociceptive reflex 
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(Heinricher et al., 2009). The role, if any, of NEUTRAL cells in the nociceptive 

reflex is unclear.  However interestingly it has been suggested that these 

cells may change phenotype under certain conditions such as during an 

inflammatory pain state, becoming either ON-cells or OFF-cells (Miki et al., 

2002). This suggests that cells defined as NEUTRAL during an acute 

nociceptive reflex in the naïve animal may contribute to descending 

modulation in chronic pain states. 

The different RVM cell types also have different responses to morphine. OFF 

cells increase firing and ON cells decrease firing in response to morphine 

microinjection (Barbaro et al., 1986). Microinjection of morphine to the PAG, 

a region which has projections to the RVM and is an important site in 

morphine mediated analgesia, also led to an increase in OFF cell firing and a 

decrease in ON cell firing at the time of a nociceptive reflex. NEUTRAL cells 

did not change firing properties (Cheng et al., 1986).  

Initially studies suggested that electrical stimulation of the RVM region 

always resulted in inhibition of spinal neuronal responses (Fields and 

Heinricher, 1989). Later it was demonstrated that electrical stimulation of 

the RVM could also lead to increased excitability of neurons in the dorsal 

horn (Light et al., 1986). This work highlighted the bidirectional nature of 

RVM modulation of nociception, with both inhibition and facilitation 

possible arising from the same site. It was found that low intensity 

stimulation of the RVM either electrically, of by administration of a low dose 

of glutamate has excitatory effects on spinal neurons, while higher intensity 

stimulation leads to inhibitory effects. This  further illustrated that the RVM 

is capable of both inhibition and facilitation (Zhuo and Gebhart, 1992a, 

1992b). This facilitation is also evident at the behavioural level as these 

procedures can enhance the tail flick reflex in the lightly anaesthetised 

animal (Zhuo and Gebhart, 1997). Therefore in the acute nociceptive reflex, 
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it is clear that both descending inhibition and facilitation are possible 

through the same brainstem region. 

Importantly physiologically defined ON, OFF and NEUTRAL cell types cannot 

be separated anatomically within the RVM itself  (Fields and Heinricher, 

1985; Fields et al., 1983) and neurochemically it is not known which 

transmitters are involved in ON and OFF cell signalling. The RVM contains 

many 5-HT neurons and initially it was thought that only NEUTRAL cells 

contain 5-HT (Potrebic et al., 1994) however it has since been shown that a 

subset of all three physiologically defined cell types contain 5-HT (Marinelli 

et al., 2002). To date the role of RVM 5-HT in descending modulation 

remains controversial, but it now appears that 5-HT can play a 

pronociceptive or antinociceptive role in the dorsal horn, depending on the 

receptor subtype activated (Bardin, 2011).  

GABA is another prominent transmitter in the RVM and these cells are also 

heterogeneous in their physiology (Kalyuzhny and Wessendorf, 1998). 

Although many RVM neurons project directly to the dorsal horn, some may 

also form local connections within the RVM region itself. In the case of OFF 

cells, these could form inhibitory projections onto projecting ON cells. For 

locally projecting ON cells, these could act to inhibit OFF cell output (Fields 

et al., 1991).  In addition there are a number of spinally projecting 

GABAergic neurons within the RVM, and recently these have been shown to 

coexpress glycine, presumably forming an important inhibitory pathway to 

the dorsal horn (Hossaini et al., 2012).  

 

Figure 1.3 Ascending and descending pathways.  

Projection neurons are located in lamina I and laminae III-V of the dorsal horn. Lamina I 

projection neurons (shown in black) convey information to the lateral thalamic nuclei 

(including the ventroposterior medial nucleus (VPM) and ventroposterior lateral nucleus 

(VPL)), and from there to the insular (IC) and somatosensory cortices (SS). Lamina I 
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projection neurons also project to the lateral parabrachial nucleus (PB), and from there 

neurons project to limbic structures such as the central nucleus of the amygdala (Ce) and 

hypothalamus (VMH). Other structures targeted by the lamina I projection neurons are the 

caudal ventrolateral medulla (CVLM), nucleus tractus solitarus (NTS) and periaqueductal 

gray (PAG). Projection neurons from the deeper laminae III-V (shown in red) convey 

information primarily to the medial thalamus (CL, central lateral nucleus), and from there 

information is conveyed to cortical areas such as the anterior cingulate cortex (ACC). 

Descending modulation of pain is relayed from cortical areas such as the ACC, as well as 

limbic structures such as the Ce and VMH (shown in blue). This descending information is 

relayed to the PAG. The PAG does not project directly to the dorsal horn. Instead 

information is conveyed indirectly via the rostral ventromedial medulla (RVM). The numbers 

on the left hand side of the image indicate the approximate distance of the coronal section 

from Bregma (mm). Adapted from Todd 2010, and Paxinos and Watson, 1998. These 

pathways are based on data from the rat literature, and some species differences may exist 

in the ascending pathways of the rodent and the primate. 

1.3  Animal models of pain 

1.3.1 Measuring pain hypersensitivity in animals 

To understand how animal models relate to human pain conditions, a 

behavioural outcome measure of the pain experience is needed. By 

definition pain is a subjective and individual experience. In studying pain in a 

human subject it is possible to ask questions about the pain to determine its 

severity however in animal models this is not possible. Therefore most 

studies using animal models do not measure pain directly, and instead use 

hypersensitivity to noxious stimuli as a surrogate measure of pain.  

Pain hypersensitivity can be measured in animals by studying the spinal 

reflex withdrawal from a noxious stimulus (Mogil, 2009). A number of 

measures have been developed to address hypersensitivity to noxious 

thermal (Hargreaves et al., 1988), cold, chemical and mechanical (Chaplan et 

al., 1994) stimuli and to deep pressure (Randall and Selitto, 1957). Thermal 

sensitivity is measured using the Hargreaves apparatus, which involves 

placing the animal in a box with a plastic floor, and applying radiant heat to 
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the individual paws. The time taken to withdraw the paw is the latency and 

is the measure used to assess thermal sensitivity, the more time taken the 

less the sensitive the animal. Mechanical thresholds are widely studied using 

von Frey hairs. These are a set of graded plastic filaments with a blunt end, 

applied to skin until the filament bends. At this point a calibrated force is 

exerted. In most cases the hairs are applied from lowest to highest force, 

and the lowest force at which paw withdrawal is observed is deemed the 

paw withdrawal threshold.  

Although difficult to measure, spontaneous pain is also important clinically 

and attempts are being made to address this in animal models. For example 

paradigms have been established to study tonic pain in animal models by 

using conditioned place preference with analgesic drugs (King et al., 2009; 

Sufka, 1994). Other attempts to measure spontaneous pain include 

monitoring innate behaviour such as vocalisation, scratching, biting and 

burrowing (Mogil, 2009), which may be altered when the animal is in pain. In 

addition attempts have been made to study comorbidities such as anxiety in 

animal models of pain, using paradigms that measure these complex 

behaviours such as the elevated plus maze and open field tests (Wallace et 

al., 2008). To date however measures of hypersensitivity using reflex 

withdrawal from a noxious stimulus remain the most widely used in pain 

research. 

1.3.2 Inflammatory pain models 

Tissue injury leads to an inflammatory response which aims to clear 

pathogens and aid repair of the damaged area. Inflammation also results in 

pain, which in some cases can persist beyond the time of healing. Common 

causes of inflammatory pain are surgical procedures, diseases of the joint 

and autoimmune disorders (Ren and Dubner, 2010). Various substances are 

used to model inflammation and pain in animals. Most commonly these are 

injected subcutaneously to induce localised inflammation and thermal and 
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mechanical hypersensitivity. Formalin injection can be considered a short 

term model of inflammatory pain (Dubuisson and Dennis, 1977). Longer 

lasting inflammatory compounds include carrageenan and Complete 

Freund’s adjuvant (CFA), which are more useful in modelling long term 

aspects of inflammatory pain. 

Clinically, joint inflammation is a leading cause of pain (Breivik et al., 2006) 

and a variety of methods are used to cause joint injury and inflammation in 

animals. Osteoarthritis is the most common cause of joint pain, and arises 

due to structural changes to the affected joint including loss of cartilage, 

synovial inflammation and destruction of the bone.  

In animals this can be modelled by injection of monosodium iodoacetate 

(MIA) to the joint (Fernihough et al., 2004). This is a NADPH inhibitor, which 

inhibits chondrocyte metabolism and leads to rapid destruction of the joints, 

which mimics that seen in osteoarthritis patients. High doses of MIA may 

also induce some primary afferent injury, which could contribute to 

neuropathic-like symptoms in the animal (Thakur et al., 2012). An alternative 

surgical method of inducing OA in the animal is to destabilise the medial 

meniscus, a cartilaginous component of the knee joint, by transecting the 

medial meniscotibial ligament (Inglis et al., 2008). 

Rheumatoid arthritis (RA) is an autoimmune disorder which causes 

inflammation of the joints, and  is another common cause of pain (Lee et al., 

2011a). RA can be modelled in animals by inducing systemic inflammation, 

for example by injecting CFA or a collagen and CFA emulsion into the tail 

(Clark et al., 2012; Neugebauer et al., 2007). This adjuvant-induced arthritis 

results in pathology at a number of joints, with an initial acute phase of 

inflammation up to 5d post injection, and a chronic phase which can last for 

weeks or months. At later stages joint destruction is  observed which is 

similar to that seen in RA patients (Neugebauer et al., 2007). Adjuvant 

induced polyarthritis is used to model the chronic and systemic nature of RA 
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in humans and is helpful in the study of potential disease modifying or 

analgesic therapies (Neugebauer et al., 2007). 

Importantly however systemic inflammation results in other adverse effects, 

such as skin lesions and weight loss, in addition to the joint pathology. This 

may affect the overall wellbeing of the animal, and confound the assessment 

of pain (Neugebauer et al., 2007). To address this problem, models of 

inflammatory monoarthritis have also been developed, including injection of 

CFA to the ankle joint (Butler et al., 1992). Although not a model of human 

RA per se, this method produces a reliable, localised inflammation of the 

ankle joint and results in stable behavioural hypersensitivity lasting up to 2 

weeks post inflammation. It can be considered an experimental model of 

inflammatory joint pain, and has been useful in characterising sensitisation 

that occurs during prolonged nociceptive input from the joint. For example 

our group has previously characterised dorsal horn gene expression changes 

that occur in this model (Géranton et al., 2007). 

Cutaneous inflammatory pain is often assessed by measuring thermal and 

mechanical hypersensitivity of the targeted hindpaw. In models of joint 

inflammation, it is more difficult to measure hypersensitivity of the affected 

area directly, however some measures such as withdrawal or vocalisation 

following compression of the joint have been developed (Neugebauer et al., 

2007). Indirect measures of joint hypersensitivity are also widely used 

including weight bearing and gait analysis, which are disrupted following 

inflammation or injury to the joint (Neugebauer et al., 2007). In addition, 

many studies use thermal or mechanical hypersensitivity of the hindpaw of 

the affected limb as outcome measures in models of joint pain (Fernihough 

et al., 2004; Sagar et al., 2011; Thakur et al., 2012). As these measure 

cutaneous hypersensitivity away from the affected joint, it is considered to 

be a reflection of secondary hyperalgesia or allodynia (Neugebauer et al., 

2007).  
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1.3.3 Primary and secondary hyperalgesia 

There are two forms of stimulus evoked hypersensitivity described in 

humans. Allodynia is defined as pain due to a stimulus that does not 

normally provoke pain. Hyperalgesia is defined as increased pain from a 

stimulus that normally provokes pain. A distinction can be made between 

primary and secondary hyperalgesia. Primary hyperalgesia refers to 

increased pain sensitivity that occurs at the site of injury while secondary 

hyperalgesia occurs at sites adjacent to but not at the site of injury (Hardy et 

al., 1950; Treede et al., 1992). Importantly it has been demonstrated in 

human studies that primary hyperalgesia is associated with both thermal 

and mechanical modalities, while secondary hyperalgesia is only associated 

with mechanical hypersensitivity (Ilkjaer et al., 1996; Treede et al., 1992). 

Primary and secondary hyperalgesia are also believed to have different 

neurobiological mechanisms. Primary hyperalgesia is thought to be driven 

largely by peripheral sensitisation, whereas secondary hyperalgesia is driven 

by central sensitisation (Treede et al., 1992).  

Although hyperalgesia is a term that can only be correctly used in human 

studies this distinction is important to consider when using animal models of 

pain hypersensitivity. In the context of joint inflammation, this suggests that 

sensitivity of the joint (primary hyperalgesia) is driven largely by peripheral 

mechanisms, while sensitivity of the ipsilateral hindpaw (secondary 

hyperalgesia) is driven largely by central mechanisms. In models of plantar 

inflammation however it is not clear if hindpaw sensitivity reflects primary 

or secondary hyperalgesia, and may be a combination of both.  

1.4  Sensitisation in pain states 

1.4.1 Peripheral sensitisation 

Under normal circumstances, nociceptors respond only to high intensity 

stimulation. However in conditions of injury or inflammation nociceptor 
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sensitivity is increased such that normally innocuous stimuli produce pain 

and noxious stimuli produce a greater pain response. These changes are 

produced in part by sensitisation of the peripheral nociceptor, which refers 

to a decrease in threshold and increase in magnitude of response to noxious 

stimulation (Gold and Gebhart, 2010). 

Tissue damage causes a local inflammatory response which leads to release 

of a variety of mediators from immune cells which can increase the 

sensitivity of the nociceptor terminals. These include GPCR activators (for 

example 5-HT, prostaglandins, and bradykinin), ion channel activators (ATP 

and H+), growth factors (NGF and GDNF) and cytokines (TNFα and 

interleukins) (Woolf and Ma, 2007). Peripheral sensitisation occurs by 

binding of these substances to their target receptors on the peripheral 

terminals and subsequent activation of intracellular signalling cascades that 

drive functional plasticity of the nociceptor (see figure 1.1). This allows the 

nociceptor to become sensitive to normally non-noxious stimuli as well as 

increasing the magnitude of responses to noxious stimuli. 

There are a number of ways in which the excitability of the peripheral 

nociceptor terminal can be increased. One is via modulation of the sensory 

transducer molecules directly. Modifications which increase the numbers or 

availability of transducer molecules at the nociceptor terminal will increase 

the ability of the nociceptor to convert noxious stimuli to a pain signal. One 

established example of this is the increased expression of the TRPV1 channel 

at the nociceptor membrane during inflammation. TRPV1 is a transducer of 

noxious heat (Caterina et al., 1999). Growth factors such as NGF acting at 

receptors on the nociceptor terminals lead to the activation of intracellular 

signalling pathways which result in TRPV1 phosphorylation. This leads to 

increased trafficking of the channel and insertion to the membrane, 

therefore increasing nociceptor excitability (Zhang et al., 2005). Other 

inflammatory mediators, including bradykinin, PGE₂ and ATP, can also 
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contribute to increased TRVP1 phosphorylation. This provides a direct 

mechanism by which inflammatory mediators can increase transduction of a 

pain signal (Schaible et al., 2011).  

Another mechanism by which nociceptor sensitivity can be increased in pain 

states is via the mediators of signal propagation. In the sensory axon these 

are primarily the voltage gated Na+ channels Nav1.7, Nav1.8 and Nav1.9. 

These channels are sensitised by exposure to inflammatory mediators 

including the cytokines TNF-α and IL-1β  (Linley et al., 2010).  

Direct modulation of ion channels explains the relatively rapid onset of 

sensitisation which occurs during acute injury and local inflammation. More 

long term changes in nociceptor function involve transcriptional changes, 

within the cell bodies of the DRG (Woolf and Costigan, 1999). Among the 

genes that are increased during inflammation include transducers such as 

TRPV1, and the peptides CGRP and substance P. In the non peptidergic, IB4 

expressing population, other transcriptional changes occur such as 

upregulation of the protein Reg-2, a survival factor for motoneurons 

(Nishimune et al., 2000), following plantar inflammation (Averill et al., 2008). 

Peripheral sensitisation is an important mechanism underlying nociception 

during acute tissue injury and inflammation, and indeed many common 

analgesics act through decreasing the availability of sensitising mediators at 

the peripheral terminal, for example the non-steroidal anti-inflammatory 

agents (NSAIDs) which inhibit the production of prostaglandins. However 

some aspects of chronic pain symptoms such as secondary hyperalgesia at 

non-injured sites cannot be accounted for by peripheral drive alone. 

1.4.2 Central sensitisation 

In addition to peripheral sensitisation it is known that plasticity within the 

dorsal horn can contribute to pain hypersensitivity. This was first 

demonstrated in animals by using repeated high intensity noxious input, 
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which was found to cause increased excitability of dorsal horn neurons 

which persisted even after the conditioning stimulus has ceased. This is 

termed central sensitisation (Woolf, 1983) and is a mechanism by which an 

initial noxious input can enhance later responses to further noxious 

stimulation. Central sensitisation also results in the ability of nociceptive 

dorsal horn neurons to be activated by low threshold stimuli that would not 

normally be able to do so, such as that from Aβ-fibres. Central sensitisation 

requires repeated activation of C-fibres and cannot be activated by Aδ 

nociceptors or Aβ-fibres. Following nerve injury or peripheral inflammation 

increased nociceptor input to the dorsal horn can also induce central 

sensitisation and it is now well established that central sensitisation is a 

common feature of models of chronic pain (Latremoliere and Woolf, 2009). 

Central sensitisation accounts for secondary hyperalgesia, which is pain 

beyond the site of injury (Woolf and Salter, 2000). 

1.4.2.1  Mechanisms of central sensitisation 

Since its discovery there have been many developments in understanding 

the molecular and cellular basis underlying central sensitisation. Increased 

neurotransmitter release by primary afferent fibres is a trigger for central 

sensitisation, and activation of the NMDA receptor is crucial to its induction 

(Woolf and Thompson, 1991). Under conditions of persistent noxious input 

the release of transmitters such as glutamate, substance P and CGRP occurs, 

and leads to depolarisation of the post-synaptic membrane and the removal 

of the Mg2+ ion block in the pore of the NMDA receptor (Mayer et al., 1984). 

This enhances the membrane depolarisation by glutamate, and allows rapid 

entry of Ca2+ to the post-synaptic neuron. Increased intracellular Ca2+ 

mediated by the NMDA receptor, as well as other mechanisms such as 

activation of Ca2+ permeable AMPA channels, voltage gated Ca2+ channels, 

and release from intracellular stores (Latremoliere and Woolf, 2009) is 

important in central sensitisation.  
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Elevated intracellular Ca2+ leads to the activation of Ca2+ dependent kinases, 

including protein kinase C (PKC) and calcium-calmodulin dependent protein 

kinase II (CaMKII) (Kuner, 2010). These kinases can influence neuronal 

excitability in a number of ways. One is by direct phosphorylation of ion 

channels, such as the NMDA and AMPA. This increases trafficking of the 

channels to the membrane and therefore increases postsynaptic excitability 

(Latremoliere and Woolf, 2009).  Another aspect of Ca2+ mediated plasticity 

is the activation of the extracellular signal related kinase (ERK) cascade by 

upstream activation of PKA (Kawasaki et al., 2004). This leads to 

transcriptional changes downstream of ERK. Other enzymes activated by 

increased intracellular Ca2+ include cyclooxygenase 2 (COX-2) and neuronal 

nitric oxide synthase (nNOS). These produce prostaglandin E2 (PGE2) and 

nitric oxide, respectively, both of which contribute to increased excitability 

in the dorsal horn (Samad et al., 2001; Wu et al., 2001). 

1.4.2.2  Contribution of non-neuronal cells to central sensitisation 

Non-neuronal cells contribute to plasticity in a number of CNS structures 

(Ben Achour and Pascual, 2010), including the dorsal horn in chronic pain 

states. Microglia are the resident immune cells of the CNS and in the normal 

resting state are involved in surveillance of the environment. During CNS 

infection or trauma they become active (Aguzzi et al., 2013). This is reflected 

in morphological changes of the microglia and in the chemical mediators 

released. Among these mediators are neuroactive molecules such as 

glutamate, ATP, nitric oxide (NO), cytokines and chemokines, all of which 

may interact with dorsal horn neurons (Palygin et al., 2010). Microglial 

activation occurs following peripheral nerve injury. The injured afferents 

release the chemokines fractalkine (CX3CL1) and CCL2, which attract 

microglia to the dorsal horn. This contributes to increased dorsal horn 

excitability (Calvo et al., 2012). One of the established mechanisms by which 

microglia increase spinal excitability in neuropathic pain states is through 
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the release of BDNF, which activates TrkB receptors on neurons of the dorsal 

horn and disrupts chloride homeostasis, which reduces the inhibitory effects 

of GABA and glycine on these neurons (Coull et al., 2005). The release of 

cytokines such as IL-1β, IL-16 and TNF-α from microglia may also contribute 

directly to increased excitability in the dorsal horn (Kawasaki et al., 2008). 

Inhibition of microglial activation within the spinal cord by administration of 

agents such as minocycline has been shown to reverse behavioural 

hypersensitivity in models of neuropathic pain (Raghavendra et al., 2003). 

Although the contribution of microglia has been more widely examined in 

neuropathic pain states, studies have demonstrated that microglial 

activation also contributes to behavioural hypersensitivity in models of joint 

(Clark et al., 2012; Sagar et al., 2011; Shan et al., 2007), visceral (Cho et al., 

2012) and inflammatory (Raghavendra et al., 2004) pain. 

Astrocytes are another important cell type within the CNS, providing 

homeostatic support for neurons. Astrocytes are more abundant than 

microglia, and have structural connections with synapses and blood vessels. 

Astrocytes contribute to synaptic plasticity by releasing neuroactive 

substances and by taking in released neurotransmitters from the synapse 

(Barres, 2008). Astrocyte activation within the dorsal horn has been 

reported in a number of pain models, including neuropathic and 

inflammatory pain states (Gao et al., 2010). As with microglial activation, 

activated astrocytes produce pro-inflammatory cytokines, such as IL-1β, 

which may increase neuronal excitability. Interestingly astrocyte activation 

occurs later than microglial activation in models of neuropathic pain, 

suggesting that astrocytes may play a role in the maintenance of behavioural 

hypersensitivity (Gao and Ji, 2010).  

1.4.3 Plasticity of descending controls 

In addition to modulation by peripheral input, dorsal horn excitability is 

subject to descending modulation from the brain. As discussed above 
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(section 1.2.3) the RVM is the main relay site involved in conveying 

information from the brain to the spinal cord, and can have both inhibitory 

and facilitatory effects on spinal processing of acute nociception (Ossipov et 

al., 2010). In models of persistent pain however evidence suggests that a 

shift towards increased descending facilitation occurs, contributing to 

increased behavioural responses (Pertovaara, 2000; Vanegas and Schaible, 

2004). 

1.4.3.1  Sensitisation of RVM neurons in models of pain 

Although not as extensively studied as central sensitisation within the spinal 

cord, a number of studies have demonstrated that RVM neurons alter their 

firing properties during chronic pain. In models of neuropathic pain, both ON 

and OFF cells in the RVM become responsive to normally innocuous stimuli, 

and develop longer responses to noxious stimuli prior to the tail flick reflex 

(Carlson et al., 2007; Gonçalves et al., 2007). Similar changes in RVM neuron 

physiology have been reported in a model of cutaneous inflammation 

(Kincaid et al., 2006) and in visceral pain (Sanoja et al., 2010). These studies 

suggest that as with neurons in the dorsal horn, RVM neurons can be 

sensitised in persistent pain models, and this may contribute to behavioural 

sensitivity.  

1.4.3.2  Behavioural studies following RVM lesion 

The role of the RVM in behavioural hypersensitivity in chronic pain models 

has also been studied using a number of approaches. For example, in a 

model of opioid-withdrawal induced hypersensitivity the behavioural 

response was found to be attenuated by RVM microinjection of lidocaine 

suggesting that in this model, suggesting descending facilitation contributes 

to behavioural hypersensitivity (Kaplan and Fields, 1991). Injection of 

lidocaine to the RVM also attenuated mechanical hypersensitivity in rats 

with neuropathic pain (Pertovaara et al., 1996).  
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Spinalisation of an animal removes descending modulation, and this 

technique has been used to investigate the role of descending modulation in 

a number of pain models. This manipulation attenuates secondary 

hyperalgesia associated with mustard oil application to the skin (Mansikka 

and Pertovaara, 1997). In the carrageenan model of inflammation, and the 

spinal nerve ligation model of neuropathy, spinalisation has also been shown 

to attenuate mechanical hypersensitivity (Kauppila et al., 1998). 

Other studies addressing the role of descending facilitation in behavioural 

hypersensitivity have used an electrolytic lesion to non-selectively destroy 

neurons of the RVM region. In one such study cutaneous application of 

mustard oil, which normally results in a robust secondary hyperalgesia of the 

surrounding region, had a lesser effect in animals with prior lesion of the 

region (Urban et al., 1996). Silencing of the RVM has also been shown to 

prevent mechanical hyperalgesia associated with muscle injection of 

hypotonic saline, a model strongly associated with central sensitisation (Tillu 

et al., 2008). 

While much information on the role of the RVM has been elucidated from 

such studies, the complicated heterogeneous nature of the region requires a 

more selective approach to address individual components of the system. 

One method of achieving this is to selectively target cells based on receptor 

expression. The ON cell population are believed to be the only RVM neurons 

which respond directly to morphine, and therefore express the mu opioid 

receptor (Heinricher et al., 1994; Marinelli et al., 2002). This characteristic 

has been exploited by using a toxin which targets cells expressing the mu 

opioid receptor (MOR+ cells). Saporin is a cytotoxin which needs to be 

internalised in order to have its effects. Conjugating saporin to an agonist for 

a particular receptor allows it to be taken in to those cells expressing the 

receptor and results in cell death within that population. Dermorphin-

saporin, which selectively ablates MOR+ neurons, has been used within the 
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RVM to characterise the role of these cells in chronic pain states. It has been 

shown repeatedly that these cells are required for the maintenance of 

mechanical hypersensitivity in models of neuropathic pain, but not in the 

induction phase (Bee and Dickenson, 2008; Burgess et al., 2002; Porreca et 

al., 2001; Zhang et al., 2009). This indicates a crucial role for descending 

facilitation in the maintenance of neuropathic pain. These cells have also 

been shown to contribute to visceral pain behaviour (Sikandar et al., 2012; 

Vera-Portocarrero et al., 2006)  

An alternative strategy to study the role of a particular subset of RVM 

neurons in a chronic pain state is to address the role of a particular 

neurotransmitter. 5-HT has been the most widely studied in this regard. The 

RVM is the major source of 5-HT within the dorsal horn (Kwiat and Basbaum, 

1992), and 5-HT can have either inhibitory or facilitatory effects on spinal 

processing of pain, depending on the receptor type activated (Bardin, 2011). 

The ionotropic 5-HT₃ receptor is the most widely implicated in mediating the 

pro-nociceptive actions of 5-HT in the dorsal horn (Millan, 2002). Lesion of 

the descending 5-HT pathway by the selective toxin 5,7-dihydroxtryptamine 

has been used to demonstrate a facilitatory role for this system in  pain 

behaviour following both neuropathic injury (Rahman et al., 2006) and 

cutaneous inflammation (Géranton et al., 2008). Recently, silencing of the 

tryptophan hydroxylase (TPH) enzyme (responsible for 5-HT synthesis) 

within the RVM has confirmed the facilitatory role of descending 5-HT in 

these pain states (Wei et al., 2010). 

1.4.3.3  Molecular changes in the RVM 

In addition to behavioural evidence for alterations in RVM activity, 

molecular changes have also been shown to occur in persistent pain states. 

For example, upregulation of NMDA receptor gene expression (Miki et al., 

2002), and AMPA receptor expression (Guan et al., 2003) and 

phosphorylation (Guan et al., 2004) has been shown to occur following 
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peripheral inflammation. Recently it has been demonstrated that a 

pentraxin protein, involved in recruiting AMPA receptors to the synapse, is 

upregulated in the RVM during neuropathic pain and contributes to 

hyperalgesia (Zapata et al., 2012). These molecular changes in the RVM 

during peripheral inflammation may contribute to enhanced excitability in 

the region, and in some ways mimic aspects of dorsal horn changes that 

occur in chronic pain states (Latremoliere and Woolf, 2009). 

1.4.3.4  The role of immune cells in the RVM 

As with central sensitisation in the dorsal horn, it has recently emerged that 

glial cells within the RVM may contribute to behavioural hypersensitivity in 

neuropathic pain. Activation of microglia occurs within days, and a more 

prolonged activation of astrocytes occurs in the later phases. Using selective 

inhibitors of microglia and astrocytes within the RVM regions, it has been 

demonstrated that microglia contribute to hypersensitivity in the early 

induction phase, and astrocytes contribute to the maintenance of the pain 

state (Wei et al., 2008). Microglia are also activated in the RVM after plantar 

inflammation, and local inhibition of microglia in the region attenuates 

behavioural hypersensitivity (Roberts et al., 2009).  

1.4.3.5  The role of the RVM in primary and secondary hyperalgesia  

It has been argued that the RVM plays different roles in primary and 

secondary hyperalgesia. This is most apparent in models of cutaneous and 

joint inflammation (Vanegas and Schaible, 2004; Vanegas, 2004). For 

example initial evidence suggested that in cutaneous inflammation 

increased descending inhibition from the RVM occurs, which suppresses 

central sensitisation. This was shown by measuring thermal hypersensitivity 

following plantar injection of CFA in animals with prior lesion of the 

dorsolateral funiculus, the main pathway from the RVM to the dorsal horn 

(Ren and Dubner, 1996). A later study addressed both primary and 

secondary hyperalgesia following cutaneous inflammation. Secondary 
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hyperalgesia was assessed by measuring thermal sensitivity of the hindpaw 

following knee injection of carrageenan or application of mustard oil to the 

skin, while primary hyperalgesia was assessed by injection of carrageenan to 

the hindpaw. This study illustrated that lesion of the RVM by ibotenic acid 

resulted in attenuation of secondary thermal hyperalgesia, but not primary 

thermal hyperalgesia (Urban et al., 1999). These studies suggest descending 

modulation of secondary hyperalgesia is facilitatory, while descending 

inhibition may predominate in primary hyperalgesia. Notably however these 

studies used thermal hyperalgesia as an outcome measure, and as discussed 

in section 1.3.3, secondary hyperalgesia is not generally thought to be 

associated with thermal sensitivity (Treede et al., 1992). 

1.5  Joint Pain 

1.5.1 Clinical features of joint pain 

Among the most common causes of pain in the general population is that 

arising from the joints (Breivik et al., 2006). The term arthritis refers to 

inflammatory diseases of the joint, and there are many forms and causes 

(Kidd et al., 2007). Pain of the affected joint and surrounding areas is a 

common feature to all arthritic diseases. Osteoarthritis (OA) is a leading 

cause of chronic pain and disability particularly among the elderly (Bennell 

et al., 2012). This is caused by structural changes to the affected joint 

including loss of cartilage, synovial inflammation and destruction of the 

bone. Interestingly the extent of joint destruction is not always correlated 

with the degree of pain in OA (Bedson and Croft, 2008). In addition joint 

replacement, which is a common procedure in patients with advanced OA, is 

not always successful in the relief of pain. Severe persistent pain after joint 

replacement is reported to be a problem in 15% of patients (Wylde et al., 

2011). Together these observations suggest that although joint destruction 

and inflammation are the initial cause of pain in OA, chronic pain may be 

due in part to changes within the nociceptive system. 
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Rheumatoid arthritis (RA) is another common cause of pain affecting about 

1% of the general population (Lee and Weinblatt, 2001). It differs from OA in  

that patients have systemic inflammation due to autoimmune processes, 

rather than physical destruction of the joint (Lee et al., 2011a). Although less 

common than OA, RA generally has an earlier age of onset and therefore can 

have a greater impact on quality of life for the patient. As with OA, pain 

associated with RA is not always directly correlated to the extent of joint 

pathology, as many patients have persistent pain despite treatment with 

disease-modifying, anti-inflammatory agents (Wolfe and Michaud, 2007). In 

addition it is known that patients have increased pain sensitivity at sites 

away from the inflamed joints (Edwards et al., 2009). Application of 

capsaicin to the skin results in mechanical hyperalgesia in normal individuals, 

and in patients with RA this effect is more pronounced. This reflects 

increased central sensitisation within the dorsal horn of these patients (Kidd 

et al., 2007; Morris et al., 1997) and implies central sensitisation may be an 

important component of chronic pain in joint diseases (Lee et al., 2011a). 

1.5.2 Differences in joint and cutaneous pain processing 

It has long been noted that pain from the deep tissue and viscera tends to 

be more dull and aching, rather than sharp, and poorly localised in 

comparison to cutaneous pain (Lewis, 1938; Schaible et al., 2009). This 

suggests that there are differences in the processing of nociceptive 

information from the skin and the joints. As in cutaneous tissue joints are 

innervated by Aβ-, Aδ- and C-fibres, however there are some differences in 

their roles within the joint. In cutaneous tissue activation of Aβ-fibres relays 

the sensation of innocuous pressure, but this does not occur in the joint 

under normal circumstances. Indeed the only sensations known to arise 

from the healthy joint occur in response to noxious input for example 

following a twisted ankle (Schaible et al., 2009). Increased pressure in the 
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joint capsule during inflammation is one mechanism by which nociceptors 

are activated during arthritis.  

Another difference between cutaneous and joint innervation is the unique 

localisation of C-fibre low threshold mechanoreceptors in the cutaneous 

tissue, and not in other tissues such as the joint. In the human these have 

been shown to play a role in pleasant touch (Löken et al., 2009). These 

cutaneous fibres can be identified in the rodent by their expression of the 

vesicular glutamate transporter VGLUT3, and they contribute to the 

development of mechanical hypersensitivity to previously innocuous stimuli, 

following inflammation and nerve injury (Seal et al., 2009). 

The content of the C-fibres also differs between cutaneous tissue and the 

joint. In the skin, both peptidergic and non-peptidergic fibres are present. In 

the joints there is no evidence of a non-peptidergic C-fibre population, 

identified by IB4 labelling (Ivanavicius et al., 2004; Jimenez-Andrade et al., 

2010; Nakajima et al., 2008). Recently it has been demonstrated that 

cutaneous C-fibres expressing the G-protein coupled receptor Mgrpd, which 

correspond to the IB4+ (non-peptidergic) population, are required for the 

development of cutaneous mechanical hyperalgesia in the mouse 

(Cavanaugh et al., 2009). However, the bone and joints are sensitive to 

noxious mechanical stimulation, despite the absence of these non-

peptidergic C-fibres. This indicates that mechanical hypersensitivity in the 

joint may be mediated solely by the peptidergic population, unlike 

cutaneous inflammation (Jimenez-Andrade et al., 2010). Interestingly this 

implies that treatments targeting the peptidergic population of afferents 

may be more effective in joint pain than cutaneous pain, and highlights the 

importance of studying the joint as a separate entity to the skin (Jimenez-

Andrade et al., 2010). 

IB4+ C-fibres terminate largely within lamina II of the dorsal horn (Hunt and 

Mantyh, 2001; Zylka et al., 2005). In contrast, it is known that joint fibres 
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terminate preferentially in lamina I (Doyle and Hunt, 1999; Mense and 

Prabhakar, 1986; Neugebauer et al., 1994). Therefore joint and cutaneous 

nociceptors have different patterns of termination in the dorsal horn, which 

suggests that cutaneous nociceptors are better able to induce changes in 

excitability of lamina II dorsal horn neurons, than those from the joint. 

Lamina II consists of interneurons, which modulate nociceptive input (Todd, 

2010). The absence of significant input from the joint to lamina II may lead 

to reduced recruitment of these interneurons in joint pain states.   

1.5.3 Peripheral sensitisation during joint inflammation 

As discussed in section 1.3.2, a variety of animal models of joint pain have 

been developed which address aspects of OA and RA. Models of 

inflammatory monoarthritis have also been very useful in establishing the 

basic mechanisms of peripheral and central sensitisation following joint 

inflammation (Neugebauer et al., 2007). During joint inflammation, 

sensitisation of the primary afferents occurs. Aβ-fibres show an increase in 

responses to mechanical stimulation of the knee, which may result from 

swelling and increased pressure within the joint (Schaible and Schmidt, 

1988). Low threshold Aδ-fibres have increased responses to both noxious 

and innocuous mechanical stimulation, and high threshold Aδ- and C-fibre 

nociceptors develop a lower threshold of activation (Guilbaud et al., 1985). 

Joint inflammation also leads to activation of ‘silent nociceptors’, C-fibres 

which do not respond to noxious stimulation under normal circumstances 

(Schaible and Grubb, 1993). Increased spontaneous firing of nociceptors has 

also been shown to occur which may contribute to spontaneous pain at rest 

during joint inflammation (Schaible and Schmidt, 1988).  

In arthritic disorders inflammation of the joint is the source of pain and 

therefore peripheral sensitisation plays an important role in these 

conditions. The dominant feature of joint pain is mechanical hyperalgesia, 

which contrasts with cutaneous inflammation in which thermal hyperalgesia 
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is more prominent. Although extensive work has been carried out regarding 

the mechanisms of peripheral sensitisation in cutaneous nociceptors, 

including the contribution of TRPV1 sensitisation to thermal hyperalgesia 

(Woolf and Ma, 2007), less is known regarding the molecular mechanisms of 

sensitisation of the joint afferents. Some of the modulators proposed 

include prostaglandins, bradykinin, and 5-HT suggesting that peripheral 

sensitisation in joint afferents may share at least some of the same 

mediators as cutaneous inflammation (Gold and Gebhart, 2010) 

Immune cell infiltration to the joint is a key feature of RA, and these act as a 

source of inflammatory mediators. In addition to contributing to the 

pathogenesis of the disease state, these mediators can act directly on joint 

afferents to induce sensitisation. DRG neurons express the IL-6 receptor 

(Obreja et al., 2005; von Banchet et al., 2005) and intra-articular injection of 

Il-6 increases C-fibre responses to noxious mechanical stimuli (Brenn et al., 

2007). Another cytokine implicated in joint afferent sensitisation is tumour 

necrosis factor alpha (TNF-α). TNF-α is important in regulating B and T cell 

infiltration in RA, however it also acts as a mediator of peripheral 

sensitisation. Primary afferents express the TNF-α receptor, and direct 

injection of  TNF-α injection to the joint increases afferent excitability 

(Boettger et al., 2008; Sommer and Kress, 2004). Administration of a TNF-α 

neutralising antibody in animal models of RA had both disease-modifying 

and analgesic effects (Boettger et al., 2008; Inglis et al., 2007). The 

humanised anti-TNFα antibody Etanercept is now widely used in the 

treatment of RA to reduce the inflammatory component of the disease. 

These recent discoveries suggest that the benefits of these drugs may be 

due in part to direct inhibition of peripheral sensitisation at the nociceptor. 

1.5.4 Central sensitisation during joint inflammation 

As described above central sensitisation is an important factor in chronic 

pain following nerve injury and cutaneous inflammation (Latremoliere and 
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Woolf, 2009). Increased excitability also contributes to hyperalgesia in 

animal models of joint pain. Following joint inflammation, dorsal horn 

neurons shown an increased responsiveness to noxious and non-noxious 

stimuli (Grubb et al., 1993; Neugebauer et al., 1993; Schaible et al., 1987). 

Behaviourally, in the MIA model of knee OA, mechanical hypersensitivity of 

the ipsilateral hindpaw develops which is indicative of central sensitisation 

(Fernihough et al., 2004). Interestingly it has been suggested that primary 

afferents from deep tissue such as the joints and muscle are better able to 

induce central sensitisation than those from cutaneous tissue (Sluka, 2002; 

Woolf and Wall, 1986). This implies that pain in arthritis is heavily 

dependent on dorsal horn adaptations however less is known about the 

mechanisms underlying central sensitisation following in joint pain than in 

neuropathic and cutaneous conditions.  

Many mechanisms are likely to be common to neuropathic and cutaneous 

injury. For example increased release of glutamate (Sluka and Westlund, 

1992), activation of NMDA receptors (Neugebauer et al., 1993) and 

metabotropic glutamate receptors (Zhang et al., 2002) are required for 

central sensitisation following joint injury. Increased release of peptides by 

primary afferents (Naeini et al., 2005; Neugebauer et al., 1994), activation of 

voltage gated calcium channels (Neugebauer et al., 1996) and production of 

prostaglandins (Bär et al., 2004) have also been implicated. Protective 

mechanisms may also be in place, as it has been demonstrated that the 

induction of OA increases expression of endocannabinoids in the dorsal 

horn, which may serve to counteract increased spinal excitability in arthritis 

(Sagar et al., 2010). 

Activation of dorsal horn immune cells is also important in central 

sensitisation in joint pain. Inhibition of microglial activation attenuates 

behavioural hypersensitivity in the MIA model of OA (Sagar et al., 2011).  

Similarly the collagen-CFA induced model of RA is associated with increased 
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microglial and astrocytic activation in the dorsal horn, and inhibition of 

fractalkine signalling attenuates mechanical hypersensitivity of the hindpaw 

(Clark et al., 2012).  

1.5.5 Molecular changes in the dorsal horn during joint inflammation 

As in other forms of long term plasticity (Bailey et al., 1996) changes in 

dorsal horn gene expression are important in central sensitisation (Kim et 

al., 1998). Gene expression changes in the dorsal horn have been 

characterised at various time points following ankle joint inflammation using 

microarray analysis (Géranton et al., 2007a). This study revealed that 

upregulation of a number of genes occurs in the acute stage of inflammatory 

pain (up to 24h post inflammation). In contrast at a later time point (7d), 

when mechanical hypersensitivity is still present, downregulation of a 

separate set of genes was observed. This suggests that different programs of 

gene expression mediate the development and maintenance of 

inflammatory joint pain (Géranton et al., 2007). The transcriptional 

repressor MeCP2 was found to play a role in mediating some of these early 

gene changes. Phosphorylation of MeCP2 relieves its repression of target 

genes and accordingly it was shown that phosphorylation of MeCP2 goes up 

in the early time points after inflammatory insults, enhancing activation of 

its target genes. Recently it has also been shown that upregulation of MeCP2 

levels occurs in the maintenance phase following ankle joint inflammation 

which would be reflected by a decrease in expression of MeCP2 target genes 

(Tochiki et al., 2012). Interestingly the opposite occurs in neuropathic injury 

in which downregulation of MeCP2 occurs, which would cause upregulation 

of target genes. This study suggests that the dorsal horn gene expression 

programs involved in joint and neuropathic pain are different.  

1.5.6 Descending modulation in joint pain 

Increased descending inhibition has been demonstrated following joint 

inflammation. Spinalisation of the animal results in increased responses of 
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dorsal horn neurons to noxious stimulation of knee joint afferents, and this 

is more pronounced in animals with prior inflammation (Cervero et al., 1991; 

Schaible et al., 1991) suggesting that tonic inhibition from supraspinal 

regions is increased in the acute phase of joint inflammation (1-3h). 

However similar experiments in a model of ankle joint inflammation 

indicated that this increased inhibition of spinal excitability occurs only in 

the acute and not in the chronic phase of inflammation (Danziger et al., 

2001). 

Descending facilitation has been shown to be an important factor in a 

number of animal models of chronic pain (Ossipov et al., 2010). Descending 

facilitation via the RVM is required for the maintenance phase of 

neuropathic pain behaviour (Bee and Dickenson, 2008; Porreca et al., 2001; 

Rahman et al., 2009). Behavioural hypersensitivity following cutaneous 

inflammation is also enhanced by descending facilitation via the RVM 

(Géranton et al., 2008; Wei et al., 2010), as is that arising from muscle injury 

(Tillu et al., 2008). Less is known regarding descending facilitation via the 

RVM in animal models of joint pain. One electrophysiological study has 

demonstrated that descending 5-HT has contributes to enhanced spinal 

excitability in the MIA model of osteoarthritis (Rahman et al., 2009), but to 

date no behavioural studies have investigated the role of descending 

facilitation in animal models of joint pain. 

1.6  Hypotheses 

The RVM is an important site in the relay of descending information from 

the brain to the spinal cord. The aim of this thesis was to investigate the role 

of descending facilitation in a rat model of inflammatory joint pain. My 

experiments were designed to test the following hypotheses: 
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 RVM neurons are activated following ankle injection of CFA, which 

may be reflected in increased ERK phosphorylation and decreased 

GABAergic inhibition. 

 Descending facilitation contributes to behavioural hypersensitivity 

associated with ankle joint inflammation, via both 5-HT and mu 

opioid receptor expressing neurons of the RVM.  

 Gene expression changes within the dorsal horn following joint 

inflammation are regulated in part by descending facilitation.
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2. Methods 

This chapter describes methods used in more than one chapter of this thesis, 

with specific experimental details provided in the individual chapters. 

Techniques used only in one chapter are described in the methods section of 

that chapter. 

2.1  Animals and surgical procedures 

2.1.1 Animals 

All studies presented in this thesis were carried out using male Sprague-

Dawley rats which were bred and supplied by the Biological Services Unit at 

University College London. Rats were housed in cages in groups of 1 – 4 

animals with a 12h light dark cycle (lights on at 8.00am). Access to food and 

water was ad libitum. Animals weighed between 180-250g at the start of the 

experiment, depending on the protocol. For the intrathecal injection 

experiments described in chapter 4, rats weighed 180-200g at the time of 

injection. For intra-RVM injections, described in chapter 3 and chapter 5, 

animals weighed 200-250g at the time of injection to ensure accuracy of the 

stereotaxic coordinates based on the rat brain atlas (George Paxinos, 1998). 

In all other experiments animals weighing 200-250g at the induction of the 

pain state were used. 

2.1.2 Microinjection to the RVM 

Isoflurane anaesthesia (5% for induction and 1.5-2% for maintenance 

combined with 100% O₂ (1l/min)) was used during the surgical procedures. 

Animals were secured using in a stereotaxic frame (Kopf instruments) and 

anaesthesia maintained via a facemask. The head was shaved and sterilised 

using 70% EtOH. A skin incision was made from the front to the back of the 

head and the skull was exposed. A dental drill was used to form a single hole 

at the site of microinjections. For the dermorphin-saporin lesion experiment 
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(chapter 5), two microinjections were carried out using a 5μl Hamilton 

syringe with 30 gauge needle at the following coordinates: anterior-

posterior -10.5mm from Bregma, lateral: ± 0.6mm, and dorso-ventral -9mm 

from the surface of the brain. The toxin was dispensed slowly over the 

course of 5 minutes and the needle was held in place for 1 min after the 

injection to minimise the back flow of toxin. The needle was then removed 

gradually. VGAT-C antibody injections (chapter 3) were carried as above but 

only one lateral injection was made, on the left hand side of the animal. 

Following RVM microinjections the skin covering the skull was sutured using 

5-0 Mersilk. Local anaesthetic cream (EMLA) was applied to the wound to 

reduce irritation. Following surgery animals were observed closely for 

weight loss, neurological impairments or general distress. 

2.2  Inflammatory pain model and behavioural testing 

2.2.1 Model of ankle joint inflammation 

Joint inflammation was carried out using a modified version of the protocol 

first described by Butler et al. (Butler et al., 1992). Although not a direct 

model of human rheumatoid arthritis, as it does not involve systemic 

inflammation, this method produces a reliable, localised inflammation of the 

ankle joint. This results in stable behavioural hypersensitivity which mimics 

many aspects of joint pain and localised tenderness in RA patients 

(Neugebauer et al., 2007). 

Inflammation of the left ankle joint was carried out by injection of 10μl of 

Complete Freund’s adjuvant (CFA, Sigma) while the animals were under 

isoflurane anaesthesia (see above, section 2.1.2). The skin covering the area 

was sterilised, and the foot was flexed to allow access the joint capsule. A 

disposable needle on a 100µl Hamilton syringe was inserted to the inta-

articular space.  The needle was pushed until a loss of resistance was felt 
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and CFA was then injected. Sham animals were exposed to the same 

anaesthesia as the CFA treated group but received no injection.   

Following CFA injection, the ankle became swollen and red. CFA treated rats 

were less mobile, with a visible reduction in weight bearing on the affected 

paw. These symptoms began within hours, and consistently peaked in 

severity at day 1 post injection. By day 7, some resolution of the swelling, 

redness and reduced weight bearing was observed. The adjacent cutaneous 

tissue of the hindpaw also became red and swollen, however this was less 

severe than in the immediate vicinity of the ankle joint. Signs of the 

cutaneous inflammation also resolved more rapidly, by day 1 post injection. 

The quantity of CFA used in the experiments described in this thesis is 

considerably lower than the 50µl used by others (for example, Uematsu et 

al., 2011; Yao et al., 2011) and as expected produced milder symptoms of 

inflammation which resolved more rapidly than described by these 

investigators. In all behavioural experiments, peak mechanical 

hypersensitivity of the ipsilateral hindpaw was reached by 6h post injection. 

By the 24h time point, a stable level of hypersensitivity was reached which 

was maintained for up 7 days post CFA injection. 

2.2.2 Measuring mechanical paw withdrawal thresholds 

On the day of testing, animals were transported to the testing room in their 

home cages, and placed in clear plastic containers on a wire mesh floor. The 

animals were allowed to settle for a minimum of 15min prior to testing. 

Habituation to the testing environment was achieved by taking a series of 

baseline measures, once daily for at least 3 days, prior to the initial 

experimental manipulation. 

The mechanical paw withdrawal threshold was obtained for the ipsilateral 

and contralateral hindpaw of the animal. A series of calibrated von Frey 

hairs were applied to the centre of plantar surface of the hindpaw, between 

the footpads.  The hairs were applied in ascending order, with 0.07g as the 
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minimum and 60g as the maximum cut off points. Each von Frey hair was 

applied until bending occurred. The hair was held in place for approximately 

4s. For each hair the stimulus was applied five times at 5s intervals. The paw 

withdrawal threshold was defined as the lowest weight von Frey hair at 

which a brisk withdrawal was observed at least once out of the five repeated 

stimuli. When a withdrawal response was observed to a given hair, no 

further hairs were applied.  

Both the ipsilateral and contralateral hindpaw thresholds were measured for 

each animal. The ipsilateral paw withdrawal thresholds for each animal were 

obtained first, followed by repetition of the procedure on the contralateral 

paw. Testing was carried out blind to treatment, except in pilot experiments 

(ondansetron experiment, figure 4.4 and dermorphin-saporin experiments 1 

and 2, figures 5.2 and 5.4). 

This method of analysis of manual von Frey thresholds has been described 

by our group and others previously for use in models of neuropathic pain 

(Bourquin et al., 2006; Géranton et al., 2009; Obara et al., 2011). Another 

widely used approach is the up-down method (Chaplan et al., 1994). This is 

used to calculate the 50% paw withdrawal threshold, a value which indicates 

the von Frey hair weight at which a brisk withdrawal response would be 

expected to occur 50% of the time (Mills et al., 2012). This method involves 

the sequential application of the von Frey hairs, in either ascending or 

descending order depending on whether a negative or positive response is 

obtained to the first hair applied. This up-down procedure is carried out at 

least 4 times following the first change in response, and so requires 

repeated withdrawals by the animal. In the ankle joint inflammatory model, 

obtaining repeated brisk withdrawals can be difficult on the ipsilateral 

hindpaw. In some instances the animal will produce a brisk withdrawal only 

once. This may be due to the pain within the joint itself, which would be 

exacerbated by the repeated withdrawal of the hindpaw. For this reason, 
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the up-down method of analysis was not deemed suitable for our study. 

Another alternative method is the use of electronic von-Frey apparatus, 

which has been used previously with this pain model (Géranton et al., 2007). 

However as with the up-down method this requires repeated withdrawals 

which can be difficult to obtain due to the ankle joint inflammation.  

2.2.3 Statistical analysis of behavioural data 

For all behavioural experiments data was analysed using SPSS (PASW) 18 

(IBM). Logarithmic transformation (log2) was carried out on the paw 

withdrawal thresholds (g) before statistical analysis as Levene’s test for 

equality of variance was significant (Bourquin et al., 2006; Géranton et al., 

2009). Appendix A3 includes a table listing paw withdrawal threshold values 

in grams and corresponding log2 transformed values.  

Analysis of variance (ANOVA) with repeated measures was used for all time 

course experiments. To proceed to further post hoc testing at least one main 

effect (CFA treatment or drug/toxin manipulation) or interaction was 

required to be statistically significant (p < 0.05). Post hoc analysis varied 

depending on the nature of the comparisons. Where appropriate a 

subsequent two-way ANOVA with repeated measures was carried out to 

determine if there was an overall effect of CFA or drug/toxin across a 

specific time window. Where this was not possible one-way ANOVA with LSD 

or Bonferroni post hoc test was carried out at individual time points. 

2.3  Tissue collection 

2.3.1 Perfusion 

At the end of behavioural testing, animals for perfusion were deeply 

anaesthetised with pentobarbital (Euthatal, 0.5 – 1ml per animal, i.p.) and 

the ribs were sectioned to allow access the heart. A small incision was made 

in the left ventricle. A cannula, attached to a pump, was connected and 
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inserted into the ventricle and up through the aorta. This was held in place 

with a clamp, and saline containing 5000 IU/ml heparin was pumped 

through the animal at a rate of 30ml per min, for 4min. This was followed by 

4% paraformaldehyde (PFA) in 0.1M phosphate buffer for 8min. Brains and 

spinal cords were dissected and post fixed in 4% PFA for 2 h.  Tissue was 

then cryoprotected in 30% sucrose (in 0.1M PB) and stored at 4°C until 

sectioning. 

2.3.2 Fresh tissue 

To obtain fresh tissue for western blot and RNA analysis, animals were culled 

by CO₂ asphyxiation. Rats were placed in a chamber with a slow steady flow 

of CO₂ to allow the concentration to rise slowly. When the rat had stopped 

breathing, death was confirmed by cervical dislocation. The spinal cord 

segment corresponding to the lumbar L4-L6 region was rapidly dissected on 

ice, and the ipsilateral and contralateral quadrants of the dorsal horn 

separated using a blade. These were frozen rapidly on dry ice. Samples were 

stored at -80°C until further use for protein or RNA extraction. 

2.4  Immunohistochemistry 

Immunohistochemistry was carried out to enable visualisation of specific 

target antigens within fixed tissue. This process involves application of a 

primary antibody which has been generated to target the antigen of interest 

followed by detection by a secondary antibody. In this thesis three different 

detection methods were used: direct fluorescence labelling, tyramide signal 

amplification and fluorescence labelling, or avidin-biotin chromogenic 

labelling. An overview of the process involved in these three types of 

detection is given below, in figure 2.1. The details of primary antibodies used 

are given in the individual chapters. Details of laboratory solutions used in 

immunohistochemistry protocols are given in appendix A1. 



Chapter 2 

62 

 

2.4.1 Sectioning 

40μm sections were obtained for the brainstem or spinal cord using a 

freezing microtome (Leica). These sections were stored in 5% sucrose (in 

0.1M PB) at 4°C until staining was carried out. Tissue was sectioned in series 

across 4 or 6 wells on a plate depending on the experiment (see individual 

chapters). All immunohistochemistry was carried out on freely floating 

sections, in 1ml tubes placed on a rocker.  

2.4.2 Direct fluorescence immunohistochemistry 

To begin immunohistochemistry, the sections were transferred from 5% 

sucrose to 0.1M PB using a small paintbrush. The PB was removed and 

sections were blocked for one hour in 1ml 0.1MPB, 30μl serum (Goat, 

Chicken or Horse, depending on the host of the primary antibody, Vector) 

and 30ul 10% Triton X (Sigma). The blocking solution was removed with a 

pipette and the sections were incubated with the primary antibody diluted 

as required in Tris-Triton buffered saline (TTBS , 30ml 10% Triton, 50ml Tris 

Solution and 8g NaCl in 920ml 0.1M PB) overnight at room temperature. 

Following primary antibody incubation, and between additions of all other 

reagents, the sections were washed three times for ten minutes in 0.1MPB. 

The sections were incubated in the dark with the appropriate secondary 

Alexa Fluor antibody (Invitrogen) for 2h. Sections were mounted on gelatin 

coated slides in 0.1MPB, followed by drying at room temperature and 

coverslipping with fluoromount (Sigma), or used for detection of a second 

antigen.  

2.4.3 Tyramide signal amplification fluorescence immunohistochemistry 

Sections were blocked and incubated with the primary antibody as above. 

The appropriate biotinylated secondary antibody (Vector, 1:400) was added 

for 90min. The secondary antibody was removed sections washed. An 

avidin-biotinylated horseradish peroxidase solution was prepared using the 
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Vectastain Elite ABC kit using 4ul solution A (avidin)+ 4ul solution B 

(horseradish peroxidase) (Vector) in 1ml TTBS and allowed to conjugate for 

at least 30min. This solution was added to the sections for 30mins followed 

by washing. 13.3µl of biotinylated tyramide in 1ml diluent (Perkin Elmer) 

was prepared and added to the sections for exactly 7min. The reaction was 

stopped rapidly by saturating with 0.1MPB and two washes followed. 

Sections were then incubated in the dark with fluorescein (FITC) conjugated 

avidin D (1:600, Vector), or cyanine 3 conjugated Streptavidin (Cy3, 1:4000, 

Jackson Laboratories) in TTBS for 2h or used for detection of a second 

antigen. 

2.4.4 Chromogenic immunohistochemistry  

Sections were blocked as described above, with the addition of 2% H₂O₂ to 

the blocking solution. Incubation with primary antibody was as described 

above. Biotinylated secondary antibody was added for 2h at a concentration 

of 1:500. An avidin-biotinylated horseradish peroxidase solution was 

prepared using the Vectastain Elite ABC kit using 1ul solution A (avidin) + 1ul 

solution B (horseradish peroxidase) (Vector) in 1ml TTBS was prepared and 

allowed to conjugate for at least 30min. Sections were incubated in this 

solution, following washes, for 1h. Sections were washed, and then the 

chromogenic substrate was developed using a 3,3’-diaminobenzidine  (DAB) 

substrate kit (Vector). DAB is a chromogenic electron donor, which produces 

a brown colour in the presence of H₂O₂ and the enzyme horseradish 

peroxidase (HRP). A solution containing DAB, H₂O₂ and the buffer (supplied 

in the kit) was prepared. pERK labelled sections were incubated in this 

solution for 7min, and the reaction was stopped rapidly by transferring 

sections into fresh wells containing distilled H₂O. Sections were then placed 

in 0.01M PB solution, and mounted on gelatin coated slides. These were left 

to dry at room temperature overnight, before dehydration in EtOH of 

decreasing increasing strength (10s in distilled H₂O, followed by 70% EtOH 
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for 1min, 95% EtOH for 1min, 100% EtOH for 1min), followed by placing in 

Histoclear (2 x 1min, National Diagnostics) and application of DPX mounting 

medium (VWR laboratories) and coverslipping. 

 

Figure 2.1 Immunohistochemistry detection methods. 

2.4.5 Controls for antibody specificity 

Control tubes of sections were prepared to ensure there was no non-specific 

binding of the antibodies. Control tubes were processed in parallel with the 
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experimental tubes, and underwent all steps of the staining protocol, except 

at the control step. At this point the tissue was placed in TTBS lacking the 

appropriate antibody. Four types of control were carried out, lacking either 

the first primary antibody, the first secondary antibody, the second primary 

antibody (for double labelling experiments) or the second secondary 

antibody (also for double labelling experiments). 

2.4.6 Fluorescence and chromogenic imaging 

Fluorescence labelled sections were viewed using a Leica DMR microscope 

(Leica Microsystems) and fluorescently tagged antigens were viewed using 

the appropriate excitation filter from a 50 W mercury lamp. Images were 

acquired using a Hamamatsu CCD digital camera (C5985, Hammamatsu 

Photonics) using Openlab 4.0.4 software (Improvision). Confocal imaging 

was carried out when required for double labelling studies using a laser 

scanning Leica TCS NT SP microscope (see below section 2.4.6).  

Chromogenically labelled sections were viewed using bright-field conditions 

on a Nikon Eclispe E800 microscope (Nikon) and images acquired using a 

Nikon Coolpix 4500 digital camera (Nikon). 

2.4.7 Confocal microscopy 

A laser scanning confocal microscope (Leica TCS SPE) was used to acquire 

images of fluorescence immunohistochemistry with double labelling. 

Sequential laser channel acquisition was used to prevent bleed through. The 

z-plane thickness was 0.5-0.7µm. Following acquisition, the series of z-plane 

images was viewed using Leica LAS lite software to determine if colabelling 

of the two channels could be observed.  Where confocal images are 

presented in this thesis, they indicate single z-planes from each channel, and 

a merged image of both channels.   
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2.4.8 Photoshop and image presentation 

Images were prepared for presentation using Adobe Photoshop CS4 

software (Adobe Systems). The only adjustments made were the individual 

curves for each colour channel, to improve the clarity of the image. Image 

sizes were adjusted as necessary while maintaining the original ratio of 

dimensions. 

2.4.9 Cell counts and statistical analysis 

Positively labelled neurons in the RVM were counted manually, using a 

Nikon Eclispe E800 microscope for DAB immunoreactivity, and Leica DMR 

microscope for fluorescence immunoreactivity. The RVM was defined by the 

boundaries of the NRM and GiA, from approximately -10.3mm to -11.3mm 

from Bregma, according to the rat brain atlas (George Paxinos, 1998). 

Counts were carried out while blind to treatment group. All sections per 

animal were counted, and the top 5 scoring RVM sections per animal were 

used for analysis. These were summed to generate a total number of 

positive cells per animal, and data is plotted as the mean ± SEM per group. 

 Statistical analysis was carried out in SPSS. Two-way analysis of variance was 

used when comparing two variables (e.g. CFA treatment, and time point). A 

significant main effect or interaction of the variables was a prerequisite for 

subsequent one-way ANOVA, or post hoc testing as appropriate. In cases in 

which there was only one variable but more than one group, one-way 

ANOVA with LSD or Bonferroni post hoc testing was used. In cases where 

only two groups were compared, independent samples t-tests were used.  
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3. Increased ERK activation and decreased 

GABAergic signalling in the RVM following joint 

inflammation 

3.1  Introduction 

Changes in neuronal activity in the rostral ventromedial medulla (RVM) has 

been demonstrated in a number of models of cutaneous inflammation and 

neuropathic injury (Géranton et al., 2010; Imbe et al., 2005; Terayama et al., 

2000).  These changes are believed to correlate with increased descending 

facilitation from the RVM and contribute to behavioural hypersensitivity in 

these pain states (Porreca et al., 2001; Wei et al., 2010). This chapter 

describes two experiments which aimed to determine if the RVM is 

activated following joint inflammation.  

3.1.1 Phosphorylation of extracellular signal related kinase (ERK): a 

marker of neuronal activity 

The mitogen activated protein kinase (MAPK) cascades are signalling 

pathways which convey information from cell surface receptors to 

intracellular compartments and lead to changes in gene transcription and 

protein translation. One example of a mammalian MAPK cascade is the 

extracellular signal related kinase (ERK) cascade, which plays a role in cell 

growth, differentiation and survival as well as in neuronal activation and 

plasticity (Impey et al., 1999; Sweatt, 2004). A well characterised role of the 

ERK signalling pathway is in growth factor signalling (Widmann et al., 1999). 

Binding of growth factors to their corresponding receptor tyrosine kinases 

leads to activation of the canonical ERK signalling cascade, resulting in the 

phosphorylation of ERK on threonine 202 and tyrosine 204 residues (see 

figure 3.1).  
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There are three levels of kinases involved in this cascade. The small GTP-ase 

Ras phosphorylates the MAPK kinase kinase (MAPKK) Raf, followed by 

activation of the MAPK kinase (MAPKK) MEK, which phosphorylates ERK. 

This sequential activation of multiple kinases allows for interaction with 

other signalling pathways, in addition to the activation of growth factor 

receptors (see figure 3.1). Within the CNS many different intracellular 

signalling mechanisms can converge upon ERK activation, including Ca2+ 

influx which activates protein kinase C (PKC), and increased cAMP levels 

which activates protein kinase A (PKA) (Ji et al., 2009). Phosphorylated ERK 

(pERK) then phosphorylates and activates downstream protein targets. Short 

term responses mediated by ERK include the phosphorylation of cell surface 

receptors and channels, leading to increased neuronal excitability. Long 

term cellular effects mediated by ERK include the activation of transcription 

factors such as CREB, or components of the translational machinery such as 

MNK (Impey et al., 1999) 

 

Figure 3.1  The ERK pathway.  

The classical mitogen activated protein kinase (MAPK) pathway involves activation of a cell 

surface receptor, followed by sequential activation of a MAPK kinase kinase kinase 

(MAPKKK), MAPK kinase kinase (MEKK), and MAPK kinase (MAPKK). This general pathway is 

outlined in red. One well studied example of a MAPK pathway is the activation of growth 

factor receptors, which leads to activation of the MAPPKKK Ras, the MEKK Raf, the MAPKK 

MEK, and ERK (outlined in blue). Other intracellular signalling pathways can also converge 

on this pathway, for example Ca2+ influx can trigger the protein kinase C (PKC) – ERK 

pathway, and cAMP can trigger the protein kinase A (PKA) – ERK pathway. Adapted from Ji 

et al. 1999. 

In the CNS, ERK activation is as a hallmark of neuronal activation and 

plasticity. Activation of ERK occurs in the hippocampus in a variety of 

learning and memory tasks, and inhibition of ERK activation can prevent 

memory formation (Impey et al., 1999). ERK activation also occurs within the 

CNS during nociceptive processing. Following noxious stimulation ERK is 
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activated within dorsal horn neurons. This has been demonstrated in a 

number of models of peripheral inflammation, including plantar injection of 

the irritant capsaicin (Ji et al., 1999) and Complete Freund’s adjuvant (CFA) 

(Ji et al., 2002). Movement of an inflamed joint can also induce ERK 

activation in the dorsal horn (Cruz et al., 2005). Activation of ERK in dorsal 

horn neurons correlates with pain in these models, as inhibition of ERK 

phosphorylation by intrathecal administration of a MEK inhibitor attenuates 

behavioural hypersensitivity (Cruz et al., 2005; Ji et al., 1999). 

3.1.2 ERK activation in the RVM 

pERK has also been used as a marker of neuronal activation in the RVM in a 

number of pain models. Intraplantar injection of CFA leads to increased ERK 

phosphorylation in the RVM which peaks at 7h post CFA injection, but 

remains elevated for 1d. Approximately 60% of the pERK neurons contained 

5-HT, as indicated by colabelling with tryptophan hydroxylase (TPH), the 

enzyme responsible for 5-HT synthesis (Imbe et al., 2005). Administration of 

an ERK inhibitor to the RVM attenuated thermal hyperalgesia in this model 

(Imbe et al., 2008). In a model of neuropathic pain ERK activation also 

occurs, largely within 5-HT neurons, with 60% of pERK+ neurons expressing 

TPH (Géranton et al., 2010). These studies suggest that ERK activation in the 

5-HT population of RVM neurons correlates with the development of 

behavioural hypersensitivity following cutaneous inflammation or nerve 

injury. 

3.1.3 GABAergic signalling in the RVM 

GABA is the other major neurotransmitter found in RVM neurons, and GABA 

containing neurons are distinct from those expressing 5-HT (Jones et al., 

1991; Reichling and Basbaum, 1990). Recently it has been demonstrated 

that 45% of retrogradely labelled spinally projecting RVM neurons are 

GABAergic (Hossaini et al., 2012) indicating a direct inhibitory role for these 

neurons within the dorsal horn. However these projection neurons 
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represent a relatively small proportion of the GABA containing neurons 

within the RVM overall, and it is thought that the majority of GABAergic 

neurons in the region act as local inhibitory interneurons (Jones et al., 1991). 

In support of this many spinally projecting RVM neurons have GABAergic 

synaptic input (Jones et al., 1991) and most of these GABAergic terminals 

arise from intrinsic RVM neurons with little input from other brain regions 

(Cho and Basbaum, 1991). GABAergic inhibition of RVM projection neurons 

is therefore likely to play an important role in modulating output during 

nociception. 

Injection of GABAA receptor antagonists to the RVM has an antinociceptive 

effect, while the injection of GABAA agonists is pronociceptive (Gilbert and 

Franklin, 2001; Heinricher and Kaplan, 1991). In addition, the analgesic 

effects of morphine are thought to occur at least in part by direct inhibition 

of GABAergic neurons in the RVM (Pan et al., 1997).  This indicates that in 

the normal animal, the net effect of GABAergic signalling within the RVM is 

to enhance acute nociception.  

3.1.4 Changes in GABAergic transmission associated with persistent pain 

It has been proposed that during persistent pain states changes to 

neurotransmitter synthesis and release may occur in a maladaptive manner. 

Recently it has been shown that inhibitory GABAergic signalling in the 

amygdala is decreased early in the induction of the kaolin-carrageenan 

model of arthritis (Ren and Neugebauer, 2010). Within the RVM changes to 

GABAergic transmission have also been reported. A decrease in presynaptic 

GABA release was found within the RVM at 3 days following plantar injection 

of CFA, but not at earlier stages (Zhang et al., 2011). In addition 

microinjection of the GABAA agonist muscimol, which in the naive animal has 

a pronociceptive effect, led to attenuation of thermal hyperalgesia in the 

inflammatory pain state. These authors also described studies indicating that 

epigenetic suppression of the Gad65 gene (which encodes the enzyme 
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responsible for GABA synthesis) by decreased histone acetylation at the 

promoter region, could underlie these changes (Zhang et al., 2011). This 

study provides important evidence that GABA synthesis and release may be 

altered within the RVM during inflammation, and could contribute to the 

enhancement of descending facilitation observed in these conditions. 

Therefore in addition to increased activation of 5-HT neurons, decreased 

GABAergic signalling may be an important mechanism underlying 

descending facilitation in persistent pain states.  

3.1.5 Hypothesis 

In this chapter I have tested two hypotheses concerned with the activation 

of the RVM following ankle inflammation: 

 That ERK phosphorylation, a widely used marker of neuronal 

activation, is increased in RVM neurons following ankle injection of 

CFA. 

 That Inhibitory GABAergic transmission within the RVM is decreased 

following ankle injection of CFA. 

3.2  Methods 

3.2.1 pERK expression in the RVM 

3.2.1.1  Immunohistochemistry 

Animals were divided into two groups, receiving either CFA injection (10µl) 

to the left ankle or undergoing a sham procedure (see section 2.1.1). These 

were then subdivided into groups and perfused at one of three time points, 

at 6h, 3d or 7d following CFA injection. 40µm sections were taken in series 

across four wells therefore sections in each well were at least 160µm apart. 

Two wells were used for each animal to carry out separate pERK 

immunohistochemistry protocols. 3,-3’diaminobenzidine (DAB) detection 
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was carried out to quantify pERK+ cell numbers in the RVM. Fluorescence 

immunohistochemistry with tyramide signal amplification was carried out 

for colabelling of pERK and tryptophan hydroxylase, a marker of 5-HT 

expressing neurons (see section 2.4 for full immunohistochemistry 

methods). Controls were included to ensure that the secondary antibodies 

were specific to their primary antibody targets. This was carried out by 

removing either the pERK primary antibody or the TPH primary antibody 

from the procedure, to ensure no non-specific labelling by the secondary 

antibodies. Table 3.1 lists the antibodies and detection methods used in this 

chapter. 

3.2.1.2  Cell counting and image acquisition 

Cells expressing pERK were counted manually using a Leica bright field 

microscope. Counts were carried out while blind to the treatment (CFA or 

sham) for that animal. For counting, the RVM was defined as the regions 

containing the NRM and GiA at approximately -10.3 to -11.3 mm from 

Bregma. Sections were deemed caudal of the RVM if the nucleus ambiguus 

was present (-11.6mm from Bregma). The number of pERK positive cell 

bodies per section was recorded. The five sections with the highest number 

of pERK+ neurons per animal were used for analysis. The total number of 

pERK+ cells across the five sections was calculated and the data is presented 

as the mean ± SEM per group. Representative images of DAB staining were 

acquired using a Nikon E4500 MDC digital camera. 

Fluorescence immunohistochemistry was used to quantify the number of 

pERK+ neurons colabelled with tryptophan hydroxylase (TPH) at the 6h time 

point. Slides were viewed using a Leica DMR immunofluorescence 

microscope. The total number of pERK labelled neurons and double labelled 

neurons were recorded for each section. The five sections with the highest 

number of pERK+ neurons per animal were used for analysis. The numbers 

of pERK+/TPH+, pERK+/TPH- and total pERK+ neurons, and percentage of 
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pERK+/TPH+ cells as a proportion of total pERK+ cells was calculated for each 

animal (n = 3 - 4). Data is presented as the mean ± SEM per group. 

Representative images of fluorescence staining at 6h post CFA were 

captured using a Hamamatsu digital camera and using Openlab 4.0.4 

software from Improvision. 

3.2.2 Labelling of GABAergic synapses in vivo 

3.2.2.1  Microinjection of a luminal domain specific VGAT antibody 

to the RVM 

To label active GABAergic synapses in vivo, a rabbit polyclonal antibody 

raised against the luminal domain (C terminus) of the vesicular GABA 

transporter (VGAT) (from Synaptic Systems) was microinjected to the RVM. 

The VGAT transporter is expressed in all synaptic vesicles at GABAergic 

synapses however the luminal domain is only exposed to the cell surface 

during synaptic release and vesicle recycling. Therefore when applied 

extracellularly the VGAT-C specific antibody is incorporated only into active 

synapses (see figure 3.2). This antibody has been used by others to label 

active GABAergic synapses in the hippocampus (Martens et al., 2008). The 

same technique was used here to label GABAergic synapses in the RVM in 

naive, CFA or sham treated animals. 

Microinjection was carried out as described in section 2.1.2, with a single 

unilateral injection of antibody (1.5µg in 1.5µl) made to the left side of the 

RVM (+0.6mm laterally). This concentration was chosen based on previous 

published work within the hippocampus, which described the use of 4μg/2μl 

injections to the hippocampi (Martens et al., 2008). An initial pilot 

experiment was carried out in naïve animals, and following confirmation of 

injection site and antibody specificity animals were microinjected at 3d 

following CFA or sham treatment.  
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Animals were perfused 24h after the microinjection. 40µm sections were 

taken in series across six wells therefore sections in each well were at least 

240µm apart. Although the VGAT-C antibody is tagged with a fluorescent 

label (Oyster-550) the raw signal was found to be weak, and fluorescence 

immunohistochemistry using tyramide signal amplification with Cy3 as 

fluorophore was carried out to detect the VGAT-C antibody within the tissue 

(see section 2.4 for immunohistochemistry methods). Double labelling with 

glutamate decarboxylase (GAD65/67), the enzyme responsible for GABA 

synthesis at synapses, was also carried out to identify GABAergic terminals. 

Controls were carried out to ensure that the detection of GAD65/67 was not 

affecting the VGAT-C signal, by removing the GAD65/67 primary antibody. 

 

Figure 3.2  Labelling of active GABAergic synapses. 

This schematic outlines the structure of the VGAT transporter, with N-terminus located in 

the cytoplasm, a number of transmembrane segments and the C-terminus located inside 

the lumen of the synaptic vesicle. At the inactive GABAergic synapse, the C-terminus of the 

VGAT transporter is located inside the lumen of the synaptic vesicle and not accessible to 

the VGAT-C specific antibody. During active synaptic release and vesicle recycling the lumen 

of the vesicle is exposed extracellularly and accessible to the VGAT-C specific antibody. 

Adapted from Martens et al., 2008. 

3.2.2.2  Imaging and analysis 

Confirmation of injection site and the spread of the antibody in naive 

animals was carried out using a Leica DMR immunofluorescence microscope. 

For quantification of VGAT-C and GAD65/67 labelling, sequential images of 

the green and red channels were obtained using a Leica SPE confocal 

microscope, with a step size of approximately 0.5µm. Images were captured 

contralateral to the microinjection, immediately above the pyramidal tracts, 

and next to midline (see figure 3.5). All sections used for analysis were 

within the region of -10.8mm to -11mm from Bregma.  
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The image analysis program Fiji (an open source image processing package 

based on ImageJ, with plugins included) was used to quantify the extent of 

VGAT-C and GAD65/67 double labelled punctae in these sections. Manual 

thresholding was carried out to define VGAT-C and GAD65/67 labelled 

punctae for each animal, across the entire z stack of images. Thresholding 

was carried out while blind to treatment group of the section. Three sections 

were analysed per animal with the same threshold settings used for each 

section in that animal. Particle analysis was used to count the number of 

defined red punctae (VGAT-C) and green punctae (GAD65/67) throughout 

the z-stack of images. The image calculator function was then used to create 

an overlay of the two thresholded channels followed by the particle analysis 

function which allowed the quantification of VGAT-C and GAD65/67 

colabelled punctae per stack. The number of colabelled punctae was 

expressed as a percentage of total GAD65/67 to control for the number of 

GABAergic synapses. Data is presented as mean ± SEM of all 9 sections 

imaged per treatment group. 

Antigen Host Company Concentration Method Fluorophore 

pERK  Rabbit Cell Signalling 1:250 TSA FITC 

pERK  Rabbit Cell Signalling 1:500 DAB Brown DAB 

TPH  Mouse Sigma 1:200 Direct  Alexa 594 

GAD65/67 Rabbit Millipore 1:1000 Direct  Alexa 488 

VGAT-C Rabbit Synaptic systems 1.5μg in 1.5μl  TSA Cy3 

Table 3.1 Primary antibodies, concentrations and detection methods. 

3.3  Results 

3.3.1 ERK activation in the RVM: general observations 

To determine the effect of ankle inflammation on ERK activation within the 

RVM rats were divided into groups and perfused at three time points 

following CFA or sham treatment. pERK DAB immunohistochemistry was 
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performed on 40µm RVM sections. The RVM was defined as consisting of 

the nucleus raphe magnus (NRM) and nucleus gigantocelluaris pars alpha 

(GiA) (figure 3.3a). In all groups, including shams, a high number of pERK 

positive (pERK+) neurons were observed. These were distributed mainly in 

the NRM and in the ventrolateral regions of the GiA (figure 3.3). Examples of 

pERK+ cells from the GiA and NRM are shown in figure 3.3b. Very few cells 

were identified in the more dorsal regions of the GiA. All sections falling 

within the rostral-caudal distribution of the RVM (approximately – 10.3 to - 

11.3mm from Bregma) were counted, however for analysis only the five 

sections with the highest number of pERK+ cells per animal were used. 

Positive cells were counted based on cell body labelling however extensive 

dendritic pERK immunoreactivity was also observed (figure 3.3b). 
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Figure 3.3 Increase in pERK+ neurons at 6h post CFA.  

A). Representative section of the RVM corresponding to approximately -11mm from 

Bregma. The boundaries of the nucleus raphe magnus (NRM) and nucleus reticularis 
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gigantocelluaris pars alpha (GiA) are outlined by the dashed lines. The pyramidal tracts (Py) 

are also shown. Scale bar indicates 250μm. B). Examples of pERK+ cells from the lateral GiA 

and midline NRM. Intense labelling of both cell bodies and dendrites was observed. Scale 

bars indicate 100µm. C). Numbers of pERK+ neurons in the RVM region at 6h, 3d and 7d 

following ankle injection of CFA (black bars) or sham treatment (white bars). Counts for the 

top 5 pERK+ RVM sections were summed and are presented as mean ± SEM. n = 3 – 8, * p < 

0.05, two-way ANOVA and Bonferroni post hoc test. 

3.3.2 Increase in ERK phosphorylation in the RVM at 6h post CFA 

injection 

The number of pERK+ neurons in CFA and sham treated animals at all three 

time points were compared (figure 3.3c). For each animal the five sections 

with the highest number of pERK+ neurons were summed to give a total 

number of pERK+ neurons per animal (n = 3 – 8 per group). Two-way 

analysis of variance (ANOVA) was carried out on the cell counts with 

treatment (CFA or sham) and time point (6h, 3d and 7d post CFA) as the 

between-subjects factors. There was no main effect of time or treatment (p 

> 0.1) however there was a significant time x treatment interaction (p = 

0.029).  A subsequent one-way ANOVA indicated there was an overall 

difference between all 6 groups (p = 0.027) and Bonferroni post-hoc analysis 

indicated the variation was due to a significant increase in pERK labelling in 

the CFA group compared to sham at 6h post injection (p = 0.018). The mean 

number of pERK+ neurons in the 6h CFA group was 176.4 ± 10.8 compared 

with 127.7 ± 8.3 in the 6h sham group, an increase of approximately 38%. No 

significant differences were found between CFA and sham groups at 3d or 

7d (p > 0.1). 

3.3.3 Proportion of pERK+ neurons double labelled with tryptophan 

hydroxylase 

To characterise the population of pERK+ RVM neurons double fluorescence 

immunohistochemistry was carried out to determine the proportion of 

pERK+ neurons which colabelled with tryptophan hydroxylase (TPH), a 
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marker of 5-HT neurons, at 6h post CFA injection (figure 3.4a). Cell counts 

were carried out as for the DAB experiment, however in this case the 

number of pERK+ neurons double labelling with TPH (pERK+/TPH+) and not 

double labelling with TPH (pERK+/TPH-) were also recorded (n = 3 – 4). A 

high proportion of pERK+ neurons colabelled with TPH in (84.6% ± 5 in the 

CFA group, and 78% ± 2.8 in the sham group) however there was no 

significant increase in the percentage of pERK neurons expressing TPH in the 

CFA treated group and sham animals (p = 0.2743, independent samples t-

test).  

Nonetheless, by comparing the numbers of pERK+/TPH+ and pERK+/TPH- 

neurons, it was found that there was a significant increase in the number of 

pERK+/TPH+ double labelled neurons (p = 0.0309) and an overall increase in 

total pERK+ labelled neurons (p = 0.0082) at 6h post CFA injection 

(independent samples t-tests). No significant increase in the number of 

pERK+/TPH- neurons was found. This indicates that the increase pERK 

expression occurs within the TPH+ population of the RVM (figure 3.4b). 

Table 3.2 gives the numbers of pERK+/TPH+, pERK+/TPH- and total pERK+ 

neurons at 6h post CFA.  

 CFA Sham p value 

pERK+/TPH+ 131 ± 15.3 83 ± 8.3 0.0309 

pERK+/TPH- 23 ± 7 22.8 ± 2 0.9703 

pERK+ total 154 ± 9.6 105.8 ± 6.7 0.0082 

% pERK+/TPH+ over 
total pERK+ 

84.6 ± 5 78 ± 2.8 0.2743 

Table 3.2  Numbers of pERK+/TPH+ neurons at 6h post CFA. 

 The number of pERK+/TPH+ double labelled neurons, pERK+/TPH- neurons and total pERK+ 

neurons are shown, along with the percentage of pERK+/TPH+ double labelled neurons over 

total pERK+ neurons. The p values for independent samples t-tests between CFA (n = 3) and 

sham (n = 4) groups are also shown. 
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Figure 3.4 Increase in pERK+/TPH+ double labelled neurons at 6h post CFA.  

A). Representative images of pERK+ (green) and TPH+ (red) cells within the NRM in the 6h 

CFA treated group. Scale bar indicates 100µm. B).  Numbers of double labelled neurons in 

the RVM at 6h following ankle injection of CFA (black) or sham treatment (white). The 

numbers of pERK+/TPH+, pERK+/TPH- and total number of pERK+ cells for the top 5 pERK+ 
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sections per animal are shown. n = 3 - 4, data is presented as mean ± SEM, * p < 0.05, 

independent samples t-test. 

3.3.4 Labelling of active GABAergic synapses within the RVM 

Pilot experiments were carried out to determine if injection of a VGAT-C 

specific antibody to the RVM in naive animals could be used as a measure of 

GABAergic activity within the region as described previously in the 

hippocampus (Martens et al., 2008). Animals were perfused 24h following a 

unilateral microinjection, and 40μm RVM sections were obtained. The VGAT-

C antibody is tagged with Oyster-550, however weak fluorescence was 

observed following sectioning, and immunohistochemistry was carried out 

to enhance the signal. It was found that a single, unilateral microinjection of 

the VGAT-C antibody produced extensive labelling of the RVM region both 

ipsilateral and contralateral to injection site (figure 3.5). Punctate VGAT-C 

labelling was observed throughout the RVM with the most intense labelling 

close to the site of microinjection. The rostral-caudal distribution ran from 

approximately -9.5mm to -12mm from Bregma, with most intense labelling 

at approximately -11mm from Bregma. 

 

Figure 3.5 Labelling of active GABAergic synapses in vivo. 

Schematic illustrating the approximate site of VGAT-C antibody microinjection. The red 

asterix indicates the site of microinjection, at approximately -11mm from Bregma, +0.6mm 

laterally from the midline and -9.5mm from the surface of the brain. Immunohistochemistry 

using tyramide signal amplification allowed the visualisation of the VGAT-C antibody in RVM 

sections. The top panel illustrates a sample immunofluorescence image of VGAT-C staining 

in a naive animal, at approximately -11mm from Bregma. The white asterix indicates the site 

of injection. Below, higher power images of the ipsilateral and contralateral sides are 

shown. As clear labelling was observed contralaterally, these images were used for 

quantitative analysis (the area used for analysis is outlined in by the white box in the top 

panel). Scale bars indicate 50µm. 
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Notably, VGAT-C labelling appeared most prominent in the more ventral and 

lateral portions of the RVM, with considerable labelling spreading into the 

pyramidal tracts. This suggests there is dense GABAergic innervation of the 

area in which pERK labelling is observed following ankle injection of CFA 

(figure 3.3a). To determine if these active GABAergic synapses are formed 

onto 5-HT containing RVM neurons, double labelling of VGAT-C and TPH was 

carried out. It was found that although some close contact could be 

identified between VGAT-C labelled punctae and TPH, not all VGAT-C 

punctae are associated with TPH suggesting that GABAergic neurons 

synapse onto a mixed population of RVM neurons (figure 3.6). 

 

Figure 3.6 VGAT-C and TPH fluorescence immunohistochemistry. 

Single plane confocal images illustrate that some VGAT-C punctae (red) appear to form 

close contact with TPH labelled neurons (green), with an example indicated by the solid 

white arrow. The dashed arrow indicates an example of VGAT-C labelling independent of 

TPH. Scale bar indicates 200µm. 

3.3.5 Decrease in the proportion of active GABAergic synapses in the 

RVM at 3d following ankle injection of CFA 

To determine if changes in GABAergic transmission occur within the RVM 

during persistent ankle inflammation, microinjection of the VGAT-C antibody 

was carried out in animals at 3d following injection of CFA or sham 

procedure (n = 3 per group). All quantitative analysis was carried out on the 

side contralateral to the injection site to minimise variation in labelling due 

to the minor damage caused by the microinjection needle tract (see figure 
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3.5). Animals were perfused at 24h following microinjection, and 

immunohistochemistry carried out to visualise the VGAT-C antibody. Double 

labelling for both isoforms of the glutamate decarboxylase enzyme 

(GAD65/67), a marker of GABAergic neurons, confirmed that the VGAT-C 

punctae corresponded to GABAergic synapses. A series of confocal images 

were taken for further analysis, with sample images from CFA treated and 

sham animals shown (figure 3.7a). Quantification of the total number of 

GAD65/67+ punctae and double labelled VGAT-C+ and GAD65/67+ punctae 

was carried out using the Fiji image analysis programme (see table 3.3). Two 

methods of statistical analysis were used. 

The first analysis used each of the 9 sections per treatment group as 

individual data points. No significant difference in the number of GAD65/67+ 

punctae was observed between the groups (p = 0.1563, independent 

samples t-test, n = 9). Similarly no significant difference was found in the raw 

number of GAD65/67+ and VGAT-C+ overlapping punctae (p = 0.957, 

independent samples t-test, n = 9). However, when the data was expressed 

as the percentage of overlapping punctae over total GAD65/67+ punctae, a 

significant decrease was found in CFA treated animals compared to the 

sham treated group (figure 3.7b, independent samples t-test, p = 0.0011, n = 

9). 

The second analysis used the average of the 3 sections per animal as data 

points (n = 3). This analysis generates the same values for the group means, 

but results in a more stringent statistical test, due to the smaller n number. 

In this case the decrease in the percentage of overlapping punctae over total 

GAD65/67+ punctae in the CFA treated group fell just short of statistical 

significance (figure 3.7c, independent samples t-test, p = 0.0559, n = 3). 

Although this method is the preferred test for this type of data, as this was a 

small pilot experiment it was deemed appropriate to conclude that a 
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decrease in the proportion of double labelled punctae occurred in the CFA 

group. 

 

 

 

CFA Sham p value 

Analysis 1: n = 9 

   GAD65/67 21103 ± 8380.2 7439.6 ± 3758.3 0.1563 

Double 3682.2 ± 1831.2 3849.9 ± 2336.5 0.9557 

% Double/GAD65/67 14.63 ± 3.91 44.93 ± 6.6 0.0011 

    

    Analysis 2: n = 3 

   GAD65/67 21103 ± 4841.46 7439.56 ± 2992.78 0.0743 

Double 3682.22 ± 980.38 3849.9 ± 2263.47 0.9491 

% Double/GAD65/67 14.63 ± 5.02 44.93 ±  10.18 0.0559 

Table 3.3 Numbers of GAD65/67+ and VGAT-C+ punctae at 3d post CFA. 

Values were determined by Fiji image analysis. The results of both statistical analyses are 

shown. Analysis 1 considered each section as a data point, with n = 9. Analysis 2 considered 

each animal as a data point, with n = 3 (based on the mean of 3 sections per animal). The p 

values for independent samples t-tests are shown for each comparison. 
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Figure 3.7 Decrease in the proportion of active GABAergic synapses at 3d post CFA. 

A). Single plane confocal images from CFA and sham treated animals illustrate that the 

majority of VGAT-C labelled punctae (red) colabel with GAD65/67 (green). These double 

labelled punctae correspond to active GABAergic synapses. Not all the GAD65/67+ punctae 

are colabelled with VGAT-C, suggesting the antibody is specific for active synapses only. 

Scale bars indicate 50μm.  B). Image analysis indicated that there is a decrease in the % of 

VGAT-C+ and GAD65/67+ double labelled punctae in the CFA treated group, over total 

GAD65/67 punctae. Data is expressed as the mean ± SEM of all 9 sections per group (n = 9, 

3 sections per animal, 3 animals per group), p = 0.0011, independent samples t-test. C). The 

same image analysis data is presented as the group mean (n = 3 animals) where the value 
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per animal is calculated as the average of the 3 sections per animal. p = 0.0559, 

independent samples t-test. 

3.4  Discussion 

The RVM is a key structure involved in the relay of descending information 

to the dorsal horn of the spinal cord and is known to be activated in a 

number of models of persistent pain. Despite considerable evidence for a 

role of the RVM in descending facilitation of neuropathic pain as well as 

cutaneous inflammation (Burgess et al., 2002; Géranton et al., 2008; Wei et 

al., 2010), little is known regarding the role of the RVM in joint pain. This 

chapter describes experiments designed to determine if neuronal activation 

in the RVM is altered following ankle joint inflammation. Two separate 

immunohistochemistry approaches were used, investigating levels of pERK 

expression and GABAergic inhibition. Consideration of both findings 

together provides insight into the different time dependent changes that 

occur within the RVM in this model, with ERK activation within 5-HT neurons 

in the acute phase, and decreased GABAergic inhibition in the maintenance 

phase.  

3.4.1 ERK activation in the RVM: a role in the induction of joint pain 

ERK activation is widely used as a marker of stimulus induced activity in the 

CNS. In studies of nociception, ERK phosphorylation has been shown to 

occur in neurons of the dorsal horn in a number of pain models.  RVM 

activation has also been demonstrated using pERK staining in the CFA model 

of cutaneous inflammation and spared nerve injury model of neuropathic 

pain (Géranton et al., 2010; Imbe et al., 2005). To investigate if similar RVM 

activation occurs in a model of joint pain, pERK immunohistochemistry was 

carried out at three time points following ankle injection of CFA.  

Interestingly it was found that in the sham treated animals there was a high 

level of ERK activation within the NRM and GiA regions of the RVM, 

suggesting that this region may be sensitive to the anaesthesia and 
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perfusion methods used. The RVM plays a role in acute nociception and 

phosphorylation of ERK is known to occur rapidly in stimulated neurons (Ji et 

al., 2002). This could explain the high level of ERK activation observed in the 

sham groups as the injection of pentobarbital and the perfusion process 

could cause rapid activation of ERK within the RVM. 

Despite the high basal level of pERK+ neurons in sham animals, comparison 

of the number of pERK+ neurons in CFA and sham treated groups indicated 

there was an increase in pERK+ cells at 6h post inflammation. No significant 

increase was found at the later time points suggesting that ERK activation 

may play a role in the induction but not the maintenance of the pain state. 

The data presented here supports findings by others in the CFA model of 

cutaneous inflammation, in which peak ERK activation occurs at 7h post 

inflammation and pERK levels remain elevated until 1d (Imbe et al., 2005). 

Our findings suggest that the time course of ERK phosphorylation in the 

RVM is similar in models of joint and cutaneous inflammation. 

Although the 6h time point correlates with peak mechanical hypersensitivity 

in our model, and can be considered representative of the acute phase of 

the pain state (Géranton et al., 2007), it is possible that ERK activation may 

occur at even earlier time points. For example in the Imbe et al. study an 

initial activation period was identified at 30min following plantar 

inflammation. This time point mirrors activation of ERK within spinal 

neurons following noxious stimulation (Ji et al., 1999). It is likely that a 

similar initial activation of ERK may occur in the RVM within minutes 

following ankle injection of CFA, and so an earlier time point may warrant 

investigation. If this proves to be the case, the two windows of ERK 

activation within the RVM may represent different aspects of nociceptive 

processing in the pain model. Activation of ERK within minutes may be arise 

due to the initial process of injection and inflammation, and could indicate 

activation of descending inhibitory neurons. Subsequent activation, within 
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hours, could represent recruitment of facilitatory pathways as mechanical 

hypersensitivity begins to stabilise and enters the maintenance phase. 

Attenuation of cutaneous thermal hypersensitivity by microinjection of a 

MEK inhibitor to the RVM has been demonstrated (Imbe et al., 2008). 

Although ERK phosphorylation was decreased within hours of drug 

administration the effects of ERK inhibition on pain sensitivity did not occur 

until 1d post CFA injection. This suggests that the effects of ERK activation 

on behavioural hypersensitivity may not be observed until several hours 

later which would correlate with a role for ERK in long term transcriptional 

changes in the activated neurons. In the present study behavioural testing 

was not carried out, to eliminate the possibility that nociceptive testing itself 

could contribute to ERK activation in the RVM. Nonetheless behavioural 

testing may be of interest in future experiments, in particular to investigate 

if activation of ERK within the RVM has a facilitatory effect on mechanical 

paw withdrawal thresholds in this model. A useful future experiment would 

be to administer a MEK inhibitor directly to the RVM to establish if inhibition 

of ERK phosphorylation attenuates joint pain behaviour. 

In the present study ERK activation is not observed at later time points, with 

no significant increase observed at either 3d or 7d post CFA injection. Again 

this correlates with previous findings in cutaneous inflammation (Imbe et al., 

2005) but contrasts with work using the spared nerve injury model of 

neuropathic pain (Géranton et al., 2010). In this neuropathic pain model 

biphasic activation of ERK occurs, with increases in pERK+ neurons observed 

both during the induction phase of the pain state at (3d post nerve injury) 

and in the maintenance phase  (8d post injury) (Géranton et al., 2010). This 

suggests that cutaneous and joint inflammation result in different patterns 

of ERK activation within the RVM when compared to neuropathic pain 

states. This may reflect differences in neuronal activity and descending 

modulation of pain in inflammatory and neuropathic models. It is possible 



Chapter 3 

89 

 

however that ERK activation could be maintained in the present model, at 

least up to 1d post inflammation as observed in cutaneous inflammation 

(Imbe et al., 2005). Further work is required to confirm that there is no 

further activation of ERK after the 6h time point, but at present the absence 

of activation at 3d and 7d suggests that in this model ERK activation does 

not occur in the later stages of inflammation. As mentioned above, 

pharmacological studies suggest there may be a delay between ERK 

activation and behavioural effects on descending modulation of pain, and it 

is possible that early ERK activation contributes to long term transcriptional 

changes and plasticity within the RVM. 

It was found that approximately 80% of pERK expressing neurons in the RVM 

were TPH positive at 6h post inflammation. This proportion is higher than 

that reported in the cutaneous inflammation (Imbe et al., 2004) and may 

suggest greater activation of 5-HT neurons in the ankle joint model. 5-HT 

containing neurons represent approximately 20% of the RVM cell population 

(Gu and Wessendorf, 2007; Potrebic et al., 1994; Zhang et al., 2006) and 

many of these 5-HT neurons project to the dorsal horn (Bowker et al., 1982; 

Skagerberg and Björklund, 1985). Descending 5-HT fibres can have both pro- 

and anti-nociceptive effects within the dorsal horn, depending on the 

receptor subtype activated (Bardin, 2011; Millan, 2002). Increased activation 

of 5-HT neurons in the RVM following joint inflammation may therefore lead 

to increased descending inhibition, facilitation or a combination of the two. 

The next chapter describes experiments which aimed to investigate the role 

of descending 5-HT fibres in mediating behavioural hypersensitivity 

associated with joint inflammation.  

Not all 5-HT neurons in the RVM project to the dorsal horn (Marinelli et al., 

2002) and it would be of interest to determine the proportion of 

pERK+/TPH+ neurons that are projection neurons. Retrograde tracing from 

the dorsal horn would be useful in conjunction with pERK and TPH labelling. 
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Of those pERK+/TPH+ neurons that terminate within the RVM, it would be of 

interest to determine if these are either excitatory or inhibitory 

interneurons, by triple labelling with either VGLUT1 (the vesicular glutamate 

transporter) or GAD65/67. 

Although these findings strongly suggest a role for 5-HT RVM neurons in the 

ankle joint model, the relatively low level of pERK expression in non-5-HT 

cell types is intriguing. The RVM is a heterogeneous population of cells, with 

physiologically defined ON, OFF and NEUTRAL cells being described 

throughout the region and these are not anatomically separated (Fields and 

Heinricher, 1985; Fields et al., 1983). It is interesting to note that little 

activation of ERK occurs in the more dorsal and lateral portions of the RVM, 

as at least some of these physiologically defined cells are present in the 

outer regions (Barbaro et al., 1986; Fields et al., 1983). This suggests that the 

signalling pathway contributing to ERK activation is not active in some of 

these electrophysiologically defined cells. Although ERK can be activated by 

Ca2+ influx via activated ionotropic receptors, another pathway which could 

contribute to ERK activation in TPH neurons is BDNF signalling (Pezet et al., 

2002). Release of BDNF within the RVM from neurons arising in the PAG 

contributes to hyperalgesia (Guo et al., 2006) and this hyperalgesia appears 

to require release of 5-HT in the dorsal horn (Wei et al., 2010). Therefore 

BDNF activation of the TrkB receptor on 5-HT neurons of the RVM could lead 

to preferential activation of ERK in those neurons.  

3.4.2 Decreased GABAergic transmission in the RVM following joint 

inflammation 

In a separate experiment it was investigated if activity at GABAergic 

synapses within the RVM is altered in response to joint inflammation. In the 

normal animal GABAergic signalling in the RVM is pro-nociceptive, as 

microinjection of GABAA agonists to the region facilitates the tail flick reflex 

(Gilbert and Franklin, 2001; Heinricher et al., 1994). The proposed 
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mechanism underlying this effect is that increased GABAergic inhibition of 

inhibitory RVM neurons that project to the spinal cord results in a reduction 

in descending inhibition. Recently however it has been proposed that in 

persistent pain states decreased GABAergic inhibition within the RVM could 

lead to enhanced excitation of pain facilitating neurons projecting to the 

spinal cord. In the CFA model of plantar inflammation a decrease in 

inhibitory post synaptic currents occurs in the RVM. This effect is seen at 3 

days but not at earlier time points following induction of the pain state 

(Zhang et al. 2011). In this study it was also shown that microinjection of a 

GABAA agonist to the RVM reduced thermal hypersensitivity. This strongly 

suggests that GABAergic transmission in altered in the maintenance phase of 

hypersensitivity (3d) following plantar inflammation. 

To investigate if changes in GABAergic activity in the RVM occur in the ankle 

joint model a novel method of labelling active GABAergic synapses in vivo 

was used. Microinjection of the VGAT-C antibody to the RVM of naïve rats 

and subsequent detection by immunohistochemistry suggested that as 

described previously by others in the hippocampus (Martens et al., 2008) 

this technique could be a useful measure of GABAergic activity in the RVM. 

GAD65/67 double labelling indicated that the majority of these VGAT-C 

positive punctae were at GABAergic synapses. Furthermore the GAD65/67 

labelling indicated that not all GAD65/67 positive punctae were positive for 

the VGAT-C terminus epitope, which is only exposed during synaptic release 

of neurotransmitter (figure 3.2). This suggests that as anticipated only a 

subset of active GABAergic synapses were labelled by VGAT-C 

(approximately 50% in the sham treated animals) and not all those 

containing GABA. 

Using this labelling technique we wished to investigate if active GABAergic 

synapses are decreased in the RVM following ankle injection of CFA. Animals 

received VGAT-C microinjection at 3 days following CFA injection or sham 
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procedure. Analysis of the number of VGAT-C and GAD65/67 positive 

punctae in a sample of RVM sections from each group found that at 3 days 

following ankle inflammation there was a significant decrease in GABAergic 

signalling compared to sham controls. This supports the previous data on 

plantar inflammation in which GABAergic signalling is decreased at 3 days 

post CFA but not at earlier time points (Zhang et al., 2011). Although we 

have not carried out VGAT-C labelling at earlier time points, the results 

presented here indicate that decreased GABAergic transmission can be 

identified in the maintenance phase of the pain state. The origin of the 

GABAergic synapses characterised in this study is not addressed. Other brain 

regions which project to the RVM including the PAG may also be sources of 

GABAergic input however retrograde labelling from the PAG suggests that 

this GABAergic input is minimal (Jones et al. 1991). Therefore it is likely that 

many of the synapses quantified here arise from local inhibitory 

interneurons. 

Further work is needed to characterise the functional role of GABAergic 

signalling within the RVM particularly in persistent pain states. Most 

previous studies have investigated GABAergic mechanisms in acute 

nociception using pharmacological manipulations (Drower and Hammond, 

1988; Gilbert and Franklin, 2001; Heinricher and Kaplan, 1991; Heinricher et 

al., 1994). The role of the endogenous GABAergic signalling system within 

the RVM in pathological pain states following peripheral injury or 

inflammation is not well established. Increased descending facilitation from 

the RVM has been shown to play a role in behavioural hypersensitivity in 

neuropathic pain (Burgess et al., 2002; Porreca et al., 2001) and cutaneous 

inflammation (Géranton et al., 2008; LaGraize et al., 2010; Wei et al., 2010). 

The decrease in GABAergic signalling observed in this study and by others 

(Zhang et al., 2011) may therefore reflect a decrease in inhibitory control 

over facilitatory output neurons. Previously it has been reported that 

approximately 45% of all identified synapses in the rat RVM region are 
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GABAergic (Cho and Basbaum, 1991). The diffuse VGAT-C labelling observed 

throughout the RVM observed in naive rats is consistent with this. The high 

proportion of GABAergic synapses within the region and the presence of 

GABAA receptors on approximately 30% of RVM projection neurons (Hama 

et al., 1997) suggests that GABAergic inhibition is an important mechanism 

in the regulation of RVM to dorsal horn signalling. 

It has been shown previously that at least some of the RVM 5-HT neurons 

have GABAergic input (Jones et al., 1991), and the finding that some TPH 

neurons have close labelling with VGAT-C supports this. Therefore the 

decreased GABAergic activity following ankle injection of CFA may result in a 

decrease in the inhibition of these neurons and increased 5-HT release in the 

spinal cord. However, only 20% of 5-HT neurons express the GABAA receptor 

(Hama et al., 1997) so it is likely that the decrease in GABAergic inhibition 

will also affect other cell types. Interestingly the Zhang et al. study (2011) 

suggested that decreased GABAergic inhibition may occur preferentially on 

cells expressing the mu opioid receptor (MOR), as MOR+ cell excitability is 

increased after inflammation. Further work is needed to determine if this is 

the case following ankle joint inflammation.  

3.4.3 VGAT-C labelling technique: technical considerations 

Labelling of active GABAergic synapses by application of a VGAT-C specific 

antibody is a relatively novel technique, and to date has been used in vivo 

only within the hippocampus in naïve animals, and not under experimental 

conditions (Martens et al., 2008). Although the results described in this 

chapter are promising, these should be considered pilot experiments and 

further work is needed to optimise the protocol. An important future 

experiment is to test a variety of VGAT-C concentrations in vivo to determine 

the optimal dose for TSA immunohistochemistry. As discussed above, the 

side contralateral to microinjection was used for analysis due to minor tissue 

damage caused at the injection site. A lower dose may reduce this effect and 
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allow for reliable analysis of the ipsilateral side. In addition, a single injection 

along the midline may be preferable as this would allow labelling and 

quantification of both sides of the RVM.  

Specificity of the VGAT-C antibody for actively recycling GABAergic vesicles 

has been established by others previously (Hughes et al., 2010; Martens et 

al., 2008), however nonetheless a number of controls should be included in 

our future studies. Firstly, to ensure that the VGAT-C antibody is specific for 

active GABAergic synapses, a third antigen could be stained in addition to 

GAD65/67, such as VGAT-N or gephyrin, and only those punctae positive for 

all three would be counted as active GABAergic synapses. Secondly, to 

ensure that the VGAT-C antibody is not non-selectively labelling active 

synapses in all types of neurons, confirmation of a lack of double labelling 

with VGLUT1 (vesicular glutamate transporter) or SERT (5-HT transporter) 

could be carried out.  

It has been reported that VGAT-C treatment of neurons in vitro does not 

impair vesicle filling, but may lead to a small reduction in vesicle release 

probability (Martens et al., 2008). The possibility that GABAergic 

transmission will be impaired following injection in vivo may warrant 

investigation, and suggests that combining behavioural studies with VGAT-C 

labelling may be problematic. Despite this limitation, and subject to 

confirmation of antibody specificity, the VGAT-C labelling technique may 

prove useful for quantifying GABAergic transmission within the RVM during 

ankle joint inflammation and other chronic pain states. 

3.4.4 Conclusions 

The aim of this chapter was to determine if changes in RVM activity occur 

following ankle joint inflammation, as described previously following 

induction of cutaneous inflammation or neuropathic injury. I have shown 

that following joint inflammation, ERK activation occurs mainly within 5-HT 

neurons. By labelling active GABAergic synapses in vivo, I have shown that 



Chapter 3 

95 

 

changes in inhibitory transmission also occur following joint inflammation. 

The following chapters describe experiments designed to determine the 

contribution of descending facilitation via the RVM to behavioural 

hypersensitivity in this model. 
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4. The role of descending 5-HT in inflammatory 

joint pain  

4.1  Introduction 

The majority of 5-HT fibres terminating in the dorsal horn originate in the 

RVM (Kwiat and Basbaum, 1992) and as demonstrated in chapter 3, 

activation of many of these neurons occurs in the hours following ankle joint 

inflammation. This chapter describes behavioural experiments carried out to 

investigate the role of spinal 5-HT in mediating behavioural hypersensitivity 

associated with this model. 

4.1.1 The role of spinal 5-HT in nociceptive processing 

5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter found 

extensively in the periphery including the cardiovascular, gastrointestinal 

and pulmonary systems. Within the CNS 5-HT plays an important role in the 

modulation of many neurological processes including mood, sleep, 

autonomic function and sensory processing. Central 5-HT is produced largely 

in neurons of the midline raphe nuclei of the brainstem, which project to 

almost all brain areas and also the spinal cord (Berger et al., 2009). 

The RVM is an important site in the descending modulation of nociceptive 

processing, and the majority of 5-HT fibres within the dorsal horn originate 

here (Kwiat and Basbaum, 1992). 5-HT containing fibres have been shown to 

form synapses onto projection neurons and local inhibitory interneurons  

(Millan, 2002; Ruda, 1988; Ruda et al., 1986). Therefore spinal 5-HT fibres 

arising from the RVM are ideally placed to modulate nociceptive processing 

in the dorsal horn. 
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In normal animals spinal 5-HT has been shown to play an inhibitory role in 

nociception. Direct application of 5-HT to the spinal cord in naive animals 

has an anti-nociceptive effect on behavioural responses to acute thermal 

(Crisp et al., 1991; Xu et al., 1994a; Yaksh and Wilson, 1979) and mechanical 

(Bardin et al., 1997) stimuli. In addition, the full analgesic effects of systemic 

morphine (Deakin and Dostrovsky, 1978) and clonidine (Duan and Sawynok, 

1987) require an intact spinal 5-HT system suggesting 5-HT is a key 

component of endogenous inhibitory pathways.  

These early studies established an important role for spinal 5-HT in 

mediating descending inhibition in the naive animal. Later work found that 

that in addition to mediating descending inhibition, the RVM could also play 

a role in facilitating nociception as high and low frequency stimulation of the 

region produced inhibition and facilitation respectively (Zhuo and Gebhart, 

1990). It was found that the pro-nociceptive effect of low frequency 

stimulation in the RVM was blocked by 5-HT₁ receptor antagonism within 

the spinal cord (Zhuo and Gebhart, 1991) suggesting that spinal 5-HT may 

also facilitate spinal processing of pain.  

4.1.2 5-HT receptor subtypes in the dorsal horn 

At the spinal cord level the ability of 5-HT to enhance or inhibit nociceptive 

processing may be explained by activation of different receptor subtypes 

and multiple cellular locations within the dorsal horn (Millan, 2002). The 5-

HT receptors are divided into 7 families, containing a total of 15 distinct 

receptors (Hannon and Hoyer, 2008). All are G protein-coupled, except for 

the 5-HT₃ receptor, which is a ligand gated ion channel. All the known 5-HT 

receptor subtypes are expressed within the spinal cord. The 5-HT₁ and 5-HT₂ 

groups and the individual 5-HT₃ and 5-HT₇ receptors are the most widely 

studied in terms of nociception (Millan, 2002). The functional response to 5-

HT will depend on the physiological effect of receptor activation, i.e. if it has 

an inhibitory or excitatory role within the target neuron, and the cell type on 
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which it is located. The dorsal horn is a complex network of projection 

neurons, descending fibres, local inhibitory and excitatory interneurons, as 

well as containing the primary afferent terminals (Todd, 2010). 5-HT 

receptors are located on all of these cell types and therefore the net effect 

of 5-HT will depend on the balance between these components. 

The 5-HT₁ subtype accounts for the majority of 5-HT receptors within the 

spinal cord. 5-HT1A receptor activation has an inhibitory effect on neurons by 

negative coupling to adenylyl cyclase. 5-HT1A  activation has been shown to 

exert facilitatory effects on the nociceptive responses of spinal wide 

dynamic range neurons following carrageenan induced inflammation (Zhang 

et al., 2001) and are required for RVM stimulation induced facilitation of 

nociceptive reflexes (Ren, Randich, and Gebhart 1991; Zhuo and Gebhart 

1991). Upregulation of this receptor occurs following peripheral carrageenan 

inflammation (Zhang et al. 2002) and hyperalgesia induced by plantar 

injection of bee venom (Wang et al., 2003). The facilitatory effects of 5-HT1A  

receptor activation are thought to be mediated indirectly by inhibition of 

GABAergic interneurons (Wang et al., 2009). However inhibitory effects of 5-

HT1A  on nociception have also been described, for example in the formalin 

test, and this may be mediated by direct inhibitory effects on projection 

neurons (Bardin et al., 2001; Oyama et al., 1996). Therefore the 5-HT1A 

receptor subtype can have dual effects on nociception depending on the cell 

type activated.  

The 5-HT2A receptor has also been implicated in descending facilitation. It 

has an excitatory effect on neurons, by positive coupling to phospholipase C 

(Millan, 2002). The 5-HT2A receptor is expressed at relatively low levels 

within the dorsal horn but is highly expressed in the DRG. Therefore the 

effects of 5-HT2A activation in the spinal cord are likely to be mediated by the 

primary afferent terminals. Spinal administration of a 5-HT2A antagonist has 

anti-nociceptive effects in models of neuropathic pain (Obata et al., 2004, 
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2001) and the formalin test (Nitanda et al., 2005). This receptor is therefore 

also a likely candidate in mediating descending facilitation via 5-HT. 

The 5-HT₃ receptor has been the most widely studied in terms of mediating 

descending facilitation. This subtype is unique among the 5-HT receptors as 

it is a ligand gated ion channel. Activation of the 5-HT₃ receptor in neurons 

has an excitatory effect on target neurons, by positive coupling to 

phospholipase C. The 5-HT₃ receptor localises to primary afferent terminals 

(Maxwell et al., 2003) and one mechanism by which 5-HT₃ activation could 

enhance nociception is by increasing transmitter release from terminals. The 

5-HT₃ receptor is also found on spinal interneurons and projection neurons 

(Conte et al., 2005; Huang et al., 2004; Kawasaki et al., 2004; Maxwell et al., 

2003; Zeitz et al., 2002).  

5-HT₃ knockout animals display normal acute pain behaviour but show an 

attenuated response to the second phase of the formalin test (Zeitz et al., 

2002). This suggests that baseline pain responses are not modulated by 5-

HT₃ but that in persistent pain states increased 5-HT drive to the spinal cord 

may activate these receptors. This is also observed pharmacologically 

whereby intrathecal administration of ondansetron, a selective 5-HT₃ 

antagonist, attenuates the second phase of the formalin response (Okamoto 

et al., 2004). Intrathecal administration of 5-HT₃ receptor antagonists has 

also been shown to attenuate behavioural hypersensitivity in a number of 

persistent pain models including spinal cord injury (Oatway et al., 2004), 

cancer induced bone pain (Donovan-Rodriguez et al., 2006), neuropathic 

pain (Dogrul et al., 2009) and cutaneous inflammation by CFA (LaGraize et 

al., 2010). Facilitation of dorsal horn neuronal excitability has also been 

shown to be mediated by the 5-HT₃ receptor in the formalin test (Suzuki et 

al., 2002) and in the monosodium iodoacetate (MIA) model of osteoarthritis 

(Rahman et al., 2009). Importantly these findings have been validated to 

some extent in patients with neuropathic pain, where a single intrathecal 
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dose of ondansetron led to a small decrease in overall pain scores, 

suggesting that targeting the spinal facilitation of pain via the 5-HT₃ receptor 

may a useful target in the treatment of chronic pain states  (McCleane et al., 

2003). 

The 5-HT₇ receptor has only been studied in pain relatively recently, and 

most studies suggest it plays a role in the inhibitory effects of 5-HT. 

Activation of the 5-HT₇ receptor leads to excitatory effects within neurons 

and the receptor has been shown to localise both to primary afferent 

terminals and intrinsic dorsal horn neurons (Doly et al., 2005). In 

neuropathic pain, 5-HT₇ plays an inhibitory role (Dogrul et al., 2009) and this 

is thought to be mediated via activation of GABAergic interneurons in the 

dorsal horn (Yanarates et al., 2010). In addition, this receptor is required for 

morphine (Dogrul and Seyrek, 2006) and tramadol (Yanarates et al., 2010) 

mediated analgesia. These studies strongly support a role for the 5-HT₇ 

receptor in mediating descending inhibition by 5-HT. 

4.1.3 The role of descending 5-HT in persistent pain states: evidence from 

lesion studies 

The net effect of endogenous descending 5-HT in pain behaviour has been 

investigated using selective lesion of 5-HT containing fibres by the 

neurotoxin 5,7-dihydroxytryptamine. This technique has been used in a 

number of pain models, including the formalin model (Svensson et al., 

2006), neuropathic injury (Rahman et al., 2006) and plantar inflammation by 

CFA (Géranton et al., 2008). These studies have illustrated that depletion of 

spinal 5-HT has no effect on baseline pain responses but that in models of 

persistent pain, lack of 5-HT fibres leads to an attenuation of behavioural 

hypersensitivity. This suggests that endogenous 5-HT exerts a net facilitatory 

effect on nociceptive processing in these pain models. More recently 

molecular depletion of descending 5-HT by silencing of tryptophan 

hydroxylase (TPH), the enzyme that synthesises 5-HT, has also been used to 
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demonstrate that descending 5-HT has a pro-nociceptive role in cutaneous 

inflammation (Wei et al., 2010). Collectively these studies suggest a role for 

descending 5-HT in increasing pain sensitivity across a variety of pain 

models. 

4.1.4 Hypothesis 

In this chapter I have tested the hypothesis that descending 5-HT facilitates 

behavioural hypersensitivity following joint inflammation and that this is 

mediated by the spinal 5-HT₃ receptor. 

4.2  Methods 

4.2.1 Intrathecal injection 

Isoflurane anaesthesia (5% isoflurane for induction, 1.5 – 2% for 

maintenance, combined with 100% O2 (1l/min)) was used during surgery. 

Animals were secured in a stereotaxic frame and the head was shaved and 

sterilised. A skin incision was made from the base of the skull to the first 

vertebra, and the muscle separated in layers to reveal the atlanto-occipital 

membrane. A small incision was made and the membrane cleared to allow 

cannula access. Polyethene tubing (diameter 0.28mm), prefilled with 

solution and attached to a 50µl Hamilton syringe was then inserted carefully 

was into the subarachnoid space, terminating in L4-5 region. Care was taken 

to prevent damage to the spinal cord or roots. Toxin, drug or vehicle was 

injected in a volume of 10µl. The tubing was then withdrawn, and the 

muscle was sutured with 1 – 2 stiches of 3-0 Mersilk, and the skin sutured 

with 5-0 Mersilk. As with intra-RVM injections animals were monitored 

closely for weight loss, signs of neurological impairments or general distress. 

4.2.1.1  5,7-Dihydroxytryptamine lesion 

Animals were pre-treated with 25mg/kg i.p. desipramine hydrochloride 

(Sigma) dissolved in saline to protect against noradrenergic toxicity one hour 
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prior to surgery.  Animals received 10μl of 5,7-dihydroxytryptamine (5,7-

DHT) in saline (6μg/μl, Fluka) or saline only. The animals were allowed to 

recover over 6 days to allow for depletion of 5-HT fibres before CFA 

injection. 

4.2.1.2  5-HT₃ antagonist 

In a separate experiment animals were injected intrathecally with drug or 

vehicle at 1d following CFA injection to the ankle. Ondansetron 

hydrochloride (Tocris Bioscience), a selective 5-HT₃ antagonist was dissolved 

in saline and injected in a volume of 10µl at a dose of 1µg/1µl. This dose was 

chosen based on a previous study of thermal hyperalgesia following 

cutaneous inflammation (LaGraize et al., 2010). 

4.2.2 Inflammatory pain model and behavioural testing 

Animals received ankle injection of CFA or underwent a sham procedure. 

Paw withdrawal thresholds were measured and log2 transformation was 

carried out to normalise the data (see section 2.2). 

To measure relative weight bearing on the ipsilateral and contralateral 

hindpaws following induction of joint inflammation an incapcitance tester 

(Linton Instrumentation) was used. Animals were placed in a plexiglass box 

with front paws leaning on a slope and each hindpaw on a separate 

weighing scale. The force of each hindpaw on its scale was then measured 

and averaged over a 5 second period, and 5 measurements were taken for 

each animal. Data is presented as the mean ipsilateral weight bearing over 

total weight bearing: (Ipsilateral weight (g)/ (Ipsilateral weight (g) + 

contralateral weight (g))) x 100. 

Statistical analysis for both mechanical paw withdrawal thresholds and 

weight bearing data was carried out in SPSS. Analysis of variance (ANOVA) 

with repeated measures was carried out with time as the within subjects 

factor, and CFA and 5,7-DHT/ondansetron treatment as the between 
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subjects factors. A significant main effect of CFA was a prerequisite for 

subsequent ANOVAs or post hoc analysis. 

4.2.3 5-HT immunohistochemistry 

To determine the extent of 5,7-DHT lesion of spinal 5-HT fibres, direct 

fluorescence immunohistochemistry was carried out using a 5-HT specific 

antibody (rat host, concentration 1:75, Chemicon) in 40µm lumbar spinal 

cord sections from 5,7-DHT and saline injected animals. The 5-HT 

immunohistochemistry protocol used the avidin-biotin steps of the TSA 

protocol, but without the biotinylated tyramide step (section 2.4). 

4.3  Results 

4.3.1 Lesion of descending 5-HT fibres by 5,7-DHT attenuates mechanical 

hypersensitivity   

Following intrathecal injection animals were monitored closely for 

neurological damage. In a small number of animals, cannula insertion 

resulted in dorsal root injury which caused clear motor deficits apparent 

upon recovery from the anaesthesia. These were culled immediately and 

removed from further analysis. Following a 6d recovery period animals were 

subjected to either ankle injection of CFA or sham procedure and paw 

withdrawal thresholds were monitored up to 7d post inflammation.  

Three-way analysis of variance (ANOVA) with repeated measures was 

carried out on the ipsilateral paw withdrawal thresholds, with time as the 

within-subject factor and intrathecal injection (5,7-DHT or saline) and CFA 

injection (CFA or sham) as the between-subjects factors (n = 6 - 7). Main 

effects of time, CFA, and a time x CFA interaction were observed. The full 

results of this analysis are shown in table 4.1. 

Subsequently a two-way ANOVA with repeated measures was carried out to 

determine if there was an overall effect of 5,7-DHT from 2h to 7d following 



Chapter 4 

104 

 

CFA treatment. The results of this analysis indicated there was no overall 

effect of 5,7-DHT treatment (p = 0.271) and no 5,7-DHT x CFA interaction (p 

= 0.293) but there was a main effect of time (p < 0.001). One-way ANOVAs at 

each time point following CFA injection were then carried out to determine 

the source of this variation. These indicated that there was a significant 

effect of 5,7-DHT treatment at days 1 and 2 post CFA injection (p = 0.01 and 

0.037 respectively, LSD post hoc test, figure 4.1a).  

Factor df F Error P 

Time  13 20.8 286 < 0.001 

CFA  1 64 22 < 0.001 

5,7-DHT  1 0.36 22 0.555 

5,7-DHT x CFA 1 16.5 22 0.198 

Time x 5,7-DHT 13 0.771 286 0.691 

Time x CFA 13 23.7 286 < 0.001 

Time x CFA x 5,7-DHT 13 1.25 286 0.244 
Table 4.1 Results of three-way ANOVA with repeated measures on ipsilateral paw 

withdrawal thresholds following 5,7-DHT. 
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Figure 4.1 Attenuation of mechanical hypersensitivity by 5,7-DHT. 

A). Attenuation of mechanical hypersensitivity in 5,7-dihydroxytryptamine treated rats 

following ankle joint inflammation. Ipsilateral paw withdrawal thresholds were significantly 

higher in 5,7-DHT treated animals compared with saline controls, at 1d and 2d following 

CFA injection. Pre-IT indicates the baseline prior to intrathecal injection, post-IT indicates 

baseline after IT injection. B). Paw withdrawal thresholds of the contralateral hindpaw were 

not altered by CFA injection or by 5,7-DHT pre-treatment. Data is presented as log2 (paw 

withdrawal threshold in g) and mean ± SEM. * p < 0.05, two-way ANOVA with repeated 

measures, and LSD post hoc analysis. n = 6 - 7. 

 

A three-way ANOVA with repeated measures was also carried out on the 

paw withdrawal thresholds of the contralateral hindpaw (figure 4.1b). This 

analysis indicated that although there was a significant effect of time (p < 

0.001) there was no time x 5,7-DHT interaction (p = 0.59), time x CFA 

interaction (p = 0.651) or time x 5,7-DHT x CFA interaction (p = 0.604). The 

between subjects effects indicated no effect of 5,7-DHT (p = 0.922), CFA 

(0.129) or CFA x 5,7-DHT interaction (p = 0.393). As there were no significant 

main effects of CFA treatment on paw withdrawal thresholds post hoc 

analysis was not carried out.  

These findings indicate that 5,7-DHT treatment has no effect on baseline 

mechanical paw withdrawal thresholds, and attenuates mechanical 

hypersensitivity at 1d and 2d post inflammation only.  

4.3.2 No effect of 5,7-DHT on weight bearing 

Use of von Frey hairs allows the characterisation of cutaneous mechanical 

hypersensitivity of tissue adjacent to the inflamed joint, which may be 

considered a measure of secondary hyperalgesia. To study the sensitivity of 

the joint (primary hyperalgesia) weight bearing on the hindpaws was 

assessed. Readings were taken of weight placed on the ipsilateral and the 

contralateral hindpaws, and data is expressed as ipsilateral weight 

bearing/total hindpaw weight bearing (ipsilateral + contralateral). Three-way 
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ANOVA with repeated measures was carried out as for the paw withdrawal 

thresholds. The within-subjects tests indicated there was a main effect of 

time but no time x 5,7-DHT, time x CFA or time x 5,7-DHT x CFA interactions. 

The between-subjects tests indicated that there was no overall effect of 

drug or drug x treatment interaction but there was a main effect of 

treatment. The results of this analysis are shown in table 4.2. 

As there was a main effect of time and CFA treatment, post-hoc analysis was 

carried out using one-way ANOVAs at each time point following CFA 

injection. This indicated that at all time points there was a significant effect 

of CFA treatment (p < 0.03) but no effect 5,7-DHT. These findings indicate 

that while CFA treatment reduces weight bearing on the ipsilateral hindpaw, 

there was no attenuation of this shift in weight bearing by 5,7-DHT 

treatment (figure 4.2). 
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Figure 4.2 No effect on weight bearing following 5,7-DHT. 

CFA treatment led to a decrease in weight bearing on the ipsilateral hindpaw in both 5,7-

DHT and saline treated groups (** p = 0.001, three-way ANOVA with repeated measures) 
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however 5,7-DHT treatment had no effect on this decrease. Data is presented as mean ± 

SEM, n = 6 – 7. 

 

Factor df F Error P 

Time  5 4.72 110 0.001 

CFA  1 14.892 303.737 0.001 

5,7-DHT 1 0.06 303.737 0.809 

5,7-DHT x CFA 1 0.034 303.737 0.855 

Time x 5,7-DHT 5 1.225 110 0.302 

Time x CFA 5 1.05 110 0.392 

Time x CFA x 5,7-DHT 5 2.101 110 0.071 
Table 4.2 Results of three-way ANOVA with repeated measures on weight bearing 

following 5,7-DHT. 
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4.3.3 Confirmation of 5-HT depletion by immunohistochemistry 

Ablation of central 5-HT containing neurons by administration of 5,7-DHT is 

a widely used lesion technique in many areas of neuroscience and has been 

used by our research group previously to ablate descending 5-HT fibres 

within the dorsal horn of the spinal cord (Géranton et al., 2008). 5-HT 

immunohistochemistry was carried out in 40µm sections of the lumbar L4-L6 

region spinal cord in a total of 8 rats (2 from each treatment group, in each 

of the two experimental batches). In all 5,7-DHT treated animals it was 

found that as expected,  5-HT positive punctae were almost completely 

absent within the dorsal horn, compared with saline injected controls in 

which extensive 5-HT labelling was observed. Representative images of 5,7-

DHT treated and saline control animals are shown in figure 4.3. 

 

Figure 4.3 5-HT immunohistochemistry following at 13d following 5,7-DHT depletion (7d 

post CFA). 
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Representative images indicate that 5,7-DHT treatment leads to a complete loss of 5-HT 

punctate immunoreactivity within the dorsal horn. Top row x 5 magnification, scale bar 

indicates 400µm, bottom row x 10 magnification, scale bar indicates 200µm. 

4.3.4 Effect of an intrathecal 5-HT₃ antagonist on established 

hypersensitivity 

To determine the role of the 5-HT₃ receptor in mediating descending 

facilitation by 5-HT, the 5-HT₃ specific antagonist ondansetron was 

intrathecally administered to animals 24h following induction of 

inflammation. A two-way ANOVA with repeated measures was carried out 

with time as the within-subjects factor and drug treatment as the between-

subjects factor. The results of this analysis are shown in table 4.4. 

Factor df F Error P 

Time 5 49.118 20 < 0.001 

Drug 1 0.923 4 0.391 

Time x Drug 5 3.805 20 0.014 
Table 4.3 Results of two–way ANOVA with repeated measures on ipsilateral paw 

withdrawal thresholds following intrathecal ondansetron. 

As there was a time x drug interaction, further analysis was carried out on 

time points after intrathecal injection of ondansetron. Two-way ANOVA with 

repeated measures from 2h – 3h indicated that at these time points there 

was an overall effect of ondansetron treatment (p = 0.015). This indicates 

that intrathecal antagonism of the 5-HT₃ receptor in animals with 

established inflammation can transiently attenuate behavioural 

hypersensitivity (figure 4.4).  
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Figure 4.4 Attenuation of mechanical hypersensitivity by intrathecal ondansetron. 

All animals received ankle injection of CFA which caused a decrease in paw withdrawal 

thresholds from baseline at 24h. They were then divided into two groups, one receiving 

intrathecal injection of ondansetron (10µg/10µl) and the other saline (10µl). Ondansetron 

treatment increased paw withdrawal thresholds at 2h and 3h post injection compared to 

saline injected controls, * p < 0.05, two-way ANOVA with repeated measures. Data is 

presented as log2 (paw withdrawal threshold in g) and mean ± SEM, n = 3. At the 3h time 

point no error bars are shown as the three values in each group were the same. 

4.4  Discussion 

Joint inflammation results in hyperalgesia and allodynia and this is driven 

partly by peripheral sensitisation by inflammatory mediators, however 

central sensitisation of the spinal cord has also been shown to contribute 

(Neugebauer and Schaible, 1990) and (Naeini et al., 2005). Interestingly 

enhanced descending inhibition of spinal excitability has also been shown to 

occur at least in the acute phase of joint inflammation (Cervero et al., 1991; 
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Schaible et al., 1991), however the potential contribution of descending 

facilitation to pain associated with joint inflammation is relatively unknown. 

The role of 5-HT in models of pain is somewhat controversial, with some 

studies suggesting spinal 5-HT is anti-nociceptive and others describing a 

pronociceptive role. In this chapter the contribution of descending 5-HT 

fibres to behavioural hypersensitivity associated with CFA induced joint 

inflammation was investigated. It was found that 5-HT fibres play a small, 

time dependent role in the facilitation of joint pain behaviour. In a separate 

experiment it was shown that a single intrathecal injection of a 5-HT₃ 

receptor antagonist could transiently reverse mechanical hypersensitivity. 

4.4.1 Time dependent role of 5-HT fibres in secondary mechanical 

hyperalgesia following joint inflammation 

In studies of neuropathic pain it has been shown that descending 5-HT is 

required for the maintenance but not the induction of behavioural 

hypersensitivity (Rahman et al. 2006). In contrast our findings suggest that 

depletion of spinal 5-HT fibres attenuates mechanical hypersensitivity at 

days 1 and 2, but not days 3 – 7, after the induction of joint inflammation. 

One possible explanation is that the differences in the peripheral input 

generating hypersensitivity in these models leads to different patterns of 

activation of descending 5-HT neurons. In neuropathic pain, although 

mechanical hypersensitivity occurs within 24h, the peak behavioural 

response occurs days or weeks following the nerve injury (Decosterd and 

Woolf, 2000). In contrast following joint inflammation, peak mechanical 

hypersensitivity occurs within 6h, suggesting earlier activation of spinal and 

supraspinal neurons in this model. Therefore it seems likely that the 

different time course of 5-HT mediated facilitation observed in these models 

reflects the dynamics of peripheral input inducing the pain states. 

Interestingly the role of descending 5-HT fibres in the ankle joint model also 

differs from that described previously following plantar inflammation in 



Chapter 4 

113 

 

which it has been demonstrated that in animals with 5,7-DHT pre-treatment, 

mechanical hypersensitivity is attenuated almost immediately following 

plantar injection of CFA (Géranton et al., 2008). The slightly later onset of 5-

HT mediated facilitation in the present study may reflect subtle differences 

in the degree of peripheral inflammation and intensity of noxious input to 

the spinal cord. Peak mechanical hypersensitivity occurs at 6h following 

ankle injection of CFA, and the plantar model induces a more rapid decrease 

in paw withdrawal threshold. In addition the distribution of primary afferent 

terminals in the dorsal horn is different for cutaneous and joint nociceptors. 

Cutaneous fibres terminate in lamina I and II, while joint afferents terminate 

preferentially in lamina I (Doyle and Hunt, 1999; Neugebauer et al., 1994). 

These anatomical differences in the cutaneous and ankle models many 

explain the differences in behaviour observed following 5,7-DHT depletion. 

Selective chemical depletion of 5-HT neurons by administration of 5,7-DHT is 

a widely used technique in the investigation of 5-HT function within the CNS 

(Baumgarten and Lachenmayer, 2004). Previous studies have demonstrated 

that axonal degeneration following 5,7-DHT treatment begins as early as 3d 

post injection (Frankfurt and Azmitia, 1984; Wiklund and Björklund, 1980). 

This suggests that the absence of an effect of 5,7-DHT treatment on paw 

withdrawal thresholds at 6h and 24h post CFA was not due to inadequate 5-

HT depletion, as these time points correspond to 7d and 8d post 5,7-DHT 

treatment, at which time 5-HT axonal loss is optimal. In addition, although 

regeneration of 5-HT axons may occur after longer periods, this process does 

not begin until 14d post 5,7-DHT treatment and full restoration of 5-HT 

fibres takes many months (Wiklund and Björklund, 1980). Therefore the 

observation that paw withdrawal thresholds at 7d post CFA (corresponding 

to 13d post 5,7-DHT treatment) are unaffected by 5-HT fibre depletion is 

unlikely to be due to regeneration.  
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Immunohistochemistry using a 5-HT specific antibody allowed us to confirm 

this, indicating that 5-HT punctae are absent from the dorsal horn in rats at 

13d following 5,7-DHT treatment. One limitation to this is the high 

background staining observed using the 5-HT antibody. It has been 

demonstrated that immunohistochemistry for the 5-HT transporter (SERT), 

which localises to 5-HT containing axons, has an equivalent distribution to 

staining for 5-HT itself, and produces a stronger signal with less background 

labelling (Nielsen et al., 2006). SERT labelling may therefore be useful as an 

additional marker of 5-HT fibres in the dorsal horn for future studies, in 

particular for a quantitative analysis of the depletion. 

The time course of activation of the descending 5-HT system in ankle joint 

inflammation correlates with the pERK data presented in the previous 

chapter, in which activation of ERK in 5-HT producing RVM neurons was 

shown to occur at 6h but not at 3d or 7d following joint inflammation. 

Although the behavioural effect of 5,7-DHT lesion on paw withdrawal 

threshold is not significant at 6h following CFA treatment, activation of ERK 

at this time point may contribute to activation of the descending 5-HT 

pathway leading to subsequent behavioural facilitation at days 1 and 2. 

Indeed it has been demonstrated by others that injection of an ERK inhibitor 

to the RVM attenuates behavioural hypersensitivity at 24h post CFA. This 

attenuation does not occur at 7h, despite significant ERK activation at that 

time (Imbe et al., 2008). Our data supports this finding and suggests that 

although peripheral inflammation leads to molecular changes in the RVM 

within hours, the behavioural effects of those changes are not observed 

until later. 

The time-dependence of facilitation by spinal 5-HT fibres identified here 

does support the findings of a recent study which investigated the 

contribution of 5-HT to inflammatory pain by molecular silencing of the 

tryptophan hydroxylase enzyme (TPH), required for 5-HT synthesis, within 
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the RVM (Wei et al., 2010). This method results in inhibition of 5-HT 

synthesis within all 5-HT neurons within the RVM, and not only those 

projecting to the spinal cord. The similarities between their findings and the 

data presented in this chapter are striking. In the Wei et al. study the 

greatest attenuation of mechanical hypersensitivity was detected at day 1 

and day 3 following plantar inflammation, with only a small attenuation at 

earlier (6 hours) and later (5 days) time points. The magnitude of 

attenuation observed is larger than that identified here, but this may be due 

to the additional loss of 5-HT in locally terminating neurons of the RVM. 

Taken together these studies suggest a unique window of activation of the 

descending 5-HT system from 1 to 3 days after peripheral inflammation. 

4.4.2 No effect of 5,7-DHT depletion on primary hyperalgesia 

Paw withdrawal thresholds to mechanical stimuli using von Frey hairs reflect 

sensitivity to a punctate mechanical stimulus of the plantar surface adjacent 

to the inflamed ankle. As this measures pain hypersensitivity of a site 

removed from the initial inflammatory insult, this can generally be 

considered as a correlate of secondary hyperalgesia. Many studies of joint 

pain make use of additional outcome measures such as weight bearing 

asymmetry to reflect primary hyperalgesia of the joint itself (Sagar et al., 

2011; Thakur et al., 2012). In this study it was found that as expected, CFA 

injection produces a significant shift in weight bearing from the ipsilateral 

paw. Notably 5,7-DHT treatment had no effect on weight bearing at any 

time point. This suggests that although cutaneous mechanical 

hypersensitivity is reduced by 5,7-DHT lesion, there is no effect on the 

primary hyperalgesia of the joint itself. It has long been suggested that 

descending facilitation is required for secondary but not primary 

hyperalgesia (Urban et al., 1996). Our finding that weight bearing is 

unaffected by 5,7-DHT depletion adds to this evidence suggesting 
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differences in the descending modulation of primary and secondary 

hyperalgesia. 

4.4.3 The facilitatory effects of 5-HT are mediated via the 5-HT₃ receptor 

The 5-HT₃ receptor has been implicated in the facilitatory actions of 5-HT 

within the spinal cord in a variety of pain models (Bardin, 2011). It is a ligand 

gated ion channel, unlike the other members of the 5-HT receptor family 

which are all G-protein coupled. Its permeability to cations means that 

activation of this receptor on the intrinsic neurons of the spinal cord would 

have an excitatory effect (Millan, 2002). Expression of the 5-HT₃ receptor has 

also been reported on the primary afferent terminals of the dorsal horn 

(Maxwell et al., 2003) and so 5-HT₃ receptor activation may also lead to 

enhanced neurotransmitter release. The Maxwell et al. study investigated 

expression of the 5-HT₃ receptor within the L4 region of the spinal cord, 

which receives input from the ankle joint. Notably the majority of the 5-HT₃ 

receptor positive afferent terminals double labelled with CGRP, and 

relatively few expressed IB4. As the joints are innervated largely with 

peptidergic afferents and few IB4 positive afferents (Ivanavicius et al., 2004), 

it is likely that many of the CGRP+ joint afferent terminals in the dorsal horn 

will express 5-HT₃ receptor. At the peripheral terminal, it has been directly 

established that ankle joint afferents express the 5-HT₃ receptor and 

respond directly to 5-HT (Birrell et al., 1990). 

Intrathecal administration of 5-HT₃ specific antagonists has confirmed that 

this receptor plays a pro-nociceptive role in a number of pain models 

including the formalin test (Zeitz et al., 2002), spinal cord injury (Oatway et 

al., 2004), cancer induced bone pain (Donovan-Rodriguez et al., 2006), 

neuropathic pain (Dogrul et al., 2009) and plantar injection of CFA (LaGraize 

et al., 2010). The present finding that a single intrathecal injection of 

ondansetron transiently modifies secondary hyperalgesia following joint 

inflammation further supports the role of the 5-HT₃ receptor in descending 
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facilitation. Notably, the magnitude of attenuation was similar to that 

observed in the 5,7-DHT lesion experiment.  

 

Interestingly it has been demonstrated that cannabinoids are also capable of 

binding to the 5-HT₃ receptor, and have an inhibitory effect (Oz et al., 2002; 

Yang et al., 2010). Within the dorsal horn, endogenous cannabinoids have 

been shown to have an antinociceptive effect and so may act as a protective 

mechanism to counteract central sensitisation in chronic joint pain (Sagar et 

al., 2010). This protective mechanism may be mediated via inhibition of the 

5-HT₃ receptor. 

 

The facilitatory role of other 5-HT receptors cannot be ruled out however, 

and in particular the contribution of 5-HT1A and 5-HT2A may warrant further 

investigation as these have been implicated in facilitation of pain behaviour 

in neuropathic and inflammatory models (Aira et al., 2012; Zhang et al., 

2001). The 5-HT2A receptor may be of particular interest in the modulation 

of spinal cord excitability, as it has been shown to form heterodimers with 

the mGluR2 receptor, suggesting activation of this 5-HT receptor subtype 

may enhance glutamatergic signalling (González-Maeso et al., 2008). 

 

4.4.4 Modest effects of 5,7-DHT depletion: possible inhibitory effects of 

5-HT 

The modest and short lived magnitude of attenuation in hypersensitivity 

identified here may be due to the complexity of the role of 5-HT within the 

spinal cord. Considerable evidence exists to suggest that both inhibitory and 

facilitatory roles for 5-HT can occur within the spinal cord and that this is 

likely to be due to the activation of different receptor subtypes (Millan, 

2002; Wei et al., 2010). Electrophysiological studies of joint inflammatory 

pain models have suggested that in the acute phase of inflammation there is 
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an increase in descending inhibition from the RVM (Cervero et al., 1991; 

Schaible et al., 1991). Therefore in addition to an increased facilitatory drive 

mediated by the 5-HT₃ receptor, there may be a parallel increase in 

inhibition at other receptor subtypes. The 5-HT₇ receptor has been shown to 

contribute to descending inhibition in neuropathic pain (Brenchat et al., 

2010; Dogrul et al., 2009) and so may also be involved in the present model. 

Lesion of spinal 5-HT fibres would therefore include both of these aspects, 

and so these would ‘cancel out’ one another at the behavioural level in the 

animal. The window of attenuation observed at 1 and 2 days could reflect 

the period at which the pro-nociceptive influence of 5-HT predominates in 

this model. With this in mind it seems unlikely that loss of spinal 5-HT fibres 

would completely reverse behavioural hypersensitivity. The behavioural 

findings following 5,7-DHT depletion reflect the net effect of depletion of 5-

HT fibres within the spinal cord, which incorporates both inhibitory and 

facilitatory influences. 

The modest effects of 5,7-DHT depletion and 5-HT₃ receptor antagonism 

observed in this model may also be due to the reliance on paw withdrawal 

thresholds as our primary outcome measure. This method reflects evoked 

cutaneous hypersensitivity and does not reflect other features of joint pain 

such as spontaneous and movement-evoked pain (Mogil, 2009). Combining 

lesion of the descending 5-HT pathway with other measures to address 

these aspects may be of interest for future studies. For example measures 

such as burrowing behaviour (Andrews et al., 2011) and hind limb grip force 

(Chandran et al., 2009; Lee et al., 2011b) have been used effectively in 

models of neuropathic and osteoarthritic pain. These measures may also 

prove useful in understanding the contribution of descending facilitation to 

inflammatory joint pain. 



Chapter 4 

119 

 

4.4.5 Conclusion 

The aim of this chapter was to determine if the descending 5-HT system 

contributes to pain behaviour following joint inflammation. A time-

dependent role for descending 5-HT fibres in mechanical hypersensitivity in 

this pain model was identified, and this effect is mediated by the 5-HT₃ 

receptor. 
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5. The role of mu opioid receptor expressing RVM 

neurons in inflammatory joint pain 

5.1  Introduction 

The previous chapters have shown that the RVM is activated following joint 

inflammation, and that the descending 5-HT pathway arising in this region 

contributes in a time dependent manner to the associated mechanical 

hypersensitivity. However many of the electrophysiologically defined ON 

cells of the RVM do not contain 5-HT (Potrebic et al., 1994) suggesting that 

other facilitatory pathways are also in place. It has been shown previously 

that the mu opioid receptor (MOR+) expressing population plays a crucial 

role in the maintenance but not the initiation of neuropathic pain states 

(Bee and Dickenson, 2008; Burgess et al., 2002; Porreca et al., 2001). This 

chapter describes behavioural experiments carried out to investigate the 

role of MOR+ neurons in mediating behavioural hypersensitivity associated 

joint inflammation. 

5.1.1 Role of mu opioid receptor expressing neurons in nociception 

RVM neurons can be defined by their electrophysiological properties prior to 

a nociceptive reflex. OFF cells show a decrease in firing before the tail flick 

reflex, while ON cells show an increase in firing and NEUTRAL cells do not 

change their firing properties (Fields and Heinricher, 1985; Fields et al., 

1983). These cell types can only be characterised in the lightly anaesthetised 

animal, by application of an acute noxious stimulus, and are not 

anatomically separated within the RVM. Nonetheless this classification 

system provides a physiological correlate for the bidirectional modulation of 

pain states by the RVM. ON cells are the only population which respond 

directly to morphine, resulting in decreased excitability (Heinricher et al., 
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1994; Marinelli et al., 2002). This suggests that only ON cells express the mu 

opioid receptor (MOR).  

MOR expressing (MOR+) cells have a pro-nociceptive role, as inhibition by 

MOR activation leads to reduced nociceptive responses (Heinricher and 

Kaplan, 1991; Heinricher et al., 1994; Marinelli et al., 2002). In contrast OFF 

cells are indirectly activated by MOR agonists, and this is thought to occur 

via inhibition of  MOR+ GABAergic interneurons, which inhibit OFF cells 

(Heinricher et al., 1992). In addition to these MOR+ interneurons, some ON 

cells project directly to the spinal cord (Fields et al., 1995). This indicates 

that there are two ways by which MOR agonists may exert an 

antinociceptive role within the RVM. One proposed mechanism is that 

MOR+ neurons act indirectly by disinhibiting spinally projecting inhibitory 

neurons (Heinricher, Morgan, and Fields 1992; Heinricher et al. 1994; Fields 

and Heinricher 1985). The other is that some MOR+ neurons are excitatory 

and project directly to the spinal cord to enhance pain (Marinelli et al., 

2002). Anatomical studies have demonstrated that a proportion of 5-HT 

(Marinelli et al. 2002), and GABA (Kalyuzhny and Wessendorf 1998) 

expressing RVM neurons also express the MOR. Therefore it is clear that 

MOR+ RVM neurons are a mixed population, which contain a number of 

transmitters, and may be either spinally projecting or non-projecting 

(Marinelli et al. 2002). The net effect of MOR agonism within the RVM is to 

reduce nociception, directly by decreasing the excitability of pro-nociceptive 

projection neurons and indirectly by disinhibition of anti-nociceptive 

projection neurons (figure 5.1). 

Regardless of the precise nature of MOR mediated analgesia, it is likely that 

MOR+ cells are facilitatory in the context of persistent pain. A number of 

studies have demonstrated that in models of neuropathic (Carlson et al., 

2007; Gonçalves et al., 2007) and visceral pain (Sanoja et al., 2010) ON cells 

show an increase in spontaneous firing.  
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Figure 5.1 Cell types within the RVM. 

ON cells are directly inhibited by morphine microinjection to the RVM (Heinricher et al., 

1994) suggesting they express the mu opioid receptor (MOR+). OFF cells are not directly 

modulated by morphine as they do not express the MOR. 1). Some ON cells are locally 

projecting GABAergic interneurons, which inhibit OFF cell firing (Kaplan and Fields, 1991). 

2). Other MOR+ cells express 5-HT, and many of these project to the dorsal horn (Marinelli 

et al., 2002). Some spinally projecting MOR+ cells also express GABA (Kalyuzhyny and 

Wessendorf, 1998). The ‘?’ represents non-5-HT, non-GABAergic neurons. 3). OFF cells are 

MOR-, and these may project directly to the spinal cord and may also contain 5-HT and 

GABA. GABA and glycine are co-expressed in dorsal horn projection neurons (Hossaini et al., 

2012). These OFF cells may be inhibited by morphine indirectly via MOR expressing 

GABAergic interneurons. Non projecting 5-HT neurons, both MOR+ and MOR-, may also be 

found in the region, however for simplicity these are not illustrated here.  

5.1.2 Saporin-conjugates as selective neurotoxins 

The facilitatory role of MOR+ RVM neurons has been investigated previously 

using a selective targeted toxin delivered to the region. Saporin is a 

ribosomal inactivating protein which is derived from the plant Saponaria 

officinalis. Upon cell internalisation saporin inhibits protein synthesis and 

leads to cell death. Alone the saporin peptide cannot be endocytosed. 

However conjugation to a peptide which can be internalised, such as an 
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antibody or receptor agonist, allows for internalisation. By choosing peptides 

that can only be recognised by specific cell types this allows for selective 

internalisation (Wiley, 1992). Saporin conjugates have proved useful in a 

number of neurobiological studies by allowing the selective lesion of specific 

neuronal populations. This lesion technique was first described for NGF 

receptor expressing neurons of the cholinergic basal forebrain (Wiley et al., 

1991). Since then a number of different saporin conjugates have been used 

to lesion specific cell populations of the nervous system. For example NK1 

receptor expressing neurons can be targeted by use of substance P-saporin 

conjugate  (Nichols et al., 1999). This technique allowed for a better 

understanding of the role of the NK1 receptor positive neurons of the dorsal 

horn in various models of pain. 

5.1.3 Previous studies of pain using dermorphin-saporin 

More recently the conjugate dermorphin-saporin has been used to elucidate 

the role of MOR+ RVM neurons in persistent pain states. In contrast to 

traditional lesion techniques which are non-selective, dermorphin-saporin 

microinjection allows for the selective lesion of a subpopulation of pro-

nociceptive cells. Dermorphin-saporin has been used extensively to address 

the role of the RVM in neuropathic pain models, in which MOR+ neurons are 

required for the maintenance but not the induction of hypersensitivity 

(Burgess et al., 2002; Porreca et al., 2001). Similarly in a model of 

pancreatitis, a model of visceral pain, dermorphin-saporin lesion attenuates 

the maintenance phase of the pain state (Vera-Portocarrero et al., 2006).  

Furthermore studies using the conjugate CCK-saporin have shown that 

cholecystokinin receptor expressing RVM neurons are also required for 

maintenance of neuropathic pain (Zhang et al., 2009). Interestingly this 

population overlaps with the MOR+ population, adding further to the 

evidence that these neurons are facilitatory in nature and therefore may 

correspond to the electrophysiologically defined ON cell population. 
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Depletion of MOR+ RVM cells has also been used to demonstrate that these 

neurons contribute to increased neuronal excitability in the dorsal horn (Bee 

and Dickenson, 2008), as well as being required for  enhanced evoked 

neurotransmitter release from primary afferent fibres (Gardell et al., 2003). 

These studies demonstrate an important contribution of the MOR+ cell 

descending pathway in a number of pain models.   

5.1.4 Hypothesis 

In this chapter I have tested the hypothesis that descending facilitation via 

MOR+ neurons of the RVM contributes to mechanical hypersensitivity 

associated with joint inflammation. 

5.2  Methods 

5.2.1 Dermorphin-saporin and microinjection to RVM 

Bilateral microinjection to the RVM was carried out as described in section 

2.1.2. Dermorphin-saporin was obtained from Advanced Targeting Systems. 

This was prepared in sterile saline to generate final injection volumes of 

0.5μl for each side of the RVM. A dose of 3pmole dermorphin-saporin 

(1.5pmole per side) was used in our initial studies, based on previous work 

by others (Bee and Dickenson, 2008; Burgess et al., 2002; Porreca et al., 

2001; Zhang et al., 2009).  

The molecular weight of dermorphin-saporin is 32kDA and is purchased in 

solution, at a concentration of 1.4μg/μl. The number of moles per μl of 

purchased stock solution was calculated from the following: 

Weight (g) = no. moles x MW (kDa) x 10³ 

1.4μg = no. moles x 32kDA x 10³ 

no. moles = 43.73pmole per 1μl of stock solution 
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The total injection volume used was 1μl (0.5μl each side) and dermorphin-

saporin was made up to contain 3pmole (96ng) dermorphin-saporin in total. 

This corresponds to a final molarity of 3μM.  

As adverse effects were observed at this dose (see below, section 5.3.1), it 

was decided to use two lower doses, of 1.5μM (containing 1.5pmole/48ng) 

and 0.75μM (containing 0.75pmole/24ng). 

5.2.2 Inflammatory pain model and behavioural testing 

Animals received ankle injection of CFA or underwent a sham procedure at 

28-35 days post RVM injection. Paw withdrawal thresholds were measured 

and log2 transformation was carried out to normalise the data (see section 

2.2). Statistical analysis was carried out in SPSS. Analysis of variance 

(ANOVA) with repeated measures was carried out with time as the within 

subjects factor, and CFA and dermorphin-saporin treatment as the between 

subjects factors. A significant main effect of CFA was a prerequisite for 

subsequent ANOVAs or post-hoc analysis. 

5.2.3 MOR immunohistochemistry 

To determine the accuracy of injection sites and extent of MOR+ cell 

depletion within the RVM dermorphin-saporin treated and control animals 

were perfused and immunohistochemistry carried out as described in 

section 2.4. For each animal a set of 40µm sections representing the RVM 

region, with all sections at least 240µm apart were used for MOR 

immunohistochemistry. Staining was carried out using a MOR specific 

antibody (1:10,000, rabbit, Neuromics) and tyramide signal amplification 

(see section 2.4.3). Counterstaining with NeuN (1:1000, mouse, Cell 

Signalling) was used to detect all neurons. Imaging was carried out using a 

fluorescence microscope (see section 2.4.5). MOR+ cells were counted 

manually, while blind to the treatment group of the animal. The RVM was 

defined as the regions containing the NRM and GiA at approximately -10.3 
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to -11.3 mm from Bregma. The anatomical boundaries used to define the 

region were the presence of the facial nuclei and pyramidal tracts. Sections 

were deemed caudal of the RVM if the nucleus ambiguus was present. The 

number of MOR+ cell bodies per section was counted and recorded. The five 

highest scoring sections per animal were used as representative of the RVM 

region. The total number of MOR+ cells across the five sections was 

calculated and the data is presented as the mean ± SEM per group. 

Representative images were acquired using a Hamamatsu digital camera and 

Openlab 4.0.4 software from Improvision. In some cases, confocal imaging 

was carried out using a laser scanning Leica TCS NT SP microscope.  

5.2.4 Localisation of needle tracts 

At the end of the final experiment which involved injection of 1.5pmole 

dermorphin-saporin (experiment 3, see below section 5.3.3) animals were 

culled by CO₂ asphyxiation to allow fresh tissue dissection for RNA 

extraction, brains were removed fresh and post fixed for 2 days in 4% PFA. 

Sectioning was carried out as for immunohistochemistry and sections were 

incubated briefly with DAPI (4',6-diamidino-2-phenylindole, 1:10,000 in 

0.1M PB for 10mins). DAPI labelling was used to visualise the outline of the 

needle tracts for each animal. Using the rat brain atlas (George Paxinos, 

1998) the approximate anterior-posterior, dorsal-ventral and lateral 

coordinates were noted for each animal. 

5.3  Results 

5.3.1 Experiment 1: Dermorphin-saporin (3pmole) microinjection to the 

RVM attenuates inflammatory pain 

Animals underwent RVM microinjection of either dermorphin-saporin 

(1.5pmole each side) or saline and allowed to recover for 28-35 days. 

Baseline mechanical paw withdrawal thresholds were taken each day for 

three days prior to CFA injection. The saline injected animals were divided 
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into two groups, one receiving CFA injection to the ankle and the other a 

sham procedure (n = 8 in CFA groups, n = 4 in sham group). All dermorphin-

saporin treated animals received CFA injection. A three-way analysis of 

variance (ANOVA) with repeated measures was carried out to determine if 

CFA and dermorphin-saporin treatment had significant effects on paw 

withdrawal threshold. Time was the within-subject factor and dermorphin-

saporin treatment and CFA were the between-subjects factors. The tests of 

within-subjects effects indicated there was a significant effect of time (p < 

0.001), a time x dermorphin-saporin interaction (p < 0.001) and a time x CFA 

interaction (p < 0.001). The between-subjects analysis indicated there was 

an overall effect of dermorphin-saporin (p = 0.024) and CFA (p = 0.001). See 

table 5.1 for a summary of this analysis. 

Factor df F Error P 

Time 10 11.4 170 < 0.001 

CFA 1 17 14.8 0.001 

Dermorphin-saporin 1 17 6.2 0.024 

Time x CFA 10 6.9 170 <0.001 

Time x Dermorphin-saporin 10 4.3 170 <0.001 
Table 5.1 Results of three-way ANOVA with repeated measures on ipsilateral paw 

withdrawal thresholds following 3pmole dermorphin-saporin. 

As there were main effects of both dermorphin-saporin and CFA, a 

subsequent two-way ANOVA with repeated measures was carried out on the 

two CFA injected groups, to determine if there was an overall effect of 

dermorphin-saporin from 2h to 7d post CFA injection (table 5.2). It was 

found that there was an overall effect of dermorphin-saporin on paw 

withdrawal thresholds (p = 0.023) from 2h to 7d following CFA injection 

(figure 5.2a).  

Factor df F Error P 

Time 7 9.3 98 0.0001 

Dermorphin-saporin 1 6.479 14 0.023 

Time x Dermorphin-saporin 7 2.6 98 0.018 
Table 5.2 Results of two-way ANOVA with repeated measures on ipsilateral paw withdrawal 
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thresholds form 2h – 7d post CFA following 3pmole dermorphin-saporin. 

 

Figure 5.2 Attenuation of mechanical hypersensitivity by 3pmole dermorphin-saporin. 

A). Attenuation of mechanical hypersensitivity in dermorphin-saporin (DS, 3pmole in total, 
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1.5pmole each side) microinjected rats following ankle joint inflammation by CFA injection.  

Ipsilateral paw withdrawal thresholds were significantly higher in the dermorphin-saporin group 

compared with saline injected controls. * p = 0.023, overall effect of dermorphin-saporin pre-

treatment from 2h to 7d following ankle injection of CFA, two-way ANOVA with repeated 

measures. B). Paw withdrawal thresholds of the contralateral hindpaw were not altered by CFA 

injection or by dermorphin-saporin pre-treatment, p > 0.05, three-way ANOVA with repeated 

measures. Data is presented as log2 (paw withdrawal threshold in g) and mean ± SEM, n = 8 in CFA 

groups, n = 4 in saline + sham group. 

On the contralateral paw, the within-subjects effects indicated that there a 

main effect of time (p = 0.011), but not of CFA or dermorphin-saporin (p > 

0.05). As there was no main effects of CFA or dermorphin-saporin no further 

analysis was carried out. This indicates contralateral paw withdrawal 

thresholds were unaffected by either dermorphin-saporin pre-treatment or 

CFA injection (figure 5.2b).  

To confirm the efficacy of dermorphin-saporin in ablating MOR+ RVM 

neurons, MOR immunohistochemistry was carried out at the end of the 

experiment in a subset of animals (n = 4 – 5, CFA treated groups only). 

Sample immunohistochemistry from animals treated with this dose of 

dermorphin-saporin compared with saline controls is shown (figure 5.3c). 

Cell counts indicated there was a significant decrease in MOR+ neurons with 

197 ± 17.61 in saline compared with 131.4 ± 9.56 in the dermorphin-saporin 

treated group at this dose (3pmole in total, 1.5pmole each side)  

(independent samples t-test, p = 0.0145, figure 5.3d). The approximate area 

used for cell counts is outlined (figure 5.3a) and corresponds to 

approximately 1.56mm² per section. Notably the distribution of MOR+ cells 

identified by immunohistochemistry here is similar to that of a recent 

report, which studied MOR+ cell distribution in the RVM by microinjection of 

dermorphin conjugated to the fluorophore Alexa 594 (Phillips et al., 2012).  

 

Figure 5.3  Decrease in MOR+ cell numbers by 3pmole dermorphin-saporin. 
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A). The area used for cell counting is outlined by the red triangle, with each section 

corresponding to approximately 1.56mm². Image adapted from the rat brain atlas (George 

Paxinos, 1998) B). The image in B is from Phillips et al., 2012, and illustrates the distribution 

of MOR expressing neurons within the RVM, based on labelling by microinjection of 

dermorphin conjugated to Alexa 594.  C). Representative images illustrate MOR+ expression 

in a saline injected animal, illustrating that MOR immunohistochemistry identified a 

population of neurons similar to that in Phillips et al., 2012. Depletion of MOR+ cells can be 

observed in the bilaterally injected dermorphin-saporin (DS, 3pmole/96ng) animal. Scale bar 

indicates 200µm. D). Cell counts indicate a significant decrease in MOR+ cell number within 

the RVM of dermorphin-saporin animals. Cell counts were calculated as the sum of the top 

five sections per animal, and data is shown here as mean ± SEM per group.  n = 5 in 

dermorphin-saporin group, n = 4 saline, * p  =  0.0145 independent samples t-test. 

A decrease in MOR mRNA expressing neurons within the RVM and 

attenuation of neuropathic pain behaviour had been shown previously using 

this dose of dermorphin-saporin (Bee and Dickenson, 2008; Burgess et al., 

2002; Porreca et al., 2001). However in our study adverse effects were 

observed in a number of dermorphin-saporin treated animals. These effects 

included weight loss, motor impairment, and ataxia. These effects became 

noticeable at approximately 2 weeks following microinjection to the RVM. 

Of the 16 animals injected with dermorphin-saporin, 8 were culled due to 

these adverse effects. We attributed these effects to non-specific loss of 

neurons in the RVM and surrounding regions, as there was some evidence of 

necrosis at the sites of injection. For this reason we aimed to determine if 

lower doses of dermorphin-saporin could lead to attenuation of behavioural 

hypersensitivity without these adverse effects. 

5.3.2 Experiment 2: Dose dependent effects of dermorphin-saporin 

A pilot experiment was carried out to determine if lower doses of 

dermorphin-saporin would attenuate pain behaviour and decrease MOR+ 

neuron numbers in the RVM without adverse effects. Animals were injected 

with saline, 1.5pmole (0.75pmole each side) or 0.75pmole (0.375pmole each 

side) dermorphin-saporin and allowed to recover for 28 days. No adverse 



Chapter 5 

131 

 

effects were observed in either of the dermorphin-saporin groups (n = 3 – 

4). Baseline mechanical paw withdrawal thresholds were measured each day 

for three days prior to CFA injection, and up to 7 days later. A two-way 

ANOVA with repeated measures was carried out to compare the ipsilateral 

paw withdrawal thresholds across these doses compared to saline 

microinjected animals, with time as the within-subjects factor and dose 

(1.5pmole, 0.75pmole or saline) as the between-subjects factor. The within-

subjects effects indicated a significant effect of time (p < 0.001) and a 

significant time x dose interaction (p = 0.015). The between-subjects effects 

indicated an overall effect of dose (p = 0.007). The results of this analysis are 

shown in table 5.3. As there was a significant effect of dose and a dose x 

time interaction, one-way ANOVAs at each time point were subsequently 

carried out to identify the source of variation. LSD post hoc analysis 

indicated there was a significant difference in paw withdrawal thresholds at 

all time points post CFA between the 1.5pmole dose and saline groups (p = 

0.004) and between the 0.75pmole dose and saline groups (p = 0.005). 

There was no difference between 1.5pmole and 0.75pmole groups (p = 

0.649). This suggested that lower doses of dermorphin-saporin could be 

used to attenuate behavioural hypersensitivity (figure 5.4a). 

 df F Error p 

Time 12 80.5 84 0.000 

Dose 2 10.89 7 0.007 

Time x dose 24 80.5 1.9 0.015 

Table 5.3 Results of two-way ANOVA with repeated measures on ipsilateral paw 

withdrawal thresholds following 1.5pmole or 0.75pmole dermorphin-saporin. 
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Figure 5.4 Attenuation of mechanical hypersensitivity and depletion of MOR+ cells by 

1.5pmole and 0.75pmole dermorphin-saporin. 

A). Attenuation of mechanical hypersensitivity of the ipsilateral hindpaw in dermorphin-

saporin (1.5pmole in total, 0.75pmole each side) pre-treated rats following ankle joint 

inflammation. Both the 1.5pmole and 0.75pmole doses of dermorphin-saporin significantly 

attenuated paw withdrawal threshold from 2h – 7d post CFA injection. * indicates p = 0.004 
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for the 1.5pmole v saline comparison, and p = 0.005 for the 0.75pmole v saline comparison, 

two-way ANOVA with repeated measures and LSD post hoc test. Data is presented as log2 

(paw withdrawal threshold in g) and mean ± SEM, n = 3 – 4. B). Representative confocal 

images of MOR immunohistochemistry in the 1.5pmole dermorphin-saporin group and 

saline control. Double labelling with NeuN indicated that although many MOR+ neurons are 

depleted at this dose, some surviving MOR- neurons remain in the region. Scale bars 

indicate 25μm. 

Single plane confocal images taken from animals with and without 

dermorphin-saporin (1.5pmole dose) indicated that although this dose 

results in depletion of MOR+ neurons as expected, there are some NeuN 

positive cells remaining (figure 5.4b). This suggests that at this dose 

dermorphin-saporin is selectively toxic to MOR+ neurons. MOR+ cell counts 

were carried out at both doses as before. A decrease in MOR+ cell numbers 

in the 1.5pmole group (155 ± 4) was found when compared with saline 

control (208.7 ± 14.2) (one-way ANOVA with LSD post hoc test, p = 0.009, 

1.5pmole v saline, see figure 5.5a). The decrease in cell numbers in the 

0.75pmole treated group was not significant (188.75 ± 4.5, p = 0.124).  

Plotting the number of MOR+ cells against paw withdrawal thresholds per 

animal in each of the three groups (figure 5.5b, illustrated for the 6h, d1, d2 

and d7 time points) indicated that there was a significant correlation 

between cell number and paw withdrawal threshold at the 6h (R² = 0.4643 

and p = 0.003),  1d (R² = 0.7548 and p = 0.0011),  2d (R² = 0.7337 and p = 

0.016) and 7d (R² =0.416 and p=0.042) time points using the Pearson 

correlation. At other time points no significant correlation was found 

between MOR+ cell number and paw withdrawal threshold (table 5.4). 
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Time point p R² 

2H 0.151 0.2354 
6H 0.003 0.4643 
D1 0.0011 0.7548 
D2 0.0016 0.7337 
D3 0.2136 0.1786 
D4 0.3224 0.1221 
D5 0.4564 0.07110 
D6 0.02948 0.6353 
D7 0.0452 0.416 

Table 5.4 Results of Pearson correlation analysis of number of MOR+ cells and ipsilateral 

paw withdrawal thresholds for individual animals following dermorphin-saporin. 
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Figure 5.5 Dose dependent decrease in MOR+ cell number by dermorphin-saporin. 

A). Cell counts indicate a significant decrease in MOR+ cell number in animals treated with 

1.5pmole dermorphin-saporin (DS) but not 0.75pmole dermorphin-saporin. Cell counts 

were calculated as the sum of the top five sections per animal, and data shown here as 

mean ± SEM per group. n = 3 – 4, one-way ANOA with LSD post hoc test, * p  =  0.009. B). 

Plot of paw withdrawal thresholds presented as log2 (paw withdrawal threshold in g), and 

number of MOR+ cells per animal at 6h, 1d, 2d and 7d  following ankle injection of CFA. 

Green dots represent saline treated animals, blue dots represent 0.75pmole treated animals 

and red dots represent 1.5pmole treated animals. p < 0.05, Pearson correlation.  



Chapter 5 

136 

 

5.3.3 Experiment 3: Attenuation of behavioural hypersensitivity from 1 – 

7d post CFA injection by microinjection of 1.5pmole 

dermorphin-saporin 

In all further experiments the 1.5pmole dose (0.75pmole each size) was 

used. A complete, fully blind experiment was carried out with 4 groups of 

animals: dermorphin-saporin + CFA, saline + CFA, dermorphin-saporin + 

sham and saline + sham (figure 5.6). Three-way ANOVA with repeated 

measures was used to analyse the ipsilateral paw withdrawal thresholds. 

The within-subjects effects indicated a significant effect of time, time x CFA 

interaction and  time x dermorphin-saporin x CFA interaction, but no time x 

dermorphin-saporin interaction (p = 0.625). The between-subjects tests 

indicated a significant effect of CFA (p < 0.001) but not of dermorphin-

saporin (p = 0.15) or dermorphin-saporin x CFA interaction (p = 0.534). The 

tests of within-subjects effects indicated there was a significant effect of 

time (p < 0.001), a time x CFA interaction (p < 0.001) but no time x 

dermorphin-saporin interaction. The between-subjects analysis indicated 

there was no overall effect of dermorphin-saporin but there was an overall 

effect of CFA (p < 0.001). Table 5.5 is a summary of this analysis. 
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Factor df F Error P 

Time 15 46 375 0.001 

CFA 1 164 25 0.000 

Dermorphin-saporin 1 2.21 25 0.15 

CFA x  Dermorphin-saporin 1 0.397 25 0.534 

Time x CFA 15 44.2 375 0.001 

Time x Dermorphin-saporin 15 0.847 375 0.625 

Time x CFA x Dermorphin-
saporin 

15 2.416 375 0.002 

Table 5.5 Results of three-way ANOVA with repeated measures on ipsilateral paw 

withdrawal thresholds following 1.5pmole dermorphin-saporin. 

A subsequent two-way ANOVA with repeated measures was carried out on 

the two CFA treated groups, from 1d to 7d  post CFA,  and it was found that 

there was an overall main effect of dermorphin-saporin treatment on paw 

withdrawal thresholds from 1 to 7d post CFA injection (p = 0.018). Table 5.6 

lists the results of this analysis. This indicates that dermorphin-saporin pre-

treatment leads to attenuation of mechanical hypersensitivity from 1 to 7 

days post CFA injection (figure 5.6a). 

Factor df F Error p 

Time 1 3.7 14 0.075 

Dermorphin-saporin 1 7.161 14 0.018 

Time x dermorphin-saporin 1 7.326 14 0.017 
Table 5.6 Results of two-way ANOVA with repeated measures on ipsilateral paw 

withdrawal thresholds from 1 – 7 d post CFA following 1.5pmole dermorphin-saporin. 
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Figure 5.6 Attenuation of mechanical hypersensitivity by  1.5pmole dermorphin-saporin. 

A). Attenuation of mechanical hypersensitivity of the ipsilateral hindpaw in dermorphin-

saporin (DS, 1.5pmole in total, 0.75pmole each side) pretreated rats following ankle joint 

inflammation. Paw withdrawal thresholds were significantly higher in the dermorphin-

saporin group than in saline injected controls from 1 to 7d post CFA injection * p = 0.018, 
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dermorphin-saporin CFA v saline CFA, two-way ANOVA with repeated measures. There was 

no effect of pre-treatment on baseline paw withdrawal thresholds. B). Paw withdrawal 

thresholds of the contralateral hindpaw were not altered by CFA injection or by 

dermorphin-saporin pre-treatment, p > 0.05, three-way ANOVA with repeated measures. 

Data is presented as log2 (paw withdrawal threshold in g) and mean ± SEM, n = 8 in CFA 

groups, n = 6 /7 in sham groups. 

 

The contralateral paw withdrawal thresholds were analysed in the same way 

using a three-way ANOVA with repeated measures but no main effects of 

time, CFA or dermorphin-saporin were found. The results of this analysis are 

given in table 5.7. This indicates neither CFA nor dermorphin-saporin 

treatment affected contralateral paw withdrawal thresholds (figure 5.6b). 

Factor df F Error P 

Time 14 1.273 350 0.222 

Dermorphin-saporin 1 25 2677.524 0.897 

CFA 1 0.467 25 0.349 

Time x Dermorphin-saporin 14 0.647 350 0.825 

Time x CFA 14 1.063 350 0.391 
Time x Dermorphin-saporin x 
CFA 14 0.76 350 0.712 

Table 5.7  Results of three-way ANOVA with repeated measures on contralateral paw 

withdrawal thresholds following 1.5pmole dermorphin-saporin. 

 

At the end of the experiment, animals were culled by CO₂ asphyxiation and 

the dorsal quadrants of the lumbar spinal cord were dissected and frozen 

rapidly at -80ºC for later experiments (see chapter 6). The brains of these 

animals were also removed fresh and immersion fixed for 48h in 4% PFA. All 

brains were sectioned and stained using DAPI to identify the needle tracts. 

The approximate anterior-posterior, dorsal-ventral and lateral coordinates 

for the visible needle tracts were noted for all the animals from this 

experiment (table 5.8) and the approximate locations are illustrated for 

those in the CFA groups are shown (figure 5.7). The needle tracts of two 

animals from the saline-CFA group could not be identified, but for all other 

animals it was found that at least one of the bilateral injections was within 
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or close to the dorsal-ventral boundary of the RVM. Similarly the anterior-

posterior coordinates were satisfactory for all animals (within the region of -

10.5mm to -11.8mm from Bregma). Although those at -11.6mm and -

11.8mm could be deemed caudal, the spread of the toxin is likely to be 

sufficient to ensure considerable depletion in the target area. For example in 

experiment 1, depletion of neurons was noted as far rostral as -10mm and 

as far caudal as -12.3mm from Bregma. The lateral coordinates were 

somewhat variable but bilateral injection would be expected to produce a 

sufficient distribution throughout the RVM. 

 

Figure 5.7 Confirmation of bilateral microinjection sites of animals used in experiment 3.  

Only animals from the dermorpin-saporin + CFA group (dots labelled DS) and saline + CFA 

group (dots labelled saline) are shown. The numbers indicate the approximate anterior-

posterior distance from Bregma in mm. 
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Group Animal AP  Right  Left  DV 

Saline + CFA 1 11 0.8 0.8 9.2 
 15 10.52 1 0.8 8.5 
 19 11 0.4 0.4 8 
 29 x x X X 
 39 x x X X 
 47 10.52 0.6 0.4 10 
 49 10.52 0.3 0.9 10 
 59 10.52 0.8 0.4 8.5 
      
DS + CFA 3 11.8 0.6 0.8 9 
 13 11 0.9 0.8 8.2 
 21 10.8 0.6 0.5 8.8 
 31 10.8 1 0.5 9.5 
 35 10.8 0.5 0.6 9.5 
 37 10.52 0.5 0.5 10 
 45 11.6 1.2 0.4 9.5 
 53 10.8 0.5 0.5 9.5 
      
Saline + Sham 7 11 0.8 0.6 9 
 9 10.8 0.8 0.6 8.7 
 17 11.6 0.8 0.7 9.2 
 25 10.52 0.8 0.6 9 
 41 10.8 1 0 8 
 51 10.52 0.4 0.4 10 
      
DS + Sham 5 10.8 0.8 0.8 10 
 11 11 0.8 0.4 9.5 
 23 11.3 0.6 0.6 9.5 
 27 10.8 0.4 0.4 9.5 
 33 11 0.6 0.6 9.5 
 55 10.3 0.5 0.8 10 
 57 10.52 0.9 0.3 9 

 

 

Table 5.8 Bilateral microinjection sites for all animals in experiment 3. 

DS = dermorphin-saporin, AP = anterior-posterior (from Bregma), DV = dorsal-ventral (from top of brain 

surface), and right and left indicate lateral values are from the midline. Values are in mm. 

5.4  Discussion 

The selective neurotoxin dermorphin-saporin has been used in a number of 

studies to demonstrate a role for MOR+ neurons of the RVM in the 

maintenance phase of neuropathic pain behaviour (Bee and Dickenson, 
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2008; Burgess et al., 2002; Porreca et al., 2001; Zhang et al., 2009). As 

discussed in chapter 4, considerable evidence suggests a role for spinal 5-HT 

in the descending facilitation of cutaneous inflammatory pain (Géranton et 

al., 2008; LaGraize et al., 2010) and dorsal horn excitability in the MIA model 

of osteoarthritis (Rahman et al., 2009). Although it is known that some of 

the MOR+ neurons contain 5-HT (Marinelli et al., 2002; Wang and 

Wessendorf, 1999) to date the specific role of MOR+ neurons has not been 

studied in inflammatory joint pain. Using dermorphin-saporin lesion of the 

RVM we have demonstrated a role for these cells in the facilitation of 

inflammatory joint pain behaviour, suggesting that the 5-HT and MOR+ 

neurons of the RVM serve as partially overlapping but synergistic pathways 

in joint inflammation.  

5.4.1 Dermorphin-saporin treatment: investigation of doses and side 

effects 

The first experiment described in this chapter involved the use of 3pmole 

dermorphin-saporin injected into the RVM to ablate the MOR+ population of 

neurons within the region. This dose has been described previously in the 

literature, by a number of groups and in various pain models (Bee and 

Dickenson, 2008; Burgess et al., 2002; Vera-Portocarrero et al., 2006). These 

studies demonstrated that in neuropathic and pancreatitis-induced pain 

dermorphin-saporin pre-treatment attenuated the maintenance of 

behavioural hypersensitivity to mechanical stimuli but had no effect on the 

initial phase of the pain state. This chapter describes a similar experiment 

which found that this dose is also effective in attenuating inflammatory joint 

pain. Compared with behavioural studies of neuropathy and pancreatitis, 

the magnitude of the effect described here is smaller as we do not see a 

complete reversal of behavioural hypersensitivity (Bee and Dickenson, 2008; 

Burgess et al., 2002; Vera-Portocarrero et al., 2006). Also notable is that 

even at 6h post CFA injection attenuation of behavioural hypersensitivity is 
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observed. This suggests that this dose of dermorphin-saporin is effective in 

attenuating both the early (6h) and late (up to 7d) phases of inflammatory 

joint pain. 

Importantly however it was found in the initial pilot study that bilateral 

injections of this dose resulted in adverse effects in 50% of animals, 

requiring them to be culled. These effects included motor impairments such 

as loss of balance, catalepsy and lack of coordination of limbs. Considerable 

weight loss was also observed in some animals. No previous reports of 

unwanted effects with this dose have been described (Porreca et al. 2001; 

Burgess et al. 2002; Vera-Portocarrero et al. 2006; Bee and Dickenson 2008; 

Zhang et al. 2009). However three observations suggest that these effects 

were indeed related to the extent of cell loss within the medulla. Firstly, 

saline injected control animals never developed any complications 

suggesting that it is not due to the microinjection technique or surgery. 

Second, these side effects consistently emerged at 1 to 2 weeks following 

microinjection. This is the point at which saporin is likely to cause cell death 

(Mantyh et al., 1997). Finally these adverse effects appear to be directly 

proportional to the number of MOR+ cells lost by dermorphin-saporin 

treatment as at the lower doses described in the second experiment, where 

the decrease in MOR+ cell number is reduced, no adverse effects were 

observed. It is also possible that higher doses of dermorphin-saporin could 

lead to dissociation of the complex, and death of non-specific death of MOR- 

cells. 

The finding that a ‘high’ dose of dermorphin-saporin results in adverse 

effects highlights the difficulty in using lesion techniques in a small, complex 

brain region. The RVM is typically defined as consisting of the NRM and GiA 

regions. However within the anatomical boundary outlined by the GiA are a 

number of additional nuclei, including the nucleus raphe pallidus (RPa). The 

RPa is located along the midline, ventral to the NRM. Although the role of 
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the RPa in nociception has not been directly investigated it is known that 

MOR+ cells are located in this region (Phillips et al., 2012) and therefore 

likely to be affected by dermorphin-saporin treatment. The RPa as well as 

the more caudal raphe obscurus (ROb) are implicated in the modulation of 

feeding behaviour (Takase and Nogueira, 2008) therefore depletion of 

neurons in these regions may contribute to the weight loss observed in a 

number of animals. In addition these regions project to brainstem regions 

involved in motor control and directly to the ventral horn (Veasey et al., 

1995) which may explain the motor impairments observed. Interestingly 

high doses of muscimol, a GABAA receptor agonist, was found to cause 

similar neurological impairments when injected to the RVM at co-ordinates 

comparable with those used here (Gilbert and Franklin, 2001). These authors 

suggest that at higher doses, the drug may reach more caudal regions of the 

RVM which play a role in motor control. The same may be true in our work. 

Higher doses of dermorphin-saporin may lead to a broader distribution and 

result in lesion of cells required for other important functions. In general it 

should be noted that the medullary raphe nuclei play a crucial role in 

cardiovascular, gastrointestinal and respiratory controls (Lovick 1997). 

Manipulation of the region in the study of nociceptive responses may 

therefore lead to alterations in these crucial homeostatic functions. 

Monitoring motor behaviours and weight gain following microinjection of 

toxins to the RVM is therefore important in these types of studies. 

By carrying out a small dose-response experiment, it was found that 

injection of lower doses of dermorphin-saporin also leads to attenuation of 

hypersensitivity, however importantly these lower doses do not result in the 

unwanted toxicity of the higher dose. The attenuation of hypersensitivity is 

smaller than that observed for the 3pmole dose, resulting in only a 20% 

reduction in mechanical hypersensitivity. The dose-response effect suggests 

this is due to fewer MOR+ cells depleted by lower dermorphin-saporin 

doses. This was confirmed by MOR+ cell counts, which indicated that at the 
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two lower doses fewer MOR+ cells are lost. Interestingly there was no 

significant effect of the lowest dose (0.75pmole) on MOR+ cell numbers 

compared to saline controls, despite a significant effect on behaviour at this 

dose. One possible explanation for this discrepancy is that lower doses of 

dermorphin-saporin may take longer to cause death of MOR+ neurons. 

Despite the immunohistochemical detection of many MOR+ neurons in this 

treatment group, some of these neurons may be in the process of dying and 

not functioning optimally, leading to significant attenuation of 

hypersensitivity compared to the saline group. At the 6h, 1d, 2d and 7d time 

points post CFA injection there is a direct correlation between MOR+ cell 

number and mechanical paw withdrawal thresholds per individual animal. 

This suggests that the behavioural effects observed in our lesion studies are 

strongly dependent on the number of cells depleted. 

This study is therefore the first to suggest that depletion of even a small 

number of MOR+ neurons can lead to a reduction in behavioural 

hypersensitivity. Conversely the complete reversal in neuropathic pain 

sensitivity described in previous studies (Burgess et al., 2002; Porreca et al., 

2001; Zhang et al., 2009) would likely require a complete ablation of MOR+ 

neurons. As demonstrated in this chapter this is difficult to achieve without 

considerable adverse effects. Interestingly, adverse effects of dermorphin-

saporin microinjection to the RVM had not been described by others 

previously and the source of this discrepancy is not clear. In most cases the 

same dose of toxin was used, in the same size and strain of rat, and at 

similar microinjection sites (Bee and Dickenson, 2008; Burgess et al., 2002; 

Porreca et al., 2001; Zhang et al., 2009). One possible explanation is batch to 

batch variation in dermorphin-saporin. Notably, one  recent study has 

described the use of a dose of 1.8pmole dermorphin-saporin in the study of 

stress induced hyperalgesia (Reynolds et al., 2011). These authors mention 

that this dose is modified from the Porreca et al. study, however do not 

discuss if adverse effects were identified at higher does. Nonetheless along 
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with our findings, this highlights the importance of determining an optimal 

working concentration by individual laboratories. 

Regardless of the cause of this discrepancy, in our studies a compromise 

between the extent of the lesion and efficacy in attenuation of behavioural 

hypersensitivity was required. Notably, survival of MOR- neurons within the 

RVM has not been convincingly demonstrated in these previous studies. 

Here we have demonstrated that the effects of dermorphin-saporin on 

behaviour are dose-dependent, and also that the selectivity of the lesion for 

MOR+ expressing neurons can be confirmed, at least at the lower doses than 

described previously in the literature. 

5.4.2 Role of MOR+ cells in descending facilitation from 1d post CFA 

injection 

Carrying out a complete, fully blinded and controlled experiment with this 

lower dose of dermorphin-saporin, it was found that attenuation of 

mechanical hypersensitivity only occurs from 1d onwards and that in the 

early stages of inflammation, at 2h and 6h post CFA, MOR+ cells are not 

required for behavioural hypersensitivity. As explained above, this may be 

due to insufficient ablation of MOR+ neurons, with the surviving cells having 

a facilitatory effect in this initial window. More likely however is that this 

behavioural experiment indicates important differences in the timing of 

descending modulation in neuropathic and inflammatory pain. Lesion of the 

RVM with dermorphin-saporin has no effect in the first 5 days of 

neuropathic pain behaviour (Burgess et al., 2002; Porreca et al., 2001; Zhang 

et al., 2009), and from that point onwards, a gradual reversal of sensitivity 

occurs. In contrast we find that attenuation of inflammatory joint pain 

occurs earlier but that the magnitude of attenuation is consistent 

throughout the period studied. This indicates that during joint inflammation 

descending facilitation via the MOR+ pathway becomes active from 24h 

onwards but does not increase or decrease in magnitude from that time. 
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This supports previous electrophysiological findings indicating that following 

inflammation, increased descending inhibition occurs in the acute phase 

(Cervero et al., 1991; Ren and Dubner, 1996; Schaible et al., 1991) but that 

this is not present in the maintenance phase (Danziger et al., 2001). In our 

experiment, in which descending facilitatory cells are depleted, this would 

explain why no apparent change occurs in the initial 24 hours of 

inflammation as at this point descending inhibitory controls may 

predominate. The effects of dermorphin-saporin lesion on descending 

facilitation are only unmasked later when descending inhibition is 

decreased. 

Notably, dermorphin-saporin lesion has no effect on paw withdrawal 

thresholds before CFA treatment. This suggests that in the normal healthy 

animal, before induction of hypersensitivity by injection of CFA, there is no 

effect of dermorphin-saporin lesion on the response to mechanical 

stimulation. Although this may be due to a failure of our measure of paw 

withdrawal threshold to detect changes in nociceptive responses, it most 

likely indicates that in order for the descending facilitatory system to 

become active there must be an initial increase in nociceptive input. This 

supports previous findings regarding the electrophysiological responses of 

dorsal horn neurons to stimulation following dermorphin-saporin depletion 

of the MOR+ cell population, in which innocuous mechanical stimulation 

with von Frey hairs is not affected by the depletion (Bee and Dickenson, 

2008) 

5.4.3 Potential mechanisms underlying descending facilitation via MOR+ 

cells 

MOR+ cells represent approximately half of all dorsal horn projecting RVM 

neurons (Gutstein et al., 1998; Kalyuzhny and Wessendorf, 1998; Mansour 

et al., 1994; Wang and Wessendorf, 1999), and approximately half of 

spinally projecting 5-HT expressing neurons are MOR+ (Kalyuzhny and 
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Wessendorf, 1998). Chapter 4 has described the role of descending 5-HT in 

facilitating behavioural hypersensitivity at 1d and 2d post inflammation. In 

this chapter the role of descending facilitation via MOR+ RVM neurons is 

addressed in a separate lesion experiment, however the results should be 

interpreted with the understanding that part of the effect of dermorphin-

saporin lesion is via a reduction in 5-HT fibres projecting to the dorsal horn. 

However in contrast to the data from the 5,7-DHT experiment, an overall 

attenuation of hypersensitivity is observed following dermorphin-saporin 

treatment from 1 – 7 d post inflammation. This suggests that other 

mechanisms besides descending 5-HT are involved in MOR+ cell mediated 

descending facilitation.  

Another important transmitter within the RVM during pain states is 

cholecystokinin (CCK).  CCK is a peptide expressed within many of the same 

regions as endogenous opioids and has been shown to antagonise their 

analgesic effects (Faris et al., 1983). Within the RVM CCK administration has 

pro-nociceptive effects on visceral pain by colorectal distension (Friedrich 

and Gebhart, 2003) and contributes to morphine induced hyperalgesia (Xie 

et al., 2005). Administration of a CCK₂ antagonist to the RVM has been 

shown to reverse neuropathic hypersensitivity (Kovelowski et al., 2000) and 

CCK is known to increase ON cell firing (Heinricher and Neubert, 2004). 

Recently it has been shown that the MOR+ population overlaps considerably 

with the CCK₂ receptor (Zhang et al., 2009). Importantly it was shown that 

depletion of these neurons by administration of CCK₂-saporin leads to 

attenuation of neuropathic pain sensitivity (Zhang et al., 2009), comparable 

to that observed previously following dermorphin-saporin lesion (Burgess et 

al., 2002). This strongly suggests that the effects of dermorphin-saporin 

observed in the present study are also driven through the loss of these CCK₂ 

expressing cells. Recently it has been shown that CCK administration to the 

RVM results in an increase in PGE₂ release in the dorsal horn (Marshall et al., 

2012). PGE₂ within the dorsal horn can cause central sensitisation (Baba et 
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al., 2001) and has been shown to contribute to inflammatory pain (Hay et 

al., 1997). Although the source of PGE₂ in response to CCK activation of RVM 

neurons is not clear, release within the spinal cord may play an important 

role in mediating descending facilitation by part of the ON cell population. 

Another mechanism of action of descending facilitation by the MOR+ cell 

population which has been proposed is increased release of 

neurotransmitters from primary afferent terminals, and indeed it has been 

shown that following dermorphin-saporin lesion of the RVM, enhanced 

capsaicin evoked release of CGRP in neuropathic rats is attenuated (Gardell 

et al., 2003). This study suggests the interesting concept whereby pain 

facilitating neurons could influence primary afferent release. One possible 

mechanism that could explain this is the activation of 5-HT₃ receptors, some 

of which are expressed on peripheral nerve terminals in the dorsal horn 

(Maxwell et al., 2003). As explained in chapter 4, the 5-HT₃ receptor is a 

ligand gated ion channel, and so its activation could lead to an influx of 

calcium and increased transmitter release. Recently it has been 

demonstrated that LTP at primary afferent-dorsal horn synapses is driven in 

part by presynaptic mechanisms of neurotransmitter release (Luo et al., 

2012). The ability of descending pathways to interact with primary afferent 

terminals may therefore contribute to presynaptic mechanisms of LTP within 

the dorsal horn.  

It should also be noted that  some GABA expressing projection neurons 

within the RVM are MOR+ and so may be lost by dermorphin-saporin lesion 

(Kalyuzhny and Wessendorf, 1998). Although these neurons would 

intuitively be expected to exert an inhibitory effect within the dorsal horn, 

the net effects of this inhibitory input will depend on the cell target within 

the dorsal horn. A facilitatory effect of these neurons via inhibition of 

inhibitory dorsal horn interneurons is a possibility, and loss of these neurons 

may contribute to the attenuation of hypersensitivity observed here. Further 
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immunohistochemical studies to quantify the extent of MOR+ double 

labelling with GABA and 5-HT, and their depletion following dermorphin-

saporin treatment, could be used to clarify the relative contribution of these 

two neurotransmitters to MOR+ mediated descending facilitation. 

5.4.4 Conclusion 

This study is the first to investigate the role of RVM MOR+ neurons in 

inflammatory joint pain behaviour. In contrast to previous findings in 

neuropathic pain the effect of MOR+ cell depletion is small, but is involved 

earlier in the pain process. Relatively little is known about the underlying 

mechanism of MOR+ cell facilitation of spinal cord excitability. To address 

this question, we next carried out microarray analysis to investigate the 

contribution of this pathway to gene expression changes within the dorsal 

horn. 
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6. Descending regulation of dorsal horn gene 

expression 

6.1  Introduction 

Long term plasticity requires changes in gene expression and protein 

synthesis, for example during memory formation (Bailey et al., 1996; Costa-

Mattioli et al., 2009) and central sensitisation (Kim et al., 1998). As shown in 

this thesis and by others previously, descending facilitation contributes to 

the development of increased spinal excitability and behavioural sensitivity. 

Therefore descending controls are also likely to drive molecular changes in 

the dorsal horn which are required for plasticity. Some studies have 

demonstrated that the expression of proteins in the dorsal horn such as the 

immediate-early genes c-Fos (Géranton et al., 2008) and zif-268 (Rygh et al., 

2006) as well as the transcriptional regulator MeCP2 (Géranton et al., 2008) 

are subject to regulation by descending controls, but in general the 

underlying molecular mechanisms in the dorsal horn are not well 

understood.  

Microarray analysis is a powerful technique used to study the expression 

levels of many genes within a sample simultaneously. The method was 

originally described by Schena et al., 1995 and involves binding of 

fluorescence-labelled cDNA, derived from a biological sample of interest, 

and applying it to a chip containing many probes representing individual 

genes. Hybridisation between cDNA strands of the sample and the probes 

on the chips allows for the extent of fluorescence at each probe to give a 

readout of levels of expression for that gene within the sample (Schena et 

al., 1995). Since its initial conception microarray technology has become 

progressively more sophisticated (including more and more genes on the 

chip) and is now a widely used technique in biology, including neuroscience 
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research. There are two main advantages to the use of microarrays to study 

gene expression. One is the high throughput nature of the microarray, 

allowing the screening of many thousands of genes at once within a sample. 

The other advantage is that it allows an unbiased approach to studying gene 

expression. Rather than selecting a gene of interest based on existing 

knowledge of the biological process, whole genome studies can reveal novel 

and unexpected roles for ‘new’ genes in a particular process (Mogil and 

McCarson, 2000).  

Microarrays have been used in a number of studies to investigate changes in 

gene expression in the different components of the pain pathway, including 

the dorsal horn. This has been carried out following peripheral nerve injury 

(Griffin et al., 2007; Lacroix-Fralish et al., 2006; Yang et al., 2004), herpes 

zoster induced allodynia (Takasaki et al., 2012), and plantar inflammation 

(Rodriguez Parkitna et al., 2006). Recently, a number of innovative studies 

have used microarrays of distinct groups of animals with different 

behavioural responses to identify molecular mechanisms underlying these 

distinct pain phenotypes. For example, in young rats neuropathic injury does 

not lead to pain as it does in the adult (Howard et al., 2005). Microarray 

analysis has proved useful in identifying a role for the complement signalling 

cascade in microglia which is active in the adult, but not in the young animal.  

This has been proposed as an explanation for the difference in pain response 

to neuropathic injury in these age groups (Costigan et al., 2009a). 

Microarrays of the dorsal horn have also been used to identify changes in 

gene expression associated with re-injury  after an earlier inflammatory 

insult with carrageenan (Yukhananov and Kissin, 2008), which suggests the 

existence of a molecular memory or trace of the initial pain state. Another 

interesting example is a recent investigation into electroacupuncture 

induced analgesia. This procedure is more successful in some animals than 

others, and microarray analysis has identified genes related to immune cell 

function, such as the pro-inflammatory cytokines Il-6, Il-1β and TNF-α, that 
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are expressed at a higher level in the low responders. This is believed to 

contribute to their insensitivity to the procedure (Wang et al., 2012). These 

studies demonstrate that comparing gene expression in groups with subtle 

differences in pain behaviours can provide important information on the 

molecular mechanisms underlying those differences. 

Our group has previously used microarray analysis to characterise changes in 

dorsal horn gene expression associated with ankle joint inflammation 

(Géranton et al., 2007a). This study revealed waves of transcriptional 

regulation at different stages following inflammation, with the induction 

phase (2 – 24h post inflammation) broadly associated with an increase in 

gene expression and the maintenance phase (7d) associated predominantly 

with downregulation of genes. This study demonstrated that in a model of 

joint pain substantial changes in dorsal horn gene expression occur, which 

may correlate with the behavioural changes observed. In this thesis, chapter 

4 and chapter 5 describe experiments which have demonstrated that 

descending facilitation contributes to behavioural hypersensitivity in this 

model. While the contribution of descending facilitation to central 

sensitisation and pain behaviour has been studied frequently (Bee and 

Dickenson, 2008; Burgess et al., 2002; Géranton et al., 2008; Wei et al., 

2010) little is known about the molecular mechanisms underlying 

descending facilitation.  

6.1.1 Hypothesis 

In this chapter I have tested the hypothesis that gene expression changes in 

the dorsal horn following ankle joint inflammation are regulated by 

descending facilitation via MOR+ neurons.  
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6.2  Methods 

6.2.1 Animals 

The first part of this chapter describes work which used tissue from the 

behavioural experiment described in section 5.3.3. This cohort of animals 

received microinjection to the RVM of either 1.5pmole (48ng, 0.75pmole 

each side) dermorphin-saporin or saline. The animals were subsequently 

divided into two groups receiving either CFA injection to the ankle or 

undergoing a sham procedure. The ipsilateral dorsal horn of a subset of 

these animals (n = 5, dermorphin-saporin + CFA and saline + CFA) was used 

for microarray analysis and qPCR validation of target genes (experiment 1). 

The aim of the part of the study was to focus on the specific contribution of 

descending facilitation to the regulation of dorsal horn gene expression at 

the 7d time point. For this reason, microarray analysis was carried out on 

two groups of animals only. Both groups underwent CFA injection, and 

dermorphin-saporin or saline pre-treatment was the only variable. In this 

way our analysis revealed genes that are differentially regulated in the pain 

state by the MOR+ cell pathway.  

The second part of this chapter describes immunohistochemistry and 

western blot experiments carried out on two other groups of animals. 

Animals underwent dermorphin-saporin or saline microinjection to the RVM 

followed by ankle injection of CFA (as before for the microarray experiment) 

and the ipsilateral dorsal horn of these animals (n= 6) were used for western 

blot analysis (experiment 2). A final group of animals were used which did 

not undergo RVM injection, and received either CFA injection or sham 

procedure (experiment 3). These were either perfused, or protein extracted 

from the ipsilateral dorsal horn for western blot analysis (n = 6 per group). In 

all cases tissue was collected at 7d post CFA injection. An outline of the 

treatment and tissue obtained from different sets of animals is listed in table 

6.1. 
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 Experiment 1 Experiment 2 Experiment 3 

RVM injection DS or saline DS or saline None 

CFA CFA or sham CFA or sham CFA or sham 

Used for RNA: microarray and 

RT-qPCR 

Protein: western blot  Protein: western blot or 

immunohistochemistry 

Table 6.1 Outline of experimental groups used in chapter 6.  

All tissue was obtained at 7d post CFA injection. DS = dermorphin-saporin. 

6.2.2 Microarray analysis 

6.2.2.1  RNA Extraction 

Tissue was homogenised by hand in 700ul Qiazol (Qiagen) for 1 to 2min. The 

sample was removed and passed through a Qiashredder column and spun in 

the centrifuge at 14,000rpm for 2min. The sample was then left at room 

temperature for 5min before the RNA was extracted using the Qiagen 

RNeasy kit. 140µl chloroform was added to the sample and the tube was 

capped and shaken vigorously for 15s. The samples were then left at room 

temperature for 3min followed by centrifugation at 12,000 rpm at 4°C for 

15min.  

The upper aqueous phase was transferred to a new tube, with care taken to 

minimise cellular debris remaining in the sample.  53% EtOH was added to 

the removed aqueous phase. This was mixed well by pipetting up and down, 

and added to the RNeasy spin column, and centrifuged to remove the EtOH. 

A wash step using buffer RW1 (from the RNeasy kit) was carried out before 

adding DNAase I incubation mix (Qiagen) to the column for 15min. A series 

of further washes using buffer RW1 and RPE from the RNeasy kit were then 

performed, before a final drying step and elution of the RNA in 25ul of 

RNase free H₂O. 1µl of each RNA sample was applied to a Nanodrop 

spectrophotometer and the concentration of RNA per sample was 

determined in ng/µl. The contamination levels of organic solvents (indicated 

by a low 260/230 value) and protein contamination (indicated by a low 
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260/280 value) were also determined using the Nanodrop. RNA was then 

stored at -80°C until further use. 

6.2.2.2  Microarray analysis 

RNA derived from the ipsilateral dorsal horn from two groups of animals, 

one group with dermorphin-saporin lesion of the RVM and the other 

without, was used for microarray analysis of gene expression (experiment 1, 

see table 6.1). 5 replicates per group were used. RNA samples were 

normalised to a concentration of 50ng/µl in RNase free H₂O before 

submission to the UCL genomics service. Complementary DNA (cDNA) 

synthesis was carried out using the Ambion WT expression kit (see below 

section 6.2.5 for description of cDNA synthesis for RT-qPCR experiments). 

This was followed by labelling of the cDNA using the Affymetrix WT terminal 

labelling kit. Labelled cDNA was then hybridised to Affymetrix rat gene 1.0 

ST arrays and the intensity of fluorescence of the arrays was measured using 

an Affymetrix gene chip scanner.  

6.2.2.3  Data analysis 

The raw data was obtained in the form of .CEL files, which contain the 

results of the intensity calculations per chip. Analysis of the raw data was 

carried out in the R, a language and environment for statistical computing 

and graphics (www.r-project.org), and the Bioconductor plugin for 

microarray analysis was used (www.bioconductor.org). The Bioconductor 

package was used for three different aspects of analysing the raw data: 

normalising, measuring differential expression of probe sets, and providing 

functional annotations for each probe from the gene ontology (GO) 

database.  

The robust multi-array average (RMA) package was used to generate an 

expression matrix from the CEL files and to normalise the data. Limma 

testing was used to assess differential expression between the two 
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treatment groups. Limma testing produces a table of containing the probe 

ID, the log-fold difference between the two treatment groups, the average 

expression across samples, the t-statistic describing the differential 

expression, the p value and adjusted p value for the significance of any 

expression difference, and the log odds ratio. The adjusted p values were 

not significant for any of the probe sets, and for further analysis, the non-

adjusted p value was used. Previous published work by our group has also 

used the non-adjusted p value (Géranton et al., 2007a).  

6.2.2.4  Bioinformatics analysis 

In order to identify biologically meaningful genes from this list, the online 

bioinformatics tool DAVID was used (http://david.abcc.ncifcrf.gov/). The 

DAVID functional annotation tool examines functional annotations of the 

genes in a list. It incorporates annotations from the gene ontology (GO) 

database and performs statistical analysis to identify annotations 

overrepresented in a gene list compared to the background list, in our case 

the rat genome. The advantage of using the DAVID analysis system rather 

than carrying out traditional gene annotation analysis is that it groups 

similar or redundant annotations together, minimising repetition and 

redundancy (Huang, Sherman, and Lempicki 2009). This is referred to as 

functional annotation clustering. Genes are grouped on the basis of 

similarities in functional annotations allowing the user to quickly identify 

common functions between genes. 

Following the microarray experiment, the gene list was inserted into the 

DAVID analysis system using the official gene symbols as identifiers. The 

background list was designated as the Rattus norvegicus genome. The 

source of annotations chosen for analysis was the Gene Ontology (GO) 

database. This consists of annotations of gene function using defined GO 

terms in three areas: biological process (BP), cellular compartment (CC) and 

molecular function (MF) (Ashburner et al., 2000). The analysis produced two 
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sets of findings, a list of enriched annotations by traditional analysis, and 

functional annotation clustering which groups similar and redundant 

annotations together to simplify the identification of biologically interesting 

groups of genes. 

The DAVID analysis system has two methods of studying functional 

annotations within a list of genes. The first lists all significantly enriched 

annotations found within the gene list. This is calculated from an EASE score, 

which is generated from a Fisher’s exact test to determine if the 

overrepresentation of the annotation is random or not, with a p value of < 

0.05 deemed to be a significant enrichment. As multiple annotations are 

tested in this way, a correction by Benjamini test is also carried out, and 

ideally these values should also be significant. This produces a list of 

significantly enriched annotations within the gene list. 

The second analysis method sorts similar annotations into clusters. Within 

these groups, the individual EASE scores for the annotation are combined to 

produce an overall enrichment score. This is the geometric mean of the p-

values for the individual annotations, followed by minus log transformation. 

This means that the higher the enrichment score the more significant the 

cluster is, and a value of approximately 1.3 corresponds to the non-

transformed value of p = 0.05. However this does not rule out further 

investigation into clusters with an enrichment value < 1.3, as within the 

clusters there may be many significantly enriched annotations. Furthermore, 

the number of genes in a cluster may be of interest. If a large number of 

genes with similar functions are all differentially regulated in the 

experiment, it provides a strong clue towards an underlying mechanism and 

may warrant further investigation (Huang et al., 2009). 
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6.2.3 Quantitative real-time PCR  (RT-qPCR) 

6.2.3.1  cDNA synthesis for RT-qPCR 

Complementary DNA (cDNA) was synthesised from the RNA samples. The 

reaction was carried by adding 0.5μg RNA sample to a mix of 0.2µl Oligo 

dT20 (Invitrogen), 0.8µl random nonamers (Sigma), 1µl PCR nucleotide mix 

(Promega) and bringing the reaction volume to 13µl by adding RNase free 

H20. This was then incubated at 65°C for 5min. The samples were then 

quickly chilled on ice for 5min. The tubes were briefly centrifuged to collect 

the mixture, and 4µl first strand buffer (Invitrogen), 1µl DTT (Invitrogen), 1µl 

RNaseIN ribonuclease inhibitor (Invitrogen) and 1µl of the key reaction 

component, reverse transcriptase (Superscript III, Invitrogen) were added. 

This was gently mixed by pipetting up and down and the samples were then 

incubated at 25°C for 5min, 50°C for 50min and 70°C for 15min. The cDNA 

samples were then placed quickly on ice before storage at -20°C until use in 

RT-qPCR assays. 

6.2.3.2  Reverse transcriptase real time qPCR (RT-qPCR) assay 

Oligonucleotide primers were designed to target selected genes based on 

the Affymetrix probe sequences (Sigma). A list of primer sequences is given 

in table 6.2. RT-qPCR assays were carried out on 96 well plates, with cDNA 

samples run in triplicate and controls for master mix contamination (no 

cDNA added) and cDNA contamination (negative control from the cDNA 

synthesis, without transcriptase added) included in each plate.  A master mix 

solution was prepared for each plate so that each well contained 12.5µl 

SYBR green (Sigma), 9.5µl RNase free H₂O, and 1µl stock solution of the 

forward and reverse primers of the target gene. 1µl cDNA was added to the 

wells after they were filled with the master solution.  

The Sigma 3-step amplification protocol was used with a Bio-Rad CFX96 PCR 

C100 thermal cycler (see table 6.3). Data was analysed using Bio-Rad CFX96 
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software. Ct values (threshold cycle, which is the number of cycles taken for 

the fluorescence labelling to increase above background) were obtained for 

each target gene. This value is inversely proportional to the log of the copy 

number of the cDNA in the sample.  Actin was used as a housekeeping gene. 

Relative gene expression was calculated using the 2ΔCt method, where the 

data for each gene is expressed in the form 2 to the power of (Ct Actin – Ct 

target). 
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Gene name Primer Sequence 

Cyclin B2 Ccnb2F CTAAGAGCCATGTGACTGTC 

 Ccnb2R CAGAACTGTAGGTTTCGG 

   

Chemokine (C-X-C motif) ligand 10 Cxcl10F ATACTCACAGGAACCTAGACAT 

 Cxcl10R CCATCCAACACATCTTGTAATATG 

   

Ribosomal protein L32 Rpl32F GTTCATCAGGCACCAGTC 

 Rpl32R TGACATCGTGGACCAGAA 

   

Chemokine (C-X-C motif) ligand 9 Cxcl9F GATGAAGCCCTTTCATACTGC 

 Cxcl9R GTGGTTGTGAGTTTTGCTCCAATC 

   

Chemokine (C-X-C motif) receptor 3 Cxcr3F AGCCCTCACCTGCATAGTTG 

 Cxcr3R GCCACTAGCTGCAGTACACG 

   

Nitric oxide synthase 2 Nos2F GATATCTTCGGTGCGGTCTT 

 Nos2R GGCCAGATGCTGTAACTCTT 

Table 6.2 Forward and reverse primer sequences used for RT-qPCR validation of selected 

genes. 

Step Temperature °C Time 

1. Denaturation 94 2min 

2. Denaturation 94 15s 

3. Annealing 60 30s 

4. Extension 72 30s 

5. Read Plate 

6. Return to step2, repeat x39 

  

Table 6.3 Sigma three step amplification protocol. 
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6.2.4 Western blot 

Full details of all solutions used for western blot analysis are listed in 

appendix A2. As the primary aim was to determine if some of the genes 

validated by RT-qPCR were also regulated at the protein level, we limited 

western blot analysis to two groups of animals only for the dermorphin-

saporin component of the experiment. As with the microarray analysis, both 

groups received CFA injection, and dermorphin-saporin or saline pre-

treatment was the only variable (tissue from experiment 2). However, 

separate experiments were carried out on ‘normal’ CFA and sham tissue, to 

determine if protein levels are modulated by CFA treatment alone (tissue 

from experiment 3). 

6.2.4.1  Protein extraction 

Tissue was homogenised in 1ml RIPA buffer, 10µl protease inhibitor (Sigma) 

10µl phosphatase inhibitor cocktail 1 (Sigma) and 10µl phosphatase inhibitor 

cocktail 2 (Sigma). 150µl of this mixture was used per dorsal horn quadrant. 

Tissue was placed in centrifuge tubes with ceramic beads and then placed in 

a FastPrep biopulverizer machine (MP Biomedicals Europe) for 20s at setting 

5. Tubes were spun twice and left on ice for 1h, followed by 2 more spins 

and a final 1h on ice. Finally tubes were centrifuged at 12,000rpm for 15min 

at 4°C. The supernatant was removed, leaving the pellet left behind. 

Samples were stored at -20°C until use.  

Protein quantity per sample was determined using a bicinchoninic acid (BCA) 

assay (Thermo Scientific). Bicinchoninic acid and 4 % copper sulphate 

solution were mixed in a 50:1 ratio, and 200μl of the mixture was added to 

protein standards, and unknown samples, on a 96-well plate. This was 

incubated at 37°C for 30min and a spectrophotometer was used to measure 

the colour emitted by the samples, allowing a standard curve to be 

generated and the unknown protein concentrations calculated.  
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6.2.4.2  Electrophoresis and protein transfer 

Samples for western blot were prepared by adding sufficient protein sample 

to obtain a standard protein concentration of 35µg. The appropriate amount 

of loading buffer (Invitrogen) was added to obtain a final volume of 19.5µl 

per sample. Samples were boiled for 5min to denature the proteins, and 

cooled on ice prior to loading of the gel. Samples were loaded alongside a 

protein standard ladder (Bio-Rad) to pre-cast 12% agarose gels (Bio-Rad 

Criterion) in a tank with MOPS running buffer. Proteins were separated using 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE), at 180V for 1hr using a 

power pack (Bio-Rad). 

Meanwhile transfer buffer was prepared (see appendix A.2) and 2 sponges 

and 4 filter papers per gel were soaked for 15min. PVDF membrane (Bio-

Rad) was activated in MeOH for 5min then soaked in transfer buffer prior to 

preparation of the sandwich within a plastic cassette. Sponges and filter 

paper (Bio-Rad) were also soaked in transfer buffer prior to use. This gel 

sandwich was prepared in the following order: sponge, 2 x filter paper, gel, 

PVDF membrane, 2x filter paper and sponge. The cassette was placed in a 

tank with transfer buffer and ran at 100V for 1h to complete the transfer, 

and the buffer was kept cool by addition of an ice pack. 

6.2.4.3  Blocking, primary antibody and detection 

Following completion of protein transfer, the membrane was blocked in 

blocking solution (4% skimmed milk solution in PBS-tween) for 1h. The 

primary antibody was diluted as required in blocking solution and the 

membrane incubated in a rolling tube overnight at 4°C. The primary 

antibodies and concentrations used are given in table 6.4.  

After the overnight incubation, the membrane was then washed 3 times for 

10min in PBS-tween on a rocker. The membrane was then incubated with a 

rabbit horseradish peroxidase-conjugated secondary antibody (Santa Cruz, 
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1:1000), diluted in blocking solution, for 1h at room temperature. This was 

followed by 3 more washes. The membrane was developed using the Bio-

Rad Chemi-doc system, with a horseradish peroxidase (HRP) substrate 

developing kit (Thermo-Scientific). The HRP developing substrate was 

applied to the membrane for as long as required to see bands at the target 

molecular weight. Images of the developed blots were saved for later 

analysis. 

All proteins of interest were normalised to the expression of calnexin, a 

housekeeping protein expressed in the endoplasmic reticulum membrane. 

Following the exposure of the first antibody, the membrane was incubated 

with the calnexin antibody (1:1000, rabbit, Biovision) overnight at 4°C. The 

next day the secondary HRP-conjugated antibody was applied, and 

developing of the blot was carried out as for the first primary antibody. 

Antigen Host Company Concentration Molecular Weight 

CXCL10 Rabbit Peprotech 1:500 10kDA 

CXCR3 Rabbit Santa Cruz 1:50 38kDA 

Calnexin Rabbit Biovision 1:1000 67kDA 
 

Table 6.4 Primary antibodies used for western blot analysis. 

6.2.4.4  Analysis 

Western blots were analysed using Bio-rad Quantity One software. The 

volume analysis tool was used to quantify the intensity of band staining. 

Volume analysis involves creating a rectangle of equal size around each of 

the bands, and measures the volume within that rectangle. The volume is 

defined as the sum of pixel intensities x the area within the defined 

boundary. The global background volume is subtracted from these values, 

and is obtained by combining intensity data from three separate objects as 

representative of the background. For each band the background-adjusted 

intensity of the band at the appropriate molecular weight was normalised to 
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the background-adjusted intensity of calnexin, imaged on the same blot. The 

normalised data is then expressed as a proportion of the mean of the 

control group (either saline + CFA or sham, depending on the experiment). 

6.2.5 Immunohistochemistry 

Fluorescence immunohistochemistry with tyramide signal amplification was 

carried out as described in section 2.4. 40µm sections of the lumbar spinal 

cord (L4-L6) were taken across 6 wells, so that within each well all sections 

were at least 240µm apart. 

Antibodies used were for CXCR3 and CXCL10, and double labelling was 

carried out with a number of cellular markers. These were NeuN (marker of 

neuronal nuclei), IBA1 (ionized calcium binding adaptor molecule 1, found in 

microglia), GFAP (glial fibrillary acidic protein, found in astrocytes) and CGRP 

(calcitonin gene related peptide, expressed in peptidergic primary afferents 

terminating in the dorsal horn), as appropriate. Primary antibodies and 

concentrations used for immunohistochemistry are given below in table 6.5.   

Confocal microscopy (see section 2.4.6) was carried out to determine the 

extent of colabelling of CXCR3 and CXCL10 with these markers in the dorsal 

horn of animals with ankle injection of CFA. Controls were carried out to 

ensure that the secondary antibodies were specific to their primary antibody 

targets. This was carried out by removing either the first primary antibody or 

the second primary antibody from the procedure, to ensure no non-specific 

labelling by the secondary antibodies.  
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Antigen Host Company Concentration Method Fluorophore 

CXCL10  Rabbit Peprotech 1:1000 TSA FITC 

CXCR3 Rabbit Santa Cruz 1:200 TSA FITC 

NeuN Mouse Chemicon 1:1000 Direct  Alexa 594 

CGRP Rabbit Sigma 1:4000 Direct  Alexa 594 

IBA1 Rabbit Wako 1:1000 Direct Alexa 594 

GFAP Rabbit Dako 1:4000 Direct Alexa 594 

Table 6.5 Primary antibodies, concentrations and detection methods for 

immunohistochemistry. 

6.2.6 Statistical analysis of RT-qPCR and western blot experiments 

For RT-qPCR and western blot experiments, data is presented as mean ± 

SEM per group. Independent samples t-tests were used to compare means 

between two groups and a p-value of < 0.05 was deemed significant. 

6.3  Results 

6.3.1 Microarray analysis 

Following analysis of the microarray data in Bioconductor a list of all genes 

with corresponding fold changes and significance values was generated. 

Only those genes with a non-adjusted p value of < 0.05 were included as 

differentially regulated (2616 transcripts in total). Genes without an official 

gene symbol were also removed (leaving 1668 transcripts in total). The 

remaining transcripts were then ranked by fold change. A fold change cut-off 

was set at 1.2 and this resulted in a final list of 129 genes which was used for 

further analysis. Table 6.6 lists these genes, along with their ranking on the 

list based on fold change, gene name, official gene symbol, direction of 

change in dermorphin-saporin group (+ = upregulated in dermorphin-

saporin, - = downregulated in dermorphin-saporin), fold change value, and 
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non-adjusted p value. The majority of the genes (76%) were downregulated 

in the dermorphin-saporin group. Within this list, two genes appear 

repeatedly (Rpl21 and Rpl7a). This repetition can arise as each gene is 

represented on the array with multiple probes targeting different regions on 

the same gene. For ease of reference, genes are listed in alphabetical order 

(based on gene symbol). 
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List of genes differentially regulated in dermorphin-saporin group 

Rank Gene Name Symbol  Fold  
p 
value 

27 ankyrin repeat, family A (RFXANK-like), 2 Ankra2  + 1.35 0.016 

39 brain expressed gene 4 Bex4  + 1.30 0.021 

26 biphenyl hydrolase-like (serine hydrolase) Bphl  -  1.35 0.001 

113 coiled-coil domain containing 79 Ccdc79  + 1.20 0.007 

4 cyclin B2 Ccnb2  + 1.85 0.015 

94 chemokine (C-C motif) receptor 1-like 1 Ccr1l1  -  1.21 0.000 

115 cholinergic receptor, nicotinic, beta 3 Chrnb3  -  1.20 0.014 

28 claudin 1 Cldn1  -  1.34 0.024 

99 clarin 2 Clrn2  -  1.21 0.002 

84 cytochrome c oxidase, subunit VIa, polypeptide 2 Cox6a2  -  1.22 0.005 

34 chemokine (C-X-C motif) ligand 10 Cxcl10  -  1.32 0.000 

42 chemokine (C-X-C motif) ligand 9 Cxcl9  -  1.30 0.042 

127 chemokine (C-X-C motif) receptor 3 Cxcr3  -  1.20 0.005 

109 cytochrome P450, family 2, subfamily b, polypeptide 12 Cyp2b12  -  1.20 0.010 

81 defensin, alpha 5, Paneth cell-specific Defa  -  1.22 0.001 

75 defensin beta 40 Defb40  -  1.22 0.031 

85 elongation factor RNA polymerase II-like 3 Ell3  -  1.22 0.003 

47 ferritin, light polypeptide Ftl  -  1.28 0.034 

119 glyceraldehyde-3-phosphate dehydrogenase Gapdh   -  1.20 0.013 

82 glycoprotein (transmembrane) nmb Gpnmb  -  1.22 0.021 

67 GTP binding protein 4 Gtpbp4  + 1.23 0.027 

51 histone cluster 1, H2bc Hist1h2bc  -  1.26 0.004 

54 histone cluster 1, H2bc Hist1h2bc  -  1.26 0.006 

102 histone cluster 3, H2a Hist3h2a  + 1.21 0.008 

40 high mobility group box 1  Hmgb1  -  1.30 0.006 

123 heterogeneous nuclear ribonucleoprotein A3 ABREVIATED Hnrnpa3  + 1.20 0.012 

122 5-hydroxytryptamine (serotonin) receptor 1D Htr1d  -  1.20 0.002 

3 isopentenyl-diphosphate delta isomerase 2-like Idi2l   -  1.98 0.043 

59 indolethylamine N-methyltransferase Inmt  -  1.25 0.005 

106 intelectin 1 (galactofuranose binding)  Itln1  -  1.21 0.007 

114 keratin 31 Krt31  -  1.20 0.037 

104 keratin associated protein 4-7 Krtap4-7   -  1.21 0.045 

19 NADH dehydrogenase (ubiquinone) 1 beta subcomplex 4 LOC100361934  -  1.38 0.006 

117 epithelial cell transforming sequence 2 oncogene-like LOC100361997  -  1.20 0.049 

45 rCG59045-like LOC100364529  -  1.29 0.002 

78 hypothetical LOC290577 LOC290577  -  1.22 0.004 

43 similar to hypothetical protein LOC292449  -  1.29 0.006 
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9 similar to hypothetical protein 4930509O22 LOC300308  -  1.67 0.001 

93 Ac2-224 LOC362921  -  1.21 0.000 

24 hypothetical protein LOC499339 LOC499339  + 1.36 0.002 

97 LRRGT00154 LOC499544  -  1.21 0.010 

68 similar to hypothetical protein FLJ25692 LOC500392  + 1.23 0.004 

52 hypothetical LOC502825 LOC502825  -  1.26 0.003 

2 similar to Discs large homolog 5  LOC681283   -  2.06 0.005 

76 hypothetical protein LOC683753 LOC683753  -  1.22 0.025 

15 similar to Heterogeneous nuclear ribonucleoprotein A1  LOC689196  -  1.44 0.010 

125 rCG20053-like /// mCG1042722-like LOC691054   -  1.20 0.009 

112 mast cell protease 8 Mcpt8  -  1.20 0.027 

36 mannosyl (alpha-1,3-) ABREVIATED Mgat4a  -  1.31 0.036 

66 similar to melanoma antigen family A, 5 MGC114492  -  1.23 0.015 

126 microRNA mir-152 Mir152  -  1.20 0.003 

17 microRNA mir-344-1 Mir344-1  + 1.41 0.013 

38 microRNA mir-374 Mir374  + 1.30 0.013 

69 microRNA mir-377 Mir377  + 1.23 0.009 

83 microRNA mir-384 Mir384  + 1.22 0.033 

25 microRNA mir-421 Mir421  + 1.36 0.011 

64 microRNA mir-544 Mir544  + 1.24 0.041 

111 M-phase phosphoprotein 8 Mphosph8  -  1.20 0.001 

58 mitochondrial ribosomal protein L18 Mrpl18  + 1.25 0.003 

91 melanoma associated antigen (mutated) 1-like 1 Mum1l1  + 1.21 0.005 

10 NADH dehydrogenase subunit 6 ND6  + 1.65 0.003 

62 neurogenin 1 Neurog1  -  1.24 0.010 

71 nuclear transcription factor, X-box binding-like 1 Nfxl1  + 1.23 0.015 

72 nuclear transcription factor, X-box binding-like 1 Nfxl1  + 1.22 0.004 

79 natural killer cell group 7 sequence Nkg7  -  1.22 0.011 

118 nitric oxide synthase 2, inducible Nos2  -  1.20 0.000 

31 NAD(P)H dehydrogenase, quinone 2 Nqo2  + 1.33 0.022 

49 olfactory receptor 1598 Olr1598  -  1.27 0.030 

95 olfactory receptor 1695 Olr1695  -  1.21 0.004 

128 olfactory receptor 1733 Olr1733  + 1.20 0.028 

63 olfactory receptor 1743 Olr1743  -  1.24 0.002 

80 olfactory receptor 326 Olr326  -  1.22 0.009 

65 olfactory receptor 446 Olr446  -  1.24 0.022 

90 olfactory receptor 514 Olr514  -  1.21 0.008 

13 olfactory receptor 707 Olr707  -  1.50 0.018 

44 olfactory receptor 733 Olr733  -  1.29 0.044 

5 olfactory receptor 780 /// olfactory receptor 779 Olr780   -  1.83 0.001 

60 olfactory receptor 94 Olr94  -  1.25 0.010 

124 polyadenylate-binding protein-interacting protein 2-like 1 Paip2l1  + 1.20 0.002 
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108 Prolactin family 3, subfamily d, member 1 ABREVIATED Prl3d1   -  1.21 0.035 

74 proline-rich protein 15 /// RGD1559532 Prp15  -  1.22 0.000 

120 parathyroid hormone Pth  -  1.20 0.000 

88 RNA binding motif 31, Y-linked Rbm31y  -  1.21 0.000 

23 REST corepressor 2 Rcor2  + 1.36 0.042 

107 renin Ren  -  1.21 0.002 

101 similar to Neuronal pentraxin II precursor (NP-II) (NP2)  RGD1311190  -  1.21 0.007 

20 similar to NADH:ubiquinone oxidoreductase B15 subunit RGD1560088  + 1.36 0.010 

11 similar to RIKEN cDNA 1700001F22 RGD1561558   + 1.56 0.014 

21 similar to putative protein kinase  RGD1561706  -  1.36 0.002 

35 similar to putative protein kinase  RGD1561706   -  1.32 0.040 

129 similar to Na+ dependent glucose transporter 1 RGD1561777  -  1.19 0.011 

18 similar to TDPOZ3 RGD1563667  + 1.40 0.020 

116 similar to chromosome 10 open reading frame 71 RGD1564899  -  1.20 0.004 

53 similar to ATP synthase, ABREVIATED RGD1565438  -  1.26 0.002 

70 similar to Spindlin-like protein 2 (SPIN-2) RGD1565862  -  1.23 0.007 

6 
similar to 60S ribosomal protein L12 /// ribosomal protein 
L12 Rpl12  + 1.81 0.016 

37 ribosomal protein L19 Rpl19  + 1.30 0.023 

12 ribosomal protein L21  Rpl21  -  1.51 0.050 

22 ribosomal protein L21  Rpl21  + 1.36 0.022 

32 ribosomal protein L21  Rpl21   + 1.33 0.025 

46 ribosomal protein L21  Rpl21   + 1.28 0.039 

8 ribosomal protein L32 Rpl32  -  1.68 0.015 

55 ribosomal protein L35a Rpl35a  + 1.26 0.025 

14 ribosomal protein L7a Rpl7a  -  1.45 0.011 

33 ribosomal protein L7a Rpl7a  -  1.32 0.014 

77 ribosomal protein L7a Rpl7a  -  1.22 0.020 

121 ribosomal protein L7a  Rpl7a   -  1.20 0.016 

29 ribosomal protein L9 Rpl9  -  1.34 0.018 

30 ribosomal protein S2 /// ribosomal protein S2-like Rps2  + 1.33 0.007 

96 ribosomal protein S23 /// similar to ribosomal protein S23 Rps23   + 1.21 0.016 

16 RT1 class Ib RT1-N1   -  1.42 0.041 

87 RT1 class Ib, locus O1 RT1-O1  + 1.22 0.040 

110 Sin3-associated polypeptide 18 Sap18  + 1.20 0.013 

86 SEC16 homolog B (S. cerevisiae) Sec16b  -  1.22 0.002 

73 sema domain Sema4c  -  1.22 0.003 

61 
serine (or cysteine) proteinase inhibitor, clade B, member 
1a Serpinb1a  -  1.24 0.001 

1 
serine (or cysteine) peptidase inhibitor, clade B, member 
1b Serpinb1b  -  4.08 0.002 

89 solute carrier family 7 ABREVIATED Slc7a7  -  1.21 0.003 

92 serine peptidase inhibitor, Kazal type 3 Spink3  -  1.21 0.045 

56 storkhead box 1 Stox1  -  1.26 0.014 
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50 taste receptor, type 2, member 38 Tas2r38  -  1.27 0.004 

105 tektin 5 Tekt5  -  1.21 0.001 

98 transmembrane protein 27 Tmem27  -  1.21 0.016 

57 transmembrane protease, serine 4 Tmprss4  -  1.25 0.002 

48 tripartite motif-containing 42 Trim42  -  1.27 0.000 

7 vomeronasal 1 receptor, D15 V1rd15   + 1.70 0.006 

103 vestigial like 2 (Drosophila) Vgll2  -  1.21 0.005 

100 vomeronasal 2 receptor, 51 Vom2r51  -  1.21 0.010 

41 xin actin-binding repeat containing 1 Xirp1  -  1.30 0.000 
 

 

Table 6.6 Genes identified by microarray analysis. 

129 genes with a p-value of < 0.05 and a fold change of  > 1.2 were identified. The + or – 

symbols indicate upregulation or downregulation in the dermorphin-saporin group. Genes 

are listed alphabetically, based on gene symbol. 

6.3.2 Bioinformatics analysis 

To identify biological functions of genes in this list which may be of interest, 

DAVID bioinformatics software was used. This is a freely available online tool 

(http://david.abcc.ncifcrf.gov), and it was used to perform functional 

annotation of the genes in the list based on the gene ontology (GO) 

database. This analysis indicated there are 35 GO terms enriched within the 

list, however many of these annotations are similar. Functional annotation 

clustering was then carried out, to identify groups of annotations with 

similar functions and the genes they contain. This resulted in the 

identification of 20 clusters. These clusters are illustrated in figure 6.1, and 

the genes contained in each cluster are shown in table 6.7.   

The enrichment score for each cluster was calculated as the log 

transformation of the geometric mean of the EASE scores for individual 

annotations within the cluster. Higher enrichment scores therefore 

correspond to greater significance. The enrichment scores for each cluster 

are also given in table 6.7 (values in bold). Interestingly, the most 

significantly enriched cluster corresponded to genes with ribosomal 

function. The annotations of this category refer to ribosomal structural 
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proteins, as well as genes involved in translation and those with a cytosolic 

location. This included several large ribosomal subunit components (e.g. 

Rpl32 and Rpl21). Also within this group was Ccnb2, which encodes the cell-

cycle mediator cyclin B2. This was one of the highest ranking fold changes 

identified with a 1.85 increase in the dermorphin-saporin group.  

The next most significant cluster contains genes with annotations for 

defence response, which includes a number of genes involved in immune 

system function. Among these was Nos2, which encodes the enzyme nitric 

oxide synthase 2 (inducible nitric oxide synthase), which is implicated in 

inflammatory responses (MacMicking et al., 1997). The next cluster contains 

genes associated with chemotaxis, which are also involved in immune 

system function and inflammatory responses. This cluster included the 

chemokines Cxcl9 and Cxcl10. All of these immune system and chemotaxis 

related genes were downregulated in the dermorphin-saporin group, 

suggesting that immune cell activation in the dorsal horn may be reduced in 

the dermorphin-saporin group. 

Surprisingly, no clusters directly related to neuronal activity were identified. 

However within the GPCR signalling cluster the 5-HT receptor 5-HT1D 

(Htr1d) and the nicotinic receptor β subunit (Chrnb3) were identified. Both 

were downregulated 1.2 fold in the dermorphin-saporin group. This cluster 

also contained a large number of olfactory receptors, as well as the 

chemokine receptor Cxcr3, which binds the chemotaxis ligands Cxcl9 and 

Cxcl10. 

These functional annotation clusters helped identify interesting biological 

roles for some of the genes identified in the array, with a particular role for 

ribosomal function and immune cell activity. 
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Figure 6.1 Functional annotation clustering analysis. 

20 functional annotation clusters were identified using the DAVID online bioinformatics 

tool. The horizontal bars indicate the number of genes that are upregulated (to the right) or 

downregulated (to the left) in each cluster. Joined bars indicate the up- and downregulated 

genes for each cluster. For clarity, alternate black and white bars are used between clusters. 

For details of the genes contained in each cluster see table 6.7. 
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Functional annotation clusters generated by DAVID analysis  

 Down Up 

1. Ribosome Cldn1 Ankra2 

2.88 Ftl Ccnb2 

 Gapdh Gtpbp4 

 Hist1h2bc Hist3h2a 

 Hmgb1 Rcor2 

 Hnrnpa3 Rpl12 

 Krt31 Rpl19 

 LOC499339 Rpl35a 

 Mphosph8 Rps2 

 Mrpl18 Rps23 

 Nos2 Tekt5 

 Rpl21  

 Rpl32  

 Rpl7a  

 Rpl9  

   

2. Defence response Cxcl10  

1.16 Defa  

 Defb40  

 Hist1h2bc  

 Mphosph8  

 Nos2  

   

3. Chemotaxis Cxcl10 Gtpbp4 

1.16 Cxcl9  

 Defa  

 Defb40  

 Hmgb1  

 Mcpt8  

 Mgat4a  

 Prl3d1  

 Pth  

 Ren  

 Spink3  

   

4. GPCR Chrnb3 ND6 

0.76 Cldn1 Nqo2 

 Cxcl10 Olr1733 

 Cxcl9 V1rd15 

 Cxcr3  

 Gpnmb  

 Htr1d  

 Mgat4a  

 Nkg7  

 Nos2  

 Olr1598  

 Olr1695  

 Olr1743  

 Olr326  
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 Olr446  

 Olr514  

 Olr707  

 Olr733  

 Olr780  

 Olr94  

 Pth  

 RT1-N1  

 Slc7a7  

 Tas2r38  

 Tmem27  

 Vom2r51  

   

5. Chromatin Hist1h2bc Hist3h2a 

0.64 Hmgb1 Rcor2 

 Mphosph8  

   

6. Cell migration Cxcl10 Gtpbp4 

0.62 Cxcl9 Hmgb1 

 Nos2 Xirp1 

   

   

7. Cell ion homeostasis Cldn1 Ccnb2 

0.55 Cxcr3  

 Ftl  

 Pth  

 Xirp1  

   

 Down Up 

8. RNA binding Ell3 Gtpbp4 

0.5  Hmgb1 

  Hnrnpa3 

  LOC499339 

  Rpl12 

  Rpl35a 

  Rpl9 

  Rps2 

   

9. Oxidation-reduction Cyp2b12 ND6 

0.43 Ftl Nqo2 

 Gapdh  

 Nos2  

   

10 Peptidase activity Mcpt8  

0.37 Ren  

 RGD1561777  

 Tmem27  

 Tmprss4  

   

   

11. Macromolecular biosythnthesis Chrnb3 Hist1h2bc 

0.29  Hist3h2a 

  Rps2 
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12. Regulation of protein 
modification 

Hmgb1 Gtpbp4 

0.24 Itln1  

 Spink3  

   

   

13.  Membrane fraction Chrnb3 Ankra2 

0.17 Cyp2b12 Ccnb2 

 Gapdh  

 Hmgb1  

 Rpl9  

   

   

   

   

   

   

   

14. Transcription Ell3  

0.17 Hmgb1  

 Itln1  

 Neurog1  

 Pth  

 Vgll2  

   

   

15. Cation binding Cyp2b12 ND6 

0.16 Ftl Nqo2 

 Gapdh  

 Mgat4a  

 Nos2  

 Rpl9  

 Spink3  

 Trim42  

   

   

16. Mitochondrial inner membrane Bphl Mrpl18 

0.13 Cox6a2 ND6 

 RGD1565438 RGD1560088 

 Rpl35a  

   

   

17. Negative regulation  Hmgb1 Gtpbp4 

of biosynthetic process Rcor2 

0.12  Spink3 

   

18. Response to hormone 
stimulation 

Cxcl10  

0.07 Cyp2b12  

 Hmgb1  

 Ren  
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19. Adenyl nucleotide binding Gapdh Hnrnpa3 

0.07 Gtpbp4 RGD1561706 

 LOC292449  

 LOC300308  

 LOC500392  

 Nos2  

 RGD1564899  

 Rpl9  

   

20. Phosphorylation LOC300308  

0.02 RGD1561706  

 RGD1565438  
 

 

 

Table 6.7  Functional annotation clustering using the DAVID bioinformatics tool. 

This analysis identified 20 clusters of genes with related annotations from the gene 

ontology (GO) database. Each cluster is listed with a sample annotation from that 

cluster (underlined). The genes in each cluster are divided into lists of upregulated 

(up) and downregulated (down) columns, and listed alphabetically by gene symbol. 

The full names of each gene can be found in table 6.6. The value highlighted in bold 

for each cluster is the enrichment score for that cluster. This is a measure of how 

significantly enriched the gene list is for that cluster of annotations, and is calculated 

as the geometric mean of the individual p value for each annotation in that cluster, 

and expressed on a log scale. Therefore the higher the enrichment value the greater 

the significance for that cluster. 
  

6.3.3 Validation of selected genes by RT-qPCR 

Following microarray analysis, it is necessary to validate gene expression 

changes by RT-qPCR. In choosing which genes to validate, a number of 

criteria are taken into account. A first consideration was the magnitude of 

fold changes observed for each gene, as genes with high fold changes may 

be of particular biological relevance. Another consideration is to identify 

genes on the list with known roles in nociceptive signalling within the dorsal 

horn, and those involved in other aspects of neuronal plasticity such as LTP. 

Genes related to molecular mechanisms such as the regulation of 

transcription and translation are also of interest, as these mechanisms are 

known to contribute to central sensitisation and behavioural hypersensitivity 

within the dorsal horn. Finally genes related to immune cell function may be 

of interest in pain studies, as immune cell related genes have been 
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previously identified in the dorsal horn in a number of pain models (Costigan 

et al., 2009a; Yukhananov and Kissin, 2008), and immune cells are known to 

contribute to central sensitisation and behavioural hypersensitivity in a 

number of different pain states (Calvo et al., 2012; Clark et al., 2012; Sagar 

et al., 2011). Based on these criteria a number of genes were selected for 

validation by RT-qPCR. 

Ccnb2, encoding the protein Cyclin B2, was one of the highest fold gene 

changes on the list with a 1.85 fold increase in the dermorphin-saporin 

treated animals and ranking number 4 on the list. It was also among the 

minority of genes that were upregulated in the dermorphin-saporin group. 

This increase was confirmed by RT-qPCR, with a significant increase in 

expression found in the dermorphin-saporin + CFA treated group compared 

with saline + CFA controls (p = 0.0041, figure 6.2). 

The next consideration was to investigate genes that were already known to 

contribute to central sensitisation within the dorsal horn. Relatively few 

genes fell into this category, however Nos2, encoding the enzyme nitric 

oxide synthase 2 (inducible nitric oxide synthase), is one example. Nos2 has 

been shown to play a role in central sensitisation in both inflammatory and 

neuropathic pain states (Gühring et al., 2000; Infante et al., 2007; Kuboyama 

et al., 2011; Tang et al., 2007). Nos2 was identified within the ‘response to 

infection’ cluster, which was the second most enriched cluster of genes and 

was found to be downregulated in the dermorphin-saporin group. RT-qPCR 

confirmed a significant decrease in Nos2 expression in the dermorphin-

saporin group (p = 0.022, figure 6.2). 

The most statistically significant cluster (with the highest enrichment score) 

contained genes with ribosomal functions. Ribosomal proteins are of 

interest because translation is important in many forms of neuronal 

plasticity, including pain states (Costa-Mattioli et al., 2009; Géranton et al., 

2009; Jiménez-Díaz et al., 2008). The ribosomal protein Rpl32 had a fold 
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decrease of 1.68 on the microarray. The decrease in Rpl32 was confirmed as 

significant by RT-qPCR (p = 0.0399, figure 6.2). 

Another consideration was to investigate genes with roles in mediating 

immune system processes, as immune cells play an important role in central 

sensitisation in the dorsal horn (Clark et al., 2012; Costigan et al., 2009a; 

Raghavendra et al., 2004; Sagar et al., 2011). Interestingly, immune cell 

responses did feature prominently within the list of genes identified, as 

‘response to infection’ and ‘chemotaxis’ were two of the most enriched 

clusters within the gene list. Cxcl9 and Cxcl10 were among the genes in the 

chemotaxis cluster. These are structurally similar chemokines from the same 

family, and are ligands for the G-protein coupled chemokine receptor Cxcr3 

(Müller et al., 2010) which was also identified on the microarray. Cxcl9, 

Cxcl10 and Cxcr3 were all downregulated in the dermorphin-saporin group 

in the microarray analysis, and RT-qPCR confirmed a significant decrease in 

all three genes (Cxcl10 p = 0.0132, Cxcl9 p = 0.0329, Cxcr3 p = 0.0379, figure 

6.2). This strongly suggested that this chemokine-receptor family is involved 

in mediating descending facilitation via the MOR+ cell pathway. As this 

chemokine family has not previously been described in the dorsal horn in 

pain states, it was decided to characterise the expression of CXCL10 and 

CXCR3 protein in the dorsal horn following CFA treatment, and dermorphin-

saporin treatment. 
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Figure 6.2  RT-qPCR validation of selected genes. 

 A number of genes were selected for validation by RT-qPCR. 2ΔCt values were obtained for 

each group, using actin as the housekeeping gene. Data is presented as % expression of the 

dermorphin-saporin (DS) + CFA group over the saline + CFA control group, mean ± SEM. n = 

4 – 6 per group, * p < 0.05 independent samples t-test. 

6.3.4 Characterising CXCL10 protein expression in the dorsal horn  

Western blot analysis of CXCL10 was carried out on tissue from dermorphin-

saporin + CFA and saline injected + CFA groups (experiment 2) and in 

‘normal’ CFA and sham animals (without RVM injection, experiment 3). 

Bands were detected at the correct molecular weight (at approximately 

10kDA), however comparison between groups indicated no significant 

differences when band intensity was normalised to the housekeeping 

protein calnexin, in either experiment 2 (dermorphin-saporin v saline, p = 

0.5753, independent samples t-test), or experiment 3 (CFA v sham, p = 0.96) 

(figure 6.3). Nonetheless the ability of western blot analysis to detect 

considerable levels of CXCL10 protein in all samples, including sham 

controls, suggests that this protein may be expressed constitutively in the 

dorsal horn. 
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Figure 6.3 No effect of CFA or dermorphin-saporin on CXCL10 protein levels. 

Two sets of tissue were used for western blot analysis. ‘Normal’ CFA corresponds to 

experiment 3, and dermorphin-saporin + CFA corresponds to experiment 2 (see table 6.1). 

Lanes are loaded alternately with CFA followed by Sham for the ‘normal CFA’ experiment 

and dermorphin-saporin (DS) followed by saline (sal) for the dermorphin-saporin + CFA 

experiment. No differences in CXCL10 expression were identified in either experiment. p > 

0.05, independent samples t-test, n = 6 all groups, data is presented as mean ± SEM. 

 

To identify the cellular localisation of CXCL10 protein within the dorsal horn, 

immunohistochemistry was carried out in animals at 7d following CFA 

injection or sham procedure. As with the western blot analysis, there did not 

appear to be any difference in CXCL10 expression between CFA and sham 

animals, with relatively high levels of staining in both groups. For this reason 

images from the sham treated group are not shown here. Confocal imaging 

was carried out with various cellular markers to identify the cellular 

localisation of CXCL10.  Analysis of single plane images indicated there was 

no colabelling of CXCL10 in IBA1 positive cells (microglia) or GFAP positive 

cells (astrocytes). Strikingly, most CXCXL10 labelling appeared to be within a 

subset of neurons (NeuN), both in the dorsal and ventral horns. This 

suggested that within the dorsal horn CXCL10 is predominantly neuronal 

(figure 6.4). 
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Figure 6.4 Neuronal localisation of CXCL10. 

Images shown are single plane confocal images, from 7d CFA treated animals. Green 

indicates CXCL10 and red indicates the double labelled antigen, as indicated. The top panel 

is a low power image of CXCL10 and NeuN in the dorsal horn, and the panel below is a high 

power image from the same region. The full arrows indicate examples of double labelled 

CXCL10 and NeuN cells, while the dashed arrow is an example of a NeuN positive, CXCL10 
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negative cell. No double labelling was observed with IBA1 (a marker of microglia) or GFAP (a 

maker of astrocytes). Scale bars indicate 100µm for top panel and 25µm in all other images.  

6.3.5 Characterising CXCR3 protein expression in the dorsal horn  

Western blot analysis of CXCR3 was also carried out on tissue from 

dermorphin-saporin + CFA and saline injected + CFA groups (experiment 2) 

and in ‘normal’ CFA and sham animals (without RVM injection, experiment 

3). Bands were detected at the correct molecular weight (at approximately 

38kDA), however comparison between groups indicated no differences 

when band intensity was normalised to the housekeeping protein calnexin, 

either in experiment 2 (dermorphin-saporin v saline, p = 0.98) or experiment 

3 (CFA v sham, p = 0.7188) (figure 6.5). 

 

Figure 6.5 No effect of CFA or dermorphin-saporin on CXCR3 protein levels. 

Two sets of tissue were used for western blot analysis. ‘Normal’ CFA corresponds to 

experiment 3, and dermorphin-saporin + CFA corresponds to experiment 2 (see table 6.1). 

Lanes are loaded alternately with CFA followed by Sham for the ‘normal CFA’ experiment 

and dermorphin-saporin (DS) followed by saline (sal) for the dermorphin-saporin + CFA 

experiment. No differences in CXCR3 expression were identified in either experiment. p > 

0.05, independent samples t-test, n = 6 all groups, data is presented as mean ± SEM. 
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To characterise the cellular localisation of CXCR3 protein within the dorsal 

horn, immunohistochemistry was carried out in animals at 7d following CFA 

injection or sham procedure. As with the western blot analysis, there did not 

appear to be any difference in CXCR3 expression between CFA and sham 

groups. For this reason images from the sham treated group are not shown 

here. In contrast to CXCL10 labelling, CXCR3 had a discrete, punctate pattern 

of staining within the superficial laminae of the dorsal horn. The punctate 

pattern of staining suggested that CXCR3 could be expressed on afferent 

terminals. Double labelling with CGRP, a marker of peptidergic primary 

afferents, indicated that CXCR3 is expressed in CGRP+ terminals in some 

cases (figure 6.6). Analysis of single plane images indicated there was no 

colabelling of CXCR3 in IBA1 positive cells (microglia) or GFAP positive cells 

(astrocytes) (figure 6.6).  
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Figure 6.6 Double labelling of CXCR3 and CGRP terminals.   

Images shown are single plane confocal images, from 7d CFA treated animals. Green 

indicates CXCR3 staining and red indicates the double labelled antigen. The top panel 

indicates a low power image of CXCR3 and CGRP labelling in the superficial dorsal horn, and 

directly below is a higher power image from the same area. Arrows indicate examples of 

CXCR3 double labelling with CGRP. No double labelling was observed with IBA1 (a marker of 

microglia) or GFAP (a maker of astrocytes). Scale bars indicate 100µm for top panel and 

25µm in all other images. 
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6.4  Discussion 

Previous work by others (Bee and Dickenson, 2008; Burgess et al., 2002; 

Porreca et al., 2001) has demonstrated that the MOR+ cells of the RVM 

contribute to behavioural sensitivity in neuropathic pain models. The 

previous chapter in this thesis has demonstrated that these cells also play a 

role in behavioural hypersensitivity following joint inflammation. Despite a 

number of studies on the role of these cells in facilitation of pain behaviour, 

relatively little is known regarding the spinal mechanisms underlying this 

facilitation. To investigate molecular mechanisms involved in descending 

facilitation by this pathway, we carried out microarray analysis of the dorsal 

horn following MOR+ cell depletion and CFA injection, compared with non-

lesioned controls.  

A number of cellular mechanisms could potentially contribute to descending 

facilitation of dorsal horn excitability. Changes in receptor availability, 

presynaptic release of neurotransmitters, post-synaptic changes in 

intracellular signalling pathways, transcriptional regulation and immune cell 

activation are all key features of central sensitisation (Latremoliere and 

Woolf, 2009) and could be subject to descending facilitation. However, 

surprisingly few genes with neuronal annotations were identified in our 

analysis, while many genes associated with immune cell function were 

identified. This fits with the prominent role of immune cells in the dorsal 

horn in mediating central sensitisation and behavioural hypersensitivity, and 

immune related genes are a feature of many other microarray studies of the 

dorsal horn (Costigan et al., 2009a; Griffin et al., 2007; Yukhananov and 

Kissin, 2008).  

Of particular interest was the identification of a number of genes from the 

CXC chemokine-receptor family, which were found to be downregulated in 

the dermorphin-saporin group. Chemokines have emerged as important 

mediators of immune cell activation and central sensitisation in the dorsal 
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horn (Old and Malcangio, 2012). The identification here of the CXC 

chemokine family, previously uncharacterised in the dorsal horn, is a 

promising subject for future work on the descending facilitation of pain. 

6.4.1 Dorsal horn genes regulated by descending facilitation 

6.4.1.1  Microarray analysis 

Microarray technology is widely used in many areas of biology as a high 

throughput method for identifying many differentially regulated genes in 

parallel. However one of the main limitations of this type of study is the 

generation of false positives and false negatives from the data set due to the 

high number of individual genes studied. To minimise the problem of false 

positives, fold change thresholds are often set at a high value, for example 

fold changes > 2. Used in conjunction with a p value of < 0.05, such strict 

criteria will reduce the likelihood of false positives. However the problem of 

false negatives remains, as many genes that are significantly regulated will 

not be identified as they fail to meet the conservative fold change 

requirement. In studies of the dorsal horn quadrant this can be a particular 

problem. Lamina I, II, and V are the key areas involved in receiving 

nociceptive input and projecting to the brain (Todd, 2002) and therefore 

inclusion of lamina III and IV as well as the surrounding white matter is likely 

to dilute the magnitude of gene expression changes within these laminae of 

interest. For this reason the use of lower fold changes as a cut-off may be 

more appropriate. 

 A recent study of the spinal cord in inflammatory pain has used a p value of 

< 0.01 as the sole criterion for identifying differentially regulated genes with 

no reference to fold changes (Yukhananov and Kissin, 2008). These authors 

were able to validate a number of targets by RT-qPCR suggesting that a fold 

change cut-off is not absolutely required in such studies. Our own group has 

also published data using a combination of statistical significance and fold 

change > 1.3 to identify gene changes in the dorsal horn associated with 
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ankle joint inflammation (Géranton et al., 2007a). In the Géranton et al. 

study comparison was made between naive and CFA treated animals, with 

an obvious difference in behaviour between these groups. Such a profound 

difference in the pain behaviour would suggest that a number of large 

increases in gene expression could occur within the dorsal horn. In the 

present study, microarray analysis was carried out on groups with and 

without RVM lesion by dermorphin-saporin, and both with CFA injection. As 

the lesioned group demonstrate a subtle attenuation of behavioural 

sensitivity it would be expected that the fold differences in gene expression 

changes would also be relatively low. For this reason it was decided that the 

fold change should be reduced to 1.2. This provided a balance between 

reducing false positives, by including a fold change in the interpretation of 

the results, while reducing the likelihood of false negatives by setting the 

fold change criterion at a relatively low level.  

Using these criteria, 129 Affymetrix gene IDs were identified as differentially 

regulated in the dermorphin-saporin treated group. This suggests that 

descending facilitation by RVM MOR+ cells contributes to changes in gene 

expression within the dorsal horn following ankle joint inflammation. The 

majority of these were downregulated in the dermorphin-saporin group 

suggesting that in the normal pain state, these genes are positively 

regulated by descending facilitation. Functional annotation analysis was 

carried out on these genes which revealed that two of the major categories 

of genes regulated by the MOR+ cell descending pathway were those 

associated with ribosomal function and immune cell processes. 

6.4.1.2  Ribosomal proteins regulated by descending facilitation 

Differences in the expression of ribosomal related genes in this study 

suggests that descending facilitation from the RVM has a profound effect on 

the transcription of ribosomal RNA (rRNA) within the dorsal horn. Decreased 

ribosome biogenesis is a feature of some neurodegenerative responses 
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(Rieker et al., 2011) however it has also been found that rRNA transcription 

is subject to regulation by the mammalian target of rapamycin (mTOR) 

signalling pathway (Iadevaia et al., 2012). It is known that translational 

regulation is a key component of neuronal plasticity (Costa-Mattioli et al., 

2009) and in particular the mTOR pathway is activated in the dorsal horn 

during persistent inflammation and contributes to behavioural 

hypersensitivity (Géranton et al., 2009; Norsted Gregory et al., 2010; Obara 

et al., 2011). It is possible that descending facilitation contributes to this 

activation which is reflected in changes in rRNA levels. Downregulation of 

the gene Rpl32 was confirmed by RT-qPCR and other genes in this category 

may warrant further investigation.  

Although RT-qPCR is widely used in the study of gene expression, and is an 

important step following microarray analysis for the validation of selected 

genes, there are some intrinsic limitations associated with this technique. 

One such limitation arises in the choice of a reference or housekeeping 

gene, required for the normalisation of expression data (Coulson et al., 

2008). The ideal reference gene is one that is expressed at a stable level in 

the tissue of interest under all experimental conditions. However it has been 

reported that many common reference genes, such as glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) are themselves differentially regulated 

under certain experimental conditions (Winer et al., 1999). Indeed the 

microarray data obtained in the present experiment indicated that Gapdh is 

downregulated in the dorsal horn group. Actin was used as the sole 

reference gene in the RT-qPCR validation experiments described in this 

chapter. Actin has been used widely as the single reference gene for many 

published studies of the dorsal horn of the rat (Fu et al., 2007; Géranton et 

al., 2007; Ren et al., 2005; Tochiki et al., 2012). However it has been 

proposed that use of more than one reference gene within an experiment 

can produce more reliable data (Huggett et al., 2005). Therefore in further 

studies it may beneficial to include additional appropriate housekeeping 
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genes, such as hypoxanthine guanine phosphoribosyl transferase (HGPRT) in 

the analysis of the RT-qPCR data (Tochiki et al., 2012). This would reduce the 

possibility of generating misleading data due to fluctuations in expression 

levels of actin within the dorsal horn. 

6.4.1.3  Immune system related genes regulated by descending 

facilitation 

It is now widely accepted that immune cells such as microglia, astrocytes 

and infiltrating T cells play a crucial role in a number of chronic pain states 

following nerve injury (Costigan et al., 2009a), cutaneous inflammation 

(Raghavendra et al., 2004), and  joint pain (Clark et al., 2012; Sagar et al., 

2011). Activation of dorsal horn immune cells is generally thought to be 

driven by nociceptive input from the periphery, particularly during 

neuropathic injury (Calvo et al., 2012; Meller et al., 1994). Recently however 

it has been suggested that descending facilitation could contribute to 

immune cell activation within the dorsal horn. It has been shown that 

activation of the spinal 5-HT₃ receptor leads to the release of the chemokine 

CX3CL1 (fractalkine) from primary afferent terminals and subsequent 

microglial and astrocytic activation leading to enhanced pain responses (Gu 

et al., 2011). This suggests that descending 5-HT is involved in the activation 

of spinal immune cells in pain states, and may be one way in which 

descending controls result in increased pain responses.  

In line with this hypothesis our study identified of a number of genes with 

functions within the immune system. Indeed the gene with the highest fold 

change was the serine peptidase inhibitor Serpinb1b, which was found to be 

downregulated 4-fold in the dermorphin-saporin treated group. A closely 

related gene Serpinb1a was also found to be significantly downregulated on 

the array. Serpin proteins are expressed in neutrophils and are required for 

the modulation of neutrophil serine protease activity and neutrophil survival 

(Benarafa et al., 2007). Neutrophil infiltration of the spinal cord (Mitchell et 
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al., 2008) and prefrontal cortex (Poh et al., 2012) has been shown to occur 

during peripheral inflammation and may contribute to increased pain 

processing in these regions. Downregulation of Serpinb1a and Serpinb1b in 

our study may therefore reflect a decrease in neutrophil activity within the 

spinal cord. This raises the interesting possibility that descending facilitation 

could contribute to immune cell infiltration and activation within the dorsal 

horn.  

The gene Nos2, which encodes the enzyme inducible nitric oxide synthase 

(iNOS), was also found to be downregulated in the dermorphin-saporin 

treated group, and this decrease was confirmed by RT-qPCR. Nos2 

expression is induced in peripheral immune cells during inflammation, and 

has also been shown to be upregulated in microglia and astrocytes (Amitai, 

2010). Nitric oxide (NO) itself has been implicated in central sensitisation in 

various pain states (Coderre and Yashpal, 1994; Gühring et al., 2000; 

Malmberg and Yaksh, 1993; Meller et al., 1994a; Moore et al., 1991; Wu et 

al., 2001). Although the focus has largely been on neuronal NOS as the 

enzyme responsible for spinal production of NO, a number of reports have 

implicated Nos2 gene (and iNOS protein) in inflammatory and neuropathic 

pain (Gühring et al., 2000; Infante et al., 2007; Kuboyama et al., 2011; Tang 

et al., 2007). Bilateral induction of Nos2 gene expression in the dorsal horn 

has been shown to occur following ankle injection of CFA (Infante et al., 

2007), and our present data suggests that Nos2 gene expression may be 

modulated, at least in part, by descending pathways. Interestingly 

upregulation of Nos2 occurs in the spinal cord in a model of stress induced 

hyperalgesia, and CCK signalling within the RVM is required for this process 

(Rivat et al., 2010). Our finding supports this work and suggests that Nos2 

may be an important mediator of descending facilitation within the spinal 

cord. 



Chapter 6 

192 

 

6.4.2 Regulation of CXC chemokines by descending facilitation 

Chemokines are small molecular weight proteins which traditionally have 

been shown to regulate leukocyte migration and activation and therefore 

act as a key component of the immune response (Fernandez and Lolis, 

2002).  There are four families of chemokine, based on the structural 

arrangements of cysteine residues in the N-terminus (see figure 6.7). 

Chemokines are involved in the migration of peripheral immune cells to the 

CNS during neuro-inflammatory disorders such as multiple sclerosis or viral 

infection (Ransohoff et al., 2007). In addition, chemokines and receptors 

have been found to be expressed on both neurons and glial cells within the 

normal, healthy CNS and may therefore play an intrinsic role in CNS function 

(Adler et al., 2005). Chemokines within the dorsal horn have been shown to 

play a role in a number of pain models. One well studied example is the 

chemokine CX3CL1 (fractalkine) which is released by neurons within the 

dorsal horn, and activates its receptor CX3CR1 on microglia, leading to 

enhanced release of pronociceptive mediators such as the cytokines IL-1β 

and IL-6, and nitric oxide (NO) (Old and Malcangio, 2012). CX3CL1 in the 

dorsal horn has been implicated in both neuropathic and inflammatory pain 

states (Clark et al., 2012). CCL2, a member of the CC family of chemokines, 

has also been implicated in neuropathic pain states (Zhang et al., 2007). In 

both cases, it appears that the chemokine is released by primary afferents 

and activates microglia or other cell types expressing the target receptor 

within the dorsal horn. 

 

Figure 6.7 Classification of chemokine families. 

Classification of chemokines into four families is based on the structural organisation of the 

N-terminus cysteine residues. To date, CCL2 and fractalkine are the most widely studied in 

the dorsal horn in pain states. Adapted from Old and Malcangio, 2011. 
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Given the established role of chemokines in a number of models of pain, one 

of the interesting findings of the functional annotation analysis was the 

enrichment of terms associated with chemotaxis. Within this cluster two 

members of the same family of chemokines were identified, Cxcl9 and 

Cxcl10. These are members of the interferon gamma (IFN-γ) inducible subset 

of CXC chemokines (figure 6.7). A number of previous studies have 

suggested a role for the cytokine IFN-y within the dorsal horn in chronic pain 

states. IFN-y receptor knockout mice show reduced mechanical 

hypersensitivity in a neuropathic pain model (Robertson et al., 1997).  

Application of IFN-y to the spinal cord increases nociceptive reflexes (Xu et 

al., 1994b) and the IFN-y receptor has been shown to be expressed at 

synapses in the dorsal horn (Vikman et al., 1998). Recently it has been 

shown that IFN-y  application to the spinal cord leads to reduced GABAergic 

inhibition which may contribute to increased nociception (Vikman et al., 

2007). As targets of IFN-y signalling, Cxcl9 and Cxcl10 may therefore be 

involved in nociception in the dorsal horn. Notably the shared receptor for 

these chemokines, Cxcr3, was also identified in the microarray analysis. RT-

qPCR analysis confirmed that Cxcl9, Cxcl10 and Cxcr3 are all downregulated 

in the dermorphin-saporin treated group, suggesting that this chemokine-

receptor signalling pathway may contribute to descending facilitation of the 

pain state.  

As mentioned above, a recent study has identified a role for descending 5-

HT in the release of CX3CL1 (fractalkine) from primary afferents, leading to 

the activation of microglia and astrocytes within the dorsal horn, which 

leads to behavioural hypersensitivity (Gu et al., 2011) . This work indicated 

that descending facilitation by 5-HT is mediated, at least in part, by primary 

afferent release of pro-inflammatory chemokines.  The findings presented in 

this chapter suggest that MOR+ cell mediated descending facilitation may 

act via a different subset of chemokines within the dorsal horn (figure 6.8). It 
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should be noted however that some of the data in the publication by Gu et 

al., 2011 has since been retracted, and therefore needs to be repeated. 

Western blot analysis indicated that both CXCL10 and CXCR3 are expressed 

in the dorsal horn, however no significant increase was found in protein 

levels of either the receptor or the ligand at 7d following ankle injection of 

CFA. In addition, no change in protein levels was identified in the 

dermorphin-saporin and saline treated animals. This suggests that although 

gene expression is decreased in the dorsal horn in the dermorphin-saporin 

group, this is not reflected in overall protein levels. This may be due to a 

difference in time course of the changes in mRNA levels and changes in 

expression of the protein itself. Both CXCL10 and CXCR3 were expressed 

within the dorsal horn in the sham treated animals, suggesting that this 

chemokine-receptor pathway may play a role in normal transmission within 

the spinal cord. For this reason it was of interest to determine the cellular 

localisation of both the receptor and ligand within the cord using 

immunohistochemistry. 

Surprisingly, no evidence was found for microglial or astrocytic expression of 

either CXCR3 or CXCL10. CXCL10 was found to be localised to a subset of 

neurons throughout the spinal cord, as identified by NeuN double labelling. 

Further work to determine the proportion of NeuN cells expressing CXCL10 

will be carried out, as well as double labelling studies to identify specific 

neuronal subpopulations that express CXCL10. Studies have reported 

upregulation of Cxcl10 within the DRG during inflammation and herpes 

zoster infection (Steain et al., 2011; Strong et al., 2012) and it is possible that 

Cxcl10 is also upregulated in the DRG following ankle injection of CFA. 

However we found no evidence for CXCL10 expression on afferent terminals 

within the dorsal horn, suggesting that if Cxcl10 is upregulated within DRG 

neurons in our model, the protein product is not transported to the primary 

afferent terminals. The immunohistochemistry data presented here suggests 
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that CXCL10 protein expression is restricted to a subpopulation of intrinsic 

dorsal horn neurons. 

As with western blot analysis, there was no apparent upregulation of CXCL10 

in the CFA treated animals, suggesting that the CXCL10 is constitutively 

expressed in these neurons. Although most studies of CXCL10 in the CNS 

have focused on its expression in immune cells and role in 

neuroinflammation (Müller et al., 2010), one study has demonstrated that 

CXCL10 is expressed constitutively in neurons in culture, and may be 

released tonically at low levels (Vinet et al., 2010). Furthermore exposure of 

hippocampal neurons in vitro to exogenous CXCL10 causes increased 

excitability (Cho et al., 2009). The identification of CXCL10 protein within 

dorsal horn neurons suggests that this ligand may be released by neurons 

within the dorsal horn and could contribute to synaptic activity in other 

neighbouring neurons. Although to date, chemokines within the CNS have 

been investigated predominantly as modulators of immune cells, in future it 

may be of interest to investigate their roles in neuronal transmission. Indeed 

chemokine-receptor interactions have previously been proposed as an 

additional neurotransmission system in the CNS, as a variety of chemokines 

and their corresponding G-protein coupled receptors have been identified in 

the CNS of healthy animals (Adler et al., 2005). 

In support of a direct role for CXCL10 in neuronal modulation, no evidence 

of expression of the receptor CXCR3 was found in microglia and astrocytes 

of the dorsal horn using immunohistochemistry. In contrast to the CXCL10 

ligand, the distribution of the receptor was restricted to the superficial 

laminae, and had a more punctate appearance. This suggested that CXCR3 

could be located either presynaptically or postsynaptically. As explained, 

activation of the CXCR3 receptor by CXCL10 in vitro causes increased 

neuronal excitability, suggesting that CXCR3 activation within the dorsal 

horn may similarly contribute to neuronal excitability.  Some double 
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labelling with CGRP was observed suggesting that CXCR3 expression occurs 

on a subset of peptidergic terminals in the dorsal horn. This suggests that 

CXCL10 (and other CXC ligands) could act directly on these terminals.  

Not all CGRP+ terminals express the CXCR3 receptor, and work is currently 

underway within the group to quantify the proportion of double labelled 

CXCR3+ CGRP terminals, and within the cell bodies of the DRG. As many joint 

nociceptors express CGRP (Ivanavicius et al., 2004; Jimenez-Andrade et al., 

2010; Nakajima et al., 2008) it would be expected that at least some of these 

double labelled afferent terminals originate in the joint. Future studies using 

anterograde tracing from the joint and skin could be used to determine the 

proportion of CGRP+/CXCR3+ terminals arising from the joint. 

Interestingly descending facilitation via the MOR+ cell pathway has been 

implicated in the release of CGRP from primary afferent terminals (Gardell et 

al., 2003). Therefore one mechanism by which dermorphin-saporin exerts its 

effects on pain behaviour may be via regulation of the CXCR3 receptor 

within peptidergic primary afferent terminals (figure 6.8). Recently it has 

been demonstrated that LTP at primary afferent-dorsal horn synapses is 

driven in part by presynaptic mechanisms of neurotransmitter release (Luo 

et al., 2012). The ability of descending pathways to interact with primary 

afferent terminals may therefore contribute to presynaptic mechanisms of 

LTP within the dorsal horn.  

 

Figure 6.8 Contribution of descending facilitation to immune cell and chemokine 

activation in the dorsal horn.  

Activation of 5-HT₃ receptors on primary afferent terminals in the dorsal horn has been 

shown to cause release of the chemokine fractalkine (CX3CL1) from primary afferent 

terminals. This leads to activation of microglia, release of Il-18, activation of astrocytes, and 

release of IL-1β, which contributes to central sensitisation in cutaneous inflammation (Gu et 

al., 2011). The data provided in this thesis suggests that the MOR+ cell pathway may also 

result in the activation of a chemokine-receptor signalling mechanism. The CXCR3-receptor 
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localises to primary afferent terminals expressing CGRP, and CXCL10 ligand localises to 

neuronal cell bodies in the dorsal horn. These may be regulated by descending facilitation 

via the MOR+ cell pathway, and contribute to behavioural hypersensitivity. (NB. Some of 

the data in the publication by Gu et al., 2011 has since been retracted, and therefore needs 

to be repeated). 

Chemokine receptors are G-protein coupled, signalling to Gi proteins and 

leading to activation of a variety of intracellular signalling pathways (Sallusto 

and Baggiolini, 2008). Therefore the expression of CXCR3 on primary 

afferent terminals suggests that activation could modulate the excitability of 

these fibres. In vitro studies have demonstrated that activation of the CXCR3 

receptor by CXCL10 results in ERK phosphorylation and increased neuronal 

excitability in hippocampal cultures (Bajova et al., 2008; Xia et al., 2000). 

Notably, exposure of DRG neurons in culture to CXCL10 can induce calcium 

transients suggesting that DRGs express the CXCR3 receptor and respond to 

CXCL10 binding (Oh et al., 2001). Neuronal expression of the CXCR3 receptor 

and excitation of neurons by CXCL10 has not been demonstrated previously 

in vivo, however it is an interesting possibility that CXCL10 - CXCR3 signalling 

could contribute to neuronal excitability in the nociceptive system. 

The expression of CXCR3 on primary afferent terminals is somewhat 

puzzling, given that our interest in this receptor arose from transcriptional 

changes in the dorsal horn, and these would largely reflects changes in 

transcription at the cell body. However it is known that local translation 

occurs in primary afferent terminals, presumably of mRNA transcripts that 

are present at those terminals (Géranton et al., 2009; Jiménez-Díaz et al., 

2008). Therefore it is possible that mRNA transcripts localised to primary 

afferent terminals contribute to the changes identified by microarray and 

RT-qPCR analysis of the dorsal horn.  

Upregulation of Cxcl0 has been shown previously within the dorsal horn in a 

model of post-herpetic allodynia (Takasaki et al., 2012), and upregulation of 

Cxcl10 has also been shown occur within the DRG during inflammation 
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(Strong et al., 2012) and following herpes zoster infection (Steain et al., 

2011). Our work is the first to identify changes in both Cxcl10 and Cxcr3 

genes simultaneously, and to attempt to characterise the cellular 

localisation of their protein products. Importantly changes in gene 

expression of Cxcr3 and Cxcl10 were only unmasked following depletion of 

the descending facilitatory system, suggesting an important role for the 

MOR+ pathway in the regulation of these molecules. Further work is needed 

to fully characterise this chemokine-receptor system in the dorsal horn but it 

is a promising target for further work on descending facilitation in pain. 

6.4.3 Conclusion 

Microarray analysis of the dorsal horn in animals with CFA injection and 

prior RVM injection of either dermorphin-saporin or saline led to the 

identification of genes regulated by descending facilitation. Many of these 

are immune related, and downregulated in the lesioned group. This fits with 

existing knowledge of the importance of immune cells to chronic pain states 

and the potential role of descending pathways in the activation of these 

processes.  
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7. General Discussion 

Joint pain is a significant clinical problem, and to date most research has 

focused on the peripheral causes of joint injury as the source of pain, rather 

than addressing plasticity in the nociceptive system. Treatment approaches 

are also based largely on modification of peripheral pathology, such as joint 

replacement in osteoarthritis, or the use of immunosuppressant drugs in 

rheumatoid arthritis.   

Clinically it has been demonstrated that patients with OA and RA have 

increased pain sensitivity at sites beyond the affected joints (Graven-Nielsen 

et al., 2012; Morris et al., 1997). This suggests that joint pain is caused in 

part by changes within the nociceptive system, in addition to the peripheral 

joint pathology. In some cases, pain may persist even after interventions to 

treat the peripheral cause of pain, such as joint replacement surgery (Wylde 

et al., 2011). Understanding the changes that occur in the nociceptive 

system during joint pain is important for the development of better 

pharmacological treatments (Kidd et al., 2007). 

Studies have begun to address the role of  dorsal horn sensitisation in animal 

models of joint pain (Schaible et al., 2009), and descending facilitation via 

the RVM is known to contribute to spinal excitability in other models, 

including neuropathic pain and cutaneous inflammation (Ossipov et al., 

2010). To date however relatively few studies have addressed the role of the 

descending system in joint pain, and those that have investigated the role of 

descending inhibition, and only in the acute phase of injury (Cervero et al., 

1991; Danziger et al., 1999; Schaible et al., 1991). The aim of this thesis was 

to investigate the role of descending facilitation in a model of joint 

inflammation. Using lesion techniques combined with behavioural studies 

and molecular analysis of the dorsal horn, I have demonstrated that 

descending facilitation contributes to mechanical hypersensitivity of the 
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hindpaw and transcriptional changes within the dorsal horn following joint 

inflammation. 

7.1  Summary of findings 

7.1.1 Changes in the RVM following joint inflammation 

Ankle injection of CFA in the rat is a widely used model of inflammatory joint 

pain (Butler et al., 1992). Recent studies have demonstrated that the dorsal 

horn of the spinal cord is involved in the development of behavioural 

hypersensitivity in this model (Géranton et al., 2007a; Shan et al., 2007; 

Vikman et al., 2003; Yao et al., 2011). To date however the role of the RVM 

has not been investigated. Chapter 3 of this thesis investigated if activation 

of the RVM occurs following ankle joint inflammation, which would suggest 

recruitment of descending controls. Activation of ERK by phosphorylation is 

considered a hallmark of neuronal activity, and pERK immunohistochemistry 

has been used previously to demonstrate activation of the RVM following 

cutaneous inflammation (Imbe et al., 2005) and in a model of neuropathic 

pain (Géranton et al., 2010). As in these other pain models, ankle joint 

inflammation led to an increase in pERK positive neurons within the RVM. 

This effect was transient, as pERK was only significantly increased at 6h post 

CFA injection and not at later time points. Furthermore it was shown that 

this increase in pERK occurs largely within the 5-HT expressing population of 

RVM neurons, supporting a role these neurons in the modulation of pain in 

this model. Importantly, mechanical hypersensitivity of the hindpaw remains 

elevated for many days after this time point, suggesting that the activation 

of the ERK signalling pathway in the RVM contributes to the induction, but 

not the maintenance, of the pain state. ERK activation at this early time 

point may indicate the onset of descending modulation via the RVM.   

Another approach used was to investigate if GABAergic signalling in the RVM 

is altered following joint inflammation. Many of the synapses formed onto 
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RVM neurons are GABAergic (Cho and Basbaum, 1991) suggesting an 

important role for GABA in modulating the output of the RVM. Recently it 

has been suggested that decreased GABAergic inhibition in the region 

contributes to increased excitability of the RVM-dorsal horn projection 

neurons in a model of cutaneous inflammation (Zhang et al., 2011). To 

investigate if this occurs in the ankle joint model, an antibody specific to C-

terminus of VGAT, which is only accessible within actively recycling 

synapses, was injected into the RVM at 3d post CFA injection. This method 

labels active GABAergic synapses in vivo and quantification of this labelling 

indicated a decrease in GABAergic transmission occurs at 3d post CFA 

injection. This provides evidence supporting the view that decreased 

inhibition of RVM neurons occurs during the maintenance of inflammatory 

joint pain. 

Taken together, these anatomical experiments have confirmed that the RVM 

is activated during joint inflammation, suggesting descending modulation 

from this region may contribute to behavioural hypersensitivity.  

7.1.2 Descending facilitation plays a time dependent role in mechanical 

hypersensitivity of the hindpaw following joint inflammation 

Behavioural hypersensitivity was measured following ankle injection of CFA 

using von Frey hairs applied to ipsilateral hindpaw. Increased mechanical 

hypersensitivity of the hindpaw is predominantly a reflection of secondary 

hyperalgesia and allodynia (see below section 7.2.1), which requires central 

sensitisation. To investigate the role of descending facilitation in this process 

two lesion experiments were carried out. Firstly lesion of the descending 5-

HT input to the dorsal horn was performed by intrathecal administration of 

the toxin 5,7-dihydroxytryptamine (5,7-DHT). This selectively ablates all 

fibres containing 5-HT. This lesion was found to attenuate mechanical 

hypersensitivity, but only at 1d and 2d post CFA injection. This suggested 
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that descending 5-HT containing neurons play a time dependent role in the 

development of mechanical hypersensitivity.  

As many previous studies had implicated the 5-HT₃ receptor in the 

facilitatory effects of 5-HT within the spinal cord (Dogrul et al., 2009; 

Donovan-Rodriguez et al., 2006; LaGraize et al., 2010; Suzuki et al., 2002), a 

further experiment investigated the role of this receptor. Intrathecal 

injection of ondansetron, a 5-HT₃ specific antagonist, was carried out at 1d 

following CFA injection. This led to a brief attenuation of established 

mechanical hypersensitivity. As the magnitude of attenuation was 

comparable to that observed following 5,7-DHT lesion, this suggested that 5-

HT acting at the 5-HT₃ receptor is an important facilitatory pathway in joint 

pain.  

Only a small proportion of electrophysiologically defined ON cells, believed 

to be facilitatory, contain 5-HT (Marinelli et al., 2002). This suggests other 

non-5-HT neurons are also likely to contribute to descending facilitation. 

Although ON cells do not have a single neurochemical identity, they can be 

identified by their direct responsiveness to morphine suggesting they 

express the mu opioid receptor (MOR) (Heinricher et al., 1994; Marinelli et 

al., 2002). This characteristic has been exploited previously to selectively 

ablate the MOR expressing (MOR+) neurons of the RVM using the selective 

neurotoxin dermorphin-saporin (Bee and Dickenson, 2008; Burgess et al., 

2002; Porreca et al., 2001; Zhang et al., 2009). To investigate the role of 

these neurons in the inflammatory joint pain model, microinjection of 

dermorphin-saporin to the RVM was carried out prior to CFA injection. 

Unlike previous studies of neuropathic pain (Burgess et al., 2002; Zhang et 

al., 2009), MOR+ cell depletion did not lead to a full reversal of mechanical 

hypersensitivity. Instead a significant attenuation of hypersensitivity, of a 

similar magnitude to that observed in the 5,7-DHT experiment, was found.  

However in contrast to the 5,7-DHT depletion experiment, MOR+ cell 
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depletion had a more prolonged effect on behavioural hypersensitivity, with 

significant attenuation observed from 1-7d post CFA injection.  

These behavioural experiments have demonstrated that both 5-HT and non-

5-HT mechanisms of descending facilitation contribute to secondary 

hyperalgesia following joint inflammation. The time course of attenuation by 

these two pathways overlaps but is not identical, suggesting that these two 

pathways have different roles in inflammatory joint pain.  

7.1.3 Changes in gene expression associated with descending facilitation 

In comparison to our understanding of descending facilitation via the 5-HT 

pathway, relatively little is known about the dorsal horn mechanisms 

underlying ON/MOR+ cell mediated facilitation. Chronic pain states are 

associated with transcriptional changes within the dorsal horn (Géranton et 

al., 2007; Kim et al., 1998), and indeed a number of molecular changes have 

been shown to occur directly in response to the 5-HT pathway (Géranton et 

al., 2008; Rygh et al., 2006). To identify possible mechanisms by which 

MOR+ cells contribute to pain facilitation in the spinal cord, microarray 

analysis was carried out to identify changes in dorsal horn gene expression 

associated with this descending pathway. 

This analysis led to the identification of a number of immune system related 

genes which may be of interest for further studies. This is in line with a 

number of other microarray studies which have found upregulation of 

immune related genes within the dorsal horn in persistent pain states 

(Costigan et al., 2009a; Yukhananov and Kissin, 2008). Of particular interest 

were the genes for the chemokine Cxcl10 and its receptor Cxcr3, both of 

which were downregulated in the dermorphin-saporin group. A number of 

other chemokines have been implicated in pain signalling within the dorsal 

horn (Old and Malcangio, 2012). However neither CXCL10 nor the CXCR3 

receptor proteins have been identified previously within the dorsal horn, 

although Cxcl10 expression has been identified in the DRG in a number of 
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experimental conditions such as inflammation and herpes zoster infection 

(Steain et al., 2011; Strong et al., 2012; Takasaki et al., 2012). The 

downregulation of both genes in the dermorphin-saporin group suggest they 

may be targets of MOR+ mediated descending facilitation at the dorsal horn 

level.  

Unexpectedly immunohistochemistry within the dorsal horn indicated that 

the protein products of these genes were not localised to microglia or 

astrocytes. The apparent neuronal localisation of CXCL10 and CXCR3 

suggests that these may play a role in attracting immune cells to the dorsal 

horn during inflammatory pain, or as a novel neuronal signalling pathway 

contributing to central sensitisation.  

7.2  Descending facilitation in joint inflammation 

7.2.1 Measuring mechanical hypersensitivity of the hindpaw: a note on 

terminology 

In humans, allodynia refers to an increased pain response to normally 

innocuous stimuli, and hyperalgesia refers to an increased response to 

painful stimuli. My behavioural experiments have investigated increased 

mechanical sensitivity of the hindpaw following joint inflammation in the 

rat. To avoid making assumptions as to whether this hypersensitivity is a 

reflection of allodynia or hyperalgesia, which is difficult to address in an 

animal model, I have used the term mechanical hypersensitivity to describe 

this data. However in this study it is important to distinguish between 

primary and secondary hyperalgesia. In models of cutaneous inflammation 

in humans, primary hyperalgesia refers to increased pain sensitivity that 

occurs at the site of injury while secondary hyperalgesia occurs at sites 

adjacent to but not at the site of injury (Hardy et al., 1950; Treede et al., 

1992). A comparable distinction can also be made in conditions of joint pain, 

where pain in the affected joint is primary, and pain arising distal to the 
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injured joint is secondary, and presumably driven by central mechanisms 

(Graven-Nielsen et al., 2012). In the experiments described in this thesis, 

mechanical hypersensitivity of the hindpaw predominantly reflects 

secondary mechanisms, as increased paw sensitivity is secondary to the site 

of injury within the ankle joint.  

To summarise, although I use the term mechanical hypersensitivity to 

describe the behavioural results in this thesis, this hypersensitivity is 

predominantly a reflection of secondary hyperalgesia (and/or allodynia), 

which is driven by central sensitisation (Treede et al., 1992). 

7.2.2 Descending facilitation of mechanical hypersensitivity of the 

hindpaw 

This study has provided new information regarding descending facilitation in 

chronic pain states. Although it seems that both descending 5-HT and the 

MOR+ cell pathway play a role in secondary hyperalgesia associated with 

joint inflammation, the magnitude of attenuation in both lesion studies is 

considerably smaller than that observed in neuropathic pain states. 

Depletion of MOR+ cells in the RVM results in a complete reversal of 

mechanical pain hypersensitivity at the later stages of neuropathic pain 

(Burgess et al., 2002; Zhang et al., 2009). Similarly 5-HT plays a small role in 

the behavioural experiments described in this thesis. This contrasts with 

previous findings in neuropathic pain, in which depletion of endogenous 5-

HT completely reverses hypersensitivity (Rahman et al., 2006). This suggests 

there are important differences in neuropathic and joint pain processing at 

the supraspinal level, with neuropathic pain models more heavily dependent 

upon facilitation from the RVM. 

The time of onset of descending facilitation is also different in the present 

study than that shown previously for neuropathic pain. The previous 

dermorphin-saporin studies of neuropathic pain indicated that descending 

facilitation is required for the maintenance but not the induction of 
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behavioural hypersensitivity (Bee and Dickenson, 2008; Burgess et al., 2002; 

Zhang et al., 2009). In contrast, descending facilitation of joint pain is 

evident from one day onwards. This suggests that in neuropathic pain, 

descending facilitation is required for the maintenance of pain, whereas in 

joint pain, descending facilitation contributes to both the induction and 

maintenance phases. Neuropathic and inflammatory pain models have 

different peripheral causes and onset of hypersensitivity. While peak 

behavioural hypersensitivity in the joint model is observed within hours, 

neuropathic pain may take longer to develop resulting in later activation of 

the descending facilitatory system. The differences in descending facilitation 

of joint pain and neuropathic pain may also indicate that central 

sensitisation, and subsequent secondary hyperalgesia, is more prominent in 

neuropathic than in joint pain. 

Not only do the present findings differ from those in neuropathic models, 

they also highlight some differences between 5-HT modulation of joint and 

cutaneous inflammation. The contribution of descending 5-HT to cutaneous 

inflammatory pain has been investigated in a number of studies. For 

example our group previously found that 5,7-DHT depletion attenuates 

mechanical hypersensitivity following plantar inflammation from 1h to 1d 

post CFA injection (Géranton et al., 2008). This contrasts with the present 

findings in which 5-HT does not play a significant role until 1d post CFA 

injection to the ankle. 

Interestingly a more recent study, which used siRNA within the RVM to 

silence the tryptophan hydroxylase (TPH) enzyme and so reduce 5-HT 

synthesis, showed slightly different results in the same cutaneous model 

(Wei et al., 2010). They found that there was no effect on mechanical 

hypersensitivity until 1d – 3d following plantar injection of CFA. The timing 

of the involvement of 5-HT in this study supports the present findings, 

suggesting that 5-HT plays a time dependent role in the facilitation of 
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inflammatory pain. Nonetheless the magnitude of changes observed in the 

Wei et al. study were larger than those identified here, again suggesting a 

greater contribution of descending facilitation to pain of cutaneous origin 

than that from arising the joint.  

One of the major anatomical differences between joint and cutaneous 

nociceptors is the termination of joint afferents in lamina I, and absence of 

direct joint terminations in lamina II (Doyle and Hunt, 1999; Mense and 

Prabhakar, 1986; Neugebauer et al., 1994). Lamina II interneurons are 

believed to play an important role in the development of mechanical 

hypersensitivity in neuropathic pain and cutaneous inflammation (Malmberg 

et al., 1997; Martin et al., 2001). More recently genetic ablation of the IB4+, 

non-peptidergic C-fibre population, which terminate in lamina II has been 

shown to reduce mechanical hypersensitivity in cutaneous inflammation and 

neuropathic pain (Cavanaugh et al., 2009). This population of fibres do not 

innervate the joint (Ivanavicius et al., 2004; Jimenez-Andrade et al., 2010; 

Nakajima et al., 2008). Therefore pain arising from the joint may not result in 

direct activation of lamina II neurons in the dorsal horn. As descending 

projections from the RVM terminate in both lamina I and lamina II, direct 

actions on the peripheral nociceptive terminals may be more prominent in 

cutaneous inflammation than in joint inflammation (Millan, 2002). 

These differences may also reflect a more prominent role of descending 

inhibition in joint pain than in cutaneous pain. The earliest investigations of 

descending controls in joint pain indicated that at least in the acute stage, 

inhibition of spinal nociception occurs (Cervero et al., 1991; Schaible et al., 

1991). Although this inhibition may not persist beyond the acute phase of 

inflammation it raises the possibility that both facilitation and inhibition 

occur simultaneously, and which system predominates may depend on the 

nature of the nociceptive input (cutaneous or joint). 
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The findings presented in this thesis indicate that during inflammation of the 

joint, descending facilitation from the RVM contributes in a time dependent 

manner to mechanical hypersensitivity of the hindpaw, a reflection of 

secondary hyperalgesia. Previous work on descending controls in joint pain 

has largely focused on descending inhibition of spinal excitability during joint 

inflammation (Cervero et al., 1991; Schaible et al., 1991), although one study 

has demonstrated a role for descending 5-HT in the facilitation of spinal 

excitability in osteoarthritic pain (Rahman et al., 2009). No behavioural 

studies have been carried out to date in a joint model. The lesion 

experiments described here demonstrate that in addition to these inhibitory 

influences descending facilitation is important, in particular in mediating 

secondary mechanical hyperalgesia. This supports previous findings 

suggesting that descending modulation differentially affects primary and 

secondary hyperalgesia during cutaneous inflammation (Pertovaara, 2000; 

Vanegas, 2004; Zhuo and Gebhart, 1990).  

Notably, no effect of descending 5-HT on weight bearing was observed in 

the present study suggesting that following ankle injection of CFA the same 

principles may apply. Primary hyperalgesia of the inflamed joint may be 

inhibited by descending controls, while descending facilitation could 

contribute to secondary mechanical hyperalgesia of the adjacent cutaneous 

tissue. Recent studies have addressed the role of descending 5-HT in pain 

behaviour following plantar inflammation, in which the primary and 

secondary components of hyperalgesia are difficult to distinguish (Géranton 

et al., 2008; LaGraize et al., 2010; Wei et al., 2010). The behavioural data 

presented in this thesis provides direct evidence that following peripheral 

inflammation, secondary hyperalgesia of adjacent non-inflamed tissue is 

facilitated by descending pathways from the RVM. Secondary hyperalgesia 

at sites distant from the inflamed joint has been reported in patients with RA 

(Edwards et al., 2009) and OA (Gwilym et al., 2009). Therefore cutaneous 

secondary mechanical hyperalgesia appears to be a clinically relevant 
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outcome measure in studies of joint pain. Secondary hyperalgesia requires 

central sensitisation (Treede et al., 1992), therefore studying secondary 

hyperalgesia in animal models is also useful as a measure of central 

sensitisation in the spinal cord.  

The size of the weight bearing chamber available during these experiments 

was a limiting factor, and we were unable to carry out weight bearing 

analysis on the larger animals (400 – 500g) of the dermorphin-saporin 

experiments. Future work with a modified weight bearing chamber could 

provide useful information on the relative contribution of the descending 5-

HT and MOR+ pathways to weight bearing on the inflamed joint. The 

question of primary hyperalgesia of the joint itself has not been explicitly 

addressed in this thesis, and it is possible that descending inhibition 

predominates over facilitation at the primary injury site. In future it would 

be of interest to fully characterise the role of descending facilitation in 

primary hyperalgesia of the inflamed joint using weight bearing apparatus, 

and indeed other measures such as hindlimb grip force (Chandran et al., 

2009; Lee et al., 2011b). 

7.2.2.1  Limitations of the lesion approach 

Traditional electrolytic lesion techniques have been used in the RVM to 

investigate the net contribution of the neurons of this region in pain 

processing in a number of models (Terayama et al., 2002; Urban and 

Gebhart, 1999). However interpretation of results from such studies is 

complicated as the RVM is a heterogeneous population of cells, and non-

selective ablation of the region will therefore include both the inhibitory and 

facilitatory circuitry. Selective lesion of components of the descending 

pathway such as those used in this thesis are an improvement on this 

technique, as it is possible to attribute the behavioural effects of the lesion 

to the loss of the cell type targeted. Nonetheless as with any experimental 

technique these methods are not without limitations.  
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Intrathecal administration of 5,7-DHT results in an almost complete loss of 

5-HT containing neurons that project to the dorsal horn. The results of the 

ondansetron experiment in chapter 4 strongly suggest that the behavioural 

effects observed by 5,7-DHT depletion are driven largely by a loss of 5-HT 

itself. However it is important to bear in mind that by using lesion of whole 

fibres, other transmitters contained within those descending 5-HT fibres will 

also be lost. The loss of other transmitters may contribute to the 

behavioural effects observed. This is also true of the dermorphin-saporin 

experiment described in chapter 5. As shown in this chapter, loss of neurons 

in the RVM region can have unintended adverse effects on the animal which 

must be avoided.  

7.2.3 Neurochemistry of descending facilitation 

In this thesis the roles of two distinct but overlapping descending pathways 

via 5-HT cells and MOR expressing (MOR+) neurons were investigated in 

parallel experiments. This allows conclusions to be drawn about how these 

pathways interact in the intact animal. It is known that some MOR+ neurons 

contain 5-HT (Marinelli et al., 2002; Sikandar et al., 2012), but there are also 

many MOR negative (MOR-) 5-HT neurons, and 5-HT negative MOR+ cells.  

These three different categories of RVM neurons may have different 

contributions to the facilitation of joint pain behaviour.  

Activation of ERK at 6h post CFA injection occurs largely within the 5-HT 

expressing population. This supports the behavioural findings in chapter 4 

which indicate that depletion of the 5-HT population attenuates behavioural 

hypersensitivity at 1 and 2d post CFA injection, but not at later time points. 

These effects of 5-HT will incorporate those neurons that also express the 

MOR, therefore the effects of dermorphin-saporin lesion at 1d and 2d 

following CFA injection may be mediated partly by a 5-HT mechanism. 

Notably, little pERK labelling is observed in the more dorsal regions of the 

RVM, which is rich in MOR+ neurons. Therefore it is likely that many of the 
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MOR+, 5-HT negative neurons do not express pERK following ankle injection 

of CFA. As peak ERK activation occurs at the 6h time point, this suggests that 

these pERK negative neurons may play a role in the later phase of 

facilitation, from 3 to 7d post CFA injection.   

By quantifying the number of active GABAergic synapses in the RVM it was 

found that inflammation induces a decrease in GABAergic inhibition in the 

RVM at 3d post CFA injection. This suggests that the effects of descending 

facilitation on pain maintenance are due in part to decreased inhibition in 

the RVM. Others have demonstrated previously that at 3d following 

cutaneous inflammation, GABAergic inhibition is decreased while MOR+ cell 

excitability increased, suggesting that MOR expressing cells are 

preferentially affected by this loss of inhibition (Zhang et al., 2011). Although 

here I have not addressed this directly it seems likely that decreased 

GABAergic inhibition of MOR+ cells at this later time point may contribute to 

facilitation by these neurons in the later phases of inflammation. 

One hypothesis based on the anatomical data presented in chapter 3 and 

the behavioural experiments in chapter 4 and 5 is that in the acute phase of 

inflammatory joint pain, descending facilitation does not contribute to 

behavioural hypersensitivity, as no effects are observed by either 5,7-DHT or 

dermorphin-saporin lesion. 5-HT contributes to behavioural hypersensitivity 

at 1 and 2 d following inflammation, but not at later time points. Activation 

of ERK within the TPH population at 6h following CFA may contribute to 

setting up this behavioural effect. MOR+ cell depletion results in a more 

prolonged attenuation. At the 1d and 2d time points, at least some of this 

effect may be mediated by 5-HT mechanisms. At the later time points, from 

3d to 7d, non 5-HT mechanisms must be involved. This would support a 

mechanism by which decreased GABAergic inhibition, as identified here at 

3d following CFA injection, could result in increased excitability of MOR+ 
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(non-5-HT) neurons, which contributes to the maintenance phase of 

behavioural hypersensitivity.  

The main limitation of the findings presented here is our lack of knowledge 

of the transmitter content of these MOR+, non-5-HT neurons. At least some 

of these are GABAergic (Kalyuzhny and Wessendorf, 1998). Crucially the 

effect of the MOR+ projection neurons will depend on the cell type they 

synapse onto within the cord. In the case of the MOR+ 5-HT population we 

could assume that at least part of the effect is mediated via the 5-HT₃ 

receptor. For GABAergic MOR+ neurons, the facilitatory effects would be 

expected to be mediated via a disinhibitory mechanism, by synapsing onto 

inhibitory interneurons of the cord. A further complication is that not all 

MOR+ cells project to the cord. Some GABAergic MOR+ expressing neurons 

act locally within the RVM, presumably inhibiting OFF cells or other 

inhibitory projection neurons (Kaplan and Fields, 1991).  

7.2.4 Immune related genes as targets of descending facilitation 

While the contribution of descending facilitation to central sensitisation and 

pain behaviour has been studied frequently (Bee and Dickenson, 2008; 

Burgess et al., 2002; Géranton et al., 2008; Wei et al., 2010) little is known 

about the molecular mechanisms underlying descending facilitation. Our 

group has previously used microarray analysis to characterise changes in 

dorsal horn gene expression at various time points following ankle injection 

of CFA (Géranton et al., 2007). The aim of the present study was to focus on 

the specific contribution of descending facilitation in the regulation of gene 

expression at the 7d time point. For this reason, microarray analysis was 

carried out on two groups of animals only, both groups with CFA 

inflammation and dermorphin-saporin or saline pretreatment as the only 

variable. In this way our analysis revealed genes that are differentially 

regulated in the pain state in the presence or absence of the MOR+ cell 

pathway. One limitation of this approach is that we are unable to compare 
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gene expression between CFA and sham animals in the present work, 

however dorsal horn gene expression changes at various times post 

inflammation have been investigated by our group previously (Géranton et 

al., 2007). 

Immune cells play an important role in mediating central sensitisation both 

in neuropathic (Beggs et al., 2012) and inflammatory (Clark et al., 2012; 

Sagar et al., 2011; Sun et al., 2012) pain states. Many molecular studies have 

identified immune related genes in the dorsal horn in various models of 

chronic pain (Costigan et al., 2009a; Yukhananov and Kissin, 2008). 

Therefore it was not surprising that in the microarray analysis carried out in 

this study many of the identified genes had immune system related 

annotations. Importantly this demonstrates that part of the mechanism by 

which descending controls mediate their effects in the spinal cord is via 

immune cell responses. This has been proposed by others for the 

descending 5-HT pathway (Gu et al., 2011). These authors suggest that 5-HT 

exerts its facilitatory effects via activation of the 5-HT₃ receptor on primary 

afferent terminals, which leads to the release of fractalkine (CX3CL1) from 

those terminals. CX3CL1 then signals to microglia and astrocytes, which 

contribute to behavioural hypersensitivity. This recent development 

provides an important framework in which our present molecular data can 

be interpreted. For example, descending signalling via the MOR+ pathway 

may contribute to the transcription of immune related genes such as Nos2, 

Serpinb1a and Serpinb1b. Exactly how this occurs is not yet established, as 

the neurochemical basis of descending facilitation by the MOR+ cell pathway 

within the dorsal horn is not clear. However the present data suggests that 

one mechanism by which descending facilitation has excitatory effects in the 

dorsal horn is via modulation of immune cells such as microglia and 

astrocytes. 
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The role of CXC chemokines is of particular interest as two chemokines of 

this family and their common receptor were simultaneously identified on 

the array. This strongly suggests that the downregulation of these genes is 

related to the decreased pain sensitivity observed in the dermorphin-saporin 

CFA group. CXCL10 and the receptor CXCR3 have previously been implicated 

in inflammatory disorders within the CNS, such as viral infection, multiple 

sclerosis and Alzheimer’s disease (Müller et al., 2010). Although this would 

suggest a prominent role for this ligand-receptor pathway in neuronal-

immune cell signalling in the dorsal horn, the immunohistochemistry data 

presented in chapter 6 suggests this is not in fact the case. Both the ligand 

and the receptor appear to be neuronally expressed, with no indication of 

being present within microglia or astrocytes. This poses an intriguing 

possibility in which chemokine-receptor signalling could be involved in the 

normal intrinsic function of the dorsal horn, as well as increased excitability 

in pain states. Some limited in vitro evidence is in place to suggest that 

CXCXL10-CXCR3 signalling is indeed involved in neuronal excitability. Firstly 

both the receptor and ligand have been localised to neurons (Vinet et al., 

2010), at least in culture. Secondly CXCL10 application to neurons leads to 

alterations in calcium transients and cell excitability (Cho et al., 2009). In 

addition CXCL10 treatment causes increases in levels of phosphorylated 

cAMP response element binding protein (CREB) and phosphorylated ERK in 

cells, which are both hallmarks of neuronal activation (Bajova et al., 2008). It 

will be of interest to determine if this occurs in vivo within the dorsal horn, 

as it could represent a novel interneuronal signalling mechanism. 

7.2.5 Clinical implications 

Rheumatoid arthritis (RA) affects 1% of the population (Lee and Weinblatt, 

2001) and is associated with resting pain in the joints, joint stiffness and 

inflammation. Although joint stiffness and functional disability are major 

symptoms which impair quality of life for patients, treatments which 
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suppress the peripheral inflammatory mechanisms are not always effective 

(Kidd et al., 2007). Therefore understanding changes in the nociceptive 

system and improving pain management remains an important goal.  

Rodent models of inflammatory polyarthritis can result in complications 

which may impair nociceptive testing, such as skin lesions and weight loss 

(Neugebauer et al., 2007). To address this problem, models of inflammatory 

monoarthritis have also been developed, including injection of CFA to the 

ankle joint (Butler et al., 1992). Although not a model of human RA per se, 

this method produces a reliable, localised inflammation of the ankle joint 

and results in stable behavioural hypersensitivity lasting up to 2 weeks post 

inflammation. RA patients have increased pain sensitivity at sites away from 

the inflamed joints (Edwards et al., 2009) and this may reflect increased 

central sensitisation within the dorsal horn of these patients (Kidd et al., 

2007; Morris et al., 1997, Lee et al., 2011). Ankle injection of CFA has been 

used to demonstrate that central sensitisation occurs within the dorsal horn 

following joint inflammation (Neugebauer and Schaible, 1990). Increased 

descending inhibition has been demonstrated in this model in the acute 

phase (Cervero et al., 1991; Schaible et al., 1991) suggesting that tonic 

inhibition from supraspinal regions is increased in the early stages of this 

model.  

To date, little is known regarding the role of descending facilitation via the 

RVM in inflammatory joint pain. The findings presented in this thesis 

demonstrate for the first time that behavioural hypersensitivity in 

inflammatory joint pain is dependent in part on descending facilitation via 

the RVM. In addition to peripheral pathology and spinal cord sensitisation, 

brainstem contributions should also be taken into account in the treatment 

of joint inflammatory conditions such as RA. Our findings may also be of 

relevance to other joint pain conditions such as osteoarthritis. In summary, 

the contribution of descending facilitation to behavioural hypersensitivity, 
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which has been established in models of neuropathic pain (Bee and 

Dickenson, 2008; Burgess et al., 2002; Rahman et al., 2009), should also be 

taken into account in the study and treatment of joint pain.  

7.3  Future directions 

The behavioural studies described in this thesis add to the existing body of 

evidence indicating that descending facilitation contributes to central 

sensitisation and hyperalgesia in a number of persistent pain states. 

However a number of questions remain regarding the role of the RVM in 

nociceptive processing, in this and other pain models. The identification of 

immune related genes in the dorsal horn also raises a number of interesting 

questions and possibilities for further study. 

One of the fundamental questions remaining regarding descending 

facilitation is the neurochemistry of the MOR+ neurons. It is thought that 

the ON cell, MOR+ population of neurons is a heterogeneous group of cells. 

Some of these contain 5-HT, which in part explains the facilitatory role of 

these cells, presumably acting via pro-nociceptive 5-HT₃ receptors in the 

dorsal horn (Bardin, 2011). Other MOR+ cells are known to be GABAergic 

(Kalyuzhny and Wessendorf, 1998), however if these are projection neurons 

it is not known which component of the dorsal horn circuitry they synapse 

onto.  Future work could include further characterisation of this cell 

population. Anatomical studies to quantify the numbers of MOR+ projection 

and non-projection neurons as well as double labelling studies to determine 

the proportion of 5-HT and GABA containing neurons within the RVM would 

be useful in this regard. Another transmitter which may be involved in 

descending facilitation is cholecystokinin (CCK). This peptidergic 

neurotransmitter has pronociceptive effects within the spinal cord, and has 

been shown to contribute to the descending facilitation of secondary 

hyperalgesia in a model of cutaneous mustard oil application (Urban et al., 

1996). CCK containing neurons are found in the RVM and many of these 
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project to the dorsal horn (Mantyh and Hunt, 1984). It is not known if these 

CCK expressing neurons are MOR+, and this would be an interesting 

possibility for investigation. Although this descending pathway has received 

little attention in comparison to the extensive investigation of 5-HT 

pathways it may be an important avenue for future research.  

The role of GABAergic signalling within the RVM has not been well studied to 

date. The method of labelling active GABAergic synapses in vivo described in 

chapter 3 would be a useful method of studying GABAergc signalling in 

further experiments. A starting point would be to study further time points 

after CFA injection. The time point of 3d was chosen based on previous 

findings that GABAergic signalling in the region is decreased at 3d following 

plantar inflammation (Zhang et al., 2011), however this does not rule out 

changes at earlier or later time points. Injection of a GABAergic agonist to 

the RVM would also be a useful functional experiment to determine if the 

decrease observed here is required for increased descending facilitation.  

My behavioural studies investigated the role of both the 5-HT and MOR+ 

mediated descending facilitatory pathways in mechanical hypersensitivity of 

the ipsilateral hindpaw in joint inflammation. This measure is a correlate of 

secondary hyperalgesia in the animal as it reflects hypersensitivity at a site 

adjacent to but removed from the inflamed region. It is known that 

secondary hyperalgesia is driven by central mechanisms and our work has 

demonstrated a role for descending facilitation in this process in the joint 

inflammation model. An investigation of weight bearing in the 5,7-DHT 

experiment, described in chapter 4, suggests that primary hyperalgesia of 

the inflamed joint itself is not attenuated by the depletion. This adds further 

evidence to the hypothesis that descending inhibition prevails in primary 

hyperalgesia, while descending facilitation contributes to secondary 

hyperalgesia (Urban et al., 1999; Vanegas and Schaible, 2004). An 
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investigation to determine how primary hyperalgesia is affected by the 

MOR+ cell or 5-HT descending pathways may be of interest in the future. 

The role of 5-HT in descending facilitation is complex with both inhibitory 

and facilitatory roles reported, depending on the receptor subtype activated 

at the spinal cord level (Bardin, 2011). The intrathecal ondansetron 

experiment carried out in chapter 4 suggests that as in other chronic pain 

models, the 5-HT₃ receptor has a pro-nociceptive role in the joint 

inflammation model. A limitation of this pilot study is the use of only one 

dose of drug, based on previous published work in which a single intrathecal 

injection of 10µg ondansetron was sufficient to fully reverse thermal 

hypersensitivity associated with plantar inflammation (LaGraize et al., 2010). 

However it is possible that the optimal dose may differ for the ankle joint 

model, and for the measurement of mechanical hypersensitivity. Future 

work could include a range of doses to generate a dose response curve 

specific to the joint inflammatory model of mechanical hypersensitivity. 

It is also important to note that we cannot rule out the involvement of other 

pro-nociceptive 5-HT receptors in mediating descending facilitation. Recent 

studies have shown that the 5-HT2A receptor may be involved in neuropathic  

pain, and this may warrant investigation in the joint inflammation model 

(Aira et al., 2012). However, it is also likely that parallel systems of 5-HT 

mediated inhibition and facilitation exist in chronic pain states, as has been 

suggested in a neuropathic model (Dogrul et al., 2009). Therefore it may be 

of interest to investigate if 5-HT plays a role in inhibition in the joint 

inflammation model.  

The microarray analysis carried out in this study has identified the CXC 

family of chemokines and receptor as a potential signalling pathway within 

the dorsal horn, regulated by descending facilitation. Our finding that 

CXCL10 is expressed within neurons of the dorsal horn, and CXCR3 is found 

in part on CGRP expressing primary afferent terminals, suggests a 
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mechanism by which primary afferent input could be modulated by this 

chemokine family. This is the first study to characterise protein expression of 

CXCL10 and CXCR3 in the dorsal horn however much work is required to 

determine if this receptor-ligand pair play a role in inflammatory joint pain, 

and projects are ongoing in our group to determine if this is the case. The 

first step is to determine if upregulation of protein occurs after the 7d time 

point. Future work could include inhibiting the receptor or the ligand within 

the dorsal horn by to determine if they play a role in nociception.  

Notably, the expression of CXCL9 and CXCL10 is increased in the joints of 

patients with rheumatoid arthritis (Laragione et al., 2011; Yoshida et al., 

2012) suggesting that these chemokines may contribute to the joint 

pathology associated with the disease. Furthermore a humanised anti-

CXCL10 antibody has been shown to be safe and effective in treating the 

pain in rheumatoid arthritis (Yellin et al., 2012). In animal models CXCR3 

receptor antagonists have also been shown to be effective in decreasing the 

pathogenesis of a model of rheumatoid arthritis (Jenh et al., 2012). 

Therefore safe and effective pharmacological tools exist to investigate the 

role of this chemokine pathway within the CNS in inflammatory pain states. 

If CXL10 to CXCR3 signalling is shown to be pronociceptive within the dorsal 

horn, this would provide further support for the use of such agents in the 

systemic treatment of joint pain states. 

7.4  Conclusion 

The data presented in this thesis demonstrates for the first that time that 

descending facilitation via the RVM contributes to behavioural 

hypersensitivity following joint inflammation. This suggests that in addition 

to targeting the underlying joint pathology, patients suffering from joint pain 

symptoms may benefit from treatments that reduce central sensitisation 

and descending facilitation.  



References 

220 

 

8. References 

Adler, M., Geller, E., Chen, X., Rogers, T., 2005. Viewing chemokines as a 
third major system of communication in the brain. The AAPS Journal 
7, E865–E870. 

Aguzzi, A., Barres, B.A., Bennett, M.L., 2013. Microglia: scapegoat, saboteur, 
or something else? Science 339, 156–161. 

Aira, Z., Buesa, I., Gallego, M., Caño, G.G. del, Mendiable, N., Mingo, J., Rada, 
D., Bilbao, J., Zimmermann, M., Azkue, J.J., 2012. Time-Dependent 
Cross Talk between Spinal Serotonin 5-HT2A Receptor and mGluR1 
Subserves Spinal Hyperexcitability and Neuropathic Pain after Nerve 
Injury. J. Neurosci. 32, 13568–13581. 

Al-Khater, K.M., Todd, A.J., 2009. Collateral projections of neurons in 
laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal 
gray matter, and lateral parabrachial area. J. Comp. Neurol. 515, 
629–646. 

Amitai, Y., 2010. Physiologic role for “inducible” nitric oxide synthase: A new 
form of astrocytic–neuronal interface. Glia 58, 1775–1781. 

Andrews, N., Legg, E., Lisak, D., Issop, Y., Richardson, D., Harper, S., Huang, 
W., Burgess, G., Machin, I., Rice, A.S.C., 2011. Spontaneous 
burrowing behaviour in the rat is reduced by peripheral nerve injury 
or inflammation associated pain. Eur J Pain. 

Apkarian, A.V., Bushnell, M.C., Treede, R.-D., Zubieta, J.-K., 2005. Human 
brain mechanisms of pain perception and regulation in health and 
disease. Eur J Pain 9, 463–484. 

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., 
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, 
D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, 
J.E., Ringwald, M., Rubin, G.M., Sherlock, G., 2000. Gene ontology: 
tool for the unification of biology. The Gene Ontology Consortium. 
Nat. Genet. 25, 25–29. 

Averill, S., Inglis, J.J., King, V.R., Thompson, S.W.N., Cafferty, W.B.J., 
Shortland, P.J., Hunt, S.P., Kidd, B.L., Priestley, J.V., 2008. Reg-2 
expression in dorsal root ganglion neurons after adjuvant-induced 
monoarthritis. Neuroscience 155, 1227–1236. 

Baba, H., Kohno, T., Moore, K.A., Woolf, C.J., 2001. Direct activation of rat 
spinal dorsal horn neurons by prostaglandin E2. J. Neurosci. 21, 
1750–1756. 

Bailey, C.H., Bartsch, D., Kandel, E.R., 1996. Toward a molecular definition of 
long-term memory storage. Proc. Natl. Acad. Sci. U.S.A. 93, 13445–
13452. 

Bajova, H., Nelson, T.E., Gruol, D.L., 2008. Chronic CXCL10 alters the level of 
activated ERK1/2 and transcriptional factors CREB and NF-κB in 



References 

221 

 

hippocampal neuronal cell culture. Journal of Neuroimmunology 195, 
36–46. 

Bär, K.-J., Natura, G., Telleria-Diaz, A., Teschner, P., Vogel, R., Vasquez, E., 
Schaible, H.-G., Ebersberger, A., 2004. Changes in the effect of spinal 
prostaglandin E2 during inflammation: prostaglandin E (EP1-EP4) 
receptors in spinal nociceptive processing of input from the normal 
or inflamed knee joint. J. Neurosci. 24, 642–651. 

Barbaro, N.M., Heinricher, M.M., Fields, H.L., 1986. Putative pain modulating 
neurons in the rostral ventral medulla: reflex-related activity predicts 
effects of morphine. Brain Res. 366, 203–210. 

Bardin, L., 2011. The complex role of serotonin and 5-HT receptors in chronic 
pain. Behav Pharmacol 22, 390–404. 

Bardin, L., Jourdan, D., Alloui, A., Lavarenne, J., Eschalier, A., 1997. 
Differential influence of two serotonin 5-HT3 receptor antagonists on 
spinal serotonin-induced analgesia in rats. Brain Res. 765, 267–272. 

Bardin, L., Tarayre, J.P., Koek, W., Colpaert, F.C., 2001. In the formalin model 
of tonic nociceptive pain, 8-OH-DPAT produces 5-HT1A receptor-
mediated, behaviorally specific analgesia. Eur. J. Pharmacol. 421, 
109–114. 

Barres, B.A., 2008. The mystery and magic of glia: a perspective on their 
roles in health and disease. Neuron 60, 430–440. 

Basbaum, A.I., Bautista, D.M., Scherrer, G., Julius, D., 2009. Cellular and 
molecular mechanisms of pain. Cell 139, 267–284. 

Basbaum, A.I., Marley, N.J., O’Keefe, J., Clanton, C.H., 1977. Reversal of 
morphine and stimulus-produced analgesia by subtotal spinal cord 
lesions. Pain 3, 43–56. 

Baumgarten, H.G., Lachenmayer, L., 2004. Serotonin neurotoxins--past and 
present. Neurotox Res 6, 589–614. 

Bedson, J., Croft, P.R., 2008. The discordance between clinical and 
radiographic knee osteoarthritis: a systematic search and summary 
of the literature. BMC Musculoskelet Disord 9, 116. 

Bee, L.A., Dickenson, A.H., 2008. Descending facilitation from the brainstem 
determines behavioural and neuronal hypersensitivity following 
nerve injury and efficacy of pregabalin. Pain 140, 209–223. 

Beggs, S., Trang, T., Salter, M.W., 2012. P2X4R+ microglia drive neuropathic 
pain. Nat. Neurosci. 15, 1068–1073. 

Ben Achour, S., Pascual, O., 2010. Glia: the many ways to modulate synaptic 
plasticity. Neurochem. Int. 57, 440–445. 

Benarafa, C., Priebe, G.P., Remold-O’Donnell, E., 2007. The neutrophil serine 
protease inhibitor serpinb1 preserves lung defense functions in 
Pseudomonas aeruginosa infection. J. Exp. Med. 204, 1901–1909. 

Bennell, K.L., Hunter, D.J., Hinman, R.S., 2012. Management of osteoarthritis 
of the knee. BMJ 345, e4934–e4934. 

Berger, M., Gray, J.A., Roth, B.L., 2009. The Expanded Biology of Serotonin. 
Annual Review of Medicine 60, 355–366. 



References 

222 

 

Bessou, P., Perl, E.R., 1969. Response of cutaneous sensory units with 
unmyelinated fibers to noxious stimuli. J Neurophysiol 32, 1025–
1043. 

Birrell, G.J., McQueen, D.S., Iggo, A., Grubb, B.D., 1990. The effects of 5-HT 
on articular sensory receptors in normal and arthritic rats. Br J 
Pharmacol 101, 715–721. 

Boettger, M.K., Hensellek, S., Richter, F., Gajda, M., Stöckigt, R., Von 
Banchet, G.S., Bräuer, R., Schaible, H.-G., 2008. Antinociceptive 
effects of tumor necrosis factor alpha neutralization in a rat model of 
antigen-induced arthritis: evidence of a neuronal target. Arthritis 
Rheum. 58, 2368–2378. 

Bourquin, A.-F., Süveges, M., Pertin, M., Gilliard, N., Sardy, S., Davison, A.C., 
Spahn, D.R., Decosterd, I., 2006. Assessment and analysis of 
mechanical allodynia-like behavior induced by spared nerve injury 
(SNI) in the mouse. PAIN 122, 14.e1–14.e14. 

Bowker, R.M., Westlund, K.N., Sullivan, M.C., Coulter, J.D., 1982. 
Organization of descending serotonergic projections to the spinal 
cord. Prog. Brain Res. 57, 239–265. 

Breivik, H., Collett, B., Ventafridda, V., Cohen, R., Gallacher, D., 2006. Survey 
of chronic pain in Europe: Prevalence, impact on daily life, and 
treatment. European Journal of Pain 10, 287–287. 

Brenchat, A., Nadal, X., Romero, L., Ovalle, S., Muro, A., Sánchez-Arroyos, R., 
Portillo-Salido, E., Pujol, M., Montero, A., Codony, X., Burgueño, J., 
Zamanillo, D., Hamon, M., Maldonado, R., Vela, J.M., 2010. 
Pharmacological activation of 5-HT7 receptors reduces nerve injury-
induced mechanical and thermal hypersensitivity. PAIN 149, 483–
494. 

Brenn, D., Richter, F., Schaible, H.-G., 2007. Sensitization of unmyelinated 
sensory fibers of the joint nerve to mechanical stimuli by interleukin-
6 in the rat: an inflammatory mechanism of joint pain. Arthritis 
Rheum. 56, 351–359. 

Burgess, P.R., Perl, E.R., 1967. Myelinated afferent fibres responding 
specifically to noxious stimulation of the skin. J Physiol 190, 541–562. 

Burgess, S.E., Gardell, L.R., Ossipov, M.H., Malan, T.P., Vanderah, T.W., Lai, 
J., Porreca, F., 2002. Time-dependent descending facilitation from 
the rostral ventromedial medulla maintains, but does not initiate, 
neuropathic pain. J. Neurosci 22, 5129–5136. 

Butler, S.H., Godefroy, F., Besson, J.M., Weil-Fugazza, J., 1992. A limited 
arthritic model for chronic pain studies in the rat. Pain 48, 73–81. 

Calvo, M., Dawes, J.M., Bennett, D.L.H., 2012. The role of the immune 
system in the generation of neuropathic pain. Lancet Neurol 11, 629–
642. 

Carlson, J.D., Maire, J.J., Martenson, M.E., Heinricher, M.M., 2007. 
Sensitization of pain-modulating neurons in the rostral ventromedial 
medulla after peripheral nerve injury. J. Neurosci. 27, 13222–13231. 



References 

223 

 

Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J., Julius, D., 1999. A 
capsaicin-receptor homologue with a high threshold for noxious 
heat. Nature 398, 436–441. 

Cavanaugh, D.J., Lee, H., Lo, L., Shields, S.D., Zylka, M.J., Basbaum, A.I., 
Anderson, D.J., 2009. Distinct subsets of unmyelinated primary 
sensory fibers mediate behavioral responses to noxious thermal and 
mechanical stimuli. Proc Natl Acad Sci U S A 106, 9075–9080. 

Cervero, F., Schaible, H.G., Schmidt, R.F., 1991. Tonic descending inhibition 
of spinal cord neurones driven by joint afferents in normal cats and 
in cats with an inflamed knee joint. Exp Brain Res 83, 675–678. 

Chandran, P., Pai, M., Blomme, E.A., Hsieh, G.C., Decker, M.W., Honore, P., 
2009. Pharmacological modulation of movement-evoked pain in a rat 
model of osteoarthritis. Eur. J. Pharmacol. 613, 39–45. 

Chaplan, S.R., Bach, F.W., Pogrel, J.W., Chung, J.M., Yaksh, T.L., 1994. 
Quantitative assessment of tactile allodynia in the rat paw. J. 
Neurosci. Methods 53, 55–63. 

Cheng, Z.F., Fields, H.L., Heinricher, M.M., 1986. Morphine microinjected 
into the periaqueductal gray has differential effects on 3 classes of 
medullary neurons. Brain Res. 375, 57–65. 

Cho, H.J., Basbaum, A.I., 1991. GABAergic circuitry in the rostral ventral 
medulla of the rat and its relationship to descending antinociceptive 
controls. The Journal of Comparative Neurology 303, 316–328. 

Cho, I.-H., Lee, M.J., Jang, M., Gwak, N.G., Lee, K.Y., Jung, H.-S., 2012. 
Minocycline markedly reduces acute visceral nociception via 
inhibiting neuronal ERK phosphorylation. Mol Pain 8, 13. 

Cho, J., Nelson, T.E., Bajova, H., Gruol, D.L., 2009. Chronic CXCL10 alters 
neuronal properties in rat hippocampal culture. J. Neuroimmunol. 
207, 92–100. 

Clark, A.K., Grist, J., Al-Kashi, A., Perretti, M., Malcangio, M., 2012. Spinal 
cathepsin S and fractalkine contribute to chronic pain in the collagen-
induced arthritis model. Arthritis Rheum. 64, 2038–2047. 

Coderre, T.J., Yashpal, K., 1994. Intracellular messengers contributing to 
persistent nociception and hyperalgesia induced by L-glutamate and 
substance P in the rat formalin pain model. Eur. J. Neurosci. 6, 1328–
1334. 

Conte, D., Legg, E.D., McCourt, A.C., Silajdzic, E., Nagy, G.G., Maxwell, D.J., 
2005. Transmitter content, origins and connections of axons in the 
spinal cord that possess the serotonin (5-hydroxytryptamine) 3 
receptor. Neuroscience 134, 165–173. 

Costa-Mattioli, M., Sossin, W.S., Klann, E., Sonenberg, N., 2009. Translational 
control of long-lasting synaptic plasticity and memory. Neuron 61, 
10–26. 

Costigan, M., Moss, A., Latremoliere, A., Johnston, C., Verma-Gandhu, M., 
Herbert, T.A., Barrett, L., Brenner, G.J., Vardeh, D., Woolf, C.J., 
Fitzgerald, M., 2009a. T-Cell Infiltration and Signaling in the Adult 



References 

224 

 

Dorsal Spinal Cord Is a Major Contributor to Neuropathic Pain-Like 
Hypersensitivity. J. Neurosci. 29, 14415–14422. 

Costigan, M., Scholz, J., Woolf, C.J., 2009b. Neuropathic Pain. Annu Rev 
Neurosci 32, 1–32. 

Coull, J.A.M., Beggs, S., Boudreau, D., Boivin, D., Tsuda, M., Inoue, K., Gravel, 
C., Salter, M.W., De Koninck, Y., 2005. BDNF from microglia causes 
the shift in neuronal anion gradient underlying neuropathic pain. 
Nature 438, 1017–1021. 

Coulson, D.T., Brockbank, S., Quinn, J.G., Murphy, S., Ravid, R., Irvine, G.B., 
Johnston, J.A., 2008. Identification of valid reference genes for the 
normalization of RT qPCR gene expression data in human brain 
tissue. BMC Molecular Biology 9, 46. 

Cox, J.J., Reimann, F., Nicholas, A.K., Thornton, G., Roberts, E., Springell, K., 
Karbani, G., Jafri, H., Mannan, J., Raashid, Y., Al-Gazali, L., Hamamy, 
H., Valente, E.M., Gorman, S., Williams, R., McHale, D.P., Wood, J.N., 
Gribble, F.M., Woods, C.G., 2006. An SCN9A channelopathy causes 
congenital inability to experience pain. Nature 444, 894–898. 

Crisp, T., Stafinsky, J.L., Spanos, L.J., Uram, M., Perni, V.C., Donepudi, H.B., 
1991. Analgesic effects of serotonin and receptor-selective serotonin 
agonists in the rat spinal cord. Gen. Pharmacol. 22, 247–251. 

Cruz, C.D., Neto, F.L., Castro-Lopes, J., McMahon, S.B., Cruz, F., 2005. 
Inhibition of ERK phosphorylation decreases nociceptive behaviour in 
monoarthritic rats. Pain 116, 411–419. 

D’Mello, R., Dickenson, A.H., 2008. Spinal cord mechanisms of pain. Br J 
Anaesth 101, 8–16. 

Danziger, N., Weil-Fugazza, J., Bars, D.L., Bouhassira, D., 1999. Alteration of 
Descending Modulation of Nociception during the Course of 
Monoarthritis in the Rat. J. Neurosci. 19, 2394–2400. 

Danziger, N., Weil-Fugazza, J., Le Bars, D., Bouhassira, D., 2001. Stage-
dependent changes in the modulation of spinal nociceptive neuronal 
activity during the course of inflammation. Eur. J. Neurosci 13, 230–
240. 

Deakin, J.F.W., Dostrovsky, J.O., 1978. Involvement of the periaqueductal 
grey matter and spinal 5-hydroxytryptaminergic pathways in 
morphine analgesia. Br J Pharmacol 63, 159–165. 

Decosterd, I., Woolf, C.J., 2000. Spared nerve injury: an animal model of 
persistent peripheral neuropathic pain. Pain 87, 149–158. 

Deval, E., Gasull, X., Noël, J., Salinas, M., Baron, A., Diochot, S., Lingueglia, E., 
2010. Acid-Sensing Ion Channels (ASICs): Pharmacology and 
implication in pain. Pharmacology & Therapeutics 128, 549–558. 

Dogrul, A., Ossipov, M.H., Porreca, F., 2009. Differential mediation of 
descending pain facilitation and inhibition by spinal 5HT-3 and 5HT-7 
receptors. Brain Research 1280, 52–59. 



References 

225 

 

Dogrul, A., Seyrek, M., 2006. Systemic morphine produce antinociception 
mediated by spinal 5-HT7, but not 5-HT1A and 5-HT2 receptors in the 
spinal cord. Br. J. Pharmacol. 149, 498–505. 

Doly, S., Fischer, J., Brisorgueil, M.-J., Vergé, D., Conrath, M., 2005. Pre- and 
postsynaptic localization of the 5-HT7 receptor in rat dorsal spinal 
cord: immunocytochemical evidence. J. Comp. Neurol. 490, 256–269. 

Donovan-Rodriguez, T., Urch, C.E., Dickenson, A.H., 2006. Evidence of a role 
for descending serotonergic facilitation in a rat model of cancer-
induced bone pain. Neurosci. Lett. 393, 237–242. 

Doyle, C.A., Hunt, S.P., 1999. Substance p receptor (neurokinin-1)-expressing 
neurons in lamina i of the spinal cord encode for the intensity of 
noxious stimulation: a c-fos study in rat. Neuroscience 89, 17–28. 

Drower, E.J., Hammond, D.L., 1988. GABAergic modulation of nociceptive 
threshold: effects of THIP and bicuculline microinjected in the ventral 
medulla of the rat. Brain Res. 450, 316–324. 

Duan, J., Sawynok, J., 1987. Enhancement of clonidine-induced analgesia by 
lesions induced with spinal and intracerebroventricular 
administration of 5,7-dihydroxytryptamine. Neuropharmacology 26, 
323–329. 

Dubuisson, D., Dennis, S.G., 1977. The formalin test: a quantitative study of 
the analgesic effects of morphine, meperidine, and brain stem 
stimulation in rats and cats. Pain 4, 161–174. 

Edwards, R.R., Wasan, A.D., Bingham, C.O., 3rd, Bathon, J., Haythornthwaite, 
J.A., Smith, M.T., Page, G.G., 2009. Enhanced reactivity to pain in 
patients with rheumatoid arthritis. Arthritis Res. Ther. 11, R61. 

Eijkelkamp, N., Linley, J.E., Baker, M.D., Minett, M.S., Cregg, R., 
Werdehausen, R., Rugiero, F., Wood, J.N., 2012. Neurological 
perspectives on voltage-gated sodium channels. Brain 135, 2585–
2612. 

Faris, P.L., Komisaruk, B.R., Watkins, L.R., Mayer, D.J., 1983. Evidence for the 
neuropeptide cholecystokinin as an antagonist of opiate analgesia. 
Science 219, 310–312. 

Fernandez, E.J., Lolis, E., 2002. Structure, Function, and Inhibition of 
Chemokines. Annual Review of Pharmacology and Toxicology 42, 
469–499. 

Fernihough, J., Gentry, C., Malcangio, M., Fox, A., Rediske, J., Pellas, T., Kidd, 
B., Bevan, S., Winter, J., 2004. Pain related behaviour in two models 
of osteoarthritis in the rat knee. Pain 112, 83–93. 

Fields, H., 2004. State-dependent opioid control of pain. Nature Reviews 
Neuroscience 5, 565–575. 

Fields, H.L., Bry, J., Hentall, I., Zorman, G., 1983. The activity of neurons in 
the rostral medulla of the rat during withdrawal from noxious heat. J. 
Neurosci. 3, 2545–2552. 



References 

226 

 

Fields, H.L., Heinricher, M.M., 1985. Anatomy and physiology of a 
nociceptive modulatory system. Philos. Trans. R. Soc. Lond., B, Biol. 
Sci. 308, 361–374. 

Fields, H.L., Heinricher, M.M., 1989. Brainstem Modulation of Nociceptor-
Driven Withdrawal Reflexes. Annals of the New York Academy of 
Sciences 563, 34–44. 

Fields, H.L., Heinricher, M.M., Mason, P., 1991. Neurotransmitters in 
Nociceptive Modulatory Circuits. Annual Review of Neuroscience 14, 
219–245. 

Fields, H.L., Malick, A., Burstein, R., 1995. Dorsal horn projection targets of 
ON and OFF cells in the rostral ventromedial medulla. J. 
Neurophysiol. 74, 1742–1759. 

Frankfurt, M., Azmitia, E., 1984. Regeneration of serotonergic fibers in the 
rat hypothalamus following unilateral 5,7-dihydroxytryptamine 
injection. Brain Res. 298, 273–282. 

Friedrich, A.E., Gebhart, G.F., 2003. Modulation of visceral hyperalgesia by 
morphine and cholecystokinin from the rat rostroventral medial 
medulla. Pain 104, 93–101. 

Fu, X., Wang, Y.-Q., Wang, J., Yu, J., Wu, G.-C., 2007. Changes in expression 
of nociceptin/orphanin FQ and its receptor in spinal dorsal horn 
during electroacupuncture treatment for peripheral inflammatory 
pain in rats. Peptides 28, 1220–1228. 

Gao, Y.-J., Ji, R.-R., 2010. Targeting astrocyte signaling for chronic pain. 
Neurotherapeutics 7, 482–493. 

Gao, Y.-J., Xu, Z.-Z., Liu, Y.-C., Wen, Y.-R., Decosterd, I., Ji, R.-R., 2010. The c-
Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the 
maintenance of bilateral mechanical allodynia under a persistent 
inflammatory pain condition. Pain 148, 309–319. 

Gardell, L.R., Vanderah, T.W., Gardell, S.E., Wang, R., Ossipov, M.H., Lai, J., 
Porreca, F., 2003. Enhanced evoked excitatory transmitter release in 
experimental neuropathy requires descending facilitation. J. Neurosci 
23, 8370–8379. 

Gauriau, C., Bernard, J.-F., 2002. Pain pathways and parabrachial circuits in 
the rat. Exp. Physiol. 87, 251–258. 

Gauriau, C., Bernard, J.-F., 2004. Posterior triangular thalamic neurons 
convey nociceptive messages to the secondary somatosensory and 
insular cortices in the rat. J. Neurosci. 24, 752–761. 

George Paxinos, 1998. The rat brain in stereotaxic coordinates / George 
Paxinos, Charles Watson. 

Géranton, S.M., Fratto, V., Tochiki, K.K., Hunt, S.P., 2008. Descending 
serotonergic controls regulate inflammation-induced mechanical 
sensitivity and methyl-CpG-binding protein 2 phosphorylation in the 
rat superficial dorsal horn. Mol Pain 4, 35. 

Géranton, S.M., Jiménez-Díaz, L., Torsney, C., Tochiki, K.K., Stuart, S.A., Leith, 
J.L., Lumb, B.M., Hunt, S.P., 2009. A rapamycin-sensitive signaling 



References 

227 

 

pathway is essential for the full expression of persistent pain states. 
J. Neurosci 29, 15017–15027. 

Géranton, S.M., Morenilla-Palao, C., Hunt, S.P., 2007. A role for 
transcriptional repressor methyl-CpG-binding protein 2 and 
plasticity-related gene serum- and glucocorticoid-inducible kinase 1 
in the induction of inflammatory pain states. J. Neurosci. 27, 6163–
6173. 

Géranton, S.M., Tochiki, K.K., Chiu, W.W., Stuart, S.A., Hunt, S.P., 2010. 
Injury induced activation of extracellular signal-regulated kinase 
(ERK) in the rat rostral ventromedial medulla (RVM) is age dependant 
and requires the lamina I projection pathway. Mol Pain 6, 54. 

Gilbert, A.-K., Franklin, K.B.., 2001. GABAergic modulation of descending 
inhibitory systems from the rostral ventromedial medulla (RVM). 
Dose-response analysis of nociception and neurological deficits. Pain 
90, 25–36. 

Gold, M.S., Gebhart, G.F., 2010. Nociceptor sensitization in pain 
pathogenesis. Nat. Med. 16, 1248–1257. 

Goldberg, Y.P., MacFarlane, J., MacDonald, M.L., Thompson, J., Dube, M.-P., 
Mattice, M., Fraser, R., Young, C., Hossain, S., Pape, T., Payne, B., 
Radomski, C., Donaldson, G., Ives, E., Cox, J., Younghusband, H.B., 
Green, R., Duff, A., Boltshauser, E., Grinspan, G.A., Dimon, J.H., 
Sibley, B.G., Andria, G., Toscano, E., Kerdraon, J., Bowsher, D., 
Pimstone, S.N., Samuels, M.E., Sherrington, R., Hayden, M.R., 2007. 
Loss-of-function mutations in the Nav1.7 gene underlie congenital 
indifference to pain in multiple human populations. Clin. Genet. 71, 
311–319. 

Gonçalves, L., Almeida, A., Pertovaara, A., 2007. Pronociceptive changes in 
response properties of rostroventromedial medullary neurons in a 
rat model of peripheral neuropathy. European Journal of 
Neuroscience 26, 2188–2195. 

González-Maeso, J., Ang, R.L., Yuen, T., Chan, P., Weisstaub, N.V., López-
Giménez, J.F., Zhou, M., Okawa, Y., Callado, L.F., Milligan, G., 
Gingrich, J.A., Filizola, M., Meana, J.J., Sealfon, S.C., 2008. 
Identification of a serotonin/glutamate receptor complex implicated 
in psychosis. Nature 452, 93–97. 

Graven-Nielsen, T., Wodehouse, T., Langford, R.M., Arendt-Nielsen, L., Kidd, 
B.L., 2012. Normalization of widespread hyperesthesia and facilitated 
spatial summation of deep-tissue pain in knee osteoarthritis patients 
after knee replacement. Arthritis & Rheumatism 64, 2907–2916. 

Griffin, R.S., Costigan, M., Brenner, G.J., Ma, C.H.E., Scholz, J., Moss, A., 
Allchorne, A.J., Stahl, G.L., Woolf, C.J., 2007. Complement induction 
in spinal cord microglia results in anaphylatoxin C5a-mediated pain 
hypersensitivity. J. Neurosci. 27, 8699–8708. 

Grubb, B.D., Stiller, R.U., Schaible, H.G., 1993. Dynamic changes in the 
receptive field properties of spinal cord neurons with ankle input in 



References 

228 

 

rats with chronic unilateral inflammation in the ankle region. Exp 
Brain Res 92, 441–452. 

Gu, M., Miyoshi, K., Dubner, R., Guo, W., Zou, S., Ren, K., Noguchi, K., Wei, 
F., 2011. Spinal 5-HT3 Receptor Activation Induces Behavioral 
Hypersensitivity via a Neuronal-Glial-Neuronal Signaling Cascade. The 
Journal of Neuroscience 31, 12823 –12836. 

Gu, M., Wessendorf, M., 2007. Endomorphin-2-immunoreactive fibers 
selectively appose serotonergic neuronal somata in the rostral 
ventral medial medulla. The Journal of Comparative Neurology 502, 
701–713. 

Guan, Y., Guo, W., Robbins, M.T., Dubner, R., Ren, K., 2004. Changes in 
AMPA receptor phosphorylation in the rostral ventromedial medulla 
after inflammatory hyperalgesia in rats. Neurosci. Lett. 366, 201–205. 

Guan, Y., Guo, W., Zou, S.-P., Dubner, R., Ren, K., 2003. Inflammation-
induced upregulation of AMPA receptor subunit expression in brain 
stem pain modulatory circuitry. Pain 104, 401–413. 

Gühring, H., Görig, M., Ates, M., Coste, O., Zeilhofer, H.U., Pahl, A., Rehse, K., 
Brune, K., 2000. Suppressed injury-induced rise in spinal 
prostaglandin E2 production and reduced early thermal hyperalgesia 
in iNOS-deficient mice. J. Neurosci. 20, 6714–6720. 

Guilbaud, G., Iggo, A., Tegnér, R., 1985. Sensory receptors in ankle joint 
capsules of normal and arthritic rats. Exp Brain Res 58, 29–40. 

Guo, W., Robbins, M.T., Wei, F., Zou, S., Dubner, R., Ren, K., 2006. 
Supraspinal Brain-Derived Neurotrophic Factor Signaling: A Novel 
Mechanism for Descending Pain Facilitation. The Journal of 
Neuroscience 26, 126 –137. 

Guo, W., Wang, H., Zou, S., Dubner, R., Ren, K., 2012. Chemokine signaling 
involving chemokine (C-C motif) ligand 2 plays a role in descending 
pain facilitation. Neurosci Bull 28, 193–207. 

Gutstein, H.B., Mansour, A., Watson, S.J., Akil, H., Fields, H.L., 1998. Mu and 
kappa opioid receptors in periaqueductal gray and rostral 
ventromedial medulla. Neuroreport 9, 1777–1781. 

Gwilym, S.E., Keltner, J.R., Warnaby, C.E., Carr, A.J., Chizh, B., Chessell, I., 
Tracey, I., 2009. Psychophysical and functional imaging evidence 
supporting the presence of central sensitization in a cohort of 
osteoarthritis patients. Arthritis Rheum. 61, 1226–1234. 

Hama, A.T., Fritschy, J.M., Hammond, D.L., 1997. Differential distribution of 
(GABA)A receptor subunits on bulbospinal serotonergic and 
nonserotonergic neurons of the ventromedial medulla of the rat. J. 
Comp. Neurol. 384, 337–348. 

Hannon, J., Hoyer, D., 2008. Molecular biology of 5-HT receptors. Behav. 
Brain Res. 195, 198–213. 

HARDY, J.D., WOLFF, H.G., GOODELL, H., 1950. Experimental evidence on the 
nature of cutaneous hyperalgesia. J. Clin. Invest. 29, 115–140. 



References 

229 

 

Hargreaves, K., Dubner, R., Brown, F., Flores, C., Joris, J., 1988. A new and 
sensitive method for measuring thermal nociception in cutaneous 
hyperalgesia. Pain 32, 77–88. 

Hay, C.., Trevethick, M.., Wheeldon, A., Bowers, J.., De Belleroche, J.., 1997. 
The potential role of spinal cord cyclooxygenase-2 in the 
development of Freund’s complete adjuvant-induced changes in 
hyperalgesia and allodynia. Neuroscience 78, 843–850. 

Heinricher, M.M., Kaplan, H.J., 1991. GABA-mediated inhibition in rostral 
ventromedial medulla: role in nociceptive modulation in the lightly 
anesthetized rat. Pain 47, 105–113. 

Heinricher, M.M., Morgan, M.M., Fields, H.L., 1992. Direct and indirect 
actions of morphine on medullary neurons that modulate 
nociception. Neuroscience 48, 533–543. 

Heinricher, M.M., Morgan, M.M., Tortorici, V., Fields, H.L., 1994. 
Disinhibition of off-cells and antinociception produced by an opioid 
action within the rostral ventromedial medulla. Neuroscience 63, 
279–288. 

Heinricher, M.M., Neubert, M.J., 2004. Neural basis for the hyperalgesic 
action of cholecystokinin in the rostral ventromedial medulla. J. 
Neurophysiol. 92, 1982–1989. 

Heinricher, M.M., Tavares, I., Leith, J.L., Lumb, B.M., 2009. Descending 
control of nociception: Specificity, recruitment and plasticity. Brain 
Research Reviews 60, 214–225. 

Herz, A., Albus, K., Metys, J., Schubert, P., Teschemacher, H., 1970. On the 
central sites for the antinociceptive action of morphine and fentanyl. 
Neuropharmacology 9, 539–551. 

Hossaini, M., Goos, J.A.C., Kohli, S.K., Holstege, J.C., 2012. Distribution of 
Glycine/GABA Neurons in the Ventromedial Medulla with 
Descending Spinal Projections and Evidence for an Ascending 
Glycine/GABA Projection. PLoS ONE 7, e35293. 

Howard, R.F., Walker, S.M., Mota, P.M., Fitzgerald, M., 2005. The ontogeny 
of neuropathic pain: postnatal onset of mechanical allodynia in rat 
spared nerve injury (SNI) and chronic constriction injury (CCI) models. 
Pain 115, 382–389. 

Huang, D.W., Sherman, B.T., Lempicki, R.A., 2009. Systematic and integrative 
analysis of large gene lists using DAVID bioinformatics resources. Nat 
Protoc 4, 44–57. 

Huang, J., Spier, A.D., Pickel, V.M., 2004. 5-HT3A receptor subunits in the rat 
medial nucleus of the solitary tract: subcellular distribution and 
relation to the serotonin transporter. Brain Res. 1028, 156–169. 

Huggett, J., Dheda, K., Bustin, S., Zumla, A., 2005. Real-time RT-PCR 
normalisation; strategies and considerations. Genes Immun. 6, 279–
284. 



References 

230 

 

Hughes, E.G., Elmariah, S.B., Balice-Gordon, R.J., 2010. Astrocyte secreted 
proteins selectively increase hippocampal GABAergic axon length, 
branching, and synaptogenesis. Mol. Cell. Neurosci. 43, 136–145. 

Hunt, S.P., Mantyh, P.W., 2001. The molecular dynamics of pain control. Nat. 
Rev. Neurosci. 2, 83–91. 

Hunt, S.P., Rossi, J., 1985. Peptide- and non-peptide-containing 
unmyelinated primary afferents: the parallel processing of 
nociceptive information. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 308, 
283–289. 

Iadevaia, V., Huo, Y., Zhang, Z., Foster, L.J., Proud, C.G., 2012. Roles of the 
mammalian target of rapamycin, mTOR, in controlling ribosome 
biogenesis and protein synthesis. Biochem. Soc. Trans. 40, 168–172. 

Ilkjaer, S., Petersen, K.L., Brennum, J., Wernberg, M., Dahl, J.B., 1996. Effect 
of systemic N-methyl-D-aspartate receptor antagonist (ketamine) on 
primary and secondary hyperalgesia in humans. Br J Anaesth 76, 
829–834. 

Imbe, H., Kimura, A., Okamoto, K., Donishi, T., Aikawa, F., Senba, E., Tamai, 
Y., 2008. Activation of ERK in the rostral ventromedial medulla is 
involved in hyperalgesia during peripheral inflammation. Brain Res. 
1187, 103–110. 

Imbe, H., Murakami, S., Okamoto, K., Iwai-Liao, Y., Senba, E., 2004. The 
effects of acute and chronic restraint stress on activation of ERK in 
the rostral ventromedial medulla and locus coeruleus. Pain 112, 361–
371. 

Imbe, H., Okamoto, K., Okamura, T., Kumabe, S., Nakatsuka, M., Aikawa, F., 
Iwai-Liao, Y., Senba, E., 2005. Effects of peripheral inflammation on 
activation of ERK in the rostral ventromedial medulla. Brain Res. 
1063, 151–158. 

Impey, S., Obrietan, K., Storm, D.R., 1999a. Making New Connections: Role 
of ERK/MAP Kinase Signaling in Neuronal Plasticity. Neuron 23, 11–
14. 

Impey, S., Obrietan, K., Storm, D.R., 1999b. Making New Connections: Role 
of ERK/MAP Kinase Signaling in Neuronal Plasticity. Neuron 23, 11–
14. 

Infante, C., Díaz, M., Hernández, A., Constandil, L., Pelissier, T., 2007. 
Expression of nitric oxide synthase isoforms in the dorsal horn of 
monoarthritic rats: effects of competitive and uncompetitive N-
methyl-D-aspartate antagonists. Arthritis Res. Ther. 9, R53. 

Inglis, J.J., McNamee, K.E., Chia, S.-L., Essex, D., Feldmann, M., Williams, 
R.O., Hunt, S.P., Vincent, T., 2008. Regulation of pain sensitivity in 
experimental osteoarthritis by the endogenous peripheral opioid 
system. Arthritis & Rheumatism 58, 3110–3119. 

Inglis, J.J., Notley, C.A., Essex, D., Wilson, A.W., Feldmann, M., Anand, P., 
Williams, R., 2007. Collagen-induced arthritis as a model of 



References 

231 

 

hyperalgesia: functional and cellular analysis of the analgesic actions 
of tumor necrosis factor blockade. Arthritis Rheum. 56, 4015–4023. 

Ivanavicius, S.P., Blake, D.R., Chessell, I.P., Mapp, P.I., 2004. Isolectin B4 
binding neurons are not present in the rat knee joint. Neuroscience 
128, 555–560. 

Jenh, C.-H., Cox, M.A., Cui, L., Reich, E.-P., Sullivan, L., Chen, S.-C., Kinsley, D., 
Qian, S., Kim, S.H., Rosenblum, S., Kozlowski, J., Fine, J.S., Zavodny, 
P.J., Lundell, D., 2012. A selective and potent CXCR3 antagonist SCH 
546738 attenuates the development of autoimmune diseases and 
delays graft rejection. BMC immunology 13, 2. 

Ji, R.R., Baba, H., Brenner, G.J., Woolf, C.J., 1999. Nociceptive-specific 
activation of ERK in spinal neurons contributes to pain 
hypersensitivity. Nat. Neurosci. 2, 1114–1119. 

Ji, R.-R., Befort, K., Brenner, G.J., Woolf, C.J., 2002. ERK MAP kinase 
activation in superficial spinal cord neurons induces prodynorphin 
and NK-1 upregulation and contributes to persistent inflammatory 
pain hypersensitivity. J. Neurosci. 22, 478–485. 

Ji, R.-R., Gereau IV, R.W., Malcangio, M., Strichartz, G.R., 2009. MAP kinase 
and pain. Brain Research Reviews 60, 135–148. 

Jimenez-Andrade, J.M., Mantyh, W.G., Bloom, A.P., Xu, H., Ferng, A.S., 
Dussor, G., Vanderah, T.W., Mantyh, P.W., 2010. A phenotypically 
restricted set of primary afferent nerve fibers innervate the bone 
versus skin: Therapeutic opportunity for treating skeletal pain. Bone 
46, 306–313. 

Jiménez-Díaz, L., Géranton, S.M., Passmore, G.M., Leith, J.L., Fisher, A.S., 
Berliocchi, L., Sivasubramaniam, A.K., Sheasby, A., Lumb, B.M., Hunt, 
S.P., 2008. Local translation in primary afferent fibers regulates 
nociception. PLoS ONE 3, e1961. 

Jones, B.E., Holmes, C.J., Rodriguez-Veiga, E., Mainville, L., 1991. GABA-
synthesizing neurons in the medulla: their relationship to serotonin-
containing and spinally projecting neurons in the rat. J. Comp. 
Neurol. 313, 349–367. 

Julius, D., Basbaum, A.I., 2001. Molecular mechanisms of nociception. 
Nature 413, 203–210. 

Kalyuzhny, A.E., Wessendorf, M.W., 1998. Relationship of mu- and delta-
opioid receptors to GABAergic neurons in the central nervous 
system, including antinociceptive brainstem circuits. J. Comp. Neurol. 
392, 528–547. 

Kaplan, H., Fields, H.L., 1991. Hyperalgesia during acute opioid abstinence: 
evidence for a nociceptive facilitating function of the rostral 
ventromedial medulla. The Journal of Neuroscience 11, 1433–1439. 

Kauppila, T., Kontinen, V.K., Pertovaara, A., 1998. Influence of spinalization 
on spinal withdrawal reflex responses varies depending on the 
submodality of the test stimulus and the experimental 
pathophysiological condition in the rat. Brain Res. 797, 234–242. 



References 

232 

 

Kawasaki, Y., Kohno, T., Zhuang, Z.-Y., Brenner, G.J., Wang, H., Van Der 
Meer, C., Befort, K., Woolf, C.J., Ji, R.-R., 2004. Ionotropic and 
metabotropic receptors, protein kinase A, protein kinase C, and Src 
contribute to C-fiber-induced ERK activation and cAMP response 
element-binding protein phosphorylation in dorsal horn neurons, 
leading to central sensitization. J. Neurosci 24, 8310–8321. 

Kawasaki, Y., Zhang, L., Cheng, J.-K., Ji, R.-R., 2008. Cytokine Mechanisms of 
Central Sensitization: Distinct and Overlapping Role of Interleukin-1β, 
Interleukin-6, and Tumor Necrosis Factor-α in Regulating Synaptic 
and Neuronal Activity in the Superficial Spinal Cord. J. Neurosci. 28, 
5189–5194. 

Kidd, B., Langford, R., Wodehouse, T., 2007. Arthritis and pain. Current 
approaches in the treatment of arthritic pain. Arthritis Research & 
Therapy 9, 214. 

Kim, S.E., Coste, B., Chadha, A., Cook, B., Patapoutian, A., 2012. The role of 
Drosophila Piezo in mechanical nociception. Nature 483, 209–212. 

Kim, S.J., Thomas, K.S., Calejesan, A.A., Zhuo, M., 1998. Macromolecular 
synthesis contributes to nociceptive response to subcutaneous 
formalin injection in mice. Neuropharmacology 37, 1091–1093. 

Kincaid, W., Neubert, M.J., Xu, M., Kim, C.J., Heinricher, M.M., 2006. Role for 
medullary pain facilitating neurons in secondary thermal 
hyperalgesia. J. Neurophysiol. 95, 33–41. 

King, T., Vera-Portocarrero, L., Gutierrez, T., Vanderah, T.W., Dussor, G., Lai, 
J., Fields, H.L., Porreca, F., 2009. Unmasking the tonic-aversive state 
in neuropathic pain. Nat. Neurosci. 12, 1364–1366. 

Kovelowski, C.J., Ossipov, M.H., Sun, H., Lai, J., Malan, T.P., Porreca, F., 2000. 
Supraspinal cholecystokinin may drive tonic descending facilitation 
mechanisms to maintain neuropathic pain in the rat. Pain 87, 265–
273. 

Kuboyama, K., Tsuda, M., Tsutsui, M., Toyohara, Y., Tozaki-Saitoh, H., 
Shimokawa, H., Yanagihara, N., Inoue, K., 2011. Reduced spinal 
microglial activation and neuropathic pain after nerve injury in mice 
lacking all three nitric oxide synthases. Molecular Pain 7, 50. 

Kuner, R., 2010. Central mechanisms of pathological pain. Nat. Med. 16, 
1258–1266. 

Kwiat, G.C., Basbaum, A.I., 1992. The origin of brainstem noradrenergic and 
serotonergic projections to the spinal cord dorsal horn in the rat. 
Somatosens Mot Res 9, 157–173. 

Lacroix-Fralish, M.L., Tawfik, V.L., Tanga, F.Y., Spratt, K.F., DeLeo, J.A., 2006. 
Differential spinal cord gene expression in rodent models of radicular 
and neuropathic pain. Anesthesiology 104, 1283–1292. 

LaGraize, S.C., Guo, W., Yang, K., Wei, F., Ren, K., Dubner, R., 2010. Spinal 
cord mechanisms mediating behavioral hyperalgesia induced by 
neurokinin-1 tachykinin receptor activation in the rostral 
ventromedial medulla. Neuroscience 171, 1341–1356. 



References 

233 

 

Laragione, T., Brenner, M., Sherry, B., Gulko, P.S., 2011. CXCL10 and its 
receptor CXCR3 regulate synovial fibroblast invasion in rheumatoid 
arthritis. Arthritis Rheum. 63, 3274–3283. 

Latremoliere, A., Woolf, C.J., 2009. Central Sensitization: A Generator of Pain 
Hypersensitivity by Central Neural Plasticity. The Journal of Pain 10, 
895–926. 

Lee, D.M., Weinblatt, M.E., 2001. Rheumatoid arthritis. Lancet 358, 903–
911. 

Lee, Y., Nassikas, N., Clauw, D., 2011a. The role of the central nervous 
system in the generation and maintenance of chronic pain in 
rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis 
Research & Therapy 13, 211. 

Lee, Y., Pai, M., Brederson, J.-D., Wilcox, D., Hsieh, G., Jarvis, M.F., Bitner, 
R.S., 2011b. Monosodium iodoacetate-induced joint pain is 
associated with increased phosphorylation of mitogen activated 
protein kinases in the rat spinal cord. Mol Pain 7, 39. 

Lewis, T., 1938. Study of Somatic Pain. Br Med J 1, 321–325. 
Light, A.R., Casale, E.J., Menétrey, D.M., 1986. The effects of focal 

stimulation in nucleus raphe magnus and periaqueductal gray on 
intracellularly recorded neurons in spinal laminae I and II. J. 
Neurophysiol. 56, 555–571. 

Linley, J.E., Rose, K., Ooi, L., Gamper, N., 2010. Understanding inflammatory 
pain: ion channels contributing to acute and chronic nociception. 
Pflugers Arch. 459, 657–669. 

Löken, L.S., Wessberg, J., Morrison, I., McGlone, F., Olausson, H., 2009. 
Coding of pleasant touch by unmyelinated afferents in humans. 
Nature Neuroscience 12, 547–548. 

Luo, C., Gangadharan, V., Bali, K.K., Xie, R.-G., Agarwal, N., Kurejova, M., 
Tappe-Theodor, A., Tegeder, I., Feil, S., Lewin, G., Polgar, E., Todd, 
A.J., Schlossmann, J., Hofmann, F., Liu, D.-L., Hu, S.-J., Feil, R., Kuner, 
T., Kuner, R., 2012. Presynaptically Localized Cyclic GMP-Dependent 
Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation 
and Pain Hypersensitivity. PLoS Biol 10, e1001283. 

MacMicking, J., Xie, Q., Nathan, C., 1997. Nitric Oxide and Macrophage 
Function. Annual Review of Immunology 15, 323–350. 

Malmberg, A.B., Chen, C., Tonegawa, S., Basbaum, A.I., 1997. Preserved 
Acute Pain and Reduced Neuropathic Pain in Mice Lacking PKCγ. 
Science 278, 279–283. 

Malmberg, A.B., Yaksh, T.L., 1993. Spinal nitric oxide synthesis inhibition 
blocks NMDA-induced thermal hyperalgesia and produces 
antinociception in the formalin test in rats. Pain 54, 291–300. 

Mansikka, H., Pertovaara, A., 1997. Supraspinal influence on hindlimb 
withdrawal thresholds and mustard oil-induced secondary allodynia 
in rats. Brain Res. Bull. 42, 359–365. 



References 

234 

 

Mansour, A., Fox, C.A., Burke, S., Meng, F., Thompson, R.C., Akil, H., Watson, 
S.J., 1994. Mu, delta, and kappa opioid receptor mRNA expression in 
the rat CNS: an in situ hybridization study. J. Comp. Neurol. 350, 412–
438. 

Mantyh, P.W., Hunt, S.P., 1984. Evidence for cholecystokinin-like 
immunoreactive neurons in the rat medulla oblongata which project 
to the spinal cord. Brain Res. 291, 49–54. 

Mantyh, P.W., Rogers, S.D., Honore, P., Allen, B.J., Ghilardi, J.R., Li, J., 
Daughters, R.S., Lappi, D.A., Wiley, R.G., Simone, D.A., 1997. 
Inhibition of hyperalgesia by ablation of lamina I spinal neurons 
expressing the substance P receptor. Science 278, 275–279. 

Marinelli, S., Vaughan, C.W., Schnell, S.A., Wessendorf, M.W., Christie, M.J., 
2002. Rostral Ventromedial Medulla Neurons That Project to the 
Spinal Cord Express Multiple Opioid Receptor Phenotypes. The 
Journal of Neuroscience 22, 10847–10855. 

Marshall, T.M., Herman, D.S., Largent-Milnes, T.M., Badghisi, H., Zuber, K., 
Holt, S.C., Lai, J., Porreca, F., Vanderah, T.W., 2012. Activation of 
descending pain-facilitatory pathways from the rostral ventromedial 
medulla by cholecystokinin elicits release of prostaglandin-E2 in the 
spinal cord. PAIN 153, 86–94. 

Martens, H., Weston, M.C., Boulland, J.-L., Grønborg, M., Grosche, J., Kacza, 
J., Hoffmann, A., Matteoli, M., Takamori, S., Harkany, T., Chaudhry, 
F.A., Rosenmund, C., Erck, C., Jahn, R., Härtig, W., 2008. Unique 
luminal localization of VGAT-C terminus allows for selective labeling 
of active cortical GABAergic synapses. J. Neurosci. 28, 13125–13131. 

Martin, W.J., Malmberg, A.B., Basbaum, A.I., 2001. PKCgamma contributes 
to a subset of the NMDA-dependent spinal circuits that underlie 
injury-induced persistent pain. J. Neurosci. 21, 5321–5327. 

Maxwell, D.J., Kerr, R., Rashid, S., Anderson, E., 2003. Characterisation of 
axon terminals in the rat dorsal horn that are immunoreactive for 
serotonin 5-HT3A receptor subunits. Exp Brain Res 149, 114–124. 

Mayer, M.L., Westbrook, G.L., Guthrie, P.B., 1984. Voltage-dependent block 
by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 
261–263. 

McCleane, G.J., Suzuki, R., Dickenson, A.H., 2003. Does a single intravenous 
injection of the 5HT3 receptor antagonist ondansetron have an 
analgesic effect in neuropathic pain? A double-blinded, placebo-
controlled cross-over study. Anesth. Analg. 97, 1474–1478. 

Meller, S.T., Cummings, C.P., Traub, R.J., Gebhart, G.F., 1994a. The role of 
nitric oxide in the development and maintenance of the hyperalgesia 
produced by intraplantar injection of carrageenan in the rat. 
Neuroscience 60, 367–374. 

Meller, S.T., Dykstra, C., Grzybycki, D., Murphy, S., Gebhart, G.F., 1994b. The 
possible role of glia in nociceptive processing and hyperalgesia in the 
spinal cord of the rat. Neuropharmacology 33, 1471–1478. 



References 

235 

 

Melzack, R., Wall, P.D., Ty, T.C., 1982. Acute pain in an emergency clinic: 
latency of onset and descriptor patterns related to different injuries. 
Pain 14, 33–43. 

Mense, S., Prabhakar, N.R., 1986. Spinal termination of nociceptive afferent 
fibres from deep tissues in the cat. Neurosci. Lett. 66, 169–174. 

Miki, K., Zhou, Q.-Q., Guo, W., Guan, Y., Terayama, R., Dubner, R., Ren, K., 
2002. Changes in Gene Expression and Neuronal Phenotype in Brain 
Stem Pain Modulatory Circuitry After Inflammation. Journal of 
Neurophysiology 87, 750 –760. 

Millan, M.J., 2002. Descending control of pain. Prog. Neurobiol. 66, 355–474. 
Mills, C., Leblond, D., Joshi, S., Zhu, C., Hsieh, G., Jacobson, P., Meyer, M., 

Decker, M., 2012. Estimating efficacy and drug ED50’s using von Frey 
thresholds: impact of weber’s law and log transformation. J Pain 13, 
519–523. 

Mitchell, K., Yang, H.-Y.T., Tessier, P.A., Muhly, W.T., Swaim, W.D., 
Szalayova, I., Keller, J.M., Mezey, E., Iadarola, M.J., 2008. Localization 
of S100A8 and S100A9 expressing neutrophils to spinal cord during 
peripheral tissue inflammation. Pain 134, 216–231. 

Mogil, J.S., 2009. Animal models of pain: progress and challenges. Nat. Rev. 
Neurosci. 10, 283–294. 

Mogil, J.S., McCarson, K.E., 2000. Identifying pain genes: Bottom-up and top-
down approaches. The Journal of Pain 1, 66–80. 

Moore, P.K., Oluyomi, A.O., Babbedge, R.C., Wallace, P., Hart, S.L., 1991. L-
NG-nitro arginine methyl ester exhibits antinociceptive activity in the 
mouse. Br. J. Pharmacol. 102, 198–202. 

Morris, V.H., Cruwys, S.C., Kidd, B.L., 1997. Characterisation of capsaicin-
induced mechanical hyperalgesia as a marker for altered nociceptive 
processing in patients with rheumatoid arthritis. Pain 71, 179–186. 

Müller, M., Carter, S., Hofer, M.J., Campbell, I.L., 2010. Review: The 
chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and 
CXCL11 in neuroimmunity – a tale of conflict and conundrum. 
Neuropathology and Applied Neurobiology 36, 368–387. 

Naeini, R.S., Cahill, C.M., Ribeiro-da-Silva, A., Ménard, H.A., Henry, J.L., 2005. 
Remodelling of spinal nociceptive mechanisms in an animal model of 
monoarthritis. European Journal of Neuroscience 22, 2005–2015. 

Nagy, J.I., Hunt, S.P., 1982. Fluoride-resistant acid phosphatase-containing 
neurones in dorsal root ganglia are separate from those containing 
substance P or somatostatin. Neuroscience 7, 89–97. 

Nakajima, T., Ohtori, S., Inoue, G., Koshi, T., Yamamoto, S., Nakamura, J., 
Takahashi, K., Harada, Y., 2008. The characteristics of dorsal-root 
ganglia and sensory innervation of the hip in rats. J Bone Joint Surg Br 
90-B, 254–257. 

Nassar, M.A., Stirling, L.C., Forlani, G., Baker, M.D., Matthews, E.A., 
Dickenson, A.H., Wood, J.N., 2004. Nociceptor-specific gene deletion 



References 

236 

 

reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. 
Proc. Natl. Acad. Sci. U.S.A. 101, 12706–12711. 

Neugebauer, V., Han, J.S., Adwanikar, H., Fu, Y., Ji, G., 2007. Techniques for 
assessing knee joint pain in arthritis. Mol Pain 3, 8. 

Neugebauer, V., Lücke, T., Schaible, H.G., 1993. Differential effects of N-
methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists on 
the responses of rat spinal neurons with joint input. Neurosci. Lett. 
155, 29–32. 

Neugebauer, V., Schaible, H.G., 1990. Evidence for a central component in 
the sensitization of spinal neurons with joint input during 
development of acute arthritis in cat’s knee. J Neurophysiol 64, 299–
311. 

Neugebauer, V., Schaible, H.G., Weiretter, F., Freudenberger, U., 1994. The 
involvement of substance P and neurokinin-1 receptors in the 
responses of rat dorsal horn neurons to noxious but not to innocuous 
mechanical stimuli applied to the knee joint. Brain Res. 666, 207–
215. 

Neugebauer, V., Vanegas, H., Nebe, J., Rümenapp, P., Schaible, H.G., 1996. 
Effects of N- and L-type calcium channel antagonists on the 
responses of nociceptive spinal cord neurons to mechanical 
stimulation of the normal and the inflamed knee joint. J. 
Neurophysiol. 76, 3740–3749. 

Nichols, M.L., Allen, B.J., Rogers, S.D., Ghilardi, J.R., Honore, P., Luger, N.M., 
Finke, M.P., Li, J., Lappi, D.A., Simone, D.A., Mantyh, P.W., 1999. 
Transmission of chronic nociception by spinal neurons expressing the 
substance P receptor. Science 286, 1558–1561. 

Nielsen, K., Brask, D., Knudsen, G.M., Aznar, S., 2006. Immunodetection of 
the serotonin transporter protein is a more valid marker for 
serotonergic fibers than serotonin. Synapse 59, 270–276. 

Nishimune, H., Vasseur, S., Wiese, S., Birling, M.C., Holtmann, B., Sendtner, 
M., Iovanna, J.L., Henderson, C.E., 2000. Reg-2 is a motoneuron 
neurotrophic factor and a signalling intermediate in the CNTF survival 
pathway. Nat. Cell Biol. 2, 906–914. 

Nitanda, A., Yasunami, N., Tokumo, K., Fujii, H., Hirai, T., Nishio, H., 2005. 
Contribution of the peripheral 5-HT 2A receptor to mechanical 
hyperalgesia in a rat model of neuropathic pain. Neurochem. Int. 47, 
394–400. 

Norsted Gregory, E., Codeluppi, S., Gregory, J.A., Steinauer, J., Svensson, C.I., 
2010. Mammalian target of rapamycin in spinal cord neurons 
mediates hypersensitivity induced by peripheral inflammation. 
Neuroscience 169, 1392–1402. 

Oatway, M.A., Chen, Y., Weaver, L.C., 2004. The 5-HT3 receptor facilitates 
at-level mechanical allodynia following spinal cord injury. Pain 110, 
259–268. 



References 

237 

 

Obara, I., Tochiki, K.K., Géranton, S.M., Carr, F.B., Lumb, B.M., Liu, Q., Hunt, 
S.P., 2011. Systemic inhibition of the mammalian target of rapamycin 
(mTOR) pathway reduces neuropathic pain in mice. Pain 152, 2582–
2595. 

Obata, H., Saito, S., Sakurazawa, S., Sasaki, M., Usui, T., Goto, F., 2004. 
Antiallodynic effects of intrathecally administered 5-HT(2C) receptor 
agonists in rats with nerve injury. Pain 108, 163–169. 

Obata, H., Saito, S., Sasaki, M., Ishizaki, K., Goto, F., 2001. Antiallodynic 
effect of intrathecally administered 5-HT(2) agonists in rats with 
nerve ligation. Pain 90, 173–179. 

Obreja, O., Biasio, W., Andratsch, M., Lips, K.S., Rathee, P.K., Ludwig, A., 
Rose-John, S., Kress, M., 2005. Fast modulation of heat-activated 
ionic current by proinflammatory interleukin 6 in rat sensory 
neurons. Brain 128, 1634–1641. 

Oh, S.B., Tran, P.B., Gillard, S.E., Hurley, R.W., Hammond, D.L., Miller, R.J., 
2001. Chemokines and glycoprotein120 produce pain 
hypersensitivity by directly exciting primary nociceptive neurons. J. 
Neurosci. 21, 5027–5035. 

Okamoto, K., Imbe, H., Tashiro, A., Kumabe, S., Senba, E., 2004. Blockade of 
peripheral 5HT3 receptor attenuates the formalin-induced 
nocifensive behavior in persistent temporomandibular joint 
inflammation of rat. Neurosci. Lett. 367, 259–263. 

Old, E.A., Malcangio, M., 2012. Chemokine mediated neuron-glia 
communication and aberrant signalling in neuropathic pain states. 
Curr Opin Pharmacol 12, 67–73. 

Ossipov, M.H., Dussor, G.O., Porreca, F., 2010. Central modulation of pain. J. 
Clin. Invest. 120, 3779–3787. 

Oyama, T., Ueda, M., Kuraishi, Y., Akaike, A., Satoh, M., 1996. Dual effect of 
serotonin on formalin-induced nociception in the rat spinal cord. 
Neurosci. Res. 25, 129–135. 

Oz, M., Zhang, L., Morales, M., 2002. Endogenous cannabinoid, anandamide, 
acts as a noncompetitive inhibitor on 5-HT3 receptor-mediated 
responses in Xenopus oocytes. Synapse 46, 150–156. 

Palygin, O., Lalo, U., Verkhratsky, A., Pankratov, Y., 2010. Ionotropic NMDA 
and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in 
cortical astrocytes. Cell Calcium 48, 225–231. 

Pan, Z.Z., Tershner, S.A., Fields, H.L., 1997. Cellular mechanism for anti-
analgesic action of agonists of the kappa-opioid receptor. Nature 
389, 382–385. 

Pertovaara, A., 2000. Plasticity in descending pain modulatory systems. Prog. 
Brain Res. 129, 231–242. 

Pertovaara, A., Wei, H., Hämäläinen, M.M., 1996. Lidocaine in the 
rostroventromedial medulla and the periaqueductal gray attenuates 
allodynia in neuropathic rats. Neurosci. Lett. 218, 127–130. 



References 

238 

 

Pezet, S., Malcangio, M., Lever, I.J., Perkinton, M.S., Thompson, S.W.N., 
Williams, R.J., McMahon, S.B., 2002. Noxious stimulation induces Trk 
receptor and downstream ERK phosphorylation in spinal dorsal horn. 
Mol. Cell. Neurosci. 21, 684–695. 

Phillips, R.S., Cleary, D.R., Nalwalk, J.W., Arttamangkul, S., Hough, L.B., 
Heinricher, M.M., 2012. Pain-facilitating medullary neurons 
contribute to opioid-induced respiratory depression. J. Neurophysiol. 

Plenderleith, M.B., Snow, P.J., 1993. The plant lectin Bandeiraea simplicifolia 
I-B4 identifies a subpopulation of small diameter primary sensory 
neurones which innervate the skin in the rat. Neurosci. Lett. 159, 17–
20. 

Poh, K.-W., Yeo, J.-F., Stohler, C.S., Ong, W.-Y., 2012. Comprehensive Gene 
Expression Profiling in the Prefrontal Cortex Links Immune Activation 
and Neutrophil Infiltration to Antinociception. J. Neurosci. 32, 35–45. 

Porreca, F., Burgess, S.E., Gardell, L.R., Vanderah, T.W., Malan, T.P., Ossipov, 
M.H., Lappi, D.A., Lai, J., 2001. Inhibition of neuropathic pain by 
selective ablation of brainstem medullary cells expressing the mu-
opioid receptor. J. Neurosci 21, 5281–5288. 

Potrebic, S.B., Fields, H.L., Mason, P., 1994. Serotonin immunoreactivity is 
contained in one physiological cell class in the rat rostral 
ventromedial medulla. J. Neurosci. 14, 1655–1665. 

Raghavendra, V., Tanga, F., DeLeo, J.A., 2003. Inhibition of microglial 
activation attenuates the development but not existing 
hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. 
Ther. 306, 624–630. 

Raghavendra, V., Tanga, F.Y., DeLeo, J.A., 2004. Complete Freunds adjuvant-
induced peripheral inflammation evokes glial activation and 
proinflammatory cytokine expression in the CNS. Eur. J. Neurosci 20, 
467–473. 

Rahman, W., Bauer, C.S., Bannister, K., Vonsy, J.-L., Dolphin, A.C., Dickenson, 
A.H., 2009. Descending serotonergic facilitation and the 
antinociceptive effects of pregabalin in a rat model of osteoarthritic 
pain. Mol Pain 5, 45. 

Rahman, W., Suzuki, R., Webber, M., Hunt, S.P., Dickenson, A.H., 2006. 
Depletion of endogenous spinal 5-HT attenuates the behavioural 
hypersensitivity to mechanical and cooling stimuli induced by spinal 
nerve ligation. Pain 123, 264–274. 

RANDALL, L.O., SELITTO, J.J., 1957. A method for measurement of analgesic 
activity on inflamed tissue. Arch Int Pharmacodyn Ther 111, 409–419. 

Ransohoff, R.M., Liu, L., Cardona, A.E., 2007. Chemokines and chemokine 
receptors: multipurpose players in neuroinflammation. Int. Rev. 
Neurobiol. 82, 187–204. 

Raouf, R., Quick, K., Wood, J.N., 2010. Pain as a channelopathy. J. Clin. 
Invest. 120, 3745–3752. 



References 

239 

 

Reichling, D.B., Basbaum, A.I., 1990. Contribution of brainstem GABAergic 
circuitry to descending antinociceptive controls: I. GABA-
immunoreactive projection neurons in the periaqueductal gray and 
nucleus raphe magnus. J. Comp. Neurol. 302, 370–377. 

Reid, K.J., Harker, J., Bala, M.M., Truyers, C., Kellen, E., Bekkering, G.E., 
Kleijnen, J., 2011. Epidemiology of chronic non-cancer pain in 
Europe: narrative review of prevalence, pain treatments and pain 
impact. Curr Med Res Opin 27, 449–462. 

Ren, K., Dubner, R., 1996. Enhanced descending modulation of nociception 
in rats with persistent hindpaw inflammation. Journal of 
Neurophysiology 76, 3025 –3037. 

Ren, K., Dubner, R., 2010. Interactions between the immune and nervous 
systems in pain. Nat. Med. 16, 1267–1276. 

Ren, K., Novikova, S.I., He, F., Dubner, R., Lidow, M.S., 2005. Neonatal local 
noxious insult affects gene expression in the spinal dorsal horn of 
adult rats. Mol Pain 1, 27. 

Ren, W., Neugebauer, V., 2010. Pain-related increase of excitatory 
transmission and decrease of inhibitory transmission in the central 
nucleus of the amygdala are mediated by mGluR1. Molecular Pain 6, 
93. 

REXED, B., 1952. The cytoarchitectonic organization of the spinal cord in the 
cat. J. Comp. Neurol. 96, 414–495. 

Reynolds, D.V., 1969. Surgery in the rat during electrical analgesia induced 
by focal brain stimulation. Science 164, 444–445. 

Reynolds, J., Bilsky, E.J., Meng, I.D., 2011. Selective ablation of mu-opioid 
receptor expressing neurons in the rostral ventromedial medulla 
attenuates stress-induced mechanical hypersensitivity. Life Sciences 
89, 313–319. 

Rieker, C., Engblom, D., Kreiner, G., Domanskyi, A., Schober, A., Stotz, S., 
Neumann, M., Yuan, X., Grummt, I., Schütz, G., Parlato, R., 2011. 
Nucleolar disruption in dopaminergic neurons leads to oxidative 
damage and parkinsonism through repression of mammalian target 
of rapamycin signaling. J. Neurosci. 31, 453–460. 

Rivat, C., Becker, C., Blugeot, A., Zeau, B., Mauborgne, A., Pohl, M., Benoliel, 
J.-J., 2010. Chronic stress induces transient spinal 
neuroinflammation, triggering sensory hypersensitivity and long-
lasting anxiety-induced hyperalgesia. PAIN 150, 358–368. 

Roberts, J., Ossipov, M.H., Porreca, F., 2009. Glial activation in the 
rostroventromedial medulla promotes descending facilitation to 
mediate inflammatory hypersensitivity. Eur. J. Neurosci. 30, 229–241. 

Robertson, B., Xu, X.J., Hao, J.X., Wiesenfeld-Hallin, Z., Mhlanga, J., Grant, G., 
Kristensson, K., 1997. Interferon-gamma receptors in nociceptive 
pathways: role in neuropathic pain-related behaviour. Neuroreport 
8, 1311–1316. 



References 

240 

 

Rodriguez Parkitna, J., Korostynski, M., Kaminska-Chowaniec, D., Obara, I., 
Mika, J., Przewlocka, B., Przewlocki, R., 2006. Comparison of gene 
expression profiles in neuropathic and inflammatory pain. J. Physiol. 
Pharmacol. 57, 401–414. 

Ruda, M.A., 1988. Spinal dorsal horn circuitry involved in the brain stem 
control of nociception. Prog. Brain Res. 77, 129–140. 

Ruda, M.A., Bennett, G.J., Dubner, R., 1986. Neurochemistry and neural 
circuitry in the dorsal horn. Prog. Brain Res. 66, 219–268. 

Rygh, L.J., Suzuki, R., Rahman, W., Wong, Y., Vonsy, J.L., Sandhu, H., Webber, 
M., Hunt, S., Dickenson, A.H., 2006. Local and descending circuits 
regulate long-term potentiation and zif268 expression in spinal 
neurons. Eur. J. Neurosci. 24, 761–772. 

Sagar, D.R., Burston, J.J., Hathway, G.J., Woodhams, S.G., Pearson, R.G., 
Bennett, A.J., Kendall, D.A., Scammell, B.E., Chapman, V., 2011. The 
contribution of spinal glial cells to chronic pain behaviour in the 
monosodium iodoacetate model of osteoarthritic pain. Mol Pain 7, 
88. 

Sagar, D.R., Staniaszek, L.E., Okine, B.N., Woodhams, S., Norris, L.M., 
Pearson, R.G., Garle, M.J., Alexander, S.P.H., Bennett, A.J., Barrett, 
D.A., Kendall, D.A., Scammell, B.E., Chapman, V., 2010. Tonic 
modulation of spinal hyperexcitability by the endocannabinoid 
receptor system in a rat model of osteoarthritis pain. Arthritis & 
Rheumatism 62, 3666–3676. 

Sallusto, F., Baggiolini, M., 2008. Chemokines and leukocyte traffic. Nature 
Immunology 9, 949–952. 

Salter, M.W., Henry, J.L., 1991. Responses of functionally identified neurones 
in the dorsal horn of the cat spinal cord to substance P, neurokinin A 
and physalaemin. Neuroscience 43, 601–610. 

Samad, T.A., Moore, K.A., Sapirstein, A., Billet, S., Allchorne, A., Poole, S., 
Bonventre, J.V., Woolf, C.J., 2001. Interleukin-1beta-mediated 
induction of Cox-2 in the CNS contributes to inflammatory pain 
hypersensitivity. Nature 410, 471–475. 

Sanoja, R., Tortorici, V., Fernandez, C., Price, T.J., Cervero, F., 2010. Role of 
RVM neurons in capsaicin-evoked visceral nociception and referred 
hyperalgesia. Eur J Pain 14, 120.e1–9. 

Schaible, H.-G., Ebersberger, A., Natura, G., 2011. Update on peripheral 
mechanisms of pain: beyond prostaglandins and cytokines. Arthritis 
Research & Therapy 13, 210. 

Schaible, H.-G., Grubb, B.D., 1993. Afferent and spinal mechanisms of joint 
pain. Pain 55, 5–54. 

Schaible, H.G., Neugebauer, V., Cervero, F., Schmidt, R.F., 1991. Changes in 
tonic descending inhibition of spinal neurons with articular input 
during the development of acute arthritis in the cat. Journal of 
Neurophysiology 66, 1021 –1032. 



References 

241 

 

Schaible, H.-G., Richter, F., Ebersberger, A., Boettger, M.K., Vanegas, H., 
Natura, G., Vazquez, E., Segond von Banchet, G., 2009. Joint pain. Exp 
Brain Res 196, 153–162. 

Schaible, H.G., Schmidt, R.F., 1988. Time course of mechanosensitivity 
changes in articular afferents during a developing experimental 
arthritis. J. Neurophysiol. 60, 2180–2195. 

Schaible, H.G., Schmidt, R.F., Willis, W.D., 1987. Enhancement of the 
responses of ascending tract cells in the cat spinal cord by acute 
inflammation of the knee joint. Exp Brain Res 66, 489–499. 

Schena, M., Shalon, D., Davis, R.W., Brown, P.O., 1995. Quantitative 
monitoring of gene expression patterns with a complementary DNA 
microarray. Science 270, 467–470. 

Scholz, J., Woolf, C.J., 2002. Can we conquer pain? Nature Neuroscience 5, 
1062–1067. 

Seal, R.P., Wang, X., Guan, Y., Raja, S.N., Woodbury, C.J., Basbaum, A.I., 
Edwards, R.H., 2009. Injury-induced mechanical hypersensitivity 
requires C-low threshold mechanoreceptors. Nature 462, 651–655. 

Shan, S., Hong, C., Mei, H., Ting-Ting, L., Hai-Li, P., Zhi-Qi, Z., Yu-Qiu, Z., 2007. 
New evidence for the involvement of spinal fractalkine receptor in 
pain facilitation and spinal glial activation in rat model of 
monoarthritis. Pain 129, 64–75. 

Sherrington, C.S., 1903. Qualitative difference of spinal reflex corresponding 
with qualitative difference of cutaneous stimulus. J. Physiol. (Lond.) 
30, 39–46. 

Sherrington, C.S., 1906. Observations on the scratch-reflex in the spinal dog. 
J. Physiol. (Lond.) 34, 1–50. 

Siegfried, B., Frischknecht, H.R., Nunes de Souza, R.L., 1990. An ethological 
model for the study of activation and interaction of pain, memory 
and defensive systems in the attacked mouse. Role of endogenous 
opioids. Neurosci Biobehav Rev 14, 481–490. 

Sikandar, S., Bannister, K., Dickenson, A.H., 2012. Brainstem facilitations and 
descending serotonergic controls contribute to visceral nociception 
but not pregabalin analgesia in rats. Neurosci. Lett. 519, 31–36. 

Skagerberg, G., Björklund, A., 1985. Topographic principles in the spinal 
projections of serotonergic and non-serotonergic brainstem neurons 
in the rat. Neuroscience 15, 445–480. 

Sluka, K.A., 2002. Stimulation of deep somatic tissue with capsaicin produces 
long-lasting mechanical allodynia and heat hypoalgesia that depends 
on early activation of the cAMP pathway. J. Neurosci. 22, 5687–5693. 

Sluka, K.A., Westlund, K.N., 1992. An experimental arthritis in rats: dorsal 
horn aspartate and glutamate increases. Neurosci. Lett. 145, 141–
144. 

Sommer, C., Kress, M., 2004. Recent findings on how proinflammatory 
cytokines cause pain: peripheral mechanisms in inflammatory and 
neuropathic hyperalgesia. Neurosci. Lett. 361, 184–187. 



References 

242 

 

Spike, R.C., Puskár, Z., Andrew, D., Todd, A.J., 2003. A quantitative and 
morphological study of projection neurons in lamina I of the rat 
lumbar spinal cord. Eur. J. Neurosci. 18, 2433–2448. 

Steain, M., Gowrishankar, K., Rodriguez, M., Slobedman, B., Abendroth, A., 
2011. Upregulation of CXCL10 in human dorsal root ganglia during 
experimental and natural varicella-zoster virus infection. J. Virol. 85, 
626–631. 

Strong, J.A., Xie, W., Coyle, D.E., Zhang, J.-M., 2012. Microarray analysis of 
rat sensory ganglia after local inflammation implicates novel 
cytokines in pain. PLoS ONE 7, e40779. 

Sufka, K.J., 1994. Conditioned place preference paradigm: a novel approach 
for analgesic drug assessment against chronic pain. Pain 58, 355–366. 

Sun, L., Wu, Z., Hayashi, Y., Peters, C., Tsuda, M., Inoue, K., Nakanishi, H., 
2012. Microglial cathepsin B contributes to the initiation of 
peripheral inflammation-induced chronic pain. J. Neurosci. 32, 
11330–11342. 

Suzuki, R., Morcuende, S., Webber, M., Hunt, S.P., Dickenson, A.H., 2002. 
Superficial NK1-expressing neurons control spinal excitability through 
activation of descending pathways. Nature Neuroscience 5, 1319–
1326. 

Svensson, C.I., Tran, T.K., Fitzsimmons, B., Yaksh, T.L., Hua, X.-Y., 2006. 
Descending serotonergic facilitation of spinal ERK activation and pain 
behavior. FEBS Lett. 580, 6629–6634. 

Sweatt, J.D., 2004. Mitogen-activated protein kinases in synaptic plasticity 
and memory. Curr. Opin. Neurobiol. 14, 311–317. 

Takasaki, I., Taniguchi, K., Komatsu, F., Sasaki, A., Andoh, T., Nojima, H., 
Shiraki, K., Hsu, D.K., Liu, F.-T., Kato, I., Hiraga, K., Kuraishi, Y., 2012. 
Contribution of spinal galectin-3 to acute herpetic allodynia in mice. 
Pain 153, 585–592. 

Takase, L.F., Nogueira, M.I., 2008. Patterns of fos activation in rat raphe 
nuclei during feeding behavior. Brain Res. 1200, 10–18. 

Tang, Q., Svensson, C.I., Fitzsimmons, B., Webb, M., Yaksh, T.L., Hua, X.-Y., 
2007. Inhibition of spinal constitutive NOS-2 by 1400W attenuates 
tissue injury and inflammation-induced hyperalgesia and spinal p38 
activation. Eur. J. Neurosci. 25, 2964–2972. 

Terayama, R., Dubner, R., Ren, K., 2002. The roles of NMDA receptor 
activation and nucleus reticularis gigantocellularis in the time-
dependent changes in descending inhibition after inflammation. Pain 
97, 171–181. 

Terayama, R., Guan, Y., Dubner, R., Ren, K., 2000. Activity-induced plasticity 
in brain stem pain modulatory circuitry after inflammation. 
Neuroreport 11, 1915–1919. 

Terman, G.W., Shavit, Y., Lewis, J.W., Cannon, J.T., Liebeskind, J.C., 1984. 
Intrinsic mechanisms of pain inhibition: activation by stress. Science 
226, 1270–1277. 



References 

243 

 

Thakur, M., Rahman, W., Hobbs, C., Dickenson, A.H., Bennett, D.L.H., 2012. 
Characterisation of a peripheral neuropathic component of the rat 
monoiodoacetate model of osteoarthritis. PLoS ONE 7, e33730. 

Tillu, D.V., Gebhart, G.F., Sluka, K.A., 2008. Descending facilitatory pathways 
from the RVM initiate and maintain bilateral hyperalgesia after 
muscle insult. PAIN 136, 331–339. 

Tochiki, K.K., Cunningham, J., Hunt, S.P., Geranton, S.M., 2012. The 
expression of spinal methyl-CpG-binding protein 2, DNA 
methyltransferases and histone deacetylases is modulated in 
persistent pain states. Molecular Pain 8, 14. 

Todd, A.J., 2002. Anatomy of primary afferents and projection neurones in 
the rat spinal dorsal horn with particular emphasis on substance P 
and the neurokinin 1 receptor. Exp. Physiol. 87, 245–249. 

Todd, A.J., 2010. Neuronal circuitry for pain processing in the dorsal horn. 
Nat. Rev. Neurosci. 11, 823–836. 

Tracey, I., Mantyh, P.W., 2007. The Cerebral Signature for Pain Perception 
and Its Modulation. Neuron 55, 377–391. 

Treede, R.-D., Meyer, R.A., Raja, S.N., Campbell, J.N., 1992. Peripheral and 
central mechanisms of cutaneous hyperalgesia. Progress in 
Neurobiology 38, 397–421. 

Uematsu, T., Sakai, A., Ito, H., Suzuki, H., 2011. Intra-articular administration 
of tachykinin NK1 receptor antagonists reduces hyperalgesia and 
cartilage destruction in the inflammatory joint in rats with adjuvant-
induced arthritis. European Journal of Pharmacology 668, 163–168. 

Urban, M.O., Gebhart, G.F., 1999. Supraspinal contributions to hyperalgesia. 
Proc Natl Acad Sci U S A 96, 7687–7692. 

Urban, M.O., Jiang, M.C., Gebhart, G.F., 1996. Participation of central 
descending nociceptive facilitatory systems in secondary 
hyperalgesia produced by mustard oil. Brain Res. 737, 83–91. 

Urban, M.O., Zahn, P.K., Gebhart, G.F., 1999. Descending facilitatory 
influences from the rostral medial medulla mediate secondary, but 
not primary hyperalgesia in the rat. Neuroscience 90, 349–352. 

Van der Werf, Y.D., Witter, M.P., Groenewegen, H.J., 2002. The intralaminar 
and midline nuclei of the thalamus. Anatomical and functional 
evidence for participation in processes of arousal and awareness. 
Brain Res. Brain Res. Rev. 39, 107–140. 

Vanegas, H., 2004. To the descending pain-control system in rats, 
inflammation-induced primary and secondary hyperalgesia are two 
different things. Neurosci. Lett. 361, 225–228. 

Vanegas, H., Schaible, H.-G., 2004. Descending control of persistent pain: 
inhibitory or facilitatory? Brain Res. Brain Res. Rev 46, 295–309. 

Vay, L., Gu, C., McNaughton, P.A., 2012. The thermo-TRP ion channel family: 
properties and therapeutic implications. British Journal of 
Pharmacology 165, 787–801. 



References 

244 

 

Veasey, S.C., Fornal, C.A., Metzler, C.W., Jacobs, B.L., 1995. Response of 
serotonergic caudal raphe neurons in relation to specific motor 
activities in freely moving cats. J. Neurosci. 15, 5346–5359. 

Vera-Portocarrero, L.P., Xie, J.Y., Yie, J.X., Kowal, J., Ossipov, M.H., King, T., 
Porreca, F., 2006. Descending facilitation from the rostral 
ventromedial medulla maintains visceral pain in rats with 
experimental pancreatitis. Gastroenterology 130, 2155–2164. 

Verpoorten, N., Claeys, K.G., Deprez, L., Jacobs, A., Van Gerwen, V., Lagae, L., 
Arts, W.F., De Meirleir, L., Keymolen, K., Ceuterick-de Groote, C., De 
Jonghe, P., Timmerman, V., Nelis, E., 2006. Novel frameshift and 
splice site mutations in the neurotrophic tyrosine kinase receptor 
type 1 gene (NTRK1) associated with hereditary sensory neuropathy 
type IV. Neuromuscul. Disord. 16, 19–25. 

Vikman, K., Robertson, B., Grant, G., Liljeborg, A., Kristensson, K., 1998. 
Interferon-gamma receptors are expressed at synapses in the rat 
superficial dorsal horn and lateral spinal nucleus. J. Neurocytol. 27, 
749–759. 

Vikman, K.S., Duggan, A.W., Siddall, P.J., 2003. Increased ability to induce 
long-term potentiation of spinal dorsal horn neurones in 
monoarthritic rats. Brain Research 990, 51–57. 

Vikman, K.S., Duggan, A.W., Siddall, P.J., 2007. Interferon-gamma induced 
disruption of GABAergic inhibition in the spinal dorsal horn in vivo. 
Pain 133, 18–28. 

Vinet, J., De Jong, E.K., Boddeke, H.W.G.M., Stanulovic, V., Brouwer, N., 
Granic, I., Eisel, U.L.M., Liem, R.S.B., Biber, K., 2010. Expression of 
CXCL10 in cultured cortical neurons. Journal of Neurochemistry 112, 
703–714. 

Von Banchet, G.S., Kiehl, M., Schaible, H.-G., 2005. Acute and long-term 
effects of IL-6 on cultured dorsal root ganglion neurones from adult 
rat. J. Neurochem. 94, 238–248. 

Wallace, V.C.J., Segerdahl, A.R., Blackbeard, J., Pheby, T., Rice, A.S.C., 2008. 
Anxiety-like behaviour is attenuated by gabapentin, morphine and 
diazepam in a rodent model of HIV anti-retroviral-associated 
neuropathic pain. Neurosci. Lett. 448, 153–156. 

Wang, H., Wessendorf, M.W., 1999. Mu- and delta-opioid receptor mRNAs 
are expressed in spinally projecting serotonergic and 
nonserotonergic neurons of the rostral ventromedial medulla. J. 
Comp. Neurol. 404, 183–196. 

Wang, K., Zhang, R., Xiang, X., He, F., Lin, L., Ping, X., Yu, L., Han, J., Zhao, G., 
Zhang, Q., Cui, C., 2012. Differences in neural-immune gene 
expression response in rat spinal dorsal horn correlates with 
variations in electroacupuncture analgesia. PLoS ONE 7, e42331. 

Wang, W., Wu, S.-X., Wang, Y.-Y., Liu, X.-Y., Li, Y.-Q., 2003. 5-
hydroxytryptamine1A receptor is involved in the bee venom induced 
inflammatory pain. Pain 106, 135–142. 



References 

245 

 

Wang, Y.-Y., Wei, Y.-Y., Huang, J., Wang, W., Tamamaki, N., Li, Y.-Q., Wu, S.-
X., 2009. Expression patterns of 5-HT receptor subtypes 1A and 2A on 
GABAergic neurons within the spinal dorsal horn of GAD67-GFP 
knock-in mice. Journal of Chemical Neuroanatomy 38, 75–81. 

Wei, F., Dubner, R., Zou, S., Ren, K., Bai, G., Wei, D., Guo, W., 2010. 
Molecular depletion of descending serotonin unmasks its novel 
facilitatory role in the development of persistent pain. J. Neurosci. 
30, 8624–8636. 

Wei, F., Guo, W., Zou, S., Ren, K., Dubner, R., 2008. Supraspinal Glial–
Neuronal Interactions Contribute to Descending Pain Facilitation. J. 
Neurosci. 28, 10482–10495. 

Widmann, C., Gibson, S., Jarpe, M.B., Johnson, G.L., 1999. Mitogen-Activated 
Protein Kinase: Conservation of a Three-Kinase Module From Yeast to 
Human. Physiol Rev 79, 143–180. 

Wiklund, L., Björklund, A., 1980. Mechanisms of regrowth in the bulbospinal 
serotonin system following 5,6-dihydroxytryptamine induced 
axotomy. II. Fluorescence histochemical observations. Brain Res. 191, 
109–127. 

Wiley, R.G., 1992. Neural lesioning with ribosome-inactivating proteins: 
suicide transport and immunolesioning. Trends Neurosci. 15, 285–
290. 

Wiley, R.G., Oeltmann, T.N., Lappi, D.A., 1991. Immunolesioning: selective 
destruction of neurons using immunotoxin to rat NGF receptor. Brain 
Res. 562, 149–153. 

Winer, J., Jung, C.K., Shackel, I., Williams, P.M., 1999. Development and 
validation of real-time quantitative reverse transcriptase-polymerase 
chain reaction for monitoring gene expression in cardiac myocytes in 
vitro. Anal. Biochem. 270, 41–49. 

Wolfe, F., Michaud, K., 2007. Assessment of pain in rheumatoid arthritis: 
minimal clinically significant difference, predictors, and the effect of 
anti-tumor necrosis factor therapy. J. Rheumatol. 34, 1674–1683. 

Woolf, C.J., 1983. Evidence for a central component of post-injury pain 
hypersensitivity. Nature 306, 686–688. 

Woolf, C.J., 2010. What is this thing called pain? J. Clin. Invest. 120, 3742–
3744. 

Woolf, C.J., Costigan, M., 1999. Transcriptional and posttranslational 
plasticity and the generation of inflammatory pain. Proc. Natl. Acad. 
Sci. U.S.A. 96, 7723–7730. 

Woolf, C.J., Ma, Q., 2007. Nociceptors—Noxious Stimulus Detectors. Neuron 
55, 353–364. 

Woolf, C.J., Salter, M.W., 2000. Neuronal plasticity: increasing the gain in 
pain. Science 288, 1765–1769. 

Woolf, C.J., Thompson, S.W., 1991. The induction and maintenance of 
central sensitization is dependent on N-methyl-D-aspartic acid 



References 

246 

 

receptor activation; implications for the treatment of post-injury pain 
hypersensitivity states. Pain 44, 293–299. 

Woolf, C.J., Wall, P.D., 1986. Relative effectiveness of C primary afferent 
fibers of different origins in evoking a prolonged facilitation of the 
flexor reflex in the rat. J. Neurosci. 6, 1433–1442. 

Wu, J., Fang, L., Lin, Q., Willis, W.D., 2001. Nitric oxide synthase in spinal 
cord central sensitization following intradermal injection of capsaicin. 
Pain 94, 47–58. 

Wylde, V., Hewlett, S., Learmonth, I.D., Dieppe, P., 2011. Persistent pain 
after joint replacement: prevalence, sensory qualities, and 
postoperative determinants. Pain 152, 566–572. 

Xia, M.Q., Bacskai, B.J., Knowles, R.B., Qin, S.X., Hyman, B.T., 2000. 
Expression of the chemokine receptor CXCR3 on neurons and the 
elevated expression of its ligand IP-10 in reactive astrocytes: in vitro 
ERK1/2 activation and role in Alzheimer’s disease. J. Neuroimmunol. 
108, 227–235. 

Xie, J.Y., Herman, D.S., Stiller, C.-O., Gardell, L.R., Ossipov, M.H., Lai, J., 
Porreca, F., Vanderah, T.W., 2005. Cholecystokinin in the Rostral 
Ventromedial Medulla Mediates Opioid-Induced Hyperalgesia and 
Antinociceptive Tolerance. J. Neurosci. 25, 409–416. 

Xu, W., Qiu, X.C., Han, J.S., 1994. Serotonin receptor subtypes in spinal 
antinociception in the rat. J. Pharmacol. Exp. Ther. 269, 1182–1189. 

Yaksh, T.L., Wilson, P.R., 1979. Spinal serotonin terminal system mediates 
antinociception. J Pharmacol Exp Ther 208, 446–453. 

Yaksh, T.L., Yeung, J.C., Rudy, T.A., 1976. Systematic examination in the rat 
of brain sites sensitive to the direct application of morphine: 
observation of differential effects within the periaqueductal gray. 
Brain Res. 114, 83–103. 

Yanarates, O., Dogrul, A., Yildirim, V., Sahin, A., Sizlan, A., Seyrek, M., Akgül, 
O., Kozak, O., Kurt, E., Aypar, U., 2010. Spinal 5-HT7 receptors play an 
important role in the antinociceptive and antihyperalgesic effects of 
tramadol and its metabolite, O-Desmethyltramadol, via activation of 
descending serotonergic pathways. Anesthesiology 112, 696–710. 

Yang, K.-H., Galadari, S., Isaev, D., Petroianu, G., Shippenberg, T.S., Oz, M., 
2010. The nonpsychoactive cannabinoid cannabidiol inhibits 5-
hydroxytryptamine3A receptor-mediated currents in Xenopus laevis 
oocytes. J. Pharmacol. Exp. Ther. 333, 547–554. 

Yang, L., Zhang, F.-X., Huang, F., Lu, Y.-J., Li, G.-D., Bao, L., Xiao, H.-S., Zhang, 
X., 2004. Peripheral nerve injury induces trans-synaptic modification 
of channels, receptors and signal pathways in rat dorsal spinal cord. 
Eur. J. Neurosci. 19, 871–883. 

Yao, Y.-X., Jiang, Z., Zhao, Z.-Q., 2011. Knockdown of synaptic scaffolding 
protein Homer 1b/c attenuates secondary hyperalgesia induced by 
complete Freund’s adjuvant in rats. Anesth. Analg. 113, 1501–1508. 



References 

247 

 

Yellin, M., Paliienko, I., Balanescu, A., Ter-Vartanian, S., Tseluyko, V., Xu, L.-
A., Tao, X., Cardarelli, P.M., Leblanc, H., Nichol, G., Ancuta, C., 
Chirieac, R., Luo, A., 2012. A phase II, randomized, double-blind, 
placebo-controlled study evaluating the efficacy and safety of MDX-
1100, a fully human anti-CXCL10 monoclonal antibody, in 
combination with methotrexate in patients with rheumatoid 
arthritis. Arthritis Rheum. 64, 1730–1739. 

Yoshida, S., Arakawa, F., Higuchi, F., Ishibashi, Y., Goto, M., Sugita, Y., 
Nomura, Y., Niino, D., Shimizu, K., Aoki, R., Hashikawa, K., Kimura, Y., 
Yasuda, K., Tashiro, K., Kuhara, S., Nagata, K., Ohshima, K., 2012. 
Gene expression analysis of rheumatoid arthritis synovial lining 
regions by cDNA microarray combined with laser microdissection: 
up-regulation of inflammation-associated STAT1, IRF1, CXCL9, 
CXCL10, and CCL5. Scand. J. Rheumatol. 41, 170–179. 

Yukhananov, R., Kissin, I., 2008. Persistent changes in spinal cord gene 
expression after recovery from inflammatory hyperalgesia: a 
preliminary study on pain memory. BMC Neurosci 9, 32. 

Zapata, A., Pontis, S., Schepers, R.J., Wang, R., Oh, E., Stein, A., Bäckman, 
C.M., Worley, P., Enguita, M., Abad, M.A., Trullas, R., Shippenberg, 
T.S., 2012. Alleviation of Neuropathic Pain Hypersensitivity by 
Inhibiting Neuronal Pentraxin 1 in the Rostral Ventromedial Medulla. 
J. Neurosci. 32, 12431–12436. 

Zeitz, K.P., Guy, N., Malmberg, A.B., Dirajlal, S., Martin, W.J., Sun, L., 
Bonhaus, D.W., Stucky, C.L., Julius, D., Basbaum, A.I., 2002. The 5-
HT3 subtype of serotonin receptor contributes to nociceptive 
processing via a novel subset of myelinated and unmyelinated 
nociceptors. J. Neurosci. 22, 1010–1019. 

Zhang, E.T., Craig, A.D., 1997. Morphology and distribution of spinothalamic 
lamina I neurons in the monkey. J. Neurosci. 17, 3274–3284. 

Zhang, J., Shi, X.Q., Echeverry, S., Mogil, J.S., Koninck, Y.D., Rivest, S., 2007. 
Expression of CCR2 in Both Resident and Bone Marrow-Derived 
Microglia Plays a Critical Role in Neuropathic Pain. J. Neurosci. 27, 
12396–12406. 

Zhang, L., Lu, Y., Chen, Y., Westlund, K.N., 2002. Group I metabotropic 
glutamate receptor antagonists block secondary thermal 
hyperalgesia in rats with knee joint inflammation. J. Pharmacol. Exp. 
Ther. 300, 149–156. 

Zhang, L., Sykes, K.T., Buhler, A.V., Hammond, D.L., 2006. 
Electrophysiological heterogeneity of spinally projecting serotonergic 
and nonserotonergic neurons in the rostral ventromedial medulla. J. 
Neurophysiol. 95, 1853–1863. 

Zhang, W., Gardell, S., Zhang, D., Xie, J.Y., Agnes, R.S., Badghisi, H., Hruby, 
V.J., Rance, N., Ossipov, M.H., Vanderah, T.W., Porreca, F., Lai, J., 
2009. Neuropathic pain is maintained by brainstem neurons co-
expressing opioid and cholecystokinin receptors. Brain 132, 778–787. 



References 

248 

 

Zhang, X., Huang, J., McNaughton, P.A., 2005. NGF rapidly increases 
membrane expression of TRPV1 heat-gated ion channels. EMBO J. 
24, 4211–4223. 

Zhang, Y., Yang, Z., Gao, X., Wu, G., 2001. The role of 5-hydroxytryptamine1A 
and 5-hydroxytryptamine1B receptors in modulating spinal 
nociceptive transmission in normal and carrageenan-injected rats. 
Pain 92, 201–211. 

Zhang, Z., Cai, Y.-Q., Zou, F., Bie, B., Pan, Z.Z., 2011. Epigenetic suppression 
of GAD65 expression mediates persistent pain. Nature Medicine 17, 
1448-55. 

Zhuo, M., Gebhart, G.F., 1990. Characterization of descending inhibition and 
facilitation from the nuclei reticularis gigantocellularis and 
gigantocellularis pars alpha in the rat. Pain 42, 337–350. 

Zhuo, M., Gebhart, G.F., 1991. Spinal serotonin receptors mediate 
descending facilitation of a nociceptive reflex from the nuclei 
reticularis gigantocellularis and gigantocellularis pars alpha in the rat. 
Brain Res. 550, 35–48. 

Zhuo, M., Gebhart, G.F., 1992a. Characterization of descending facilitation 
and inhibition of spinal nociceptive transmission from the nuclei 
reticularis gigantocellularis and gigantocellularis pars alpha in the rat. 
J. Neurophysiol. 67, 1599–1614. 

Zhuo, M., Gebhart, G.F., 1992b. Inhibition of a cutaneous nociceptive reflex 
by a noxious visceral stimulus is mediated by spinal cholinergic and 
descending serotonergic systems in the rat. Brain Res. 585, 7–18. 

Zhuo, M., Gebhart, G.F., 1997. Biphasic modulation of spinal nociceptive 
transmission from the medullary raphe nuclei in the rat. J. 
Neurophysiol. 78, 746–758. 

Zimmermann, K., Leffler, A., Babes, A., Cendan, C.M., Carr, R.W., Kobayashi, 
J., Nau, C., Wood, J.N., Reeh, P.W., 2007. Sensory neuron sodium 
channel Nav1.8 is essential for pain at low temperatures. Nature 447, 
855–858. 

Zylka, M.J., Rice, F.L., Anderson, D.J., 2005. Topographically distinct 
epidermal nociceptive circuits revealed by axonal tracers targeted to 
Mrgprd. Neuron 45, 17–25. 



Appendix 

249 

 

Appendix 

A1. Solutions for immunohistochemistry 

Phosphate buffer (0.1M, pH7.4) 

190mM NaH₂PO₄ 

810mM Na₂H PO₄ 

Paraformaldehyde 

4% paraformaldehyde 

0.1M phosphate buffer 

Heparinised saline 

5IU/ml heparin 

0.9% NaCl 

Sucrose 

30% or 5% sucrose  

0.02% NaN₂ (Sigma) 

Blocking solution - fluorescence detection: 

0.1M PB 

3% normal serum (species dependent on host of secondary antibody) 

0.3% TritionX-100 

Blocking solution - chromogenic detection: 

0.1M PB 

3% normal serum (species dependent on host of secondary an 
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2% H₂O₂ to quench endogenous peroxidase activity 

0.3% TritonX-199 

TTBS (Tris-Triton buffered saline) 

0.05M Tris base 

0.3% TritonX-100 

0.9% NaCl 

Preparation of gelatinised slides 

2.5g gelatine in 500ml dH₂O, heat to < 50°C 

Add 0.5g chrome alum (chromic potassium sulphate, Sigma) 

Filter 

Dip twin-frost slides in solution for 30s 

Dry overnight 

A2. Solutions for western blot analysis 

RIPA 

100mM NaCl 

100mM NaF 

20mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) ph7.4 

5mM ethylenediametetraacetic acid (EDTA) 

1mM Na₂VO₄ 

1% v/v NP-40 

MOPS ph7.3 
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0.05M 3-(N-morpholino) propane sulphonic acid (MOPS) 

0.5M Tris base 

3.5mM SDS 

1mM EDTA 

Transfer buffer 

48mM Tris base 

39mM glycine 

0.037% SDS 

10% v/v methanol 

Tris-buffered saline 

0.05M Tris base 

0.9% NaCl 

PBS Tween 

0.1 M phosphate-buffered saline (Sigma-Aldrich) 

0.1 % v/v Tween 20 
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Appendix A3. Log2 transformation of von Frey hairs 

g log2 (g) 

0.07 -3.84 

0.16 -2.64 

0.4 -1.32 

0.6 -0.74 

1 0.00 

1.4 0.49 

2 1.00 

4 2.00 

6 2.58 

8 3.00 

10 3.32 

15 3.91 

26 4.70 

60 5.91 

 

 

 


