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Abstract 

 

Fat and lean mass have important implications for adult health and physical 

functioning, but few studies have examined their determinants. This thesis used a 

life course perspective to examine how explanatory factors across life relate to 

adult measures of fat and lean mass. 

 

The MRC National Survey of Health and Development was used—a British birth 

cohort study originally comprised of 5362 babies born in March 1946. At 60–64 

years, 746 males and 812 females had fat and lean mass measures taken using 

dual energy X-ray absorptiometry. Linear regression was used to examine 

associations between prospectively ascertained explanatory variables 

(socioeconomic position, measures of growth, and physical activity) with these 

masses.  

 

Lower childhood and adult socioeconomic position, greater weight gains in 

childhood and adolescence (7-20 years), and lower current physical activity levels 

(measured objectively and by self-report) were all associated with higher fat mass, 

with evidence in females of cumulative benefits of leisure time physical activity 

across adulthood (36 to 60–64 years) in leading to lower fat mass. Higher 

childhood (females only) and adult (both sexes) socioeconomic position, higher 

birth weight, greater weight gain from birth to 20 years, and physical activity 

participation across adulthood were all associated with higher lean mass; 

associations with socioeconomic position and physical activity were found after 

adjustment for fat mass. Associations between lower childhood socioeconomic 

position and higher fat mass were partly mediated by weight gain from 7–20 years; 

associations with higher fat and lower lean mass were partly mediated by leisure 

time physical activity measures.  

 

Factors operating in both early and adult life were associated with adult fat and 

lean mass. These factors could be potential targets for public health strategies 

which seek to reduce fat mass and increase lean mass in the population. 
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 Chapter 1: Introduction  1.

 

The amount of fat and lean mass in our bodies (our body composition) has 

important implications for our health and physical functioning. Obesity—excess fat 

mass—is associated with numerous measures of ill health (type 2 diabetes, stroke, 

and cancer)1 and increased rates of mortality.2 Low lean mass is an indicator of low 

skeletal muscle mass and relates to worse physical functioning,3;4 low bone mineral 

content,5;6 and adverse glucose metabolism.7  

 

Understanding the factors that influence the amount of fat and lean mass we have 

as adults is key to reducing the burdens associated with obesity and low lean mass 

in old age. The overall aim of this thesis is to use a life course perspective to 

examine the associations between factors across life with fat and lean mass in early 

old age, using data from the MRC National Survey of Health and Development 

(NSHD)—a British cohort of 5362 males and females followed up since birth in 

March 1946.  

 

This chapter presents a broad overview of the research area investigated in this 

thesis, including evidence for the importance of fat and lean mass for health and 

physical functioning. An introduction to life course epidemiology is then presented, 

followed by an overview of previous research investigating the factors across life 

associated with adult fat and lean mass. The limitations of previous research are 

then briefly described along with the overall aim of this thesis.  

 

 Historical background: body weight, body shape and 1.1

health 

 

Interest in the weight and shape of the body has been recorded in human history 

for thousands of years. The first known artistic representation of obesity was 

created around 30 000 years ago, in the form of an obese statuette: the Venus of 

Willendorf.8;9 However, it was not until 400 BC that the relationship between 

obesity and health was first documented, with physicians linking obesity with 

increased risk of infertility and mortality.8 Since then, more robust epidemiological 

evidence has been published linking aspects of the weight and shape of the body 

with a wide range of health outcomes.  

 

In the early 1920s, researchers such as Raymond Pearl (1879–1940) began 

compiling detailed measurements of human subjects and examining their 
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relationship with disease risk.10;11 In 1934, Pearl and Ciocco12 examined and 

compared two groups of people: those with heart disease, and those without 

(termed cardiac and non-cardiac individuals, respectively). A series of detailed 

measurements were taken from each participant, including height and weight, and 

measures from the head and chest. Comparison of these variables between the two 

groups showed that cardiac individuals were heavier (by around 10%) than their 

leaner ‘non-cardiac’ counterparts, with no notable differences in height.12 Although 

the authors were wary of asserting causation in the associations found, they 

suggested that differences were likely due to the “accumulation of body fat from 

relative over-eating and lack of physical exercise” (p.711) in the cardiac group.12 At 

a similar time to this study, the importance of weight and height were also being 

explored using life insurance data; shorter and heavier individuals were found to 

have higher risk of mortality and morbidity from chronic disease than taller, lighter 

individuals.10  

 

In 1948, US researchers established the Framingham study: 5209 adult residents 

of Framingham, Massachusetts (USA) were enrolled to allow investigation of risk 

factors for the increasingly prevalent cardiovascular disease. The continued follow-

up of this cohort and its offspring has provided a wealth of evidence on associations 

of body weight and shape with ill health. Findings published in 1969 showed study 

members who were heavier and more endomorphic (a specific body shape 

characterised by higher fat mass and abdominal fat distribution) were more likely to 

develop coronary heart disease than those of other body shapes.13 Further work in 

1988 showed that obesity—assessed using either waist circumference or measures 

of skinfold thickness (SFT)—was associated with increased risk of all-cause 

mortality.14 This suggested that fat mass, and not weight per se, was related to 

poor health and subsequent mortality. Later work confirmed the importance of fat 

mass and its distribution, with analysis showing that greater abdominal fat mass 

was associated with increased risk of cardiovascular disease.15 

 

Abraham et al (1971),10;16 in a 30–40 year follow-up of the Hagerstown population 

study in Maryland (USA), showed that heavier adults tended to have higher blood 

pressure and higher serum cholesterol. In this study measured childhood height 

and weight data were available; analyses using these data showed that subjects 

who were underweight in childhood and heavier in adulthood had the highest 

number of risk factors for cardiovascular disease. This suggested that weight in 

both early and adult life were important in influencing health in adulthood. 
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A substantial body of epidemiological research—comprising prospective and 

retrospective studies, as well as systematic reviews and meta-analyses—have 

confirmed relationships between the weight and shape of the body and a number of 

health outcomes.1;2;17 The composition of the body has also received research 

attention. Over time, a number of overlapping terms have been used to describe 

the dimensions and contents of the human body—for example, the body has been 

described in terms of constitution, form, somatotype, composition, shape, and 

anthropometrics. In this thesis, the term body composition will be used to refer to 

the content of the body as divided into fat and lean mass (total body weight 

excluding fat and bone mass).18 In the following sections, the roles of fat and lean 

mass in normal bodily functioning will be briefly described, followed by the 

importance of fat and lean mass for both health and physical functioning. 

 

 Fat mass: importance for health and physical functioning 1.2

 

Fat mass is comprised of adipocytes (fat cells) and is known to be involved in 

energy metabolism,19 heat insulation,20 and various endocrine processes.21 Both 

high and low levels of fat mass (overweight/obesity and lipodystrophy, 

respectively) are thought to be detrimental for health.2;17;22  

 

Fat tissue can undergo considerable changes in size in adulthood, and the scope for 

variation is substantial—recorded percentage values have been as low as 2% and 

as high as 70%.23 Average values of fat mass in adulthood have been estimated to 

be 18–24% for males and 25–31% for females.24 Associations between fat mass 

and ill health have typically been deduced from studies using body mass index 

(BMI; weight (kg)/height (m)2), a proxy measure of fat mass.25 Overweight and 

obesity are defined as “abnormal or excessive fat accumulation that may impair 

health”26 and reflect the upper distribution of fat mass. Standard BMI cut-off points 

have been developed—formed on the basis of non-communicable disease risk27;28—

to enable simple categorisation of overweight and obesity. According to World 

Health Organization criteria, a BMI ≥25–30 is considered overweight, and ≥30 

obese;26 ‘normal’ BMI ranges have been defined as between 18.5–24.9, and 

underweight <18.5.17 Aside from BMI, there are a number of other ways of 

measuring fat mass directly, from highly refined and relatively expensive measures 

generally only suitable for small clinical studies, to less refined measures more 

feasible for use in larger population-based studies. While cut points of obesity using 

direct measures of fat mass have been proposed (body fat percent >25% in males 

and >35% in females),29;30 BMI classifications are more commonly used. The 



16 

 

limitations of using BMI as a measure of fat mass are described later in this 

chapter. 

 

Plausible biological mechanisms have been suggested which may explain how high 

fat mass leads to ill health. For example, fat cells are now known to secrete 

multiple hormones, many of which are known to have wide-ranging effects on the 

immune, cardiovascular, reproductive, and inflammatory systems,21;31 although the 

specific chain of events that lead to ill health is an area of on-going research. The 

most widely researched of these hormones are adipokines, cell-cell signalling 

proteins secreted by adipose tissue. For example, leptin (a cell-cell signalling 

protein) is known to correlate positively with fat mass,32 and leptin is thought to be 

involved in reproductive and immune functioning.33;34  

 

As well as affecting endocrine processes, high fat mass also causes increased load 

on the bodily systems. Since fat mass is served by a regular blood supply, an 

increase in fat tissue leads to an increase in cardiac load. The blood supply to 

adipose tissue accounts for around 3–7% of cardiac output in non-obese, and 15–

30% in obese individuals.23 High fat mass also affects the musculoskeletal system 

by impairing the joints (leading to increased risk of osteoarthritis35) and leading to 

fat infiltration of muscles.36 These processes and others may impact on physical 

functioning, as studies have consistently found high fat mass is associated with 

concurrent and future measures of worse physical functioning.4;37-39 

 

Recent systematic reviews and meta-analyses have confirmed that obesity, defined 

using the standard BMI cut-offs, is a significant risk factor for a number of health 

outcomes (including chronic diseases) and increased mortality.1;2;17 For example, a 

recent narrative review in which systematic reviews were synthesised concluded 

that the relative risk ratios when comparing obese versus non-obese persons are 

approximately ≥5 for type 2 diabetes, dyslipidaemia, and non-alcoholic 

steatohepatitis; 2–5 for all-cause mortality, hypertension, myocardial infarction, 

stroke, and polycystic ovary syndrome; and 1–2 for cancer mortality, obstetric 

complications, and asthma.1 The relationship between fat mass and health in older 

age is inconclusive; some studies have reported inconsistent associations between 

BMI and health outcomes in old age, although this may be partly driven by low lean 

mass.40 However, few studies have examined associations between direct measures 

of fat mass and health outcomes or mortality risk in early or later adulthood. 

Although direct measures of fat mass are hypothesised as being more closely 

related to health outcomes than BMI,41 this requires confirmation as some,42;43 but 

not all studies44 have given evidence to support this. 
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In addition to whole body fat mass, the distribution of fat mass may be particularly 

important with fat deposited in the abdomen thought to be worse for health than 

fat deposited in other regions of the body.45;46 This may be due to abdominal fat 

being more active in endocrine systems than peripheral fat.45;46 High abdominal fat 

mass is part of the most commonly used criteria for diagnosing metabolic 

syndrome, a collection of risk factors known to predict the risk of type 2 diabetes 

and cardiovascular disease.47-49 Of fat present in the abdomen, visceral fat (present 

around the viscera and organs) is thought to represent a greater risk to health than 

subcutaneous fat (present under the skin).50;51 Indirect measures of abdominal fat 

mass (such as waist circumference and waist-hip ratio) capture fat mass, but also 

lean mass and skeletal size; these indirect measures have similar effect sizes as 

BMI in associations with health outcomes.52;53 Direct measures of abdominal fat 

mass have recently become available in epidemiological studies, and there is some 

evidence that these may be more closely associated with health outcomes than 

whole body measures of fat mass.49;54 

 

While fat distributed in the abdomen may be detrimental to health, there is some 

evidence (typically from small studies) that higher leg fat mass may be beneficial. 

Using direct measures of fat mass, higher leg fat mass has been associated with 

more favourable glucose55;56 and lipid metabolism.57-59 The differential associations 

between abdominal and leg fat mass suggests that a ratio of abdominal: leg fat 

mass may be particularly related to health. This is suggested in studies which have 

found associations between higher ratio of android (abdominal): gynoid (upper leg) 

fat mass and adverse glucose metabolism,60;61 and increased risk of cardiovascular 

disease in females.62 

 

Population levels of fat mass have substantial public health implications across the 

world, but vary by nation and period. There have been substantial changes in the 

recorded population averages of BMI, with countries moving through the 

epidemiological transition—the transition in the principle causes of mortality (from 

infectious to chronic and degenerative diseases) that take place in tandem with 

economic development and demographic change63-65—typically experiencing an 

increase in the prevalence of overweight and obesity.63  

  

In England, the prevalence of obesity more than doubled between 1970 and 

2005,17 an increase mirrored in other nations (including USA, Japan, Germany, and 

Australia).17 Health Survey for England data show that in 2010, 68% of adult males 

(and 58% of females) in England were overweight or obese (BMI ≥25), and 26% of 
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both male and female adults obese (BMI >30).66 The economic burden of obesity is 

also substantial, with the direct and indirect costs in England estimated to be 

around £7 billion per year in 2002,17 and similarly high estimations for other 

developed and developing nations.67 Given its increasing prevalence, future 

projections of the cost impacts have been estimated to be even higher—£49.9 

billion per year in the UK in 2050.17 There is also growing recognition of an 

increasing prevalence of obesity in the developing world, leading the WHO to 

recognise obesity as a global epidemic.68  

 

In summary, there is substantial evidence that high fat mass is associated with 

increased risk of chronic diseases and mortality, and leads to worse physical 

functioning. There is also some evidence that abdominal fat distribution may be 

particularly important for subsequent health. As such, there is justification for 

examining how factors across life affect fat mass levels in adulthood. 

 

 Changes in fat mass across life 1.2.1

 

The point in life at which fat is measured is an important consideration when using 

measures of fat mass in epidemiological studies, as fat mass is known to vary 

across life. For example, cross-sectional studies of both sexes suggest that gains in 

fat mass occur in infancy (0–2 years), tend to plateau in early childhood (2–7 

years), and then increase again in late childhood (7–11 years), with sex-specific 

changes in adolescence (11–18; females continue to gain fat mass, while males 

plateau),69;70 resulting in female adults tending to have more fat mass than males. 

Cross-sectional and longitudinal studies suggest that gains in whole body and 

abdominal fat mass typically occur during adulthood (30–80 years) in both sexes, 

along with increasing fat deposition in other tissues (such as skeletal muscle, 

cardiac tissue, and the liver).36 

 

The amount of fat mass in adulthood, determined by both the number and size of 

fat cells,71 has been shown to track across life, with those with higher fat mass in 

childhood tending to maintain their higher levels into adulthood.72-74 Factors that 

affect fat mass in pre-adulthood may therefore affect the amount of fat mass in 

adulthood. Further, pre-adulthood factors may also affect the probability of gaining 

or losing fat mass in adulthood. As such, factors that operate both in early and 

adult life may influence fat mass levels in adulthood.75 

 

  



19 

 

 Lean mass: importance for health and physical functioning 1.3

 

In this thesis, unless otherwise specified, lean mass is used to refer to the mass of 

the body excluding fat and bone mass.18 It is an amalgamation of tissue types, 

including muscle tissue and the organs and is equivalently termed fat-free mass. As 

direct measures of lean mass are a relatively recent development in population 

studies, there are fewer studies examining the consequences of higher or lower 

lean mass for subsequent health outcomes. In addition, as lean mass is comprised 

of a number of distinct parts, with distinct functions, the health significance of lower 

or higher amounts of lean mass are not as intuitively clear as with fat mass. 

However, research has shown that in healthy subjects around 50% of whole body 

lean mass is skeletal muscle,76 suggesting that lean mass can be considered a 

marker of muscle mass. The proportion of lean mass that is skeletal muscle is likely 

to be higher for appendicular lean mass (lean mass of the arms and legs) than 

whole body lean mass, as appendicular lean mass excludes the organ mass 

contained in the trunk of the body.  

 

Muscle is comprised of three main types: skeletal, smooth, and cardiac. Smooth 

muscle is involved in involuntary processes such as digestion and cardiac muscle 

forms the heart, enabling the transfer of blood around the body. Skeletal muscle is 

used for movement (with more than 500 separate muscles) and as a source of 

metabolic heat for surrounding tissues.20;77 Given the essential role of skeletal 

muscle in movement, low muscle mass may be detrimental for physical functioning. 

As will be described in more detail later in this chapter, lean mass levels are known 

to decline in adulthood, and this may lead to impaired physical functioning. This has 

been termed sarcopenia, a term subject to on-going academic debate.  

 

Sarcopenia was originally defined as the age-related decline in lean mass,78 a term 

subsequently used to describe the age-related decline in muscle mass and strength 

and/or physical performance.79-81 Although there is currently no agreed definition of 

sarcopenia, all proposed definitions include measures of low muscle mass (eg, 

appendicular lean mass (kg)/height (m)2 <7.26 in males and <5.45 in females),82 

with others additionally taking into account fat mass4;83 and strength or physical 

performance.79-81;84  

 

Some authors have suggested that sarcopenia should be used to refer to declines in 

muscle mass, and dynapenia used to refer to declines in muscle strength.85;86 A 

number of studies have found that low muscle strength is a stronger predictor of 

mortality and worse physical function than low lean mass,87;88 suggesting that 
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including both in a definition of sarcopenia adds additional clinical utility. However, 

although it is widely assumed that declines in muscle mass lead to declines in 

muscle strength (which then affects subsequent physical functioning), longitudinal 

studies have found that changes in lean mass are not always followed by expected 

changes in muscle strength.85;89 This suggests that muscle mass and strength have 

different determinants (eg, strength may be more directly related to neuromuscular 

functioning), and therefore warrant separate investigation of aetiological 

factors.85;90 Following this, the focus of this thesis will be on lean mass (or 

equivalently muscle mass). As described below, low lean mass may be related to 

worse physical functioning and health. 

 

A number of studies have found low lean mass to be associated with 

concurrent4;83;91;92 and future measures3;93 of worse physical functioning assessed 

by either self-report (eg, self-reported functioning limitations) or objectively (eg, 

slow walk speed or chair rise time). In these studies associations in females tend to 

be only found using a definition of low appendicular lean mass which also takes into 

account fat mass.3;4;83 One study used repeat measures of lean mass and found 

that greater decline in lean mass over 5.5 years was associated with greater risk of 

self-reported physical disabilities.94 However, not all findings are consistent, with 

some studies finding that lean mass was not associated with concurrent95;96 or 

future97 physical functioning. Overall, there is some evidence that lower lean mass 

is related to worse physical functioning, although inconsistent findings suggest the 

need for future research.  

 

In addition to use in movement and physical functioning, lean mass is also involved 

in physiological processes which have health consequences.98 Since muscle is an 

important site for glucose uptake in response to insulin,99;100 low levels of lean mass 

could lead to deregulated increases in blood glucose levels, insulin resistance, and 

therefore increase the risk of diabetes.7;101;102 Since insulin resistance and diabetes 

are risk factors for cardiovascular disease,103 lower levels of lean mass could 

ultimately lead to higher risk of cardiovascular disease. A recent large cross-

sectional study (n=14,528) showed that those of low lean mass in later adulthood 

(>60 years) tended to have worse glucose metabolism, although it was 

acknowledged that longitudinal data are required to elucidate the direction of 

association.7 A pathway between low muscle mass and chronic disease has been 

hypothesised in studies which report associations between low intrauterine muscle 

development (indicated by low birth weight) and both low lean mass and later 

elevated risk of cardiovascular disease in adulthood.101;104;105  
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As well as potentially impacting on glucose metabolism, lean mass may also be 

related to bone mineral content. According to the mechanistic model of bone 

development, bone mineral content may be driven by the mechanical load driven 

by muscle mass.106-108 Repeat measures of lean and bone mass in adolescence have 

supported this suggestion, with increases in lean mass preceding increases in bone 

mass.108 This relationship is thought to extend to later adulthood, with cross-

sectional studies showing lean mass to be positively correlated with bone mineral 

content5;6 and density.109 The decline in lean tissue in later adulthood may lead to a 

decline in bone mineral content,110 and a consequent increased risk of fracture.111  

 

Other potential roles of lean mass in health include its role in basal metabolic rate, 

with higher lean mass associated with faster resting metabolic rate.112;113 In 

addition, skeletal muscle is thought to act as a source of protein which can be used 

by other bodily organs during periods of malnutrition or acute ill health.98 As such, 

higher muscle mass may be protective for health and in response to acute 

stressors. For example, greater muscle loss in cancer is associated with increased 

risk of mortality.98 However, it should be noted that studies examining associations 

between lean mass and mortality in non-diseased populations have produced 

inconsistent findings.87  

 

Although the wider public health implications of low lean mass are likely to partly 

depend on the particular cut-points used, the estimated prevalence of sarcopenia 

(typically defined solely by low lean mass) suggests that a sizable proportion of the 

UK population are at risk. Van Kan in 2009114 synthesised the available 

epidemiological data in the USA and non-UK European countries and found 

prevalence estimates to be between 8 to 40% in those aged 60 years or older. The 

high variability was attributed to differences in cut point and definitions used, but 

may also be caused by differences in subject characteristics in each study, and 

dual-energy x-ray absorptiometry (DXA) software and hardware.115 Although data 

for the UK were not included (and to the author’s knowledge are not available), the 

prevalence would be expected to be near to the USA and other European cohorts 

studied. As an increasing proportion of the UK population are surviving into old 

age,116 the public health and economic impacts of low lean mass are likely to be 

substantial as increasing numbers are exposed declines in lean mass and therefore 

detrimentally low lean mass levels. The economic costs of sarcopenia have been 

estimated to be $18.5 billion in the USA in 2000, due to increasing need for 

disability assistance in those with low lean mass.117  
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In summary, while the relationship between lean mass and health outcomes is less 

well researched than with fat mass, there is some evidence that low lean mass is 

related to worse physical functioning, adverse glucose metabolism, lower bone 

mineral content and lower basal metabolic rate. There is therefore justification in 

examining the factors associated with lean mass levels in adulthood. As with fat 

mass, the period of life in which lean mass is measured may be important to 

consider in analyses as lean mass is known to vary across life.  

 

 Changes in lean mass across life  1.3.1

 

Cross-sectional data have shown that gains in lean mass take place in both sexes 

from birth to early adulthood (18–20 years), with males tending to gain more lean 

mass in adolescence (12-18 years) than females, leading to male adults typically 

having more lean mass than females.20;70 Lean mass levels are thought to decline 

in adulthood, particularly in later adulthood; both cross-sectional118;119 and 

longitudinal data120 suggest steep declines from around age 50 onwards—a total of 

a 25–30% reduction in mass up to age 80.118;119;121 Although not the focus of this 

thesis, muscle strength and other muscle parameters (power and endurance) are 

also known to decline in adulthood—122 muscle strength has been shown to decline 

more rapidly than declines in lean mass,85;89 which may be partly explained by 

morphological changes in muscle tissue with ageing including fat infiltration.36;123 

 

The amount of lean mass in later adulthood—determined by the number, size, and 

density of muscle fibres—is likely to be influenced by the peak levels attained 

during earlier periods of life, the rate of subsequent decline, and the time at which 

the decline begins.77;124 Pre-adult factors may feasibly influence the peak level of 

lean mass attained as well as the timing and rate of adulthood decline, while factors 

in adulthood may affect both the timing and rate of adulthood decline. As such, 

factors in both early and adult life may be important in influencing the lean mass 

levels in later adulthood.  

 

While lean mass is typically used as a measure of skeletal muscle mass, it should 

be noted that lean mass also contains organ mass which, as highlighted in recent 

studies, has been found to decline in later adulthood.125;126 However, the 

consequences of higher or lower organ mass are not well understood and are not 

the focus of this thesis. 
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 The relationship between fat and lean mass 1.4

 

In the previous sections, the roles of fat and lean mass in health and functioning 

were outlined separately. While they are discrete sections of the human body with 

distinct functions, the relationship between these masses is important and warrants 

discussion.  

 

Fat and lean mass in adulthood have been shown to be strongly positively 

correlated in cross-sectional analyses, and studies have found gains or losses in fat 

mass tend to be followed by gains or losses in lean mass.127-131 While the 

mechanisms underlying these associations are not fully understood, they could 

result from adaptive mechanisms in which changes in fat mass lead to downstream 

changes in lean mass; gains in fat mass would lead to greater muscle loading, and 

therefore the need for higher lean mass to support the resulting additional weight. 

The relationship between fat and lean mass may be important to consider in the 

study of aetiological factors as associations with fat mass may drive associations 

with lean mass. The relationship between these masses may however differ in later 

adulthood, with losses of lean mass typically occurring alongside gains in fat mass 

in old age, and those of greater fat mass in old age experiencing greater 

subsequent losses of lean mass.132 

 

Although fat and lean mass have been found to be positively correlated, in some 

cases individuals have high fat mass and low lean mass. While high fat and low lean 

mass have in isolation been related to worse physical functioning, the simultaneous 

presence of both may be particularly detrimental for physical functioning as the 

presence of low muscle mass is compounded by the need to carry excess fat mass. 

This has been termed sarcopenic obesity,133;134 although there is no agreed 

consensus on the definition. Some135;136 population studies in later adulthood (using 

both cross sectional and longitudinal designs) have found that sarcopenic-obese 

individuals tend to have lower physical functioning than obese-only or sarcopenic-

only subjects, although other studies have not found this.137;138 These studies have 

tended to find that the effects are additive, and not multiplicative. The differences 

in findings may be partly explained by the different ways in which sarcopenia and 

obesity are defined, suggesting that further research is required.39 

 

In addition to implications for physical functioning, the relative amounts of fat and 

lean mass may be important for health outcomes. While adipose tissue is known to 

secrete pro-inflammatory compounds, recent research in mice has shown that 

muscle tissue secretes anti-inflammatory compounds (myokines).139;140 These have 
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been shown to have protective effects on the vascular system and cardiac tissue, 

and are hypothesised to counter the detrimental impact of pro-inflammatory 

compounds secreted by fat tissue.139 If this is also true in humans, it would suggest 

that the proportions of muscle and fat mass are important for health.141  

 

The ratio of fat: lean mass may be a useful outcome in the study of life course 

factors that influence fat and lean mass, as this provides a clear means of assessing 

whether an explanatory variable has a stronger association with fat or lean mass. 

For example, two hypothetical risk factors may both lead to higher fat and lean 

mass levels, but lead to either higher or lower fat: lean mass ratio (depending on 

the strength of the individual associations, and mean levels of fat and lean mass). 

As such, the factor which lead to a lower fat: lean mass ratio would be considered 

beneficial.  

 

In this thesis, whole body fat and lean mass will be the main outcomes of interest, 

and the life course influences of these will be explored in subsequent chapters. Both 

whole body and appendicular lean mass will be used; while both are measures of 

skeletal muscle mass, the use of the former enables fairer comparison with studies 

which have used this outcome (eg, those which cannot distinguish appendicular 

regions such as bioelectrical impedance analysis, BIA), and the latter is likely to be 

a more accurate measure of skeletal muscle mass. In addition, the ratio of fat: lean 

mass will also be used, to show how explanatory variables considered affect the 

relative amounts of fat and lean mass. Android: gynoid fat mass ratio will also be 

used as an additional outcome for fat mass, as high abdominal fat distribution may 

be additionally detrimental to health.  

 

Previous studies have tended to examine how explanatory factors across life relate 

to BMI, not direct measures of fat and lean mass. In the following section the 

limitations of BMI will be discussed. 

 

 Limitations of body mass index 1.5

 

Anthropometric measures of the body have historically dominated the published 

epidemiological literature in studies investigating fat mass as either the predictor or 

outcome of interest.75 Although BMI is reasonably easy to obtain, and therefore 

feasible for use in large population studies, it has a number of limitations. 

 

As BMI does not distinguish between fat and lean mass, associations between an 

explanatory factor (or outcome) and BMI may be driven by associations with fat 
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mass, lean mass, or both. The extent to which associations with BMI are due to fat 

and/or lean mass is likely to differ by age and sex: as previously described in this 

chapter, ageing is associated with gains in fat and declines in lean mass,25 and 

males typically have less fat and more lean mass than females.70 Given the 

importance of both fat and lean mass to health and physical functioning there is a 

need to understand the aetiological factors which influence both masses; this 

requires the use of direct measures of fat and lean mass. 

 

The extent to which BMI is an accurate measure of fat mass is also uncertain. 

Studies have reported substantial variation in associations between BMI and direct 

measures of fat mass (eg, correlations between 0.68 and 0.89), with differences in 

correlations reflecting differences in the body composition (amount of fat and lean 

mass) in each population investigated.142;143 While high BMI is used to diagnose 

overweight and obesity, these are defined by excess accumulation of body fat;26 it 

is through fat mass, and not weight, that obesity is thought to be associated with 

health outcomes. The use of direct measures of fat mass may therefore be most 

relevant for health, suggesting that where possible direct measures of fat mass 

should be used in aetiological studies.  

 

For the reasons outlined above, the use of direct measures of fat and lean mass 

may be more informative than BMI. As direct measures of fat and lean mass have 

increasingly become available for use in population studies, a growing number of 

studies have examined associations between exposures in adulthood with these 

masses. A smaller number of studies have investigated associations with exposures 

at earlier points in life. These studies have theoretical support as exposures in both 

early and adult life may affect the amount of fat and lean mass in adulthood. The 

influence of exposures acting across life on subsequent outcomes in adulthood is 

considered within life course epidemiology.  

 

 Life course epidemiology  1.6

 

From World War II until the 1970s, epidemiological research tended to focus on 

associations between adult risk factors—such as life style factors—and chronic 

disease.10 These included the now well-established risk factors for lung cancer 

(tobacco smoking) and cardiovascular disease (eg, hypertension, raised blood 

cholesterol).10 However, later findings in the 1980s and 90s began to highlight the 

importance of early life factors in the development of later adult chronic disease; 

these findings, particularly those published by Barker and Forsdahl, re-catalysed 

the pre-World War II interest in the role of early life factors on later health.10 
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Barker, in landmark work in the 1990s, reported associations between low birth 

weight and increased risk of type 2 diabetes and cardiovascular disease.144;145 It 

was hypothesised that impaired foetal development—indicated by low birth 

weight—had lasting adverse effects on adult health. Forsdahl also published work 

outlining the association between adverse socioeconomic position (SEP) in 

childhood and adult mortality, suggesting other post-natal life stages were also 

important in the development of later health outcomes.146 

  

The two hypotheses of adult chronic disease—early life factors and adult risk 

factors—were initially interpreted as competing models of disease aetiology.10 To 

counteract this, and reflect the greater explanatory power of both models in 

combination, Kuh and Ben-Shlomo coined the term life course epidemiology and 

defined it as: “…the study of long-term biological, behavioural, and psychosocial 

processes that link adult health and disease risk to physical or social exposures 

acting during gestation, childhood, adolescence, earlier in adult life, or across 

generations.”147 (p.3) 

 

A number of main pathways have been proposed to explain how factors operate 

across life to influence outcomes in adulthood, each of which may operate 

simultaneously.147-149 Risk factors may have a particularly strong effect in one 

particular period of life, and can be described as either a critical period (where the 

change is unlikely to be to subsequently reversed) or a sensitive period. For 

example, maternal exposure to thalidomide during pregnancy permanently impairs 

offspring limb development,150 whereas exposure later in life has no effect. This 

could be described as a critical period effect. Both critical and sensitive period 

effects may be modified by a later exposure, which could either attenuate or 

strengthen their effects. Risk factors may also have cumulate effects on the 

outcome—for example, physical inactivity across adulthood may have cumulate 

effects in leading to higher fat mass (due to the tracking of gains in fat mass 

caused by low activity levels at each age). Risk factors may also form chains of risk, 

with the final exposure in the chain ultimately affecting the outcome—for example, 

low educational attainment may lead to low occupational class and low income 

which, by impacting on the capacity to purchase leisure and dietary resources, 

leads to higher fat mass.  

 

By its definition, life course epidemiology requires data from multiple time points 

across life. Consequently, various prospective and retrospective studies have 

dominated the published literature in this field, including prospective cohort studies 
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based in Britain. These include the NSHD, the oldest British birth cohort study 

which will be used in this thesis. 

 

In the following section, a life course approach will be used to briefly outline the 

factors that influence adult fat and lean mass in adulthood. The limitations of 

previous studies will be described followed by the benefits of using the NSHD to 

conduct further work. The NSHD is described in detail in Chapter 2. 

 

 Life course influences on fat mass 1.7

 

From a metabolic perspective, the amount of fat mass an individual has is the 

product of a relatively simple process—the balance between energy input and 

expenditure over a period of time.17;41;151 An imbalance in this system over time is 

likely to alter the levels within an individual, with greater energy input leading to an 

accumulation of fat mass, and greater expenditure leading to lower fat mass.17 

However, research has suggested that the factors that influence this process are 

varied and numerous, and operate across life. 

 

An obvious starting point when trying to identify the factors that influence fat mass 

is research investigating the relatively recent trends of increasing obesity 

prevalence. In a substantial inter-disciplinary body of work commissioned by the UK 

government, the Foresight team reviewed the causes of obesity in the UK.17 The 

authors concluded that there are a number of factors that may act to increase 

obesity risk, at the biological, behavioural, societal, and economic levels. Although 

the evidence for each contributory factor was not always fully established, the 

authors concluded that the secular trends of increased obesity (in both childhood 

and adulthood) can be explained by changes at the societal and economic levels 

that have taken place primarily in the 20th century. These changes have led to 

reductions in physical activity and increased availability of high-energy foods. The 

report also briefly outlined other factors which may influence the amount of fat 

mass in adulthood. These included genetic factors and factors acting in early life. 

For example, the authors highlighted research suggesting greater weight gain in 

infancy is associated with increased risk of obesity in adulthood, while breast 

feeding during this period is associated with reduced obesity risk.17 

 

While higher physical activity levels are hypothesised as leading to lower fat mass, 

few studies have examined associations between physical activity and direct 

measures of fat mass.152 Of these studies, few have used objective measures of 



28 

 

physical activity or examined whether activity levels across adulthood are 

cumulatively beneficial in leading to lower fat mass.  

 

Although not discussed in more detail in this thesis, researchers have examined a 

number of factors other than physical activity and energy intake that may influence 

fat mass. These include genetic factors, with evidence from twin and familial 

relation studies suggesting heritability of fat mass are approximately 70%,153-157 

and with specific genes identified which are associated with increased risk of 

obesity.158-160 Other factors investigated include tobacco smoking, endocrine 

disruption from exogenous agents (such as pesticides and heavy metals), 

pharmaceutical agents, ambient temperature levels, sleep debt, maternal factors 

(such as age at childbirth), and intergenerational effects;161;162 others have included 

the effects of pathogens and environmental–epigenetic processes.161  

 

Although many of the factors described above could act earlier in life and have 

lasting effects on adult fat mass, in most cases this has not been tested. Using 

available data, a growing body of research has examined the influence of factors 

that act across life on adult fat mass.75;163-165 In 1999 Parsons et al conducted a 

systematic review of studies examining the early life predictors of obesity in 

adulthood166 and concluded there was evidence for “parental fatness, low SES 

(socioeconomic status), higher birth weight, earlier maturation and inactivity” 

(p.31) being associated with greater risk of adult obesity.166 Since this publication, 

this area of research has received more attention, with further summary reviews 

also concluding that factors in early life independently influence fat mass in 

adulthood.75;164;165 Many of the specific findings stated by Parsons et al have since 

been reproduced, with associations reported between low SEP in childhood,167-169 

high birth weight,170 early pubertal development171 and increased risk of obesity in 

adulthood. There has also been active interest in other factors that act in early life, 

including growth during infancy; a number of systematic reviews have now shown 

higher rates of growth in infancy to be associated with increased risk of obesity in 

adulthood.172-174 There have also been studies investigating the potentially 

protective influence of breastfeeding on adult obesity,175;176 while other studies 

have investigated dietary patterns across life.177  

 

As will be detailed in later chapters, the studies that have examined associations 

between factors across life with adult fat mass have a number of limitations which 

necessitate the need for further research. Most of the published studies have used 

BMI as a surrogate measure of fat mass. As outlined previously, BMI is only a crude 

indicator of fat mass that does not distinguish between fat and lean mass. To make 
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inferences about factors that may influence fat mass (as distinct from lean mass), 

direct measures of fat mass are required. In many of the population studies that 

have measured fat mass directly, relatively inaccurate and imprecise measures 

have been used (such as SFT and BIA),178-180 presumably due to the higher cost of 

more accurate measures. There is a need to build on previous studies using direct 

and accurate measures of fat mass. In addition to whole body measures of fat 

mass, abdominal fat distribution may be additionally important for health, but few 

studies have direct measures of this.  

 

The study of life course influences on adult body composition requires data from 

multiple points across life. At a minimum, two time points are required (eg, one in 

adulthood and another at a previous life stage). Many of the published studies have 

been limited by only having a small number of measures from across life; although 

these have highlighted the importance of factors at specific points (for example, 

weight gain in infancy), they do not enable the relative contribution of factors at 

different periods of life to be determined (for example weight gain in infancy, 

childhood, and adolescence). Further research is therefore required with a study 

which has repeat data of relevant factors across life. In addition, most previous 

studies tend to have limited available data for potential confounders. For example, 

while studies have found greater weight gain in infancy to be associated with higher 

BMI in adulthood, this could feasibly be confounded by SEP in early life.  

 

Previous studies that examined how early life factors influence fat mass in 

adulthood have typically focused on single explanatory factors. While the 

identification of individual risk factors is likely to be useful in providing risk factors 

for intervention or preventative strategies, the study of how these factors operate 

together may be informative in order to provide information about aetiology. For 

example, associations between low SEP in childhood and high adult fat mass could 

be mediated by patterns of growth in childhood and physical activity levels in 

adulthood.  

 

 Life course influences on lean mass  1.8

 

The factors across life that influence adult lean mass have received comparatively 

less attention than factors that influence fat mass, presumably due to the relatively 

recent development of lean mass measurement in population studies, and the less 

well appreciated public health implications of low lean mass.98 Both the lack of 

studies and limitations of previous research—discussed in more detail in subsequent 

chapters—suggest the need for future research.  
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Given the high protein content of muscle, the amount of muscle mass (and 

therefore lean mass) an individual has is partly the product of a balance between 

protein synthesis and degradation.181-183 As with fat mass, factors influencing this 

process may also operate across life.  

 

In adulthood, a large number of experimental studies have shown that resistance 

training interventions lead to gains in lean mass.184-186 While there is evidence that 

specifically designed resistance exercise is beneficial in leading to higher lean mass, 

few population studies have examined whether more commonly undertaken types 

of physical activity are associated with lean mass.187-190 Of the studies that have 

been conducted, most use a single measure of physical activity in relation to 

concurrent or future lean mass; to the author’s knowledge no studies have 

examined whether there are cumulative benefits of activity across adulthood in 

leading to higher lean mass.  

 

In addition to physical activity, genetic factors have been investigated, with 

heritability estimates for whole body lean mass of 60-70%.109;153;154;191;192 Studies 

have also examined dietary factors, with some experimental trials and observation 

studies suggest that greater amino acid or protein intake is associated with higher 

lean mass.186;193;194 

 

While a large number of studies have examined how SEP relates to BMI, few 

studies have used lean mass as an outcome.195-199 These have tended to use only 

single indicators of SEP at one point in life, and not examined the factors which 

mediate these associations.  

 

Using data from across life, the growth that takes place in utero (as indicated by 

birth weight)200;201 and weight gain in infancy202-204 have been investigated in 

relation to adult lean mass, with positive correlations found. However, few of the 

published studies have repeat measures across the growth trajectory—from birth, 

infancy, childhood, adolescence and adulthood—leaving the relative contribution of 

growth during each of these periods to adult lean mass unclear. 

 

Population studies examining the factors across life that are associated with lean 

mass have typically not considered how fat mass may impact on associations. As 

discussed previously, those with more fat mass may also, as a result of adaptive 

mechanisms, develop more lean mass. In addition, most previous studies have 
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used whole body measures of lean mass such as those obtained by BIA or SFT 

measures which do not distinguish between bone, organ, and muscle mass.  

 

In the following section the NSHD will be proposed as a useful study to investigate 

the factors across life that influence fat and lean mass.  

 

 Benefits of using the MRC National Survey of Health and 1.9

Development 

 

The NSHD is a British birth cohort study comprised of births that took place during 

one week of March 1946 in England, Wales, and Scotland (described in more detail 

in Chapter 2). The sample has been followed-up in full 23 times, giving a number of 

repeat measures across life including measures of growth, SEP, and physical 

activity. In most cases, these data were prospectively ascertained by trained health 

professionals using standardised protocols rather than self-reported, helping to 

ensure their accuracy.205  

 

The rich data collected in the NSHD provides a number of benefits for conducting 

research. Firstly, it enables the investigation of multiple factors across life that may 

influence body composition in adulthood, such as measures of growth, SEP, and 

physical activity. The repeat data available within the NSHD enable a number of 

specific hypotheses to be tested. For example, both intrauterine206 and infant 

growth207;208 have been hypothesised to be critical periods in influencing obesity 

risk in later life. However, few studies have data for both periods of growth, leaving 

their relative contributions unclear. The repeat measures of physical activity in the 

NSHD are also a strength as they enable the cumulative effects of activity levels 

across adulthood to be examined.209 

 

Further, the NSHD enables analyses to be performed which investigate the extent 

to which associations are confounded or mediated by other factors. The 

investigation of both confounding and mediating factors provides additional support 

for the hypothesised direction of association, and enables pathways of associations 

to be better understood. For example, while some studies have examined the 

associations of SEP with fat and lean mass, few have examined whether these 

associations are mediated by measures of pre-adulthood growth and/or physical 

activity.  

 

In addition to rich data for explanatory factors, the NSHD has direct measures of 

body composition obtained using DXA at the most recent data collection at 60–64 
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years. This method provides both whole body and regional measures of fat and lean 

mass, and is thought to be relatively highly accurate and precise. DXA and the 

outcomes of this thesis are described in detail in Chapter 2. 

 

Finally, the NSHD has a relatively large sample size, and so sufficient statistical 

power for a range of analyses. The NSHD contains both sexes, enabling sex-specific 

associations to be tested, and contains study members of varied social background 

living across mainland Britain. Findings may therefore be more generalizable to the 

British population than other studies using more selective samples. The 

representativeness of the NSHD is discussed in Chapter 2.  

 

 Public health significance of this research 1.10

 

As highlighted previously, a substantial proportion of the British population are 

estimated to be affected by the adverse health and functional outcomes related to 

high fat and low lean mass. This suggests that the research questions addressed in 

this thesis have important public health implications, since factors that affect fat 

and lean mass, even if their overall effect is relatively small, can be identified and 

potentially modified therefore benefiting a large number of people. For fat mass, 

intervention studies that aim to reverse obesity in adulthood tend to have only 

limited success: as has been previously argued elsewhere, it may be more effective 

to focus finite public health resources towards prevention and intervention in prior 

life stages rather than treatment in adulthood.75;210;211 

 

The body composition measures taken in the NSHD are at 60–64 years. The 

identification of factors that affect fat and lean mass at this older age are 

particularly important since age is a risk factor for most major chronic diseases.212 

Since substantial evidence indicates associations between higher fat mass and 

increased risk of chronic diseases (as outlined earlier), elucidating contributory 

factors of fat mass in later adulthood may help to guide public health policy in 

reducing obesity, and thereby risk of chronic disease. In addition, in later adulthood 

the consequences of low lean mass for physical functioning may become clinically 

manifest, suggesting that the identification of factors that influence lean mass in 

later adulthood could ultimately be used to help reduce the number of individuals 

who suffer the adverse consequences of low lean mass.  
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 Literature review summary and overall aim of the thesis 1.11

 

In summary, there is evidence that high fat mass leads to increased risk of chronic 

diseases, mortality, and worse physical functioning. There is also evidence that low 

lean mass is associated with worse physical functioning, low bone mineral content 

and density, and adverse glucose metabolism. Plausible biological mechanisms 

have been proposed to explain these associations, and there is evidence suggesting 

that factors across life affect the levels of fat and lean mass in adulthood. However, 

the published studies examining these tend to use surrogate and/or inaccurate 

measures of fat and lean mass, and have limited data for explanatory factors, 

limiting the hypotheses that can be tested. The NSHD has been proposed as a 

study which could be used to overcome these limitations and add to this important 

field of scientific research.  

 

The overall aim of this thesis is to examine the associations between a number of 

explanatory factors across life and body composition outcomes in later adulthood 

using the NSHD. The explanatory variables are chosen on the basis of both 

scientific and practical rationale: each can be hypothesised to influence body 

composition—though further research is required (more detailed scientific 

justification is presented in subsequent chapters)—and each was measured in the 

NSHD. The explanatory variables chosen are: measures of indicators of SEP across 

life, birth weight (an indicator of prenatal growth) and growth after birth (in 

infancy, childhood and adolescence), and measures of physical activity across 

adulthood. 

 

Some explanatory variables, also measured in the NSHD, were excluded in order to 

restrict the scope of the thesis—exclusion was also judged appropriate on the basis 

of scientific rationale. The most notable example of this is the exclusion of direct 

measures of dietary intake, collected in the form of parental recall or self-report in 

the NSHD.213 Research has pointed towards inaccuracy and systematic bias in self-

reported diet intake data (such that individuals of higher fat mass are more likely to 

report eating less),214;215 suggesting that study of dietary intake in relation to body 

composition may be complicated, and beyond the scope of the work conducted in 

this thesis. In addition, relatively few participants have provided dietary intake in 

the NSHD, leading to lower statistical power. However, as will be outlined and 

discussed in subsequent chapters, dietary intake may be indicated by other factors 

collected in the NSHD that will be examined in this thesis. For example, measures 

of growth in infancy, childhood and adolescence are likely to be partly driven by 

dietary factors.  
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 Structure of the thesis 1.12

 

The source of data used in this thesis, the NSHD, is described in Chapter 2 and 

particular detail is given to the body composition outcomes used. Also outlined in 

this chapter are the analytical strategies and statistical methods used in subsequent 

chapters.  

 

The conceptual framework used in this thesis is shown in Figure 1, with arrows 

indicating the hypothesised relationships between the different explanatory 

variables considered in this thesis and outcomes. Chapters 3-6 each focus on the 

independent associations between specific explanatory factors and body 

composition outcomes, and follow the same structure: a literature review is 

presented followed by justification for future research—the specific hypotheses of 

each chapter are then outlined followed by the methods, results and discussion 

sections.  

 

Chapter 3 examines associations between birth weight (an indicator of prenatal 

growth) and body composition outcomes, Chapter 4 extends this work by 

examining associations with measures of growth after birth (in infancy, childhood 

and adolescence), while Chapter 5 examines associations between physical activity 

levels in adulthood and body composition outcomes. In Chapters 3, 4 and 5 SEP is 

considered a potential confounder. Chapter 6 then examines the separate 

associations between indicators of SEP and outcomes, and investigates whether the 

associations found are mediated by the explanatory factors investigated in previous 

chapters (birth weight, measures of growth after birth, and physical activity levels 

in adulthood), as suggested in Figure 1. Finally, Chapter 7 summarises the main 

findings of the thesis and discusses the implications, the strengths and weaknesses 

of the work conducted, and recommendations for future work. 
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Figure 1. Conceptual framework of the factors examined in this thesis 

 

 

 

Note: explanatory variables are shown in the blue boxes, and outcomes in the 

yellow box; arrows represent the main directions of influence, with explanatory 

variables influencing both other explanatory variables and outcomes; the 

framework is limited to the associations analysed in this thesis 
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 Chapter 2: An introduction to the data and analytical 2.

strategy 

 

This chapter introduces the cohort and dataset used in this thesis—the MRC NSHD, 

also known as the 1946 British Birth Cohort Study—and the specific outcomes used 

to address the objectives of this thesis; the explanatory variables used are 

described in subsequent chapters. Height-adjusted outcomes are derived and, to 

aid the interpretation of results in subsequent chapters, correlations between the 

different outcomes are examined. The representativeness of the NSHD is discussed 

and the characteristics of study members with complete outcome data are 

compared with those that do not. Finally, the analytical strategy and statistical 

methods used across subsequent chapters are briefly described. 

 

 Introduction to the MRC National Survey of Health and 2.1

Development 

 

The history of the NSHD has been extensively described in a series of 

publications,213;216-219 and is therefore outlined only briefly below. 

 

The NSHD is the oldest British birth cohort study and began as a national maternity 

survey carried out in 1946 to investigate the efficacy of maternal care services 

following concerns regarding falling fertility rates.213 Of 16695 births in the 

maternity survey that occurred between the 3rd and 9th of March 1946 in mainland 

Britain, 5362 births were selected for follow-up: those born in a local authority that 

agreed to take part (92.6%), those born from mothers who were married, and a 

stratified selection based on parental employment status: all births from females 

with husbands in non-manual and agricultural employment, and a random selection 

of one in four births to females with husbands in manual employment.218;220  

 

The entire cohort has been followed-up 23 times at birth, infancy, childhood, 

adolescence and adulthood, most recently at 60–64 years when measures of body 

composition were obtained. As the study has continued, it has been used to 

address a number of areas of research relating to public policy: maternal care, 

educational attainment, socio-economic differences in employment prospects and 

health and—most recently—the ageing process. Although the principal research 

interests have changed, a number of variables have been measured repeatedly 

throughout life (such as measures of height and weight), and these data will be 

used as explanatory variables in this thesis. 
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Like all birth cohort studies, the NSHD has experienced attrition—this differed in 

each of the different follow-ups and was highest in early adulthood (likely due to 

the more frequent address and name changes that occurred in this period). Table 1 

presents a summary of the overall response rates of the study, and shows that in 

each wave the proportion of the target sample that provided at least some data 

was high.  

 

Body composition data (derived using DXA) from the most recent wave of data 

collection, at 60-64 years, will be used as the main outcomes in this thesis. The 

collection of these data is described in the following section.  

 

Table 1. Response rates in the MRC National Survey of Health and Development 

 

Year Age Respondent Number that 

provided some 

valid data 

% Target 

1946-50 0-4 Mother 4695 95 

1951-61 5-15 Mother and study Member 4307 89 

1962-81 16-35 Study Member 3538 78 

1982 36 Study Member 3322 86 

1989 43 Study Member 3262 87 

1999 53 Study Member 3035 83 

2006-10 60-64 Study Member 2661 84 

Modified from Wadsworth et al, 2003220  

 

 The derivation of body composition outcomes 2.2

 

Between 2006 and 2010 (at 60–64 years), 3163 study members still alive and 

living in England, Scotland or Wales were sent a postal questionnaire that assessed, 

among other factors, their health and socioeconomic circumstances. No contact was 

attempted for those who had died (n=718), who were living abroad (n=567), had 

previously withdrawn from the study (n=594), or had been lost to follow-up for 

more than 10 years (n=320). Following this postal questionnaire, 2856 participants 

(who were still alive, traceable, and living within the catchment area) were invited 

for an assessment at a regional clinical research facility (CRFs; in Cardiff, 

Manchester, Birmingham, Edinburgh, and two in London) or, if not able to attend a 

CRF, were asked if they were willing to be visited by a research nurse at home.219 

Of those invited, 1690 (59.2%) attended a CRF and 541 were visited at home; as 
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such, the majority of study members that had an assessment did so at a CRF 

(75.8%). Clinic visits took place between 2006 (60 years) and 2010 (64 years). 

Relevant ethical approval was obtained for all aspects of data collection. 

 

During the visits to the CRF, measures of body composition were obtained in the 

supine position using a QDR 4500 Discovery DXA scanner (Hologic Inc, Bedford, 

MA, USA)—these scans were then reviewed by a single operator (Professor Judith 

Adams at Manchester University) using APEX 3.1 software to confirm that the 

different regions of the body had been correctly defined and high-density artefacts 

detected. Local quality assurance procedures were monitored centrally and cross-

calibration between scanners was performed by scanning the European Spine 

Phantom at the start and end of the study.221;222 From these scans, measures of fat 

and lean mass were obtained for the whole body and for the arms, legs, trunk, 

android (abdomen) and gynoid (upper legs/hips) regions. Lean mass was defined 

as mass excluding fat and bone mass, and in all measures data from the head were 

excluded due to the high proportion of bone mass in this region known to affect the 

accuracy of soft-tissue measures.115 Where one limb was missing or contained a 

high-density artefact (eg, a knee replacement in the left leg) the data were 

replaced with the other limb (eg, the right leg).  

 

From the DXA scans, the following measures were chosen for use as the main 

outcomes in this thesis: whole body fat and lean mass, and appendicular lean mass 

(in kilograms). Two ratios were derived—android: gynoid fat mass (higher values 

indicating greater fat distribution in the abdomen (android region) than upper 

legs/hips (gynoid region)) and whole body fat: lean mass; these were multiplied by 

100 to increase the number of significant digits. Routine anthropometric measures 

were taken during the clinic visit using standardised protocols by trained nurses.219 

Of the 1690 participants that attended the clinic, 1558 participants had complete 

data available for all main body composition outcomes (all of which had valid height 

and weight data), 32 participants had no DXA measures taken, and 100 had partial 

but incomplete DXA measures due to the following reasons: both of the 

participant’s arms or legs lay outside the scan range (n=5), high-density artefacts 

were detected in either the trunk or both arms or legs (n=77), technical faults 

occurred (n=16), or the participant was too breathless to be scanned (n=2). In 

addition, in five of the six clinics 1262 participants had measures of forearm cross-

sectional muscle area (cm2) obtained using peripheral quantitative computed 

tomography (XCT 2000 Stratec Medizintechnik GmbH, Pforzheim, Germany) at the 

50% site of the non-dominant forearm. This was used as an additional outcome in 

Chapter 3, but was unavailable in one London clinic due to funding limitations. 
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A flow diagram is presented in Figure 2 and shows the number of study members 

with valid outcome data and those lost to follow-up. 1558 participants had 

complete body composition outcome data. Of these, 326 attended a CRF in 

Manchester, 209 in Edinburgh, 191 in Birmingham, 185 in Cardiff, and 647 in 

London. Visits to the Manchester CRF took place first, when participants were 60 to 

63 years, while study members were aged between 62 to 64 years in all other CRF 

visits. In total, 2661 participants provided at least some data at 60–64 years 

(either a clinic or home visit or via postal questionnaire).  
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Figure 2. A flow chart summarising response rates for those who provided valid 

body composition outcome data at 60-64 years 

 

 

Note: modified from Stafford et al, 2012;223 valid body composition measures were 

whole body fat and lean mass, appendicular lean mass, android fat mass, and 

gynoid fat mass 
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 Summary of main outcomes used in this thesis 2.2.1

 

The list below summarises the main outcomes used in this thesis: 

 

1) Whole body fat mass (kg), excluding the head 

2) Whole body lean mass (kg), excluding the head  

3) Appendicular lean mass (kg) 

4) Fat: lean mass ratio (whole body fat mass/whole body lean mass) 

5) Android: gynoid fat mass ratio (android/gynoid fat mass) 

 

In addition to whole body fat and lean mass (and their ratio), two regional 

measures were included—appendicular lean mass and android: gynoid ratio. 

Appendicular lean mass is likely to be a better indicator of skeletal muscle mass 

than whole body lean mass as it excludes organ mass and the bone-dense trunk of 

the body where DXA is likely to be less accurate in assessing lean mass. Whole 

body lean mass was also included as its use enables fairer comparison with 

previous studies that have used this outcome. While there is no consensus on the 

most appropriate measure of fat distribution derived from DXA, there is some 

evidence (described in Chapter 1) that greater abdominal fat mass is detrimental to 

health, while greater leg fat mass may be protective, suggesting that the ratio of 

these masses may be important (as indicated in the android: gynoid fat mass 

ratio). As such, android: gynoid ratio was used as an additional outcome. As 

associations between explanatory variables and android: gynoid ratio are driven by 

the separate associations with android and gynoid fat mass, associations between 

explanatory variables and these two masses will also be discussed in the 

subsequent chapters. 

 

In some instances outcomes 1-3 will be adjusted for adult height in analyses. This 

is discussed in more detail in the following section.  

 

 Creation of outcomes adjusted for body size  2.2.2

 

The measures of body composition used in epidemiological analyses have been the 

subject of recent academic debate.224-226 While fat mass has often been expressed 

as a percent of total mass, this has been criticised as it does not provide a discrete 

measure of fat mass: high percent fat mass can be driven by high fat mass, low 

lean mass, or both.224-226 Adjustment for contemporaneous height has been 

suggested for both fat and lean mass, by the creation of discrete height-adjusted 

indices of fat and lean mass.225;226 This takes into account that, on average, taller 
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individuals have more fat and lean mass—they have longer bones, and therefore 

longer muscles of greater mass, and also presumably require more fat mass to 

sustain normal metabolic functioning. The amount of fat and lean mass that 

individuals have may be more closely related to health and physical functioning 

outcomes where adjustment is made for their height. VanItallie et al (1990)225 

provided an example of this, highlighting two individuals of approximately identical 

lean mass: one was short, the other taller (and experiencing malnutrition). This is 

also likely to apply to fat mass—for example, if a short individual has the same 

amount of fat mass as a much taller individual, then the impact of fat mass on 

health may be greater for the shorter individual.  

 

A number of previous studies have made adjustment for height by the creation of 

height-adjusted indices which are comparable to BMI: fat mass (kg) / height (m)2, 

and lean mass (kg) / height (m)2. These indices assume that both fat and lean 

mass scale to height to the power of 2. However, this may not necessarily be the 

case: the relationship between height and fat may differ to that with lean mass, 

and both may differ by sex and at different ages. As such, in this chapter, the 

associations between height and fat and lean mass were examined using log-log 

regression. As previously described,226 fat or lean masses (kg) and height (m) were 

logged (using the natural logarithm), and separate regression models constructed 

with logheight as the explanatory variable and logfat or loglean mass as the 

outcome. The coefficients of the regression models give the power that height 

should be raised to in the index in order to remove the association with height (eg, 

a coefficient of 4 for lean mass would suggest that lean mass should be divided by 

height4 to produce an index uncorrelated with height). 

 

Results of log-log regressions are presented in Table 2. Results show that the 

appropriate power height should be raised to was approximately 1.2 for fat mass, 

and 95% confidence intervals did not overlap with 2 in either sex. However, the 

values obtained for both appendicular and whole body lean mass were closer to 2, 

and 95% confidence intervals did overlap with 2 in both sexes. Therefore, in order 

to minimise the association with height fat mass should be divided by height1.2, and 

lean mass by height2. 

 

Table 3 shows the correlations between height and i) fat or lean mass, and ii) fat or 

lean mass indices (using height2 for both fat and lean mass and height1.2 for fat 

mass). Fat mass was relatively weakly positively correlated with height, and 

adjustment for height2 did not substantively attenuate the association with height; 

however using height1.2 (as suggested in log-log regression) almost entirely 
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attenuated this association. Both whole body and appendicular lean mass were 

more strongly positively correlated with height; as expected, after adjustment for 

height2 this association was almost entirely attenuated.  

 

In this thesis, adjustment for height will be made using two methods. First, height-

adjusted outcomes will be derived and used: whole body or appendicular lean 

mass/height2, as its correlation with adult height was judged to be sufficiently low 

(and previous studies have used this outcome, enabling closer comparison with 

previous studies than using height1.8); and fat mass/height1.2, since it achieved the 

stated aim of producing an outcome adjusted for height (while adjustment for 

height2 did not). Second, where it is preferred that regression coefficients are 

presented on the same scale both before and after adjustment for height (eg, 

change in kg), height will be included as a covariate in analyses (as a linear term) 

and sensitivity analyses performed using height-adjusted indices as outcomes to 

check that similar results are obtained.  

 

The following section describes DXA in more detail and discusses its strengths and 

limitations. 
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Table 2. Regression of log fat mass or log lean mass (outcome variables) on log 

height (m; explanatory variable) 

 

 Coefficient (95% CI) P-value 

Log fat mass (kg) 

 

   

Both sexes (n=1558), adjusted for sex 1.21 (0.78, 1.64) <0.001 

Males (n=746) 1.32 (0.72, 1.92) <0.001 

Females (n=812) 1.10 (0.50, 1.71) <0.001 

 

Log lean mass (kg) 

  

Both sexes (n=1558), adjusted for sex 1.82 (1.65, 1.99) <0.001 

Males (n=746) 1.86 (1.64, 2.08) <0.001 

Females (n=812) 1.78 (1.53, 2.03) <0.001 

 

Log appendicular lean mass (kg) 

  

Both sexes (n=1558), adjusted for sex 1.99 (1.81, 2.16) <0.001 

Males (n=746) 2.01 (1.77, 2.24) <0.001 

Females (n=812) 1.97 (1.70, 2.23) <0.001 

Note: variables were logged using the natural logarithm; analyses were restricted 

to those with valid data for body composition outcomes  
 

Table 3. Correlations between height (m) and i) fat or lean mass, and ii) fat or lean 

mass indices 

 

 i) ii)  

 Fat mass (kg)  Fat mass (kg) 

/height (m)2  

Fat mass (kg) 

/height (m)1.2 

Males (n=746) 0.16 -0.08  0.01 

Females (n=812) 0.12  -0.10  -0.01 

 Lean mass (kg) Lean mass (kg)/height (m)2   

Males (n=746) 0.51 -0.05  

Females (n=812) 0.43  -0.06  

 Appendicular  

lean mass (kg) 

Appendicular  

lean mass (kg)/height (m)2  

 

Males (n=746) 0.53 -0.00  

Females (n=812) 0.44  -0.02  

Note: analyses were restricted to those with valid data for body composition 

outcomes   
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 An introduction to dual-energy X-ray absorptiometry 2.3

 

DXA projects a series of X-ray beams of two different energies across the body. As 

the X-rays pass through the body they are attenuated (ie, they lose energy) 

according to the mass of the substance they pass through. Based on the differential 

attenuation of X-rays by each of the tissues in the body, algorithms are used to 

estimate the amount of fat, lean, and bone mass in the body (where the density of 

each is assumed to be homogeneous).18;115;227;228;228 The mass of each tissue is 

represented in 2-dimensional computerised form by a series of pixels; each pixel 

contains information on the amount of fat, lean, and bone mass, with the total 

number of pixels representing the total mass of the body. Where bone tissue is 

present, the bone and non-bone soft tissue components are measured, and the 

amount of fat and lean mass is subsequently assumed to be the same as adjacent 

non-bone sites. The two-dimensional nature of DXA means that it does not provide 

true volumetric measures of fat, lean, or bone tissue. Although this may be 

problematic when deriving density measures such as bone mineral density, it does 

not affect the measures of mass.  

 

DXA has previously been extensively used for its measures of bone; the bone 

mineral content and density measures obtained in the hip and spine by DXA are 

used to diagnose osteoporosis,18;111 and the use of DXA in epidemiological studies 

has enabled risk factors of osteoporosis to be identified.229 More recent studies have 

used DXA measures of fat and lean mass as either explanatory or outcome 

variables.  

 

DXA is thought to be a comparatively accurate and precise means of assessing fat 

and lean mass,18;115;228 with studies typically reporting relatively minor differences 

in fat and lean mass measures compared with more accurate methods such as 5-

compartment models of body composition.230 However, there is some evidence 

from both human and animal studies that DXA tends to overestimate fat mass in 

those with low fat, and underestimate fat mass in those with high fat mass.115;231 

Despite this potential limitation, DXA has increasingly been used in large 

epidemiological studies. For example, DXA has been used to provide reference fat 

and lean mass data for the US population using the National Health and Nutrition 

Examination Survey.232 

 

Differences in DXA hardware and software version may impact on reported 

accuracy and precision, as different DXA machines and software version have been 

shown to lead to different estimates of fat and lean mass.115 Although these 
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discrepancies are poorly understood in terms of their cause and their significance, 

they are thought to be minimised in multicentre studies by cross-calibration, and by 

standardising hardware and software across centres.115;233  

 

Other methods of body composition assessment used in large epidemiological 

studies include BIA, SFT measures, and air-displacement plethysmography. While 

comparisons of the accuracy and precision of these measures partly depends on the 

hardware and software used, BIA and SFT measures are likely to be less accurate 

and precise than DXA; both depend on the suitability of predictive equations used, 

and the former depends on recent food/beverage consumption, recent exercise and 

medical conditions,178 while the latter may vary by measurement technique.179;234 

BIA, SFT measures, and air-displacement plethysmography all measure the body in 

two components (fat and lean mass), and as such lean mass includes muscle, 

organ, and bone mass. 

 

A major strength of DXA is that it enables regional measures of fat and lean mass 

to be obtained, such as appendicular (limb) lean mass and abdominal fat mass. As 

discussed in Chapter 1, these may be more closely related to health outcomes than 

whole body measures. Computerized tomography and magnetic resonance imagery 

are thought to be reference technologies for these measures (eg, enabling visceral 

and subcutaneous fat to be distinguished),115 but are typically more expensive than 

DXA and, in the case of computerized tomography, involve relatively high radiation 

exposure.18 In 2010, The European Working Group on Sarcopenia in Older People 

recommended DXA for its assessment of low appendicular lean mass (as part of 

their proposed definition of sarcopenia); this was suggested above BIA and SFT 

measures, but behind computed tomography and magnetic resonance imaging.79 

Measures of abdominal fat mass and fat distribution obtained using DXA have also 

been derived and used in studies—initial software was able to differentiate trunk fat 

mass, with more recent updates able to differentiate android (abdominal/lower part 

of the trunk which excludes the rib cage) and gynoid (upper leg/hip) fat mass.  

 

The following sections describe the DXA outcomes used in this thesis and the 

analytical strategy used in subsequent chapters.  

  



47 

 

 Descriptive analyses of the outcomes used in this thesis 2.4

 

Descriptive statistics for anthropometric and body composition measures at 60–64 

years are shown in Table 4. As expected, there was notable sexual dimorphism, 

with males being taller and heavier; although BMIs were similar in both sexes, 

females had more fat mass and less (whole body and appendicular) lean mass than 

males, differences were also found when height-adjusted indices were used. Males 

had more android fat mass, less gynoid fat mass, and a resulting higher android: 

gynoid fat mass ratio.  

 

Table 5 shows the proportion of participants within the standard BMI cut-points. 

According to BMI, the majority of participants were classified as either overweight 

(46.92% of males, and 37.68% of females) or obese (26.81% of males and 

27.59% of females). Although there are no accepted obesity cut-points for direct 

measures of fat mass, over 81.23% of males and 87.93% of females were 

classified as obese when using commonly used (albeit arbitrarily defined) cut-points 

for percent fat mass of >25% in males and >35% in females.29;30 Those who were 

obese according to BMI also tended to be obese according to high percent fat mass: 

only one male was obese according to BMI but not according to percent fat mass. 

Approximately 20% of both males and females were classified as sarcopenic using a 

definition based solely on low appendicular lean mass.79;82 The prevalence of 

sarcopenia at 60-64 years in the NSHD (and the overlap between different 

definitions) has been described in detail elsewhere (Cooper et al, submitted). 

 

Table 6 shows correlations between anthropometric and body composition 

measures. Overall, correlations were similar in both sexes. Weight and BMI were 

both positively correlated with fat and lean mass. Regional measures of body 

composition were strongly positively correlated with whole body measures 

(appendicular lean mass with whole body lean mass, and both android and gynoid 

fat mass with whole body fat mass). In addition, all measures of fat mass were 

positively correlated with all measures of lean mass, both before and after 

adjustment for height.  

 

As discussed in Chapter 1, positive associations between fat and lean mass may be 

important to consider in analyses of the life course determinants of lean mass as 

associations with fat mass may drive associations with lean mass (eg, if high fat 

mass increases muscle loading and leads to increased muscle mass). Adjustment 

for fat mass when examining associations with lean mass may therefore enable 

associations between an exposure and lean mass to be examined, for a given 
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amount of fat mass. As such, where it was hypothesised that associations between 

an exposure and fat mass could drive associations with lean mass, associations with 

lean mass were adjusted for fat mass. Fat mass was included as a linear term in 

these models as further analyses suggested that fat and lean mass were positively 

associated in a linear manner in males, with only minor deviation from linearity in 

females (Appendix 1 and 2).  
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Table 4. Mean age, anthropometric and body composition measures  
 

 Males  

Mean (SD) 

(N=746) 

Females 

Mean (SD) 

(N=812) 

P# 

Age (years) 63.23 (1.15)  63.31 (1.08)  0.15 

Height (cm) 175.29 (6.45)  162.17 (5.76)  <0.001 

Weight (kg) 85.27 (13.05)  72.34 (13.63)  <0.001 

Body mass index (kg/m2) 27.74 (3.94)  27.51 (5.02)  0.31 

Whole body fat mass (kg) 23.79 (7.19)  29.00 (9.22)  <0.001 

Whole body fat mass index (kg/m1.20) 12.13 (3.62)  16.23 (5.11)  <0.001 

Android fat mass (kg) 2.51 (0.96)  2.33 (1.01)  <0.001 

Gynoid fat mass (kg) 3.76 (1.01)  5.11 (1.46)  <0.001 

Android/gynoid fat mass ratio 65.69 (15.35)  44.74 (12.36)  <0.001 

Whole body lean mass (kg) 53.69 (7.06)  37.26 (5.35)  <0.001 

Whole body lean mass index (kg/m2) 17.46 (1.99)  14.16 (1.84)  <0.001 

Appendicular lean mass (kg) 24.62 (3.40)  16.21 (2.54)  <0.001 

Appendicular lean mass index (kg/m2) 8.00 (0.94)  6.16 (0.87)  <0.001 

Arm lean mass (kg) 6.73 (1.06)  3.78 (0.63)  <0.001 

Leg lean mass (kg) 17.89 (2.53)  12.43 (2.03)  <0.001 

Fat: lean ratio (whole body fat/lean 

mass) 

44.09 (10.99)  77.21 (18.91)  <0.001 

Percent fat (whole body fat/total 

weight) 

29.39 (5.19)  41.97 (5.96)  <0.001 

Forearm muscle area (cm2)* 36.48 (6.13)  21.65 (3.43)  <0.001 

 

Note: #P-value from test of sex difference using t-test; *smaller sample size for 

this measure (males=658; females=697); analyses were restricted to those with 

valid data for body composition outcomes 
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Table 5. Distribution of participants according to body mass index categories, and 

prevalence of overweight and sarcopenia  
 

 Males 

Number (%) 

(N=746) 

Females 

Number (%) 

 (N=812) 

Body mass index (kg/m2) category:   

Underweight (<18.5) 2 (0.27) 7 (0.86) 

Normal (18.5-24.9) 194 (26.01) 275 (33.87) 

Overweight (≥25-30) 350 (46.92) 306 (37.68) 

Obese (>30) 200 (26.81) 224 (27.59) 

Obese according to percent fat mass 

(males >25%, females >35%)29 

606 (81.23) 714 (87.93) 

Obese according to both high body 

mass index and percent fat mass  

199 (26.64) 224 (27.59) 

Sarcopenia, defined as low 

appendicular lean mass (kg/m2) 

(males <7.26; females <5.5)79;82 

159 (21.31) 174 (21.43) 

 

Note: analyses were restricted to those with valid data for body composition 

outcomes 
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Table 6. Correlations between anthropometric and body composition measures 
 

a) Males (n=746) 

 
  

        
  

Weight (kg) 0.39            

BMI (kg/m2) -0.09 0.88           

Fat mass (kg) 0.16 0.89 0.87          

Fat mass index   0.01 0.84 0.90 0.99         

Lean mass (kg) 0.51 0.88 0.68 0.57 0.50        

Lean mass index  -0.05 0.76 0.86 0.56 0.58 0.83       

App.lean mass (kg) 0.53 0.82 0.61 0.50 0.43 0.95 0.76      

App.lean mass index -0.01 0.71 0.78 0.49 0.50 0.80 0.94 0.85     

Android fat mass (kg) 0.07 0.84 0.87 0.93 0.93 0.56 0.60 0.47 0.51    

Gynoid fat mass (kg) 0.21 0.85 0.80 0.92 0.90 0.59 0.54 0.52 0.48 0.82   

Fat: lean mass ratio  -0.08 0.60 0.68 0.89 0.92 0.16 0.23 0.10 0.16 0.82 0.78  

Android: gynoid ratio -0.12 0.44 0.54 0.51 0.53 0.27 0.39 0.19 0.30 0.72 0.23 0.49 

 
Height 

(cm) 

Weight 

(kg) 

BMI 

(kg/m2) 

Fat mass 

(kg) 

Fat mass 

index 

Lean mass 

(kg) 

Lean mass 

index 

Fat: lean 

mass ratio 

App.lean 

mass (kg) 

App.lean 

mass index 

Android fat 

mass (kg) 

Gynoid fat 

mass (kg) 
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b) Females (n=812) 

 
  

        
  

Weight (kg) 0.27            

BMI (kg/m2) -0.11 0.93           

Fat mass (kg) 0.12 0.95 0.93          

Fat mass index   -0.01 0.92 0.96 0.99         

Lean mass (kg) 0.43 0.85 0.71 0.65 0.60        

Lean mass index  -0.06 0.79 0.84 0.66 0.67 0.87       

App.lean mass (kg) 0.44 0.82 0.68 0.64 0.59 0.96 0.82      

App.lean mass index -0.01 0.78 0.82 0.65 0.66 0.85 0.95 0.89     

Android fat mass (kg) 0.05 0.89 0.90 0.93 0.93 0.62 0.66 0.59 0.64    

Gynoid fat mass (kg) 0.17 0.88 0.84 0.92 0.91 0.61 0.59 0.61 0.59 0.82   

Fat: lean mass ratio  -0.09 0.70 0.76 0.88 0.90 0.23 0.31 0.24 0.31 0.81 0.80  

Android: gynoid ratio -0.09 0.50 0.55 0.51 0.53 0.35 0.44 0.30 0.38 0.74 0.24 0.47 

 

Height 

(cm) 

Weight 

(kg) 

BMI 

(kg/m2) 

Fat mass 

(kg) 

Fat mass 

index 

Lean mass 

(kg) 

Lean mass 

index 

Fat: lean 

mass ratio 

App.lean 

mass (kg) 

App.lean 

mass index 

Android fat 

mass (kg) 

Gynoid fat 

mass (kg) 

 

Note: App=appendicular; fat mass index=kg/(m1.2); lean mass indices=kg/m2; BMI=body mass index; analyses were restricted to those with valid data for 
body composition outcomes 
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 Representativeness of the study and characteristics of 2.5

those with body composition outcome data  

 

Like all birth cohort studies, the NSHD has experienced attrition which may affect 

the representativeness of the study and could introduce bias (ie, weakening or 

strengthening of association estimates). Both the representativeness of the NSHD 

and the nature of attrition up to 60–64 years have been examined in a recent study 

by Stafford et al (2012), described below. Previous studies have reported on these 

issues at prior ages.213;220;235 

 

Stafford et al (2012)223 compared demographic, socioeconomic and health 

characteristics of participant who provided at least some information at 60-64 years 

with two other British cohorts of similar age ranges (the 2001 English Census and 

the Integrated Household Survey). Compared to these cohorts, the NSHD had a 

similar sex ratio (of slightly more females than males) and similar occupational 

class distributions to the other cohorts, although NSHD participants were more 

likely to be employed, to own their home, and less likely to have a limiting long-

term illness. However, as discussed in the study by Stafford et al, all longitudinal 

studies (including the reference populations) suffer from non-response, and the 

NSHD may only be considered nationally representative with respect to its original 

sample of those singletons born in mainland Britain to married mothers (which 

reflected the majority of the population at the time). As such there may be no ‘gold 

standard’ with which to compare representativeness. 

 

As previously described, while the NSHD has had high rates of follow-up across life, 

not all of the original NSHD participants attended a CRF visit at 60–64 years and 

provided full body composition data. The characteristics of those that provided data 

are important to consider as differences between these and those with missing data 

may result in bias of the estimate of association between explanatory variable and 

outcomes. A strength of the NSHD is the availability of prospectively ascertained 

data which can be used to determine the characteristics of those who took part in 

data collection at 60-64 years, thereby providing information about the likelihood of 

bias.  

 

The characteristics of study members who provided data at 60–64 years in the 

NSHD has been previously comprehensively examined by Stafford et al (2012).223 

Among the variables investigated in this study, the following predicted greater 

likelihood of providing at least some data at 60–64 years: female sex; higher SEP 
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(non-manual paternal occupational class at 4 years, higher own educational 

attainment, and being in non-manual occupational classes at 53 years); being a 

homeowner and married at 53 years; high childhood and adulthood cognition (53 

years); no reported difficulties in walking or health problems at 53 years; and being 

a non-smoker and physically active at 53 years.  

 

In this chapter, the predictors of providing full body composition outcome data at 

60-64 years were analysed using logistic regression. The outcome was a binary 

variable which indicated whether participants did or did not provide full body 

composition outcome data at 60–64 years, and analyses were restricted to the 

2856 participants that were the target sample for clinical assessment visit. 

Predictor variables were main explanatory variables in subsequent chapters 

(indicators of SEP in childhood and adulthood, weight and height in pre-adult life, 

and physical activity measures) and other factors which may predict body 

composition outcomes (sex, weight and height at 53 years). As taller individuals 

tend to be heavier, models examining weight as a predictor were adjusted for 

height at the same age.  

 

Results from logistic regression analyses are shown in Table 7. The following 

characteristics were associated with greater likelihood of providing complete body 

composition outcome data at 60–64 years: female sex; being of higher SEP in 

childhood and adulthood; more frequent self-reported reported participation in 

leisure time physical activity at 53 years; lower weight at 53 years (after 

adjustment for height); and greater height at 2, 7, 15 and 53 years.  

 

Results from the above analyses will be used in subsequent chapters to infer the 

extent to which missing body composition data may bias associations found.  
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Table 7. Predictors of providing full body composition outcome data at 60–64 years  

 

Predictor N  
(did not/did  
provide data) 

%  
Did not 
provide data 

% 
Provided data 

P* 

Sex     
Male 650/746 50.08 47.88  
Female 648/812 49.92 52.12 <0.001 
 
Paternal occupational class (4y) 

   

I    Professional 61/113 4.95 7.65  
II   Intermediate 193/282 15.67 19.09  

III  Skilled (Non-Manual) 194/334 15.75 22.61  
III  Skilled (Manual) 406/406 32.95 27.49  
IV   Partly skilled 280/267 22.73 18.08  

V    Unskilled 98/75 7.95 5.08 <0.001 
 
Own educational attainment (26y) 

   

Degree or higher 78/193 6.43 13.08  
GCE A level or Burnam B 233/472 19.19 32.00  
GCE 'O' level or Burnam C 215/326 17.71 22.10  
Sub GCE or sub Burnham C 96/110 7.91 7.46  
None attempted 592/374 48.76 25.36 <0.001 
 
Highest household occupational class (53y) 

   

I    Professional 120/200 9.88 13.09  
II   Intermediate 471/800 38.77 52.36  
III  Skilled (Non-Manual) 278/325 22.88 21.27  
III  Skilled (Manual) 223/136 18.35 8.90  

IV   Partly skilled 100/56 8.23 3.66  
V    Unskilled 23/11 1.89 0.72 <0.001 
 

Participation in  leisure time physical activity 
in last 4 weeks (53y) 

   

None 606/606 56.11 40.70  
1-4 times 155/317 14.35 21.29  
5 or more 319/566 29.54 38.01 <0.001 
  

Mean (SD) Mean (SD) 
 

Weight at birth (kg) 1295/1553 3.40 (0.53)  3.40 (0.49)  0.84 

Weight at 2 (kg) 1071/1307 12.89 (1.51)  12.93 (1.46)  0.56 

Weight at 7 (kg) 1063/1309 22.75 (3.24)  22.94 (2.97)  0.12 

Weight at 15 (kg) 978/1223 51.62 (9.26)  52.12 (8.64)  0.34 

Weight at 53 (kg) 1065/1484 78.26 (15.94)  76.55 (14.03)  <0.001 

     

Height at 2 (cm) 1071/1307 85.21 (5.06)  85.54 (4.68)  0.07 

Height at 7 (cm) 1063/1309 119.68 (5.81)  120.51 (5.30)  <0.001 

Height at 15 (cm) 978/1223 159.94 (7.95)  160.91 (7.71)  0.001 

Height at 53 (cm) 1065/1484 167.40 (9.17)  168.38 (8.78)  <0.001 

Note: *P-values derived using logistic regression adjusted for sex; weight at 2, 7, 15 and 53 
were also adjusted for height at the same age; analyses were restricted to the target sample 
for clinical assessment at 60-64y (n=2856), 1558 participants provided complete body 
composition outcome data 
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 Analytical strategy and statistical methods used 2.6

 

The specific methodologies employed in future chapters vary depending on the 

variables used and research questions addressed. To avoid repetition, the 

methodologies that are shared across the chapters are outlined below. Unless 

otherwise stated statistical analyses were conducted using Stata 12 (Statacorp, 

College Station, TX, USA). The main statistical method used to examine 

associations between explanatory and outcome variables in this thesis was linear 

regression. Modelling fat and lean mass as continuous outcomes was preferred to 

categorising them as there are no accepted cut-points for the different outcomes 

used, and categorisation leads to reduced information and statistical power.236;237 

Non-linearity was assessed by inclusion of a quadratic term in regression models, or 

by using likelihood ratio tests (to compare models with the exposure modelled as a 

linear versus a categorical term) and where evidence was found this was reported 

along with a description of the cause of the deviation from linearity.  

 

 Data checking 2.6.1

 

Prior to conducting analyses, the distribution of all variables was checked for 

outliers by using summary statistics and plotting each variable as histograms. The 

results of this for explanatory variables are described in the relevant subsequent 

chapters. As expected given prior data checking by Professor Judith Adams no body 

composition measures were too low or too high to suggest that they were 

implausible. In addition, the distribution of values for whole body fat and lean mass 

were compared with data from different cohorts of similar ages, and data from the 

NSHD was judged to be similar, with relatively minor differences between the 

cohorts which could be attributable to a number of factors (such as differences in 

age, ethnicity and sample representativeness; Table 8).  

 

 Exploration of potential confounding, mediating, and 2.6.2

moderating variables  

 

In this thesis a number of variables will be considered as potential confounders, 

mediators, and/or moderating variables. These variables will be chosen a-priori on 

the basis of previous research, and justification provided in each of the relevant 

chapters.  
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A confounder is a variable that biases the association between the exposure and 

outcome;64 it is not on the causal pathway between exposure and outcome, but is 

independently associated with both.238 For example, considering SEP at birth as a 

hypothetical confounding factor (of the association between low birth weight and 

high adult fat mass), it may be that those of low SEP at birth tend to have mothers 

who were malnourished during pregnancy (leading to low birth weight); as adults, 

these individuals may themselves have a low SEP which may be associated with 

physical inactivity (leading to high fat mass). Depending on the difference between 

unadjusted and confounder-adjusted effect estimates, confounding can either be 

described as positive (when estimates are attenuated after adjustment) or negative 

(when estimates are greater after adjustment).239 

 

A mediator is defined as a variable which explains, at least partially, how or why 

another explanatory variable affects the outcome.240 For example, considering adult 

height as a hypothetical mediating variable (of the association between low birth 

weight and low lean mass), it may be that those of lower birth weight tend to 

become shorter adults who, as previously described, tend to have lower lean mass. 

Distinction between mediating and confounding factors will be based on a-priori 

hypotheses of the causal pathways operating. To help in understanding the 

likelihood of a variable being a confounder or mediator, the relationships between 

potential confounding/mediating variables and both the exposure and outcome of 

interest will be assessed in each chapter. Potential confounders and mediators will 

then be included in adjusted regression models: the change in regression coefficient 

(of the main explanatory variable) will indicate the extent to which the chosen 

variable is mediating or confounding the relationship of interest.  

 

Moderating variables are defined as those which modify the effect of the exposure 

on the outcome of interest (synonymous with interaction or effect modification).240 

For example, considering sex as a modifying variable/effect modifier (in the 

relationship between low SEP and high fat mass), it may be that the effects of lower 

SEP on higher fat mass are greater in females. In this thesis, moderation will be 

tested by the inclusion of an interaction term in regression models. 
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Table 8. Comparison of whole body fat and lean mass (and other relevant characteristics) between the MRC NSHD and other adult cohorts  
 

  MRC NSHD  Li et al, 

2009232 

 Skidmore et 

al, 2009241 

Demerath et 

al, 2009203 

 Kensara et 

al, 2005242 

Gale et al, 

2001243 

 

Sex Males Females Males Females Females Males Females Males Males Females 

N 746 812  6559 6507 3170 114 119 32 102 41 

Age 60–64 60–64 >20 >20 46.9 (12.8) 46.0 (15.3 47.0 (14.1) 67.7 (0.47) 70–75 70–75 

 Mean (SD)  Mean (SE)  Mean (SD) Mean (SD)  Mean (SE) Mean (SD)  

Adult height (cm) 175.29 (6.45) 162.17 (5.76) 176.2 (0.1) 162.1 (0.1) 162 (6.14) 179.7 (6.8) 165.3 (6.4) 174 (0.01) 168 (0.07) 156 (0.06) 

Adult weight (kg) 85.27 (13.05) 72.34 (13.63)  86.9 (0.3) 74.2 (0.4) - - - 83.61 (1.9) 75.4 (11.7) 66.9 (11.9) 

Fat mass (kg) 23.79 (7.19) 29.00 (9.22) 25.4 (0.2) 30.8 (0.3) 23.1 (8.44) 20.2 (8.0) 26.1 (9.8) 23.10 (1.1) 19.62 (6.5) 28.16 (7.9) 

Lean mass (kg) 53.69 (7.06) 37.26 (5.35) 62.3 (0.2) 44.0 (0.2) 39.8 (5.51) 67.0 (8.0) 47.6 (7.0) 57.77 (1.3) 50.15 (5.2) 35.36 (4.3) 

Sample location 

/majority ethnicity 

/other information 

UK 

/Caucasian 

 USA 

/Mixed 

 UK 

/Caucasian 

/twins 

USA 

/Caucasian 

 UK 

/Caucasian 

/low and 

high birth 

weight 

groups 

UK 

/Caucasian 

 

 

Note: -=not applicable (data not presented); NSHD=the MRC National Survey of Health and Development 
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 Chapter 3: Prenatal growth and body composition  3.

 

Main objective: to examine whether birth weight is associated with body 

composition outcomes at 60–64 years.  

 

There is substantial interest in the possibility that exposures acting in the womb 

have lifelong effects on the composition of our bodies. Associations between birth 

weight and a number of health-related outcomes have been a frequent area of 

research in life course epidemiology—this is because birth weight is considered an 

important and meaningful marker of intrauterine development,244 and is often the 

only measure available in population studies. While studies have found that high 

birth weight is associated with increased obesity risk in adulthood, fewer studies 

have used direct measures of fat and lean mass. The aim of this chapter is to add 

to this area of research by examining associations between birth weight and body 

composition outcomes at 60–64 years.  

 

 Introduction 3.1

 

Birth weight is a crude but readily measured indicator of the growth and 

development that takes place in the intrauterine period.244 During this period, many 

of the critical and potentially non-reversible developmental processes such as 

organogenesis take place.20 As such, impaired growth (indicated by low birth 

weight) may have lasting effects on subsequent health. This has been suggested in 

systematic reviews which have found low birth weight to be associated with 

increased risk of diabetes245;246 and cardiovascular and all-cause mortality.247 Body 

composition may feasibly be on the pathway linking birth weight with these later 

outcomes.101;248 

 

There are a number of potential mechanisms that may underlie associations 

between birth weight and adult body composition. Environmental factors may affect 

the acquisition of fat and/or lean mass before birth which then track into adulthood. 

This mechanism may especially be the case for muscle mass, as while both muscle 

and fat cells are known to undergo hyperplasia (increase in size) in adulthood, only 

fat cells are thought to readily undergo hypertrophy (increase in number) in 

adulthood.20 As such, the number of muscle cells in adulthood may depend on the 

number attained in the intrauterine and neonatal periods. This is supported by 

experimental research in rats and mice showing that impaired foetal development 
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tends to lead to lower subsequent muscle mass in mature animals,249;250 and 

research in farmed animals such as pigs (where the amount of muscle tissue is 

paramount) showing that low birth weight is closely related to low muscle fibre 

number at birth, and this tends to track to adulthood.251;252  

 

Both under161;202 and over nutrition253;254 in the foetal period may trigger epigenetic 

and/or hormonal changes that result in the greater accrual of fat mass across life. 

Although this potential mechanism remains speculative, there is some evidence 

that impaired growth before birth may lead to higher fat mass. During the Dutch 

‘hunger winter’ of 1944-1945—a famine that took place during the Second World 

War—a number of pregnant women were exposed to famine during different stages 

of pregnancy.255 Follow-up of the offspring subsequently born showed that those 

exposed to famine in the first and second trimesters of pregnancy were at higher 

risk of obesity (defined by BMI) in young adulthood (at 19 years); those exposed to 

famine in late pregnancy had reduced risk.255 Later follow-up at 50 years showed 

similar obesity risk—assessed by waist circumference and BMI—in females, but not 

males.256 The importance of intrauterine growth and adult body composition is also 

suggested in studies showing higher adult BMI in those born to diabetic 

mothers.75;248;250  

 

Alternatively, associations between birth weight and body composition may be 

explained by confounders such as SEP before birth, by differences in rates of 

growth after birth which go on to influence body composition, or by genetic factors 

which influence both birth weight and body composition. For example, genes that 

are involved in foetal muscle development have been associated with muscle mass 

in adulthood.257 

 

A number of epidemiological studies have examined associations between birth 

weight and body composition measures in adulthood. The sections below 

summarise and discuss these studies: first where anthropometric measures of fat 

mass were used, and second where direct measures of whole body fat and/or lean 

mass were used in adolescence or adulthood. The focus of the second section was 

on studies using accurate measures of body composition which were not included in 

prior systematic reviews. As such, studies using DXA were included regardless of 

publication date, while studies using SFT measures or BIA were only included if 

they were published after 2003 (the date of a systematic review by Rogers et al170). 

Findings from these studies in adulthood are summarised in Table 9. 
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Table 9. Summary of studies that examined associations between birth weight and whole body fat and/or lean mass in adulthood 
  

  

Study N Location 
/majority  
ethnicity 

Age at outcome 
measure 

Birth weight 
ascertainment 

Measure of 
body 
composition 

Main adjustments Fat mass association 
+ 
— 

Lean mass 
association 
+(positive)  
—(negative)  

Victora et al, 2007258 2250 Brazil 
/Mixed 

18 Measured BIA Height, ASEP 
maternal height 

Males: + 
Females: N/A 

Males: + 
Females: N/A      

Euser et al, 2005259 403 Netherlands 
/Caucasian 

19 Measured SFT Height, ASEP None + 

Leunissen et al, 2009260 312 Netherlands 
/Caucasian 

20 (SD=1.7)  Measured DXA Height — + 

Kuzawa et al, 2012261 1612 Philippines 
/Filipino 

21 (SD=0.3) Measured SFT Height, parity + + 

Weyer et al, 2000262 272 USA 
/Pima Indians 

25 (18-49) Measured DXA/UWW None  None + 

Rillamas-Sun et al, 

2012263 

587 USA 

/Caucasian 

24–50 Self-reported BIA None Males: N/A 

Females: + 

Males: N/A 

Females: + 

Sachdev et al, 2005264 1526 India 
/Indian 

29 (SD=1) Measured SFT 
 

Height, ASEP Males: no assoc. 
Females:  +       

+ 

te Velde et al, 2004265 282 Netherlands 
/Caucasian 

36 Participant 
recall 

DXA Weight N/A + 

Rolfe et al, 2010266 1092 UK 

/Caucasian 

43 (30–55) Participant 

recall 

DXA ASEP, BMI None N/A 

Skidmore et al, 2009241 3170 UK 
/Caucasian 

46 (18–80) Participant 
recall 

DXA 
 

BMI Males: N/A 
Females: + 

Males: N/A 
Females: +  

Demerath, et al,  
2009203 

233 USA 
/Caucasian 

46 (18-76) Measured DXA Height, ASEP, 
Gage 

None + 

Gunnarsdottir et al, 
2004267 

3707 Iceland 
/Caucasian 

50 (SD=7) Measured SFT BMI Males: no assoc. 
Females:— 

N/A 

Yliharsila et al, 2007268 2003 Finland 
/Caucasian 

61 (56–70) Measured BIA Height, Gage, 
CSEP, ASEP,  
maternal BMI  

Males:+      
Females: no assoc. 

+ 
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Note: ASEP=adult socioeconomic position; BIA=bioelectrical impedance analysis; BMI=body mass index; CSEP=childhood socioeconomic 

position; DXA=dual energy X-ray absorptiometry; Gage=gestational age; SFT=skinfold thickness; UWW=under-water weighing; N/A=not 

applicable 
 

 

 

 

 

 

Study N Location 
/majority ethnicity 

Age at 
outcome 
measure 

Birth weight 
ascertainment 

Measure of 
body 
composition 

Main adjustments Fat mass 
association 
+ 
— 

Lean mass 
association 
+(positive)  
—(negative)  

Aihie Sayer et al, 
2004269 

737 UK 
/Caucasian 

64 (SD=2.6)  Measured SFT CSEP, ASEP Males: + 
Females: N/A 

Males: + 
Females: N/A 

Kensara et al, 2005242 32 UK 
/Caucasian 

67 (SD=0.47) Measured DXA Height and 
weight,  Gage, 
CSEP, ASEP  

Males: — 
Females: N/A 

Males: + 
Females: N/A       

Gale et al, 2001243 143 UK 

/Caucasian 

70-75 Measured  DXA Height None + 
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 Literature review: birth weight and fat and lean mass 3.1.1

 

 Birth weight and fat mass 3.1.1.1

 

A large number of studies have examined associations between birth weight and 

anthropometric measures of fat mass in adolescents and adults, and most have 

been included in the systematic reviews outlined below. 

 

Yu et al conducted a systematic review and meta-analysis in 2011270 of studies 

examining associations between birth weight and risk of obesity (BMI >30). In 33 

studies identified in the systematic review, high birth weight (>4kg) was associated 

with increased risk of obesity (odds ratio=2.07 in 20 studies) compared with those 

of lower birth weight (≤4kg); however, only two studies were in adults. While low 

birth weight was also associated with increased obesity risk, heterogeneity was 

reported, with studies with larger sample sizes and of higher quality tending to 

report no association. Rogers170 et al conducted a systematic review in 2003 of 

studies that examined associations between birth weight and later fat mass 

(typically measured using BMI). Though there were substantial differences among 

the 52 studies identified, most reported positive associations between birth weight 

and later BMI/overweight. As in the review by Yu et al, most studies were 

conducted in adolescence or young-adulthood (<30 years). This relationship was 

either linear or in some cases ‘J’ or ‘U’ shaped—implicating both low and high birth 

weight as risk factors for higher BMI in adulthood. In the few studies that had 

adjusted for maternal BMI, associations were typically largely attenuated, 

suggesting that genetic factors may have confounded these associations. An 

association between higher birth weight and higher adult BMI was also evident in 

the systematic review by Parsons et al published in 1999,166 and in other more 

recent narrative reviews.206;248;250 

 

However, at the time of the most recent systematic review by Rogers et al,170 

relatively few studies had used direct or accurate measures of whole body fat and 

lean mass. For example, only one study reported by Rogers used DXA,243 less than 

10 used SFT and/or BIA, and the remainder used BMI. The interpretation of these 

studies is therefore ambiguous: where BMI was used, it is unclear whether birth 

weight was associated with fat and/or lean mass, and (as discussed in Chapter 2) 

SFT and BIA are thought to be comparatively inaccurate and imprecise. 

 

Since the publication of Rogers’ systematic review a number of other studies have 

been published and an increasing number have used direct measures of fat and 
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lean mass such as those obtained using DXA or computer tomography. The 

following section outlines the main findings of these studies where measures of 

whole body fat and/or lean mass were taken in adolescence or adulthood.  

 

Eight studies have examined associations between birth weight and fat mass in 

adolescence, with conflicting findings reported. One study in a developing nation 

(the Philippines) reported positive associations (using SFT).261 Using DXA, two 

studies reported no association in either sex;271;272 using BIA, one study found 

positive associations in males but not females,204 and two others found no 

association in either sex.101;273 Using SFT measures, two studies found positive 

associations in both sexes; in a Latin American274 and European cohort.275 

Inconsistent findings may be explained by the substantial sex-dependent changes 

in body composition that occur during adolescence.171 These changes may lead to 

greater variability of body composition, thereby affecting subsequent associations. 

 

In studies of cohorts in young to early adulthood (18–29) associations between 

birth weight and fat mass have been mixed: positive (using SFT or 

BIA),258;261;263;264;276 negative (using DXA, after adjustment for adult weight),260 and 

null associations between birth weight and fat mass (using DXA262 or SFT259) have 

all been reported. As with the findings in other age groups, associations typically 

remained after adjustment for potential confounders. However, these studies have 

used participants from various ethnic groups: Caucasians,258-260 Pima Indians,262 

and Filipinos.261;276 Since fat mass is known to vary by ethnicity,36;277 it may be that 

the factors that influence body composition also differ, thereby affecting 

associations with birth weight.  

 

Inconsistent findings of associations between birth weight and fat mass have also 

been reported in studies that examined participants in mid–later adulthood (means 

from 40 to 75 years): positive associations (using DXA in a female-only sample241 

or SFT in both sexes,269 or in males but not females using BIA268), negative 

associations (using DXA in a male-only sample242 or SFT in females but not 

males267) or no association in either sex (using either DXA203;243;266 or SFT269) have 

been reported. The negative associations found were dependent on adjustment for 

adult weight or BMI; this is methodologically controversial since the birth weight 

coefficient after this adjustment can be interpreted as reflecting the rate of growth 

after birth.266;278 

 

Of the three studies that reported positive associations between birth weight and 

fat mass in later adulthood, two used comparatively inaccurate and imprecise 
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techniques to measure body composition (SFT269 and BIA268); results obtained may 

therefore be more affected by measurement error than results from DXA studies. 

Only one study using DXA reported positive associations between birth weight and 

fat mass.241 This study had the largest sample size (n=3170) in this age group, and 

was comprised of Caucasian participants of a wide age range (mean=46.9, 

range=18–79). However, no associations were found in other DXA studies using 

Caucasian participants: in a cohort of similar age (n=232, mean age=46.8, 

range=18-76),203 or in an older (n=143, age range=70–75 years).243 It may be 

that these two studies, due to their smaller sample sizes, had insufficient statistical 

power. In support of this, Skidmore et al reported substantially smaller effect sizes 

for fat mass measures compared with lean mass (1 kg increase in birth weight 

leading to a 1.72 kg increase in lean mass, and 0.25 kg increase in fat mass), 

suggesting that these associations require greater statistical power to be detected.  

 

However, differences may also be due to differences in the cohorts used. Skidmore 

et al’s study,241 unlike the others, used a female-only sample and was comprised 

exclusively of twins. Although the use of twins enabled the relative contribution of 

environmental and genetic factors to be explored, findings reported in twins may 

not necessarily translate to those in singletons.279 Although the authors gave 

evidence suggesting that their sample was representative of the UK population in 

terms of adult phenotype, it is thought that twins experience a potentially 

important different intrauterine environment to singletons.279;280 For example, a 

large observational study showed that twins had substantially higher (8-fold) risk of 

being of low birth weight than singletons,280 a finding also reported by Skidmore et 

al. In addition, Skidmore et al’s study used unverified recalled birth weight data 

that may have led to reporting error. This error may have been systematic and may 

introduce bias, for example if individuals of low birth weight were less accurate at 

self-report (as has been previously found281). Finally, Skidmore et al did not adjust 

for potential confounders such as socio-economic circumstances at birth or 

maternal BMI and did not adjust for adult height. Positive associations between 

birth weight and fat mass could be explained by adult height, as heavier babies 

tend to become taller adults282 who, as shown in Chapter 2, tend to have higher fat 

mass. The findings therefore need to be replicated in a large, mixed-sex cohort of 

singletons, with objective measures of birth weight and adjustment for potential 

confounders.  

 

Of the studies included in this section, a number have used DXA or computed 

tomography measures of abdominal fat mass as outcomes in adulthood, while other 

studies have examined central and not whole body measures of fat mass. Mixed 
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findings have been reported in these studies: negative,242;266 positive,203 and no 

association.241;283;284 As with whole body measures of fat mass, negative 

associations were only found where adjustment was made for adult weight,242;266 

suggesting that the associations found may reflect rates of growth after birth, and 

not during the pre-natal period.278 When examining unadjusted associations 

between birth weight and central fat mass in adulthood, most studies have found 

no association. The only study to report a positive association found an association 

with subcutaneous but not visceral fat mass, a distinction not possible using DXA. 

 

 Birth weight and lean mass  3.1.1.2

 

Studies examining associations between birth weight and lean mass in adolescents 

(11–17 years) have tended to show that higher birth weight is associated with 

higher lean mass, although findings have been shown to differ by sex: using DXA, 

one study found positive associations in males (but not females),271 and another 

study reported the opposite finding.272 Using SFT101;261 and BIA204;273 positive 

associations were reported in both sexes, and in females but not males in another 

study (using SFT).275 One recent study in an obese cohort of adolescents reported 

no association in either sex (using DXA285). However, as with conflicting findings 

reported between birth weight and fat mass in adolescence, associations with lean 

mass may also be affected by the substantial sex-specific changes in body 

composition that occur during adolescence. 

 

More consistent results have been reported in younger adults (18–36 years): 

positive associations between birth weight and lean mass derived from DXA in both 

sexes,260;262;265;286 from BIA in male-only258 and female only samples,263 and from 

SFT measures in both sexes.259;264  

 

In five studies that measured lean mass in mid–later adulthood (mean ages from 

40 to 75 years), all reported positive associations between birth weight and lean 

mass—measured using DXA, in both sexes203;243 and in male-only242 and female-

only241 samples; using BIA in both sexes;268 or in a male-only sample using SFT 

measures.269 One study reported positive associations between birth weight and 

cross-sectional muscle area using computed tomography.124 

 

In all age groups, the positive associations between birth weight and lean mass 

typically remained after adjustment for adult height and potential confounders 

(including indicators of socio-economic circumstances at birth, maternal height or 

BMI). Except one small study in males (n=32),242 studies in adulthood have all used 
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whole body lean mass; appendicular lean mass is likely to provide a more accurate 

measure of skeletal muscle mass.  

 

 Literature discussion: birth weight and body composition 3.1.1.3

 

Studies in adulthood have found birth weight is positively associated with lean 

mass, but relatively few have been conducted in later adulthood. Associations 

between birth weight and fat mass in adulthood are not consistent, suggesting the 

need for future research. 

 

The studies examining associations between birth weight and adult body 

composition have often made statistical adjustment for other factors in their 

analyses; some of these could be considered as either confounders or mediators. 

Justification for the variables included in adjusted analyses has seldom been 

provided, leading to confusion in interpretation. There is also substantial 

inconsistency across studies, with different studies adjusting for different factors. 

 

A number of studies have adjusted for contemporaneous height,124;203;242;268 a 

factor which may mediate associations between higher birth weight and higher fat 

and lean mass. However, other studies have adjusted for contemporaneous 

weight265 or BMI,241 and provided no justification. Some studies have adjusted for 

measures of socio-economic circumstances at birth203;268;269 and other maternal 

factors which may be socially stratified. These have included parity/birth 

order,204;268;274 age at birth,268 and smoking status.204 Others have adjusted for 

factors which could be considered under hereditary influence, including maternal 

BMI,268;271;274 maternal SFT measures and height,276 or maternal height alone.258 

Some studies have adjusted for lifestyle factors of the study sample—typically 

smoking status243;264;267;269 and alcohol intake.242;243;264;269 Finally, other studies 

have adjusted for gestational age.268;271;272;275;276;287  

 

There is a need for a study with sufficient data to enable adjustment for a number 

of potential confounders and mediators. The NSHD is suited to this since it has data 

available for many of the factors which could be considered potential confounders 

(eg, measures of socioeconomic circumstances in early life, birth order, maternal 

height and BMI, and maternal age). Although the reported associations between 

birth weight and fat/lean mass are typically unchanged after adjustment for these, 

this may not necessarily be the case in different cohorts.  
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 Prior findings from the MRC National Survey of Health and 3.1.1.4

Development 

 

Kuh et al (2002)288 previously examined associations between birth weight and 

anthropometric outcomes at 43 years (BMI, waist circumference and waist-hip 

ratio). A number of sex-specific findings were reported: in males, birth weight was 

positively associated with waist circumference (before and after adjustment for 

adult BMI), but not waist-hip ratio; in females, birth weight was negatively 

associated with waist-hip ratio (after adjustment for adult BMI) due to those of 

lower birth weight tending to have a reduced hip size in adulthood, but not with 

waist circumference.288 In males, birth weight was positively associated with BMI 

(associations in females were not reported).  

 

The NSHD has no prior measures of lean mass, though studies have examined 

associations between birth weight and both muscle strength and physical 

functioning. As described in Chapter 1, this thesis has focused on studies using lean 

mass as an outcome (given the potentially different determinants of muscle 

strength, function, and mass). However, studies using these outcomes in the NSHD 

are described below in order to give an indication of the types of analyses that have 

been conducted using the same explanatory variable. 

 

Kuh et al (2002)289 found that birth weight was positively associated with grip 

strength at 53 years, independently of adult height and weight, and SEP in both 

childhood and adulthood. Birth weight was positively associated with standing 

balance time in females but not males, but not associated with chair rise time in 

males or females.290 The association between birth weight and standing balance in 

females was largely attenuated after adjustment for weight and height gain 

velocities from 0–53 years. 

 

This chapter will build on the earlier work conducted in the NSHD by examining 

associations between birth weight and direct measures of both fat and lean mass. 

 

 Literature summary  3.1.1.5

 

While studies have found high birth weight to be associated with high adult BMI, 

fewer studies have used direct measures of fat and lean mass, and most of these 

used cohorts in young-mid adulthood. Conflicting results across age groups have 

been given for associations between birth weight and fat mass, suggesting the need 

for further research. Previous studies have found birth weight is positively 
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associated with whole body lean mass, and there is also a need to replicate findings 

using appendicular measures which more accurately assesses skeletal muscle 

mass. In addition, most previous studies have made only limited adjustment for 

potential confounders. 

 

 Chapter objectives and hypotheses 3.1.2

 

The objective of this chapter is to test the hypothesis that birth weight is not 

associated with fat mass, but is positively associated with lean mass.  

 

 Methods 3.2

 

 Explanatory variable  3.2.1

 

The explanatory variable used in this chapter is birth weight. This was extracted 

from birth records a few days after birth (recorded to the nearest quarter of a 

pound), converted to metric grams288 and then kilograms.  

 

 Outcomes 3.2.2

 

The outcomes used in this chapter are the main outcomes of this thesis, outlined in 

Chapter 2 (whole body measures of fat and lean mass, appendicular lean mass, fat: 

lean mass ratio, and android: gynoid fat mass ratio). Since this chapter has only 

one explanatory variable, it was considered feasible to include additional outcomes 

which might help to strengthen the analyses conducted (BMI and forearm muscle 

area). These were measured at the same time as the main outcomes (60–64 

years). BMI was included to test whether similar associations were found with BMI 

as with whole body measures of fat and lean mass, and forearm muscle area (cm2) 

was included to help elucidate whether associations between birth weight and lean 

mass were explained by associations between birth weight and skeletal muscle size 

and mass. This was measured in the non-dominant arm using pQCT (Stratec XCT 

2000) at the 50% cross-sectional site (see Chapter 2).  

 

 Potential confounding and mediating variables 3.2.3

 

In this chapter a number of variables will be considered as potential confounders, 

mediators, or moderating variables. These have been chosen a-priori on the basis 

of previous research and are listed below along with justification. 
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 Sex. This was considered as a potential confounder, since males tend to be 

heavier at birth (Chapter 2) and have more lean mass and less fat mass as 

adults. It was also considered a potential moderator, since associations between 

birth weight and body composition have been shown to differ by sex—eg, 

positive associations between birth weight and lean mass in males but not 

females,271 or vice versa.275 

 Paternal occupational class at 4 years (or at 11 (n=24) and 15 (n=13) years if 

missing at 4), using the Registrar General’s social classification. This was used 

as an indicator of socioeconomic circumstances at birth, considered a potential 

confounder since babies born in worse socioeconomic circumstances tend to be 

lighter at birth;291;292 these circumstances tend to track into adulthood, and 

worse socioeconomic circumstances in adulthood were hypothesised as being 

associated with higher fat and lower lean mass—these associations will be 

examined in Chapter 6.  

 Maternal age at birth of survey child. This was considered a potential 

confounder since younger and older maternal ages are associated with 

increased likelihood of low birth weight,293 and older maternal age at birth has 

been associated with lower central fat mass203 and higher lean mass268 in 

adulthood. 

 Birth order, reported by the mother. This was considered a potential confounder 

since those born later tend to be heavier at birth293 and have less fat mass as 

adults.294  

 Maternal height (cm) and BMI (kg/m2), measured or self-reported when the 

study members were 6 years old. These variables were chosen as indicators of 

the genetic factors which may influence both birth weight and adult body 

composition. These have been previously shown to confound associations 

between birth weight and body composition,170 with higher maternal BMI and 

height associated with heavier birth weight and higher fat mass in adulthood.  

 Adult height at the time of DXA measurement was considered a potential 

mediator, since those of heavier birth weight tend to be taller as adults,282 and 

those taller as adults tend to have more fat and lean mass (Chapter 2).  

 

 Analytical strategy  3.2.4

 

A series of linear regression models were constructed to examine associations 

between birth weight and outcome variables, with adjustment then made for 

potential confounders and mediators. Potential confounders were added to models 

as continuous variables (where associations between confounder and both exposure 
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and outcome are linear) or as categorical variables (where there is no evidence of 

linear association). Evidence of departure from linearity in the association between 

birth weight and outcomes was assessed by inclusion of a quadratic term and 

reported where evidence was found. Tests of interaction were conducted to formally 

test for evidence of sex interaction—where evidence was found (P<0.05) results 

were stratified by sex. 

 

Adjustment was made for potential confounders in a sequential manner using three 

models. First, adjustment was made for paternal occupational class at 4 years, 

considered an indicator of socioeconomic circumstances at birth. Adjustment was 

then made for factors which are also likely to be socially stratified, but may 

confound associations between birth weight and body composition via additional 

biological (birth order and maternal age) and genetic (maternal BMI and height) 

pathways. To examine the influence of missing data on potential confounders on 

findings, the associations between birth weight and outcomes were compared using 

the restricted and maximum available samples. 

 

While associations with birth weight may reflect the influence of prenatal growth, 

associations may also be due to birth weight-related differences in growth after 

birth—for example, positive associations between birth weight and adult lean mass 

could be explained by heavier babies undergoing greater weight gain (and accrual 

of lean mass) in infancy and childhood which then tracks into adulthood. To test 

whether this explanation was possible, associations between birth weight and 

weight and height (and their velocities) from infancy to adolescence were examined 

using linear regression. Chapter 4 will then examine associations between 

measures of growth after birth (weight and height gain) and body composition 

outcomes and discuss the extent to which associations between birth weight and 

body composition can be explained by subsequent periods of growth. 

 

Adjustment of birth weight and body composition associations for measures of 

growth after birth was not conducted in this thesis as it was thought that this would 

not be able to distinguish whether associations between birth weight and outcomes 

were due to prenatal or post-natal growth.278 In addition, the high correlation 

between measures of weight could lead to multicollinearity. 

 

 Sample used in analyses 3.2.5

 

In total, 1264 participants had valid data for both birth weight, all potential 

confounders, and main outcomes (fat and lean mass, appendicular lean mass, fat: 
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lean and android: gynoid ratios); 289 participants with valid birth weight and 

outcome data were excluded from analyses due to missing data for one or more 

potential confounder. As tests of sex interaction tend to have only limited statistical 

power these were conducted using the maximum available sample size. 

 

 Results 3.3

 Investigation of potential confounders and mediators 3.3.1

 

Appendix 3 shows the associations between potential confounding/mediating 

variables and a) birth weight and b) fat and lean mass at 60-64 years. The 

following variables met part of the formal definition of a confounder since they were 

associated with both birth weight and fat or lean mass index:  

 Sex: males were heavier at birth, and had more lean mass and less fat mass 

than females (shown in Chapter 2). 

 Maternal BMI: study members with heavier mothers (higher BMI) were heavier 

at birth, and had more fat and lean mass.  

 Birth order: study members born later were heavier at birth; in males, but not 

females, those born later had higher lean mass, while females, but not males, 

had higher fat mass. 

 

Paternal occupational class was not associated with birth weight—associations 

between this and other indicators of SEP will be examined in Chapter 6. Maternal 

height and maternal age were positively associated with birth weight but not 

associated with fat or lean mass. Adult height, a potential mediator, was positively 

associated with birth weight and, as shown in Chapter 2, positively associated with 

fat and lean mass. 

 

 Birth weight and body composition outcomes 3.3.2

 

Table 10 presents results from unadjusted regression models examining 

associations between birth weight and body composition outcomes. Birth weight 

was weakly positively associated with whole body fat mass, but this association was 

entirely attenuated after adjustment for adult height. Birth weight was positively 

associated with both whole body and appendicular lean mass in both sexes with 

evidence for sex interaction reflecting a larger effect size in males. Positive 

associations between birth weight and height-adjusted whole body and 

appendicular lean mass indices were also found. When height was included as a 

covariate in regression models it was found to partly attenuate the associations 
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(Appendix 4). Higher birth weight was associated with lower fat: lean and android: 

gynoid ratios in both sexes.  

 

Tests of linearity showed little evidence for deviation from linearity except for 

associations between birth weight and whole body and appendicular lean mass 

index. Further analyses showed that the coefficient of the quadratic term was small 

and negative for both outcomes (-2.84E-07 and -1.32E-07, respectively). Upon 

plotting these data, this appeared to be driven by a levelling off of the positive 

association at the higher values of birth weight; when those with a birth weight of 

>4.5 kg (n=26) were excluded, no evidence for deviation from linearity was found, 

while the positive association remained (P<0.001 in both cases). 

 

Associations between birth weight and additional outcomes (BMI and forearm 

muscle area) are shown in Appendix 5. Birth weight was not associated with BMI, 

but was positively associated with forearm muscle area.  

 

Table 11 shows associations between birth weight and body composition outcomes 

before and after adjustment for i) paternal occupational class at 4 years, ii) birth 

order and maternal age, and iii) maternal height and BMI. The associations 

described above remained, in most cases with minor attenuation of effect, in fully 

adjusted models. Of these groups of potential confounders, adjustment for 

maternal height and BMI had the most substantial impact on associations—

attenuating but not removing most associations. However, associations between 

birth weight and lean mass index were largely entirely attenuated after adjustment 

for maternal BMI and height. Further analyses showed that this was driven by 

maternal BMI. 

 

Appendix 6 and Appendix 7 show associations between birth weight and weight and 

height (and their velocities) from 2–20 years. As expected (due to tracking of 

weight and height), in both sexes birth weight was positively correlated with weight 

and height from 2–20 years. In both sexes, birth weight was positively correlated 

with weight gain velocities from 2–15 years but generally not with height gain 

velocity, except positive associations between birth weight and height gain from 7–

11 years in males and 2-4 years in females. 
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Table 10. Mean difference in body composition outcomes per 1 kg increase in birth weight 
 

Outcome β (95% CI) P P(quad) P(sex interaction)# 

Fat mass (kg) 0.54(-0.41, 1.49) 0.27 0.88 0.87 

Fat mass index (kg/m1.2) -0.01(-0.53, 0.50) 0.96 0.85 0.92 

Lean mass (kg) – males 2.82(1.76, 3.87) <0.001 0.22 0.04 

Lean mass (kg) – females 1.81(0.92, 2.69) <0.001 0.67 – 

Lean mass index (kg/m2) 0.25(0.03, 0.46) 0.03 0.06 0.48 

Appendicular lean mass (kg) – males 1.47(0.97, 1.98) <0.001 0.15 0.03 

Appendicular lean mass (kg) – females 0.91(0.49, 1.33) <0.001 0.91 – 

Appendicular lean mass index (kg/m2) 0.16(0.06, 0.27) <0.01 0.06 0.38 

Fat: lean mass ratio  -1.99(-3.78, -0.20) 0.03 0.23 0.71 

Android: gynoid fat mass ratio -2.65(-4.21, -1.08) <0.01 0.10 0.39 

 

Note: Models were adjusted for sex unless sex-stratified; analyses restricted to those with valid data for birth weight, paternal occupational 

class, maternal age, height, and BMI, birth order, and body composition outcomes; N=1264 in all models (males=610; females=654); 

P(quad)=test for deviation from linearity—likelihood ratio test comparing models including and excluding birth weight2; #formal test of sex 

interaction using the maximum available sample size (with all outcome measures, n=1553) 
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Table 11. Mean difference in body composition outcomes per 1 kg increase in birth weight: a) adjusted for paternal occupational class at 4 

years; b) identical to model a with additional adjustment for birth order and maternal age; c) identical to model b with additional adjustment 

for maternal height and body mass index (kg/m2) 
 

 a)  b)  c)  

Outcome β (95% CI) P β (95% CI) P β (95% CI) P 

Fat mass (kg) 0.61(-0.34, 1.56) 0.21 0.80(-0.17, 1.78) 0.11 -0.26(-1.25, 0.74) 0.61 

Fat mass index (kg/m1.2) 0.03(-0.48, 0.54) 0.91 0.13(-0.39, 0.65) 0.63 -0.36(-0.90, 0.17) 0.19 

Lean mass (kg) - males 2.82(1.77, 3.88) <0.001 2.91(1.83, 3.99) <0.001 1.95(0.83, 3.07) <0.01 

Lean mass (kg) - females 1.80(0.91, 2.68) <0.001 2.02(1.12, 2.93) <0.001 1.18(0.28, 2.09) 0.01 

Lean mass index (kg/m2) 0.26(0.04, 0.48) 0.02 0.28(0.06, 0.51) 0.01 0.13(-0.10, 0.36) 0.28 

Appendicular lean mass (kg), males 1.47(0.96, 1.97) <0.001 1.52(1.00, 2.04) <0.001 1.09(0.56, 1.63) <0.001 

Appendicular lean mass (kg), females 0.90(0.48, 1.32) <0.001 1.03(0.60, 1.46) <0.001 0.65(0.22, 1.08) <0.01 

Appendicular lean mass index (kg/m2) 0.17(0.07, 0.27) <0.01 0.18(0.08, 0.29) <0.01 0.12(0.01, 0.22) 0.04 

Fat: lean mass ratio  -1.81(-3.59, -0.03) 0.05 -1.51(-3.33, 0.32) 0.11 -2.61(-4.50, -0.73) <0.01 

Android: gynoid fat mass ratio -2.48(-4.04, -0.93) <0.01 -2.59(-4.19, -1.00) <0.01 -2.79(-4.45, -1.12) <0.01 

 

Note: Models were adjusted for sex unless sex-stratified; analyses restricted to those with valid data for birth weight, paternal occupational 

class, maternal age, height, and BMI, birth order, and body composition outcomes; N=1264 in all models (males=610; females=654) 
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 Discussion 3.4

 

 Main findings  3.4.1

 

The main findings of this chapter are weak positive associations between birth 

weight and fat mass at 60–64 years which were entirely explained by adult height. 

Birth weight was more strongly positively associated with lean mass, and this 

association remained after adjustment for adult height. Those of higher birth weight 

also tended to have lower fat: lean and android: gynoid ratios.  

 

The above associations remained with only minor attenuation of effect after 

adjustment for a number of potential confounders (socioeconomic circumstances in 

childhood, birth order, maternal age, BMI and height), while associations between 

birth weight and whole body lean mass index were largely attenuated after 

adjustment for maternal BMI.  

 

 Comparison with previous findings 3.4.2

 

The findings of no association between birth weight and whole body fat mass (after 

adjustment for adult height) are consistent with some previous studies, described 

in the literature review of this chapter, although overall previous studies have 

yielded inconsistent results. Some studies have reported negative associations, 

although these tend to depend on statistical adjustment for weight or BMI in 

adulthood.242;266;267 Few studies have reported positive associations; of those that 

have, small effect sizes are typically found compared with lean mass 

associations.241;269 In this chapter higher birth weight was associated with lower 

android: gynoid ratio; to the author’s knowledge, these associations have not been 

previously examined.  

 

Previous studies have also reported positive associations between birth weight and 

whole body lean mass in adulthood, with most previous studies conducted at 

younger ages. Only one previous study has used appendicular lean mass, and also 

reported positive associations in a sample of 32 males in later adulthood.242 

Findings from this chapter build on these results by showing that higher birth 

weight was associated with higher whole body and appendicular lean mass, and 

forearm muscle area, in much larger sample containing both sexes. In addition, 

findings were independent of potential confounders which were typically not 

available in previous studies. 
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Findings from this chapter build on previous work in the NSHD at earlier ages which 

found birth weight to be positively associated with BMI at 43 years;288 findings from 

this chapter suggest that this association may reflect associations with lean but not 

fat mass. Higher birth weight was associated with higher waist circumference in 

males and lower waist-hip ratio in females at 43 years (after adjustment for 

contemporaneous BMI).288 The analyses conducted in this chapter extend these 

findings by using a longer period of follow-up and by using direct measures of fat 

and lean mass. 

 

 Birth weight and fat mass: explanation of findings 3.4.3

 

Weak positive associations between birth weight and fat mass were explained by 

adult height, as those of higher birth weight tended to become taller adults who, as 

shown in Chapter 2, have more fat mass.  

 

The weak evidence for association between birth weight and fat mass (with no 

evidence after adjustment for height) could reflect a genuine lack of association 

between prenatal growth and subsequent fat mass. Associations between birth 

weight and lean but not fat mass may reflect the different properties of the 

different cell types across life, with only fat cells thought to readily undergo 

hyperplasia in adulthood.20 Alternatively, the findings may be due to insufficient 

statistical power; the only study using DXA in later adulthood that reported positive 

associations had a larger sample size than this and other studies, and therefore had 

superior power to detect the reported small effect size for fat mass. However, this 

other study was conducted in female twins and the results do not necessarily 

generalise to mixed-sex singletons; further, no adjustment was made for adult 

height or socioeconomic circumstances. 

 

The lack of association between birth weight and fat mass may be a result of the 

inability, when using birth weight, to distinguish between the potentially differential 

effects of different periods of foetal growth. Examination of in-utero ultrasound 

measures have suggested that impaired growth only goes on to influence birth 

weight if it occurs in the third trimester of pregnancy,295 and the Dutch ‘hunger 

winter’ study suggested that impaired growth in the first two trimesters of 

pregnancy, but not the third, is associated with higher subsequent fat mass.255;256 

 

A higher birth weight was consistently associated with a lower android: gynoid 

ratio, and further analyses showed that these were driven by associations between 

higher birth weight and higher gynoid fat mass (Appendix 5). Further analyses 
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(data not shown) showed that these associations remained after adjustment for 

adult height. These findings suggest that prenatal growth may have lasting effects 

on fat distribution, but not necessarily whole body fat mass. While it has been 

suggested that prenatal under-nutrition may lead, via epigenetic or hormonal 

pathways, to the preferential accrual of abdominal fat after birth,202 findings from 

this chapter do not support this: associations may either reflect the greater accrual 

of gynoid fat mass before birth, which tracks to adulthood, or the preferential 

accrual of gynoid fat mass after birth among those of higher birth weight.  

 

 Birth weight and lean mass: explanation of findings 3.4.4

 

Positive associations between birth weight and lean mass may be explained by the 

tracking of muscle fibres attained at birth. While previous studies have reported this 

finding using whole body lean mass. The positive associations found between birth 

weight and both appendicular lean mass and forearm muscle area found in this 

chapter provide further evidence that prenatal growth may have a lasting effect on 

lean mass in adulthood. While the effect sizes were larger in males than females, 

this was explained by males being taller as adults. The difference in association 

between birth weight and fat and lean mass led, as expected, to those of higher 

birth weight having a lower fat: lean mass ratio.  

 

After adjustment for height, associations between higher birth weight and higher 

lean mass were attenuated but were not abolished in both sexes, suggesting that 

body size explains in part the associations found—such that heavier babies went on 

to become taller adults who in turn developed higher lean mass, potentially due to 

taller adults having longer bones and therefore longer muscles of higher mass. The 

fact that birth weight and lean mass associations remained after adjustment for 

height suggests that factors other than muscle length explain the associations 

found. Given the positive association between birth weight and forearm muscle 

area these may include differences in muscle width, ie, the number of adjacent 

muscle fibres or their thickness (driven by the number of myofibrils/muscle 

filaments they contain). Those with higher birth weight may also have developed 

higher muscle density (the number of muscle fibres and/or fibre mass per unit area 

of muscle). The suggestion that foetal growth influences muscle density and 

composition is supported by studies in animal models showing that under-nutrition 

during gestation is associated with lower muscle density in neonates.296;297 A recent 

study demonstrated similar findings in humans, where lower birth weight was 

associated with lower muscle density.298 However, the study was conducted in 
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males only and had a limited sample size (the association was reported only as a 

non-significant trend) suggesting the need for future research. 

 

Prenatal growth could feasibly impact on physical activity levels, which then impact 

on lean mass. However, studies that have examined associations between birth 

weight and physical activity do not support this. For example, in a study of four 

cohorts, birth weight was not associated with objectively assessed physical activity 

in adolescence.299 In a large study of 13 Nordic cohorts, associations between birth 

weight and self-reported physical activity (in adolescents and adults) were 

described as negligible (across the normal birth weight range).300 

 

Associations between birth weight and lean mass could reflect genetic factors which 

affect both birth weight and lean mass.170 Although the present study was not 

designed to explore the relative importance of genetic and environmental 

exposures, maternal height and BMI have been previously used as crude indicators 

of genetic influence170 and were considered as potential confounders in this chapter. 

Adjustment for these variables did not fully explain associations between birth 

weight and appendicular lean mass, suggesting that these associations were 

independent of genetic influence; similar findings after adjustment for maternal 

height and BMI have been reported in other studies reporting positive associations 

between birth weight and lean mass.204;258;268;271;274;276 Only one association 

(between birth weight and whole body lean mass index) was substantially 

attenuated upon adjustment for maternal BMI. Since associations between birth 

weight and appendicular lean mass measures were not substantially attenuated this 

may suggest that central lean mass (both muscle and organ mass) is more strongly 

influenced by genetic factors than appendicular regions. 

 

Maternal height or BMI may not be accurate measures of genetic influence since 

they are associated with offspring body composition by both genetic and social 

pathways.301 Further evidence for non-genetic influence comes from twin studies 

which have shown positive associations between intra-pair differences in birth 

weight and lean mass, for both mono and di-zygotic twins,241;302-304 and 

experimental studies in adulthood (described in the literature review of this 

chapter). 

 

 Methodological considerations and limitations 3.4.5

 

Although commonly used in epidemiological studies, birth weight is only a crude 

indicator of prenatal growth and has a number of limitations.244 As a measure of 
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weight, it does not distinguish fat and lean mass; separate measures of these 

masses at birth may be more closely related to subsequent fat and lean mass in 

adulthood. Birth length was not collected in the NSHD, and it may be that length at 

birth, or height-adjusted weight, is also more closely related to body composition 

outcomes than birth weight.282 As previously discussed, birth weight does not 

distinguish between impaired growth in different periods (eg, in the 1st, 2nd, or 3rd 

trimesters), and these may be differentially important for subsequent body 

composition outcomes.  

 

More refined measures of prenatal growth such as ultrasound measures are able to 

isolate and quantify distinct periods of growth, and may be used to show which 

periods are important for subsequent body composition. However, ultrasound 

measures are a relatively recent development—they are not available for use in 

older cohorts (given their development in the 1950s305) and are not easily 

implemented in large population studies. Despite its limitations, evidence of 

associations between birth weight and a substantial number of health outcomes in 

adulthood—independent of potential confounders—suggests that birth weight may 

be a useful if crude marker of foetal growth for use in epidemiological studies.245-247 

 

Another limitation of this chapter is the lack of data on gestational age (not 

collected in the NSHD), a variable which may confound associations between birth 

weight and body composition. However, studies have tended to find associations 

between higher birth weight and higher lean mass are similar after this 

adjustment,268;271;272;275;276;287 suggesting that it may not substantively influence the 

overall findings. In addition, there was less variation in gestational age in the NSHD 

than younger cohorts—the survival of babies of young gestational age was less 

likely in the 1940s when the NSHD participants were born, before the National 

Health Service was established (1948) and before subsequent improvements in 

obstetrics and neonatal care. 

 

Although the analyses in this chapter utilised a relatively large sample size 

(compared with previous studies), 289 participants were excluded from analyses 

due to missing data for potential confounders. While missing data could introduce 

bias, further analyses showed that the unadjusted associations between birth 

weight and outcomes were similar in the maximum available sample (data not 

shown) and restricted sample (presented above), suggesting that this source of 

potential bias was unlikely to substantially impact on the main associations 

reported.  
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Another potential source of bias is the attrition that occurred in the NSHD; not all of 

the original NSHD sample providing full body composition data at 60-64 years. 

However, this is unlikely to have impacted on findings as there was no evidence for 

differences in birth weight between participants with and without full body 

composition outcome data at 60-64 years (Chapter 2).  

 

 Strengths 3.4.6

 

Chapter 1 presents the overall strengths of the NSHD, while the strengths specific 

to this chapter are outlined below. 

 

The rich data previously collected in the NSHD enabled the influence of a number of 

potential confounders to be investigated, unavailable in most other studies. These, 

and the main explanatory variable, were prospectively ascertained limiting 

retrospective recall error and associated biases. The fact that most associations 

remained after adjustment for potential confounders provides further evidence for 

an association between foetal growth and adult body composition.  

 

Detailed outcome data were available in this study, including regional measures of 

body composition unavailable in other studies (such as appendicular lean mass and 

forearm muscle are). The use of these measures gave further support to the 

hypothesis that prenatal growth may influence adult skeletal muscle mass and fat 

distribution.  

 

In this chapter, potential confounders, mediators, and moderators were selected a-

priori with explicit rationale for inclusion, while previous studies have tended not to 

provide justification for adjustment in analyses. Formal tests of interaction were 

performed to test interactions by sex, and outcomes were stratified by sex only 

where sufficient evidence was found. Previous studies have often stratified by sex 

without justification—this reduces the statistical power (by 50% in samples of equal 

sex ratio). Adjustment for body size was conducted by using adult height; results 

showed that birth weight and lean mass associations were partly mediated by body 

size. Such conclusions are not possible in studies which have made adjustment for 

other anthropometric variables in adulthood such as weight or BMI. 

 

 Conclusions and links to other chapters 3.4.7

 

This chapter has shown evidence for a positive association between birth weight 

and lean mass and of no association between birth weight and fat mass. Positive 
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associations were also found between birth weight and appendicular lean mass and 

forearm muscle area, suggesting that prenatal growth may influence skeletal 

muscle mass in adulthood. These associations were independent of a number of 

potential confounders and only partly mediated by adult height. In addition, higher 

birth weight associated with lower fat: lean and android: gynoid ratio.  

 

The prenatal period is part of a wider continuum of growth that continues into 

infancy, childhood, and adolescence. Chapter 4 builds on the work done in this 

chapter by examining associations between periods of growth in these periods and 

adult body composition. 
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  Chapter 4: Growth after birth and body composition 4.

 

Main objective: to examine whether periods of growth in infancy, childhood and 

adolescence are associated with body composition outcomes at 60-64 years.  

 

In Chapter 3 associations between birth weight (an indicator of prenatal growth) 

and measures of body composition in adulthood were examined, with positive 

associations found between birth weight and lean mass. Prenatal growth is a 

relatively short period of the entire growth trajectory which extends into infancy, 

childhood, and adolescence. This chapter extends the work done in Chapter 3 by 

examining associations between periods of growth (in weight and height) after birth 

(in infancy, childhood, and adolescence) and body composition in later adulthood.  

 

 Introduction  4.1

 

In Chapter 3, studies finding associations between impaired prenatal growth, 

indicated by low birth weight, and increased risk of ill-health in adulthood were 

described. In some cases, associations between birth weight and later health 

outcomes were only found after statistical adjustment for adult BMI, where the 

birth weight coefficient can also be interpreted as reflecting rates of growth after 

birth.278 Patterns of growth after birth have also been associated with health 

outcomes in adulthood, with growth typically quantified as change in weight, height 

or BMI in periods of infancy, childhood, and/or adolescence. For example, greater 

weight gain in infancy has been shown to be associated with increased risk of adult 

insulin resistance and cardiovascular disease.306;307 Body composition may in part 

mediate these associations, such that patterns of growth impact on body 

composition, which then affects subsequent health.  

 

Although seldom explicitly stated, there are at least two mechanisms which may 

explain associations between growth after birth and body composition in adulthood. 

First, associations may reflect the tracking of fat or lean masses attained during 

periods of weight gain, as both are thought to track across life (discussed in 

Chapter 1). Second, associations may reflect tracking of the factors which influence 

subsequent changes in fat and lean mass.308 For example, patterns of physical 

activity and diet in adult life are thought to be associated with those already 

present in adolescence;77 obesogenic tendencies (low physical activity and high 

energy intake) would lead to greater weight gain in adolescence and, assuming 

these traits track across life, would also lead to greater gains in fat mass in 
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adulthood. Patterns of growth may also reflect changes in metabolic mechanisms 

which have effects on subsequent changes in body composition. For example, rapid 

growth in infancy has been suggested to prime (or programme) the metabolic 

system towards a propensity to accumulate fat mass across life.176;309 Though 

unconfirmed, this may be mediated through behavioural and/or biological 

mechanisms eg, through changes in leptin secretion,310;311 a hormone known to be 

involved in satiety regulation.21;23 Greater weight gain in infancy and early 

childhood has been associated with earlier pubertal maturation312;313 which may 

have consequent metabolic consequences that impact on body composition. For 

example, earlier puberty may lead to an extension of exposure to the higher levels 

of sex hormones triggered by puberty—for example oestrogen in females (which 

may lead to higher fat mass314;315), and testosterone in males (which may lead to 

higher lean mass69;316).  

 

Different periods of growth may be differentially important for subsequent fat or 

lean mass, and this can be examined by comparing associations across periods 

investigated; stronger associations would be expected for periods which are more 

important. If associations only reflect the tracking of attained masses during 

periods of weight gain, then the strength of association would be greater for 

periods where these masses are attained. As described in Chapter 1, available data 

from cross-sectional studies of both sexes suggest that fat mass is attained in 

infancy (0–2 years), tends to plateau in early childhood (2–7 years), and then 

increases again in late childhood (7–11 years), while lean mass is continuously 

accrued across these periods (with males accruing more in late adolescence; 15–18 

years).69;70 The effects of increased growth in one period may differ depending on 

the extent of preceding growth. For example, restrictions to in-utero growth (as 

indicated by low birth weight for a given gestational age) tend to be followed by 

more rapid growth in early infancy (termed ‘catch-up’ growth), and this type of 

growth may be differentially associated with body composition outcomes than non-

catch-up growth.317;318  

 

A number of epidemiological studies have examined associations between periods 

of growth and subsequent body composition in adolescence or adulthood; the 

following section summarises and discusses these studies. Studies using BMI as an 

outcome are first described, followed by studies that have used direct measures of 

whole body fat and/or lean mass in adolescence or adulthood. As in Chapter 3, the 

focus of the literature review was on studies using accurate measures of body 

composition which were not included in prior systematic reviews. As such, studies 

using DXA were included regardless of publication date, while studies using SFT or 
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BIA were only included if they were published after 2005 (the date of a systematic 

review by Monteiro and Victoria (2005)).173 The studies are separated according to 

the period of growth investigated: infancy (0-2 years), childhood (2-11 years) and 

adolescence (12-17 years). Findings from studies with measures of body 

composition in adulthood are summarised in Table 12.  
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Table 12. Summary of studies that examined associations between growth after birth and whole body fat and/or lean mass in adulthood  

Note: ASEP=adult socioeconomic position; BIA=bioelectrical impedance analysis; BMI=body mass index; DXA=dual energy X-ray 

absorptiometry; SFT=skinfold thickness; UWW=under-water weighing; N/A=not applicable; mo=month; y=year; #n=110 with all data 

available

Study N Location 
/majority 
ethnicity 

Age at 
outcome 
measure 
(years) 

Type and period of 
growth 
investigated 

Body 
composition 
measure 

Main 
adjustments 

Fat mass association 
+(positive)  
–(negative) 

Lean mass association 
+(positive)  
–(negative)  

Victora et al, 

2007258 

2250

#  

Brazil 

/Mixed 

18 Weight: 

0–1, 1–2, 2–4 and 
4–15y  

BIA Height, ASEP 

maternal 
height 

Males: + all 

Females: N/A 

Males: + all 

Females: N/A  

Kindblom et al, 

2009319 

612 Sweden 

/Caucasian 

18 (SD=0.5) BMI: 

1-4  
4-10 
10–18y 

DXA None Males: + all 

Females: N/A  

+ Males: + all 

Females: N/A  

Euser et al, 
2005259 

403 Netherlands 
/Caucasian 

19 Weight: 
0–3 mo 
3 mo – 1y 

SFT Height, ASEP + all 
 

+ all 

Kuzawa et al, 

2012261 

1612 Philippines 

/Filipino 

21 (SD=0.3) Weight: 

0–12 mo 
12–24 mo 

2–8 y 

SFT Height, parity + all + all 

Sachdev et al, 
2005264 

1526 India 
/Indian 

29 (26–32) BMI: 
0-6, 6-12 mo 
1–2, 2–5, 5–8, 8–

11, 11–14y 

SFT Height, ASEP + all 
 
 

+ all 
 

Demerath et al, 
2009203 

232 USA 
/Caucasian 

46 (18-76) Weight:  
0–2y 

DXA Sex, height, 
education, 
Gage 

+ all 
 

+ all 
 

Yliharsila et al, 
2008197 

1917 Finland 
/Caucasian 

61.5 (56–70) BMI:  
0–2, 2–7, 7–11y 

BIA Height No assoc. 0–2 yr 
+ 2 to 11 yr 
 

+ all 
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 Literature review: growth and body composition 4.1.1

 

 Growth and anthropometric measures of fat mass 4.1.1.1

 

Most of the numerous studies that have examined associations between growth 

after birth and anthropometric measures of fat mass in adolescence/adulthood have 

been included in the systematic reviews outlined below. 

  

Monteiro and Victoria (2005)173 examined associations between infant and 

childhood growth (0–15 years) and later risk of obesity (from 3-70 years). Of 16 

studies identified, most used BMI as an outcome; five used SFT measures, with one 

study using DXA measures (at 9 years). In the majority of studies (13 of 15), 

measures of greater growth (in weight, height, or height-adjusted weight) were 

associated with increased risk of subsequent obesity.  

 

Ong and Loos174 conducted a systematic review (2006) of the associations between 

weight gain in infancy and subsequent obesity, and conducted additional analyses 

of the collated results—calculating the odds of obesity given a standardised 

exposure (rapid weight gain in infancy: >+0.67 change in weight standard 

deviation score between 0 and 2 years). Of 21 studies identified, 15 studies 

uniformly reported positive associations between weight gain in infancy and 

increased risk of obesity (defined by high BMI or SFT measures). Those who grew 

rapidly in infancy had 2–3-fold higher odds of subsequent obesity. None of the 

studies included in this review found evidence for interaction between infant growth 

and birth weight—the effect of infant weight gain was equivalent in all levels of 

birth weight,311 suggesting that catch-up growth does not differentially impact on 

subsequent obesity risk. Associations between greater weight gain in infancy and 

higher obesity risk was also found in a systematic review in 2005172 and in a meta-

analysis of 10 cohorts (including the NSHD with BMI measures at 43 years) in 

2011.320 

 

No systematic reviews have examined the specific associations between adolescent 

growth and subsequent anthropometric measures of fat mass. At least one original 

research article has examined these associations and reported positive associations 

between BMI gain in adolescence (11-16 years) and subsequent BMI at 25–33 

years.309  

 

In summary, evidence from anthropometric studies suggests that growth during 

infancy, childhood and adolescence is positively associated with subsequent fat 
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mass. However, BMI has a number of limitations (outlined in full in Chapter 1), 

primarily that it does not distinguish fat and lean mass. A number of studies have 

since examined associations between periods of growth and direct measures of fat 

mass in adolescence (11-17 years), young adulthood (18-36 years), and mid-later 

adulthood (mean age between 45 and 65 years). These studies are outlined below. 

Also included are relevant experimental trials conducted in humans.  

 

 Infant growth (0–2 years) and direct measures of fat 4.1.1.2

mass 

 

Fourteen studies have reported positive associations between weight or BMI gain in 

infancy and fat mass in adolescence (using DXA,311;319;321-323 BIA204 or SFT261;324), 

young adulthood (using BIA258 or SFT 259;261;264) and mid-later adulthood (using 

DXA203), while one study in later adulthood found no association (using BIA197). Two 

of these were included in the same paper by Kuzawa et al (2012).261  

 

Six of these studies obtained repeat measures of infant growth: two found that 

earlier, (0–3 and 0–6 months) and not later (3–9 and 6–12 months),311;322 periods 

of BMI gain were positively associated with subsequent fat mass in adolescence, 

while four others found that both earlier (0–12 months) and later (12 months – 2 

years) periods of weight, ponderal index or BMI gain were positively associated with 

subsequent fat mass (in adolescence261;321;324 or young adulthood261). 

 

One study examined the associations with height gain and reported positive 

associations between periods of height gain in infancy (0-6 months, 6 months-1 

year, 1-2 years) and subsequent fat mass (using SFT) in adolescence.324 The first 

and last of these associations became negative when adjusted by weight gain in the 

same period; in contrast, weight gain in infancy was positively associated both 

before and after adjustment for height gain. Negative associations between height 

gain and fat mass were interpreted as suggesting that greater height gain without 

excessive weight gain was beneficial in leading to lower fat mass, although the 

mechanisms underlying these associations were not discussed.  

 

Singhal et al (2010)208 gave experimental evidence for the positive association 

between rapid infant growth and subsequent fat mass: they conducted two 

randomised controlled trials in which small for gestational age infants were fed 

either control or nutrient-enriched formulas (for 6–9 months from birth). Those fed 

nutrient-enriched formulas tended to gain more weight and height in infancy and 

had higher fat mass at follow-up (either BIA or deuterium dilution measures at age 
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5–8 years). However, the extent to which findings are generalisable to those not 

born small for gestational age is uncertain, given differences in subsequent of 

growth in those born small for gestational age. 

  

 Childhood growth (2-11 years) and direct measures of fat 4.1.1.3

mass 

 

Eight studies have reported positive associations between weight or BMI gain in 

childhood and fat mass in adolescence (using DXA322;323 or SFT261), young 

adulthood (using DXA,319 BIA258 or SFT261;264) or mid-later adulthood (using BIA197).  

 

Howe et al (2010) obtained a large number of repeat measures of childhood BMI 

from the Avon Longitudinal Study of Parents and Children, and found that all 

periods of BMI change (2–5, 5–5.5, 5.5–6.5, 6.5–7, 7–8.5, and 8.5–10 years) were 

associated with subsequent DXA-measured fat mass in adolescence.321 The patterns 

of associations found were complex—associations were both positive and negative 

across the periods, and the interpretation of these associations were further 

complicated by the mean BMI across the periods investigated which both increased 

and decreased. Positive associations indicated either greater BMI gain where BMI 

increased, or a slower decline where BMI declined; negative associations indicated 

a slower BMI increase where BMI increased, or a faster decline where BMI declined.  

 

 Adolescent growth (12–17 years) and direct measures of 4.1.1.4

fat mass 

 

Only two studies have examined associations between adolescent growth and fat 

mass: both reported positive associations between BMI gain in adolescence and 

subsequent fat mass in young adulthood (measured using SFT264 or DXA319).  

 

 Literature summary: growth and fat mass 4.1.1.5

 

In summary, studies have tended to report positive associations between weight 

and BMI gain in infancy, childhood, and adolescence and subsequent fat mass. The 

studies differ in the measures (eg, weight, BMI, and height) and timing of periods 

of growth, as well as in the age at outcome and body composition measure, making 

comparison between results difficult. Of the studies that used repeat measures of 

weight or BMI gain in infancy and childhood, most suggested that gain in childhood 

is more strongly positively associated with fat mass than gain in 
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infancy,197;258;264;319 with later periods in childhood more strongly associated than 

earlier periods. These studies were all conducted in adolescents or young adults. 

Only one study used a sample in mid-later adulthood (Yliharsila et al (2008),197 

mean age=61.5) and found that BMI gain in childhood was positively associated 

with subsequent fat mass while BMI gain in infancy was not. 

 

Few studies have utilised measures of growth across infancy, childhood and 

adolescence—the two studies that did suggest all periods of BMI gain are positively 

associated with subsequent fat mass (with later periods being more strongly 

associated). However, these studies (by Sachdev et al (2005)264 and Kindblom et al 

(2009)319) have a number of limitations which suggest the need for future research, 

and are both conducted in samples of limited generalisability. The first used SFT 

measures of fat mass (at 29 years) which, as discussed in Chapter 2, are likely to 

be comparatively inaccurate and imprecise. This study was conducted in an Indian 

cohort which may have different patterns of growth to cohorts in more developed 

nations. The second assessed adolescent growth as change in BMI between 10 and 

18 years, with fat mass measured using DXA at 18 years; this study is therefore 

unable to determine the long term effect of adolescent growth on subsequent fat 

mass. In addition, this study was comprised exclusively of males and no 

adjustment was made for potential confounders such as SEP in childhood.  

 

Although studies have seldom discussed the reasons for different strengths of 

associations between different periods of growth and fat mass, stronger positive 

associations between weight gain in later periods (eg, later childhood and 

adolescence) than earlier periods (eg, early childhood and infancy) may be 

explained by the greater accrual of fat mass in these periods, which then tracks into 

later life. However, given evidence from cross-sectional studies that suggest accrual 

of fat mass occurs in both infancy and later childhood, associations in later 

childhood may be stronger if they reflect additional phenomena—for example, if 

greater weight gain in these periods is also associated with greater subsequent 

gains in fat mass (eg, through the tracking of behavioural factors such as physical 

activity).  

 

 Infant growth (0–2 years) and direct measures of lean 4.1.1.6

mass 

 

Twelve studies have reported positive associations between weight or BMI gain in 

infancy and lean mass in adolescence (using DXA,322;323 BIA,204 or SFT261;324), young 

adulthood (using DXA,319 BIA258 or SFT259;261;264) or mid-later adulthood (using 
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DXA203 or BIA197). Two of these studies were included in the same publication by 

Kuzawa et al (2012).261 

 

Four studies used repeat measures of growth in infancy—these showed that both 

early (0–1 years) and later (1–2 years) periods of weight or BMI gain are positively 

associated with lean mass in young adulthood, with later periods being more 

strongly associated.258;259;264 However, one study found that weight gain from 0–3 

months was positively associated with lean mass in adolescence, whereas weight 

gain from 3–12 months was not.322 Two studies conducted in developing nations 

found that weight gain in early (0–12 months) and later infancy (12 months–2 

years) were both positively associated with lean mass (of similar strength) in 

adolescence and young adulthood (although associations found in one study were 

largely attenuated in males after adjustment for adult height).261 

 

 Childhood growth (2–11 years) and direct measures of 4.1.1.7

lean mass 

 

Seven studies reported positive associations between greater weight or BMI gain in 

childhood and lean mass in adolescence (using DXA323 or SFT261), young adulthood 

(using DXA,319 BIA258 or SFT261), or mid-later adulthood (using SFT264 or BIA197).  

 

 Adolescent growth (12–17 years) and direct measures of 4.1.1.8

lean mass 

 

Two studies examined associations between adolescent growth and subsequent 

lean mass: both reported positive associations between BMI gain in adolescence 

and lean mass in young adulthood (measured using SFT264 or DXA319). 

 

 Literature summary: growth and lean mass 4.1.1.9

 

Studies have tended to find that periods of weight and BMI gain in infancy, 

childhood, and adolescence are positively associated with lean mass in adulthood. 

As with studies using fat mass as an outcome, comparison between different 

periods of growth is problematic due to differences between the studies. Of the 

studies with repeat measures of weight or BMI gain in infancy and childhood, some 

suggested that periods in later childhood258;264 are more strongly positively 

associated with lean mass than earlier periods, while other studies found 

inconsistent patterns of strength of association197;261;319 or no substantial difference 
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across periods.323 As with studies examining fat mass as an outcome, only one 

study used a sample in later adulthood and reported positive associations between 

BMI gain in infancy and childhood and subsequent lean mass.197 The use of BIA in 

this study meant that lean mass comprised bone, organ, and skeletal muscle mass.  

 

Only two studies have used measures of growth across infancy, childhood and 

adolescence, and both found that BMI gain in all periods was positively associated 

with subsequent lean mass, with no clear pattern in the strength of 

associations.264;319 The limitations of these studies were outlined previously in 

section 4.1.1.5. 

 

The finding of consistent positive associations between weight or BMI gain and lean 

mass is consistent with evidence from cross-sectional studies suggesting that gains 

in lean mass occur consistently from infancy into adolescence. However, no studies 

have examined associations with weight or BMI gain in later adolescence (eg, 15-18 

years); positive associations between weight or BMI gain in this period and lean 

mass may be stronger in males, as evidence suggests that the accrual of lean mass 

is greater in these periods in males. 

 

 Literature discussion: growth and body composition 4.1.1.10

 

Of the studies examining associations between periods of growth after birth and 

subsequent body composition, most have assessed growth as conditional change in 

weight or BMI, while only one study (by Menezes et al, 2011324) used change in 

height. This study attempted to distinguish the associations of height and weight 

gain in infancy on subsequent fat mass in adolescence by using models mutually 

adjusted for both weight and height gain. Before adjustment, both height and 

weight gain were positively associated with fat mass; after mutual adjustment, 

weight gain was positively, and height gain negatively associated. Although the 

mechanisms underlying the associations were not discussed, associations with 

height gain were interpreted as suggesting that greater height gain (without 

excessive weight gain) was beneficial in leading to lower subsequent fat mass. 

However, this study used inaccurate and imprecise measures of fat mass, did not 

include lean mass as an outcome, or analyse periods of growth beyond infancy. 

Positive associations in unadjusted analyses between height gain and subsequent 

fat and lean mass may be expected, if gains in height gain track across life and 

leads to greater adult height and greater body size, since taller individuals tend to 

have more fat and lean mass (Chapter 2).  
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Aside from conducting mutually adjusted models to distinguish the influence of 

weight and height gain, assessing growth in terms of BMI change may show the 

influence of weight gain independent of height gain. BMI is designed to be a 

measure of height-adjusted weight, such that division of weight (kg) by height (m)2 

removes the association between weight and height. However, BMI may still be 

correlated with height, and this correlation is likely to differ at different ages and in 

different cohorts.325 BMI may therefore potentially be an inappropriate measure of 

height-adjusted weight if its association with height is strong, or differs 

substantially in the different periods of growth investigated. However, of the studies 

that have assessed growth as change in BMI, few have explicitly outlined 

associations between BMI and height, while one used ponderal index (m/kg3) in 

infancy and BMI in childhood.321  

 

While some studies have measured body composition using DXA,203;311;319;321;322 

other studies have used techniques such as air-displacement plethysmography,323 

or those considered inaccurate and imprecise such as BIA197;204;258 or SFT.259;264;324 

In addition, no studies used appendicular lean mass as an outcome, a more 

accurate indicator of skeletal muscle mass, and few have used objective measures 

of fat distribution. 

 

The published studies examining associations between periods of growth and body 

composition have made statistical adjustment for a number of variables in their 

analyses, some of which can be considered potential confounders. These differ 

across studies and have included contemporaneous height, indicators of SEP in 

childhood or adulthood, pubertal timing, maternal factors (including smoking 

status, height and BMI, and age), parity, and behavioural factors such as smoking 

status and physical activity. Although justification for the inclusion of these 

covariates in analyses has seldom been given, SEP in childhood may be a 

confounder since it may (indirectly) be causally related to subsequent growth in 

pre-adult life326;327 and adult body composition. Contemporaneous height could be a 

potential mediator, as it may be on the causal pathway between greater weight or 

height gain and higher adult fat and lean mass. 

 

 Prior findings from the MRC National Survey of Health and 4.1.1.11

Development 

 

Braddon et al (1986)328 investigated the predictive potential of childhood obesity (at 

7 years) in relation to obesity at 36 years. The predictive power was concluded to 

be poor, with only 21% of obese 36 year-olds obese at 11 years. This work was 
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updated using subsequent follow-ups, where the mean BMI of the cohort increased. 

Hardy et al (2000)168 found that higher relative weight at age 14 years was 

associated with higher mean BMI across adulthood (20, 26, 36, and 43 years). 

These associations were independent of educational achievement and adult 

occupational class. Kuh et al (2002)288 examined associations between childhood 

(age 7) weight on anthropometric measures of fat mass at age 43. Weight at age 7 

was positively associated with waist-to-hip ratio and waist circumference (in both 

sexes); after adjustment for BMI at 43 years, these associations became negative.  

 

As in Chapter 3, while the NSHD has no previous measures of lean mass, studies 

using grip strength and physical functioning outcomes are described below in order 

to give an indication of the types of analyses that have been conducted using 

measures of growth. 

 

Kuh et al (2006) examined associations between periods of growth (in weight and 

height) and grip strength at 53 years. Height at 2 years was positively associated 

with grip strength in both sexes, as was height gain between 2-7 and 15–53 years. 

There was evidence for sex interaction at 7–15 years: greater weight (males only) 

or height gain (females only) from 7–15 years was positively associated with grip 

strength. Weight gain between 0–7 was weakly positively associated with grip 

strength in both sexes, while weight gain from 15–53 years was weakly positively 

associated with grip strength in males, but negatively associated in females. These 

findings were independent of paternal occupational class, pubertal timing, and 

physical activity and health status in adulthood. Similar analyses were conducted in 

relation to standing balance time and chair rise time. Weight gain from 0-7 years 

was positively associated with standing balance time and chair rise time in males 

only (with no association in females), and negative associations from 7-15 and 15-

26 years in both sexes (but stronger in females).290 Height gain from 2-4 years was 

negatively associated with standing balance in males, but positively associated in 

females, with no associations in later periods. Height at 2 years and height gain 

from 2-7 years were negatively associated with chair rise time in both sexes. These 

associations were independent of indicators of SEP in childhood and adulthood. 

 

Another NSHD study, by Silverwood et al (2009),329 is described here since it may 

have implications for the generalisability of findings from this chapter. Silverwood 

et al compared BMI from 4–15 years in the NSHD with two younger reference 

populations (based on cross-sectional measures taken in the UK in ~1990 and in 

the USA ~2000). In both sexes, median BMI z-scores were higher in the NSHD in 

early childhood (4, 6 and 7 years) than both reference populations. At 11 and 15 
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years, male z-scores were similar (UK 1990 sample) or slightly lower (USA 2000 

sample) than reference populations, while in females z-scores were lower at 11 

years, then higher at 15 years compared with both populations. However, BMI is 

driven by both weight and height, and these two components may differ in the 

NSHD compared with younger cohorts; further analyses eluded to in this study 

suggested that despite higher BMI, z-scores for weight in childhood were typically 

negative in the NSHD, with z-scores for height being more negative.  

 

This chapter will build on previous studies in this cohort by, for the first time, 

examining associations between measures of weight and height gain after birth and 

subsequent direct measures of fat and lean mass.  

  

 Literature review summary 4.1.1.12

 

In summary, a large number of studies have reported associations between greater 

weight or BMI gain in infancy and higher BMI in adulthood. Fewer studies have used 

direct measures of body composition; these have tended to find that greater weight 

and BMI gain in infancy, childhood and adolescence are associated with higher fat 

and lean mass in adolescence and adulthood. However, these studies have a 

number of limitations which necessitate the need for further research: most have 

used limited measures of growth (typically spanning only infancy and childhood) 

and have focused exclusively on weight or BMI gain—none have examined 

associations between height gain and body composition in adulthood; few studies 

have been conducted using cohorts in later adulthood; and most have used 

inaccurate and imprecise measures of body composition and have not considered 

appendicular lean mass or fat distribution.  

 

 Chapter objectives and hypotheses 4.1.2

 

The objectives of this chapter are to test the following hypotheses: 

 

1. That all periods of weight gain from birth to 20 years are positively 

associated with subsequent fat and lean mass, due to the tracking of 

attained fat and lean mass that comprise weight gain or due to being 

associated with subsequent gains in fat and lean mass. It was further 

hypothesised that: 

a. As found in previous studies of both sexes, positive associations 

between weight gain and fat mass would be stronger in later 
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childhood and adolescence (7-20 years) than in early childhood and 

infancy (0-7 years). 

b. In males but not females positive associations between weight gain 

and lean mass would be stronger in later adolescence (15-20 years) 

than in earlier periods, as evidence suggests lean mass accrual is 

greater in this period 

2. That all periods of height gain from 2–20 years are positively associated with 

subsequent fat and lean mass, due to the tracking of increased height and 

body size (and the greater fat and lean mass incurred due to greater body 

size) or due to being associated with subsequent gains in fat and lean mass. 

As such, associations would be strongest in the periods which were most 

strongly positively associated with adult height. 

 

 Methods 4.2

 

 Explanatory variables 4.2.1

 

The main explanatory variables used in this chapter are periods of weight and 

height gain, derived from birth weight and measures of height and weight 

prospectively measured between 2 and 15 years by trained professionals, and self-

reported at 20 years. The ages selected were chosen to maximise the number of 

discrete periods of weight and height gain in infancy, childhood, and adolescence. 

The following ages were selected: birth (weight only), 2, 4, 7, 11, 15, and 20 

years; measures available at 6 years were not included, since it was hypothesised 

that measurement error would have a disproportionately greater effect on the 

observed change in weight or height between ages 6 and 7 years. Instead, age 7 

was selected following a previous study demonstrating strong positive associations 

between BMI gain from 7–11 years and BMI in adulthood.309  

 

Gains in weight (kg) and height (cm) were calculated by subtracting a later 

measure by the equivalent earlier measure (eg, weight at 11 minus weight at 7). 

To enable more equal comparison between periods of growth these were converted 

into velocities by dividing by the exact number of months between measures. These 

variables were then plotted to check for outliers and in 4 instances distributions 

were right-skewed (males: weight gain from 0–2 and 7–11 years; females: weight 

gain from 4–7 and 7–11 years); these were then log-transformed. All velocities 

were then converted into sex-specific standard deviation scores (where the mean 

value equals approximately 0 and standard deviation approximately 1). In 

summary, the following variables were created for use in this chapter:  
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 Weight gain velocity during infancy: 0-2 years 

 Weight and height gain velocity during childhood: 2-4, 4-7, and 7-11 years 

 Weight and height gain velocity during adolescence: 11-15, and 15–20 years 

 

Change in BMI was not used as an explanatory variable in this chapter for the 

following reasons: it was strongly correlated with height at different periods; the 

strength and sign of the correlation was highly variable: strongly negatively 

correlated in infancy, positively at 11 years, and negatively correlated at 20 years 

(Appendix 8); and mean BMI both increased and decreased across these periods 

(Appendix 9), leading to potential complications in the interpretation of resulting 

coefficients. Pubertal timing was not used as a main explanatory variable in this 

chapter since it was hypothesised as being partly the result of weight and height 

gain in infancy and childhood. Associations between pubertal timing and body 

composition outcomes in the NSHD have been previously published for males 

(using voice-breaking status),330 are presented for reference purposes for both 

sexes in Appendix 10. 

 

 Outcomes 4.2.2

 

The outcomes used in this chapter are the main outcomes of this thesis, described 

in more detail in Chapter 2: whole body fat and lean mass, the ratio of these 

masses, appendicular lean mass and android: gynoid fat mass ratio. 

 

 Potential confounding and mediating variables  4.2.3

 

Potential confounders and mediators were chosen a-priori on the basis of previous 

research or, where research was lacking, on hypothesised relationships between 

variables. Paternal occupational class at 4 years (or 11 (n=24) or 15 years (n=13) 

if missing at 4 years) was used as an indicator of early life SEP and considered a 

potential confounding factor since it was hypothesised that socioeconomic 

circumstances may influence patterns of weight and height gain; these 

circumstances tend to track into adulthood, and low SEP was hypothesised as being 

associated with higher fat and lower lean mass (Chapter 6 will examine these 

associations). Adult height at the time of body composition measurement was 

considered as a potential mediator, since it was hypothesised that greater weight 

and height gain would lead to greater adult height, with taller individuals tending to 

have more fat and lean mass (Chapter 2). 
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 Analytical strategy 4.2.4

 

The mean weight (kg/year) and height (cm/year) gain velocities in each period 

examined were plotted by sex. Associations between periods of growth and 

potential confounders/mediators were then examined using linear regression.  

 

Linear regression models were used to analyse associations of weight and height 

(converted to sex-specific standard deviation scores) at 2–20 years with body 

composition outcomes. Since weight and height at each age were positively 

correlated (Appendix 8), they were both entered into the same regression model to 

attempt to elucidate their independent associations with outcomes. These models 

provide a crude indication of the periods of growth likely to be associated with 

outcomes—for example, positive associations between weight at 2 years and lean 

mass suggests that weight gain in infancy is positively associated with lean mass, 

but this association may be solely explained by the positive association between 

weight at birth and lean mass. Further models, described below, were therefore 

constructed to examine associations with discrete periods of weight and height 

gain.  

 

To examine associations of weight and height gain with body composition 

outcomes, weight and height gain velocity were included in models alongside 

weight and height at the beginning of each period (as sex-specific standard 

deviation scores). For example, to examine associations between weight gain from 

7-11 years and subsequent fat mass, weight gain velocity between 7-11 years was 

included, with adjustment for weight and height at 7 years, and height gain velocity 

between 7-11 years. Since height was not available at birth, models examining 

associations with weight gain from 0-2 years were only adjusted for weight at birth 

and height at 2 years. Periods of weight and height gain in the same period were 

adjusted for each other as they were all positively correlated (Appendix 11), and 

such models enable the independent associations of both weight and height gain on 

outcomes to be examined. Weight and height at the beginning of each period was 

also adjusted for to take into account preceding weight and height gain. These 

models can therefore be interpreted as showing, with respect to a period of weight 

gain, the mean difference in outcome per standard deviation increase in weight 

gain velocity, for a given weight and height at the beginning of the period 

investigated, and concurrent height gain velocity. Interpretations of results for 

height gain velocity are equivalent. 
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The above models were conducted separately in males and females given 

hypothesised sex differences in association, and tests of interaction were conducted 

to formally test for evidence of sex interaction. Non-linearity was assessed in all 

models by the inclusion of a quadratic term, and outlined where evidence was 

found. 

 

The coefficients (and 95% confidence intervals) of the above models were then 

plotted by outcome to enable informal comparison of the strength of associations 

across periods. To examine whether associations were confounded by SEP, the 

above models were repeated with additional adjustment for paternal occupational 

class (as a categorical term). To examine whether associations were mediated by 

adult height, these models were repeated with additional adjustment for adult 

height (included as a continuous term). Adjustment for adult height by inclusion as 

a covariate in analyses was preferred to using height adjusted indices to enable 

coefficients from unadjusted and adjusted models to be compared on the same 

scale.  

 

 Sample used in analyses 4.2.5

 

Unless otherwise specified all analyses were restricted to those with valid body 

composition outcome data. Analyses were restricted to those with valid data for at 

least one period of growth and paternal occupational class. As such, the available 

sample in each period differed slightly: (male/female N): 0–2 (574/603); 2–4 

(554/570); 4–7 (567/608); 7–11 (566/614); 11–15 (536/582); 15–20 (493/549). 

In each period, small numbers of participants with valid growth and outcome data 

were excluded due to missing data for paternal occupational class (male/female N): 

0–2 (18/22); 2–4 (7/10); 4–7 (7/8); 7–11 (7/8); 11–15 (7/6); 15–20 (7/6). 

 

 Results 4.3

 

 Descriptive statistics 4.3.1

 

Figure 3 shows the mean weight and height gain velocities in each period examined 

in this chapter. In summary, both males and females gained height and weight 

across the periods analysed; weight gain velocity was highest in infancy and early 

adolescence (11-15 years); height gain velocity was highest in early childhood (2-4 

years) and declined thereafter. Velocities in weight and height were similar in males 

and females, although females tended to gain less weight and height from 15-20 

years. Appendix 11 shows the mean weight (birth to 20 years) and height (2-20 
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years) in tabular form. The variation in weight increased with age in both sexes; 

similar, but less pronounced patterns of increased variance with age were observed 

for height.  

 

 Investigation of potential confounders and mediators 4.3.2

 

Participants with fathers of lower occupational class tended to gain less weight in 

infancy, but gain more weight from 7–20 years, and gain less height in most 

periods (2–20 years; Appendix 12). Weight gain from 0–4 years (both sexes) and 

15-20 years (females only) were positively associated with adult height, while 

weight gain from 7–15 years was negatively associated with adult height in both 

sexes (Appendix 13). Height gain from 2–20 years was positively associated with 

adult height in both sexes (Appendix 13). 
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Figure 3. Mean a) weight and b) height gain per year in infancy to adolescence 

a) 

 

b) 

 

Note: males=connected line; females=dashed line; sample sizes in the different 

periods were (male/female): 2–4 (554/570); 4–7 (567/608); 7–11 (566/614); 11–

15 (536/582); 15–20 (493/549); depicted are those with valid data for weight and 

height at each age and body composition outcomes 
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 Weight and height from 2–20 years and body composition 4.3.3

outcomes 

 

Figure 4 a-e shows associations between weight at each age (2, 4, 7, 11, 15 and 20 

years) and body composition outcomes. Birth weight is also included for reference 

purposes. Weight at ages between 4 and 20 years was positively associated with fat 

mass (Figure 4 a) and weight from birth to 20 years was positively associated with 

whole body and appendicular lean mass (Figure 4 b and d). Greater weight from 7-

20 years was associated with higher fat: lean (Figure 4 c) and android: gynoid 

(Figure 4 e) ratios.  

 

Figure 5 a-e shows associations between height from 2 to 20 years and body 

composition outcomes. Heights at each age were generally not associated with fat 

mass (Figure 5 a), except for a negative associations in men at 15 years. Height 

was positively associated in all periods with whole body (Figure 5 b) and 

appendicular (Figure 5 d) lean mass (except at 15 years in males). Greater height 

from 11-20 years was associated with a lower fat: lean mass ratio (Figure 5 c), and 

a lower android: gynoid ratio (Figure 5 e) from 2-20 years in males and from 11-20 

years in females.  
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Figure 4. Mean differences in fat and lean mass (with 95% confidence intervals) per 1 standard deviation increase in weight (standard deviation 

score), adjusted for height at the same age  

  

 

 

 

 

 

 

 

 

 

  

a) Fat mass (kg)         b) Lean mass (kg) 

c) Fat: lean mass ratio        d) Appendicular lean mass (kg) 
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Note: males=dark-coloured diamonds; females=light-coloured circles; sample sizes in the different periods were (male/female): 

 0 (745/808); 2 (593/627), 4 (653/700), 7 (624/679), 11(628/679), 15 (582/623), 20 (601/682); associations with birth weight were not 

adjusted for any measure of height 
 

 

 

e) Android: gynoid fat mass ratio  
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Figure 5. Mean differences in fat and lean mass (with 95% confidence intervals) per 1 standard deviation increase in height (standard deviation 

score), adjusted for weight at the same age 

  
  

a) Fat mass (kg)         b) Lean mass (kg) 

 

 

 

 

 

 

 
 

 

 

 

 

 

c) Fat: lean mass ratio        d) Appendicular lean mass (kg) 
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Note: males=dark-coloured diamonds; females=light-coloured circles. Sample sizes in the different periods were (male/female):  

2 (593/627), 4 (653/700), 7 (624/679), 11(628/679), 15 (582/623), 20 (601/682) 

  

e) Android: gynoid fat mass ratio 
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 Pre-adulthood weight gain and body composition outcomes 4.3.4

 

Figure 6 a-e shows the results from a series of linear regression models examining 

associations between weight gain velocities and body composition outcomes, 

adjusted for weight and height at the beginning of each period and concurrent 

height gain; these results are presented in tabular form in Table 13 a, and P-values 

for sex interaction terms are shown in Appendix 14.  

 

Weight gain from 4-20 years in males and 2-20 years in females was positively 

associated with fat mass (Figure 6 a). All periods of weight gain from birth to 20 

years were positively associated with whole body and appendicular lean mass 

(Figure 6 b and d)—these associations were stronger in males at 0–2, 4–7, and 15–

20 years, and weaker in both sexes at 7-11 years. Greater weight gain from 7-20 

years was associated with higher fat: lean mass ratio (Figure 6 c), with stronger 

positive associations from 7–11 years in females. Greater weight gain was 

associated with higher android: gynoid ratio from 4–15 years in males, and 7-11 

and 15-20 years in females (Figure 6 e). However, there was little evidence for 

differences by sex with android: gynoid ratio when formally tested (P(sex 

interaction) >0.1 in all cases). 

 

There was evidence for departure from linearity in the positive associations of 

weight gain from 2–4 years (females only) and 4–7 years (males only) with both 

whole body and appendicular lean mass (P(quadratic term) <0.05 in all cases; 

quadratic coefficients were negative in all cases). Further graphical analyses 

suggested that non-linear effects were small, and reflected a levelling off of the 

positive association between weight gain and lean mass among those who gained 

the most weight. In all other associations, there was little evidence for departure 

from linearity (P-values for quadratic terms >0.1 in all cases). 

 

Overall patterns of associations between weight gain and body composition 

outcomes were similar when adjustment was made for paternal occupational class 

and then adult height—in some instances estimates were attenuated, while in other 

instances they were strengthened (Table 13 b and c). Associations of weight gain in 

infancy with fat and lean mass were partly attenuated in males and largely 

attenuated in females after adjustment for adult height, while positive associations 

between weight gain from 7–15 years in males and 7–11 years in females were 

strengthened after this adjustment. Further analyses showed similar patterns of 

association when height-adjusted indices were used as outcomes (data not shown). 
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Figure 6. Mean differences in fat and lean mass (with 95% confidence intervals) per 1 standard deviation increase in weight gain velocity, 

adjusted for weight and height at the beginning of each period and concurrent height gain  
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Note: males=dark-coloured diamonds; females=light-coloured circles; sample sizes in the different periods were (male/female): 0–2 

(574/603); 2–4 (554/570); 4–7 (567/608); 7–11 (566/614); 11–15 (536/582); 15–20 (493/549); weight gain from 0-2 years was adjusted for 

birth weight and height at 2 years only; analyses were restricted those with valid data for height and weight at each age, paternal occupational 

class, and body composition outcomes 
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Table 13. Mean differences in fat and lean mass (95% confidence intervals, P-value) per 1 standard deviation increase in weight gain velocity: 

a) adjusted for weight and height at the beginning of each period and height gain velocity in the same period, b) identical to model a with 

additional adjustment for paternal occupational class; c) identical to model b with additional adjustment for adult height 
Period 
(years) 

Males 
 
a) 

 
 
b)   

 
 
c) 

Females 
 
a) 

 
 
b)   

 
 
c) 

Fat mass (kg)      

0-2 0.56(-0.06, 1.17), 0.08 0.68(0.06, 1.30), 0.03 0.49(-0.15, 1.12), 0.13 0.28(-0.50, 1.06), 0.49 0.41(-0.37, 1.20), 0.31 0.10(-0.70, 0.90), 0.81 

2–4 0.07(-0.63, 0.77), 0.84 0.13(-0.57, 0.83), 0.71 -0.03(-0.73, 0.67), 0.94 1.30(0.44, 2.16), <0.01 1.20(0.34, 2.06), 0.01 1.13(0.27, 1.99), 0.01 

4–7 1.62(0.94, 2.30), <0.01 1.63(0.95, 2.31), <0.01 1.66(0.99, 2.34), <0.01 0.83(0.00, 1.66), 0.05 0.77(-0.04, 1.59), 0.06 0.86(0.05, 1.68), 0.04 

7–11 1.57(0.85, 2.29), <0.01 1.53(0.81, 2.25), <0.01 1.72(0.99, 2.44), <0.01 2.09(1.18, 3.01), <0.01 1.97(1.07, 2.88), <0.01 2.52(1.56, 3.48), <0.01 

11–15 1.42(0.62, 2.22), <0.01 1.44(0.63, 2.25), <0.01 1.87(1.03, 2.70), <0.01 1.47(0.73, 2.22), <0.01 1.37(0.63, 2.11), <0.01 1.40(0.65, 2.14), <0.01 

15-20 1.71(0.96, 2.46), <0.01 1.63(0.87, 2.38), <0.01 1.62(0.87, 2.38), <0.01 2.19(1.39, 2.98), <0.01 1.99(1.18, 2.79), <0.01 2.02(1.22, 2.83), <0.01 

Lean mass (kg)      

0-2 1.67(1.12, 2.22), <0.01 1.72(1.16, 2.27), <0.01 1.07(0.54, 1.59), <0.01 0.74(0.31, 1.18), <0.01 0.74(0.30, 1.18), <0.01 0.24(-0.18, 0.66), 0.26 

2–4 1.29(0.67, 1.91), <0.01 1.34(0.71, 1.96), <0.01 0.96(0.38, 1.54), <0.01 1.05(0.58, 1.52), <0.01 0.96(0.48, 1.43), <0.01 0.83(0.38, 1.27), <0.01 

4–7 1.95(1.37, 2.52), <0.01 1.96(1.39, 2.54), <0.01 2.02(1.48, 2.56), <0.01 0.88(0.44, 1.33), <0.01 0.87(0.43, 1.32), <0.01 1.04(0.61, 1.47), <0.01 

7–11 0.56(-0.05, 1.18), 0.07 0.55(-0.06, 1.17), 0.08 0.95(0.36, 1.54), <0.01 0.54(0.05, 1.03), 0.03 0.52(0.02, 1.01), 0.04 1.26(0.76, 1.76), <0.01 

11–15 0.97(0.27, 1.68), 0.01 0.87(0.16, 1.58), 0.02 1.89(1.21, 2.57), <0.01 0.90(0.50, 1.30), <0.01 0.86(0.46, 1.26), <0.01 0.98(0.59, 1.37), <0.01 

15-20 2.42(1.83, 3.00), <0.01 2.37(1.77, 2.96), <0.01 2.29(1.70, 2.87), <0.01 1.58(1.17, 1.99), <0.01 1.29(0.88, 1.70), <0.01 1.20(0.79, 1.61), <0.01 

Appendicular lean mass (kg)      

0-2 0.79(0.52, 1.05), <0.01 0.79(0.53, 1.06), <0.01 0.48(0.23, 0.73), <0.01 0.38(0.17, 0.59), <0.01 0.38(0.17, 0.58), <0.01 0.14(-0.05, 0.34), 0.15 

2–4 0.68(0.38, 0.97), <0.01 0.69(0.39, 0.98), <0.01 0.51(0.23, 0.78), <0.01 0.48(0.27, 0.70), <0.01 0.45(0.23, 0.67), <0.01 0.39(0.18, 0.61), <0.01 

4–7 0.91(0.64, 1.19), <0.01 0.92(0.65, 1.20), <0.01 0.95(0.69, 1.21), <0.01 0.40(0.19, 0.61), <0.01 0.40(0.19, 0.60), <0.01 0.47(0.27, 0.67), <0.01 

7–11 0.22(-0.07, 0.50), 0.15 0.21(-0.08, 0.50), 0.16 0.41(0.13, 0.68), <0.01 0.26(0.03, 0.49), 0.03 0.26(0.02, 0.49), 0.03 0.60(0.37, 0.84), <0.01 

11–15 0.32(-0.02, 0.66), 0.07 0.26(-0.08, 0.60), 0.14 0.77(0.45, 1.09), <0.01 0.43(0.24, 0.61), <0.01 0.42(0.23, 0.61), <0.01 0.47(0.29, 0.65), <0.01 

15-20 1.11(0.82, 1.39), <0.01 1.09(0.81, 1.38), <0.01 1.05(0.77, 1.33), <0.01 0.68(0.49, 0.87), <0.01 0.56(0.37, 0.76), <0.01 0.53(0.34, 0.72), <0.01 
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Period 
(years) 

Males 
 
a) 

 
 
b)   

 
 
c) 

Females 
 
a) 

 
 
b)   

 
 
c) 

Fat: lean ratio      

0-2 -0.33(-1.29, 0.63), 0.50 -0.14(-1.10, 0.83), 0.78 0.05(-0.94, 1.03), 0.92 -0.81(-2.43, 0.81), 0.33 -0.46(-2.07, 1.16), 0.58 -0.29(-1.95, 1.37), 0.73 

2–4 -0.92(-1.99, 0.16), 0.10 -0.83(-1.91, 0.25), 0.13 -0.81(-1.90, 0.28), 0.15 0.98(-0.82, 2.78), 0.29 0.90(-0.90, 2.70), 0.33 0.98(-0.83, 2.78), 0.29 

4–7 1.26(0.20, 2.32), 0.02 1.28(0.22, 2.34), 0.02 1.28(0.22, 2.35), 0.02 0.16(-1.58, 1.90), 0.86 0.05(-1.66, 1.76), 0.95 -0.04(-1.76, 1.69), 0.97 

7–11 2.39(1.27, 3.51), <0.01 2.32(1.20, 3.45), <0.01 2.32(1.18, 3.46), <0.01 4.38(2.46, 6.29), <0.01 4.11(2.22, 6.00), <0.01 4.08(2.05, 6.11), <0.01 

11–15 1.82(0.53, 3.10), 0.01 1.95(0.65, 3.24), <0.01 1.85(0.50, 3.20), 0.01 1.74(0.14, 3.33), 0.03 1.54(-0.05, 3.12), 0.06 1.38(-0.20, 2.97), 0.09 

15-20 1.00(-0.24, 2.24), 0.12 0.88(-0.37, 2.12), 0.17 0.94(-0.31, 2.19), 0.14 2.35(0.63, 4.07), 0.01 2.35(0.63, 4.08), 0.01 2.58(0.85, 4.31), <0.01 

Android: gynoid ratio      

0-2 -0.25(-1.54, 1.05), 0.71 0.12(-1.18, 1.41), 0.86 0.36(-0.96, 1.69), 0.59 -0.63(-1.69, 0.43), 0.25 -0.39(-1.46, 0.67), 0.47 -0.33(-1.43, 0.77), 0.56 

2–4 -0.39(-1.87, 1.08), 0.60 -0.18(-1.65, 1.28), 0.81 -0.08(-1.56, 1.40), 0.92 0.50(-0.68, 1.67), 0.41 0.55(-0.64, 1.73), 0.37 0.55(-0.64, 1.73), 0.37 

4–7 1.36(-0.10, 2.82), 0.07 1.40(-0.05, 2.86), 0.06 1.37(-0.09, 2.82), 0.07 0.51(-0.60, 1.63), 0.37 0.44(-0.67, 1.55), 0.44 0.46(-0.65, 1.58), 0.42 

7–11 1.51(-0.06, 3.08), 0.06 1.37(-0.20, 2.94), 0.09 1.06(-0.52, 2.64), 0.19 3.08(1.87, 4.28), <0.01 2.97(1.77, 4.18), <0.01 3.28(1.99, 4.56), <0.01 

11–15 2.09(0.34, 3.84), 0.02 1.92(0.17, 3.68), 0.03 1.41(-0.42, 3.24), 0.13 0.30(-0.71, 1.32), 0.56 0.27(-0.74, 1.28), 0.60 0.35(-0.67, 1.37), 0.50 

15-20 0.79(-0.92, 2.51), 0.37 0.46(-1.27, 2.18), 0.60 0.52(-1.20, 2.25), 0.55 1.74(0.64, 2.85), <0.01 1.59(0.48, 2.70), 0.01 1.50(0.38, 2.62), 0.01 

 

Note: sample sizes in the different periods were (male/female): 0–2 (574/603); 2–4 (554/570); 4–7 (567/608); 7–11 (566/614); 11–15 

(536/582); 15–20 (493/549); weight gain from 0-2 years was adjusted for birth weight and height at 2 years only; analyses were restricted 

those with valid data for height and weight at each age, paternal occupational class, and body composition outcomes 
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 Pre-adulthood height gain and body composition outcomes 4.3.5

 

Figure 7 a-e and Table 14 a show results from a series of linear regression models 

examining associations between height gain velocities and body composition 

outcomes, adjusted for height and weight at the beginning of each period and 

concurrent weight gain. Appendix 14 shows the P-values for sex interaction terms. 

 

Across the periods investigated, height gain was generally not associated with fat 

mass, except for positive associations from 4-7 years and 11-15 years in females, 

and a negative association from 11-15 years in males (Figure 7 a). Height gain was 

more consistently associated with lean mass (Figure 7 b), with positive associations 

from 2-7 years (both sexes), and differing associations by sex thereafter: negative 

associations from 11-15 years in males, and positive association in females in this 

period, and positive associations in both sexes from 15-20 years (but stronger in 

males). Associations with appendicular lean mass were similar to those with whole 

body lean mass (Figure 7 d). Across the periods investigated, greater height gain 

was weakly associated with a lower fat: lean ratio across (Figure 7c). Greater 

height gain from 2–4 years (both sexes) and 15-20 years (males only) was 

associated with a lower android: gynoid ratio (Figure 7e).  

 

There was little evidence for departure from linearity in the above associations (P-

values for quadratic terms >0.1 in all cases). The same patterns of association 

were found when adjustment was made for paternal occupational class (Table 14 

b). However, associations differed after adjustment for adult height (Table 14 c); all 

positive associations found between height gain and lean mass (whole body and 

appendicular) were largely attenuated. Associations were similarly attenuated when 

height-adjusted indices were used as outcomes (data not shown). Associations 

between height gain and lower fat: lean and android: gynoid ratios were typically 

largely attenuated after this adjustment, although associations between greater 

height gain and lower fat: lean mass ratio remained in males from 2–4 years.  
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Figure 7. Mean differences in fat and lean mass (with 95% confidence intervals) per 1 standard deviation increase in height gain velocity, 

adjusted for height and weight at the beginning of each period and concurrent weight gain  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Fat mass (kg)         b) Lean mass (kg) 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) Fat: lean mass ratio        d) Appendicular lean mass (kg) 
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Note: males=dark-coloured diamonds; females=light-coloured circles. Sample sizes in the different periods were (male/female):  

2–4 (554/570); 4–7 (567/608); 7–11 (566/614); 11–15 (536/582); 15–20 (493/549); analyses were restricted those with valid data for height 

and weight at each age, paternal occupational class, and body composition outcomes 
 

 

 

 

 

e) Android: gynoid fat mass ratio 
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Table 14. Mean differences in fat and lean mass (95% confidence intervals, P-value) per 1 standard deviation increase in height gain velocity: 

a) adjusted for weight and height at the beginning of each period and concurrent weight gain; b) identical to model a with additional 

adjustment for paternal occupational class; c) identical to model b with additional adjustment for adult height 

 

  

Period 
(years) 

Males 
a) 

 
b) 

 
c)  

Females 
a) 

 
b) 

 
c) 

Fat mass (kg)      

2–4 -0.59(-1.42, 0.24), 0.16 -0.51(-1.34, 0.32), 0.23 -1.13(-2.03, -0.24), 0.01 -0.10(-1.07, 0.87), 0.84 0.17(-0.81, 1.16), 0.73 -0.35(-1.44, 0.74), 0.53 

4–7 -0.15(-0.88, 0.58), 0.69 -0.08(-0.82, 0.65), 0.82 -0.62(-1.40, 0.16), 0.12 1.08(0.19, 1.96), 0.02 1.27(0.40, 2.14), <0.01 0.86(-0.10, 1.82), 0.08 

7–11 0.01(-0.62, 0.64), 0.97 -0.01(-0.64, 0.62), 0.98 -0.43(-1.11, 0.26), 0.22 -0.34(-1.19, 0.52), 0.44 -0.26(-1.11, 0.59), 0.54 -0.67(-1.56, 0.21), 0.14 

11–15 -0.89(-1.64, -0.15), 0.02 -0.99(-1.74, -0.24), 0.01 -1.29(-2.05, -0.53), <0.01 0.78(-0.09, 1.65), 0.08 0.98(0.11, 1.85), 0.03 0.68(-0.51, 1.88), 0.26 

15-20 0.43(-0.51, 1.38), 0.37 0.65(-0.31, 1.61), 0.19 0.46(-1.12, 2.04), 0.57 -0.29(-1.09, 0.52), 0.48 -0.13(-0.94, 0.67), 0.75 0.16(-0.92, 1.24), 0.77 

Lean mass (kg)      

2–4 0.68(-0.05, 1.41), 0.07 0.74(0.00, 1.48), 0.05 -0.75(-1.49, -0.01), 0.05 0.65(0.12, 1.18), 0.02 0.81(0.27, 1.35), <0.01 -0.19(-0.76, 0.38), 0.51 

4–7 0.63(0.02, 1.25), 0.04 0.65(0.03, 1.27), 0.04 -0.42(-1.04, 0.21), 0.19 0.96(0.49, 1.44), <0.01 1.00(0.52, 1.48), <0.01 0.23(-0.27, 0.74), 0.36 

7–11 0.38(-0.15, 0.92), 0.16 0.39(-0.15, 0.93), 0.15 -0.51(-1.06, 0.04), 0.07 0.24(-0.22, 0.70), 0.31 0.24(-0.22, 0.71), 0.31 -0.30(-0.76, 0.17), 0.21 

11–15 -0.54(-1.19, 0.11), 0.10 -0.49(-1.15, 0.17), 0.14 -1.19(-1.81, -0.57), <0.01 1.27(0.80, 1.74), <0.01 1.33(0.86, 1.80), <0.01 -0.05(-0.67, 0.58), 0.88 

15-20 2.23(1.49, 2.96), <0.01 2.31(1.56, 3.07), <0.01 0.16(-1.06, 1.37), 0.80 0.49(0.08, 0.89), 0.02 0.50(0.09, 0.91), 0.02 -0.20(-0.74, 0.34), 0.47 

Appendicular lean mass (kg)      

2–4 0.41(0.05, 0.76), 0.02 0.43(0.08, 0.78), 0.02 -0.29(-0.64, 0.07), 0.12 0.38(0.13, 0.63), <0.01 0.44(0.19, 0.69), <0.01 0.01(-0.26, 0.28), 0.95 

4–7 0.35(0.05, 0.64), 0.02 0.36(0.06, 0.65), 0.02 -0.17(-0.47, 0.13), 0.28 0.42(0.20, 0.65), <0.01 0.43(0.21, 0.65), <0.01 0.09(-0.15, 0.32), 0.48 

7–11 0.18(-0.07, 0.43), 0.16 0.19(-0.07, 0.44), 0.15 -0.26(-0.52, 0.00), 0.05 0.08(-0.14, 0.30), 0.46 0.08(-0.14, 0.30), 0.47 -0.16(-0.38, 0.05), 0.14 

11–15 -0.27(-0.58, 0.05), 0.10 -0.23(-0.55, 0.09), 0.16 -0.58(-0.87, -0.28), <0.01 0.64(0.42, 0.86), <0.01 0.66(0.44, 0.88), <0.01 0.06(-0.23, 0.36), 0.68 

15-20 1.23(0.87, 1.59), <0.01 1.25(0.88, 1.61), <0.01 0.04(-0.55, 0.63), 0.89 0.24(0.05, 0.43), 0.02 0.23(0.04, 0.43), 0.02 -0.05(-0.30, 0.21), 0.72 
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Note: sample sizes in the different periods were (male/female): 2–4 (554/570); 4–7 (567/608); 7–11 (566/614); 11–15 (536/582); 15–20 

(493/549); analyses were restricted those with valid data for height and weight at each age, paternal occupational class, and body composition 

outcomes 

 

 
 

 

 

 

 

 

Period 
(years) 

Males 
a) 

 
b) 

 
c)  

Females 
a) 

 
b) 

 
c) 

Fat: lean ratio      

2–4 -1.70(-2.97, -0.43), 0.01 -1.60(-2.87, -0.32), 0.01 -1.51(-2.90, -0.12), 0.03 -1.32(-3.34, 0.71), 0.20 -0.91(-2.97, 1.14), 0.38 -0.36(-2.64, 1.92), 0.76 

4–7 -0.74(-1.88, 0.41), 0.21 -0.63(-1.78, 0.51), 0.28 -0.70(-1.94, 0.53), 0.27 0.95(-0.91, 2.80), 0.32 1.38(-0.45, 3.22), 0.14 1.79(-0.23, 3.81), 0.08 

7–11 -0.27(-1.26, 0.71), 0.59 -0.32(-1.30, 0.67), 0.53 -0.31(-1.38, 0.76), 0.57 -1.44(-3.23, 0.35), 0.12 -1.24(-3.02, 0.54), 0.17 -1.27(-3.14, 0.60), 0.18 

11–15 -1.11(-2.30, 0.08), 0.07 -1.34(-2.54, -0.14), 0.03 -1.30(-2.53, -0.07), 0.04 -0.64(-2.51, 1.23), 0.50 -0.22(-2.09, 1.64), 0.81 1.58(-0.97, 4.12), 0.22 

15-20 -1.17(-2.73, 0.39), 0.14 -0.85(-2.44, 0.74), 0.29 0.64(-1.97, 3.24), 0.63 -1.67(-3.41, 0.07), 0.06 -1.28(-3.01, 0.45), 0.15 0.51(-1.80, 2.83), 0.66 

Android: gynoid ratio      

2–4 -2.12(-3.87, -0.38), 0.02 -1.91(-3.65, -0.18), 0.03 -1.54(-3.43, 0.35), 0.11 -1.24(-2.57, 0.08), 0.07 -1.17(-2.52, 0.18), 0.09 -1.17(-2.67, 0.34), 0.13 

4–7 0.15(-1.42, 1.73), 0.85 0.34(-1.24, 1.91), 0.68 0.92(-0.77, 2.62), 0.29 -0.35(-1.54, 0.84), 0.57 -0.13(-1.31, 1.06), 0.83 -0.22(-1.53, 1.08), 0.74 

7–11 -0.93(-2.30, 0.44), 0.19 -0.95(-2.33, 0.42), 0.17 -0.24(-1.73, 1.24), 0.75 -0.95(-2.08, 0.18), 0.10 -0.85(-1.98, 0.28), 0.14 -1.16(-2.34, 0.02), 0.06 

11–15 -0.42(-2.04, 1.20), 0.61 -0.45(-2.08, 1.18), 0.59 -0.11(-1.78, 1.56), 0.89 -0.62(-1.81, 0.57), 0.31 -0.52(-1.71, 0.67), 0.39 -1.46(-3.10, 0.17), 0.08 

15-20 -3.04(-5.20, -0.87), 0.01 -2.45(-4.65, -0.26), 0.03 -0.83(-4.44, 2.77), 0.65 -0.15(-1.26, 0.97), 0.80 0.07(-1.04, 1.19), 0.90 -0.62(-2.12, 0.87), 0.41 
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 Discussion  4.4

 

 Main findings 4.4.1

 

The main findings of this chapter are positive associations between periods of pre-

adulthood weight gain and fat and lean mass at 60–64 years. These associations 

began earlier for lean mass (birth to 20 years) than fat mass (2–20 years in 

females and 4–20 years in males), and were similar after adjustment for paternal 

occupational class and adult height. 

 

Across the periods investigated (2-20 years), height gain was generally not 

associated with fat mass, but was more consistently positively associated with lean 

mass. However, these associations were largely attenuated after adjustment for 

adult height.  

 

Results from these growth analyses were consistent with results from simpler 

models, where associations between weight (and height) at each age were 

examined in relation to body composition outcomes. 

 

 Comparison with previous studies 4.4.2

 

Findings from this study extend previous studies, described in the literature review 

of this chapter, that have generally been in younger cohorts and only examine 

limited sections of the growth trajectory (eg, infancy or childhood only). 

 

In contrast with findings from this chapter, previous studies in younger cohorts 

(<30 years) have found weight or BMI gain in infancy to be positively associated 

with fat mass. Consistent with this chapter, the only study examining these 

associations in later life (~61 years) reported no association with fat mass index 

(kg/m2).268 In this study, as found in this chapter, weight gain in childhood was 

positively associated with fat mass, and weight gain in infancy and childhood were 

also positively associated with lean mass.  

 

To the author’s knowledge, no previous studies have examined associations 

between weight or BMI gain and appendicular lean mass or android: gynoid ratio. 

In addition, no previous studies have examined associations between height gain 

and subsequent fat or lean mass in adulthood. 
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Findings from this chapter build on previous findings in the NSHD which have found 

greater weight gain in infancy to be associated with increased obesity risk (high 

BMI) at 43 years;320 findings from this chapter suggest that this association may 

primarily reflect lean and not fat mass. The analyses conducted in this chapter 

extend these findings by using a longer period of follow-up, by considering weight 

and height gain in childhood and adolescence, and by using direct measures of fat 

and lean mass. 

 

 Explanation of findings 4.4.3

 Weight gain and fat mass 4.4.3.1

 

In partial support of the hypothesis (see section 4.1.2), periods of weight gain in 

childhood and adolescence were positively associated with fat mass while weight 

gain in infancy was only weakly associated. Positive associations between weight 

gain and fat mass may be explained by the tracking of fat attained during weight 

gain and/or the tracking of behavioural and/or biological factors which lead to 

greater subsequent weight gain (in later periods of pre-adult life or in adulthood). 

Similar findings after adjustment for paternal occupational class suggest that 

associations were unlikely to have been confounded by SEP in early life. This is 

supported by further analyses (data not shown) showing similar patterns of 

association with additional adjustment for paternal and maternal educational 

attainment.  

 

In both sexes, the weak positive associations between weight gain in infancy and 

fat mass were attenuated by adult height, suggesting that height partly mediated 

these associations—such that those who gained more weight in infancy went on to 

become taller adults who tend to have more fat mass. Studies in younger cohorts 

have tended to find positive associations between weight gain in infancy and fat 

mass before and after adjustment for height. Given the higher prevalence of 

childhood obesity in these cohorts, infancy weight gain may primarily reflect gains 

in fat mass, while in older cohorts such as the NSHD infancy weight gain may 

predominantly reflect gains in lean mass. 

 

Positive associations between weight gain and fat mass began earlier for females (2 

years) than males (4 years). If results reflect the tracking of fat mass, it may be 

that weight gain from 2–4 years was predominantly driven by the acquisition of 

lean mass in males, and fat mass in females. In both sexes positive associations 

between childhood and adolescent weight gains and fat mass were either partly 
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attenuated, unchanged, or strengthened after adjustment for adult height 

suggesting that this may only partially explain the associations found.  

 

As hypothesised, there was some evidence that associations between weight gain 

and fat mass were stronger in later periods (eg, from 7-20 years compared with 0-

2 years in both sexes). These may be periods where accrual of fat mass is greater, 

and/or may reflect the fact that those who gained more weight in these periods 

tended to gain more fat mass in later periods. For example, late childhood and 

adolescence may be periods in which lifelong patterns of physical activity and diet 

are partially determined. There is some evidence that physical activity in childhood 

and adolescence tend to track into adulthood,331;332 and patterns of low physical 

activity in these periods may result in gains in weight, and future gains in fat mass 

across adult life. 

 

Greater weight in later childhood and adolescence (7-20 years) was also associated 

with a higher android: gynoid ratio. These associations were driven by the separate 

associations with android and gynoid fat mass, shown in Appendix 15. While 

greater weight gain in this period was associated with higher android and gynoid fat 

mass, associations with the former were either stronger or similar in size, leading 

to a higher android: gynoid ratio (as on average both males and females had more 

gynoid than android fat mass; shown in Chapter 2). If these findings are explained 

by tracking of fat mass into adulthood, it suggests that weight gain from 7-20 years 

is a period when android fat mass is preferentially accrued. 

 

A series of further analyses were conducted to examine whether associations found 

in the main analyses were explained in part by the choice of methodology used or 

further confounders or mediators. First, similar results were obtained when no 

adjustment was made for measures of height or height gain, suggesting that this 

adjustment had minimal influence on results (Appendix 16 a). Second, while it 

could be suggested that these associations were either confounded or mediated by 

differences in pubertal timing, further analyses showed that adjustment for this 

made little difference to the associations (Appendix 16 b). Third, further adjustment 

for maternal BMI and height made little difference to associations found (Appendix 

16 b)—this adjustment is discussed in more detail below.  

 

Both environmental and genetic factors may explain the associations found 

between weight gain and fat mass, and analyses conducted in this chapter cannot 

distinguish between these. In Chapter 3, associations between birth weight and 

outcomes were adjusted for maternal BMI and height, crude indicators of genetic 
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factors that may affect both birth weight and body composition. This adjustment 

was not conducted in the main analyses of this chapter in order to preserve the 

available sample size. However, further analyses on a sub-sample showed similar 

patterns of association with additional adjustment for maternal BMI and height 

(Appendix 16 b), as has been found in previous studies that have made this 

adjustment.258;322;323 As discussed in Chapter 3, this adjustment is unlikely to 

provide a definite estimate of genetic influence as it captures both genetic and 

environmental pathways, and the proportion of variance attributable to each may 

differ depending on the period of growth investigated and outcome used. The likely 

importance of environmental factors is suggested in the socioeconomic patterning 

of weight and height gain found in this chapter, and in experimental studies which 

have shown that nutritional enrichment leads to greater weight and height gain in 

infancy and increased subsequent fat mass in childhood.208 

 

 Weight gain and lean mass 4.4.3.2

 

Supporting the hypothesis (see section 4.1.2), all periods of weight gain were 

positively associated with lean mass. As with associations with fat mass, positive 

associations may reflect the tracking of lean mass and/or the tracking of factors 

which influence subsequent gains in lean mass. Associations were also similar after 

adjustment for paternal occupational class and additional adjustment for paternal 

and maternal educational attainment (data not shown), suggesting that 

associations were not confounded by childhood SEP. 

 

Associations between weight gain in infancy and early childhood (0–4 years) and 

lean mass were partly attenuated by adult height, suggesting that this mediated 

part of the associations found—such that those who gained more weight went on to 

become taller adults (with longer bones and longer muscles therefore of greater 

mass). However, associations thereafter typically remained after adjustment; 

weight gain may therefore have impacted on lean mass through other mechanisms 

such as the development of greater muscle width (the number of adjacent muscle 

fibres and/or their thickness) and/or greater muscle density (number of muscle 

fibres per unit area of muscle).  

 

As hypothesised, positive associations between weight gain and lean mass in males 

were stronger from 15-20 years than in earlier periods, where evidence suggests 

lean mass accrual is greater. For both sexes, the mechanisms explaining 

associations with later periods may differ to those in earlier periods. Since the 

number of muscle fibres in adulthood is thought to be largely determined in early 
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life,298 associations in infancy and early childhood may reflect both increased 

hyperplasia (cell division) and hypertrophy (increase in cell size), with positive 

associations in later periods primarily reflecting hypertrophy.  

  

Given the strong positive associations between fat and lean mass (shown in 

Chapter 2), associations between weight gain and lean mass may have been driven 

by associations between weight gain and fat mass—such that gains in weight in 

pre-adult life led to greater fat mass which in turn led to increased lean mass (due 

to increased fat loading driving increased muscle mass). This is more likely to have 

been the case for associations from early childhood onwards (4 years in males and 

2 years in females), where weight gain was positively associated with both fat and 

lean mass. Further analyses showed that this hypothesis is likely to explain positive 

associations between weight gain from 7–11 years and lean mass in males only—

these associations were largely attenuated after additional adjustment for whole 

body fat mass: β (mean kg change per one standard deviation increase in weight 

gain velocity (95% CIs), P-value): 0.17(-0.33, 0.66), 0.51 (whole body lean mass); 

0.08(-0.16, 0.33), 0.51 (appendicular lean mass), after adjustment for weight and 

height at 7 years, concurrent height gain, and adult height. In all other periods, 

positive associations remained (albeit partly attenuated), suggesting that weight 

gain may have impacted on lean mass through other mechanisms. As with 

associations between weight gain and fat mass, those with lean mass were not 

explained by pubertal timing or maternal BMI and height (Appendix 16 b). 

 

The differing associations of weight gain with fat and lean mass resulted in 

associations with fat: lean mass ratio, suggesting that greater weight gain in later 

childhood and adolescence (7-20 years) led to a higher fat: lean mass ratio. In 

most cases, a greater fat: lean mass ratio was the product of stronger positive 

associations with fat than lean mass. However, this was not always the case for 

males who, as shown in Chapter 2, have on average substantially less fat mass 

(mean=23.79kg) than lean mass (mean=53.69kg). As such, a 1kg increase in fat 

mass had a greater impact on the fat: lean mass ratio than a 1kg increase in lean 

mass.  

 

 Height gain and fat mass 4.4.3.3

 

Patterns of association with height gain and fat mass were less consistent than 

those with weight gain. Most periods of height gain were not associated, with some 

evidence for both negative (11–15 years in males) and positive (4–7 and 11–15 

years in females) associations. The positive associations found in females from 4–7 
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to 11–15 years were only partly mediated by adult height, suggesting that females 

who gained greater height in these periods went on to have more fat mass than is 

solely attributable to a resulting increase in adult height (and body size). 

 

Although it was hypothesised that all periods of height gain would be positively 

associated with fat mass (due to the tracking of height and body size, with taller 

adults tending to have more absolute fat mass), lack of association may reflect the 

fact that although adult fat mass is positively associated with height, this 

association is weaker than the positive association between lean mass and height 

(Chapter 2). As such, the increase in height in each period may have had a 

stronger more demonstrable impact on lean than fat mass.  

 

In a number of instances (eg, height gain from 4–11 and 15–20 years in males), 

height gain was positively associated with fat mass before adjustment for weight 

gain in the same period (Appendix 17), but these associations were attenuated 

when this adjustment was made. Weight gain is likely to be on the pathway 

between height gain and fat mass, such that greater height gain leads to an 

increase in body size and resulting fat mass which then tracks into adulthood. 

Adjustment for concurrent weight gain could therefore be considered an over-

adjustment, and the negative association between height gain from 11–15 years 

and fat mass (in males) could be a statistical artefact, since there was no 

association before adjustment (Appendix 17). Alternatively, as suggested in a 

previous study which made the same adjustment,324 this association may suggest 

that greater height gain in this period, without excessive weight gain, is associated 

with lower fat mass. Although the interpretation of these results is somewhat 

uncertain, such adjustment was considered necessary to enable the independent 

associations of weight and height gain to be investigated (as weight and height gain 

were positively correlated).  

 

Associations between greater height gain from 2-4 years (both sexes) and 15-20 

years (males only) with lower android: gynoid ratio were driven by the separate 

associations with android and gynoid fat mass, shown in Appendix 15. The 

explanation for these findings differed in each period and by sex: height gain from 

2-4 years was associated with lower android fat mass but not with gynoid fat mass 

in males, and weakly with lower android fat and higher gynoid fat mass in females; 

greater height gain from 15-20 years was not associated with android fat mass, but 

was associated with higher gynoid fat mass in males. Associations between height 

gain and android: gynoid ratio were partly (2–4 years) or largely (15–20 years) 

attenuated by adult height, suggesting that adult height may have mediated these 
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associations. However, adjustment for adult height could be considered an over-

adjustment, since the statistical models used were already adjusted for height at 

the beginning of each period (from 2–15 years), and height in childhood is a strong 

predictor of adult height.333  

 

 Height gain and lean mass 4.4.3.4

 

In partial support of the hypothesis (see section 4.1.2), most periods of height gain 

were positively associated with lean mass, and these tended to be strongest in the 

periods which were most strongly associated with adult height (15–20 years in 

males, and 11–15 years in females; Appendix 13). Associations with lean mass 

were more frequently found than with fat mass and may reflect the stronger 

positive association between adult height and lean mass than fat mass. As 

associations were found with both whole body and appendicular lean mass, positive 

associations found likely reflect gains in lean mass in both the appendicular and 

trunk regions. The different periods may however be differentially associated with 

lean mass of the legs and the trunk—previous studies have shown that gains in leg 

length tend to be greater in infancy and early childhood than gains in trunk 

length.334-336  

 

All the reported positive associations found between height gain and lean mass 

were largely attenuated by adult height, suggesting that attained adult height and 

body size mediated these associations. However, as discussed previously, this may 

be an over-adjustment.  

 

Due to the positive associations between height gain and lean mass, and either no 

association or weaker positive associations between height gain and fat mass, in 

most periods examined greater height gain led to lower fat: lean mass ratio. 

Greater height gain from 2–4 and 15–20 years (in both sexes) were weakly 

associated with lower fat: lean mass ratio both before and after adjustment for 

concurrent weight gain (Appendix 17), suggesting that over-adjustment is unlikely 

to explain these findings.  

 

As with associations between weight gain and outcomes, associations with height 

gain may reflect both environmental and genetic pathways, and analyses cannot 

distinguish between these two explanations.  
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 Methodological considerations and limitations 4.4.4

 

The periods of growth investigated in this chapter were chosen to maximise the 

number of discrete periods investigated, but were contingent on the measures 

available in the NSHD. Other periods of growth unavailable in the NSHD may be 

particularly important for subsequent body composition: for example, some 

previous studies have suggested that weight gain in the first weeks or months of 

the postnatal period may be particularly important for subsequent fat mass,311;337 

however only weight gain from 0–2 years was only available in the NSHD. However, 

the periods of growth used in this chapter—spanning infancy, childhood and 

adolescence—were greater than all previous studies in later adulthood, and overall 

can be considered a strength. In addition, the consequences of faster growth in one 

period may differ depending on the rate of growth in prior periods. For example, 

catch-up growth (indicated by increased weight gain in early infancy following low 

birth weight) may be differentially associated with outcomes compared with non-

catch-up growth. However, this was not considered appropriate for analysis in the 

NSHD as catch-up growth occurs in early infancy, and is unlikely to be captured 

from 0–2 years.  

 

The periods of growth analysed in this chapter were converted into velocities and, 

where available, the exact number of months was used as a denominator. 

However, the exact date of measurement was not available at 2 and 20 years—this 

is likely to have increased the measurement error of weight and height at these 

ages, and may have impacted on associations found. However, further analyses 

showed almost identical patterns of association in the other periods when not 

converted into velocities (data not shown), suggesting that this source of 

measurement error was likely to be small. A further source of measurement error 

was the self-reporting of weight and height at 20 years. Young adults (unlike older 

adults) have been found to recall their height and weight with a relatively high 

degree of accuracy, suggesting that measurement error may have been minor.205 

However, misreporting may have been differential with respect to weight or height, 

potentially introducing some bias in the associations found with weight or height 

gain from 15-20 years. For example, shorter individuals may have overestimated 

their height, and heavier individuals may have underestimated their weight. 

  

In this chapter complete case analyses were conducted with some participants with 

valid body composition outcome excluded due to missing weight and/or height gain 

data. Some statistical methods, such as multilevel models, do not require complete 
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cases and may therefore have greater statistical power. However, the NSHD has a 

large sample size compared with many other previous studies, and evidence was 

found for associations suggesting that analyses were not under-powered.  

 

In addition to leading to loss of power, the use of complete case analyses in this 

chapter may have resulted in bias. However, only small numbers of participants 

were excluded from analyses due to missing data for paternal occupational class, 

and similar results (data not shown) were found when analyses were repeated on 

the maximum available sample size. Further analyses showed that the estimates 

obtained were also similar when only those with valid data for all periods of growth 

were included in analyses (Appendix 16 and Appendix 17), suggesting that the use 

of different sample sizes in the periods examined was unlikely to substantially 

impact on the results found.  

 

Another potential source of bias is loss to follow-up, with not all of the original 

NSHD sample providing full body composition data at 60-64 years. However, this 

source of bias may be unlikely to have substantially impacted on findings, as 

analyses in Chapter 2 showed that participants with valid body composition 

outcome data had only minor differences in height (slightly taller) in infancy and 

childhood compared with those who did not.  

 

 Strengths 4.4.5

 

Chapter 1 presents the overall strengths of the NSHD, while the strengths specific 

to this chapter are outlined below. 

 

A main strength of this chapter is the large number of prospectively assessed 

measures of weight and height used across pre-adult life—greater than most 

previously published studies. These data enabled the periods of importance for 

subsequent fat and lean mass to be investigated. In addition, associations between 

periods of pre-adulthood height gain and adult body composition were assessed for 

the first time in this chapter, providing some evidence that greater height gain may 

lead, in some periods, to a lower fat: lean mass ratio.  

 

The analytical strategy and statistical methods used had a number of strengths. 

First, models were constructed to examine associations with discrete periods of 

weight and height gain, and this would not be possible by only examining 

associations between weight or height at each age and outcomes. Second, efforts 

were made to ensure that associations across different periods were comparable: 
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periods of weight and height gain were converted into velocities and then sex-

specific standard deviation scores were used. This enabled the strengths of 

associations across periods to be more easily compared. Third, the independent 

influences of weight and height gain were estimated by their mutual adjustment. 

Such adjustment showed that associations with weight gain were unlikely to have 

been confounded by height gain, conclusions not possible in previous studies which 

have made no adjustment for height gain. Some other previously published studies 

have used change in BMI in pre-adult life; however, as found in this chapter BMI 

may not appropriately adjust for height, and may further complicate the 

interpretation of results given the fact that mean BMI increases in some periods 

and decreases in other periods. Fourth, in this chapter, unlike most previous 

studies, associations with body composition outcomes were presented both 

unadjusted and adjusted for adult height. This enabled the pathways of associations 

to be better understood, although it is acknowledged that this adjustment could be 

considered over-adjustment in models containing a measure of height in pre-adult 

life.  

 

 Conclusions and links to other chapters 4.4.6

 

This chapter has shown evidence for positive associations between periods of pre-

adulthood weight gain and both fat and lean mass. These associations began earlier 

for lean mass, such that greater weight gain in infancy was associated with higher 

lean but not fat mass. Greater weight gain in later childhood and adolescence (7-20 

years) was associated with higher fat and lean mass, and a higher fat: lean mass 

ratio. Across the periods investigated, greater height gain was associated with 

higher lean mass but not fat mass, associations largely explained by adult height.  

 

Findings from this chapter may in part explain the positive associations found 

between birth weight and lean mass found in Chapter 3. As discussed in Chapter 3, 

those of higher birth weight tended to gain more weight in childhood which, as 

shown in this chapter, was associated with higher lean mass.  

 

The following chapter, Chapter 5, will continue the work of this thesis and examine 

associations between physical activity in adulthood and body composition 

outcomes. 
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 Chapter 5: Physical activity and body composition 5.

 

Main objective: to examine whether physical activity across adulthood is associated 

with body composition outcomes at 60–64 years.  

 

It is widely believed that higher physical activity levels lead to lower fat and higher 

lean mass. However, relatively few epidemiological studies have examined how 

physical activity relates to direct measures of fat and lean mass, and fewer still 

have used objective measures of physical activity. This chapter adds to the 

literature by examining the cross-sectional associations between physical activity, 

measured objectively using Actiheart monitors at 60–64 years, and body 

composition outcomes. In addition, associations between leisure time physical 

activity levels across adulthood and body composition outcomes are examined.  

 

 Introduction 5.1

 

A widely cited definition of physical activity is “any bodily movement produced by 

skeletal muscle that results in energy expenditure”.p126338 This definition, adopted 

for use in this thesis, includes all types of bodily movement including exercise, a 

sub-type of purposeful physical activity.  

 

Physical activity is often quantified using the following three dimensions: the 

duration of time spent physically active and the intensity and frequency of the 

activity.339 These can be used to calculate the total energy expenditure attributable 

to physical activity, which is often used in studies relating physical activity to health 

outcomes and body composition. Intensities of physical activity are typically 

categorised in multiples of the resting metabolic rate—being inactive or sedentary is 

1–1.5 metabolic equivalents (METs),340 low intensity or light physical activity (eg, 

walking) >1.5–3 METs, and moderate-vigorous physical activity (eg, running) >3.0 

METs.339;341;342 While the mechanisms linking specific intensities of activity with 

body composition are not understood, it has been suggested that spending less 

time inactive343;344 and greater time in moderate-vigorous intensity physical 

activity188 may be especially important in achieving and maintaining lower fat mass, 

independently of total physical activity energy expenditure. In addition to the 

duration, frequency and intensity of activity, different types of physical activity may 

also be differentially important for either fat or lean mass. For example, evidence 
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from intervention studies suggests that resistance exercise is important in 

maintaining and increasing lean mass levels.185;186 

 

Both total physical activity and its dimensions can be measured in a number of 

different ways, either by self-report (in questionnaires or interviews) or objectively 

(eg, using accelerometers, pedometers, or heart rate monitors).345-347 Objective 

measures are a relatively recent development and may derive measures of greater 

precision and accuracy,152;341;348 while self-reported measures typically provide 

information about physical activity across a longer time span and provide 

information about the types of activities undertaken. Most population studies have 

used self-reported measures.  

 

A small number of prospective studies have shown that leisure-time physical 

activity declines from childhood to early adulthood,349-351 and this decline may 

continue into later adulthood. Most adults in the UK do not meet the physical 

activity guidelines set in 2004 of moderate or vigorous intensity physical activity for 

30 minutes per day for at least five days per week.352;353 Recent guidelines 

published in 2011 recommend that older adults (>65 years) participate in physical 

activity twice a week to improve muscle strength (activities which use the muscles 

against resistance or body weight).354 The patterns of physical activity also differ by 

sex, with recent evidence from the Health Survey for England showing that in 

adulthood males tend to spend more time sedentary and in moderate-vigorous 

physical activity than females (who spend more time in lower intensity physical 

activity).353 Although population averages of physical activity are low, there is 

sufficient variation to enable the associations between physical activity and 

outcomes to be investigated. 

 

Physical activity has been shown to be related to a number of health outcomes; a 

report by the Department of Health in 2004 summarised the existing scientific 

literature and concluded that participation in regular physical activity (typically 

defined by self-report) was protective against coronary heart disease and type 2 

diabetes, stroke, musculoskeletal disorders (such as osteoporosis, osteoarthritis, 

back pain), and cancer.352 Similar conclusions were drawn in a report by the US 

Department of Health and Human Services in 2008.355 For some of the health 

outcomes, body composition may be on the causal pathway, such that reduced 

physical activity leads to changes in body composition (such as increased fat and 

reduced lean mass), which in turn lead to increased risk of ill-health (such as type 2 

diabetes). 
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Physical activity is an essential component of energy balance (along with energy 

intake) that (as discussed in Chapter 1) is widely thought to govern the amount of 

fat mass that individuals have. There are plausible hormonal pathways which may 

underlie associations between higher physical activity levels and lower fat mass.356 

For example, experimental studies have shown that aerobic exercise stimulates 

secretion of the growth hormone, a hormone with lipolytic (fat metabolising) 

properties, in a dose-response manner with higher exercise intensities.357-359 The 

effect of physical activity on fat mass may be greater if it is of high compared with 

low intensity (even if total physical activity energy expenditure is identical). For 

example, moderate-vigorous intensity activity may lead to reduced appetite360 and 

increased basal metabolic rate (the energetic costs of normal bodily functioning 

such as respiration),361 leading to reductions in fat mass. Moderate-vigorous 

physical activity may increase basal metabolic rate both directly and through 

increased lean mass—as higher lean mass has been shown to be associated with 

greater resting metabolic rate.112;113  

 

There are also plausible biological mechanisms which may link physical activity with 

higher lean mass. For example, there is evidence that hypertrophy following 

resistance exercise is mediated by exercise-induced secretion of hormones such as 

testosterone, insulin-like growth factor 1, and mTOR (mammalian target of 

rapamycin).362-364 In population studies, high intensity physical activity may be 

particularly strongly associated with higher lean mass, as these types of activities 

are likely to include those which lead to higher loading of the muscle. These 

activities may include resistance exercises and other types of leisure time activities. 

For example, activities such as tennis could be described as being high weight-

bearing as they require muscle strength and power to lift the weight of the body 

and to support the weight of the body when falling, potentially stimulating gains in 

muscle mass.  

 

Spending more time sedentary may lead to higher fat and lower lean mass as more 

sedentary individuals are likely to have lower physical activity energy expenditure 

(and undertake less moderate-vigorous intensity activity).365 For some outcomes 

such as cardiovascular disease, it has been suggested that sedentary time may 

affect disease risk independently of physical activity energy expenditure, as there 

may be particular physiological mechanisms which are activated when the body is 

sedentary for prolonged periods.366;367 While this may be true for fat and lean mass, 

to the author’s knowledge this has not been demonstrated, nor have potential 

mechanisms been described. 
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Although it is widely assumed that physical activity is causally related to 

subsequent body composition,368 associations could feasibly operate in the reverse 

direction, or be bi-directional. For example, there are a number of barriers which 

may make obese adults less likely to undertake physical activity, including 

psychological barriers (eg, unwillingness to undertake public physical activity when 

obese)369 and physiological barriers (eg, due to phenomena associated with obesity 

that impair physical activity such as breathlessness370 and reduced physical 

functioning, described in Chapter 1). Although less researched, it is also feasible 

that having lower lean mass may lead to psychological barriers to physical activity, 

and lower lean mass has been associated with worse physical functioning (outlined 

in Chapter 1) which may in turn lead to lower physical activity levels.  

 

While physical activity levels in adulthood are likely to affect adult body 

composition, activity levels earlier in life may also play a role. For example, lower 

physical activity levels in childhood may lead to gains in fat mass which then track 

into adulthood. As there is some evidence that physical activity levels track across 

life,331;332;371 lower physical activity in childhood may track to adulthood, leading to 

further fat mass gains in adulthood. As lean mass levels are also thought to track 

across life, activity levels in both early and adult life may both lead to gains in lean 

mass in adulthood. As such, there may be cumulative benefits of conducting 

greater activity across life in leading to lower fat and higher lean mass. The same 

patterns of associations may also be found if the relationship between physical 

activity and body composition is bi-directional. For example, lower physical activity 

in childhood may lead to gains in fat mass which then lead to lower subsequent 

physical activity levels and in turn higher fat mass, resulting in a positive feedback 

loop. 

 

Given the increases in population levels of fat mass (described in Chapter 1), 

ecological observations may provide some clues as to the association between 

physical activity and fat mass. These have highlighted that increased obesity 

prevalence has occurred alongside technological and societal changes which likely 

led to reduced physical activity levels (such as increased car ownership, increased 

average television viewing times, and a reduction in labour-intensive occupations), 

suggesting that physical activity influences fat mass.17;152;372 However, other 

societal changes have also occurred alongside the increase in obesity prevalence 

(such as increased fat intake as a proportion of overall diet151), leaving the 

independent influence of physical activity unclear; individual-level data provide a 

stronger source of evidence of association, enable different intensities of physical 
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activity to be investigated, and are likely to provide a more accurate estimate of the 

effect sizes of interest.373  

 
A number of epidemiological studies have examined associations between physical 

activity and whole body fat and/or lean mass in adolescents and adults, including 

cross-sectional and prospective studies. The sections below summarise and discuss 

these studies: first, those where anthropometric measures of fat mass have been 

used (such as BMI), and second where measures of physical activity or sedentary 

time have been used with direct measures of fat and/or lean mass in adolescence 

and adulthood. Studies using both self-reported and objectively assessed measures 

of activity are included, and those using the latter are summarised in Table 1. 

Direct measures of fat and lean mass included DXA, BIA, and air displacement 

plethysmography. In addition to epidemiological studies, findings from intervention 

studies are also summarised.  
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Table 15. Summary of studies that examined associations between objective measures of physical activity (or sedentary time) and whole body 

fat and/or lean mass in adulthood 

  

Study N Location/ 
majority 

ethnicity 

Age at 
outcome 

measure 

Physical activity 
measure 

Body 
composition 

measure 

Main 
adjustments 

Fat mass association 
+(positive)  

—(negative) 

Lean mass association 
+(positive)  

—(negative)  

den Hoed and 

Westerterp, 
2008374 

134 The 

Netherlands 
/Not stated 

 

21 (SD~2) Accelerometer: 

total, moderate, 
high intensities 

Helium/ 

deuterium 
dilution: 

Cross-sectional 

Height, weight — all N/A 

Mestek et al, 
2008375 

88 USA 
/Caucasian 

~22  
(19-25) 

Accelerometer: 
average steps/day 
 

BIA: 
cross-sectional 

None Males: no assoc 
Females: — 

N/A 

Bailey et al, 
2007376 

228 USA 
/Caucasian 

~40  
(35–45) 

Accelerometer: 
light, moderate, 
vigorous activity 

groups 

Air 
displacement: 
cross-sectional 

and after ~2y 

None Males: N/A 
Females: — 
 

N/A 

Paul et al, 
2004377 

91 USA 
/Not stated 

~47 
(SD~10) 

Calorimetry DXA: 
Cross-sectional 

None Males: — 
Females: no assoc. 

N/A 

Ekelund et al, 
2005190 

739 UK 
/Caucasian 

~53 
(SD~10) 

HR: 
total PA 

DXA: 
cross-sectional 
and change 
after ~5y 

Smoking, 
dietary fat 
intake 

Cross-sectional — all. 
Change (modified by 
age): 
-younger ages (<53y) 

+ older ages (>53y)  

Cross-sectional + all. 
Change (modified by 
age): 
No assoc. younger 

ages (<53y) 
+ older ages (>53y) 

Ekelund et al, 
2008378 
 

396 UK 
/Caucasian 

~55 
(SD~8) 

HR: 
% time sedentary 

DXA: 
cross-sectional 
and 
change after 

~5y 

ASEP + cross-sectional  
 
no assoc. change 
after ~5y 

N/A 

Barbat-Artigas 
et al, 2011379 

57 Canada 
/Caucasian 

~62 
(50–70) 

Accelerometer: 
total steps/day 

BIA: 
cross-sectional 

N/A Males: N/A 
Females:—    
 

Males: N/A 
Females: no assoc. 
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Note: ASEP=adult socioeconomic position; BIA=bioelectrical impedance analysis; DXA=dual energy X-ray absorptiometry; MVPA=Moderate-

vigorous physical activity; PA=physical activity; N/A=not applicable; y=year; HR=heart rate monitors 

Study N Location/ 
majority 
ethnicity 

Age at 
outcome 
measure 

Physical activity 
measure 

Body 
composition 
measure 

Main 
adjustments 

Fat mass association 
+(positive)  
—(negative) 

Lean mass association 
+(positive)  
—(negative)  

Park et al, 
2010380 

175 Japan 
/Japanese 

~72 
(65–84) 

Accelerometer: 
total steps/day  
(1y) 

MVPA (>3 METs) 

DXA: 
after 1y 

Height N/A +all 
Stronger MVPA 

Manini et al, 
2009381 

302 USA 
/Mixed 

~75  
(70-82) 
 

Doubly-labelled 
Water: 
total PA 

DXA: 
cross-sectional 
and change 

after 5y  

Age, smoking, 
and race 

No assoc. all + cross sectional 
(no assoc. change 
after 5y) 

 
Chastin et al, 
2011382 

32 Finland 
/Caucasian 

~79 
(SD~3) 

Accelerometer: 
total sedentary 
time 
 

DXA: 
cross-sectional 

None Males: +   
Females: no assoc. 

N/A 
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 Literature review: physical activity and body composition 5.1.1

 

 Physical activity and fat mass  5.1.1.1

 

A large number of studies have examined associations between physical activity 

and anthropometric measures of fat mass in adolescents and adults, and most have 

been included in the systematic and narrative reviews outlined below. 

 

A systematic review included in a report commissioned by the US Department of 

Health and Human Services in 2008 examined the cross-sectional associations 

between measures of physical activity (typically assessed by self-report) and body 

weight or BMI.355 Twenty-four studies were identified, 23 of which found that higher 

physical activity was associated with lower body weight or BMI. Wilks et al 

(2010)383 conducted a systematic review of prospective studies examining the 

relationship between objective measures of physical activity and subsequent 

change in fat mass in adulthood. In four of the six studies identified, fat mass was 

assessed by change in BMI or body weight, and in two studies direct measures of 

fat mass were used. Three studies found that higher physical activity was weakly 

associated with reductions in fat mass (or less gain in fat mass), while the 

remaining three studies found no association. The authors concluded that physical 

activity may not be a key determinant of excessive weight gain. Similar findings, of 

weak and/or inconsistent associations between physical activity and future weight 

or fat gain, have also been reported in previous systematic reviews that have 

included studies using both self-reported and objective measures of physical 

activity—in 2000,384 2005,152 and 2009.385 The studies included in these reviews 

typically used one measure of physical activity at baseline; to the author’s 

knowledge, none have examined whether there are cumulative benefits of physical 

activity levels across adulthood in leading to lower fat mass.  

 

Most of the studies included in the above reviews examined associations with total 

physical activity energy expenditure, and few examined associations with different 

intensities of physical activity which may be differentially important for fat mass. 

Further, body weight and BMI are unable to distinguish fat and lean mass, and 

these may be differentially related to physical activity.25 For example, higher 

physical activity may lead to lower fat and higher lean mass, but have little or no 

association with body weight or BMI.  

 

Five studies examined associations between objective measures of physical activity 

and fat mass in adolescents (12–17 years). Four found some evidence that higher 
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physical activity was associated with lower fat mass—in both sexes,188;386;387 or in 

females but not males388—while one study found no association.389 Three of these 

studies used the Avon Longitudinal Study of Parents and Children (with DXA 

measures at different ages): in one study, lower physical activity was associated 

with less gain in fat mass over 2-years (at ~14 years),188 while in subsequent 

cross-sectional analyses only greater vigorous physical activity (and not light or 

moderate physical activity) was associated with lower fat mass (at ~15 years).387 

In a cross-sectional study by Deere et al (2012)388 conducted at ~17 years, 

accelerometers were used to measure the ’impact’ of physical activities, based on 

the gravitational force that different activities produce. High impact activities (such 

as jumping) lead to high gravitational forces, and low impact activities (such as 

walking) lead to low gravitational forces. Results showed no associations in males, 

while in females greater moderate impact physical activity (but not light or high 

impact) was associated with lower fat mass. However, the justification for such 

categorisation was based on previous findings relating such activities to bone 

outcomes, and there were no specific hypotheses outlined in relation to fat mass. 

The inconsistent findings may suggest that fat mass is more closely related to 

physical activity measures which are more closely related to energy balance (such 

as total physical energy expenditure). Two other cross-sectional studies were 

conducted using different adolescent cohorts—one found higher physical activity 

was associated with lower fat mass (using DXA),386 while another study in a 

developing nation (Brazil) reported no association (using SFT389).  

 

Two cross-sectional studies examined associations between objective measures of 

physical activity and fat mass in young adulthood (19–25 years). Higher physical 

activity was associated with lower fat mass in one study (in both sexes using 

deuterium dilution),374 while in the other study this association was found in 

females but not males (using BIA375), although the small sample size (44 males and 

44 females) may have resulted in this study being under-powered (as although 

associations in males were not statistically significant at the P<0.05 level, the 

direction of association was in the same direction as in females). 

 

Seven studies examined associations between objective measures of physical 

activity or time spent sedentary and fat mass in mid-later adulthood (mean ages 

≥40 years). Five found evidence that higher physical activity or less time spent 

sedentary was associated with lower fat mass: in both sexes,378 in exclusively 

female cohorts,376;379 in males but not females,377;382 or in younger (<53 years) but 

not older (>53 years) adults (with no age range provided).190 One study found no 

association.381 Two of these studies that used exclusively female cohorts found that 
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higher physical activity was associated with lower fat mass: in cross-sectional 

analyses (using BIA379), or with lower gain in fat mass over two years (using air-

displacement376). In a larger study by Ekelund et al (2005)190 lower physical activity 

was associated with higher fat mass in cross-sectional analyses (using DXA), but 

associations with change in fat mass (after ~5 years) were modified by age (those 

older or younger than 53 years (standard deviation=~10 years; no age range was 

provided)): higher physical activity was associated with declines in fat mass in 

younger participants, but gains in fat mass in older participants. Although the 

mechanism underlying the association in older adults was not explained, the 

findings were discussed as having potentially important public health implications 

as results suggested that higher physical activity in old age may prevent weight 

loss which is associated with increased risk of mortality in old age.  

 

Using the same cohort as described above, Ekelund et al (2008)378 examined the 

associations of time spent sedentary and cross-sectional measures of fat mass, and 

change in fat mass after ~5 years (using DXA). Greater sedentary time was 

associated with higher fat mass in cross-sectional analyses, but not with 

subsequent change in fat mass. This study also examined the reverse associations 

(between change in fat mass (over 5 years) and subsequent time spent sedentary) 

and results showed that greater gain in fat mass was associated with greater time 

spent being sedentary at follow-up (after adjustment for baseline sedentary time). 

In this study, unlike the previously described study using the same cohort, there 

was no evidence for effect modification by age. While associations found suggest 

that fat mass influences sedentary time (and not vice versa), it was acknowledged 

that associations may be bi-directional in nature. Another study reported no 

association between physical activity and cross-sectional measures of fat mass, or 

change in fat mass over 5 years in later adulthood (using DXA381). Finally, a small 

cross-sectional study found that greater time spent sedentary was associated with 

higher fat mass in males but not females,382 although this study used a very small 

sample size (16 males and 14 females) and was therefore likely to have been 

underpowered (associations in females were in the same direction as those found in 

males).  

 

In three adolescent studies associations between different intensities of objectively 

assessed physical activity and fat mass were compared. Two studies found that 

associations between lower physical activity and higher fat mass were only found 

when moderate-vigorous intensity activity was used, compared with light intensity 

activity.386;387 In the remaining study, associations between lower physical activity 

and higher fat mass were stronger when using moderate-vigorous physical activity 
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compared with total physical activity energy expenditure, and when both measures 

were mutually adjusted for one another, only associations with moderate-vigorous 

intensity remained.188  

 

A number of intervention studies have examined whether physical activity-based 

interventions impact on fat mass. A systematic review by Wareham et al (2005)152 

found six studies in adulthood that used physical activity interventions to try and 

prevent weight gain: four studies found that weight either declined, did not 

increase, or increased less than the control group, while the remaining two studies 

found no difference. In these studies, interventions were typically employed over a 

long period of time (12 weeks to 5 years), with follow-up in most cases 

immediately after intervention. However, all of these studies also included dietary 

change in the interventions, leaving the independent influence of physical activity 

on fat mass unclear. A systematic review and meta-analysis in 2009 examined 

weight loss intervention studies and compared those that included both dietary 

change and physical activity with those that only included dietary change.390 Of the 

18 included studies, those that included physical activity led to greater weight loss 

than those only using dietary interventions. Interventions were between 3 months 

to 6 years in length, with follow-up from 0 to 2.5 years after intervention. The 

reported effect sizes were small, with interventions leading to an average 1.64kg 

reduction in body weight after follow-up, which may be partly attributable to poor 

compliance and/or gains in lean mass. Findings were similar in six studies that used 

direct measures of fat mass.  

 

Intervention studies have also examined the impact of resistance exercise on fat 

mass reduction. These have tended to find that the resulting loss of fat mass in 

aerobic-only interventions is similar to those that additionally include resistance 

training,391;392 suggesting that this type of activity is not especially important in 

leading to lower fat mass.  

 

In summary, a number of experimental studies have suggested that aerobic 

exercise interventions tend to lead to lower fat mass. Epidemiological studies, using 

broader summary measures of physical activity (including non-exercise activities) 

have also tended to show that higher physical activity is associated with lower fat 

mass, although few studies have been conducted using direct measures of fat mass 

and associations have been found to vary by sex and age.  
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 Physical activity and lean mass 5.1.1.2

 

Three observational studies have examined associations between objective 

measures of physical activity and lean mass in adolescents (all used DXA)—two 

found evidence that higher physical activity was associated with higher lean 

mass,387;388 while one study found no association.189 Two of these studies used the 

Avon Longitudinal Study of Parents and Children. In one cross-sectional study (at 

15 years), greater light and vigorous (but not moderate) intensities of physical 

activity were associated with higher lean mass.387 In subsequent cross-sectional 

analyses (at 17 years), the study previously outlined by Deere et al (2012)388 

examined associations of activities of low, moderate and high impact physical 

activity with lean mass. In both sexes, greater high impact physical activity was 

associated with higher lean mass, but light and moderate impact activities were 

not.388 These findings suggest that types of activities that are classified as high 

impact (such as jumping) may lead to higher lean mass. This may be due to the 

fact that such activities produce high gravitational forces that require muscle 

strength and power to overcome. Finally, a study using a different cohort in 

adolescence reported no cross-sectional association between objective measures of 

physical activity and lean mass.189  

 

Four studies examined associations between objective measures of physical activity 

and lean mass in mid-later adulthood (mean ages ≥40 years). Three found 

evidence that higher physical activity was associated with higher lean mass: this 

was found in all ages in one study,380 in older (>53 years) but not younger (<53 

years) participants in another study,190 and in cross-sectional but not longitudinal 

analyses in another study.381 In one small (and likely underpowered) cross-

sectional study of 57 females, no association was found (using BIA379). To the 

author’s knowledge, no studies have examined associations between objective 

measures of sedentary time and lean mass.  

 

The study by Ekelund et al (2005) (outlined previously) found that higher physical 

activity was associated with higher lean mass in cross-sectional analyses, but 

associations with change in lean mass over 5 years were modified by age (those 

older or younger than 53 years (standard deviation=~10 years; no age range 

provided): higher physical activity was not associated with change in lean mass in 

younger adults, but was associated with gains in lean mass in older participants 

(using DXA190). In the older group, higher physical activity was associated with 

gains in both fat and lean mass, suggesting that associations with lean mass could 

have been driven by fat mass—eg, if gains in fat mass led to increased muscle 
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loading and resulting gains in lean mass. However, no adjustment was made for fat 

mass in this study. One study found that higher physical activity (assessed using 

pedometers for 1 year) was associated with higher lean mass (using DXA380), while 

another study found that higher physical activity was associated with higher lean 

mass in cross-sectional analyses, but was not associated with change in lean mass 

over 5 years (using DXA381). Lack of association in this study with subsequent 

change in lean mass (in contrast with findings from Ekelund et al (2005)) may be 

due to the physical activity measure used (doubly-labelled water) not capturing the 

types of activities which led to gains or preservations in lean mass (such as weight-

bearing physical activity). 

 

Three of the above studies compared associations between different intensities of 

physical activity and lean mass. Two studies were conducted using adolescent 

cohorts: one found that greater moderate-vigorous intensity activity (but not lower 

intensities) was associated with higher lean mass,387 while another study reported 

no associations with either total or moderate-vigorous intensity physical activity.189 

One study compared associations in later adulthood and found that greater 

moderate-vigorous intensity physical activity was more strongly associated with 

higher lean mass than a measure of total physical activity.380  

 

In addition to the above studies using objective measures of physical activity, three 

studies were identified which examined associations between self-reported 

measures of physical activity and direct measures of lean mass in adulthood. As in 

studies using objective measures of physical activity, findings were not consistent. 

Two studies reported no association between self-reported activity and lean mass, 

in cross sectional analyses (using BIA at 15-64 years),393 or with change in lean 

mass after 9-years (using under-water weighing at ~61 years).394 In contrast, the 

remaining study found that in males but not females higher physical activity was 

associated with reduced declines in lean mass over 9 years (using BIA at ≥65 

years).395 

 

To the author’s knowledge, no studies have examined whether there are cumulative 

effects of physical activity levels across adulthood in leading to higher lean mass. 

 

A large number of intervention studies have been conducted to examine the 

influence of resistance exercise on lean mass. Most have shown that interventions 

lead to an increase in lean mass. For example, a systematic review and meta-

analysis of 49 studies (in adults >50 years) reported a pooled estimate of a 1.1kg 

increase in whole body lean mass after intervention.184 In the included studies, lean 
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mass was always measured directly (eg, using DXA or air-displacement techniques) 

and interventions typically consisted of 2-3 sessions of resistance exercise per week 

for 10–50 weeks. The intensity of the activities ranged from 50–80% of the 

maximum that could be lifted once (one rep maximum), and the volume of 

activities varied from 7–39 sets performed in one session. The post-intervention 

increase in lean mass was found across all ages but was weaker in older adults, and 

was not associated with the intensity of exercise, but was greater in studies that 

used a higher volume. In contrast with the numerous studies examining resistance 

exercise interventions, few have examined whether aerobic exercise impacts on 

lean mass.396 In one study, a 4-week aerobic cycling intervention had no impact on 

whole body lean mass (n=78; aged 19-87 years).397  

 

In summary, there is consistent evidence that specific resistance exercise 

interventions lead to short term gains in lean mass. However, epidemiological 

studies examining associations between summary measures of physical activity and 

lean mass in adults have yielded mixed findings. Lack of association between 

measures such as total physical activity energy expenditure and lean mass 

suggests that the types of activities that lead to gains in lean mass are not being 

sufficiently undertaken in free-living environments. Alternatively, assuming that 

these activities are being undertaken, the measures of physical activity used in 

epidemiological studies may not adequately capture these types of activities.  

 

 Literature discussion: physical activity and body 5.1.1.3

composition 

 

This section discusses findings from the studies described above which examined 

associations between objective measures of physical activity and direct measures of 

fat and/or lean mass. 

 

Of the studies identified, relatively few used cohorts in adulthood, and those that 

did had comparatively small sample sizes (N<400 in 9 of 10 studies). While larger 

sample sizes have been used in studies of adolescents, findings from younger 

cohorts do not necessarily generalise to those in later life. The evidence for effect 

modification by age (for associations with both fat and lean mass) given in the 

study by Ekelund et al (2005)190 suggests that associations may differ in younger 

and older middle-aged adults, although the reasons for these differences are not 

understood.  
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While ten studies have examined associations between physical activity and fat or 

lean mass in adolescence or adulthood, only three have examined associations with 

both outcomes. As further discussed in Chapter 1, examining the influence of 

exposures on both outcomes may be useful to better understand aetiology—since 

fat and lean mass are positively correlated (Chapter 2), associations with lean mass 

may be driven by fat mass (due to greater loading of fat mass driving increased 

muscle mass). However, no studies using adults have made adjustment for fat 

mass when examining associations with lean mass. Further, most studies have 

used only whole body measures of fat and lean mass—as outlined in Chapter 1, 

appendicular lean mass is likely to be a more accurate measure of skeletal muscle 

mass.  

 

All of the included studies used single objective methods of physical activity 

measurement. While potentially more accurate and precise than self-reported 

measures of physical activity, each objective method has corresponding strengths 

and weaknesses. For example, accelerometers (used in six adult studies) may not 

measure types of physical activity where participants remain seated (such as 

cycling and resistance training), while heart rate monitors (used in two adult 

studies) measure physical activity, but may also include phenomena aside from 

physical activity which increase heart rate (such as acute stress).398 The use of 

combined methods to assess physical activity may therefore overcome the 

limitations of each single method,341 and the consequent decrease in measurement 

error may increase the likelihood of finding a genuine association and would enable 

a more accurate estimation of the associations of interest.  

 

Most of the included studies only examined total or average physical activity—only 

three adult studies examined different intensities. There was some evidence in 

these studies that associations of higher moderate-vigorous intensity physical 

activity with lower fat and higher lean mass were typically larger than associations 

with lower intensities (or total physical activity), suggesting that moderate-vigorous 

intensity activity may be particularly important. In addition, only two studies 

examined sedentary behaviour. While spending greater time sedentary may lead to 

higher fat mass as greater sedentary time likely predicts lower total physical 

activity energy expenditure, few studies have available data to examine this.  

 

Studies using both objectively assessed and self-reported measures of physical 

activity have typically used only a single measure of physical activity captured at 

one point in time in their analyses. As described in the introduction of this chapter, 

there may be cumulative benefits of physical activity across adulthood which lead 
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to lower fat and higher lean mass. However, to the author’s knowledge, no studies 

have tested this.  

 

Studies examining associations between physical activity and body composition 

have made adjustment for different sets of covariates in their analyses (with little 

explicit justification), some of which could be considered potential confounders. Of 

these, aspects of diet that impact on fat mass (eg, total energy intake) and lean 

mass (eg, protein intake) may be potential confounders since those who undertake 

less physical activity may also have diets that lead them to have higher fat and 

lower lean mass. Concurrent SEP may be a distal indicator of these dietary factors. 

However, only one adult study made adjustment for an indicator of SEP, and one 

made adjustment for dietary fat intake (in associations between physical activity 

and fat mass. In addition, it is feasible that health status in adulthood may 

confound associations, as limiting illnesses may impair activity levels and lead to 

gains in fat and reductions in lean mass.  

 

 Prior findings from the MRC National Survey of Health and 5.1.1.4

Development 

 

Only one study has examined associations between physical activity and an 

indicator of higher fat mass in the NSHD. Braddon et al (1985)399 examined the 

cross-sectional associations between self-reported leisure time physical activity and 

obesity (BMI >30) at 36 years. Higher leisure time physical activity participation 

was associated with lower risk of obesity in females, but not males.  

 

As discussed in Chapter 3, while the NSHD has no previous measures of lean mass, 

studies using grip strength and physical functioning outcomes are described below 

in order to give an indication of the types of analyses that have been conducted 

using physical activity measures in the NSHD. 

 

Kuh et al (2005)400 examined the cross-sectional associations of leisure time 

physical activity with grip strength, standing balance and chair rise time at 53 

years. Higher physical activity was associated with greater grip strength in males, 

but not in females, and was associated with greater balance time and chair rise 

time in both sexes. These associations were independent of measures of ill health 

and occupational class at 53 years.  

 

Cooper et al (2011)209 examined associations between leisure time physical activity 

(at 36, 43, and 53 years) and grip strength, standing balance and chair rise time at 
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53 years. There was evidence of cumulative benefits of physical activity across 

adulthood in leading to better performance in tests of chair rise and standing 

balance. Physical activity was not associated with grip strength in females, but was 

associated with greater grips strength at 53 years in males (but not at other ages).  

 

Two studies using the NSHD have examined the predictors and patterns of physical 

activity and are described below as their findings may be relevant for this chapter. 

 

Kuh and Cooper (1992)401 examined the predictors and patterns of physical activity 

at 36 years, measured by self-report over the previous month of interview date. 

The types of activities differed by sex, with males undertaking more heavy 

gardening, and females walking and cycling more. Higher own and maternal 

education were both independently associated with a higher levels of leisure time 

physical activity. Silverwood et al (2011)402 used latent class analysis to 

characterise participants according to their levels of physical activity at 31, 36, 43 

and 53 years (in walking, cycling, and leisure time physical activity). The following 

classes were used to describe physical activity classes across these periods: two for 

walking (low and high), two for cycling (low and high), and three for leisure-time 

physical activity (low activity, sports and leisure activity, and gardening and do-it-

yourself activities). Silverwood et al (2012)403 examined associations between 

indicators of SEP (paternal occupational class at 4 years, own educational 

attainment at 26 years, and highest household’s occupational class at 36 years) 

and physical activity measures (leisure-time activity at 36, 43, and 53 years, and 

sedentary time at 36 years, and walking during the working day at 36 and 43 

years). Higher SEP was associated with greater participation in leisure-time physical 

activity but also greater time spent sedentary and less walking time. 

 

This chapter builds on previous work in the NSHD by using, for the first time, 

objective measures of physical activity and direct measures of fat and lean mass. 

Further, it will examine whether there are cumulative benefits of activity across 

adulthood in leading to higher fat and lower lean mass. 

 

 Literature review summary  5.1.1.5

 

A number of studies have reported inconsistent associations between physical 

activity (typically measured using self-report) and anthropometric measures of fat 

mass. Fewer studies have examined associations of objective measures of physical 

activity with direct measures of fat and lean mass. These studies have tended to 

show that higher physical activity is associated with lower fat mass and higher lean 
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mass, although few have been conducted in later adulthood and those that have 

produced inconsistent findings (eg, differences in association by age and sex). In 

addition, previous studies in adulthood have a number of limitations that suggest 

the need for further research: few have examined associations with both fat and 

lean mass, or considered associations with regional measures; most have only used 

measures of total physical activity energy expenditure (and have not considered 

different intensities of activity or sedentary time); few have made adjustment for 

potential confounders; none have used combined measures of physical activity 

which are likely to have less measurement error than single measures; and none 

have examined whether there are cumulative benefits of physical activity across 

adulthood in leading to lower fat and higher lean mass. 

 

 Chapter objectives and hypotheses 5.1.2

 

The objective of this chapter is to test the hypothesis that higher total physical 

activity energy expenditure is associated with lower fat and higher lean mass, and 

that there are cumulative benefits of activity across adulthood in leading to lower 

fat and higher lean mass. It was also hypothesised that greater time spent 

sedentary was associated with higher fat and lower lean mass.  

 

 Methods 5.2

 

 Explanatory variables 5.2.1

 

The main explanatory variables used in this chapter are measures of physical 

activity obtained both objectively (at 60–64 years) and by self-report at (36, 43, 53 

and 60–64 years).  

 

Objective measures of physical activity were obtained using Actiheart monitors 

(CamNtech, UK) which were worn for up to five days by participants that attended 

a clinical research facility visit (where body composition outcome data were 

obtained) or were visited at home by a research nurse. The Actiheart is a small 

waterproof two-part device (connected by a wire) that is worn by attachment to the 

skin of the chest using two standard electrocardiogram electrodes (weight=8g).404 

Using two component parts, it measures both movement on the vertical axis (using 

an accelerometer) and heart-rate (using an electro cardio-gram); both of these are 

used to measure physical activity parameters in 60 second periods (epochs). A 

previous experimental study has shown that measures obtained using Actiheart are 

both precise and accurate with respect to movement (compared with calorimetry) 
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and heart-rate (compared with detailed electro cardio-gram readings) during rest, 

walking, and running on a treadmill.405 All Actiheart data were centrally managed in 

Cambridge, UK. As previously described,404 these data were calibrated to take into 

account individual differences in the relationship between physical activity intensity 

and heart rate. Calibration was conducted in two ways: first, for participants who 

completed a step test (8 minutes of increasing speed), these data were used for 

calibration; second, for participants who did not complete a step test (due to health 

complications such as angina and high blood pressure), sleeping heart rate, sex and 

body weight were used (the formulae is shown in Appendix 18). The most accurate 

form of calibration was used where available—using step test data (n=954) or, if 

not available, using sleeping heart rate, sex and body weight (n=356). In all cases 

analyses were restricted to those with valid data for both heart-rate and 

accelerometery measures. To ensure that physical activity estimates were 

reasonably accurate reflections of normal behaviour, only those with valid Actiheart 

data for a period of 48 hours or more were included in analyses, with 30 

participants excluded due to low wear-time. 

 

The following Actiheart-derived measures were chosen for use as explanatory 

variables in this chapter: 

 

1. Total physical activity energy expenditure (kJ/kg/day) 

2. Hours per day spent sedentary (≤1.5 METs)  

3. Hours per day spent in light intensity physical activity (>1.5-3 METs) 

4. Hours per day spent in moderate-vigorous physical activity (>3 METs)  

 

In addition to objective measures, self-reported measures of leisure time physical 

activity were obtained at 36, 43 and 53 years by interview with nurses during home 

visits and at 60–64 years by a self-completion questionnaire (completed in advance 

of a clinic or nurse visit). At 36 years, participants were asked how often in the 

previous month they had participated in 27 different leisure time activities such as 

badminton, football and jogging using a modified Minnesota leisure time physical 

activity questionnaire.406 At 43, 53 and 60–64 years, participants were asked how 

often they participated in any sports, vigorous leisure activities, or exercises. 

Participation was reported per month at 43 years, and in the previous 4 weeks at 

53 and 60–64 years. Activity at each age was categorised into three groups: 

inactive (no participation), moderately active (participated one to four times) and 

most active (participated five or more times). 
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 Outcomes 5.2.2

 

The outcomes used in this chapter are the main outcomes of this thesis, described 

in more detail in Chapter 2 (whole body measures of fat and lean mass, the ratio of 

these masses, appendicular lean mass, and android: gynoid fat mass ratio). 

 

 Potential confounding variables  5.2.3

 

Indicators of low SEP were considered potential confounders of associations with fat 

and lean mass as they were hypothesised as being related to lower physical activity 

levels407 and higher fat and lower lean mass, by being distal measures of relevant 

lifestyle factors (such as greater total energy intake and lower protein intake). The 

indicators chosen for use were paternal occupational class (4 years) and own 

educational attainment (26 years); low SEP according to these indicators was 

previously found in the NSHD to be associated with lower participation in leisure 

time physical activities at 36, 43 and 53 years.403  

 

In addition, physical health was considered a potential cofounder as it was 

hypothesised that participants with a limiting illness would be less physically active 

and have higher fat and lower lean mass. During clinic visits at 60–64 years, 

participants were asked whether they have any long-term illness, health problem or 

disability that limits their activities or work (no/yes).  

 

As in other chapters, adjustment for adult height was made when using fat and 

lean mass as outcomes by the use of height-adjusted indices. The justification for 

adjusting for height when using body composition outcomes is presented in Chapter 

2. In addition, shorter adult height has been associated with lower SEP,408;409 and 

this could, as described above, confound main associations. As a sensitivity 

analyses, main analyses were repeated with no adjustment for adult height and 

results compared. 

 

 Analytical strategy  5.2.4

 

Physical activity measures at each age were presented and the associations 

between them assessed in each sex (using Pearson’s correlations, chi-squared 

tests, and linear regression as appropriate). Associations of potential confounders 



147 

 

with physical activity measures and outcomes were then examined using linear 

regression. 

 

Linear regression models were used to examine associations between objective 

measures of physical activity and outcomes. To ensure that coefficients were 

presented consistently all Actiheart-derived measures were converted into sex-

specific standard deviation scores. As time spent in moderate-vigorous activity was 

highly right-skewed in both sexes it was transformed using the natural logarithm 

(+1 as values of 0 were recorded)410 before being standardised, leading to a more 

normal distribution. Associations between self-reported physical activity at 36, 43, 

53 and 60–64 years with outcomes were also examined using linear regression.  

 

All models were conducted separately by sex as sex differences in associations have 

been found in previous studies and, given the large number of explanatory 

variables used, it was thought that stratification would enable a clearer comparison 

of effect sizes in each sex. Tests of interaction were conducted to formally test for 

evidence of sex interaction, and deviation from linearity assessed and outlined 

where evidence found (P<0.05).  

 

As associations with fat mass may drive associations with lean mass, models using 

appendicular lean mass as an outcome were additionally adjusted for whole body 

fat mass index by its inclusion as a linear term. All models were conducted with 

additional adjustment for potential confounders (paternal occupational class at 4 

years, own educational attainment at 26 years, and limiting illness at 60–64 years), 

each entered into models as categorical terms.  

 

A series of different analyses were conducted to examine whether physical activity 

levels across adulthood have cumulative effects across life on fat and lean mass. 

First, associations between activity measures earlier in adulthood (at 36, 43 and 

53) were adjusted for current activity levels (self-reported activity at 60–64 years), 

to test whether activity earlier in adulthood had additional benefits in leading to 

lower fat and higher lean mass than current activity levels. Next, a lifetime physical 

activity score was derived by adding together self-reported activity measures at 36, 

43, 53 and 60-64 years (each age coded as 0 (inactive), 1 (moderately active) and 

2 (most active)). This score—from 0 (inactive at all ages) to 8 (most active at all 

ages)—was then categorised into four groups of similar size (0–1, 2–3, 4–5, and 6–

8), and associations with outcomes examined in each sex using linear regression. A 

graded association between this score and outcomes would be expected if there are 
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cumulative benefits of physical activity (assuming that activity at each age has the 

same size of effect).  

 

To provide an additional source of evidence to test whether physical activity levels 

across adulthood have cumulative effects on fat and lean mass, the structured 

modelling approach described by Mishra et al (2009)411 was used to determine 

whether accumulation models (either specifying equal or varying effect sizes at 

each age) fitted the data as well as a more complex saturated model (which 

contained parameters specifying accumulation, sensitive periods of activity at each 

age, and interactions between activity at each age). These models were compared 

using partial F-tests, with the resulting P-values from this comparison indicating 

how well each individual nested model fits the data: low P-values indicate that the 

nested model provides a different fit to the saturated model (and therefore does 

not fit the data as well), and large P-values indicate that the nested model provides 

a similar fit to the saturated model (and therefore does fit the data as well). 

Appendix 19 provides the formulae for the models used in these analyses. These 

models have been previously used in the NSHD by Cooper et al (2011)209 to 

examine whether there are cumulative benefits of physical activity across adulthood 

(36, 43, and 53 years) for physical function at 53 years. 

 

 Sample used in analyses 5.2.5

 

Unless otherwise specified, all analyses were restricted to those with valid body 

composition outcomes. When using objective measures of physical activity, 

analyses were restricted to 564 males and 598 females with valid data for all four 

main objectively assessed explanatory variables (total physical activity energy 

expenditure, time spent sedentary, in light and moderate-intensive activity) and 

potential confounders (paternal occupational class, own educational attainment, 

and limiting illness): 54 males and 63 females with valid physical activity and 

outcome data were excluded due to missing data for one or more potential 

confounder. When using self-reported measures of physical activity, analyses were 

restricted to 569 males and 642 females with valid data for activity measures at all 

ages (at 36, 43, 53 and 60–64 years) and potential confounders: 45 males and 60 

females with valid physical activity and outcome data were excluded due to missing 

data for one or more potential confounder. 
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 Results 5.3

 

 Descriptive statistics 5.3.1

 

Descriptive statistics for measures of physical activity are shown in Table 16. Males 

had higher total physical activity energy expenditure and spent more time in 

moderate-vigorous physical activity than females. In both sexes the majority of 

time was spent sedentary, with less time spent in light physical activity and even 

less time spent in moderate-vigorous intensity physical activity. More males than 

females self-reported participating in activities at 36 and 43 years, and levels of 

participation at 60–64 years were lower than at all previous ages in both sexes.  

 

Correlations between objective measures of physical activity are shown in Appendix 

20. Total energy expenditure was strongly correlated with intensity measures in the 

expected directions: strongly negatively correlated with time spent sedentary (–

0.88 in males and –0.89 in females), and strongly positively correlated with time 

spent in light (0.61 in males and 0.67 in females) and moderate-vigorous intensity 

activity (0.90 in males and 0.86 in females).  

 

Cross-tabulations of self-reported physical activity measures at 36, 43, 53 and 60–

64 years are shown in Appendix 21. All measures were associated, with those 

active at one age more likely to be active at other ages than those inactive at that 

age. However few participants remained in the same category at all ages; only 71 

males and 95 females were inactive at all ages and 45 males and 41 females most 

active at all ages.  

 

Associations between objectively assessed and self-reported physical activity 

measures at 60–64 years are shown in Appendix 22. Those who reported 

participation in leisure time activity tended to have higher total physical activity 

energy expenditure and spend more time in moderate-vigorous activity, although 

these associations were weak.  
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Table 16. Physical activity descriptive statistics measured both objectively and by 

self-report  
 

 Males  

Mean (SD)  

(N=564) 

Females 

Mean (SD) 

(N=598) 

P# 

 

Objective measures at 60-64y 

   

Total activity energy expenditure  

(kJ/kg/day) 
40.63 (15.89)  36.84 (13.86)  <0.001 

Sedentary  

(≤1.5 METs) hours/day 
16.49 (2.26)  16.51 (2.14)  0.84 

Light intensity activity  

(>1.5–3 METs) hours/day 
5.98 (1.70)  6.10 (1.66)  0.21 

Moderate-vigorous intensity activity  

(>3 METs) hours/day* 
1.29 (1.23)  1.18 (1.16) <0.01 

 

Self-reported measures  

   

36 years N (%) N (%)  

Inactive 166 (29.17) 227 (35.36)  

Moderately active 161 (28.30) 180 (28.04)  

Most active 242 (42.53) 235 (36.60) 0.04 

    

43 years    

Inactive 241 (42.36) 313 (48.75)  

Moderately active 143 (25.13) 168 (26.17)  

Most active 185 (32.51) 161 (25.08) 0.01 

    

53 years    

Inactive 226 (39.72) 274 (42.68)  

Moderately active 138 (24.25) 132 (20.56)  

Most active 205 (36.03) 236 (36.76) 0.28 

    

60-64 years    

Inactive 345 (60.63) 365 (56.85)  

Moderately active 86 (15.11) 114 (17.76)  

Most active 138 (24.25) 163 (25.39) 0.34 

Notes: #comparison of sexes, using t-tests or chi-squared test. METs=metabolic 

equivalent; analyses restricted to those with valid data for physical activity 

measures, paternal occupational class, own educational attainment, limiting illness, 

and body composition outcomes;*median(interquartile range) presented due to 

right-skew (p-value derived using the Mann-Whitney U test) 
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 Investigation of potential confounders 5.3.2

 

Neither paternal occupational class nor own education attainment were associated 

with objectively measured total physical activity expenditure (Appendix 23). 

However, both low paternal occupational class and low educational attainment were 

associated with lower self-reported leisure time physical activity levels at all ages 

(36, 43, 53 and 60–64 years; Appendix 24). Low SEP was hypothesised as being 

associated with higher fat mass and lower lean mass; this will be tested in Chapter 

6.  

 

Those who reported a limiting illness at 60–64 years had lower total objectively 

measured total physical activity expenditure than those who did not, but 

associations with self-reported leisure time physical activity were weaker and 

inconsistent; there was little difference in physical activity levels at 36 and 60–64 

years, but those who reported a limiting illness tended to undertake less leisure 

time physical activity at 53 years in males and 43 years in females. Those who 

reported a limiting illness had higher fat and lean mass indices (P<0.001 in all 

cases for both sexes, data not shown). 

 

 Objectively measured physical activity and body composition 5.3.3

outcomes 

 

Associations between objectively measured total physical activity energy 

expenditure at 60–64 years and body composition outcomes are shown in Table 17. 

Higher total physical activity energy expenditure was associated with lower fat 

mass, lower fat: lean and android: gynoid ratios, and lower whole body and 

appendicular lean mass (females only). Associations were stronger in females for all 

outcomes except android: gynoid ratio. After adjustment for fat mass, higher 

physical activity was associated with higher appendicular lean mass in both sexes. 

 

Associations between objectively measured time spent sedentary, in light and 

moderate-vigorous intensity activity at 60–64 years and outcomes are shown in 

Table 18. Greater time spent sedentary was associated with higher fat mass, higher 

fat: lean ratio, and (weakly) with higher android: gynoid ratios. Associations were 

stronger in females for fat mass and fat: lean mass ratio. Greater time spent 

sedentary was associated with higher whole body and appendicular lean mass in 

females (but not males), but after adjustment for fat mass was associated with 

lower appendicular lean mass in both sexes.  
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Greater time spent in light intensity activity was associated with lower fat mass, 

lower fat: lean ratio, and (weakly) with lower android: gynoid ratios. Associations 

were stronger in females for fat mass and fat: lean mass ratio. Greater time spent 

in light intensity activity was associated with lower whole body and appendicular 

lean mass (females only), but after adjustment for fat mass was only weakly 

associated with higher appendicular lean mass in both sexes. When additional 

analyses were conducted with adjustment for sex (leading to higher power), 

greater time spent in light intensity activity was weakly associated with higher 

appendicular lean mass, after adjustment for fat mass (β(mean difference in 

appendicular lean mass index (kg/m2))=0.03, 95% CI: 0.00 to 0.05). 

 

Greater time spent in moderate-vigorous intensity activity was weakly associated 

with lower fat mass in both sexes, lower fat: lean mass ratio, but not with android: 

gynoid ratio. In contrast, greater time spent in moderate-vigorous activity was 

associated with higher whole body and appendicular lean mass—both before and 

after adjustment for fat mass. When additional analyses were conducted with 

adjustment for sex, greater time spent in moderate-vigorous activity weakly and 

not significantly associated with fat mass index (β(-0.17) 95% CI: -0.42 to 0.08). 

 

The coefficients of the above associations were similar when adjustment was made 

for paternal occupational class, own educational attainment and limiting illness 

(Appendix 25 and Appendix 26). In light of the strong correlations between 

objectively assessed measures of physical activity they were not mutually adjusted 

for each other. 

 

 Self-reported physical activity across adulthood and body 5.3.4

composition outcomes 

 
Associations between self-reported physical activity at 36, 43, 53 and 60–64 years 

with outcomes are shown in Figure 8, and tabulated in Appendix 27. Those who 

were active tended to have lower fat mass and lower fat: lean and android: gynoid 

ratios; these associations were found at 36 and 43 years in females only, and at 53 

and 60–64 years in both sexes. Males who were active at each age tended to have 

higher appendicular lean mass, while females who were active at each age tended 

to have lower appendicular lean mass. After adjustment for fat mass, both males 

and females who were active at each age tended to have higher appendicular lean 

mass; these associations were stronger in males at each age, and weak at 36 years 

in both sexes.  
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Associations with all outcomes were similar after additional adjustment for potential 

confounders (paternal occupational class, own educational attainment and limiting 

illness; Appendix 28). Associations of physical activity at 36, 43 and 53 years with 

outcomes were similar after adjustment for activity levels at 60–64 years (Appendix 

29). 

 

Associations between the lifetime physical activity summary score and body 

composition outcomes are shown in Table 19. In males, there was little evidence 

for graded association between this measure and fat mass, fat: lean or android: 

gynoid ratios, while those who were more active across adulthood tended to have 

higher whole body and appendicular lean mass. After adjustment for fat mass, the 

activity score was associated in a graded manner with higher appendicular lean 

mass, suggesting that there were cumulative benefits of activity across adulthood. 

Results of life course model comparisons supported this, as models specifying 

cumulative benefits of activity across adulthood in leading to higher appendicular 

lean mass (after adjustment for fat mass) fitted the data as well as the saturated 

model (P-value of comparison assuming equal and varying effect sizes=0.16 and 

0.08, respectively; Appendix 30). 

 

In females, there was evidence for graded association between the lifetime physical 

activity score and lower fat mass, and lower fat: lean and android: gynoid ratios 

(Table 19). Results of life course model comparisons supported this, with models 

specifying cumulative benefits of activity across adulthood in leading to lower fat 

mass, lower fat: lean and android: gynoid ratios all fitting the data as well as the 

saturated model (P-value of comparison assuming equal and varying effect sizes 

>0.4 in all cases; Appendix 30). As in males, there was evidence for cumulative 

benefits of activity across adulthood in leading to higher appendicular lean mass 

(after adjustment for fat mass), as shown by the association between a higher 

lifetime physical activity score and higher appendicular lean mass (Table 19). 

Comparison of life course models also supported this, with a model specifying 

cumulative benefits of activity across adulthood fitting the data as well as the 

saturated model (P-value of comparison assuming equal and varying effect 

sizes=0.06 and 0.1, respectively; Appendix 30). 

 

In all the main analyses findings were similar when fat and lean mass were not 

adjusted for adult height (data not shown).  
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Table 17. Mean differences in body composition outcomes per 1 standard deviation increase in total physical activity energy expenditure 

(kJ/kg/day) at 60-64 years 

 

 Physical activity 

energy expenditure  

    

 Males (n=564)  Females (n=598)   

Outcome models β (95% CI) P β (95% CI) P P (sex interaction) 

Fat mass index (kg/m2)  -0.79(-1.08, -0.50) <0.001 -1.81(-2.17, -1.44) <0.001 <0.001 

Lean mass index (kg/m2) -0.17(-0.34, -0.01) 0.04 -0.36(-0.50, -0.21) <0.001 0.10 

Fat: lean mass ratio  -2.44(-3.33, -1.54) <0.001 -6.46(-7.80, -5.12) <0.001 <0.001 

Android: gynoid fat mass ratio -1.98(-3.24, -0.72) <0.01 -2.25(-3.18, -1.32) <0.001 0.73 

Appendicular lean mass index (kg/m2) -0.03(-0.11, 0.05) 0.45 -0.14(-0.21, -0.07) <0.001 0.04 

Appendicular lean mass index (kg/m2), 

adjusted for fat mass index 

0.08(0.01, 0.14) 0.03 0.08(0.03, 0.14) <0.01 0.66 

 

Note: analyses restricted to those with valid data for paternal occupational class, own educational attainment, limiting illness, and body 

composition outcomes 
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Table 18. Mean differences in body composition outcomes per standard deviation increase in hours spent sedentary, in light and moderate-

vigorous physical activity at 60-64 years 

 

a) Males (n=564) 

 Sedentary    Light   Moderate-vigorous   

Outcome models β (95% CI) P P# β (95% CI) P P# β (95% CI) P P# 

Fat mass index (kg/m2) 0.35(0.05, 0.65) 0.02 <0.001 -0.34(-0.64, -0.04) 0.03 <0.001 -0.27(-0.57, 0.02) 0.07 0.44 

Lean mass index (kg/m2) -0.02(-0.18, 0.15) 0.86 0.07 -0.06(-0.23, 0.11) 0.49 0.03 0.13(-0.04, 0.29) 0.13 0.92 

Fat: lean mass ratio  1.30(0.39, 2.22) <0.01 <0.001 -1.12(-2.04, -0.20) 0.02 <0.001 -1.28(-2.19, -0.38) <0.01 0.85 

Android: gynoid ratio 0.53(-0.76, 1.81) 0.42 0.44 -0.49(-1.78, 0.80) 0.46 0.21 -0.54(-1.81, 0.73) 0.40 0.34 

Appen. lean mass index (kg/m2) -0.04(-0.12, 0.04) 0.34 0.04 -0.01(-0.09, 0.06) 0.73 0.02 0.11(0.04, 0.19) <0.01 0.65 

Appen. lean mass index (kg/m2), 

adjusted for fat mass index 

-0.08(-0.15, -0.02) 0.02 0.84 0.03(-0.04, 0.10) 0.39 0.44 0.15(0.08, 0.22) <0.001 0.26 

 

b) Females (n=598) 

 Sedentary  Light  Moderate-vigorous  

Outcome models β (95% CI) P β (95% CI) P β (95% CI) P 

Fat mass index (kg/m2) 1.32(0.94, 1.69) <0.001 -1.62(-1.99, -1.25) <0.001 -0.08(-0.47, 0.32) 0.71 

Lean mass index (kg/m2) 0.19(0.04, 0.34) 0.01 -0.31(-0.46, -0.17) <0.001 0.14(-0.01, 0.29) 0.06 

Fat: lean mass ratio  4.90(3.51, 6.29) <0.001 -5.60(-6.97, -4.23) <0.001 -1.11(-2.55, 0.33) 0.13 

Android: gynoid ratio 1.16(0.21, 2.10) 0.02 -1.52(-2.46, -0.57) <0.01 0.22(-0.73, 1.17) 0.65 

Appen. lean mass index (kg/m2) 0.07(0.00, 0.14) 0.04 -0.14(-0.20, -0.07) <0.001 0.09(0.02, 0.16) 0.01 

Appen. lean mass index (kg/m2), 

adjusted for fat mass index 

-0.09(-0.14, -0.03) <0.01 0.06(0.00, 0.11) 0.05 0.10(0.05, 0.15) <0.001 

Notes: #P-value for sex interaction term; Appen=appendicular; sedentary=≤1.5 metabolic equivalent (METs); Light=>1.5–3 METs; Moderate-

vigorous=>3 METs; analyses restricted to those with valid data for physical activity measures, paternal occupational class, own educational 

attainment, limiting illness, and body composition outcomes 
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Figure 8. Mean difference in body composition outcomes (95% confidence intervals) in those who were moderately and most active (compared 

with inactive) at 36, 43, 53 and 60-64 years 

 
 

  

a) Fat mass index (kg/m1.2)       b) Lean mass index (kg/m2) 

c) Fat: lean mass ratio        d) Android: gynoid fat mass ratio 

Note:  

The point estimates show, from 

left to right, those who were 

inactive, moderately, and most 

active at each age; 

males=dark-coloured diamonds;  

females=light-coloured circles 
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Note: activity at each age was coded as inactive (no participation), moderately active (participated one to four times) and most active 

(participated five or more times), in the previous month (36 years), per month (43 years) and in the previous 4 weeks (53 and 60-64 years); 

sample sizes in the different periods were (male/female): 569/642; analyses restricted to those with valid data for physical activity measures, 

paternal occupational class, own educational attainment, limiting illness, and body composition outcomes 
 

 

e) Appendicular lean mass (kg/m2)       f) Appendicular lean mass index (kg/m2),  

      adjusted for fat mass index (kg/m1.2) 
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Table 19. Mean difference in body composition outcomes (95% confidence intervals) by lifetime physical activity score  

 

Lifetime 

activity  

score 

N (%) Fat mass 

index (kg/m2)  

Lean mass index 

(kg/m2) 

Fat: lean  

ratio  

Android: gynoid 

ratio 

Appen. lean  

mass index (kg/m2) 

Appen. lean  

mass index 

 (kg/m2) + FM 

Males        

0-1 126 (22.14) 0.00 0.00 0.00 0.00 0.00  

2-3  150 (26.36) 0.57(-0.28, 1.43) 0.12(-0.36, 0.59) 1.51(-1.10, 4.13) -1.39(-5.07, 2.28) 0.04(-0.19, 0.26) -0.04(-0.23, 0.15) 

4-5 153 (26.89) 0.80(-0.05, 1.65) 0.42(-0.05, 0.89) 1.50(-1.10, 4.11) -0.59(-4.24, 3.07) 0.18(-0.04, 0.40) 0.07(-0.12, 0.27) 

6-8 140 (24.6) -0.64(-1.50, 0.23) 0.19(-0.29, 0.67) -3.27(-5.93, -0.61) -4.68(-8.41, -0.95) 0.14(-0.09, 0.36) 0.22(0.02, 0.42) 

P(trend)  0.20* 0.25 0.02* 0.03 0.12 0.01 

P#  <0.001 0.12 <0.001 0.93 0.20 0.70 

        

Females        

0-1 153 (23.83) 0.00 0.00 0.00 0.00 0.00 0.00 

2-3  197 (30.69) -0.75(-1.80, 0.30) -0.39(-0.79, 0.00) -1.37(-5.13, 2.40) -2.05(-4.60, 0.50) -0.15(-0.34, 0.04) -0.06(-0.20, 0.08) 

4-5 151 (23.52) -2.18(-3.30, -1.06) -0.24(-0.66, 0.18) -8.51(-12.51, -4.50) -1.90(-4.62, 0.81) -0.09(-0.29, 0.11) 0.17(0.03, 0.32) 

6-8 141 (21.96) -2.94(-4.08, -1.80) -0.48(-0.91, -0.06) -11.20(-15.27, -7.12) -4.72(-7.48, -1.95) -0.16(-0.37, 0.04) 0.19(0.04, 0.34) 

P(trend)  <0.001 0.07 <0.001 <0.01 0.20 <0.01* 

 

Notes: *evidence for departure from linearity (P<0.05); #P-value for sex interaction term; lifetime physical activity score derived by adding the 

physical activity measures at 36, 43, 53 and 60-64 years, from none-lowest (0-1) to highest (6-8) activity; activity at each age was coded as 0 

inactive (no participation), 1 moderately active (participated one to four times) and 2 most active (participated five or more times), in the 

previous month (36 years), per month (43 years) and in the previous 4 weeks (53 and 60-64 years); analyses restricted to those with valid 

data for physical activity measures, paternal occupational class, own educational attainment, limiting illness, and body composition outcomes; 

FM=fat mass index (kg/m1.2) 

 

 



159 

 

 Discussion 5.4

 

 Main findings 5.4.1

 

The main findings of this chapter are cross-sectional associations between 

objectively assessed higher total physical activity energy expenditure and lower fat 

mass and, after adjustment for fat mass, higher appendicular lean mass at 60–64 

years. Analyses of different activity intensities suggested that greater time spent in 

light intensity activity was associated with lower fat mass, while greater time spent 

in moderate-vigorous was associated with higher appendicular lean mass (both 

before and after adjustment for fat mass). Greater time spent sedentary was 

associated with higher fat mass and, after adjustment for fat mass, lower 

appendicular lean mass. Sex differences were found, with associations between 

activity measures and fat mass typically stronger in females.  

 

Participation in leisure time physical activity at 60–64 years, assessed by self-

report, was also associated with lower fat and higher appendicular lean mass (after 

adjustment for fat mass). Using comparable measures earlier in adulthood (53, 43, 

and 36 years), there was evidence for cumulative benefits of activity in leading to 

lower fat mass in females, and higher appendicular lean mass in both sexes (after 

adjustment for fat mass). 

 

The above associations were similar after adjustment for indicators of SEP (paternal 

occupational class and own educational attainment) and limiting illness at 60-64 

years.  

 

 Comparison with previous studies 5.4.2

 

Findings from this chapter build on the small number of previous studies, described 

in the literature review of this chapter, that have used objective measures of 

physical activity in relation to direct measures of fat and lean mass. These have 

tended to show that measures of higher physical activity are associated with lower 

fat and higher lean mass, although findings are not always consistent and differ by 

sex and age. Of these studies, most have been conducted in adolescence or early 

adulthood, few have examined associations with different intensities of activity, few 

have examined associations with both fat and lean mass, or made adjustment for 

potential confounders, and none have used combined measures of objectively 

assessed physical activity (measures obtained by both heart rate and 

accelerometer). In addition, to the author’s knowledge, no previous studies have 
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examined whether physical activity levels across adulthood have cumulative 

benefits for fat and lean mass. 

 

Findings from this chapter build on the previous NSHD study which found 

participation in leisure time physical activity at 36 years was associated with lower 

risk of obesity in females, but not males, at 36 years.399 The analyses conducted in 

this chapter extend these findings by using a longer period of follow-up, using 

multiple measures of activity measured both objectively and by self-report, and by 

using direct measures of fat and lean mass.  

 

 Explanation of findings: physical activity and fat mass 5.4.3

 

Associations between higher total physical activity energy expenditure and lower fat 

mass were driven primarily by variations in light intensity activity. Both light and 

moderate-vigorous intensities of activity would be expected to contribute to greater 

total energy expenditure and hence lower energy balance, ultimately leading to 

lower fat mass over time. Light intensity activity may have had a particularly 

pronounced association with fat mass as more time was spent in this intensity of 

activity, therefore making a greater impact on total energy expenditure. The 

benefits of light intensity activity are likely to be particularly relevant for those in 

older ages—the public health implications of these findings are discussed in Chapter 

7. 

 

While moderate-vigorous activity may be particularly beneficial in leading to lower 

fat mass (over and above its contribution to total energy expenditure), analyses 

presented in this chapter cannot confirm or refute this, as all objective measures of 

activity were strongly correlated, and their mutual adjustment was judged to be 

inappropriate. Similarly, associations between greater time spent sedentary and 

higher fat mass may be explained by lower energy expenditure among those who 

were more sedentary; there could also be particular mechanisms (albeit not 

currently discovered) which link sedentary time with fat mass, over and above this 

relationship, although these have been suggested for cardiovascular outcomes but 

not fat mass.366;367 While these measures were very strongly correlated in this 

cohort, this may not be the case in other cohorts where activity patterns differ.  

 

The weaker cross-sectional associations between greater objectively assessed 

higher total physical activity energy expenditure and lower fat mass in males could 

be explained by sex differences among other behaviours that impact on fat mass. 

For example, for a given level of physical activity, males may tend to have greater 
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energy intake than females. Alternatively, the Actiheart may be less capable of 

capturing activities that males more commonly undertake, such as those which 

involve less movement across the vertical axis (eg, activities using solely the 

arms).  

 

Cross-sectional associations between greater participation in leisure time activities 

and lower fat mass were also weaker in males, and associations between greater 

leisure time activity at earlier ages and lower fat mass began earlier for females (36 

years) than males (53 years). This may be explained by sex differences in energy 

intake and total physical activity energy expenditure at earlier ages. During 

younger ages (36 and 43 years) males who undertook greater leisure time activity 

may have been more inactive in other domains (such as occupational-based 

physical activity), leading to no difference in total physical activity energy 

expenditure (and therefore not affecting energy balance). In support of this, at 36 

years in the NSHD participation in leisure time activity was not associated with 

obesity at 36 years in males (but was in females),399 and greater participation at 36 

years was associated with more sedentary (sitting) time in the working day, 

particularly strongly in males.403 Previous studies examining associations between 

physical activity and fat mass have either found no sex difference or reported 

mixed findings (with associations either being stronger or only present in males or 

females). Experimental studies in which physical activity interventions are given 

alongside controlled diets have suggested, contrary to findings from this chapter, 

that a given amount of physical activity may have stronger effects in leading to 

lower fat mass in males than females.355;412 This has been suggested as being due 

to sex differences in types of fat, with males tending to have more lipolytically-

responsive fat mass stores than females.355 

 

Higher physical activity levels were also associated with lower android: gynoid ratio. 

Further analyses showed that these associations were driven by the separate 

associations with lower android and gynoid fat mass, with stronger relative 

associations for the former (data not shown). This suggests that physical activity 

may have stronger effects on abdominal than peripheral fat mass. The 

responsiveness of abdominal fat mass to physical activity is supported in 

experimental studies which have found intensive aerobic exercise interventions 

typically lead to losses in visceral abdominal fat,413 although studies to the author’s 

knowledge have not examined effects on gynoid fat mass.  

 

While it was hypothesised that higher physical activity leads to lower fat mass, 

analyses conducted in this chapter cannot distinguish the temporal direction of the 
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associations found. For example, as previously outlined, those with higher fat mass 

may, through psychological and physiological barriers, tend to be less physically 

activity. As such, associations could be explained by reverse causality, or be bi-

directional in nature. However, findings from experimental studies (outlined in the 

literature review of this chapter) suggest that physical activity interventions lead to 

reductions in fat mass, supporting the hypothesised directions of 

associations.152;390-392 In addition, associations between higher physical activity and 

lower fat mass were similar after adjustment for limiting illness at 60-64 years. This 

may have confounded associations between higher physical activity and lower fat 

mass if the principle direction of association was from limiting illness to higher fat 

mass, which then impaired activity levels.  

 

 Explanation of findings: physical activity and lean mass 5.4.4

 

The association between higher total physical activity energy expenditure and 

higher appendicular lean mass was driven by variations in moderate-vigorous 

activity, which was associated with higher appendicular lean mass both before and 

after adjustment for fat mass. It may be that this intensity of activity captured 

activities which are particularly beneficial for muscle mass. These activities may 

include resistance exercise, which have been found in intervention studies to 

stimulate gains in muscle mass.184 Resistance exercise would presumably lead to 

increased heart rate, and could be captured using the Actiheart’s heart rate 

monitor, but would likely involve only limited movement along the vertical axis, and 

is unlikely to be captured using the accelerometer. However, associations are 

unlikely to be solely driven by participation in resistance exercise. Of those with 

valid body composition outcome data, the vast majority of participants (85% of 

both sexes) reported no participation in exercises with weights in the last 4 weeks 

at 60–64 years. In addition, further analyses showed similar associations between 

moderate-vigorous intensity physical activity and lean mass were found when 

restricted to participants who reported no participation. Leisure time activities such 

as running require muscle strength and power to lift the weight of the body, and 

may also lead to higher lean mass.  

 

There was evidence for cumulative benefits of leisure time activities in leading to 

higher appendicular lean mass after adjustment was made for fat mass, a potential 

confounder. As with previously reported associations with fat mass, evidence for 

cumulative benefits of activity across adulthood for lean mass may be explained by 

activity at each age leading to gains in lean mass which then track into later 

adulthood. These associations were stronger in males than females; this may 
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suggest that males were more likely to participate in the types or intensity of 

activities which stimulated gains in lean mass.  

 

As with associations between physical activity and fat mass, analyses conducted 

cannot distinguish the directions of associations. There is however consistent 

evidence that specific exercise interventions lead to gains in muscle mass, 

supporting the hypothesised directions of associations.184 In addition, findings were 

also found after adjustment for potential confounders, providing further support. 

 

 Methodological considerations and limitations 5.4.5

 

While multiple physical activity measures were used in this chapter, there may be 

other parameters which are more closely related to body composition outcomes. 

For example, it has been suggested that continuous unbroken bouts of sedentary 

time are particularly detrimental and lead to gains in fat mass, independent of the 

total duration of time spent sedentary.414 However, the use of objective measures 

of sedentary behaviour and physical activity is a relatively new development in 

epidemiology, and there is no consensus on which parameters are most important 

for body composition outcomes. The analyses conducted in this chapter are 

therefore likely to contribute to this on-going field of research.  

 

In this chapter associations were independent of indicators of SEP (paternal 

occupational class, own educational attainment), considered to be distal measures 

of relevant lifestyle factors (such as greater total energy intake and lower protein 

intake), which may confound associations. While further analyses showed similar 

results were found when repeated with additional adjustment for other indicators of 

SEP (occupational class at 53 years and household income at 60–64 years; results 

not shown), there may be residual confounding by these more proximate factors. 

For example, energy intake may confound associations with fat mass, and protein 

intake may confound associations with lean mass. One study found that 

associations between physical activity and fat mass were similar before and after 

adjustment for fat intake,190 suggesting that associations were not confounded.  

 

As in previous chapters, analyses were restricted to those with valid data for 

potential confounders (paternal occupational class, own educational attainment and 

limiting illness). While this could have introduced bias, this is unlikely to have a 

substantial impact on findings as this restriction resulted in only small numbers of 

participants being excluded. In support of this, further analyses (data not shown) 

showed similar results when analyses were repeated on the maximum available 
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sample size. Loss to follow-up in the NSHD may have also introduced bias. The 

predictors of providing full body composition outcome data at 60-64 years were 

analysed in Chapter 2 which showed that less physically active and heavier 

participants at 53 years were less likely to provide full body composition outcome 

data at 60-64 years. This source of attrition was therefore likely to lead to reduced 

power to detect the association between lower physical activity and higher fat 

mass. 

 

Comparable measures of leisure time physical activity were used in this chapter to 

examine whether there were cumulative benefits of physical activity across 

adulthood in leading to lower fat and higher lean mass. As discussed previously, 

greater participation in leisure time activity may be sufficient to result in higher 

total physical activity energy expenditure. As such, measures of total physical 

activity energy expenditure across adulthood may be more closely related to fat 

mass, providing stronger evidence for cumulative benefits of activity in leading to 

lower fat mass. However, these measures were not available in the NSHD and 

objective measures of total physical activity energy expenditure are a relatively 

recent development. In addition, leisure time physical activity is an important 

modifiable target, and may therefore be useful to consider in analyses; other 

domains, such as occupational physical activity, may be less modifiable. There was 

evidence that leisure time physical activity was cumulatively beneficial for higher 

lean mass, suggesting that it captured the types of activities which are important in 

leading to gains or preservations in lean mass.  

 

 Strengths 5.4.6

 

Chapter 1 presents the overall strengths of the NSHD, while the strengths specific 

to this chapter are outlined below. 

 

Strengths of this chapter include the extensive measures of physical activity used, 

unavailable in previous studies. Objectively assessed measures were used that 

combined heart rate and accelerometer data. These measures may have resulted in 

greater accuracy and precision, leading to a more accurate estimate of the effect 

size of associations with fat and lean mass,341 and validated findings using self-

reported measures. The use of the Actiheart enabled different intensities of activity 

to be investigated, providing evidence that light intensity of activity was particularly 

related to lower fat mass, while moderate-high intensity of activity was particularly 

related to higher lean mass. These are likely to have important public health 

implications, and will be discussed in Chapter 7. 
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In addition to objective measures, the repeat measures of physical activity across 

adulthood used in this chapter are another strength. These were constructed to be 

comparable at each age and their use enabled a life course perspective to be 

applied to physical activity in relation to fat and lean mass. In addition to using a 

lifetime physical activity score, life course model comparisons were used to test 

whether there was evidence for cumulative effects. The first method provides a 

simple indicator of the likelihood of cumulative benefits, but assumes that effect 

sizes are the same at each age, while the latter enables the effect sizes to vary at 

each age. To the author’s knowledge, no previous studies have examined whether 

there are cumulative benefits of activity across adulthood in leading to lower fat 

and higher lean mass. These analyses are therefore a major strength of this 

chapter.  

 

Potential confounders were considered in this chapter (indicators of SEP and 

limiting illness at 60–64 years), and associations were similar after taking these 

into account in analyses, supporting the hypotheses.  

 

 Conclusions and links to other chapters 5.4.7

 

This chapter found that in both sexes objectively measured higher total physical 

activity energy expenditure at 60-64 years was associated with lower fat mass and, 

after adjustment for fat mass, higher appendicular lean mass. Using leisure time 

activity measures collected across adulthood (36, 43, 53 and 60-64 years) there 

was evidence in females but not males of cumulative benefits of greater activity in 

leading to lower fat mass, and in both sexes of cumulative benefits of greater 

activity in leading to higher appendicular lean mass (after adjustment for fat mass). 

 

In this chapter and in Chapters 3 and 4 associations were independent of indicators 

of SEP, considered to be potential confounders. The following chapter examines the 

separate associations between SEP in childhood and adulthood with fat and lean 

mass, and examines whether explanatory factors considered in this chapter 

(physical activity measures) and Chapters 3 and 4 (birth weight and measures of 

growth after birth) mediate these associations. This may be expected given 

associations found in this chapter between indicators of low SEP and low leisure 

time physical activity levels.  
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 Chapter 6: Socioeconomic position across life and body 6.

composition  

 

Main objective: to examine whether indicators of SEP across life are associated with 

body composition outcomes at 60–64 years. 

 

Previous chapters examined associations between explanatory factors across life 

(birth weight, an indicator of prenatal growth (Chapter 3), measures of growth after 

birth (Chapter 4), and physical activity in adulthood (Chapter 5)) with body 

composition outcomes. In each chapter associations were independent of SEP, 

considered a potential confounder because lower SEP was hypothesised to be 

associated with higher fat and lower lean mass, and with growth and physical 

activity. This chapter examines associations between indicators of SEP across life 

with body composition outcomes, and examines whether the explanatory factors 

explored in previous chapters mediate these associations.  

 

 Introduction 6.1

 

There is a long-standing interest in the relationship between socioeconomic factors 

and health.415-418 A series of government-commissioned reports—the Black Report 

in 1980,419 the Whitehead report in 1987,420 the Acheson Report in 1998421 and 

most recently the Marmot Review in 2010291—have shown that morbidity and 

mortality risks are typically higher in those more socioeconomically disadvantaged 

eg, those with lower wealth, income, or of lower occupational class. The effect sizes 

are typically substantial: the Marmot Review reported a 7-year difference in life 

expectancy and 17-year difference in disability-free life expectancy among those in 

the least compared with most deprived socioeconomic areas.291 In all of these 

reports, the importance of socioeconomic factors in both early and adult life were 

suggested to be important in influencing health in adulthood. This justifies a life 

course approach to the study of socioeconomic differentials in health.418 This is also 

supported by analyses in the NSHD which have found lower SEP in both childhood 

and adulthood to be independently associated with worse physical function and 

higher BMI.422;423  

 

A number of terms have been used to describe socioeconomic exposures that relate 

to both health and body composition—these include social class, socioeconomic 

status, and prestige. These are related terms which have historically been used 

inconsistently.424 More recently, SEP has been suggested as the appropriate term 
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for use in epidemiological research,424 and this has been broadly accepted.415;418;425 

SEP is an umbrella term used to refer to the position “individuals or groups hold 

within the structure of a society.” (p.7)425 Low SEP indicates relative deprivation 

and may, in some contexts, indicate absolute deprivation. SEP can be indicated, but 

not directly measured, by a wide range of individual-level variables including 

educational attainment, occupational classification, income, wealth, and household 

conditions.425;426 The distribution of these indicators in a population varies 

depending on the historical period and population investigated.425 For example, 

secular trends of increased higher-level education have occurred in the second half 

of the 20th century in the UK,425 while in some developing countries higher-level 

education remains relatively rare. The relevance of these indicators to SEP may 

therefore change where phenomena become, or cease to become, socially 

stratified. 

 

Indicators of SEP can be used to reflect SEP across life. In childhood, SEP is 

typically indicated by parental occupational class, parental education and indicators 

of housing conditions, while in adulthood SEP is typically indicated by occupational 

class, income, and wealth.427 Although SEP tends to track across life,291;428;429 

individuals may remain in the same relative position or move upwards and/or 

downwards, reflecting social mobility. 

 

A number of aetiological pathways have been proposed to explain associations 

between SEP and health: these have broadly suggested that such exposures 

operate through differences in behaviours and cultural traditions (eg, diet and 

physical activity), material assets (eg, quality of housing), and/or psycho-social 

pathways (eg, levels of chronic stress) that influence health.415 Selection theories 

suggest that health is causally related to subsequent socioeconomic exposures (eg, 

those of worse health are more likely to be consequently exposed to deleterious 

socioeconomic exposures), while life course explanations emphasise the importance 

of exposures across life on subsequent health, and consider bi-directionality in the 

associations of interest.415;418 Differences in body composition have been suggested 

as being on the causal pathway linking SEP to health outcomes, such that SEP 

influences body composition which in turn affects health.63;430;431 There is therefore 

substantial interest in examining associations between socioeconomic factors and 

body composition. Given that those of lower SEP tend to have worse health and 

physical functioning,422;432 it may be expected, given the detrimental impacts of 

higher fat and lower lean mass (described in Chapter 1), that those of lower SEP 

have higher fat and lower lean mass.  
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Associations between SEP and fat and lean mass in adulthood are likely to be 

caused by the socioeconomic patterning of the determinants of these masses 

(outlined in Chapter 1), particularly physical activity and diet. The patterning of 

these determinants may in turn be due to a series of more distal factors, acting on 

both the individual (adult SEP), or parents or guardians (childhood SEP). These 

include knowledge of the behaviours which influence fat and lean mass, and the 

capacity and motivation to modify behaviour in response to such knowledge, social 

norms and stigma associated with fat and lean mass levels (eg, higher fat and 

lower lean mass), and access to resources such as leisure activities and/or dietary 

choices (restricted in turn by income, area of residence and behavioural/cultural 

traditions).215;433-435 

 

SEP at different life stages may relate to fat and lean mass through both shared 

and distinct mechanisms. SEP in childhood may be particularly related to patterns 

of growth both before and after birth which have lasting effects:422 in this thesis 

lower SEP in childhood was associated with lower weight gain in infancy and greater 

weight gain in later childhood and adolescence (Chapter 4). SEP in childhood may 

also be related to body composition outcomes through the tracking of SEP from 

childhood into adulthood.291 Additionally, SEP in both childhood and adulthood may 

relate to behavioural factors in adulthood: analyses in Chapter 5 found that low 

childhood SEP and low own educational attainment were associated with lower 

leisure time physical activity participation across adulthood (36, 43, 53 and 60-64 

years). More detailed analyses at 36 years in the NSHD found that associations 

between lower SEP in childhood and lower leisure time physical activity were not 

fully explained by adult SEP measures (in females only).403 Analysing associations 

of SEP in both early and adult life with fat and lean mass may therefore be useful in 

understanding aetiology.  

 

In addition to using indicators of SEP in both early and adult life, the use of multiple 

indicators at one particular stage in life may also be informative, as each indicator 

may reflect particular dimensions of SEP that are more or less relevant to the 

outcome of interest.425 For example, research has found indicators of SEP in 

adulthood (educational attainment, occupational class and income) to be 

differentially associated with different health outcomes.436 This may also be the 

case for body composition outcomes. For example, in relation to fat mass, higher 

educational attainment may be particularly related to the acquisition of related 

knowledge and cognitive traits (eg, knowledge of the factors which impact on 

energy balance, and a capacity to act on that knowledge), while a high income may 
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be particularly related to the capacity to purchase particular foods which help to 

lower energy balance. 

 

While a wide range of indicators of SEP have been used in epidemiological research 

In the UK, occupational classifications have been used most frequently. The 

Registrar General’s social classification was used in official UK statistics from 1911–

2000 and classifies occupations according to social standing and occupational 

skill.426 Other classifications have more explicit theoretical foundations and can be 

considered to be derived from the sociological theories of Karl Marx or Max 

Weber.437 Scales derived from the former focus on ownership and control of capital 

(eg, the Wright classification);426;437 those derived from the latter classify 

occupations on the basis of working relations that capture information about the 

extent of autonomy and opportunity in the workplace (eg, the Erikson and 

Goldthorpe class scheme, and The National Statistics Socio-economic Classification 

(NS-SEC)). As of 2000, NS-SEC became the official classification used in UK 

statistics, following criticism of the Registrar General’s social classification as having 

a largely subjective theoretical basis—that the class occupations are placed in is 

based on notions of prestige and skill that are largely subjective and historically 

evolving,438 and may have been partly determined by knowledge of health 

differences, leading to circular reasoning.439 While the most appropriate 

occupational classification system is an active area of academic debate—440;441 

including the purported utility of NS-SEC442-444—each have been used in 

epidemiological research focusing on health and, to a lesser extent, body 

composition.  

 

A number of epidemiological studies have examined associations between indicators 

of SEP across life and measures of body composition in adolescence and adulthood. 

The following sections summarise and discuss these: first where BMI was used 

(systematic and narrative review articles are summarised), and second where direct 

measures of fat and/or lean mass have been used in adolescence or adulthood 

(summarised in Table 20). Associations with childhood and adult SEP are described 

separately; studies using own educational attainment were categorised in the latter 

group although this could be considered an indicator of SEP in both childhood and 

adulthood, as it reflects the result of childhood experiences and is related to 

subsequent employment opportunities in adulthood.425 Studies which used DXA or 

any measure of lean mass were included regardless of publication date; adult 

studies using other measures of fat mass were included if they were published after 

systematic reviews in 2009 (childhood SEP)445 or 2007 (adult SEP).446 These 

included studies using BIA.  



170 

 

Table 20. Summary of studies that examined associations between socioeconomic position (in early or adult life) and whole body fat and/or 

lean mass in adolescence or adulthood 

Notes: CSEP=childhood socioeconomic position; ASEP=adulthood socioeconomic position; N/A=not applicable (where association not 

examined); negative association indicates that higher SEP was associated with lower fat or lean mass; BIA=bioelectrical impedance analysis; 

BMI=body mass index; DXA=dual energy X-ray absorptiometry; Air-displ=air-displacement 

Study N Location 
/majority 

ethnicity 

Age  
at outcome 

measure 
(years) 

SEP indicator/s Body 
composition 

measure 

Main 
adjustments 

Fat mass association 
+(positive)  

—(negative) 

Lean mass association 
+(positive)  

—(negative)  

Boot et al, 
1997198 

403 Netherlands 
/Caucasian 

4–20 Parental occ. 
class, paternal 

education 

DXA None Males: no assoc. 
Females: — 

No assoc. 

Lantz et al, 
2008195  

203 Sweden 
/Caucasian 

15–20 Paternal education DXA Weight, 
height, 
Sex 

— + 

Ekelund et al, 
2005447 

445 Sweden 
/Caucasian 

17 Maternal education Air-displ. Birth weight Males: no assoc. 
Females: — 

N/A 

Gigante et al, 

2007199  

2250 Brazil 

/Mixed 

18 Household income BIA Height Males: +       

Females: N/A 

Males: +        

Females: N/A 
Seppanen-
Nuijten et al 

2009196 

5789 Finland 
/Caucasian 

>30 Own education BIA BMI N/A (Weak) + 

Brennan et al, 
2009448 

1110 Australia 
/Mixed 

49 (20–92) Area-based 
deprivation score 

DXA 
 

None Males: N/A  
Females: — 

Males: N/A  
Females: no assoc 

Yliharsila et al, 

2008 197 

1917 Finland 

/Caucasian 

56–69 cSEP: Paternal 

occ. class at birth 
aSEP: Own occ. 
class  

BIA Height, age CSEP: 

Males: — 
Females: no assoc. 
ASEP:  
Both sexes: — 

CSEP: 

Both sexes: no assoc. 
ASEP:  
Males: no assoc 
Females: — 

Al-Qaoud et al, 
2011449 

5533 UK 
/Caucasian 

55–79 Own occupational 
grade 

BIA Height N/A Males: no assoc.  
Females: —  

Visser et al, 

199895 

753 USA 

/Caucasian 

72–95 Own education DXA None No assoc. No assoc. 
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 Literature review: socioeconomic position and body 6.1.1

composition 

 Early life socioeconomic position and fat mass 6.1.1.1

 

Two systematic reviews have examined associations between SEP in childhood and 

adult obesity, typically defined using BMI. Senese et al (2009)445 reviewed 30 

studies, the majority of which indicated childhood SEP using paternal occupational 

class (26 studies), while others used parental education, household conditions, or 

measures of familial economic distress. The authors concluded that lower SEP in 

childhood was associated with higher adult BMI in females (found in 14 of 20 

studies), but not males (associations found in 4 of 15 studies). These associations 

were also found in the single study which used direct measures of fat mass (using 

BIA in females). Associations were more frequently observed when SEP was 

ascertained prospectively in childhood rather than retrospectively recalled in 

adulthood, suggesting that retrospective recall may have introduced measurement 

error and bias. Associations were typically partly attenuated after adjustment for 

SEP in adulthood, suggesting that tracking of SEP into adulthood partially explains 

the associations found. Similar associations were reported in a systematic review of 

16 studies in the UK,450 and in an earlier systematic review in 1999 of 12 studies 

from multiple countries.166  

 

As previously outlined in Chapter 1, BMI is a surrogate indicator of fat mass and 

does not distinguish between fat and lean mass; associations found between SEP 

and BMI may therefore be due to associations with fat mass, lean mass, or both. 

There is therefore a need to examine associations between SEP and direct 

measures of fat mass. The use of direct measures of fat mass also enables a more 

accurate estimate of the effect size of the SEP-fat mass association. If SEP 

differentially influences body composition in opposing directions—with lower SEP 

associated with higher fat mass and lower lean mass—the use of BMI may result in 

an underestimation of the SEP-fat mass association.451;452 

 

Four studies have examined associations between SEP in childhood/early life and 

direct measures of fat mass. Two studies using DXA reported associations of low 

paternal education and occupational class with higher fat mass (in females but not 

males),198 or of low paternal education with higher fat mass (in both sexes).195 In a 

study of 17 year-olds, low maternal educational attainment was associated with 

higher fat mass (measured using air-displacement) in females, but not males.447 

Finally, one study reported an association between low paternal occupation at birth 
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and higher fat mass in males but not females in later life (at ~61 years, measured 

using BIA).197  

 

 Adult socioeconomic position and fat mass 6.1.1.2

 

Three systematic reviews have examined associations between SEP in adulthood 

and BMI or weight gain in adulthood. McLaren (2007)446 conducted a systematic 

review examining cross-sectional associations between SEP in adulthood and 

obesity. Three hundred and thirty-three studies were identified, with participants 

from both low and high-income countries. Obesity was typically defined as high 

BMI. The associations found varied depending on the income level of the countries: 

lower SEP tended to be associated with higher BMI in more developed nations, 

while the opposite was found in less developed nations, differences which reflect 

the different characteristics of countries before and after the epidemiological 

transition.63 Associations in developed nations—the focus of this thesis—were more 

consistently observed in females: indicators of lower SEP (such as low educational 

attainment, occupational class, and income) were commonly associated with higher 

BMI. Associations in males tended to vary by indicator, with low educational 

attainment commonly associated with higher BMI, and low income associated with 

low BMI. This review article built upon a previous published systematic review in 

1989 which reported similar findings.453 A systematic review in 2012 of 27 studies 

conducted in the UK found that lower SEP (own occupational class) was associated 

with increased risk of obesity, with six studies finding stronger associations in 

females than males.450 

 

Ball and Crawford (2005)433 conducted a systematic review to examine associations 

between SEP and weight gain in adulthood (exclusively in developed nations). 

Thirty-three studies were identified, and the authors concluded that there was 

evidence of an association between low occupational class and greater weight gain 

in both males and females. This association was more consistently found in studies 

which used objective measures of weight and had longer periods of follow-up (>4 

years). Associations were less consistent when other indicators of SEP such as 

educational attainment or income were used. In explaining these differences in 

findings it was suggested that occupation may be more strongly related with the 

activities undertaken that impact on weight gain, while educational attainment was 

suggested as being less related (as it may reflect experiences that took place a long 

time ago), as was income (as many activities needed to lower fat mass are free 

such as exercising outside). 
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Four studies have examined associations between SEP in adulthood and direct 

measures of fat mass and mixed findings have been reported. Indicators of lower 

SEP were associated with higher fat mass using an area-based measure of 

deprivation (with DXA measures at 20–92 years448) and occupational class (using 

BIA at ~61 years),197 while one study reported no association with educational 

attainment (using DXA at 72–95 years).95 One study reported associations between 

high family income and higher fat mass (using BIA at age 18).199—this was the only 

study based in a developing nation (Brazil), and the direction of association is 

consistent with previous reports using BMI in developing nations.446 

 

 Early life socioeconomic position and lean mass 6.1.1.3

 

Three studies have examined associations between SEP in early life and subsequent 

lean mass, and mixed findings have been reported. One study found that low 

paternal educational attainment was associated with lower lean mass (using DXA at 

15–20 years),195 while another study reported no association with paternal 

education or parental occupational class (using DXA with adjustment for age at 4–

20 years).198 The third study reported no association between paternal occupation 

at birth and lean mass (using BIA at ~61 years).197  

 

 Adult socioeconomic position and lean mass 6.1.1.4

 

Six studies have examined associations between SEP in adulthood and measures of 

lean mass. Mixed findings have been reported, with one study in mid-later 

adulthood finding high educational attainment was weakly associated with high lean 

mass (using BIA196) and other studies reporting no association with educational 

attainment (using DXA95) or an area-based measure of deprivation (using DXA).448 

One study reported associations between low occupational class and high lean mass 

in females, but found no association in males (using BIA at ~61 years).197 In 

contrast, another study reported an association between lower SEP and lower lean 

mass in female civil servants, but not males.449 However, this study only reported 

P-values of tests of association—neither effect sizes nor results of sex interaction 

tests were presented, leading to uncertainty in the association in males. The study 

in Brazil reported associations between higher household income and higher lean 

mass (using BIA at 18 years).199 
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 Literature discussion: socioeconomic position and body 6.1.1.5

composition 

 

While a large number of studies have reported associations between lower SEP in 

early and adult life and higher BMI in adulthood (more consistently in females than 

males), relatively few have used direct measures of fat or lean mass and these 

have tended to produce less consistent findings. There was some evidence of an 

association between lower SEP in early and adult life and higher fat mass in 

adolescence/adulthood, while more conflicting findings were reported with lean 

mass. Although most of the studies using direct measures of body composition 

have been conducted in developed nations only one has been conducted in the UK, 

and this study provided few details of associations between SEP and fat and lean 

mass. Research conducted in the UK would provide the strongest source of 

evidence to inform public health policy within the UK. 

 

Of the four studies examining SEP in early life, three examined body composition in 

adolescence/early adulthood, one of which included relatively few adults (4–20 

years). Only one study examined associations between SEP prospectively measured 

in childhood and body composition in later adult life (at ~61 years).197 There is a 

need to further examine these associations in later life since associations may differ 

by age, cohort, and SEP indicator. Associations of lower SEP and greater weight 

gain in adulthood433 suggest that associations with fat mass may increase across 

life. 

 

Of six studies examining associations between SEP in adulthood and adult body 

composition a wide range of indicators have been used. One study used an area-

based indicator of SEP,448 a measure of relative deprivation in geographical areas 

which may also indicate individual-level SEP. Although area-level and individual-

level indicators of SEP are correlated,454 it has been suggested that the imperfect 

nature of this association leads to area-based measures having less statistical 

power than individual-level indicators.455 In support of this, the study reported no 

association between SEP and lean mass, while other studies did. The remaining 

studies used various individual-level indicators of SEP: occupational class197 or 

grade,449 educational attainment,95;196 or household income.199 The only study to 

use household income was also the only study conducted in a developing nation 

(Brazil); since developing and developed nations tend to have different patterns of 

associations (eg, between SEP and fat mass63). 
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All of the studies examining associations with adult SEP and direct measures of 

body composition used only one indicator of SEP. As previously discussed, the use 

of multiple indicators may be informative as each may reflect different dimensions 

of SEP and may be more or less relevant to body composition outcomes. While 

different indicators of adult SEP were used across the different studies (educational 

attainment, occupational class, and income), differences in associations with 

outcomes cannot be separated from potential age and cohort differences (including 

country-specific differences). Only one study used indicators of SEP in both early 

and adult life,197 and the focus of this study was on patterns of growth—SEP was 

principally explored as a potential confounder and, as with a study examining 

associations with adult SEP,449 effect estimates were not presented. In this study 

both early and adult SEP were included as explanatory variables in the same 

statistical model, and unadjusted results were not presented. The interpretation of 

these findings is therefore unclear—ie, whether null associations between childhood 

SEP and adult lean mass could reflect either no association or the effects of 

adjustment for adult SEP (ie, mediation). The extent to which associations between 

childhood SEP and adult body composition are explained by continuity of SEP into 

adulthood is therefore unclear, as is the extent to which associations with SEP in 

adulthood are confounded by SEP in childhood.  

 

In addition to the indicators of SEP, the measures of body composition used varied 

between studies and have a number of limitations. Four of nine studies measured 

body composition using BIA, which as discussed in Chapter 2 is likely to be less 

accurate and precise than DXA. While four used DXA, a method previously argued 

in Chapter 2 to be both accurate and precise, all used whole body measures of fat 

and/or lean mass. No studies examined associations between SEP and direct 

measures of abdominal fat distribution or appendicular lean mass. As discussed in 

Chapter 1, these outcomes may be particularly relevant for subsequent health and 

physical functioning outcomes. Further, given the strong positive correlation 

between lean and fat mass (Chapter 2), associations between lower SEP and lower 

lean mass could be confounded by fat mass (if lower SEP, as suggested in previous 

studies, is associated with higher fat mass). However, no studies have taken this 

into account in their analyses (eg, by making adjustment for fat mass when 

examining associations with lean mass).  

 

When interpreting associations with body composition, adjustment for 

contemporaneous height has been suggested as being important (outlined in 

Chapter 2). Associations between lower SEP and higher fat mass are likely to be 

confounded by height, since lower SEP (in childhood and adulthood) is associated 
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with shorter adult height,408;409 and shorter individuals typically have less fat mass 

(Chapter 2). Associations between lower SEP and lean mass may either be 

confounded or mediated by adult height (depending on how SEP is related to lean 

mass). However, four of eight studies made no adjustment for adult height.  

 

To the author’s knowledge, no studies have examined the factors that mediate 

associations of SEP with direct measures of fat and lean mass. The investigation of 

mediating factors has important public health implications (eg, by increasing the 

number of targets for intervention and preventative strategies) and may provide 

further evidence in support of the hypothesised association between exposure and 

outcome.456 

 

 Prior findings from the MRC National Survey of Health and 6.1.1.6

Development 

 

A number of publications have used the NSHD to examine associations between 

indicators of SEP with BMI or waist circumference.  

 

Braddon et al (1986)328 found that lower educational attainment and lower SEP in 

childhood (paternal occupational class at 4 years) were associated with higher BMI 

at 36 years, associations also reported by Power et al (2005)457 who reported that 

associations were weaker in males compared with females. Hardy et al (2000)168 

found that lower childhood SEP (paternal occupational class at 4 years) and lower 

own educational attainment were associated with higher BMI and greater BMI gain 

between 20 and 43 years in both sexes. However, adult SEP (head of household 

occupational class at 26, 36 and 43) was not associated with BMI in either sex after 

adjustment for childhood SEP and own educational attainment (unadjusted 

analyses were not presented). Associations with childhood SEP were party 

attenuated after adjustment for educational attainment and adult SEP, suggesting 

that associations between childhood SEP and BMI were not fully explained by the 

continuity of SEP into adulthood.  

 

Langenberg et al (2003)167 also found that lower childhood SEP was associated with 

higher BMI and waist circumference at 53 years in both sexes. In addition, 

Langenberg et al investigated associations of SEP in adulthood (head of household 

occupational class at 26 and 43 years) and intergenerational mobility with BMI and 

waist circumference at 53 years. Lower occupational class at 26 and 43 years was 

associated with higher BMI and waist circumference at 53 years in females, while 

lower occupation class at 26 years was associated with higher BMI at 53 in males. 
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These associations were entirely attenuated in males but not females when 

adjustment was made for childhood SEP, suggesting that SEP in childhood was a 

more important determinant in males. Upwards intergenerational social mobility 

was associated with lower BMI and waist circumference in both sexes. Murray et al 

(2011)423 compared three different life course models (sensitive periods, 

accumulation of risk, and social mobility; as discussed in Chapter 1) in explaining 

associations between SEP (dichotomised into manual and non-manual occupational 

class) in childhood (4 years) and adulthood (26 and 43 years) and BMI at 53 years. 

In cases where multiple models predicted the data as well as the saturated model, 

the simpler model was selected as best representing the data. In males, a sensitive 

period model of childhood SEP fitted the data and was selected (although a model 

specifying accumulation across life also fitted the data), while in females a model 

specifying accumulation across life was selected. Strand et al (2012)458 also used 

BMI as an outcome (up to 53 years), and investigated whether the strength of 

associations between childhood SEP and adult BMI changed over time. They found 

that the adverse effects of lower childhood SEP increased over time in females 

(from 36, 43, and 53 years), and remained stable in males. Across all periods 

investigated, associations between childhood SEP and higher adult BMI and waist 

circumference were stronger in females than males.  

 

As discussed in Chapter 3, while the NSHD has no previous measures of lean mass, 

selected studies using grip strength and physical functioning outcomes are 

described below in order to give an indication of the types of analyses that have 

been conducted using indicators of SEP. 

 

Guralnik et al (2006) examined associations between SEP in childhood and 

measures of physical function at age 53 (the top and bottom 10% of a score 

including grip strength, standing balance and chair rise time).459 Higher paternal 

occupational class and parental educational attainment were associated with lower 

odds of low function and higher odds of high function. In a mutually adjusted 

model, higher maternal education predicted higher function and lower paternal 

occupation predicted lower function. 

 

Strand et al (2011)422 examined the pathways underlying associations between 

childhood SEP and physical functioning (standing balance and chair rise time at 53 

years). Associations between lower childhood SEP and worse physical functioning 

were partly mediated by measures of childhood growth (birth weight, weight gain 

from 0–7 years, and height gain from 4–7 years), and by measures of childhood 

cognition and motor co-ordination. 
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In summary, previous studies using the NSHD have shown indicators of lower SEP 

to be associated with higher fat mass as assessed by BMI and waist circumference, 

and worse physical functioning. This chapter will build upon this research by 

examining associations between SEP and direct measures of fat and lean mass, and 

by using a wider range of indicators of SEP (including parental educational 

attainment, NS-SEC derived occupational class, and household income). Finally, 

this chapter will consider whether factors considered in previous chapters—

measures of growth before (Chapter 3) and after birth (Chapter 4) and physical 

activity levels in adulthood (Chapter 5) mediate associations of SEP with fat and 

lean mass. 

 

 Literature review summary 6.1.1.7

 

A large number of studies have reported associations between indicators of lower 

SEP and higher BMI in adulthood (more consistently found in females than males). 

In contrast, fewer studies have examined associations between SEP and direct 

measures of fat and lean mass in adulthood, and findings are not consistent. In 

some of these studies, associations between SEP and body composition were not 

the principle research questions of interest, and as such the analyses and 

subsequent interpretation lack detail. Overall, these studies have a number of 

limitations that suggest the need for further research: most have only considered 

single indicators of SEP (in adulthood), and not used indicators of both childhood 

and adult SEP; none have examined associations with regional measures of body 

composition; and few have adjusted for adult height. Finally, no studies have 

examined which factors mediate associations of SEP with fat and lean mass.  

  

 Chapter objectives and hypotheses 6.1.2

 

The objective of this chapter is to test the hypothesis that lower SEP in childhood 

and adulthood are associated with higher fat and lower lean mass. It was further 

hypothesised that these associations would be partly mediated by the factors 

identified in previous chapters which were associated with body composition 

(measures of growth before and after birth, and physical activity measures in 

adulthood), as illustrated in Figure 1 (Chapter 1). Specifically, it was hypothesised 

that associations between SEP in childhood and outcomes would be partly mediated 

by measures of pre-adulthood growth, and that associations of SEP childhood and 

adulthood with outcomes would be partly mediated by physical activity levels in 

adulthood.  
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The methods and results to test the above hypotheses are divided into two 

sections. Section a) describes the explanatory variables used in this chapter and 

examines associations between SEP and body composition outcomes; section b) 

investigates whether factors considered in previous chapters mediate associations 

between SEP and outcomes. 

 

 Section a) Methods  6.2

 

 Explanatory variables 6.2.1

 

The explanatory variables used in this chapter are indicators of SEP in childhood 

and adulthood, shown in Table 21. Multiple indicators of SEP were chosen as 

although likely to be related to each other, each may reflect particular dimensions 

of SEP (as described in the Introduction of this chapter) and may be more or less 

relevant for fat and lean mass.  

 

Parental educational attainment and paternal occupational class were used as 

indicators of childhood SEP, with other indicators reflecting SEP in adulthood (home 

ownership at 26 years, both own and highest household occupational class at 53 

years, and household income at 60-64 years). Educational attainment was 

considered as an indicator of SEP in both childhood and adulthood, as it reflects the 

result of experiences that took place largely in childhood, and is related to 

subsequent employment opportunities in adulthood,425 and may be particularly 

related to the acquisition of knowledge and cognitive traits which, through their 

impact on health behaviours, impact on fat and lean mass in adulthood. 
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Table 21. Indicators of socioeconomic position used in this chapter  
 

Indicator Study 

members’ 

age when 

ascertained 

Derivation and categorisation 

Paternal 

occupational class 

4 years Derived using the Registrar General’s classification: I professional, 

II intermediate, III skilled non-manual, III skilled manual, IV 

semi-skilled, and V unskilled. Values were replaced with those at 

age 11 (n=24) or 15 (n=13) if missing at 4 years.  

Maternal and 

paternal 

educational 

attainment 

6 years Categorised in four groups: 1) primary only, 2) primary and 

further education (no qualifications obtained), 3) secondary only 

(or primary and further education), and 4) secondary and further 

education or higher. 

Own educational 

attainment 

26 years Categorised in five groups using the Burnham scale:460 1) no 

qualifications, 2) sub GCE or sub Burnham C, 3) GCE O level or 

Burnam C, 4) GCE A level or Burnam B, and 5) Degree or higher. 

Home ownership  26 years Categorised in two groups: i) owned their home, and ii) rented or 

lived with their parents 

Own occupational 

class (RGSC) 

 53 years Derived using the Registrar General’s Classification (as above). 

Values were replaced with those at 43 (n=55), 36 (n=21), or 26 

(n=13) if missing at 53 years. 

Own occupational 

class (NS-SEC) 

 

53 years Derived using the NS-SEC in three categories since this is 

considered to be ordinal:461 I Managerial & professional, II 

Intermediate, III Routine and manual. Values were replaced with 

those at 43, 36, 26, or 15 if missing at 53 years (n=64). 

Highest household 

occupational class 

53 years The study member or their partner’s occupational class 

(whichever was highest) derived using the Registrar General’s 

Classification as above. The class of the spouse was taken if that 

of the study member was missing. Values were replaced with 

those at 43 (n=58), 36 (n=11), or 26 (n=7) if missing at 53 

years. 

Household income 60-64 years Post-tax income from all sources including employment, pensions 

(public/private), dividends, benefits, etc. Study members were 

given a card with 13 letters referring to 13 income bands from low 

(less than £6000 per year) to high (£80,000 or more per year), 

and asked to select the letter corresponding to their income. 
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 Outcomes 6.2.2

 

The outcomes used in this chapter are the main outcomes of this thesis, described 

in more detail in Chapter 2 (whole body measures of fat and lean mass, the ratio of 

these masses, appendicular lean mass, and android: gynoid fat mass ratio). 

 

 Analytical strategy 6.2.3

 

Associations between the different indicators of SEP were examined using chi-

squared tests.  

 

Associations between indicators of SEP and outcomes were examined using the 

slope index of inequality. This enables the different indicators to be examined on 

the same scale and takes into account differences in the distribution of participants 

across categories of different variables. Indicators were first converted into ridit 

scores, where each category is assigned a value representing the proportion of 

participants above its mid-point. For example, if the highest income group contains 

20% of the population it would be assigned a value of 0.1 (0.2/2); if the second 

highest group contains 30% of the population it would be assigned a value of 0.35 

(0.2 + 0.3/2). Scores were calculated separately in each sex. These scores—

ranging from 0 (hypothetical lowest) to 1 (hypothetical highest SEP)—were then 

used as explanatory variables in linear regression: the coefficients show the 

absolute mean difference in outcome between those of lowest versus highest 

SEP.462 These models were used for all outcomes using height-adjusted indices. 

When using appendicular lean mass index as an outcome, models were additionally 

adjusted for fat mass index to account for the potential confounding by fat mass.  

 

Tests of deviation from linearity were conducted using likelihood ratio tests to 

compare a model with the indicator included as a categorical term with a model 

with it included as a linear term; this was conducted before converting indicators 

into ridit scores. The means and standard deviations of outcomes were presented 

by SEP category to enable any causes of deviation from linearity to be inspected. 

 

All models were conducted separately by sex as sex differences in associations have 

been found in previous studies and, given the large number of explanatory 

variables used, it was thought that stratification would enable a clearer comparison 

of effect sizes in each sex. Sex differences in associations were examined by testing 

for interactions.  
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A series of multivariable regression models were conducted to determine whether 

the different indicators of SEP were independently associated with body composition 

outcomes. These were conducted in order to help elucidate which indicators were 

most relevant for each outcome. Three discrete outcome measures were used in 

these and subsequent multivariable analyses: a measure of fat mass (whole body 

fat mass index), abdominal fat distribution (android: gynoid ratio), and lean mass 

(appendicular lean mass index, after adjustment for fat mass index), and 

associations were only carried forward into these multivariable analyses where 

there was evidence for association in univariable analyses. Models were conducted 

with sequential adjustment for different SEP indicators, with all fully adjusted 

models containing childhood SEP, educational attainment, occupational class, and 

household income, each entered as ridit scores. To limit the number of analyses 

conducted, only one indicator of childhood SEP and one indicator of occupational 

class were used in these analyses—those which were most strongly and most 

consistently associated with outcomes; the indicator of childhood SEP used was 

additionally chosen on the basis of results of further multivariable analyses with all 

childhood SEP indicators (parental educational attainment and paternal 

occupational class) included as explanatory variables in linear regression models. 

 

 Section a) Results  6.3

 

 Associations between indicators of socioeconomic position 6.3.1

 

All indicators of SEP except home ownership at 26 years were positively correlated 

with each other in expected directions, with those of higher SEP as assessed by one 

indicator tending to have higher SEP in all other indicators (data not shown; P(chi-

squared tests) <0.001 in all cases). For example, those with fathers who attained 

higher education tended to go on to attain higher education themselves by 26 

years, and be of higher occupational class at 53 years. Home ownership at 26 years 

was less consistently associated with other indicators, and associations differed in 

each sex.  

 

 Univariable analyses: indicators of socioeconomic position and 6.3.2

body composition outcomes 

 

Table 22 shows univariable associations between indicators of SEP modelled using 

the slope index of inequality and all outcomes (fat and lean mass indices, and fat: 

lean and android: gynoid ratios). Lower SEP was consistently associated with higher 
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fat mass and higher fat: lean mass ratio (typically more strongly in females than 

males). Lower SEP was also consistently associated with higher android: gynoid 

ratio, with sex differences only evident for own educational attainment (stronger 

associations in males). The strength of associations differed by sex—for example, 

own educational attainment (males) and paternal educational attainment (females) 

had the largest effect sizes for fat mass, reflecting a 1.65 (95% CI: 0.69, 2.60) and 

3.67 (95% CI: 2.28, 5.07) difference in fat mass index between lowest and highest 

SEP, respectively.  

 

Lower SEP was typically weakly associated with higher appendicular lean mass 

(except for home ownership at 26, which showed the opposite association in 

males). However, after adjustment for fat mass index the patterns of association 

differed: in males, most indicators were not associated except lack of home 

ownership at 26 and low household income which were both associated with lower 

appendicular lean mass. In females, all indicators of lower SEP were associated with 

lower appendicular lean mass after adjustment, except for home ownership at 26 

years (no association). 

 

There was little evidence for deviation from linearity, except for associations of 

paternal occupational class with fat mass in males, and of lower household income 

and higher fat mass in both sexes. In these cases deviation from linearity was 

driven by those in the lowest SEP group tending to have lower fat mass than 

expected given a linear trend. Appendix 31 shows the means and standard 

deviations of body composition outcomes (whole body fat and lean mass, fat: lean 

mass ratio, appendicular lean mass, and android: gynoid ratio) by SEP category, 

and Appendix 32 shows these for height-adjusted indices. When height-adjusted 

indices of fat and lean mass were used, there was stronger evidence for association 

between lower SEP and higher fat mass, and there was evidence of association 

between lower SEP and higher lean mass (except home ownership at 26 years in 

males which showed the opposite association).  

 

 Multivariable analyses: indicators of socioeconomic position 6.3.3

and body composition outcomes 

 

Multivariable associations of childhood and adult SEP indicators with whole body fat 

mass, android: gynoid ratio, and appendicular lean mass (after adjustment for fat 

mass) are shown in Table 23, with sequential adjustment for different indicators 

across life. Paternal educational attainment was used as the sole indicator of 

childhood SEP in these models, as in females this indicator was most strongly 
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associated with fat mass and android: gynoid ratio, and remained associated when 

all indicators of childhood SEP were mutually adjusted for one another (Appendix 

33). This indicator was also used in males to enable fairer comparison between the 

sexes. In females, highest household occupational class was used instead of own 

occupational class as it tended to be more strongly associated with outcomes in 

univariable analyses. In males, measures of occupational class were more weakly 

associated with outcomes and were omitted from multivariable analyses.  

 

In males, associations of low own educational attainment and low household 

income with higher fat mass remained, albeit partly attenuated, after adjustment 

for all other indicators of SEP; associations with paternal educational attainment 

were largely attenuated. Associations of low paternal and own educational 

attainment with higher android: gynoid ratio remained, while associations with 

household income were largely attenuated after mutual adjustment for other SEP 

indicators. Associations of lack of home ownership at 26 years and low household 

income with lower appendicular lean mass (after adjustment for fat mass) both 

remained after adjustment for other SEP indicators; the former associations were 

not attenuated, while the latter associations strengthened after these adjustments.  

 

In females, associations of low paternal educational attainment and low household 

income with higher fat mass remained after adjustment for all other SEP indicators, 

while associations with own educational attainment and occupational class were 

largely attenuated. Associations of low paternal educational attainment and low 

occupational class with higher android: gynoid ratio remained, while associations 

with own educational attainment and household income were largely attenuated 

after mutual adjustment. Associations between all indicators of lower SEP with 

lower appendicular lean mass (after adjustment for fat mass) were attenuated after 

mutual adjustment.  
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Table 22. Differences in fat and lean mass (95% CI) between the hypothetical lowest and highest socioeconomic position (slope index of 

inequality) 

  Fat mass index  
(kg/m1.2) 

    Lean mass index  
(kg/m2) 

     

 N Males P Females P P# Males P Females P  P# 

Paternal occ. class (4y) 1477 1.04(0.09, 1.99)* 0.03 2.61(1.34, 3.89) <0.01 0.06 0.88(0.36, 1.40) <0.01 0.40(-0.06, 0.86) 0.09  0.17 

Maternal education (6y) 1389 1.27(0.22, 2.33) 0.02 2.72(1.28, 4.16) <0.01 0.11 0.95(0.38, 1.53) <0.01 0.53(0.00, 1.05) 0.05  0.28 

Paternal education (6y) 1378 1.07(0.03, 2.10) 0.04 3.67(2.28, 5.07) <0.01 <0.01 0.82(0.26, 1.38) <0.01 0.74(0.22, 1.25) <0.01  0.83 

Own education (26y) 1475 1.65(0.69, 2.60) <0.01 2.08(0.81, 3.35) <0.01 0.60 1.07(0.55, 1.59) <0.01 0.24(-0.23, 0.70) 0.32  0.02 

Home ownership (26y) 1408 -0.03(-1.13, 1.08) 0.96 0.70(-0.79, 2.19) 0.36 0.45 -0.61(-1.21, -0.01) 0.05 0.23(-0.31, 0.77) 0.40  0.04 

Own RGSC occ. class (53y) 1528 0.37(-0.59, 1.33) 0.45 2.09(0.77, 3.41) <0.01 0.04 0.49(-0.04, 1.02) 0.07 0.27(-0.21, 0.75) 0.27  0.54 

Own NS-SEC occ. class (53y) 1550 0.85(-0.15, 1.84) 0.10 2.08(0.77, 3.39) <0.01 0.15 0.63(0.09, 1.18) 0.02 0.38(-0.09, 0.85) 0.11  0.49 

H of H RGSC occ. class (53y) 1528 0.72(-0.26, 1.69) 0.15 2.14(0.78, 3.49) <0.01 0.10 0.49(-0.05, 1.02) 0.08 0.19(-0.30, 0.68) 0.44#  0.43 

Household income (60-64y) 1481 1.23(0.32, 2.14)* <0.01 2.17(0.91, 3.42)* <0.01 0.24 -0.04(-0.55, 0.47)* 0.88 0.30(-0.16, 0.75) 0.21  0.34 

 

  Fat: lean ratio  Android: gynoid fat mass ratio   

 N Males P Females P P# Males P Females P  P# 

Paternal occ. class (4y) 1477 2.58(-0.30, 5.47)* 0.08 11.70(7.01, 16.39) <0.01 <0.01 8.03(4.06, 12.01)* <0.01 5.91(2.87, 8.95) <0.01  0.40 

Maternal education (6y) 1389 2.96(-0.26, 6.18) 0.07 11.57(6.26, 16.88) <0.01 <0.01 8.22(3.82, 12.63) <0.01 6.12(2.73, 9.52) <0.01  0.46 

Paternal education (6y) 1378 2.26(-0.90, 5.43) 0.16 14.52(9.39, 19.66) <0.01 <0.01 8.40(4.05, 12.74) <0.01 9.64(6.34, 12.94) <0.01  0.65 

Own education (26y) 1475 4.37(1.46, 7.29) <0.01 9.89(5.22, 14.57) <0.01 0.06 8.42(4.43, 12.41) <0.01 3.41(0.27, 6.54) 0.03  0.05 

Home ownership (26y) 1408 1.81(-1.55, 5.16) 0.29 1.66(-3.81, 7.13) 0.55 0.97 -1.45(-6.15, 3.26) 0.55 1.45(-2.11, 5.01) 0.42  0.33 

Own RGSC occ. class (53y) 1528 0.61(-2.30, 3.53)* 0.68 8.97(4.12, 13.82) <0.01 <0.01 3.93(-0.14, 8.00)* 0.06 4.02(0.81, 7.23) 0.01  0.97 

Own NS-SEC occ. class (53y) 1550 1.99(-1.04, 5.01) 0.20 8.20(3.37, 13.04) <0.01 0.04 3.49(-0.72, 7.69) 0.10 3.61(0.43, 6.79) 0.03  0.96 

H of H RGSC occ. class (53y) 1528 1.76(-1.21, 4.72) 0.25 9.77(4.81, 14.73) <0.01 <0.01 3.81(-0.33, 7.96)* 0.07 4.97(1.69, 8.25) <0.01  0.67 

Household income (60-64y) 1481 4.93(2.16, 7.69)* <0.01 9.11(4.49, 13.73) <0.01 0.14 4.09(0.16, 8.01) 0.04 3.26(0.20, 6.32) 0.04  0.74 
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  Appendicular lean 
mass index  

(kg/m2) 

        

  
N 

Males,  
unadjusted 

P Males,  
adjusted for 
fat mass index 

P Females,  
unadjusted 

P Females,  
adjusted for 
fat mass index 

P P# 

Paternal occ. class (4y) 1477 0.31(0.06, 0.55) 0.01 0.17(-0.04, 0.39) 0.11 0.04(-0.18, 0.26) 0.70 -0.26(-0.42, -0.09) <0.01 <0.01 

Maternal education (6y) 1389 0.26(-0.01, 0.54) 0.06 0.10(-0.14, 0.34) 0.39 0.11(-0.14, 0.35) 0.40 -0.21(-0.39, -0.02) 0.03 0.03 

Paternal education (6y) 1378 0.26(-0.01, 0.52) 0.06 0.12(-0.11, 0.36) 0.30 0.16(-0.08, 0.40) 0.20 -0.26(-0.45, -0.08) <0.01 <0.01 

Own education (26y) 1475 0.30(0.05, 0.55)* 0.02 0.09(-0.13, 0.31)* 0.42 -0.03(-0.25, 0.19)* 0.82 -0.27(-0.43, -0.10) <0.01 <0.01 

Home ownership (26y) 1408 -0.35(-0.64, -0.06) 0.02 -0.35(-0.60, -0.10) <0.01 0.08(-0.18, 0.33) 0.55 0.00(-0.19, 0.19) 0.98 0.03 

Own RGSC occ. class (53y) 1528 0.15(-0.10, 0.40) 0.25 0.10(-0.12, 0.32) 0.38 0.02(-0.20, 0.25) 0.85 -0.22(-0.39, -0.05) 0.01 0.02 

Own NS-SEC occ. class (53y) 1550 0.26(0.01, 0.52) 0.05 0.16(-0.07, 0.38) 0.18 0.09(-0.13, 0.32) 0.42 -0.14(-0.31, 0.03) 0.10 0.03 

H of H RGSC occ. class (53y) 1528 0.14(-0.12, 0.39) 0.30 0.04(-0.18, 0.27) 0.70 0.01(-0.22, 0.24) 0.94 -0.24(-0.41, -0.06) <0.01 0.04 

Household income (60-64y) 1481 -0.08(-0.32, 0.16) 0.52 -0.24(-0.45, -0.03) 0.03 0.08(-0.14, 0.29)* 0.47 -0.17(-0.33, -0.01) 0.04 0.73 

  

Note: #P-value for sex interaction term; *evidence for departure from linearity (P<0.05); analyses restricted to those with valid data for body 

composition outcomes; NS-SEC=The National Statistics Socio-economic Classification; RGSC=Registrar General's Social Classification; H of H= 

highest household occupational class (derived using RGSC)  
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Table 23. Differences in fat and lean mass (95% CI) between the hypothetical lowest and highest socioeconomic position (slope index of 

inequality), with sequential adjustment for different indicators across life 

a) Males (n=605) 

 Fat mass index 

(kg/m1.2) 

P Android: gynoid  

fat mass ratio 

P Appendicular lean mass 

index (kg/m2), adjusted 

for fat mass index 

P 

1. Paternal education (4y) 1.07 (0.01, 2.13) 0.05 9.10 (4.63, 13.56) <0.001   

2. Model 1 + own education 0.42 (-0.74, 1.57) 0.48 6.14 (1.27, 11.01) 0.01   

3. Model 2 + household income 0.29 (-0.88, 1.45) 0.63 5.85 (0.95, 10.75) 0.02   

       

1. Own education (26y) 1.72 (0.69, 2.75) <0.001 9.49 (5.14, 13.84) <0.001   

2. Model 1 + household income 1.31 (0.21, 2.42) 0.02 8.36 (3.68, 13.04) <0.001   

3. Model 2+ paternal education 1.21 (0.02, 2.39) 0.05 6.26 (1.27, 11.24) 0.01   

       

1. Home ownership (26y)*     -0.29 (-0.57, -0.02) 0.04 

2. Model 1 + own education     -0.30 (-0.58, -0.03) 0.03 

3. Model 3 + household income     -0.29 (-0.57, -0.02) 0.04 

4. Model 4 + paternal education     -0.29 (-0.57, -0.02) 0.04 

       

1. Household income (60–64y) 1.55 (0.54, 2.56) <0.001 6.01 (1.71, 10.32) 0.01 -0.22 (-0.45, 0.02) 0.07 

2. Model 2 + own education 1.08 (-0.01, 2.16) 0.05 2.99 (-1.59, 7.58) 0.20 -0.32 (-0.58, -0.07) 0.01 

3. Model 3 + paternal education 1.05 (-0.05, 2.14) 0.06 2.35 (-2.25, 6.96) 0.32 -0.34 (-0.59, -0.08) 0.01 
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b) Females (n=638) 

 Fat mass index 

(kg/m1.2) 

P Android: gynoid  

fat mass ratio 

P Appendicular lean mass index 

(kg/m2), adjusted for fat mass 

index 

P 

1. Paternal education (4y) 3.56 (2.10, 5.03) <0.001 9.95 (6.40, 13.51) <0.001 -0.27 (-0.47, -0.08) 0.01 

2. Model 1 + own education 2.95 (1.26, 4.63) <0.001 9.92 (5.83, 14.01) <0.001 -0.16 (-0.38, 0.06) 0.16 

3. Model 2 + occ. class 2.87 (1.19, 4.56) <0.001 9.61 (5.53, 13.69) <0.001 -0.15 (-0.37, 0.07) 0.19 

4. Model 3 + household income 2.92 (1.23, 4.60) <0.001 9.68 (5.59, 13.76) <0.001 -0.15 (-0.38, 0.07) 0.18 

       

1. Own education (26y) 2.58 (1.17, 3.98) <0.001 4.74 (1.29, 8.19) 0.01 -0.30 (-0.48, -0.11) <0.001 

2. Model 1 + occ. class 2.04 (0.49, 3.59) 0.01 2.62 (-1.16, 6.40) 0.17 -0.23 (-0.43, -0.03) 0.03 

3. Model 2 + household income 1.75 (0.17, 3.33) 0.03 2.23 (-1.64, 6.09) 0.26 -0.21 (-0.42, -0.01) 0.04 

4. Model 3 + paternal education 0.43 (-1.31, 2.17) 0.63 -2.14 (-6.37, 2.08) 0.32 -0.15 (-0.38, 0.08) 0.21 

       

1. Occupational class (53y) 2.25 (0.76, 3.75) <0.001 6.50 (2.86, 10.14) <0.001 -0.28 (-0.48, -0.09) 0.01 

2. Model 1 + income 1.57 (-0.03, 3.18) 0.05 5.60 (1.69, 9.51) 0.01 -0.24 (-0.45, -0.03) 0.03 

3. Model 2 + education  0.94 (-0.76, 2.64) 0.28 4.79 (0.63, 8.95) 0.02 -0.16 (-0.38, 0.06) 0.15 

4. Model 3 + paternal education 0.74 (-0.95, 2.43) 0.39 4.13 (0.03, 8.23) 0.05 -0.15 (-0.38, 0.07) 0.17 

       

1. Household income (60–64y) 2.26 (0.87, 3.65) <0.001 4.19 (0.79, 7.59) 0.02 -0.19 (-0.37, -0.01) 0.04 

2. Model 1 + occ. class 1.72 (0.23, 3.21) 0.02 2.27 (-1.36, 5.91) 0.22 -0.11 (-0.31, 0.08) 0.27 

3. Model 2 + own education 1.37 (-0.14, 2.89) 0.08 1.83 (-1.89, 5.54) 0.33 -0.07 (-0.27, 0.13) 0.49 

4. Model 3 + paternal education 1.45 (-0.06, 2.95) 0.06 2.08 (-1.58, 5.73) 0.27 -0.07 (-0.27, 0.12) 0.46 

 

Notes: *smaller available sample size for this indicator, n=594; occupational class refers to the highest household occupational class, derived 

using the Registrar General’s Classification system; analyses were restricted to those with valid measures for all indicators of socioeconomic 

position and body composition outcomes; associations were only included where evidence was found for association in previous univariable 

analyses  
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 Section b) Methods (mediation analysis) 6.4

 

 Analytical strategy 6.4.1

 

The analyses conducted in this section were conducted to examine whether the 

associations found between SEP and body composition outcomes were mediated by 

important factors identified in previous chapters (birth weight, measures of growth 

after birth, and physical activity in adulthood). Specifically, these analyses were 

conducted to test the hypotheses that associations between lower SEP in childhood 

with higher fat and lower lean mass were partly mediated by measures of growth in 

early life, and associations of lower childhood and adult SEP with higher fat and 

lower lean mass were partly mediated by physical activity levels in adulthood.  

 

A mediator was defined as a variable which explains, at least partially, how or why 

another explanatory variable affects the outcome.240 As such, in order for a variable 

to be a mediator, it should be associated with both the explanatory variable and 

outcome in expected directions. Associations between SEP indicators and potential 

mediators were examined in previous chapters and where not considered in 

previous chapters examined in this chapter.  

 

Associations between SEP indicators and body composition outcomes were only 

adjusted for potential mediators where there was evidence for association in 

univariable analyses. In addition, to limit the number of analyses conducted, only 

those SEP indicators judged to be most relevant for each outcome were included in 

these analyses—ie, where analyses in section a) found an association between the 

indicator and outcome after adjustment for all other indicators of SEP. Alternatively, 

where all indicators were no longer associated after this adjustment, multiple 

indicators were included.  

 

Childhood SEP was judged to reflect socioeconomic circumstances before birth and 

in childhood. As such, associations between childhood SEP and body composition 

outcomes were adjusted for birth weight, as analyses in Chapter 3 found higher 

birth weight was associated with lower android: gynoid ratio and higher 

appendicular lean mass. Associations between childhood SEP and outcomes were 

also adjusted for conditional weight gain from 0–7 and 7–20 years. These were 

calculated using the standardised exported residuals from sex-specific linear 

regression models using the earlier measure of weight (eg, 7 years) as the 

explanatory variable and the later measure (eg, weight at 20 years) as the 

outcome. These variables are therefore designed to not be correlated with each 
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other, and therefore reduce the likelihood of multicollinearity impacting on results. 

These age ranges were selected as analyses in Chapter 4 found that greater weight 

gain from 7–20 years was associated with higher fat mass and higher android: 

gynoid ratio, while greater weight gain from both 0–7 and 7–20 years was 

associated with higher lean mass. Associations between own educational 

attainment and outcomes were also adjusted for conditional weight gain from 0–7 

and 7–20 years; as discussed previously, educational attainment was considered as 

an indicator of SEP which captures socioeconomic circumstances in both childhood 

and adulthood. Measures of height gain were not included as analyses in Chapter 4 

showed that associations of height gain with fat and lean mass were largely 

explained by adult height, and adjustment for adult height was made by the use of 

height-adjusted indices. 

 

Associations between all indicators of SEP and outcomes were adjusted for 

measures of leisure time physical activity at ages which were judged to temporally 

mediate the association from SEP to body composition. Associations with childhood 

SEP, educational attainment, and home ownership at 26 years were adjusted for 

leisure time physical activity at 36, 43, 53 and 60–64 years, included as categorical 

terms (inactive, moderately active, and most active), as previously described in 

Chapter 5. Associations with occupational class at 53 years were adjusted for 

leisure time physical activity at 53 and 60-64 years, while associations with 

household income at 60-64 years were adjusted for leisure time physical activity at 

60-64 years. Objective measures of physical activity were not included as, unlike 

self-reported measures, they were not consistently associated with indicators of 

SEP (Chapter 5), and their inclusion would lead to a further reduction in the 

available sample size. 

 

 Section b) Results (mediation analysis) 6.5

 

 Indicators of socioeconomic position and potential mediators 6.5.1

 

Associations between indicators of SEP and potential mediators are shown in 

Appendix 12, Appendix 34, and Appendix 35. Lower paternal educational 

attainment was weakly associated with lower birth weight, while lower paternal and 

own educational attainment were associated with greater weight gain in periods 

from 7-20 years. For all included indicators lower SEP was associated with lower 

participation in leisure time physical activity in adulthood (associations with own 

educational attainment shown in Chapter 5). 
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 Mediation analyses: socioeconomic position and body 6.5.2

composition outcomes  

 

Table 24 shows the associations of indicators of SEP with fat mass, android: gynoid 

ratio, and appendicular lean mass (after adjustment for fat mass), both before and 

after adjustment for potential mediating variables.  

 

In males, the association between lower own educational attainment and higher fat 

mass was partly explained by weight gain from birth to 20 years and leisure time 

physical activity. The association between low household income and higher fat 

mass was partly explained by leisure time physical activity. Associations of low 

paternal and own educational attainment with higher android: gynoid ratio were 

also partly explained by weight gain from birth to 20 years and leisure time physical 

activity measures.  

 

In males, the association between lack of home ownership at 26 years and lower 

appendicular lean mass (after adjustment for fat mass) was not attenuated by 

leisure time physical activity. In contrast with associations found in univariable 

models, low household income was not associated with lower appendicular lean 

mass (after adjustment for fat mass) in the sub-sample with available data for 

leisure time physical activity. 

 

In females, the association between low paternal educational attainment and higher 

fat mass was partly explained by weight gain from birth to 20 years and leisure 

time physical activity. The association between lower household income and higher 

fat mass was also partly explained by leisure time physical activity. The association 

between lower paternal educational attainment and higher android: gynoid ratio 

was partly explained by birth weight, weight gain from birth to 20 years, and 

leisure time physical activity levels. Similarly, the association between lower 

occupational class at 53 years and higher android: gynoid ratio was also partly 

explained by physical activity levels.  

 

In females, the association between lower paternal educational attainment with 

lower appendicular lean mass (after adjustment for fat mass) was similar after 

adjustment for birth weight and weight gain from birth to 20 years; the association 

between low own educational attainment and lower appendicular lean mass was 

partly mediated by weight gain from birth to 20 years. Associations between all 

indicators of lower SEP with lower appendicular lean mass (after adjustment for fat 

mass) were partly attenuated (albeit weakly) by adjustment for leisure time 
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physical activity. Associations with paternal educational attainment and household 

income were weaker in the sub-sample with available data for leisure time physical 

activity. 

 

In summary, the above analyses provided some evidence that associations between 

lower SEP and higher fat and lower lean mass were partly mediated by factors 

considered in previous chapters.  
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Table 24. Differences in fat and lean mass (95% CI) between the hypothetical lowest and highest socioeconomic position (slope index of 

inequality), with adjustment for potential mediators  

a) Males (n=407) 

 Fat mass  

index (kg/m1.2) 

 

P Android: gynoid  

fat mass ratio 

P Appendicular lean mass 

index (kg/m2), adjusted for 

fat mass index 

P 

1. Paternal education (4y)   7.86 (2.27, 13.45) 0.01   

2. Model 1 + Birth weight   7.83 (2.27, 13.39) 0.01   

3. Model 1 + conditional weight 0–20y   7.29 (1.65, 12.93) 0.01   

4. Model 1 + physical activity   7.47 (1.69, 13.25) 0.01   

5. Fully adjusted   7.01 (1.22, 12.79) 0.02   

       

1. Own education (26y) 1.85 (0.59, 3.12) <0.001 9.94 (4.25, 15.62) <0.001   

2. Model 2 + conditional weight 0–20y 1.65 (0.41, 2.90) 0.01 9.20 (3.25, 15.14) <0.001   

3. Model 1 + physical activity 1.62 (0.32, 2.92) 0.02 9.33 (3.42, 15.24) <0.001   

4. Fully adjusted 1.45 (0.18, 2.72) 0.03 8.77 (2.63, 14.91) 0.01   

       

1. Home ownership (26y)*     -0.32 (-0.65, 0.00) 0.05 

2. Model 1 + physical activity     -0.32 (-0.65, 0.01) 0.06 

       

1. Household income (60-64y) 1.28 (0.08, 2.48) 0.04   -0.07 (-0.36, 0.22) 0.64 

2. Model 1 + physical activity 1.08 (-0.14, 2.29) 0.08   -0.01 (-0.30, 0.28) 0.95 
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b) Females (N=460) 

 Fat mass  

index (kg/m1.2) 

 

P Android: gynoid  

fat mass ratio 

P Appendicular lean mass 

index (kg/m2), adjusted for 

fat mass index 

P 

1. Paternal education (4y) 4.11 (2.37, 5.85) <0.001 9.57 (5.37, 13.78) <0.001 -0.19 (-0.43, 0.04) 0.10 

2. Model 1 + Birth weight 4.11 (2.36, 5.86) <0.001 9.40 (5.19, 13.60) <0.001 -0.18 (-0.41, 0.05) 0.13 

3. Model 1 + conditional weight 0–20y 3.43 (1.79, 5.07) <0.001 8.72 (4.52, 12.92) <0.001 -0.18 (-0.40, 0.04) 0.12 

4. Model 1 + physical activity 3.10 (1.30, 4.90) <0.001 8.58 (4.18, 12.98) <0.001 -0.16 (-0.39, 0.08) 0.19 

5. Fully adjusted 2.59 (0.89, 4.29) <0.001 7.74 (3.36, 12.13) <0.001 -0.13 (-0.36, 0.10) 0.25 

       

1. Own education (26y)     -0.37 (-0.59, -0.15) <0.001 

3. Model 2 + conditional weight 0–20y     -0.31 (-0.53, -0.10) <0.001 

4. Model 1 + physical activity     -0.36 (-0.58, -0.13) <0.001 

5. Fully adjusted     -0.28 (-0.50, -0.06) 0.01 

       

1. Occupational class (53y)   9.02 (4.62, 13.42) <0.001 -0.36 (-0.60, -0.12) <0.001 

2. Model 1 + physical activity   8.16 (3.67, 12.65) <0.001 -0.31 (-0.55, -0.08) 0.01 

       

1. Household income (60-64y) 2.22 (0.52, 3.92) 0.01   -0.16 (-0.38, 0.05) 0.14 

2. Model 1 + physical activity 1.78 (0.08, 3.49) 0.04   -0.11 (-0.33, 0.11) 0.32 

 

Note: *smaller sample size for this measure (N=386); conditional weight gain from 0–7 and 7–20 years were used, calculated using the 

standardised exported residuals from sex-specific linear regression models, eg, 7–20 years was calculated with a model containing weight at 7 

years as the explanatory variable and weight at 20 years as the outcome; paternal and own education, and home ownership were adjusted for 

leisure time activity at 36, 43, 53 and 60-64 years (at each age categorised as inactive, moderately, and most active); occupational class was 

adjusted for activity at 53 and 60–64 years, household income was adjusted for activity at 60–64 years; analyses were restricted to those with 

valid measures for all indicators of socioeconomic position, all potential mediators, and body composition outcomes; associations were only 

included where evidence was found for association in previous univariable and multivariable analyses  
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 Discussion 6.6

 

 Main findings  6.6.1

 

The main findings of this chapter are associations between multiple indicators of 

lower SEP (in childhood and adulthood) and higher fat mass at 60–64 years. 

Associations between lower SEP in childhood and higher fat mass were partly 

explained by weight gain from birth to 20 years, while associations of lower SEP in 

childhood and adulthood with higher fat mass were partly attenuated by leisure 

time physical activity levels in adulthood. 

  

There was some evidence that lower SEP was associated with lower appendicular 

lean mass after adjustment for fat mass, although findings differed by sex: in males 

only lack of home ownership at 26 years and low household income at 60–64 years 

were associated with lower appendicular lean mass; in females, most indicators of 

lower SEP (in childhood and adulthood) were associated with lower appendicular 

lean mass. In some cases these associations were partly explained by leisure time 

physical activity levels in adulthood.  

 

 Comparison with previous studies 6.6.2

 

While a large number of previous studies have reported associations between lower 

SEP (in both childhood and adulthood) and higher BMI in adulthood (particularly in 

females), few have examined associations with direct measures of fat or lean mass. 

Previous studies using direct measures have tended to produce inconsistent 

findings, have only considered single indicators of SEP, and have not examined 

mediating factors. In addition, no studies have made adjustment for fat mass when 

examining associations with lean mass.  

 

Findings from this chapter are concordant with previous NSHD studies finding 

associations between indicators of lower SEP (in childhood and lower educational 

attainment) and higher BMI and waist circumference in adulthood at earlier 

ages.167;168;328;423;457;458  

 

The analyses conducted in this chapter build on previous NSHD work by considering 

a greater range of indicators of SEP in childhood (including paternal educational 

attainment) and adulthood (home ownership at 26 years, NS-SEC derived 

occupational class at 53 years and household income at 60–64 years), by using 

direct measures of fat and lean mass, and by examining whether associations 
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between SEP and body composition outcomes are mediated by weight gain from 

birth to 20 years and physical activity levels in adulthood.  

 

 SEP and fat mass: explanation of findings 6.6.3

 

As outlined previously in this chapter, associations between lower SEP and higher 

fat mass are likely to be explained by the socioeconomic patterning of the 

determinants of fat mass. These include diet and physical activity, and are 

described in more detail in Chapter 1.  

 

While associations between lower SEP and higher fat mass were typically partly 

explained by the potential mediators considered, the extent to which each potential 

mediator explained each association varied. This variability is likely to be due to 

differences in the associations of each potential mediator with SEP indicators and 

outcomes. Lower childhood SEP was weakly associated with lower birth weight in 

females, which in turn was associated with higher android: gynoid ratio, but not 

higher fat mass; as would be expected, associations between lower SEP in 

childhood and higher android: gynoid ratio in females were partly by explained by 

birth weight, while those with whole body fat mass were not. Lower SEP in 

childhood was associated with greater weight gain from 7–20 years, which in turn 

was associated with higher fat and android: gynoid ratio (Chapter 5); as such, 

associations between lower SEP in childhood and higher fat and android: gynoid 

ratios were both partly explained by weight gain. Similarly, lower SEP in childhood 

and adulthood was associated with lower participation in leisure time physical 

activity across adulthood, which in turn was associated with lower fat mass (more 

consistently in females than males); as such, associations between lower SEP and 

higher fat mass was partly explained by leisure time physical activity levels (to a 

greater extent in females than males).  

 

Associations between lower SEP and higher fat mass were not fully explained by the 

potential mediators considered. This could be due to limitations in the 

measurement of potential mediators. For example, leisure time physical activity 

measures were used in this chapter although, as discussed in Chapter 5, leisure 

time activity is likely to be an imperfect measure of total energy expenditure. 

Measures of total physical activity energy expenditure could better explain the 

associations between lower SEP and higher fat mass. Although SEP was not 

strongly associated with objectively assessed total physical activity energy 

expenditure at 60–64 years (Chapter 5), SEP may have been associated with this 

measure earlier in life when the socioeconomic differences in fat mass developed.  
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Factors other than pre-adulthood weight gain and physical activity are also likely to 

explain the associations between lower SEP and higher fat mass. While it is likely 

that SEP differences in energy intake may partly explain these associations, the 

extent to which this is demonstrable depends on the accuracy by which energy 

intake is measured. As discussed in Chapter 1, research has found evidence that 

there is inaccuracy and systematic bias in self-reported dietary intake data (such 

that individuals with higher fat mass are more likely to report eating less).214;215 

Following on from this, studies that have examined associations between SEP and 

energy intake have produced inconsistent findings,215 and components of diet have 

been found to not fully explain associations between lower SEP and higher BMI in 

previous studies.463-465 Factors that go on to affect energy intake may however be 

more accurately measured than energy intake itself, and therefore explain 

associations between SEP and fat mass. For example, one study found that 

measures of psycho-social stress in adolescence mediate part of the association 

between lower SEP and higher BMI.466 

 

As in previous chapters, associations with android: gynoid ratio were driven by the 

separate associations with android and gynoid fat mass (shown in Appendix 36). In 

males, associations between lower SEP and higher android: gynoid ratio were 

driven solely by associations between lower SEP and higher android fat mass; in 

females lower SEP was associated with higher android and gynoid fat mass, with 

similar effect sizes (as females have on average more gynoid than android fat mass 

this lead to a higher ratio). These findings suggest that in addition to higher whole 

body fat mass, those of lower SEP had proportionally more abdominal fat mass. 

While the factors that regulate fat distribution are unknown, high levels of stress 

have been hypothesised as causing preferential distribution of fat in the abdominal 

(android) region, due to higher stress levels stimulating the hypothalamic-pituitary-

adrenal axis and the sympathetic nervous system.467 SEP could therefore feasibly 

affect fat distribution by leading to differences in stress. 

 

Associations between lower SEP (in both childhood and adulthood) and higher fat 

mass were typically stronger in females. Sex differences are likely to reflect sex 

differences in the socioeconomic patterning of factors which influence fat mass. For 

example, there is some evidence to suggest that social pressure against higher fat 

mass is higher in females from higher SEP groups.468 Additionally, females of lower 

SEP tend to undergo puberty earlier171 and give birth to more children: both of 

these factors may lead to an increase in accumulation of fat mass through biological 

mechanisms (eg, changes in hormone secretion) and social mechanisms (eg, 
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reduction in physical activity levels).466;469 In contrast, earlier pubertal maturation 

in males is associated with higher whole body lean mass (but not fat mass).330 Sex 

differences in the pathways leading from lower SEP to higher fat mass have also 

been suggested in studies investigating mediators of associations between lower 

SEP and higher BMI, although the pathways operating in each sex are not 

understood.464;466  

 

In this chapter, the strengths of associations between the different indicators of 

lower SEP and higher fat mass differed by sex and outcome (fat mass index 

compared with android: gynoid ratio). While a comprehensive study of the 

pathways that link each indicator with outcomes was beyond the scope of this 

chapter, differences in associations between indicators and fat mass may be 

informative. For example, the finding that lower educational attainment had 

persistent associations with higher fat mass in males but not females suggests that 

in this cohort females may have benefited less from education (with respect to 

health behaviours). Differential effects of education between the sexes have 

previously been found in the NSHD, for example higher educational attainment was 

associated with lower alcohol consumption in males but higher consumption in 

females at 36 years.470 In females, lower paternal educational attainment was more 

strongly associated with higher fat mass than paternal occupational class, and may 

therefore have been more closely associated with the development of relevant 

behavioural traits.  

 

Both household income at 60–64 years and occupational class at 53 years were 

used as indicators of adult SEP. These may feasibly be related by specific pathways 

to fat mass. For example, associations between low household income and not 

occupational class may suggest that associations reflect differences in access to 

material resources, rather than differences in factors specific to occupational class 

(such as occupational-based physical activity). In addition, a high income may 

protect against food insecurity which may increase the likelihood of binge eating.450 

However occupational class at 60–64 years was not used in these analyses since 

most study members (approximately 61%) had retired from their main occupation. 

As such, household income may instead have been a more accurate measure of 

SEP at 60-64 years (and preceding ages) than occupational class at 53 years. 

 

Differences in association between indicators of SEP and fat mass could also be 

partially influenced by selection (ie, aspects of body composition influencing 

subsequent SEP).166 Selection may either strengthen or weaken associations found: 

for example, if acute illness is followed by loss of weight (and fat mass), a reduced 
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capacity to undertake work and lower household income, associations between 

lower income and higher fat mass would be weakened. Alternatively, higher fat 

mass may impair educational attainment,471 thereby strengthening associations 

between low educational attainment and higher fat mass. However, the prevalence 

of childhood obesity was comparatively low in the NSHD compared with 

contemporary cohorts, suggesting that this is unlikely to be a major explanation of 

findings. Selection is unlikely to influence associations with SEP in childhood since 

the indicators represent events formulated predominantly before the birth of the 

study member (eg, parental educational attainment).  

 

 SEP and lean mass: explanation of findings 6.6.4

 

Associations between lower SEP and lower lean mass likely reflect socioeconomic 

differences in the determinants of lean mass (outlined further in Chapter 1), 

including the development of peak lean mass in pre-adult life, and physical activity 

levels in adulthood.  

 

The relative strength of associations between SEP and whole body lean mass 

mirrored those between SEP and fat mass, and associations between SEP and 

appendicular lean mass differed after adjustment for fat mass: after adjustment, 

there was evidence for association between lower SEP and lower appendicular lean 

mass, although fewer indicators were associated in males (lack of home ownership 

and low household income only). These findings suggest that associations between 

lower SEP and lower lean mass were confounded by fat mass.  

 

Associations between lower SEP in childhood and lower lean mass in females (after 

adjustment for fat mass) were only slightly attenuated after adjustment for birth 

weight. This may be explained by the weak unadjusted associations between SEP 

and birth weight. Unlike associations found between SEP and fat mass, associations 

between lower SEP and lower lean mass were typically not explained by weight gain 

from birth to 20 years. This may be expected, as those of lower SEP in childhood 

tended to undergo greater weight gain in this period, which in Chapter 4 was 

associated with higher fat and lean mass. 

 

Associations between lower SEP and lower lean mass tended to be partly but not 

fully explained by leisure time physical activity levels (which, as shown in Chapter 

5, were associated with higher lean mass). As such, other factors may explain 

these associations. These may include dietary factors such as protein intake, which 

has been associated with higher lean mass,186;193;194 although as discussed 



200 

 

previously the extent to which this is demonstrable depends on the accuracy of 

dietary assessment which may vary by body weight. Conflicting findings have been 

reported for associations between SEP and protein intake,472 and to the author’s 

knowledge no studies have examined the mediators of associations between SEP 

and lean mass.  

 

That lower SEP was associated with lower lean mass (after adjustment for fat 

mass) more consistently in females than males suggests that there are sex 

differences in the socioeconomic patterning of the determinants of lean mass. In 

males, indicators may reflect conflicting exposures which are both beneficial and 

detrimental in leading to higher lean mass. For example, lower occupational class in 

adulthood may be characterised by a history of manual occupations, and thereby 

greater occupational-based weight-bearing physical activity (leading to higher lean 

mass), but was also associated with lower participation in leisure time physical 

activity levels (leading to lower lean mass). 

 

The strength of associations between indicators of lower SEP and lower lean mass 

differed by indicator. In males, unlike females, lack of home ownership at 26 years 

was associated with lower appendicular lean mass at 26 years. Home ownership at 

this age was previously found to be a strong predictor of lower mortality risk in 

both sexes in the NSHD,473 and is likely to reflect the acquisition of wealth in early 

adulthood. It is feasible that this indicator could reflect different phenomena in each 

sex, such as the personal acquisition of wealth in males (with favourable effects on 

future disposable income), and home ownership due to marriage in females. 

However, it is unclear why home ownership was related to lean mass but not fat 

mass in males, suggesting that further research is required.  

 

In both sexes lower household income was associated with lower appendicular lean 

mass. Lower disposable income could theoretically impair the purchase of a number 

of resources which lead to the development of higher lean mass—notably a protein-

rich diet and access to leisure based physical activity (such as gym membership).  

 

 Methodological considerations 6.6.5

 

While this chapter included more indicators of SEP than used in previous studies, in 

some instances the indicators used were relatively crude. For example home 

ownership at 26 years was used and is arguably an indicator of wealth acquisition. 

More comprehensive measures of wealth in adulthood (value of assets minus debt) 

were not available—these tend to be more strongly related to health related-
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outcomes474 than cruder estimates, and may therefore be more closely related to 

body composition. However, lack of home ownership at 26 years was previously 

strongly associated with increased mortality in the NSHD473 suggesting that it may 

be an informative indicator of SEP in this population.  

 

In addition, household income is likely to be only a crude measure of disposable 

income.426 Given the same household income, households with more residents, 

greater housing costs and/or debt payments would have lower disposable income. 

Additional analyses showed similar results were obtained when household income 

was equivilised by household size (divided by the square root of household 

number),475 suggesting this was unlikely to substantially affect associations found 

(data not shown). Due to inflation, the value of the state pension and earned 

income increased in each year of the study (from 2006–2010; 60 to 64 years), and 

this may have affected the categorisation of household income—participants who 

attended clinic visits towards the end of data collection (64 years) would be more 

likely to be placed in a higher household income than those who attended earlier. 

As expected, household income was associated with other indicators of SEP in the 

expected direction (with lower income associated with lower SEP in other 

indicators), suggesting that the measure has some value.  

 

In this chapter the slope index of inequality was used to quantify associations 

between SEP and body composition outcomes. While this methodology assumes a 

linear relationship between exposure and outcome, in a minority of associations 

there was evidence for departure from linearity—for example associations between 

lower paternal occupational class and higher fat mass index in males. In these 

cases the use of the slope index of inequality may have been inappropriate, and an 

oversimplification of the genuine nature of association. The tabulation of the mean 

body composition outcomes by SEP group enabled the cause of deviation from 

linearity to be examined and in all cases it was judged that the deviation from 

linearity was modest in absolute terms. In the majority of associations examined 

there was little evidence for departure from linearity, suggesting that the slope 

index was appropriate for use.  

 

The use of complete case analyses in this chapter may have resulted in bias. 

However, in almost all cases associations were similar in analyses conducted using 

the maximum available sample size and those conducted in samples restricted to 

those with valid data for multiple indicators of SEP or for potential mediators. In 

both sexes, associations between lower household income and lower appendicular 

lean mass (after adjustment for fat mass) were weaker in the sample with available 
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data for potential mediators. This was due to those with valid data for all potential 

mediators tending to have higher household income. However, further analyses 

showed that associations between lower household income and lower appendicular 

lean mass (after adjustment for fat mass) were found in both sexes when analyses 

were restricted to those with valid data for body composition measures and leisure 

time physical activity at 60–64 years (males: (β(slope index term)=-0.22, 95% CI: 

-0.44, -0.01; females: β=-0.16, 95% CI: -0.33, 0.00). After adjustment for leisure 

time physical activity at 60–64 years these associations were partly attenuated in 

both sexes (males: β=-0.15, 95% CI: -0.37, 0.07; females: β=-0.13, 95% CI: -

0.29, 0.04). These further analyses are in concordance with results from main 

analyses.  

 

Attrition in the NSHD, resulting in some participants not providing full body 

composition data at 60-64 years, may have also introduced bias. Analyses in 

Chapter 2 showed that those of lower SEP (in childhood and adulthood) and those 

who were heavier at 53 years were less likely to provide full body composition 

outcome data. Assuming that a higher weight is capturing higher fat mass, this 

pattern of missing data would have led to reduced power to detect the association 

between lower SEP and higher fat mass. 

 

 Strengths 6.6.6

 

Chapter 1 presents the overall strengths of the NSHD, while the strengths specific 

to this chapter are outlined below. 

 

A major strength of this chapter is the use of a wide number of indicators of SEP in 

both childhood and adulthood, unavailable in previous studies using direct 

measures of fat and lean mass. The use of multiple indicators in both childhood and 

adulthood enabled the pathways underlying associations with outcomes to be 

investigated. By using multiple indicators (which likely reflect different dimensions 

of SEP), the most relevant indicator for each outcome was investigated and 

selected for use in multivariable analyses. The use of the slope index of inequality 

ensured that the effect sizes for associations with outcomes were comparable 

across indictors of SEP. 

 

Another major strength of this chapter is the use of direct measures of body 

composition obtained using DXA: most previous studies have used indirect 

measures and of those that have used direct measures a sizable proportion have 

used BIA, considered to be inaccurate and imprecise.178-180 Previous studies have 
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also tended not to examine associations with both fat and lean mass, or do not 

consider how SEP relates to both masses. By considering both masses in this 

chapter it was found that those of lower SEP tended to have a higher fat: lean mass 

ratio and that, once adjusted for fat mass, there was some evidence that lower SEP 

was associated with lower lean mass. In addition, this chapter included regional 

measures of body composition (appendicular lean mass and android: gynoid 

ratio)—as discussed in Chapter 1, these may be more closely related to health and 

physical functioning outcomes, and therefore warrant study. Finally, unlike some 

previous studies, fat and lean mass were adjusted for adult height in this chapter. 

As lower SEP predicts shorter adult height,408;409 and shorter adults tend to have 

lower fat and lean mass (Chapter 2), adult height could confound associations 

between lower SEP and higher fat mass, or mediate associations between lower 

SEP and lower lean mass. The presence of associations after this adjustment 

suggests that associations were not solely explained by adult height. As discussed 

in Chapter 2, height-adjusted measures of fat and lean mass are likely to be more 

closely related to health and physical functioning.  

 

To the author’s knowledge, no previous studies have examined the mediators of 

associations between SEP and direct measures of fat and lean mass. These 

analyses enabled the pathways underlying association to be better understood than 

in previous studies. In addition, the study of mediation provides stronger evidence 

for the hypothesised association between the exposure (SEP) and outcome (body 

composition).456 

 

 Conclusion and links to other chapters 6.6.7

 

This chapter has shown evidence for association between multiple indicators of 

lower SEP (in childhood and adulthood) and higher fat mass at 60–64 years. These 

associations were partly mediated by factors considered in previous chapters—

associations between lower SEP in childhood and higher fat mass were partly 

explained by weight gain from birth to 20 years, and associations of lower SEP in 

childhood and adulthood with higher fat mass were partly explained by participation 

in leisure time physical activity across adulthood. 

  

There was some evidence that lower SEP was associated with lower appendicular 

lean mass after adjustment for fat mass, although findings differed by sex: in males 

only lack of home ownership and low household income were associated with lower 

appendicular lean mass; in females, most indicators of lower SEP (in childhood and 

adulthood) were associated with lower appendicular lean mass. In some cases 
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these associations were partly explained by leisure time physical activity levels in 

adulthood. 

 

The following chapter, Chapter 7, summarises the main findings of the thesis and 

discusses the implications, the strengths and weaknesses of the work conducted, 

and recommendations for future work. 
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 Chapter 7: Summary of main findings, implications, 7.

strengths and limitations, and future work  

 

 Summary of main findings 7.1

 

This thesis used data from a birth cohort study, the NSHD, and found explanatory 

factors in both early and adult life were associated with direct measures of fat and 

lean mass at 60–64 years.  

 

Chapter 3 showed that higher birth weight (an indicator of greater prenatal growth) 

was associated with higher lean mass and a lower android: gynoid ratio. Chapter 4 

found that greater weight gains in infancy, early childhood and in late adolescence 

(birth to 20 years) were associated with higher lean mass, while greater weight 

gains in later childhood and adolescence (7–20 years) were associated with higher 

fat mass and a higher android: gynoid ratio. Greater height gains in childhood and 

adolescence were associated with higher lean mass, associations which were largely 

explained by adult height.  

 

Chapter 5 found associations between greater total physical activity energy 

expenditure at 60-64 years and lower fat mass—this association was driven by 

variations in light intensity activity. In contrast, greater total physical activity 

energy expenditure was associated with higher appendicular lean mass (after 

adjustment for fat mass), and this association was driven by variations in 

moderate-vigorous intensity activity. Building on these cross-sectional analyses, 

Chapter 5 found evidence for cumulative benefits of leisure time physical activity 

across adulthood (36, 43, 53 and 60–64 years) in leading to lower fat mass (in 

females) and higher appendicular lean mass (in both sexes, after adjustment for fat 

mass). 

 

Chapter 6 found associations between multiple indicators of lower SEP (in childhood 

and adulthood) and higher fat mass and higher android: gynoid ratio. After 

adjustment for fat mass, lower SEP in childhood was associated with lower 

appendicular lean mass (in females but not males), and lower SEP in adulthood was 

associated with lower appendicular lean mass (more consistently across indicators 

in females).  

 

Chapter 6 then examined whether associations between SEP and body composition 

outcomes were mediated by the explanatory factors examined in Chapter 3–5. 
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Associations between lower SEP in childhood and higher fat mass were partly 

explained by weight gain from birth to 20 years, while associations of lower SEP in 

childhood and adulthood with higher fat mass were partly explained by participation 

in leisure time physical activity in adulthood. Associations between lower SEP and 

lower appendicular lean mass (after adjustment for fat mass) were in some cases 

partly attenuated by leisure time physical activity across adulthood, but not by 

weight gain from birth to 20 years. 

 

In each chapter the analyses conducted extended previous findings using 

anthropometric measures of fat mass (such as BMI) in the NSHD and in other 

cohort studies. Few previous studies have used direct measures of fat and lean 

mass in adulthood, and as such new findings were presented in each chapter. For 

example, no previous studies have examined whether there are cumulative benefits 

of physical activity across adulthood for fat and lean mass, and few have used 

objective measures of physical activity in later adulthood. The implications of these 

findings are discussed below.  

 

 Implications of findings  7.2

 

As discussed in more detail in Chapter 1, there is evidence that high fat mass leads 

to increased risk of chronic diseases, mortality, and worse physical functioning, and 

that low lean mass is associated with worse physical functioning, low bone mineral 

content and density, and adverse glucose metabolism. As such, the identification of 

factors associated with these masses in later adulthood is important and could be 

used to inform public health interventions which aim to reduce fat mass and 

increase lean mass in the population. 

 

This thesis used a life course perspective and found factors across life (from birth to 

adulthood) were associated with fat and lean mass in later adulthood. These 

findings suggest that efforts to reduce fat mass and increase lean mass in the 

population should be implemented from early life onwards. While exercise and 

dietary interventions in later adulthood may lead to reductions in fat and gains in 

lean mass, these are economically costly to operate on a national scale and 

typically lead to only modest long term changes in these masses.184;390 Further, 

resistance exercise interventions designed to lead to gains in lean mass tend to be 

less effective at older ages,184 and participation in exercise interventions tends to 

be strongly socioeconomically patterned, with those of low SEP least likely to 

participate.476 As such, early life interventions may be a useful additional means of 
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leading to changes in fat and lean mass in adulthood, and could be more effective 

than intervening in adulthood.75;210;211  

 

Findings from Chapters 3 and 4 suggest that growth in early life may have lasting 

effects on fat and lean mass that persist into later adulthood. Associations found 

suggest that greater weight gain in early life (before birth and in infancy) may be 

beneficial by leading to higher lean mass and a lower android: gynoid ratio, while 

greater weight gain in later childhood and adolescence (7–20 years) may be 

detrimental by being particularly related to higher fat mass and android: gynoid 

ratio. These findings add to the evidence base of the complicated long-term 

implications of growth before and after birth, and are likely to have greater public 

health implications than previous studies using BMI as an outcome.  

 

While there is some evidence from experimental studies that birth weight477 and 

infancy weight gain can be modified by nutritional interventions,208 the implications 

of findings from Chapters 3 and 4 should be considered within the broader context 

of uncertainty regarding the consequences of growth rates (before and after birth) 

for health outcomes.478 For example, meta-analyses have found higher birth weight 

to be associated with lower risk of cardiovascular disease mortality,247 but increased 

risk of cancer mortality (in males)247 and type 1 diabetes.479 The promotion of early 

life weight gain across the entire distribution may also have adverse consequences 

for the mother by increasing the risk of obesity and need for caesarean sections.480 

As has been suggested, rather than increasing growth rates across the entire 

distribution, it may instead be more effective to focus on preventing adverse early 

growth among those in the lower end of the distribution (eg, preventing preterm 

birth).480  

 

Results from Chapter 5 suggest that the benefits of physical activity in leading to 

lower fat mass are not limited to high-intensity aerobic exercises, as light intensity 

physical activity was related to fat mass. The benefits of light intensity physical 

activity are particularly relevant for those in older age: such activities may be less 

likely to lead to falls and are more feasibly undertaken by those with health 

complications (which increase in prevalence in old age).212 Results from Chapter 5 

also suggest that participating in greater moderate-vigorous activity may lead to 

higher lean mass. This suggests a need to encourage greater participation in 

activities of higher intensities which are feasibly and safely undertaken by older 

adults. While intervention studies have shown that resistance exercises are 

effective in leading to gains in lean mass, results from Chapter 5 suggest that a 

broader range of leisure time activities are also beneficial. 



208 

 

 

Findings from Chapter 5 suggest that there are cumulative benefits of physical 

activity across adulthood in leading to lower fat mass (in females) and higher lean 

mass (in both sexes). These results support the need to encourage higher activity 

levels across adulthood on the basis of the potential lasting beneficial effects. As 

there is some evidence that activity levels track across life,331;332;371 the promotion 

of physical activity in childhood may have lasting effects across life. The weaker 

evidence for cumulative benefits in males for fat mass suggests that leisure time 

physical activity levels need to be sufficiently high to lead to lower fat mass, and 

not offset by lower activity in other domains or higher energy intake. Although 

these analyses were limited to leisure time physical activity, this may be an 

important intervention target during working age in the context of the increasingly 

sedentary nature of occupations.  

 

As suggested in previous research, efforts to increase population physical activity 

levels can operate at a number of levels. For example, the health benefits of 

physical activity can be disseminated, intervention programmes can be offered to 

individuals and groups, and the external environment can made to be more 

conducive to physical activity.476;481 Given the importance of physical activity for 

body composition and health outcomes, and the uncertain long-term effectiveness 

of single interventions,482 it may be prudent to recommend multiple interventions at 

the individual and societal levels to increase population physical activity levels.  

 

Results from Chapter 6 suggest that reducing socioeconomic inequalities in both 

childhood and adulthood may have beneficial effects by leading to fewer individuals 

in later adulthood developing higher fat mass and, particularly for females, lower 

lean mass. This is provided that inequalities are reduced by upwards mobility in 

those of lower SEP. Findings from this chapter suggest that reducing socioeconomic 

inequalities could have favourable downstream effects on fat and lean mass by 

leading to lower population levels of weight gain in childhood and adolescence, and 

higher adult leisure time physical activity levels.  

 

As suggested in the government-commissioned Marmot review on health 

inequalities in 2010, multiple policies operating across life could feasibly reduce 

socioeconomic inequalities.291 For example, early life interventions could be used to 

improve educational attainment, and minimum income levels in adulthood can be 

set to enable healthy living. The most effective means of reducing socioeconomic 

inequalities are uncertain and the evidence is typically drawn from the evaluation of 

government policies which are arguably limited in scope and ineffectively 
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implemented across socioeconomic groups.483;484 Further, there is some evidence 

that the effects of early life interventions on socioeconomic inequalities may only be 

manifest after prolonged periods of time, suggesting that long term evaluations are 

required.485  

 

In Chapter 6 the strengths of associations found between indicators of SEP and 

body composition varied by each indicator used. This may have implications for 

studies which attempt to accurately quantify associations between SEP and 

outcomes, and suggest that, where possible, multiple indicators should be used. For 

example, while paternal occupational class is often used to estimate the influence of 

SEP in childhood, paternal educational attainment was more strongly associated 

with fat mass in females (~30% larger effect sizes). 

 

 Generalisability 7.3

 

The extent to which findings from this thesis generalise to younger cohorts may be 

questionable, particularly for Chapters 3 and 4. Associations between weight gain 

and body composition in adulthood may differ in younger cohorts that have 

experienced higher prevalence of childhood obesity—17;486 in these cohorts weight 

gain in infancy may predominantly reflect gains in fat mass. In older cohorts 

including the NSHD, as discussed in Chapter 4, weight gain in infancy may 

predominantly reflect gains in lean mass. However, consistent with results from 

Chapter 4, studies conducted in younger adults have also found that greater weight 

gain in later childhood is associated with higher fat mass.261;319  

 

In addition to the generalisability of findings to younger cohorts, it should be noted 

that the NSHD, similar to many other European cohort studies,487 is comprised of 

Caucasians, and as such not all findings may be relevant to those of different ethnic 

groups. Ethnic differences in body composition have been found both in early277 and 

adult life,488 and the determinants of body composition may differ by ethnicity. 

Findings could also differ across nations which may have different distributions of 

the determinants of fat and lean mass. 

 

Ultimately, few studies have been conducted using direct measures of fat and lean 

mass, limiting the comparison of findings by age, ethnicity or country. There is 

however some evidence that findings from Chapters 5 and 6 are consistent with 

those in younger cohorts: using the Avon Longitudinal Study of Parents and 

Children, lower SEP was associated with higher fat mass in childhood,452 and higher 

physical activity levels were associated with lower fat mass in adolescence.188 
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 Strengths and limitations of the work conducted in this 7.4

thesis 

 

The specific strengths and limitations of the analyses conducted in Chapters 3–6 

are discussed within each chapter. To avoid repetition, only the overarching 

strengths and limitations of the work conducted in this thesis will be described 

below. 

 

 Strengths 7.4.1

 

The use of a life course perspective is a major strength of this thesis. As described 

in Chapter 1, this perspective is useful to understand the factors which across life 

impact on fat and lean mass. The use of this perspective led to the identification of 

potentially modifiable factors in both early and adult life which may affect fat and 

lean mass.  

 

The rich data collected in the NSHD was a main strength and enabled analyses to 

be adjusted for multiple relevant potential confounders. For example, associations 

found in Chapters 3–5 were independent of indicators of SEP. Multiple indicators of 

SEP were available and in all cases were prospectively ascertained, limiting 

measurement error, and thereby reducing the likelihood of residual confounding by 

SEP. In addition, the rich data also enabled the potential mediators of associations 

between SEP and body composition outcomes to be investigated. 

 

The repeat measures of weight and height, physical activity, and SEP in the NSHD 

were used in this thesis to address specific research questions which it would not be 

possible to address using single measures. For example, repeat measures of weight 

were used to show which periods of weight gain were associated with fat and lean 

mass. Repeat measures of leisure time physical activity were used to test for 

evidence of cumulative benefits of physical activity across adulthood in leading to 

lower fat and higher lean mass.  

 

Another main strength of this thesis is the use of direct measures of fat and lean 

mass. As discussed in Chapter 2, these were obtained using DXA, a method which 

is considered to be relatively highly accurate and precise, and unlike many other 
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methods enable regional measures of fat and lean mass to be assessed. The use of 

appendicular lean mass in this thesis provided further evidence for associations with 

skeletal muscle mass, as associations found in previous studies with whole body 

lean mass could feasibly be driven by organ or bone mass. The use of android: 

gynoid ratio showed that factors considered in this thesis were in many instances 

differentially associated with abdominal and leg/hip fat mass. As discussed in 

Chapter 2, these may be differentially important for subsequent health, and 

therefore warrant study.  

 

The ways in which fat and lean mass were used in analyses had a number of 

strengths. Unlike many previous studies, fat and lean mass were adjusted for adult 

height and the implication of this adjustment was discussed in each chapter (eg, as 

a mediator or potential confounder). Finally, fat and lean mass were treated as 

continuous outcomes and not categorised, preserving statistical power. This was 

also justified given the lack of agreement on cut-points for direct measures of high 

fat and low lean mass, and given the need to understand variability in these 

masses across the full range. Previous studies have typically not considered 

whether associations with lean mass are driven by associations with fat mass. This 

was considered in this thesis, and in some cases important associations were only 

found after this adjustment.  

 

 Limitations 7.4.2

 

In this thesis, a decision was taken to use complete case analyses with main 

analyses restricted to those with valid data for explanatory variables, main 

confounders, and outcomes. This led to a reduction in sample size and a 

consequent reduction in statistical power. It also may have introduced bias whereby 

the genuine associations were either weakened or strengthened in the samples 

analyses. However, exclusion due to missing data for potential confounders was 

relatively small in each chapter, and sensitivity analyses showed findings were 

similar when this restriction was removed, suggesting that this was unlikely to have 

substantially impacted on findings.  

 

Aside from introducing bias, the use of complete case analyses led to a reduction in 

sample size and consequent reduction in statistical power. However, in comparison 

with most previous studies with direct measures of fat and lean mass, the NSHD is 

comparatively large. As such, in most cases the analyses conducted had sufficient 

power, with p-values for main associations typically below 0.05. In addition to 

presenting p-values, for all main analyses confidence intervals were presented, 
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providing additional information about the likely strength of association in the 

population.489 Efforts were made in this thesis to preserve the sample size and 

therefore maximise the available statistical power. For example, explanatory 

variables were not categorised where possible.  

 

Multiple imputation could have been conducted to impute missing values, leading to 

a larger sample size available for analyses; this would have led to an increase in 

statistical power.490 While complete case analyses were arguably sufficient to 

address the aims of this thesis, multiple imputation could be useful in future 

analyses of smaller, more restricted samples (eg, when investigating in more detail 

the pathways underlying associations between SEP and body composition). 

However, multiple imputation assumes that the reason for missing data is 

dependent on variables within the dataset (‘missing at random’) and not 

unmeasured variables (‘missing not at random’). Where this assumption is not 

valid, multiple imputation could feasibly introduce bias.  

 

The NSHD, like all longitudinal studies, has experienced losses to follow-up which 

could also introduce bias. A strength of the NSHD is that substantial prospective 

data exists in which to examine the predictors of loss to follow-up, and this can be 

used to infer the effect of attrition on associations found. This was examined in this 

thesis in Chapter 2, which found that those who provided full body composition 

outcome data at 60-64 years were more likely to have been of higher SEP (in 

childhood and adulthood), be more physically active at 53 years, and weigh less at 

53 years. Assuming that weight was capturing fat mass, as discussed in Chapters 5 

and 6, this pattern of missing data was likely to have led to a reduced power to 

detect the associations of lower SEP and lower physical activity levels with higher 

fat mass. Further, there is no obvious reason why the associations observed should 

differ in the sample with missing data. 

 

 Future work 7.5

 

Like all observational studies, the findings presented in this thesis cannot in 

isolation provide definitive proof that associations observed are causal. The 

replication of findings found in this thesis may therefore provide further strength of 

evidence to support the conclusions drawn in each chapter. For example, while a 

relatively large number of studies have examined associations between birth weight 

and body composition in adulthood, fewer have been conducted in later adulthood 

and none have used android: gynoid ratio as an outcome. Few studies have 

examined associations of measures of growth after birth (Chapter 4), physical 
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activity (Chapter 5), or SEP (Chapter 6) with fat and lean mass in adulthood. The 

replication of findings in contexts with different confounding structures may be 

particularly informative. For example, associations of greater weight gains in 

childhood and adolescence with higher adult fat mass could be replicated in a 

cohort or country in which weight gain is not associated with SEP, providing further 

evidence that these associations are not explained by residual confounding by early 

life SEP. The replication of findings in cohorts with different physical activity 

patterns may also be informative. For example, in cohorts where objectively 

assessed total physical activity energy expenditure and time spent in moderate-

vigorous intensity activity are less strongly correlated than in the NSHD, their 

independent associations with body outcomes may be estimated. 

 

As described in each chapter, the explanatory variables used were largely 

improvements on previous work. However, other explanatory variables not 

collected in the NSHD may be more closely related to body composition outcomes. 

These measures may include direct measures of prenatal growth (within 

trimesters), weight gain in early infancy, measures of bouts of sedentary time, and 

more refined indicators of adult SEP such as comprehensive measures of wealth 

and disposable income. 

 

As associations of lower SEP with higher fat and lower lean mass were not fully 

explained by the potential mediators considered, future work could examine the 

roles of other potential mediators. As discussed in Chapter 6, these factors are 

likely to include dietary factors which may be challenging to accurately assess in 

population studies.  

 

Chapter 6 focused on associations between SEP in childhood and adulthood with 

body composition outcomes. Future work could examine whether childhood and 

adult SEP interact (ie, intergenerational social mobility),411 and investigate which 

life course model best fits the data. Previous studies comparing life course models 

of SEP in relation to BMI at 53 years in the NSHD have used paternal and own 

occupational class. Results from Chapter 6 suggest that additional indicators of SEP 

(such as paternal and own educational attainment, and household income) may be 

more relevant for body composition outcomes, and could be considered in future 

analyses.  

 

There are a number of methodological and analytical recommendations that arise 

from the use of body composition in this thesis. While some previous studies have 

focused exclusively on lean mass as an outcome, and excluded fat mass, findings 
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from this thesis suggest that in some cases associations with lean mass may be 

confounded by fat mass. This warrants a-priori consideration in future studies, and 

supports recent studies which suggest that fat mass should be taken into account 

when examining associations with lean mass.4 In addition, a number of previous 

studies have made no adjustment for adult height when using fat or lean mass as 

outcomes. Findings from this thesis suggest that adult height may be an important 

factor which should be taken into account in analyses (and may act as either a 

mediator or confounder).  

 

As direct measures of whole body and regional fat and lean mass have only 

recently become available for use in epidemiological studies, there is some 

uncertainty regarding the parameters which are most important for subsequent 

health and physical functioning. For example, while there is some evidence that 

abdominal fat distribution is detrimental for health (Chapter 1), further longitudinal 

studies are required to demonstrate whether measures of fat distribution provide 

additional information in predicting health outcomes than whole body fat mass. 

Further work in this area would guide work which aims to examine the lifetime 

determinants of adult body composition.  

 

While this thesis has examined how explanatory factors across life relate to 

measures of fat and lean mass at a single point in time, future work could examine 

how factors relate to changes in these masses across adulthood. This may aid in 

the understanding of aetiology, as many explanatory factors considered could 

feasibly influence the peak levels of lean mass and/or the rates of subsequent 

decline. In addition, the age-related changes in fat and lean mass may be more 

closely related to health and physical functioning than measures recorded at one 

point in time.94 

 

As described in Chapter 1, fat and lean mass have important implications for health 

and physical functioning. As such, the associations found in this thesis may explain 

how factors across life affect health and physical functioning. Future work, utilising 

the continued follow-up of birth cohorts such as the NSHD, could examine this and 

help elucidate the lifetime determinants of health and physical functioning in old 

age. 
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Appendices 

 

Appendix 1. Mean difference in whole body and appendicular lean mass (95% CI, p-value) per unit increase in fat mass 
 

a) Males (n=746) 

 

 

Appendicular lean mass (kg) Appendicular lean mass  

index (kg/m2) 

Fat mass (kg) 0.24 (0.21, 0.27), <0.001 0.06 (0.06, 0.07), <0.001 

Fat mass index (kg/m1.2) 0.40 (0.34, 0.47), <0.001 0.13 (0.11, 0.15), <0.001 

 

b) Females (n=812) 

 Appendicular lean mass (kg) Appendicular lean mass  

index (kg/m2) 

Fat mass (kg) 0.18 (0.16, 0.19), <0.001* 0.06 (0.06, 0.07), <0.001* 

Fat mass index (kg/m1.2) 0.29 (0.26, 0.32), <0.001* 0.11 (0.10, 0.12), <0.001* 

 

Note: *evidence for deviation from linearity, p(quadratic term)<0.05; analyses were restricted to those with valid data for body composition 

outcomes 
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Appendix 2. Scatter plot of appendicular lean mass and fat mass with fitted linear (dashed) and quadratic (solid) lines of best fit 

a) Males (n=746)        b) Females (n=812) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: depicted are those with valid data for body composition outcomes 
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Appendix 3. Associations between potential confounders/mediators and (a) birth 

weight and (b) body composition outcomes  
a) birth weight 

Potential confounding/mediating factor (in groups)  N Mean birth weight (kg), 

SD 

Sex   

Male 709 3.44 (0.51) 

Female 763 3.36 (0.46) 

P-value (t-test)  <0.01 

   

Adult height at 60–64 years in cm (60–64y)   

1st quartile (≤161.5)  362 3.26 (0.46) 

2nd quartile (>161.5–167.5) 366 3.37 (0.47) 

3rd quartile (>167.5–175) 372 3.41 (0.47) 

4th quartile (>175) 372 3.55 (0.51) 

P-value (linear trend)  <0.001 

P-value (sex interaction)  0.25 

   

Maternal age (years) at birth of study member   

<20  60 3.24 (0.48) 

20-25  334 3.32 (0.46) 

>25-30  325 3.41 (0.50) 

>30-35  448 3.45 (0.49) 

>35 191 3.45 (0.47) 

P-value (linear trend)   <0.001 

P-value (sex interaction)  0.97 

   

Maternal height (cm) when study member 6y   

1st quartile (≤155) 275 3.29 (0.48) 

2nd quartile (>155–157) 190 3.32 (0.47) 

3rd quartile (>157–162) 413 3.39 (0.48) 

4th quartile (>162) 456 3.51 (0.49) 

P-value (linear trend)  <0.001 

P-value (sex interaction)  0.33 

   

Maternal body mass index (kg/m2) when study 

member 6y  

  

Underweight (<18.5) 76 3.17 (0.52) 

Normal weight (18.5-25) 894 3.37 (0.48) 

Overweight (>25-30) 283 3.49 (0.46) 

Obese (>30) 73 3.66 (0.52) 

P-value (linear trend)  <0.001 

P-value (sex interaction)  0.77 

   

Paternal occupational class (4y)   

I    professional 112 3.44 (0.48) 

II   intermediate 282 3.42 (0.46) 

III  skilled (Non-Manual) 334 3.39 (0.49) 

III  skilled (Manual) 404 3.39 (0.48) 

IV   partly skilled 265 3.39 (0.52) 

V    unskilled 75 3.39 (0.52) 

P-value (linear trend)  0.27 

P-value (sex interaction)  0.98 
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Potential confounding/mediating factor  

(in groups)  

N Mean birth weight (kg), SD 

Birth order   

1st 647 3.29 (0.45) 

2nd 478 3.42 (0.49) 

3rd or more 347 3.57 (0.50) 

P-value (linear trend)  <0.001 

P-value (sex interaction)  0.39 

 

b) body composition outcomes 

Potential confounder N Fat mass index 

(kg/m1.2) 

Lean mass index 

(kg/m2) 

    

Maternal age (years) at birth of study 

member 

   

<20  60 14.98 (4.75) 15.85 (2.54) 

20-25  334 14.78 (4.79) 15.84 (2.63) 

>25-30  325 14.00 (5.10) 15.59 (2.49) 

>30-35  448 14.02 (4.79) 15.78 (2.59) 

>35 191 14.47 (5.19) 15.82 (2.38) 

P-value (linear trend)  0.13 0.96 

P-value (sex interaction)  0.88 0.26 

    

Maternal height (cm) when study 

member 6y 

   

1st quartile (≤155) 281 14.07 (4.49) 15.90 (2.59) 

2nd quartile (>155–157) 192 14.66 (4.59) 15.73 (2.60) 

3rd quartile (>157–162) 420 14.34 (5.15) 15.83 (2.52) 

4th quartile (>162) 463 14.32 (5.21) 15.70 (2.54) 

P-value (linear trend)  0.71 0.39 

P-value (sex interaction)  0.15 0.10 

    

Maternal body mass index (kg/m2) 

when study member 6y  

   

Underweight (<18.5) 77 14.05 (4.99) 15.13 (2.60) 

Normal weight (18.5-25) 906 13.86 (4.61) 15.69 (2.48) 

Overweight (>25-30) 289 15.42 (5.20) 15.96 (2.62) 

Obese (>30) 76 16.05 (6.84) 16.96 (2.76) 

P-value (linear trend)  <0.001 <0.001 

P-value (sex interaction)  0.04 0.29 

    

Birth order    

1st 681 14.45 (5.06) 15.77 (2.48) 

2nd 506 14.18 (4.82) 15.65 (2.55) 

3rd or more 370 14.06 (4.75) 15.90 (2.62) 

P-value (linear trend)   0.20 0.58 

P-value (sex interaction)  0.02 0.02 

Note: analyses restricted to those with valid data for body composition outcomes; 

in some instances evidence for sex interaction was also found—for brevity these 

instances are summarised below: 

 Birth order. Being born later was associated with higher lean mass index in 

males (P(linear trend)=0.05) but not females (P=0.20); being born later was 

associated with higher fat mass in females (P=0.03) but not males (P=0.20) 

 Maternal BMI. The positive association between maternal BMI and fat mass 

index was stronger in females than males 
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Appendix 4. Mean difference in lean mass per 1 kg increase in birth weight, (a) unadjusted and (b) adjusted for adult height  
 

 a)  b)  

Outcome β (95% CI) P β (95% CI) P 

Lean mass (kg) – Males 2.82(1.76, 3.87) <0.001 1.20(0.23, 2.17) 0.02 

Lean mass (kg) – Females 1.81(0.92, 2.69) <0.001 0.77(-0.06, 1.60) 0.07 

Appendicular lean mass (kg) – Males 1.47(0.97, 1.98) <0.001 0.66(0.20, 1.12) <0.01 

Appendicular lean mass (kg) – Females 0.91(0.49, 1.33) <0.001 0.42(0.02, 0.81) 0.04 

 

Note: N=1264 in all models (males=610; females=654); analyses restricted to those with valid data for birth weight, paternal occupational 

class, maternal age, height, and BMI, birth order, and body composition outcomes 

 

 

Appendix 5. Mean difference in body mass index and body composition outcomes per 1 kg increase in birth weight 
 

Outcome β (95% CI) P 

Body mass index (kg/m2)  0.13(-0.39, 0.65) 0.62 

Forearm muscle area (cm2)# 0.85(0.26, 1.44) <0.01 

Android fat mass (kg) -0.03(-0.14, 0.09) 0.64 

Gynoid fat mass (kg) 0.13(-0.01, 0.27) 0.08 

 

Note: All models were adjusted for sex; analyses restricted to those with valid data for birth weight, paternal occupational class, maternal age, 

height, and BMI, birth order, and body composition outcomes; N=1264 in all models except forearm muscle area, n=1041  
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Appendix 6. Pearson’s correlation coefficients between birth weight and weight and 

height from 2 to 20 years 

 

  a) Weight  b) Height  

Age 

(years) 

N (M/F) Males Females Males Females 

2 613/651 0.34 0.32 0.21 0.11 

4 664/717 0.30 0.28 0.23 0.23 

7 645/703 0.34 0.26 0.25 0.19 

11 633/686 0.29 0.17 0.28 0.13 

15 591/631 0.26 0.19 0.21 0.16 

20 612/691 0.27 0.16 0.24 0.20 

 

Note: analyses restricted to those with valid data for body composition outcomes
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Appendix 7. Mean standard deviation difference in weight and height gain velocity per 1 kg increase in birth weight  

  a) Weight (kg/year)  b) Height (cm/year)  

Age (years) N (M/F) Males Females Males Females 

0–2 593/627 -0.05(-0.21, 0.10), 0.50 0.02(-0.15, 0.19), 0.84 - - 

2–4 664/717 0.23(0.07, 0.39), 0.01 0.19(0.02, 0.37), 0.03 0.07(-0.09, 0.23), 0.37 0.32(0.14, 0.50), 0.00 

4–7 645/703 0.23(0.07, 0.39), <0.001 0.24(0.06, 0.41), 0.01 0.11(-0.05, 0.27), 0.17 -0.12(-0.30, 0.05), 0.17 

7–11 633/686 0.40(0.25, 0.56), <0.001 0.20(0.02, 0.37), 0.03 0.27(0.11, 0.43), <0.001 -0.02(-0.19, 0.16), 0.86 

11–15 591/631 0.23(0.06, 0.39), 0.01 0.23(0.06, 0.41), 0.01 0.02(-0.15, 0.18), 0.86 0.15(-0.03, 0.32), 0.10 

15–20 612/691 -0.04(-0.22, 0.13), 0.61 -0.03(-0.21, 0.15), 0.72 -0.14(-0.32, 0.03), 0.11 0.12(-0.06, 0.30), 0.18 

 

Note: models were constructed using linear regression with birth weight as the exposure and weight or height gain velocity at each age as the 

outcome; no evidence found for departure from linearity (P(quadratic term)>0.15 in all cases); analyses restricted to those with valid data for 

body composition outcomes 
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Appendix 8. Pearson’s correlation coefficients between height and a) body mass 

index (kg/m2) b) weight (kg) in infancy, childhood and adolescence  

 

  a) 

Body mass index (kg/m2
) 

b) 

Weight (kg) 

Age N (male/female) Males Females Males Females 

2 593/627 -0.66 -0.50 0.32 0.37 

4 653/700 -0.24 -0.24 0.58 0.60 

7 624/679 0.03 0.05 0.74 0.69 

11 628/679 0.17 0.25 0.68 0.69 

15 582/623 0.20 0.01 0.75 0.49 

20 601/682 -0.04 -0.09 0.55 0.44 

 

 

Appendix 9. Mean body mass index (kg/m2) in infancy, childhood and adolescence  

 

  Males  Females  

Age (years) N (male/female) Mean SD Mean SD 

2 593/627 17.97 2.45 17.58 2.26 

4 653/700 16.33 1.68 16.04 1.59 

7 624/679 15.83 1.28 15.70 1.52 

11 628/679 17.18 2.09 17.45 2.44 

15 582/623 19.56 2.37 20.59 2.75 

20 601/682 22.38 2.35 21.70 2.76 

 

Note: analyses were restricted those with valid data for body composition outcomes 
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Appendix 10. Associations between pubertal timing and body composition outcomes 
 

  Fat mass 

index (kg/m1.2) 

Lean mass 

index (kg/m2) 

Appendicular lean mass  

index (kg/m2) 

Pubertal timing N (M/F) Males  Females Males Females Males Females 

1 Latest 63/122 12.41 (4.32)  14.86 (4.75)  17.65 (2.49)  13.73 (1.66)  8.12 (1.17)  5.96 (0.77)  

2 207/227 11.99 (3.28)  16.04 (4.55)  17.21 (1.82)  14.04 (1.76)  7.89 (0.89)  6.08 (0.84)  

3 190/203 12.19 (3.90)  17.05 (5.25)  17.43 (1.91)  14.44 (1.81)  8.01 (0.87)  6.28 (0.86)  

4 Earliest 157/109 12.63 (3.44)  17.11 (5.68)  17.96 (2.00)  14.57 (2.06)  8.18 (0.93)  6.36 (0.97)  

P-value (linear trend)  0.27 <0.001 0.01 <0.001 0.08 <0.001 

  

  Fat: lean mass ratio Android: gynoid ratio 

Pubertal timing N (M/F) Males  Females Males Females 

1 Latest 63/122 44.40 (11.32)  72.71 (19.70)  65.72 (13.09)  44.69 (12.97)  

2 207/227 44.33 (10.08)  77.16 (16.92)  65.92 (14.97)  44.17 (11.64)  

3 190/203 44.41 (12.30)  79.42 (18.28)  65.08 (15.02)  45.60 (11.23)  

4 Earliest 157/109 44.70 (10.76)  79.66 (20.19)  67.81 (16.80)  45.04 (11.61)  

P-value (linear trend)  0.79 <0.001 0.33 0.47 

 

Note: Age at puberty was derived on the basis of medical examination by school doctors at 15 years and divided into quartiles (for males, on 

the basis of voice breaking status and development of pubic hair and genitalia; and for females into quartiles of similar proportions on the basis 

of age at menarche), as previously described in detail by Hardy et al, 2006491; analyses were restricted those with valid data for body 

composition outcomes 
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Appendix 11. Descriptive statistics showing: the mean a) weight and b) height in 

infancy, childhood and adolescence, and c) Pearson’s correlation coefficients 

between the same periods of weight and height gain (standardised velocities) 

 

a) Weight in kg 

  Males  Females  P (sex 

difference) 

Age (years) N (M/F) Mean SD Mean SD  

2 630/678 13.22 1.39 12.67 1.47 <0.001 

4 682/731 17.54 2.12 17.21 2.10 <0.001 

7 629/681 23.08 2.78 22.81 3.12 0.06 

11 633/682 34.36 5.74 35.36 6.83 0.01 

15 593/631 51.88 9.20 52.34 8.08 0.16 

20 616/686 70.40 8.74 57.79 8.22 <0.001 

 

b) Height in cm 

  Males  Females  P (sex 

difference) 

Age (years) N (M/F) Mean SD Mean SD  

2 613/651 86.08 5.00 85.04 4.31 <0.001 

4 664/717 103.62 4.84 103.55 4.88 0.77 

7 645/703 120.63 5.21 120.40 5.39 0.40 

11 633/686 141.18 6.59 141.98 6.81 0.03 

15 591/631 162.55 8.95 159.37 5.94 <0.001 

20 612/691 177.31 6.54 163.14 6.05 <0.001 

 

c) 

  Males Females 

Age (years) N (M/F)   

2–4 554/570 0.09 0.29 

4–7 567/608 0.28 0.32 

7–11 566/614 0.39 0.49 

11–15 536/582 0.63 0.30 

15–20 493/549 0.57 0.36 

 

Note: analyses were restricted those with valid data for body composition outcomes 
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Appendix 12. Mean differences (95% confidence intervals, P-value) in (a) weight and (b) height gain velocity (standard deviation score) 

between the lowest and highest childhood socioeconomic position in childhood (paternal occupational class at 4 years)—the slope index of 

inequality  

 

a) Weight gain (years) Males Females 

0-2 -0.37(-0.66, -0.09), 0.01 -0.34(-0.61, -0.07), 0.01 

2–4 -0.10(-0.37, 0.17), 0.48 0.09(-0.17, 0.35), 0.51 

4–7 0.01(-0.26, 0.27), 0.96 0.08(-0.17, 0.34), 0.52 

7–11 0.13(-0.11, 0.37), 0.29 0.17(-0.06, 0.39), 0.15 

11–15 0.20(-0.02, 0.43), 0.08 0.16(-0.11, 0.43), 0.25 

15-20 0.43(0.18, 0.68), <0.001 0.19(-0.10, 0.47), 0.21 

b) Height gain (years)   

2–4 -0.26(-0.48, -0.03), 0.02 -0.29(-0.52, -0.06), 0.01 

4–7 -0.19(-0.43, 0.05), 0.12 -0.27(-0.51, -0.04), 0.02 

7–11 -0.08(-0.36, 0.19), 0.55 -0.19(-0.44, 0.06), 0.13 

11–15 0.02(-0.23, 0.26), 0.90 -0.24(-0.47, 0.00), 0.05 

15-20 -0.39(-0.58, -0.19), <0.001 0.08(-0.21, 0.37), 0.59 

 

Note: models in a) are adjusted for concurrent height gain and weight and height at the beginning of each period (except for weight gain from 

0–2 years, adjusted for birth weight and height at 2 years only); models in b) are adjusted for concurrent weight gain and weight and height at 

the beginning of each period; sample sizes in the different periods were (male/female): 2–4 (554/570); 4–7 (567/608); 7–11 (566/614); 11–

15 (536/582); 15–20 (493/549); analyses were restricted those with valid data for weight and height at each age, paternal occupational class, 

and body composition outcomes 
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Appendix 13. Mean differences in adult height (with 95% confidence intervals) per 

1 standard deviation increase in a) weight gain velocity, adjusted for weight and 

height at the beginning of each period and concurrent height gain, and b) height 

gain velocity, adjusted for height and weight at the beginning of each period and 

concurrent weight gain 

 

Note: males=dark blue diamonds; females=light blue circles. Sample sizes in the different 

periods were (male/female): 0–2 (574/603); 2–4 (554/570); 4–7 (567/608); 7–11 

(566/614); 11–15 (536/582); 15–20 (493/549); weight gain from 0–2 years was adjusted 

for height at 2 years and birth weight only; analyses were restricted those with valid data for 

height and weight at each age, paternal occupational class, and body composition outcomes 
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Appendix 14. P-values for tests of sex interaction for periods of a) weight gain 

(adjusted for weight and height at the beginning of each period and concurrent 

height gain), and b) height gain velocity (adjusted for weight and height at the 

beginning of each period and concurrent height gain) regressed against body 

composition outcomes. 

 

a) Weight 

gain 

(years) 

Fat mass 

(kg) 

Lean mass 

(kg) 

App. lean 

mass (kg) 

Fat: lean 

mass ratio 

Android: 

gynoid ratio 

0-2 0.60 0.01 0.02 0.59 0.79 

2–4 0.04 0.54 0.31 0.09 0.54 

4–7 0.18 <0.01 <0.01 0.33 0.45 

7–11 0.39 0.96 0.72 0.10 0.14 

11–15 0.66 0.91 0.38 0.88 0.13 

15-20 0.55 <0.01 <0.01 0.17 0.44 

b) Height 

gain 

(years)      

2–4 0.50 0.74 0.69 0.71 0.43 

4–7 0.04 0.38 0.67 0.17 0.44 

7–11 0.61 0.56 0.40 0.41 0.92 

11–15 0.01 <0.01 <0.01 0.74 0.71 

15-20 0.24 <0.01 <0.01 0.65 0.02 

 

Note: sample sizes in the different periods were (male/female): 2–4 (554/570); 4–

7 (567–608); 7–11 (566/614); 11–15 (536/582); 15–20 (493/549); weight gain 

from 0–2 years was adjusted for birth weight and height at 2 years only; analyses 

were restricted those with valid data for weight and height at each age, paternal 

occupational class, and body composition outcomes 
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Appendix 15. Mean differences in android and gynoid fat mass (kg) (95% confidence intervals, P-value) by sex per 1 standard deviation 

increase in weight and height gain velocity, adjusted for weight and height at the beginning of each period and concurrent weight and height 

gain 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: sample sizes in the different periods were (male/female): model a) 0–2 (574/603); 2–4 (554/570); 4–7 (567/608); 7–11 (566/614); 

11–15 (536/582); 15–20 (493/549); weight gain from 0–2 years was adjusted for birth weight and height at 2 years only; analyses were 

restricted those with valid data for weight and height at each age, paternal occupational class, and body composition outcomes 

Period 

(years) 

Weight gain  Height gain  

Android fat 
mass (kg) 

Males 
 

Females 
 

Males 
 

Females 
 

0-2 0.07(-0.01, 0.15), 0.10 -0.01(-0.09, 0.08), 0.85   

2–4 0.00(-0.09, 0.09), 0.97 0.11(0.01, 0.20), 0.02 -0.12(-0.23, -0.01), 0.03 -0.05(-0.16, 0.06), 0.37 

4–7 0.23(0.14, 0.32), <0.01 0.07(-0.02, 0.16), 0.11 -0.03(-0.13, 0.07), 0.53 0.08(-0.02, 0.17), 0.12 

7–11 0.18(0.09, 0.28), <0.01 0.26(0.16, 0.36), <0.01 -0.02(-0.10, 0.06), 0.66 -0.04(-0.14, 0.05), 0.36 

11–15 0.20(0.09, 0.30), <0.01 0.13(0.05, 0.22), <0.01 -0.11(-0.20, -0.01), 0.04 0.04(-0.06, 0.14), 0.43 

15-20 0.20(0.10, 0.30), <0.01 0.22(0.14, 0.31), <0.01 -0.04(-0.16, 0.09), 0.58 -0.03(-0.12, 0.06), 0.48 

Gynoid fat mass (kg)    

0-2 0.12(0.03, 0.21), 0.01 0.06(-0.07, 0.18), 0.36   

2–4 0.02(-0.07, 0.12), 0.62 0.19(0.05, 0.32), 0.01 -0.07(-0.18, 0.05), 0.26 0.06(-0.10, 0.21), 0.48 

4–7 0.26(0.17, 0.36), <0.01 0.09(-0.04, 0.22), 0.16 -0.06(-0.16, 0.05), 0.28 0.23(0.09, 0.36), <0.01 

7–11 0.18(0.08, 0.28), <0.01 0.24(0.09, 0.38), <0.01 0.02(-0.06, 0.11), 0.58 0.00(-0.13, 0.14), 0.99 

11–15 0.18(0.07, 0.30), <0.01 0.25(0.13, 0.37), <0.01 -0.14(-0.24, -0.04), 0.01 0.16(0.02, 0.30), 0.02 

15-20 0.26(0.15, 0.36), <0.01 0.29(0.17, 0.42), <0.01 0.10(-0.03, 0.23), 0.12 -0.04(-0.17, 0.08), 0.50 



265 

 

 

Appendix 16. Mean differences in fat and lean mass (95% confidence intervals, P-value) per 1 standard deviation increase in weight gain 

velocity: a) adjusted for weight at the beginning of each period; b) identical to model a with additional adjustment for height at the beginning 

of each period, height gain in the same period, pubertal timing, and maternal body mass index and height; c) identical to model a with 

additional adjustment for height at the beginning of each period and height gain in the same period 
 

  

Period 
(years) 

Males 
a)  

 
b) 

 
c) 

Females 
a) 

 
b) 

 
c) 

Fat mass (kg)      

0-2 0.65(0.05, 1.24), 0.03 0.53(-0.16, 1.23), 0.13 0.51(-0.30, 1.33), 0.22 0.48(-0.25, 1.21), 0.20 -0.07(-0.94, 0.81), 0.88 0.45(-0.60, 1.51), 0.40 

2–4 0.03(-0.58, 0.64), 0.93 -0.01(-0.83, 0.80), 0.97 0.40(-0.56, 1.36), 0.41 1.32(0.56, 2.07), <0.01 0.79(-0.15, 1.73), 0.10 1.01(-0.09, 2.12), 0.07 

4–7 1.33(0.75, 1.91), <0.01 1.58(0.81, 2.35), <0.01 2.06(1.15, 2.98), <0.01 1.25(0.52, 1.97), <0.01 0.17(-0.74, 1.07), 0.72 0.90(-0.23, 2.02), 0.12 

7–11 1.53(0.85, 2.21), <0.01 1.75(0.94, 2.55), <0.01 2.32(1.35, 3.28), <0.01 1.94(1.13, 2.74), <0.01 1.86(0.82, 2.90), <0.01 1.56(0.30, 2.81), 0.02 

11–15 0.65(0.02, 1.28), 0.05 1.47(0.58, 2.36), <0.01 1.78(0.75, 2.81), <0.01 1.70(1.00, 2.40), <0.01 1.34(0.56, 2.11), <0.01 1.29(0.27, 2.32), 0.01 

15-20 1.91(1.25, 2.57), <0.01 1.51(0.71, 2.32), <0.01 2.14(1.27, 3.01), <0.01 2.06(1.31, 2.82), <0.01 2.19(1.22, 3.17), <0.01 2.52(1.60, 3.44), <0.01 

Lean mass (kg)      

0-2 1.90(1.37, 2.44), <0.01 1.61(1.00, 2.22), <0.01 1.57(0.84, 2.30), <0.01 1.09(0.67, 1.50), <0.01 0.38(-0.12, 0.88), 0.14 0.66(0.06, 1.26), 0.03 

2–4 1.67(1.13, 2.21), <0.01 1.47(0.78, 2.17), <0.01 1.65(0.80, 2.49), <0.01 1.42(1.01, 1.84), <0.01 0.99(0.47, 1.51), <0.01 1.04(0.42, 1.65), <0.01 

4–7 2.18(1.69, 2.67), <0.01 1.91(1.26, 2.55), <0.01 1.92(1.14, 2.70), <0.01 1.35(0.95, 1.74), <0.01 0.67(0.17, 1.17), 0.01 0.74(0.13, 1.35), 0.02 

7–11 0.75(0.17, 1.33), 0.01 0.59(-0.10, 1.27), 0.10 0.94(0.10, 1.78), 0.03 0.64(0.20, 1.08), <0.01 0.70(0.13, 1.26), 0.02 0.48(-0.20, 1.15), 0.17 

11–15 0.80(0.25, 1.35), <0.01 1.06(0.29, 1.83), 0.01 1.21(0.29, 2.13), 0.01 1.26(0.87, 1.65), <0.01 0.93(0.51, 1.35), <0.01 0.77(0.23, 1.31), 0.01 

15-20 3.28(2.75, 3.81), <0.01 2.37(1.75, 3.00), <0.01 2.37(1.67, 3.07), <0.01 1.66(1.27, 2.06), <0.01 1.49(0.98, 2.00), <0.01 1.51(1.03, 1.99), <0.01 

Appendicular lean mass (kg)      

0-2 0.92(0.67, 1.18), <0.01 0.75(0.46, 1.05), <0.01 0.70(0.35, 1.05), <0.01 0.54(0.34, 0.74), <0.01 0.23(-0.01, 0.47), 0.06 0.36(0.08, 0.64), 0.01 

2–4 0.90(0.65, 1.16), <0.01 0.76(0.42, 1.09), <0.01 0.86(0.46, 1.27), <0.01 0.69(0.49, 0.88), <0.01 0.49(0.24, 0.73), <0.01 0.48(0.20, 0.77), <0.01 

4–7 1.06(0.83, 1.30), <0.01 0.94(0.63, 1.25), <0.01 0.87(0.49, 1.24), <0.01 0.62(0.43, 0.80), <0.01 0.30(0.06, 0.54), 0.01 0.36(0.08, 0.65), 0.01 

7–11 0.31(0.04, 0.58), 0.03 0.24(-0.08, 0.57), 0.14 0.38(-0.02, 0.79), 0.06 0.29(0.08, 0.50), 0.01 0.36(0.09, 0.62), 0.01 0.21(-0.11, 0.52), 0.20 

11–15 0.25(-0.01, 0.52), 0.06 0.38(0.01, 0.74), 0.05 0.45(0.00, 0.89), 0.05 0.61(0.43, 0.80), <0.01 0.47(0.27, 0.66), <0.01 0.36(0.10, 0.61), 0.01 

15-20 1.58(1.32, 1.84), <0.01 1.09(0.78, 1.39), <0.01 0.99(0.65, 1.34), <0.01 1.66(1.27, 2.06), <0.01 0.67(0.43, 0.91), <0.01 0.66(0.43, 0.88), <0.01 
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Note: pubertal timing (derived as previously described), maternal height and BMI all entered into regression model as linear terms; sample 

sizes in the different periods were (male/female):  

Model a) 0–2 (574/603); 2–4 (554/570); 4–7 (567/608); 7–11 (566/614); 11–15 (536/582); 15–20 (493/549) 

Model b) 0–2 (467/483) ; 2–4 (453/457; 4–7 (484/515); 7–11 (493/534); 11–15 (493/535); 15–20 (452/478) 

Model c) males=341; females=360 in all periods  

All analyses were restricted to those with valid data for body composition outcomes 

 

  

Period 
(years) 

Males 
a)  

 
b) 

 
c) 

Females 
a) 

 
b) 

 
c) 

Fat: lean ratio      

0-2 -0.33(-1.25, 0.59), 0.48 -0.36(-1.45, 0.72), 0.51 -0.33(-1.59, 0.92), 0.60 -1.05(-2.56, 0.46), 0.17 -1.00(-2.83, 0.83), 0.28 -0.29(-2.42, 1.84), 0.79 

2–4 -1.31(-2.24, -0.37), 0.01 -1.25(-2.51, 0.01), 0.05 -0.63(-2.10, 0.85), 0.41 0.33(-1.25, 1.91), 0.68 -0.32(-2.29, 1.65), 0.75 0.12(-2.12, 2.36), 0.91 

4–7 0.57(-0.34, 1.48), 0.22 1.22(0.01, 2.42), 0.05 2.07(0.65, 3.50), <0.01 0.42(-1.10, 1.94), 0.59 -1.07(-2.96, 0.81), 0.27 0.86(-1.45, 3.17), 0.47 

7–11 2.17(1.11, 3.23), <0.01 2.74(1.48, 3.99), <0.01 3.56(2.05, 5.08), <0.01 3.75(2.06, 5.44), <0.01 3.49(1.30, 5.68), <0.01 3.18(0.59, 5.78), 0.02 

11–15 0.61(-0.41, 1.63), 0.24 1.80(0.38, 3.23), 0.01 2.26(0.62, 3.90), 0.01 1.56(0.07, 3.06), 0.04 1.25(-0.43, 2.93), 0.15 1.50(-0.67, 3.66), 0.18 

15-20 0.59(-0.50, 1.69), 0.29 0.67(-0.66, 2.01), 0.32 1.82(0.37, 3.27), 0.01 1.83(0.18, 3.47), 0.03 2.59(0.48, 4.71), 0.02 3.40(1.41, 5.39), <0.01 

Android: gynoid ratio      

0-2 -0.62(-1.87, 0.63), 0.33 -0.25(-1.70, 1.19), 0.73 0.48(-1.17, 2.13), 0.57 -0.48(-1.47, 0.51), 0.35 -0.63(-1.81, 0.55), 0.30 -0.76(-2.17, 0.66), 0.29 

2–4 -1.47(-2.75, -0.19), 0.02 -0.53(-2.22, 1.16), 0.54 0.08(-1.87, 2.03), 0.93 0.05(-0.99, 1.08), 0.93 0.16(-1.11, 1.42), 0.81 0.23(-1.25, 1.71), 0.76 

4–7 0.78(-0.48, 2.03), 0.23 1.36(-0.30, 3.01), 0.11 1.80(-0.09, 3.70), 0.06 0.13(-0.85, 1.11), 0.80 -0.01(-1.23, 1.21), 0.99 -0.04(-1.57, 1.50), 0.96 

7–11 1.04(-0.44, 2.52), 0.17 1.32(-0.43, 3.07), 0.14 3.37(1.32, 5.43), <0.01 2.62(1.56, 3.68), <0.01 2.44(1.04, 3.83), <0.01 3.08(1.38, 4.79), <0.01 

11–15 1.24(-0.14, 2.62), 0.08 1.56(-0.38, 3.51), 0.12 2.40(0.21, 4.60), 0.03 0.13(-0.82, 1.08), 0.79 0.47(-0.59, 1.53), 0.38 0.38(-1.06, 1.81), 0.61 

15-20 -0.35(-1.86, 1.16), 0.65 1.03(-0.82, 2.88), 0.28 1.73(-0.22, 3.68), 0.08 1.42(0.37, 2.48), 0.01 1.49(0.15, 2.84), 0.03 1.68(0.35, 3.00), 0.01 
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Appendix 17. Mean differences in fat and lean mass (95% confidence intervals, P-value) per 1 standard deviation increase in height gain 

velocity adjusted for height at the beginning of each period; b) identical to model a with additional adjustment for weight at the beginning of 

each period and weight gain in the same period 
 

  
Period 

(years) 

Males 

a) 

 

b) 

Females 

a) 

 

b) 

Fat mass (kg)    

2–4 -0.25(-0.97, 0.46), 0.49 -0.72(-1.76, 0.33), 0.18 0.65(-0.17, 1.48), 0.12 0.02(-1.20, 1.23), 0.98 

4–7 0.83(0.22, 1.44), 0.01 -0.60(-1.57, 0.37), 0.22 1.63(0.88, 2.39), <0.01 1.48(0.33, 2.63), 0.01 

7–11 0.73(0.14, 1.32), 0.02 -0.41(-1.22, 0.41), 0.33 0.78(0.07, 1.50), 0.03 0.14(-0.95, 1.24), 0.80 

11–15 0.05(-0.57, 0.67), 0.89 -0.70(-1.65, 0.25), 0.15 1.09(0.25, 1.92), 0.01 0.90(-0.24, 2.05), 0.12 

15-20 1.00(0.12, 1.88), 0.03 0.10(-1.01, 1.20), 0.87 -0.13(-0.93, 0.67), 0.75 -0.19(-1.19, 0.80), 0.71 

Lean mass (kg)    

2–4 1.88(1.22, 2.54), <0.01 0.46(-0.46, 1.37), 0.33 1.38(0.93, 1.83), <0.01 0.76(0.09, 1.43), 0.03 

4–7 2.11(1.58, 2.65), <0.01 0.38(-0.45, 1.21), 0.37 1.63(1.22, 2.04), <0.01 1.22(0.60, 1.84), <0.01 

7–11 0.99(0.48, 1.51), <0.01 -0.04(-0.75, 0.66), 0.90 0.66(0.27, 1.04), <0.01 0.61(0.02, 1.20), 0.04 

11–15 0.13(-0.41, 0.68), 0.63 -0.77(-1.62, 0.08), 0.08 1.44(0.99, 1.89), <0.01 1.46(0.86, 2.06), <0.01 

15-20 3.22(2.48, 3.96), <0.01 2.33(1.43, 3.22), <0.01 0.55(0.13, 0.98), 0.01 0.41(-0.10, 0.93), 0.12 

Appendicular lean mass (kg)    

2–4 1.00(0.68, 1.31), <0.01 0.29(-0.15, 0.73), 0.20 0.72(0.51, 0.94), <0.01 0.38(0.07, 0.69), 0.02 

4–7 1.06(0.81, 1.32), <0.01 0.29(-0.10, 0.69), 0.15 0.74(0.55, 0.93), <0.01 0.55(0.26, 0.84), <0.01 

7–11 0.46(0.21, 0.70), <0.01 -0.02(-0.36, 0.32), 0.89 0.28(0.10, 0.47), <0.01 0.25(-0.02, 0.53), 0.07 

11–15 -0.03(-0.29, 0.23), 0.83 -0.44(-0.85, -0.03), 0.04 0.72(0.51, 0.94), <0.01 0.69(0.41, 0.98), <0.01 

15-20 1.69(1.33, 2.04), <0.01 1.36(0.92, 1.80), <0.01 0.25(0.05, 0.45), 0.01 0.27(0.03, 0.51), 0.03 
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Note: sample sizes in the different periods were (male/female):  

Model a) 0–2 (574/603); 2–4 (554/570); 4–7 (567/608); 7–11 (566/614); 11–15 (536/582); 15–20 (493/549) 

Model b) males=341; females=360 in all periods 

All analyses were restricted those with valid data for body composition outcomes 
 

Period 
(years) 

Males 
a) 

 
b) 

Females 
a) 

 
b) 

Fat: lean ratio    

2–4 -2.04(-3.14, -0.94), <0.01 -1.71(-3.32, -0.10), 0.04 -1.02(-2.73, 0.69), 0.24 -1.16(-3.61, 1.29), 0.35 

4–7 -0.20(-1.14, 0.74), 0.67 -1.30(-2.81, 0.21), 0.09 0.83(-0.75, 2.41), 0.30 1.25(-1.11, 3.62), 0.30 

7–11 0.51(-0.40, 1.43), 0.27 -0.70(-1.98, 0.58), 0.28 0.62(-0.87, 2.11), 0.42 -0.98(-3.24, 1.29), 0.40 

11–15 0.05(-0.92, 1.02), 0.92 -0.47(-1.98, 1.04), 0.54 -0.27(-2.01, 1.48), 0.76 -0.77(-3.19, 1.66), 0.54 

15-20 -1.01(-2.39, 0.36), 0.15 -1.88(-3.72, -0.04), 0.05 -1.37(-3.02, 0.27), 0.10 -1.35(-3.49, 0.80), 0.22 

Android: gynoid ratio    

2–4 -2.31(-3.81, -0.80), <0.01 -2.83(-4.96, -0.71), 0.01 -1.16(-2.28, -0.04), 0.04 -0.98(-2.60, 0.65), 0.24 

4–7 0.67(-0.62, 1.97), 0.31 0.10(-1.90, 2.11), 0.92 -0.12(-1.13, 0.89), 0.82 1.03(-0.54, 2.60), 0.20 

7–11 -0.35(-1.61, 0.91), 0.58 -2.23(-3.96, -0.49), 0.01 0.44(-0.51, 1.38), 0.37 -1.04(-2.53, 0.44), 0.17 

11–15 0.88(-0.42, 2.19), 0.18 0.44(-1.58, 2.47), 0.67 -0.74(-1.85, 0.37), 0.19 -0.88(-2.49, 0.72), 0.28 

15-20 -2.95(-4.83, -1.07), <0.01 -3.56(-6.03, -1.08), 0.01 0.07(-0.99, 1.12), 0.90 -0.33(-1.77, 1.10), 0.65 
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Appendix 18. Formulae used to calculate total physical activity energy expenditure 

(PAEE) using the Actiheart at 60–64 years: 

 

PAEE [J/min/kg] = 14.08 - 0.138 * age + 0.39 * sex + 0.0021 * SHR + 0.51 * 

betablocker) * HRaS + 0.94 * age + 5.41 * sex - 0.76 * SHR - 0.0 * SHR *sex + 

12.3 * betablocker - 84.1 

 

Note: age in years, sex coded as 1 for men and 0 for women; betablocker coded as 

1 for yes and 0 for no; HR=heart rate in beats per minute; SHR=sleeping HR; 

HRaS=HR above SHR in beats per minute 
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Appendix 19. Models compared when using the structured life course models 

Fully saturated model: 

E(Y)= α + β1Pa36 + β2Pa43 + β3Pa53 + β4Pa63 + θ12Pa36Pa43 + θ23Pa43Pa53 + θ13Pa36Pa53 + θ14Pa36Pa63 + θ242Pa43Pa63 + θ34Pa53Pa63 + 

θ1234Pa36Pa43Pa53Pa63 

 

Compared with: 

(1) Critical/sensitive period model 

E(Y)= α + β1Pa36 

constraints: β2= β3= β4=0; θ12=θ23=θ13=θ14=θ24=θ34=θ1234=0 

 

(2) Accumulation model: summed score (assuming similar effect sizes at each age) 

E(Y)= α +βΣjPaj 

constraints: β1=β2=β3=β4; θ12=θ23=θ13=θ14=θ24=θ34=θ1234=0 

 

(3) Accumulation model: mutually adjusted (allowing for differences in effect size at each age) 

E(Y)= α + β1Pa36 + β2Pa43 + β3Pa53 + β4Pa63 

constraints: β1≠β2≠β3≠β4; θ12=θ23=θ13=θ14=θ24=θ34=θ1234=0 

 

 

Notes: Pa=physical activity at age 36, 43, 53, and 63 (60–64) years. 
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Appendix 20. Correlations between objectively assessed measures of physical 

activity measures 
 

a) Males (n=564) 

Light -0.89   

Moderate-vigorous  -0.70 0.31  

Total PAEE  -0.88 0.61 0.90 

 Sedentary Light Moderate-vigorous  

 

b) Females (n=598) 

Light -0.92   

Moderate-vigorous -0.68 0.33  

Total PAEE -0.89 0.67 0.86 

 Sedentary Light Moderate-vigorous 

 

Notes: METs=metabolic equivalent; sedentary=≤1.5 METs; Light=>1.5–3 METs; 

Moderate-vigorous=>3 METs; total PAEE=total physical energy expenditure in 

kj/kg/day; analyses restricted to those with valid data for physical activity 

measures, paternal occupational class, own educational attainment, limiting illness, 

and body composition outcomes 
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Appendix 21. Cross-tabulations of self-reported physical activity at 36, 43, 53 and 60–64 years  

 

a) Males  

 

 43 years   53 years   60-64 years   

 Inactive Moderately  Most active Inactive Moderately  Most active Inactive Moderately  Most active 

36 years          

Inactive 107 (44.40) 36 (25.17) 23 (12.43) 94 (41.59) 33 (23.91) 39 (19.02) 136 (39.42) 18 (20.93) 12 (8.70) 

Moderately  72 (29.88) 48 (33.57) 41 (22.16) 57 (25.22) 43 (31.16) 61 (29.76) 101 (29.28) 24 (27.91) 36 (26.09) 

Most active 62 (25.73) 59 (41.26) 121 (65.41) 75 (33.19) 62 (44.93) 105 (51.22) 108 (31.3) 44 (51.16) 90 (65.22) 

43 years          

Inactive    140 (61.95) 48 (34.78) 53 (25.85) 184 (53.33) 32 (37.21) 25 (18.12) 

Moderately     41 (18.14) 41 (29.71) 61 (29.76) 79 (22.90) 25 (29.07) 39 (28.26) 

Most active    45 (19.91) 49 (35.51) 91 (44.39) 82 (23.77) 29 (33.72) 74 (53.62) 

53 years          

Inactive       181 (52.46) 23 (26.74) 22 (15.94) 

Moderately        68 (19.71) 34 (39.53) 36 (26.09) 

Most active       96 (27.83) 29 (33.72) 80 (57.97) 
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b) Females 

 

 43 years   53 years   60-64 years   

 Inactive Moderately  Most active Inactive Moderately  Most active Inactive Moderately  Most active 

36 years          

Inactive 160 (51.12) 42 (25.00) 25 (15.53) 128 (46.72) 47 (35.61) 52 (22.03) 155 (42.47) 38 (33.33) 34 (20.86) 

Moderately  80 (25.56) 61 (36.31) 39 (24.22) 74 (27.01) 38 (28.79) 68 (28.81) 108 (29.59) 30 (26.32) 42 (25.77) 

Most active 73 (23.32) 65 (38.69) 97 (60.25) 72 (26.28) 47 (35.61) 116 (49.15) 102 (27.95) 46 (40.35) 87 (53.37) 

43 years          

Inactive    183 (66.79) 56 (42.42) 74 (31.36) 218 (59.73) 40 (35.09) 55 (33.74) 

Moderately     55 (20.07) 38 (28.79) 75 (31.78) 97 (26.58) 33 (28.95) 38 (23.31) 

Most active    36 (13.14) 38 (28.79) 87 (36.86) 50 (13.70) 41 (35.96) 70 (42.94) 

53 years          

Inactive       213 (58.36) 28 (24.56) 33 (20.25) 

Moderately        64 (17.53) 33 (28.95) 35 (21.47) 

Most active       88 (24.11) 53 (46.49) 95 (58.28) 

 

Note: cells show N (%); in all cross-tabulations, P-values from chi-squared tests were <0.001; activity at each age was coded as inactive (no 

participation), moderately active (participated one to four times) and most active (participated five or more times), in the previous month (36 

years), per month (43 years) and in the previous 4 weeks (53 and 60-64 years); analyses restricted to those with valid data for physical 

activity measures, paternal occupational class, own educational attainment, limiting illness, and body composition outcomes 
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Appendix 22. Mean difference in physical activity outcomes (standard deviation score [95% confidence interval]) in those who were moderately 

and most active (compared with inactive) at 60-64 years 

a) Males (n=621) 

 Total PAEE  Sedentary  Light Moderate-vigorous 

60-64 years     

Inactive 0.00 0.00 0.00 0.00 

Moderately  0.08(-0.16, 0.33) -0.04(-0.28, 0.20) -0.03(-0.27, 0.21) 0.09(-0.15, 0.34) 

Most active 0.11(-0.09, 0.30) 0.03(-0.17, 0.23) -0.10(-0.30, 0.09) 0.14(-0.06, 0.34) 

P* 0.53 0.88 0.58 0.37 

P (sex interaction) 0.14 0.09 0.11 0.35 

 

b) Females (n=681) 

 

 Total PAEE  Sedentary  Light Moderate-vigorous 

60-64 years     

Inactive 0.00 0.00 0.00 0.00 

Moderately  0.05(-0.17, 0.27) 0.05(-0.17, 0.27) -0.01(-0.24, 0.21) -0.04(-0.27, 0.18) 

Most active 0.36(0.17, 0.55) -0.24(-0.44, -0.05) 0.18(-0.01, 0.38) 0.27(0.08, 0.47) 

P* <0.01 0.03 0.14 0.01 

 

Notes: *P-values show overall test of association (likelihood ratio test comparing models with and without physical activity included); 

sedentary=≤1.5 metabolic equivalent (METs); Light=>1.5–3 METs; Moderate-vigorous=>3 METs; total PAEE=total physical energy expenditure 

in kj/kg/day; analyses restricted to those with valid data for physical activity measures, paternal occupational class, own educational 

attainment, limiting illness, and body composition outcomes 
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Appendix 23. Mean difference (95% CI) in total physical energy expenditure (kj/kg/day) standard deviation score by potential confounders 

(indicators of socioeconomic position and limiting illness) 

Paternal occupational class (4 years) Males (n=564) Females (n=598) 

I/II Highest 0.00 0.00 

III Non manual -0.05(-0.30, 0.19) 0.08(-0.15, 0.31) 

III Manual -0.09(-0.32, 0.14) -0.06(-0.28, 0.16) 

IV/V Lowest 0.01(-0.23, 0.25) -0.13(-0.36, 0.10) 

P* 0.83 0.35 

P# 0.50  

Own Educational attainment (26 years)   

Highest 0.00 0.00 

Intermediate 0.10(-0.11, 0.32) -0.07(-0.26, 0.12) 

None 0.14(-0.06, 0.34) -0.02(-0.24, 0.19) 

P* 0.33 0.78 

P# 0.50  

Self-reported long-term illness, health 

problem or disability that limits activities 

or work (60–64 years) 

  

No 0.00 0.00 

Yes -0.47(-0.68, -0.27) -0.49(-0.69, -0.28) 

P* <0.001 <0.001 

P# 0.71  

Notes: *P-values show overall test of association (likelihood ratio test comparing models with and without the potential confounder included; 

#test of sex interaction; educational attainment was categorised as none (none attempted), intermediate (GCE 'O' level or Burnam C or lower) 

or highest (GCE A level or Burnam B or higher); analyses restricted to those with valid data for paternal occupational class, own educational 

attainment, limiting illness, and body composition outcomes 
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Appendix 24. Associations between potential confounders (indicators of socioeconomic position and health status) and self-reported physical 

activity levels across adulthood, N (%) 

iii) Paternal occupational class at 4 years (Registrar General’s classification) 

 Males     Females     

 I/II  

Highest  

III  

Non manual 

III 

Manual 

IV/V  

Lowest  

I/II  

Highest  

III  

Non manual 

III 

Manual 

IV/V  

Lowest  

36 years         

Inactive 36 (24.16) 29 (23.77) 46 (29.49) 55 (38.73) 45 (26.16) 42 (28.97) 74 (41.11) 66 (45.52) 

Moderately  42 (28.19) 41 (33.61) 43 (27.56) 35 (24.65) 43 (25) 48 (33.1) 51 (28.33) 38 (26.21) 

Most active 71 (47.65) 52 (42.62) 67 (42.95) 52 (36.62) 84 (48.84) 55 (37.93) 55 (30.56) 41 (28.28) 

P* 0.08    0.08    

43 years         

Inactive 55 (36.91) 38 (31.15) 73 (46.79) 75 (52.82) 69 (40.12) 64 (44.14) 104 (57.78) 76 (52.41) 

Moderately  43 (28.86) 41 (33.61) 31 (19.87) 28 (19.72) 47 (27.33) 46 (31.72) 36 (20) 39 (26.9) 

Most active 51 (34.23) 43 (35.25) 52 (33.33) 39 (27.46) 56 (32.56) 35 (24.14) 40 (22.22) 30 (20.69) 

P* 0.01    <0.01    

53 years         

Inactive 46 (30.87) 42 (34.43) 67 (42.95) 71 (50) 57 (33.14) 55 (37.93) 85 (47.22) 77 (53.1) 

Moderately  36 (24.16) 33 (27.05) 41 (26.28) 28 (19.72) 43 (25) 28 (19.31) 41 (22.78) 20 (13.79) 

Most active 67 (44.97) 47 (38.52) 48 (30.77) 43 (30.28) 72 (41.86) 62 (42.76) 54 (30) 48 (33.1) 

P* <0.01    0.01    

60-64 years         

Inactive 86 (57.72) 62 (50.82) 102 (65.38) 95 (66.9) 85 (49.42) 76 (52.41) 112 (62.22) 92 (63.45) 

Moderately  20 (13.42) 23 (18.85) 24 (15.38) 19 (13.38) 33 (19.19) 31 (21.38) 31 (17.22) 19 (13.1) 

Most active 43 (28.86) 37 (30.33) 30 (19.23) 28 (19.72) 54 (31.4) 38 (26.21) 37 (20.56) 34 (23.45) 

P* 0.09    <0.001    
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ii) Own educational attainment (26 years) 

 Males   Females   

 Highest Intermediate None Highest Intermediate None 

36 years       

Inactive 77 (25.58) 35 (28.23) 54 (37.5) 66 (25.98) 92 (39.15) 69 (45.1) 

Moderately  87 (28.9) 32 (25.81) 42 (29.17) 72 (28.35) 66 (28.09) 42 (27.45) 

Most active 137 (45.51) 57 (45.97) 48 (33.33) 116 (45.67) 77 (32.77) 42 (27.45) 

P* <0.001   <0.001   

43 years       

Inactive 115 (38.21) 47 (37.9) 79 (54.86) 93 (36.61) 130 (55.32) 90 (58.82) 

Moderately  81 (26.91) 34 (27.42) 28 (19.44) 78 (30.71) 58 (24.68) 32 (20.92) 

Most active 105 (34.88) 43 (34.68) 37 (25.69) 83 (32.68) 47 (20) 31 (20.26) 

P* <0.001   <0.001   

53 years       

Inactive 94 (31.23) 51 (41.13) 81 (56.25) 74 (29.13) 110 (46.81) 90 (58.82) 

Moderately  85 (28.24) 32 (25.81) 21 (14.58) 58 (22.83) 50 (21.28) 24 (15.69) 

Most active 122 (40.53) 41 (33.06) 42 (29.17) 122 (48.03) 75 (31.91) 39 (25.49) 

P* 0.03   <0.001   

60-64 years       

Inactive 155 (51.5) 77 (62.1) 113 (78.47) 122 (48.03) 128 (54.47) 115 (75.16) 

Moderately  58 (19.27) 17 (13.71) 11 (7.64) 58 (22.83) 44 (18.72) 12 (7.84) 

Most active 88 (29.24) 30 (24.19) 20 (13.89) 74 (29.13) 63 (26.81) 26 (16.99) 

P* 0.04   <0.001   
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iii) Self-reported long-term illness, health problem or disability that limits activities or work (60–64 years; no/yes) 

 Males  Females  

 No Yes No  Yes 

36 years     

Inactive 128 (28.13) 38 (33.33) 180 (35.09) 47 (36.43) 

Moderately  136 (29.89) 25 (21.93) 149 (29.04) 31 (24.03) 

Most active 191 (41.98) 51 (44.74) 184 (35.87) 51 (39.53) 

P* 0.22  0.51  

43 years     

Inactive 188 (41.32) 53 (46.49) 242 (47.17) 71 (55.04) 

Moderately  114 (25.05) 29 (25.44) 146 (28.46) 22 (17.05) 

Most active 153 (33.63) 32 (28.07) 125 (24.37) 36 (27.91) 

P* 0.49  0.03  

53 years     

Inactive 167 (36.7) 59 (51.75) 213 (41.52) 61 (47.29) 

Moderately  118 (25.93) 20 (17.54) 106 (20.66) 26 (20.16) 

Most active 170 (37.36) 35 (30.7) 194 (37.82) 42 (32.56) 

P* 0.01  0.45  

60-64 years     

Inactive 271 (59.56) 74 (64.91) 284 (55.36) 81 (62.79) 

Moderately  67 (14.73) 19 (16.67) 89 (17.35) 25 (19.38) 

Most active 117 (25.71) 21 (18.42) 140 (27.29) 23 (17.83) 

P* 0.26  0.09  

 

Notes: *P(chi-squared test); educational attainment was categorised as none (none attempted), intermediate (GCE 'O' level or Burnam C or 

lower) or highest (GCE A level or Burnam B or higher); maximum available sample size used with each indicator; activity at each age was 

coded as inactive (no participation), moderately active (participated one to four times) and most active (participated five or more times), in the 

previous month (36 years), per month (43 years) and in the previous 4 weeks (53 and 60-64 years); analyses restricted to those with valid 

data for physical activity measures, paternal occupational class, own educational attainment, limiting illness, and body composition outcomes 
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Appendix 25. Mean differences in body composition outcomes per standard deviation increase in hours spent sedentary, in light and moderate-

vigorous physical activity at 60-64 years adjusted for paternal occupation class (4y) own educational attainment (26y) and limiting illness (60-

64y) 
 

 Total physical 

activity 

energy expenditure 

 

    

 Males (n=564)  Females (n=598)   

Outcome models β (95% CI) P β (95% CI) P P (sex interaction) 

Fat mass index (kg/m2)  -0.76(-1.05, -0.47) <0.001 -1.67(-2.04, -1.30) <0.001 <0.001 

Lean mass index (kg/m2) -0.15(-0.31, 0.02) 0.08 -0.33(-0.48, -0.18) <0.001 0.11 

Fat: lean mass ratio  -2.39(-3.29, -1.49) <0.001 -5.95(-7.30, -4.61) <0.001 <0.001 

Android: gynoid fat mass ratio -1.97(-3.23, -0.71) <0.01 -1.99(-2.93, -1.04) <0.001 0.91 

Appendicular lean mass index (kg/m2) -0.03(-0.10, 0.05) 0.53 -0.13(-0.20, -0.06) <0.001 0.03 

Appendicular lean mass index (kg/m2)  

+ fat mass index (kg/m1.2) 

0.08(0.01, 0.15) 0.03 0.07(0.02, 0.13) <0.01 0.81 

 

 

Note: analyses restricted to those with valid data for physical activity measures, paternal occupational class, own educational attainment, 

limiting illness, and body composition outcomes 
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Appendix 26. Mean differences in body composition outcomes per standard deviation increase in hours spent sedentary, in light intensity and 

moderate-vigorous physical activity at 60-64 years adjusted for paternal occupation class (4y) own educational attainment (26y) and limiting 

illness (60-64y) 
a) Males (n=564) 

 Sedentary    Light   Moderate-vigorous   

Outcome models β (95% CI) P P# β (95% CI) P P# β (95% CI) P P# 

Fat mass index (kg/m2) 0.33(0.03, 0.64) 0.03 <0.001 -0.33(-0.64, -0.03) 0.03 <0.001 -0.22(-0.52, 0.07) 0.14 0.38 

Lean mass index (kg/m2) -0.02(-0.19, 0.14) 0.78 0.09 -0.06(-0.22, 0.11) 0.50 0.04 0.16(0.00, 0.33) 0.06 0.97 

Fat: lean mass ratio  1.28(0.36, 2.21) <0.01 <0.001 -1.10(-2.02, -0.17) 0.02 <0.001 -1.19(-2.10, -0.29) 0.01 0.72 

Android: gynoid ratio 0.57(-0.71, 1.86) 0.38 0.60 -0.49(-1.77, 0.79) 0.45 0.29 -0.52(-1.78, 0.75) 0.42 0.28 

Appen. lean mass index (kg/m2) -0.04(-0.12, 0.04) 0.34 0.03 -0.02(-0.10, 0.06) 0.70 0.02 0.12(0.04, 0.20) <0.01 0.54 

Appen. lean mass index (kg/m2)  

+ fat mass index (kg/m1.2) 

-0.08(-0.15, -0.01) 0.02 1.00 0.03(-0.04, 0.10) 0.43 0.51 0.15(0.08, 0.22) <0.001 0.16 

 
b) Females (n=598) 

 Sedentary  Light  Moderate-vigorous  

Outcome models β (95% CI) P β (95% CI) P β (95% CI) P 

Fat mass index (kg/m2) 1.17(0.79, 1.55) <0.001 -1.49(-1.86, -1.12) <0.001 0.07(-0.32, 0.46) 0.73 

Lean mass index (kg/m2) 0.16(0.01, 0.30) 0.04 -0.28(-0.42, -0.13) <0.001 0.17(0.02, 0.31) 0.03 

Fat: lean mass ratio  4.42(3.04, 5.81) <0.001 -5.15(-6.51, -3.79) <0.001 -0.60(-2.03, 0.82) 0.41 

Android: gynoid ratio 0.89(-0.07, 1.85) 0.07 -1.27(-2.22, -0.32) <0.01 0.45(-0.51, 1.40) 0.36 

Appen. lean mass index (kg/m2) 0.06(-0.01, 0.13) 0.08 -0.13(-0.20, -0.06) <0.001 0.10(0.03, 0.17) <0.01 

Appen. lean mass index (kg/m2)  

+ fat mass index (kg/m1.2) 

-0.08(-0.14, -0.03) <0.01 0.05(0.00, 0.11) 0.05 0.09(0.04, 0.14) <0.001 

Notes: #P-value for sex interaction term; analyses restricted to those with valid data for physical activity measures, paternal occupational class, 

own educational attainment, limiting illness, and body composition outcomes  
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Appendix 27. Mean difference in body composition outcomes (95% confidence intervals) in those who were moderately and most active 

(compared with inactive) at 36, 43, 53 and 60-64 years 

a) Males N (%) Fat mass 
index (kg/m2)  

Lean mass index 
(kg/m2) 

Fat: lean 
ratio  

Android: gynoid 
ratio 

Appen. lean  
mass index (kg/m2) 

Appen. lean  
mass index 
 (kg/m2) + FMI 

36 years        

Inactive 166 (29.17) 0.00 0.00 0.00 0.00 0.00 0.00 

Moderately  161 (28.3) 0.33(-0.45, 1.12) 0.12(-0.31, 0.56) 0.84(-1.59, 3.27) 1.25(-2.13, 4.62) 0.01(-0.19, 0.21) -0.03(-0.21, 0.15) 
Most active 242 (42.53) 0.29(-0.43, 1.00) 0.41(0.02, 0.81) -0.12(-2.33, 2.09) -0.28(-3.36, 2.79) 0.14(-0.05, 0.32) 0.10(-0.06, 0.26) 
P*  0.65 0.10 0.67 0.61 0.25 0.23 
P#  <0.01 0.02 0.03 0.61 0.08 0.60 
43 years        
Inactive 241 (42.36) 0.00 0.00 0.00 0.00 0.00 0.00 
Moderately  143 (25.13) 0.32(-0.43, 1.07) 0.34(-0.08, 0.75) 0.19(-2.12, 2.51) -0.72(-3.94, 2.50) 0.19(0.00, 0.38) 0.15(-0.02, 0.32) 
Most active 185 (32.51) -0.18(-0.87, 0.52) 0.11(-0.27, 0.49) -1.05(-3.20, 1.09) -2.06(-5.04, 0.92) 0.10(-0.08, 0.28) 0.12(-0.04, 0.28) 

P*  0.46 0.27 0.52 0.40 0.15 0.15 
P#  <0.01 0.05 <0.01 0.83 0.06 0.37 
53 years        

Inactive 226 (39.72) 0.00 0.00 0.00 0.00 0.00 0.00 
Moderately  138 (24.25) -0.14(-0.91, 0.62) 0.20(-0.22, 0.63) -1.18(-3.54, 1.18) -1.47(-4.76, 1.82) 0.16(-0.04, 0.36) 0.18(0.00, 0.35) 
Most active 205 (36.03) -0.82(-1.50, -0.13) -0.05(-0.42, 0.33) -3.10(-5.20, -0.99) -2.51(-5.45, 0.43) 0.05(-0.13, 0.22) 0.15(-0.01, 0.30) 
P*  0.05 0.50 0.02 0.24 0.29 0.07 
P#  0.07 0.22 0.03 0.87 0.08 0.36 
60-64 years        

Inactive 345 (60.63) 0.00 0.00 0.00 0.00 0.00 0.00 
Moderately  86 (15.11) -0.25(-1.11, 0.60) 0.41(-0.07, 0.88) -1.85(-4.47, 0.77) -2.04(-5.71, 1.63) 0.22(0.00, 0.44) 0.25(0.06, 0.45) 
Most active 138 (24.25) -0.81(-1.52, -0.09) 0.12(-0.28, 0.51) -3.73(-5.92, -1.54) -3.01(-6.08, 0.06) 0.10(-0.09, 0.28) 0.20(0.04, 0.36) 
P*  

0.09 0.23 <0.01 0.13 0.12 <0.01 
P#  0.03 0.09 <0.01 0.99 0.02 0.06 
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b) Females N (%) Fat mass 

index (kg/m2)  

Lean mass index 

(kg/m2) 

Fat: lean  

ratio  

Android: gynoid 

ratio 

Appen. lean  

mass index (kg/m2) 

Appen. lean  

mass index 

 (kg/m2) + FMI 

36 years        

Inactive 227 (35.36) 0.00 0.00 0.00 0.00 0.00 0.00 

Moderately  180 (28.04) -0.49(-1.47, 0.50) -0.18(-0.55, 0.19) -0.78(-4.34, 2.78) -0.53(-2.91, 1.84) 0.00(-0.18, 0.17) 0.05(-0.07, 0.18) 

Most active 235 (36.6) -1.66(-2.58, -0.74) -0.33(-0.67, 0.01) -5.57(-8.90, -2.25) -1.92(-4.13, 0.30) -0.11(-0.28, 0.05) 0.08(-0.04, 0.20) 

P*  <0.01 0.16 <0.01 0.22 0.30 0.40 

43 years        

Inactive 313 (48.75) 0.00 0.00 0.00 0.00 0.00 0.00 

Moderately  168 (26.17) -0.99(-1.93, -0.05) -0.30(-0.65, 0.05) -3.27(-6.66, 0.12) -0.56(-2.83, 1.72) -0.09(-0.26, 0.07) 0.03(-0.10, 0.15) 

Most active 161 (25.08) -2.11(-3.07, -1.15) -0.32(-0.67, 0.04) -8.17(-11.61, -4.73) -3.08(-5.38, -0.77) -0.11(-0.28, 0.06) 0.14(0.02, 0.27) 

P*  <0.001 0.11 <0.001 0.03 0.35 0.08 

53 years        

Inactive 274 (42.68) 0.00 0.00 0.00 0.00 0.00 0.00 

Moderately  132 (20.56) -1.46(-2.51, -0.42) -0.31(-0.70, 0.08) -5.41(-9.15, -1.67) -2.54(-5.06, -0.03) -0.15(-0.33, 0.03) 0.02(-0.11, 0.16) 

Most active 236 (36.76) -1.92(-2.79, -1.04) -0.22(-0.55, 0.10) -8.03(-11.17, -4.89) -2.70(-4.81, -0.59) -0.09(-0.25, 0.06) 0.14(0.02, 0.25) 

P*  <0.001 0.22 <0.001 0.02 0.23 0.06 

60-64 years        

Inactive 365 (56.85) 0.00 0.00 0.00 0.00 0.00 0.00 

Moderately  114 (17.76) -1.75(-2.81, -0.70) -0.27(-0.66, 0.12) -6.78(-10.54, -3.02) -1.71(-4.26, 0.84) -0.19(-0.37, 0.00) 0.02(-0.11, 0.16) 

Most active 163 (25.39) -2.11(-3.03, -1.19) 0.01(-0.34, 0.36) -9.83(-13.13, -6.53) -3.06(-5.30, -0.82) 0.02(-0.14, 0.18) 0.28(0.16, 0.40) 

P*  <0.001 0.37 <0.001 0.02 0.10 <0.001 

Notes: *overall test of association (likelihood ratio test comparing models with and without physical activity included); #P-value for sex 

interaction term; activity at each age was coded as inactive (no participation), moderately active (participated one to four times) and most 

active (participated five or more times), in the previous month (36 years), per month (43 years) and in the previous 4 weeks (53 and 60-64 

years); analyses restricted to those with valid data for physical activity measures, paternal occupational class, own educational attainment, 

limiting illness, and body composition outcomes 
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Appendix 28. Mean difference in body composition outcomes (95% confidence intervals) in those who were moderately and most active 

(compared with inactive) at 36, 43, 53 and 60-64 years, adjusted for paternal occupation class (4y) own educational attainment (26y) and 

limiting illness (60-64y)  

a) Males N (%) Fat mass 
index (kg/m2)  

Lean mass index 
(kg/m2) 

Fat: lean 
ratio  

Android: gynoid 
ratio 

Appen. lean  
mass index (kg/m2) 

Appen. lean  
mass index 
 (kg/m2) + FMI 

36 years        

Inactive 166 (29.17) 0.00 0.00 0.00 0.00 0.00 0.00 
Moderately  161 (28.3) 0.48(-0.31, 1.27) 0.24(-0.19, 0.68) 1.20(-1.23, 3.63) 1.85(-1.52, 5.21) 0.05(-0.16, 0.25) -0.01(-0.19, 0.17) 
Most active 242 (42.53) 0.47(-0.24, 1.19) 0.54(0.15, 0.93) 0.36(-1.85, 2.57) 0.53(-2.54, 3.59) 0.18(0.00, 0.37) 0.12(-0.04, 0.29) 

P*  0.36 0.02 0.60 0.53 0.12 0.17 

P#  <0.01 0.02 0.04 0.69 0.07 0.07 
43 years        
Inactive 241 (42.36) 0.00 0.00 0.00 0.00 0.00 0.00 
Moderately  143 (25.13) 0.53(-0.23, 1.29) 0.48(0.07, 0.90) 0.72(-1.62, 3.06) 0.22(-3.01, 3.46) 0.24(0.05, 0.44) 0.18(0.00, 0.35) 

Most active 185 (32.51) 0.04(-0.66, 0.73) 0.23(-0.15, 0.61) -0.50(-2.65, 1.65) -1.16(-4.14, 1.82) 0.14(-0.04, 0.32) 0.13(-0.02, 0.29) 
P*  0.33 0.07 0.61 0.65 0.04 0.09 
P#  <0.01 0.03 <0.01 0.90 0.04 0.04 
53 years        
Inactive 226 (39.72) 0.00 0.00 0.00 0.00 0.00 0.00 
Moderately  138 (24.25) 0.18(-0.61, 0.96) 0.41(-0.02, 0.84) -0.43(-2.84, 1.98) -0.03(-3.38, 3.32) 0.22(0.02, 0.43) 0.20(0.02, 0.38) 
Most active 205 (36.03) -0.54(-1.24, 0.15) 0.16(-0.22, 0.54) -2.45(-4.59, -0.30) -1.10(-4.09, 1.88) 0.11(-0.07, 0.30) 0.18(0.02, 0.34) 

P*  0.13 0.17 0.06 0.72 0.09 0.03 

P#  0.04 0.15 0.02 0.83 0.06 0.06 

60-64 years        
Inactive 345 (60.63) 0.00 0.00 0.00 0.00 0.00 0.00 
Moderately  86 (15.11) -0.01(-0.87, 0.86) 0.51(0.04, 0.99) -1.14(-3.79, 1.51) -1.17(-4.85, 2.52) 0.26(0.04, 0.48) 0.26(0.06, 0.46) 
Most active 138 (24.25) -0.50(-1.22, 0.23) 0.31(-0.09, 0.70) -2.94(-5.16, -0.72) -1.75(-4.84, 1.34) 0.16(-0.03, 0.35) 0.22(0.06, 0.39) 
P*  0.37 0.06 0.03 0.50 0.04 <0.01 
P#  0.02 0.10 <0.01 0.97 0.02 0.02 
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b) Females N (%) Fat mass 
index (kg/m2)  

Lean mass index 
(kg/m2) 

Fat: lean  
ratio  

Android: gynoid 
ratio 

Appen. lean  
mass index (kg/m2) 

Appen. lean  
mass index 

 (kg/m2) + FMI 

36 years        
Inactive 227 (35.36) 0.00 0.00 0.00 0.00 0.00 0.00 
Moderately  180 (28.04) -0.18(-1.17, 0.81) -0.13(-0.50, 0.24) 0.62(-2.94, 4.18) 0.04(-2.36, 2.44) 0.00(-0.18, 0.18) 0.02(-0.11, 0.15) 

Most active 235 (36.6) -1.38(-2.31, -0.44) -0.31(-0.66, 0.04) -4.06(-7.41, -0.71) -1.23(-3.49, 1.03) -0.13(-0.29, 0.04) 0.04(-0.08, 0.16) 
P*  <0.01 0.21 0.01 0.46 0.23 0.81 
43 years        
Inactive 313 (48.75) 0.00 0.00 0.00 0.00 0.00 0.00 
Moderately  168 (26.17) -0.62(-1.57, 0.33) -0.25(-0.61, 0.10) -1.65(-5.06, 1.76) -0.14(-2.44, 2.17) -0.09(-0.26, 0.08) -0.01(-0.14, 0.11) 
Most active 161 (25.08) -1.91(-2.88, -0.95) -0.33(-0.69, 0.03) -6.93(-10.39, -3.48) -2.53(-4.86, -0.19) -0.13(-0.31, 0.04) 0.10(-0.03, 0.23) 

P*  <0.001 0.14 <0.001 0.08 0.27 0.23 
53 years        
Inactive 274 (42.68) 0.00 0.00 0.00 0.00 0.00 0.00 
Moderately  132 (20.56) -1.21(-2.26, -0.16) -0.28(-0.67, 0.12) -4.16(-7.92, -0.40) -2.13(-4.67, 0.41) -0.16(-0.34, 0.03) -0.01(-0.15, 0.13) 
Most active 236 (36.76) -1.60(-2.49, -0.71) -0.18(-0.51, 0.16) -6.51(-9.70, -3.31) -2.26(-4.42, -0.09) -0.10(-0.26, 0.06) 0.09(-0.02, 0.21) 
P*  <0.01 0.33 <0.001 0.08 0.21 0.19 

60-64 years        
Inactive 365 (56.85) 0.00 0.00 0.00 0.00 0.00 0.00 
Moderately  114 (17.76) -1.60(-2.66, -0.53) -0.24(-0.64, 0.16) -5.90(-9.69, -2.12) -1.63(-4.21, 0.95) -0.20(-0.39, -0.01) 0.00(-0.14, 0.14) 
Most active 163 (25.39) -1.82(-2.76, -0.89) 0.07(-0.28, 0.42) -8.59(-11.92, -5.26) -2.83(-5.10, -0.56) 0.03(-0.14, 0.20) 0.25(0.13, 0.38) 
P*  <0.001 0.36 <0.001 0.04 0.07 <0.001 

Notes: *overall test of association (likelihood ratio test comparing models with and without physical activity included);#P-value for sex 

interaction term; activity at each age was coded as inactive (no participation), moderately active (participated one to four times) and most 

active (participated five or more times), in the previous month (36 years), per month (43 years) and in the previous 4 weeks (53 and 60-64 

years); analyses restricted to those with valid data for physical activity measures, paternal occupational class, own educational attainment, 

limiting illness, and body composition outcomes 
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Appendix 29. Mean difference in body composition outcomes (95% confidence intervals) in those who were moderately and most active 

(compared with inactive) at 36, 43 and 53 years, adjusted for activity levels at 60–64 years 

a) Males 

 N (%) Fat mass 
index (kg/m2)  

Lean mass index 
(kg/m2) 

Fat: lean 
ratio  

Android: gynoid 
ratio 

Appendicular lean  
mass index (kg/m2) 

Appendicular lean  
mass index 
 (kg/m2), adjusted 

for fat mass index  

36 years        
Inactive 

166 (29.17) 
0.00 0.00 0.00 0.00 0.00 0.00 

Moderately  
161 (28.3) 

0.50(-0.30, 1.30) 0.11(-0.33, 0.55) 1.55(-0.89, 3.99) 1.83(-1.59, 5.24) -0.01(-0.21, 0.20) -0.03(-0.21, 0.15) 

Most active 
242 (42.53) 

0.61(-0.15, 1.37) 0.39(-0.03, 0.81) 1.26(-1.06, 3.59) 0.85(-2.41, 4.10) 0.10(-0.09, 0.30) 0.10(-0.06, 0.26) 

P* 
 

0.26 0.15 0.41 0.57 0.44 0.19 

P# 
 

<0.01 0.02 <0.01 0.50 0.08 0.08 

43 years 
 

      

Inactive 
241 (42.36) 

0.00 0.00 0.00 0.00 0.00 0.00 

Moderately  
143 (25.13) 

0.48(-0.28, 1.24) 0.31(-0.11, 0.73) 0.92(-1.42, 3.26) -0.19(-3.47, 3.08) 0.17(-0.03, 0.37) 0.15(-0.02, 0.32) 

Most active 
185 (32.51) 

0.09(-0.65, 0.82) 0.08(-0.33, 0.48) 0.12(-2.12, 2.36) -1.23(-4.37, 1.90) 0.08(-0.11, 0.26) 0.12(-0.04, 0.28) 

P* 
 

0.44 0.34 0.72 0.72 0.23 0.11 

P# 
 

<0.01 0.05 <0.01 0.87 0.07 0.07 

53 years 
 

      

Inactive 
226 (39.72) 

0.00 0.00 0.00 0.00 0.00 0.00 

Moderately  
138 (24.25) 

-0.01(-0.80, 0.78) 0.12(-0.31, 0.56) -0.44(-2.87, 1.98) -0.81(-4.22, 2.59) 0.12(-0.09, 0.32) 0.18(0.00, 0.35) 

Most active 
205 (36.03) 

-0.63(-1.35, 0.09) -0.10(-0.50, 0.30) -2.14(-4.35, 0.08) -1.72(-4.83, 1.38) 0.01(-0.17, 0.20) 0.15(-0.01, 0.30) 

P*  0.16 0.59 0.14 0.55 0.49 0.06 

P#  0.07 0.22 0.03 0.85 0.08 0.08 
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b) Females 

 

 N (%) Fat mass 

index (kg/m2)  

Lean mass index 

(kg/m2) 

Fat: lean  

ratio  

Android: gynoid 

ratio 

Appendicular lean  

mass index (kg/m2) 

Appendicular lean  

mass index 

 (kg/m2), adjusted 

for fat mass index 

36 years        

Inactive 
227 (35.36) 

0.00 0.00 0.00 0.00 0.00 0.00 

Moderately  
180 (28.04) 

-0.34(-1.31, 0.64) -0.19(-0.56, 0.18) -0.04(-3.53, 3.46) -0.30(-2.68, 2.07) -0.01(-0.18, 0.17) 0.05(-0.07, 0.18) 

Most active 
235 (36.6) 

-1.21(-2.15, -0.28) -0.35(-0.70, 0.01) -3.42(-6.76, -0.07) -1.27(-3.54, 1.01) -0.12(-0.29, 0.04) 0.08(-0.04, 0.20) 

P* 
 

0.03 0.15 0.08 0.52 0.28 0.19 

43 years 
 

      

Inactive 
313 (48.75) 

0.00 0.00 0.00 0.00 0.00 0.00 

Moderately  
168 (26.17) 

-0.81(-1.75, 0.13) -0.29(-0.65, 0.06) -2.46(-5.82, 0.89) -0.35(-2.63, 1.93) -0.08(-0.25, 0.08) 0.03(-0.10, 0.15) 

Most active 
161 (25.08) 

-1.49(-2.49, -0.49) -0.32(-0.69, 0.06) -5.30(-8.86, -1.73) -2.31(-4.73, 0.12) -0.10(-0.28, 0.08) 0.14(0.02, 0.27) 

P* 
 

0.01 0.13 0.01 0.16 0.44 0.03 

53 years 
 

      

Inactive 
274 (42.68) 

0.00 0.00 0.00 0.00 0.00 0.00 

Moderately  
132 (20.56) 

-1.03(-2.09, 0.03) -0.30(-0.69, 0.10) -3.49(-7.28, 0.30) -2.05(-4.64, 0.53) -0.14(-0.32, 0.05) 0.02(-0.11, 0.16) 

Most active 
236 (36.76) 

-1.30(-2.23, -0.36) -0.23(-0.58, 0.12) -5.15(-8.48, -1.82) -1.92(-4.18, 0.35) -0.09(-0.26, 0.08) 0.14(0.02, 0.25) 

P*  0.02 0.27 <0.01 0.16 0.32 0.02 

Notes: *overall test of association (likelihood ratio test comparing models with and without physical activity included); #P-value for sex 

interaction term; activity at each age was coded as inactive (no participation), moderately active (participated one to four times) and most 

active (participated five or more times), in the previous month (36 years), per month (43 years) and in the previous 4 weeks (53 and 60-64 

years); analyses restricted to those with valid data for physical activity measures, paternal occupational class, own educational attainment, 

limiting illness, and body composition outcomes 
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Appendix 30. A series of different life course models that relate physical activity measures (at 36, 43, 53 and 60–64 years) with body 

composition outcomes, in comparison with a fully saturated model (which incorporates all parameters) 

 

Life course model 

 

Fat mass 

index (kg/m2)  

Lean mass  

index (kg/m2) 

Fat: lean  

ratio  

Android: gynoid 

Ratio 

Appendicular 

lean  

mass index  

(kg/m2) 

Appendicular 

lean  

mass index 

 (kg/m2), 

adjusted for fat 

mass index 

Males (n=569)       

No effect (at any age) <0.001 0.14 <0.001 0.21 0.23 0.03 

Accumulation (36 to 60–64y)a <0.01 0.15 <0.01 0.38 0.33 0.16 

Accumulation (36 to 60–64y)b <0.01 0.14 0.01 0.30 0.15 0.08 

Sensitive period at 60–64y <0.01 0.12 0.01 0.40 0.27 0.17 

Sensitive period at 53y <0.01 0.10 <0.01 0.31 0.18 0.05 

Sensitive period at 43y <0.001 0.11 <0.001 0.24 0.24 0.04 

Sensitive period at 36y <0.001 0.31 <0.001 0.16 0.30 0.03 

       

Females (n=642)       

No effect (at any age) <0.001 0.06 <0.001 0.07 0.18 <0.001 

Accumulation (36 to 60–64y)a 0.86 0.12 0.51 0.73 0.23 0.06 

Accumulation (36 to 60–64y)b 0.70 0.08 0.68 0.50 0.12 0.10 

Sensitive period at 60–64y 0.02 0.04 0.02 0.34 0.13 0.20 

Sensitive period at 53y <0.01 0.07 <0.001 0.26 0.19 <0.01 

Sensitive period at 43y <0.01 0.12 <0.001 0.25 0.21 <0.01 

Sensitive period at 36y <0.001 0.12 <0.001 0.10 0.21 <0.01 

 

Note: activity at each age was coded as inactive (no participation), moderately active (participated one to four times) and most active 

(participated five or more times), in the previous month (36 years), per month (43 years) and in the previous 4 weeks (53 and 60-64 years), 

and included as linear terms; cells show P-values which compare each particular model against a fully saturated model; amodel assumes similar 

effect sizes at each age; bmodel allows for differences in effect size at each age; analyses restricted to those with valid data for physical activity 

measures, paternal occupational class, own educational attainment, limiting illness, and body composition outcomes
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Appendix 31. Mean body composition measures by socioeconomic position category in a) childhood and b) adulthood 
a) Childhood socioeconomic position 

 N (M/F) Fat mass (kg) Lean mass (kg) Fat: lean mass ratio 

Paternal occupational class (4y)  Males Females Males Females Males Females 
I    professional 55/58 23.07 (7.17) 27.10 (9.24) 53.67 (8.00) 37.81 (4.75) 43.07 (12.34) 70.85 (19.10) 
II   intermediate 133/149 22.79 (7.44) 28.41 (9.86) 53.44 (7.02) 37.98 (5.36) 42.25 (11.01) 73.96 (19.26) 
III  skilled (Non-Manual) 157/177 23.54 (6.76) 27.55 (8.62) 53.88 (6.47) 36.57 (5.51) 43.45 (10.41) 74.99 (18.88) 
III  skilled (Manual) 195/211 25.24 (7.54) 29.72 (8.91) 53.81 (7.28) 37.01 (5.20) 46.70 (11.24) 79.66 (17.76) 
IV   partly skilled 132/135 24.03 (6.94) 30.53 (9.61) 53.82 (7.16) 37.24 (5.59) 44.50 (10.51) 81.30 (19.63) 
V    unskilled 38/37 21.82 (6.84) 30.78 (8.38) 52.73 (6.55) 37.75 (5.49) 41.05 (10.81) 80.98 (16.02) 

        
Maternal educational attainment (6y)        
2o and FE or higher 99/115 23.45 (7.46) 26.92 (9.46) 54.06 (7.56) 36.80 (5.36) 43.30 (12.30) 72.40 (19.51) 
2o only (or 1o & FE or higher) 89/95 22.85 (6.55) 27.97 (8.32) 53.48 (8.02) 37.06 (4.75) 42.63 (9.66) 74.95 (17.47) 
1o and FE(no quals) 121/102 23.79 (7.53) 28.78 (10.32) 53.50 (6.67) 37.50 (5.11) 44.19 (11.61) 75.56 (20.02) 
1o only 359/409 24.35 (7.31) 29.92 (9.10) 53.88 (6.74) 37.18 (5.60) 44.92 (11.04) 80.00 (18.71) 

        
Paternal educational attainment (6y)        
2o and FE or higher 131/144 23.92 (7.05) 26.05 (7.93) 54.09 (6.92) 36.61 (4.61) 44.17 (11.60) 70.86 (17.96) 
2o only (or 1o & FE or higher) 98/115 23.04 (7.29) 28.55 (9.40) 53.93 (7.11) 37.38 (5.32) 42.46 (10.81) 75.78 (19.70) 
1o and FE(no quals) 117/92 22.97 (6.15) 28.99 (10.12) 52.72 (6.51) 37.65 (6.28) 43.50 (9.78) 75.80 (18.16) 
1o only 314/367 24.54 (7.75) 30.33 (9.30) 54.17 (7.22) 37.23 (5.47) 44.97 (11.60) 80.88 (18.77) 

 

Note: tabulations restricted to those with valid body composition outcome data 
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 N (M/F) Appendicular lean  mass (kg) Android: gynoid ratio 

Paternal occupational class (4y)  Males Females Males Females 
I    professional 55/58 24.84 (3.86) 16.64 (2.29) 59.38 (14.85) 43.44 (12.67) 
II   intermediate 133/149 24.61 (3.31) 16.55 (2.52) 62.11 (16.76) 41.88 (11.27) 
III  skilled (Non-Manual) 157/177 24.76 (3.17) 15.98 (2.56) 65.57 (15.48) 44.31 (13.17) 
III  skilled (Manual) 195/211 24.52 (3.53) 16.09 (2.50) 68.89 (14.49) 45.78 (11.16) 
IV   partly skilled 132/135 24.57 (3.40) 16.01 (2.65) 67.61 (13.86) 47.02 (12.34) 
V    unskilled 38/37 24.37 (3.10) 16.25 (2.60) 63.97 (15.75) 46.72 (13.19) 

      
Maternal educational attainment (6y)      
2o and FE or higher 99/115 25.00 (3.70) 16.22 (2.52) 60.95 (14.61) 41.56 (12.06) 
2o only (or 1o & FE or higher) 89/95 24.81 (3.99) 16.15 (2.38) 62.66 (15.13) 43.63 (11.57) 
1o and FE(no quals) 121/102 24.53 (3.20) 16.28 (2.47) 67.84 (16.65) 44.05 (12.56) 
1o only 359/409 24.60 (3.22) 16.11 (2.63) 67.35 (14.92) 45.93 (12.03) 

      
Paternal educational attainment (6y)      
2o and FE or higher 131/144 24.93 (3.31) 16.12 (2.17) 62.55 (15.43) 40.22 (11.03) 
2o only (or 1o & FE or higher) 98/115 24.95 (3.56) 16.37 (2.51) 63.70 (15.09) 43.81 (11.99) 
1o and FE(no quals) 117/92 24.10 (3.20) 16.27 (2.86) 65.77 (16.08) 43.83 (13.05) 
1o only 314/367 24.76 (3.46) 16.11 (2.63) 68.07 (15.19) 46.99 (12.07) 
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b) Adult socioeconomic position 

 N (M/F) Fat mass (kg) Lean mass (kg) Fat: lean ratio 

Own educational attainment (26y)  Males Females Males Females Males Males 

Degree or higher 132/61 23.16 (6.75) 27.74 (9.61) 53.77 (7.49) 38.57 (5.62) 42.79 (9.80) 70.94 (16.72) 

GCE A level or Burnam B 232/240 23.23 (7.10) 28.09 (8.75) 53.82 (7.02) 37.04 (5.08) 42.92 (10.73) 75.27 (18.78) 

GCE 'O' level or Burnam C 108/218 23.76 (7.64) 29.03 (9.62) 53.56 (6.79) 37.34 (5.36) 44.15 (12.10) 77.05 (18.79) 

Sub GCE or sub Burnham C 40/70 23.66 (6.27) 29.30 (8.76) 50.07 (5.95) 36.80 (5.90) 47.24 (11.32) 79.05 (18.50) 

None attempted 192/182 24.96 (7.51) 30.26 (8.83) 54.49 (6.99) 37.10 (5.49) 45.58 (11.35) 81.04 (18.22) 

        
Home ownership (26y)        

Owned at 26 years 332/422 23.93 (7.51) 28.74 (8.59) 54.24 (6.84) 37.11 (5.08) 43.77 (11.34) 76.92 (17.65) 

…Renting or living at home 332/322 23.79 (6.92) 29.42 (10.06) 53.07 (7.13) 37.47 (5.74) 44.68 (10.66) 77.75 (20.27) 

        

Own RGSC occ. class (53y)        

I    professional 101/16 22.95 (6.63) 26.35 (7.09) 53.65 (6.93) 37.44 (5.67) 42.54 (9.71) 70.68 (18.22) 

II   intermediate 344/345 24.02 (7.08) 28.40 (9.31) 53.91 (7.18) 37.52 (5.55) 44.36 (10.80) 75.02 (18.73) 

III  skilled (Non-Manual) 83/280 24.70 (7.55) 28.96 (8.82) 52.51 (6.59) 36.88 (4.91) 46.73 (11.71) 78.05 (18.78) 

III  skilled (Manual) 155/49 24.07 (7.62) 31.31 (9.18) 54.30 (7.05) 37.74 (4.79) 44.08 (11.55) 82.23 (17.71) 

IV   partly skilled 46/75 21.89 (7.06) 31.57 (9.52) 53.16 (7.21) 38.22 (5.95) 40.81 (10.98) 81.72 (17.92) 

V    unskilled 10/24 23.63 (5.21) 28.09 (11.22) 50.69 (6.64) 35.56 (5.96) 46.60 (8.23) 77.71 (22.15) 

        

H of H RGSC occ. class (53y)        

I    professional 114/86 22.95 (6.55) 26.29 (7.62) 53.77 (7.15) 36.67 (4.93) 42.46 (9.60) 71.28 (16.93) 

II   intermediate 376/424 24.00 (7.07) 29.16 (9.59) 53.81 (6.96) 37.71 (5.51) 44.41 (10.85) 76.62 (19.09) 

III  skilled (Non-Manual) 139/186 23.64 (7.12) 28.79 (8.39) 52.93 (6.94) 36.51 (5.02) 44.47 (11.11) 78.52 (18.33) 

III  skilled (Manual) 83/53 24.96 (8.52) 31.90 (10.65) 54.58 (7.27) 37.92 (4.85) 45.33 (12.98) 83.01 (20.26) 

IV   partly skilled 22/34 22.43 (7.31) 31.68 (8.50) 53.51 (8.02) 37.97 (5.91) 41.62 (11.02) 82.92 (16.72) 

V    unskilled 5/6 22.42 (5.40) 26.30 (9.27) 52.75 (8.97) 34.63 (8.04) 42.27 (5.06) 74.50 (18.16) 

        Own NS-SEC occ. class (53y)        

I Managerial & professional  378/298 23.58 (6.86) 28.07 (9.23) 53.79 (7.12) 37.40 (5.29) 43.62 (10.47) 74.42 (19.04) 

II Intermediate  172/303 23.75 (6.82) 29.25 (8.54) 53.35 (7.12) 37.10 (4.96) 44.41 (10.66) 78.50 (18.66) 

III Routine and manual  182/197 24.39 (8.19) 30.39 (10.16) 53.97 (6.95) 37.56 (5.97) 44.83 (12.30) 79.83 (18.81) 
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 N (M/F) Fat mass (kg)  Lean mass (kg)  Fat: lean ratio  

Household income (60-64y)        
1 (highest) 292/233 23.13 (6.48) 28.01 (8.37) 53.93 (7.16) 37.30 (5.17) 42.68 (9.55) 74.66 (17.99) 
2 172/200 23.45 (6.91) 28.49 (8.52) 53.85 (7.02) 37.50 (5.63) 43.39 (10.75) 75.53 (16.57) 
3 171/211 24.47 (7.56) 30.21 (10.52) 53.07 (7.27) 37.41 (5.64) 45.88 (11.77) 79.83 (20.45) 
4 (lowest) 76/126 24.55 (8.37) 30.12 (9.41) 53.00 (6.42) 36.80 (5.02) 45.83 (12.70) 81.05 (20.49) 

 

 

 

 N (M/F) Appendicular lean mass (kg) Android: gynoid ratio 

Own educational attainment (26y)  Males Females Males Females 

Degree or higher 132/61 24.96 (3.62) 17.00 (2.60) 62.82 (16.29) 41.99 (12.24) 

GCE A level or Burnam B 232/240 24.73 (3.42) 16.16 (2.38) 63.61 (14.55) 43.95 (12.45) 

GCE 'O' level or Burnam C 108/218 24.51 (3.35) 16.23 (2.58) 66.54 (15.15) 45.74 (12.63) 

Sub GCE or sub Burnham C 40/70 22.69 (3.06) 15.76 (2.74) 67.40 (17.20) 45.17 (12.18) 

None attempted 192/182 24.81 (3.24) 16.05 (2.61) 68.76 (14.24) 45.65 (12.07) 

      

Home ownership (26y)      

Owned at 26 years 332/422 24.95 (3.29) 16.15 (2.46) 66.17 (15.47) 44.33 (11.75) 

…Renting or living at home 332/322 24.30 (3.44) 16.27 (2.67) 65.44 (15.39) 45.05 (12.88) 

      

Own RGSC occ. class (53y)      

I    professional 101/16 24.81 (3.32) 16.50 (2.62) 64.11 (16.37) 42.03 (8.98) 

II   intermediate 344/345 24.71 (3.53) 16.38 (2.57) 65.00 (15.31) 43.87 (12.06) 

III  skilled (Non-Manual) 83/280 24.06 (3.15) 16.00 (2.37) 68.10 (16.26) 44.75 (13.25) 

III  skilled (Manual) 155/49 24.80 (3.29) 16.25 (2.46) 67.67 (14.56) 47.22 (10.89) 

IV   partly skilled 46/75 24.38 (3.44) 16.62 (2.85) 62.19 (12.69) 47.82 (11.72) 

V    unskilled 10/24 23.23 (2.80) 15.22 (2.79) 77.36 (13.10) 43.97 (12.76) 
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H of H RGSC occ. class (53y)  Appendicular lean mass (kg) Android: gynoid ratio 

I    professional 114/86 24.87 (3.39) 15.97 (2.31) 63.92 (16.41) 41.26 (11.36) 

II   intermediate 376/424 24.65 (3.41) 16.44 (2.60) 65.62 (15.11) 44.77 (12.19) 

III  skilled (Non-Manual) 139/186 24.29 (3.34) 15.81 (2.33) 66.02 (15.03) 44.34 (13.40) 

III  skilled (Manual) 83/53 24.74 (3.33) 16.38 (2.59) 68.96 (14.99) 47.45 (10.88) 

IV   partly skilled 22/34 24.80 (3.88) 16.54 (2.77) 60.33 (13.47) 50.83 (10.08) 

V    unskilled 5/6 24.38 (3.57) 14.44 (3.47) 84.59 (12.87) 45.33 (20.22) 

    

Own NS-SEC occ. class (53y)      

I Managerial & professional  378/298 24.68 (3.41) 16.32 (2.48) 64.80 (16.23) 43.66 (11.89) 

II Intermediate  172/303 24.48 (3.43) 16.13 (2.40) 66.52 (14.47) 45.14 (12.12) 

III Routine and manual  182/197 24.70 (3.36) 16.26 (2.82) 66.82 (14.02) 46.12 (13.47) 

      

Household income (60-64y)      
1 (highest) 292/233 24.76 (3.39) 16.29 (2.39) 64.64 (15.73) 43.80 (12.53) 
2 172/200 24.70 (3.41) 16.24 (2.63) 65.09 (14.27) 44.59 (12.42) 
3 171/211 24.28 (3.59) 16.31 (2.76) 66.42 (14.62) 45.08 (12.60) 
4 (lowest) 76/126 24.15 (2.92) 15.95 (2.35) 68.59 (17.09) 46.43 (12.13) 



293 

 

 

 

 

 

Appendix 32. Mean body composition measures (adjusted for adult height) by socioeconomic position category in a) childhood and b) adulthood  
 

a) Childhood socioeconomic position 

 N (M/F) Fat mass index (kg/m1.20) Lean mass index (kg/m2) 

Paternal occupational class (4y)  Males Females Males Females 

I    professional 55/58 11.62 (3.59) 14.96 (5.03) 17.05 (1.99) 14.05 (1.66) 

II   intermediate 133/149 11.51 (3.79) 15.81 (5.39) 17.09 (2.05) 14.31 (1.82) 

III  skilled (Non-Manual) 157/177 11.94 (3.35) 15.32 (4.74) 17.40 (1.90) 13.74 (1.86) 

III  skilled (Manual) 195/211 12.97 (3.79) 16.74 (4.96) 17.74 (2.03) 14.22 (1.80) 

IV   partly skilled 132/135 12.33 (3.40) 17.26 (5.41) 17.72 (1.86) 14.38 (1.97) 

V    unskilled 38/37 11.32 (3.62) 17.42 (4.58) 17.63 (2.23) 14.62 (1.62) 

      

Maternal educational attainment (6y)      

2o and FE or higher 99/115 11.81 (3.76) 15.00 (5.19) 17.20 (2.06) 13.90 (1.90) 

2o only (or 1o & FE or higher) 89/95 11.49 (3.21) 15.60 (4.62) 16.98 (2.08) 13.99 (1.64) 

1o and FE(no quals) 121/102 12.16 (3.85) 16.06 (5.67) 17.46 (1.93) 14.18 (1.68) 

1o only 359/409 12.49 (3.67) 16.84 (5.06) 17.72 (1.96) 14.26 (1.94) 

      

Paternal educational attainment (6y)      

2o and FE or higher 131/144 12.05 (3.58) 14.48 (4.34) 17.20 (1.94) 13.76 (1.58) 

2o only (or 1o & FE or higher) 98/115 11.71 (3.73) 15.92 (5.13) 17.42 (2.11) 14.15 (1.84) 

1o and FE(no quals) 117/92 11.80 (3.13) 16.14 (5.52) 17.35 (1.88) 14.20 (2.01) 

1o only 314/367 12.56 (3.87) 17.10 (5.20) 17.75 (2.00) 14.32 (1.93) 

 

Note: tabulations restricted to those with valid body composition outcome data 
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b) Adult socioeconomic position 

 N (M/F) Fat mass index (kg/m1.2) Lean mass index (kg/m2) 

Own educational attainment (26y)  Males Females Males Females 
Degree or higher 132/61 11.64 (3.36) 15.33 (5.23) 17.06 (2.06) 14.37 (1.81) 
GCE A level or Burnam B 232/240 11.79 (3.51) 15.69 (4.87) 17.39 (1.99) 14.02 (1.79) 
GCE 'O' level or Burnam C 108/218 12.13 (3.88) 16.20 (5.23) 17.46 (1.87) 14.12 (1.80) 
Sub GCE or sub Burnham C 40/70 12.33 (3.26) 16.51 (4.88) 16.89 (1.85) 14.15 (1.99) 

None attempted 192/182 12.85 (3.79) 17.10 (4.93) 18.02 (1.93) 14.33 (1.89) 
      

Home ownership (26y)      

Owned at 26 years 332/422 12.18 (3.74) 16.10 (4.80) 17.64 (1.96) 14.11 (1.75) 
…Renting or living at home 332/322 12.17 (3.51) 16.45 (5.54) 17.33 (2.01) 14.23 (1.96) 

      
Own RGSC occ. class (53y)      
I    professional 101/16 11.61 (3.28) 14.73 (3.77) 17.25 (1.94) 14.28 (2.04) 

II   intermediate 344/345 12.19 (3.55) 15.82 (5.12) 17.42 (2.01) 14.14 (1.87) 
III  skilled (Non-Manual) 83/280 12.69 (3.81) 16.25 (4.95) 17.31 (1.90) 14.05 (1.78) 
III  skilled (Manual) 155/49 12.35 (3.85) 17.72 (5.14) 17.86 (1.95) 14.60 (1.71) 

IV   partly skilled 46/75 11.16 (3.57) 17.76 (5.24) 17.29 (2.12) 14.66 (1.83) 
V    unskilled 10/24 12.57 (2.73) 15.90 (6.30) 17.70 (2.00) 13.81 (1.99) 

      
H of H RGSC occ. class (53y)      

I    professional 114/86 11.61 (3.24) 14.67 (4.18) 17.28 (2.05) 13.90 (1.69) 
II   intermediate 376/424 12.21 (3.55) 16.27 (5.30) 17.44 (1.95) 14.25 (1.88) 
III  skilled (Non-Manual) 139/186 12.13 (3.55) 16.18 (4.71) 17.40 (1.95) 13.96 (1.81) 
III  skilled (Manual) 83/53 12.84 (4.35) 18.11 (6.06) 18.03 (1.96) 14.73 (1.62) 
IV   partly skilled 22/34 11.35 (3.74) 17.73 (4.63) 17.10 (2.24) 14.44 (1.84) 

V    unskilled 5/6 11.98 (2.54) 14.86 (4.65) 18.61 (2.24) 13.59 (2.50) 
Own NS-SEC occ. class (53y)      

I Managerial & professional  378/298 11.97 (3.46) 15.65 (5.10) 17.37 (2.04) 14.12 (1.82) 
II Intermediate  172/303 12.10 (3.41) 16.38 (4.78) 17.31 (1.88) 14.09 (1.74) 
III Routine and manual  182/197 12.56 (4.10) 17.10 (5.59) 17.86 (1.96) 14.42 (1.99) 
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  Fat mass index (kg/m1.2) Lean mass index (kg/m2) 

Household income (60-64y)      
1 (highest) 292/233 11.71 (3.21) 15.59 (4.62) 17.37 (1.98) 14.04 (1.76) 
2 172/200 12.00 (3.49) 15.87 (4.65) 17.60 (1.99) 14.15 (1.86) 
3 171/211 12.53 (3.82) 16.99 (5.81) 17.40 (2.04) 14.32 (1.95) 

4 (lowest) 76/126 12.57 (4.17) 16.99 (5.34) 17.43 (1.95) 14.16 (1.88) 
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Appendix 33. Differences in body composition outcomes between the hypothetical lowest and highest socioeconomic position (slope index of 

inequality) in childhood, with each indicator mutually adjusted for one another 
 

 Fat mass index (kg/m1.20)   Lean mass index (kg/m2)   

 Males P Females P Males P Females P 
Paternal occupational class (4y) 0.60(-0.65, 1.85) 0.35 0.71(-0.97, 2.39) 0.41 0.63(-0.04, 1.30) 0.07 -0.05(-0.67, 0.56) 0.86 

Maternal educational attainment (6y) 0.74(-0.57, 2.06) 0.27 1.03(-0.71, 2.78) 0.25 0.42(-0.29, 1.13) 0.24 0.13(-0.51, 0.77) 0.69 

Paternal educational attainment (6y) 0.35(-1.02, 1.73) 0.62 2.71(0.77, 4.66) 0.01 0.27(-0.47, 1.01) 0.48 0.69(-0.02, 1.40) 0.06 

 

 Fat: lean ratio   Android: gynoid ratio   

 Males P Females P Males P Females P 

Paternal occupational class (4y) 1.71(-2.11, 5.54) 0.38 4.74(-1.46, 10.94) 0.13 3.44(-1.78, 8.66) 0.20 0.91(-3.03, 4.84) 0.65 

Maternal educational attainment (6y) 2.06(-1.96, 6.07) 0.31 5.63(-0.81, 12.08) 0.09 3.79(-1.68, 9.27) 0.17 1.66(-2.43, 5.75) 0.43 

Paternal educational attainment (6y) 0.20(-3.99, 4.40) 0.92 8.78(1.60, 15.95) 0.02 4.57(-1.16, 10.29) 0.12 8.42(3.87, 12.98) <0.001 

 

 Appendicular lean mass index (kg/m2)*  

 Males 
Model 1  

P  
Model 2 

P Females 
Model 1  

P  
Model 2 

P 

Paternal occupational class (4y) 0.25(-0.07, 0.57) 0.12 0.18(-0.10, 0.46) 0.21 -0.08(-0.38, 0.21) 0.57 -0.17(-0.39, 0.05) 0.14 

Maternal educational attainment (6y) 0.05(-0.29, 0.38) 0.79 -0.05(-0.34, 0.25) 0.76 0.01(-0.29, 0.31) 0.95 -0.11(-0.34, 0.12) 0.35 

Paternal educational attainment (6y) 0.11(-0.24, 0.46) 0.55 0.06(-0.24, 0.37) 0.69 0.22(-0.12, 0.55) 0.21 -0.10(-0.35, 0.16) 0.45 

 

Note: sample sizes in all models were: males: n=594, females n=637; *Model 1: unadjusted; Model 2: Model 1 + adjusted for whole body fat 

mass index; analyses were restricted to those with valid data for all indicators of socioeconomic position and body composition outcomes 
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Appendix 34. Mean differences (95% confidence intervals, P-value) in birth weight and weight gain velocity standard deviation scores between 

the lowest and highest childhood socioeconomic position (the slope index of inequality) 

 

  Paternal educational  

attainment (6y) 

  Own educational 

Attainment (26y) 

 

 N (M/F) Males Females N (M/F) Males Females 

Birth 

weight 
661/715 -0.08(-0.36, 0.21), 0.61 -0.17(-0.44, 0.10), 0.21 703/767   

0-2 541/568 -0.33(-0.64, -0.02), 0.04 0.09(-0.19, 0.38), 0.51 567/597 -0.28(-0.54, -0.01), 0.04 0.03(-0.26, 0.33), 0.83 

2–4 522/537 0.16(-0.12, 0.44), 0.26 0.06(-0.22, 0.33), 0.67 544/558 -0.19(-0.44, 0.06), 0.13 -0.17(-0.46, 0.12), 0.26 

4–7 543/593 0.00(-0.27, 0.28), 0.98 0.17(-0.10, 0.43), 0.21 560/600 -0.14(-0.38, 0.10), 0.24 -0.07(-0.35, 0.20), 0.60 

7–11 542/601 -0.02(-0.27, 0.24), 0.89 0.37(0.14, 0.60), 0.00 560/606 0.05(-0.18, 0.28), 0.66 0.08(-0.16, 0.33), 0.51 

11–15 510/556 0.34(0.10, 0.58), 0.01 0.09(-0.21, 0.38), 0.56 530/573 0.11(-0.11, 0.32), 0.33 0.27(-0.04, 0.57), 0.09 

15-20 467/496 0.29(0.02, 0.56), 0.04 0.34(0.04, 0.65), 0.03 489/510 0.45(0.21, 0.69), 0.00 0.07(-0.25, 0.39), 0.68 

 

Note: weight gain models (2–20 years) are adjusted for concurrent height gain and weight and height at the beginning of each period, except 

weight gain from 0–2 years (adjusted for height at 2 years and weight at birth); analyses were restricted to those with valid data for body 

composition outcomes 
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Appendix 35. Associations between indicators of socioeconomic position and self-reported physical activity levels across adulthood 
 

i) Paternal educational attainment (6 years)  

 Males     Females     

 1 Highest 2 3 4 Lowest 1 Highest 2 3 4 Lowest 

60-64 years         

Inactive 61 (47.29) 51 (53.68) 65 (57.52) 207 (67.21) 63 (44.37) 64 (56.14) 43 (47.25) 230 (64.79) 

Moderately  23 (17.83) 18 (18.95) 15 (13.27) 40 (12.99) 35 (24.65) 21 (18.42) 21 (23.08) 42 (11.83) 

Most active 45 (34.88) 26 (27.37) 33 (29.2) 61 (19.81) 44 (30.99) 29 (25.44) 27 (29.67) 83 (23.38) 

P* <0.01    <0.001    

53 years         

Inactive 31 (25.62) 39 (41.94) 43 (39.09) 134 (45.27) 41 (29.5) 39 (34.51) 39 (44.32) 185 (51.53) 

Moderately  33 (27.27) 23 (24.73) 25 (22.73) 66 (22.3) 31 (22.3) 21 (18.58) 19 (21.59) 62 (17.27) 

Most active 57 (47.11) 31 (33.33) 42 (38.18) 96 (32.43) 67 (48.2) 53 (46.9) 30 (34.09) 112 (31.2) 

P* 0.02    <0.001    

43 years         

Inactive 33 (25.78) 36 (38.3) 47 (41.96) 153 (52.22) 49 (35) 44 (39.64) 50 (59.52) 191 (54.57) 

Moderately  41 (32.03) 31 (32.98) 25 (22.32) 63 (21.5) 43 (30.71) 33 (29.73) 19 (22.62) 84 (24.00) 

Most active 54 (42.19) 27 (28.72) 40 (35.71) 77 (26.28) 48 (34.29) 34 (30.63) 15 (17.86) 75 (21.43) 

P* <0.001    <0.001    

36 years         

Inactive 27 (23.08) 23 (25) 26 (23.42) 94 (32.98) 27 (20.77) 32 (30.77) 25 (29.07) 156 (45.35) 

Moderately 28 (23.93) 29 (31.52) 43 (38.74) 76 (26.67) 41 (31.54) 29 (27.88) 22 (25.58) 89 (25.87) 

Most active 62 (52.99) 40 (43.48) 42 (37.84) 115 (40.35) 62 (47.69) 43 (41.35) 39 (45.35) 99 (28.78) 

P* 0.03    <0.001    
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iii) Own occupational class at 53 years (Registrar General’s classification) 

 Males     Females     

 I/II  

Highest  

III  

Non manual 

III 

Manual 

IV/V  

Lowest  

I/II  

Highest  

III  

Non manual 

III 

Manual 

IV/V  

Lowest  

60-64 years         

Inactive 202 (54.89) 43 (58.9) 99 (78.57) 28 (59.57) 152 (48.25) 151 (61.38) 32 (72.73) 55 (67.07) 

Moderately  65 (17.66) 12 (16.44) 8 (6.35) 9 (19.15) 64 (20.32) 40 (16.26) 3 (6.82) 11 (13.41) 

Most active 101 (27.45) 18 (24.66) 19 (15.08) 10 (21.28) 99 (31.43) 55 (22.36) 9 (20.45) 16 (19.51) 

P* <0.001    <0.01    

53 years         

Inactive 118 (31.47) 31 (42.47) 75 (57.25) 23 (47.92) 106 (33.02) 116 (46.03) 27 (61.36) 51 (60.71) 

Moderately  106 (28.27) 17 (23.29) 19 (14.5) 10 (20.83) 71 (22.12) 49 (19.44) 6 (13.64) 12 (14.29) 

Most active 151 (40.27) 25 (34.25) 37 (28.24) 15 (31.25) 144 (44.86) 87 (34.52) 11 (25) 21 (25) 

P* <0.001    <0.001    

43 years         

Inactive 138 (36.8) 26 (35.62) 78 (59.54) 25 (52.08) 139 (43.3) 126 (50) 24 (54.55) 54 (64.29) 

Moderately  97 (25.87) 22 (30.14) 25 (19.08) 12 (25) 93 (28.97) 67 (26.59) 11 (25) 17 (20.24) 

Most active 140 (37.33) 25 (34.25) 28 (21.37) 11 (22.92) 89 (27.73) 59 (23.41) 9 (20.45) 13 (15.48) 

P* <0.001    0.04    

36 years         

Inactive 102 (27.2) 17 (23.29) 48 (36.64) 15 (31.25) 97 (30.22) 97 (38.49) 19 (43.18) 35 (41.67) 

Moderately  108 (28.8) 20 (27.4) 32 (24.43) 19 (39.58) 91 (28.35) 69 (27.38) 15 (34.09) 21 (25) 

Most active 165 (44) 36 (49.32) 51 (38.93) 14 (29.17) 133 (41.43) 86 (34.13) 10 (22.73) 28 (33.33) 

P* 0.12    0.10    
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iv) Household income at 60–64 years 

 Males     Females     

 1 Highest 2 3 4 Lowest 1 Highest 2 3 4 Lowest 

60-64 years         

Inactive 116 (49.36) 95 (62.91) 99 (68.75) 42 (72.41) 99 (48.77) 99 (54.4) 107 (59.44) 73 (69.52) 

Moderately  40 (17.02) 26 (17.22) 22 (15.28) 3 (5.17) 39 (19.21) 35 (19.23) 30 (16.67) 12 (11.43) 

Most active 79 (33.62) 30 (19.87) 23 (15.97) 13 (22.41) 65 (32.02) 48 (26.37) 43 (23.89) 20 (19.05) 

P* <0.001    0.03    

53 years         

Inactive 76 (31.4) 59 (38.82) 69 (47.59) 29 (48.33) 59 (28.78) 66 (36.07) 91 (49.46) 69 (63.3) 

Moderately  62 (25.62) 37 (24.34) 42 (28.97) 7 (11.67) 48 (23.41) 33 (18.03) 41 (22.28) 18 (16.51) 

Most active 104 (42.98) 56 (36.84) 34 (23.45) 24 (40) 98 (47.8) 84 (45.9) 52 (28.26) 22 (20.18) 

P* <0.001    <0.001    

43 years         

Inactive 74 (30.58) 67 (44.08) 76 (52.41) 33 (55) 78 (38.05) 90 (49.18) 93 (50.54) 68 (62.39) 

Moderately  68 (28.1) 40 (26.32) 30 (20.69) 13 (21.67) 59 (28.78) 54 (29.51) 44 (23.91) 22 (20.18) 

Most active 100 (41.32) 45 (29.61) 39 (26.9) 14 (23.33) 68 (33.17) 39 (21.31) 47 (25.54) 19 (17.43) 

P* <0.001    <0.01    

36 years         

Inactive 56 (23.14) 47 (30.92) 49 (33.79) 23 (38.33) 51 (24.88) 59 (32.24) 73 (39.67) 51 (46.79) 

Moderately  69 (28.51) 45 (29.61) 37 (25.52) 19 (31.67) 56 (27.32) 60 (32.79) 50 (27.17) 26 (23.85) 

Most active 117 (48.35) 60 (39.47) 59 (40.69) 18 (30) 98 (47.8) 64 (34.97) 61 (33.15) 32 (29.36) 

P* 0.08    <0.001    

 

Note: *P(chi-squared test); analyses were restricted to those with valid data for body composition outcomes 
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Appendix 36. Differences in android and gynoid fat mass (95% CI) between the hypothetical lowest and highest socioeconomic position (slope 

index of inequality)  

  Android fat mass (kg) Gynoid fat mass (kg) 

 N Males P Females P Males P Females P 

Paternal occ. class (4y) 1477 0.27(0.02, 0.52) 0.03 0.48(0.23, 0.73) <0.01 -0.02(-0.28, 0.24) 0.89 0.48(0.11, 0.84) 0.01 

Maternal education (6y) 1389 0.34(0.06, 0.62) 0.02 0.55(0.27, 0.82) <0.01 0.09(-0.21, 0.39) 0.54 0.61(0.20, 1.01) <0.01 

Paternal education (6y) 1378 0.34(0.06, 0.62) 0.02 0.75(0.48, 1.02) <0.01 0.03(-0.27, 0.32) 0.85 0.68(0.29, 1.08) <0.01 

Own education (26y) 1475 0.42(0.19, 0.65) <0.01 0.37(0.10, 0.64) <0.01 0.17(-0.08, 0.43) 0.17 0.41(0.02, 0.81) 0.04 

Home ownership (26y) 1408 -0.14(-0.44, 0.15) 0.34 0.14(-0.16, 0.43) 0.36 -0.07(-0.38, 0.23) 0.64 0.08(-0.35, 0.51) 0.72 

Own RGSC occ. class (53y) 1528 0.12(-0.11, 0.36) 0.30 0.43(0.14, 0.72) <0.01 -0.05(-0.30, 0.20) 0.69 0.46(0.05, 0.87) 0.03 

Own NS-SEC occ. class (53y) 1550 0.20(-0.05, 0.45) 0.12 0.39(0.12, 0.66) <0.01 0.08(-0.18, 0.35) 0.53 0.45(0.06, 0.84) 0.03 

H of H RGSC occ. class (53y) 1530 0.18(-0.07, 0.43) 0.16 0.46(0.19, 0.73) <0.01 0.02(-0.24, 0.29) 0.86 0.48(0.08, 0.88) 0.02 

Household income (60-64y) 1477 0.30(0.07, 0.54) 0.01 0.42(0.17, 0.67) <0.01 0.20(-0.05, 0.46) 0.12 0.52(0.15, 0.89) <0.01 

Note: analyses were restricted to those with valid data for all body composition outcomes 

 

 

 


