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Abstract

This thesis contains three chapters on dynamic models with discrete and continuous out-

comes. In the first chapter, I focus on indirect inference estimation. Indirect inference is

used to estimate parameters in models where evaluation of the objective function directly

is complicated or infeasible. Indirect inference is typically formulated as an optimization

problem nesting one or more other optimization problems. In some cases the solution

to the inner optimization problems can be obtained in one step, but when such a solu-

tion is not available, indirect inference estimation is computationally demanding. I show

how constrained optimization methods can be used to replace the nesting of optimization

problems and I provide Monte Carlo evidence showing when this approach is beneficial.

The second chapter uses panel data from the United Kingdom to estimate a model

of wage dynamics with labour participation where the variance in wages is decomposed

in a permanent and a transitory component. Most studies that estimate similar models

ignore non-participation; individuals without a wage are simply removed from the analysis.

This leads to biased estimates of the parameters if working individuals are different in

their unobservable characteristics compared to people that do not work. I use a dynamic

selection model to include a discrete labour participation choice in a simple model of wage

dynamics and compare the results to a version of the model that does not include labour

participation.

In the third chapter, I show how some of the assumptions on the dynamics of the

unobservables in the second chapter can be relaxed. High dimensional integrals have to

be approximated to estimate the less restrictive models. I use sparse grids and simula-

tion methods to approximate these integrals and compare their performance on simulated

data.

11



11
Indirect inference estimation using MPEC

1.1 Introduction

Indirect inference (introduced by Smith, 1993; Gouriéroux, Monfort, & Renault, 1993) is

an estimation method that was developed to be used in problems where evaluation of the

objective function directly is difficult or infeasible, for example because there is no closed-

form analytic expression of the likelihood. For instance, Magnac, Robin, and Visser (1995)

use indirect inference to analyse censored duration data for which an explicit expression

of the likelihood is not available. Gouriéroux, Phillips, and Yu (2010) apply indirect

inference as a bias correction mechanism in panel data models, motivated by the fact

that bias-correction formulas are generally not available for higher order auto-regressive

processes.

The method works by choosing a (misspecified) auxiliary model that captures the

features of the model of interest, but is easy to estimate. There is a one-to-one link

between the estimated parameters from the auxiliary model and the parameters of the

12
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model of interest, referred to as the binding function. The aim is to find values for the

parameters of interest, that minimize an objective function measuring the distance between

the auxiliary parameters obtained from the observed data and the theoretical values of

the auxiliary parameters implied by the binding function. There are examples where the

binding function can be derived analytically (see for instance example 1 in Smith (2008)

or the examples in Jiang and Turnbull (2004)), but in many cases simulation is used to

approximate the binding function.

One downside of indirect inference is that despite the simplification it brings, the

method remains computationally intensive if we use simulation. The structural parame-

ters minimizing the objective function are obtained using an iterative procedure. In an

inner loop, the likelihood function of the auxiliary model is maximized, to get auxiliary

parameter estimates for all simulations. In an outer loop, an algorithm searches the space

spanning the structural parameters to minimize the objective function. This means that

for every iteration of the outer loop, the auxiliary model needs to be estimated for all

simulations. Adding to that, the gradient with respect to the structural parameters is

commonly calculated using finite differences. This means that the auxiliary parameters

have to be estimated repeatedly for each element of the gradient. One recommendation

usually made in the literature is therefore to choose auxiliary models that are easy to

calculate. Preferably a closed-form expression is available for the auxiliary estimator, in

order for the inner loop to be evaluated as quickly as possible.

For auxiliary models that are computationally more intensive, a version of indirect

inference aiming to solve this problem, has been proposed, where the objective function

is based on the score of the auxiliary likelihood (Gallant & Tauchen, 1996). This method

is also referred to as the efficient method of moments (EMM). By definition, the score of

the likelihood of the observed data evaluated at the parameter estimates maximizing the

likelihood is zero. The objective function of EMM tries to get the score of the likelihood

evaluated using the simulated data as close as possible to zero. The benefit of this approach

is that the likelihood of the auxiliary model is only maximized once, for the observed data.

Then in every iteration, instead of maximizing the likelihood for the simulated data to get

auxiliary parameter estimates, the score at the auxiliary parameters of the observed data

13
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is evaluated using simulated datasets. This means that no auxiliary models have to be

estimated in an inner loop, which saves computing time. One problem is that this method

has been shown not to work well in small samples for some models (e.g. for models with

very high persistence, Duffee & Stanton, 2008).

In this paper I propose a different method to decrease the computing time of indi-

rect inference estimation, by formulating the optimization problem as a mathematical

program with equilibrium constraints (MPEC, Su & Judd, 2010). In their paper, Su

and Judd (2010) show how to solve a dynamic programming problem using MPEC. The

economic model behind the dynamic programming problem implies conditions that must

hold assuming the agent is acting optimally. These economic optimality conditions are

introduced as constraints in the maximum likelihood optimization problem. The benefit

of this approach is that there is no inner loop with an optimization problem to solve. A

similar approach is taken by Dubé, Fox, and Su (2009) to replace the nested-fixed point

algorithm in BLP demand estimation by one optimization procedure.

For indirect inference estimation, the inner loop that is used to approximate the binding

function using simulations, can be replaced by adding constraints and parameters to the

original problem. Instead of estimating the parameters of the auxiliary models in an inner

loop, forcing the auxiliary parameters to equal the solution to the auxiliary estimation

problem in every step, I add variables and constraints to the original problem, ensuring

that in the optimal solution, i.e. when the optimization problem has converged, the auxil-

iary parameters are the solution to estimation of the auxiliary model. This re-formulation

introduces many nuisance parameters and additional constraints to the optimization prob-

lem. Using Monte Carlo simulations I show that it’s feasible to solve these optimization

problems using a freely available non-linear constrained optimizer. The benefits of this

procedure are that we can use analytic derivatives in the optimization procedure, and that

we don’t have to limit ourselves to simple auxiliary models that can be estimated in one

step.

In addition, simulation methods lead to problems with non-smoothness if the model

contains discrete outcomes. In some cases the binding function can be approximated with-

out simulation. I give an example of a binary time series model, where we observe discrete

14
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outcomes that are generated by a serially correlated latent process, where the binding

function is approximated using sparse grid integration (Heiss & Winschel, 2008) instead

of simulation. Sparse grid integration does not suffer from the curse of dimensionality,

making integration in multiple dimensions feasible, and is more accurate than a simulated

approximation when the same number of nodes is used to evaluate the function.

The results in this paper show that the constrained optimization approach to indirect

inference estimation outperforms the regular approach when the estimator for the auxiliary

model does not have a closed-form solution. In that case the CPU time that is needed

to estimate the parameters is an order of magnitude lower. In addition, there is a small

benefit to using the constrained optimization approach when the number of structural

parameters is large. In other cases the difference in performance is not as clear. The

different variations in the experiments below should be used to provide some help to

decide which method to use when estimating similar models.

The organization of the remainder of the paper is as follows. First I will give an

overview of the method of estimation by indirect inference, introducing the notation. Then

an MPEC formulation of the problem is presented. In the following sections I show Monte

Carlo simulations for different models, comparing the performance of MPEC relative to

the regular estimation of indirect inference. The final section concludes.

1.2 Indirect inference estimation

The setup is as follows. Y is a random variable that is generated from a structural or

economic model. The conditional distribution of Y on X is written as FY |X(Y | X, θ),

with Fθ as shorthand notation. X contains variables that are exogenous to the process of

Y . For instance, in a regression context, X can contain background characteristics that

are exogenous; in a time series context, X can contain lagged values of (latent) Y . The

conditional distribution of the data is known up to a finite dimensional parameter vector

θ ∈ Rp, which is the object of interest and is referred to as the structural parameter vector.

Assume that we observe data (y, x) = {yi, xi}i=1,...,N generated as a random sample from

probability model Fθ.

Estimation by indirect inference is used when we can not easily compute the probability
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distribution of θ given our observed data. The idea behind indirect inference is to obtain

a set of auxiliary parameters by estimating an approximate or auxiliary model which

is typically simple to estimate. These auxiliary parameters are linked to the underlying

structural parameters through a binding function. By inverting the binding function using

a metric we obtain estimates for the structural parameters. Each of the three elements

of indirect inference estimation, the auxiliary model, the binding function and the metric,

are explained below.

1.2.1 Auxiliary model

To use indirect inference we specify a set of statistics or parameters, µ ∈ Rr, r ≥ p,

generated by an auxiliary model. Examples of auxiliary parameters are conditional means

and variances, transition probabilities between states, correlations, or the parameters that

are the result of estimating a linear model. To identify the structural parameters, θ, the

dimension of the auxiliary parameter vector should be at least as large the dimension of

θ. The auxiliary model should capture the features of the underlying structural model,

but they do not need to follow directly from the true likelihood1; a misspecified model

capturing many of the features of the structural model can be used as an auxiliary model.

I refer to the exogenous variables in the auxiliary model as Z, since they can be different

from those in the structural model. All X are in Z, but Z can contain additional variables,

such as transformations of X.

Similar to Jiang and Turnbull (2004), I define the auxiliary estimator implicitly as the

function µ = m̂(y, z) that solves GN (y, z, µ) = 0, where GN (y, z, µ) = 1
N

∑N
i=1G(yi, zi, µ).

For one observation, G(yi, zi, µ) is any vector-valued function relating yi, zi, and µ, such

that its expectation evaluated at the true µ0 is zero, E [G(yi, zi, µ0)] = 0. It is required

that m̂ converges to the true µ0, as the number of observations, N , goes to infinity.

All extremum estimation procedures, such as method of moments or maximum like-

lihood can be written using this implicit definition. For example, if the auxiliary model

is the linear model, Y = Zµ + ε, we obtain an estimate for µ, by setting the following

1If the structural model is simple to estimate, the true likelihood can be used as auxiliary model to
correct for finite sample bias (Gouriéroux et al., 2010).
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moment equations to 0

GN (y, z, m̂) = 0⇔ 1

N

N∑
i=1

G(yi, zi, m̂) = 0⇔ 1

N

N∑
i=1

zi,r(yi − z′im̂) = 0 ∀r,

where r moments identify the r auxiliary parameters. Another example follows from

setting the score of a log-likelihood function for a Probit model to 0.

GN (y, z, m̂) = 0 ⇔ 1

N

N∑
i=1

∂ logL (m̂ | yi, zi)
∂m

= 0

⇔ 1

N

N∑
i=1

zi,r

(
yi
φ(z′im̂)

Φ(z′im̂)
− (1− yi)

φ(z′im̂)

1− Φ(z′im̂)

)
= 0 ∀r

In the first case there is an explicit solution for the estimator of the auxiliary parameters,

m̂(y, z) = (z′z)−1z′y. In the second case there is no explicit solution for m̂ and an iterative

procedure has to be used to find a numerical solution. In order to allow for the possibility

of auxiliary models without a closed-form solution, I adopt the implicit definition of the

auxiliary estimator given above.

1.2.2 Binding function

Given the structural model, Fθ, we can relate θ and µ, by taking the expectation of

G(Y,Z, µ) with respect to the structural model conditional on Z = z

HN (θ, µ | Z = z) =
1

N

N∑
i=1

EFθ(G(Yi, Zi, µ) | Zi = zi)

=
1

N

N∑
i=1

∫
Yi
G(Yi, zi, µ)fYi|Zi(Yi|zi, θ)dYi.

Conditioning on observing Z = z means that we calculate a ‘finite sample binding function’

(see footnote 1, Gouriéroux et al., 1993). Our interest is not in the data generating process

for the exogenous variables, so we use the empirical distribution of Z. Intuitively, the

µ = µ̃(θ) that uniquely solves HN (θ, µ | Z = z) = 0, returns the values of µ that we

expect to observe, given the structural model, a value for θ, and given a set of exogenous

variables, by integrating out all possible values of Y . This function is called the binding

function. The full set of conditions on the binding function that result in a consistent
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estimator for the true θ0 is given in Gouriéroux et al. (1993)

When there is an explicit solution for the auxiliary estimator, µ̂ = m̂(Y, Z), the µ =

µ̃(θ) that solves HN (θ, µ | Z = z) = 0 can be rewritten as

µ̃(θ | Z = z) = EFθ(m̂(Y,Z) | Z = z) =

∫
Y
m̂(Y, z)fY |Z(Y |z, θ)dY.

In some cases an analytic solution to the binding function is available, but in most cases

the value of the binding function needs to be approximated at given values of θ.

Fuleky and Zivot (2010b) mention three simulation methods that can be used to ap-

proximate the binding function. The first method can only be used only if the model does

not contain covariates. In that case a single very long time-series is simulated accord-

ing to the model for a specific value of θ. These simulated values are used to obtain an

approximation for the binding function at the same value for θ.

The other two methods can be used with covariates. Both methods use multiple

datasets, h = 1, . . . ,H, that are simulated with the same size as the observed data, such

that every observation in the data is associated with H simulated paths (Gouriéroux et al.,

1993). The simulated outcome variables of set h are denoted by yh(θ) = {yhi (θ)}, which

reflects that simulations depend on specific values for the structural parameters θ. Since

z can contain lagged outcome variables, z may be partly simulated, which is denoted by

zh. The sets of random draws that are used to simulate outcome data has to be kept fixed

throughout the estimation procedure.

These simulated datasets can be combined in two different ways to get an approxima-

tion for the binding function. The two methods are asymptotically the same, but have

different finite sample and computational properties. In the first case, we find µ̃h for each

h that solves

Hh
N (θ, µ | Z = zh) =

1

N

N∑
i=1

G(yhi (θ), zhi (θ), µ) = 0.

The expectation in the definition of the binding function is replaced by the sum over all

simulations

µ̃(θ) =
1

H

H∑
h=1

µ̃h(θ).
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Since the simulated yh(θ) are constructed according to the structural model Fθ, this sum

approximates the expectation above. This method of combining the different simulated

datasets is computationally intensive, because the auxiliary parameters µ̃h are calculated

for each simulated dataset separately. Depending on the auxiliary model this can be

computationally demanding. The benefit of this approach is that it has a built-in finite

sample bias correction. The examples in section 1.4 and 1.5 use simulation to approximate

the binding function.

In the second case, we find µ̃ that solves the following approximation

HN (θ, µ | Z = z) =
1

N

N∑
i=1

∫
Yi
G(Yi, zi, µ)fYi|Zi(Yi|zi, θ)dYi

≈ 1

N

N∑
i=1

1

H

H∑
h=1

G(yhi (θ), zhi (θ), µ) = 0.

Asymptotically this will give the same results as above. However, this method of approxi-

mating the binding function can not be used to remove finite sample bias, at the benefit of

reduced computational cost. Simulation is not the only way to approximate the integral

in this case. Gallant and Tauchen (1996) mention that instead of simulation, quadrature

methods can be used in some cases to approximate the integral defining the binding func-

tion. For integration in a single dimension, quadrature methods, such as Gauss-Hermite

quadrature, are well understood, and the nodes and weights of integration can be found

for instance in Judd (1998). Gaussian quadrature integrates a polynomial of degree 2k−1

exactly by summing k function evaluations at specified nodes multiplied by corresponding

weights.

For integration in multiple dimensions a tensor product of the nodes and weights that

are used for integration in a single dimension is typically used. The problem of this product

rule to generate nodes and weights, is the exponentially increasing number of nodes that is

needed if the number of dimensions of integration increases. To integrate a d-dimensional

function with k nodes in each dimension, one needs to evaluate the function at kd nodes.

Sparse grid integration (SGI) aims to solve this problem (Heiss & Winschel, 2008).

SGI combines Gaussian quadrature rules for a single dimension without an exponentially
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growing amount of nodes2. For k = 5 the number of nodes that are needed to achieve

the required accuracy is shown for different dimensions in table 1.1. At low dimensions

(1, 2 and 3) it is more efficient to use a product rule to generate integration nodes, but at

higher dimensions the benefit of SGI is evident. In section 1.6, I use SGI to approximate

the binding function in a binary time series model.

Table 1.1 – Number of nodes used by SGI or the product rule, k = 5

d 1 2 3 4 5 6 7 8 9 10

SGI 5 53 165 385 781 1433 2437 3905 5965 8761
kd 5 25 125 625 3125 15625 78125 390625 1953125 9765625

1.2.3 Metric

If we have the same number of auxiliary and structural parameters, then the problem is

to find θ, such that H(θ, µ̂ | Z) = 0. This reduces to µ̂ − µ̃(θ | Z) = 0 when there is an

explicit expression for the auxiliary estimator. This is analogous to method of moments

estimation, where µ̂ are moments calculated from the data, and µ̃(θ) are theoretical mo-

ments. To obtain estimates for the structural parameters, θ, the binding function needs

to be inverted. If the auxiliary models exactly identify the structural parameters there is

a unique inversion. This is the case if we have the same number of structural parame-

ters and auxiliary parameters, r = p. If the structural parameters are over-identified by

the auxiliary models, r > p, then there are three standard choices to map the auxiliary

statistics to the structural parameters (Smith, 2008).

The Wald approach maximizes a weighted difference between estimated auxiliary pa-

rameters from the data and the simulations. The parameter estimates are the solution to

the following optimization problem

θ̂Wald = arg min
θ

(m̂− µ̃(θ))′Ω (m̂− µ̃(θ)) ,

where m̂ contains the estimated auxiliary parameters from the observed data. There is a

2The intuition behind the smaller number of nodes is that SGI is exact for a polynomial of total order
2k − 1 if k nodes are used in a single dimension. The total order for a tensor product of univariate
polynomials each with maximum order 2k− 1 is in general higher than 2k− 1 and more nodes are needed
to be exact to that level.
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weighting matrix, Ω, and µ̃(θ) is (an approximation to) the theoretical binding function

as defined before. Smith (1993) calls this method the ‘extended method of simulated

moments’, or EMSM, because each auxiliary parameter forms a moment.

A second method, referred to as Likelihood Ratio (LR) by Smith (2008), uses the

likelihood of the auxiliary model, log L̃ (·), as a metric

θ̂LR = arg min
θ

(
log L̃ (m̂ | y, z)− log L̃ (µ̃(θ) | y, z)

)
.

This metric chooses θ such that the likelihood of m̂ given the observed data is as close

as possible to the likelihood of µ̃(θ) given the observed data. The first term on the

right-hand side does not depend on the structural parameters θ, which means it is just a

constant from an optimization perspective. The value of this constant is important when

testing between different models. This is the same as the method (called ‘simulated quasi-

maximum likelihood’, or SQML) in Smith (1993), which in his example uses the likelihood

function associated with the VAR as a quasi-likelihood function for the structural model.

A third method, Lagrange Multiplier (LM) in the terminology of Smith (2008) and

referred to as efficient method of moments (EMM) by others, uses the score vector of the

likelihood defined by the auxiliary model.

θ̂LM = arg min
θ
S(θ)′V S(θ),

with S(θ) the score of the log-likelihood function of the auxiliary model using simulated

data

S(θ) =
1

H

H∑
h=1

∂

∂µ
log L̃

(
µ̂
∣∣∣ yh(θ), x

)
.

The score is evaluated using simulated data yh(θ), but with the auxiliary parameters

estimated from the data, µ̂. The score evaluated using the observed data is 0 by definition,

and θ is chosen to make the score using simulated data as close to 0 as possible. The benefit

of this method is that only the score has to be evaluated in every step, without estimating

auxiliary models on simulated data in every step. The downside is that this method does

not work well in small samples (see Fuleky & Zivot, 2010b, 2010a, for an overview).
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Fuleky and Zivot (2010b, 2010a) propose a method based on EMM, claiming it has

better finite sample properties. This method plugs the simulated binding function into

the score vector and evaluates the score using observed data. I.e. they define S(θ) as

S(θ) =
1

H

H∑
h=1

∂

∂µ
log L̃ (µ̃(θ) | y, x) .

This function depends on µ̃(θ). Depending on how the different simulated datasets are

combined, this method can be used to correct for finite sample bias. However, this means

that the auxiliary models again have to be estimated in every step to get an approximation

of the binding function, and the computational advantages of EMM vanish3.

1.3 MPEC formulation

This section describes how we can get the solution to the indirect inference problem by

solving it as a mathematical program with equilibrium constraints (MPEC, Su & Judd,

2010). First, I’ll summarise how an estimate for θ is usually obtained. I’ll refer to this

method as nested-fixed point (NFXP), since this method solves multiple optimization

problems nested inside an outer optimization problem. As inputs the algorithm needs a

random seed, initial values for the structural parameters, θ0, and observed data, y and z.

After estimating m̂ on the observed data, and generating simulated errors, a loop starts

to find optimal values for θ.

In each step of the loop, H sets of outcome data yh are simulated for the current value

of θ, using the structural model. Since some of the covariates in the auxiliary model may

contain previous period outcome data, zh may contain simulated values. Then we estimate

µ̃h for all h. These optimizations have to be performed in every step. Therefore, to save

computing time it is usually recommended to use an auxiliary model with a closed-form

solution for the estimator. By averaging over all µ̃h we get an approximation for the

binding function for the current value of θ, µ̃. This value is used to evaluate the objective

function, which is based on one of the metrics defined in the previous section.

3In their specific example, their new EMM method converges more quickly than the old EMM version,
which is counterintuitive. They explain this through the irregular shape of the objective function in the
old method, which might be specific to their example
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If the optimum hasn’t been found yet, the gradient of the objective function is approx-

imated using finite differences. In order to approximate the gradient, we have to repeat

the simulations and estimation of the auxiliary parameters with a slightly changed struc-

tural parameter, for each of the elements in the structural parameter vector. Then an

optimal step is found, for instance using Newton’s method. The process is repeated with

a new value for the structural parameter vector, until the optimum is reached (up to some

pre-determined tolerance).

The intuition behind MPEC is that we are not interested in the value of the binding

function in intermediate steps of the optimization process. We only need to ensure that

for the final solution, the binding function holds. This is achieved by adding variables

and constraints to the optimization problem, defining the binding function. The exact

formulation depends on the method that is used to approximate the binding function.

First I’ll give the formulation if there is an analytic expression for the binding function, or

if it can be approximated using numerical methods. Then, the formulation is given when

simulation is used to approximate the binding function.

The optimization problem that has to be solved for indirect inference estimation, for-

mulated as an MPEC problem, is

(
θ̂, µ̃
)

= arg min
θ,µ

QN (µ | y, z)

s.t.

HN (θ, µ | Z = z) = 0

In this formulation µ is a vector of parameters that needs to be estimated, instead of a

function of θ. In the optimum, µ equals the theoretical binding function for the estimated

value of θ, µ̃(θ̂). The objective function that we are minimizing, is one of the metrics

defined above. For instance, in the case of the LR metric the objective function is defined

as

QN (µ | y, z) = log L̃ (m̂ | y, z)− log L̃ (µ | y, z) ,

which is the same as before; the difference between the log-likelihood of the auxiliary

parameters, m̂, calculated from the observed data, and the log-likelihood of the theoretical
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value of the auxiliary parameters, µ, evaluated using the observed data. The structural

parameters, θ, do not enter the objective function. To guarantee the link between the

structural and auxiliary parameters, the binding function is added as a set of constraints

to the optimization problem. These constraints ensure that in the optimum µ̃ equals the

auxiliary parameter that we expect to see for the value of θ in the optimum, θ̂.

This optimization problem may look more difficult to solve than the nested fixed point

formulation, where we don’t have constraints, and use fewer variables. However, in the

MPEC formulation the objective function is a simple function instead of a composite

function including µ(θ). Depending on the auxiliary model, analytic derivatives of the

objective function with respect to all the parameters can be easily derived. The derivatives

with respect to µ depend on the auxiliary model, but the derivatives with respect to θ are

zero. One of the benefits of using analytic derivatives over approximating derivatives by

finite differences is speed. To approximate a derivative, we need to evaluate the function

at different values of the parameter vector. This can be time-consuming, especially if

simulation is used and simulation of the datasets takes a long time; new datasets have to

be simulated for each element of the parameter vector to obtain an approximation for the

gradient4.

The constraints are more complex, because these link the structural parameters to the

auxiliary parameters. The constraints defining the binding function are usually based on

moment conditions, or the score of the likelihood function. Analytic gradients of these

with respect to the auxiliary parameters are straightforward to derive. For instance, if

the score is used to define the binding function, the gradient equals the Hessian of the

auxiliary likelihood. The derivative with respect to the structural parameters, θ, is more

difficult to derive analytically and it depends on the structural model, whether calculating

analytic derivatives is feasible.

The burden on the programmer is not increased by much if standard solvers are used.

With standard solvers, non-linear optimization problems with constraints, can be solved

in a straightforward manner; the objective function, the constraints and the gradients

4Another potential benefit of being able to derive the gradients analytically, is to look for different
approximations of the gradient directly, either through simulation or some other approximation method.
Instead of approximating the derivative by finite differences applied to a function which was approximated
using simulation.
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have to be programmed, but the solver takes care of finding optimal step sizes etc. The

solver that I use here, is Ipopt (Wächter & Biegler, 2006), which is free and open-source.

Other optimization packages that can be called from standard programming languages are

SNOPT (Gill, Murray, & Saunders, 2002) and KNITRO (Byrd, Nocedal, & Waltz, 2006).

The performance of each of these solvers depend on the underlying optimization problem.

The following example shows the NFXP and MPEC formulations graphically using a

simple probit model with one structural parameter. There is a latent variable, Y ∗i , that

depends linearly on a single covariate, Xi

Y ∗i = Xiθ + εi,

where εi ∼ i.i.d. N(0, 1). We observe a discrete outcome Yi defined as

Yi =

 1 if Y ∗i > 0

0 otherwise.

The parameter of interest is the one-dimensional structural parameter, θ. This model can

be estimated using a standard probit, but as an example I show how to estimate it using

indirect inference. As an auxiliary model, I use a linear probability model

Yi = Z ′iµ+ ηi,

where Zi = (1, Xi). The auxiliary parameters are µ = (µ0, µ1), combined with the variance

of ηi, σ
2
η. The likelihood for the linear probability model is

log L̃
(
µ, σ2η

∣∣ Y, Z) = −N
2

ln 2π − N

2
lnσ2η −

1

N

N∑
i=1

(Yi − Z ′iµ)2

2σ2η
.

This auxiliary likelihood is also used in the objective function, which is based on the LR

metric for this example. To convert the auxiliary likelihood to an implicit binding function,

we use the estimating equations following from the first-order conditions of the auxiliary
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likelihood with respect to µ, i.e. the score of the likelihood

∂ log L̃
(
µ, σ2η

∣∣ Y,Z)
∂µ

= 0⇔ 1

N

N∑
i=1

Zi(Yi − Z ′iµ)

2σ2η
= 0⇔ 1

N

N∑
i=1

Zi(Yi − Z ′iµ) = 0,

which implies that G(Yi, Zi, µ) = Zi(Yi − Z ′iµ). Since in this case, σ2η > 0, the binding

between θ and µ is independent of σ2η. To simplify the graphs below, I use this indepen-

dence and don’t include the equation following from the first-order condition with respect

to σ2η
5. The implicit binding function follows, by taking the expectation with respect to

the structural model

HN (θ, µ̃ | Z) = 0 ⇔ 1

N

N∑
i=1

EFθ(G(Yi, Zi, µ̃) | Zi = zi) = 0

⇔ 1

N

N∑
i=1

∫
Yi
G(Yi, zi, µ̃)fYi|Zi(Yi|zi, θ)dYi = 0

⇔ 1

N

N∑
i=1

∫
Yi
zi(Yi − z′iµ̃)fYi|Zi(Yi|zi, θ)dYi = 0

⇔ 1

N

N∑
i=1

ziz
′
iµ̃−

1

N

N∑
i=1

zi

∫
Yi
YifYi|Zi(Yi|zi, θ)dYi = 0

⇔ 1

N

N∑
i=1

ziz
′
iµ̃−

1

N

N∑
i=1

zi

∫
Y∗i

1(Y ∗i > 0)fY ∗i |Xi(Y
∗
i |xi, θ)dY ∗i = 0

⇔ 1

N

N∑
i=1

ziz
′
iµ̃−

1

N

N∑
i=1

zi

∫ xiθ

−∞
fεi(εi)dεi = 0

⇔ 1

N

N∑
i=1

ziz
′
iµ̃−

1

N

N∑
i=1

ziΦ(xiθ) = 0.

Because there is a closed-form solution for the auxiliary estimator, there is an equivalent

direct formulation of the binding function in this case

µ̃ =

(
1

N

N∑
i=1

ziz
′
i

)−1
1

N

N∑
i=1

ziΦ(xiθ),

which relates µ̃ to θ for a specific sample.

Figure 1.1 shows the NFXP objective function that we aim to minimize in the left panel,

5Instead, since there is a closed-form expression for σ2
η as a function of µ and the data I substitute

σ2
η = 1

N
(yi − Z′iµ)

2
in the objective function.
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and its first derivative in the right panel. This is a function of only the single structural

parameter θ, because the binding function is substituted directly in the objective function.

The value of θ that minimizes this function is the indirect inference estimate, shown as θ̂

in the figure.
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Figure 1.1 – Objective and gradient in terms of θ for NFXP formulation

Figure 1.2 shows the MPEC optimization problem. The horizontal and vertical axis

correspond to the auxiliary parameters µ0 and µ1. The binding function, HN (µ, θ | Z) =

0 mapping θ to µ is shown as the black line. This line shows the constraints of the

optimization problem. Different values of θ are shown next to the line. For example, when

the true value of θ is 0, then the expected value for µ0 is 0.5 and for µ1 is 0. If θ = 0, then

Xi has no effect on Yi and there is a fifty-fifty chance of observing a 0 or a 1.

The dark grey contour lines belong to the objective function that we want to minimize,

QN (µ | y, Z). The objective function is a function of the auxiliary parameters µ (and

implicitly σ2η). The objective function is a well-behaved function that attains its minimum,

by definition, at µ = m̂. However, this point does not lie on the binding function, so there

is no value of θ that generates m̂ as a possible solution. The point that is in the feasible

set, where the objective function is minimized, is marked by a star. At this point the

constraint is tangent to the contours of the objective function.

The two figures are related. The NFXP objective function is the slice of the MPEC

objective function along the binding function. Since NFXP forces the binding function to
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Figure 1.2 – Objective function and constraints for MPEC formulation

hold in every step of the optimization procedure, we are walking along the black line of

figure 1.2 in the direction of the optimum. Steps outside of the black line are not allowed

in the NFXP formulation. The solution algorithm for MPEC doesn’t force the constraint

to hold at the intermediate steps, but it should hold at the optimum. Steps outside the

feasible set are allowed.

Figure 1.2 also shows a natural starting value for µ. The auxiliary parameters calcu-

lated from the data, m̂, can be calculated before the optimization problem is solved. If

the structural model is correct, these values will be close to the optimal value of µ and m̂

will contain good starting values for µ. Starting values for θ can be chosen in the same

way as they are chosen for the NFXP formulation.
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1.3.1 Formulation with simulation

When simulation is used to approximate the binding function, the MPEC formulation of

indirect inference is different. Additional parameters µ̃h corresponding to the auxiliary

parameters for each of the H simulated sets are added to the problem. Each of the

simulated datasets results in an estimated auxiliary parameter, which needs to be reflected

in the constraints.

(
θ̂, µ̃, µ̃h

)
= arg min

θ,µ,µh
arg min

θ,µ
QN (µ | y, z)

s.t.

µ− 1

H

H∑
h=1

µh = 0

∂

∂µh
log L̃

(
µh
∣∣∣ yh(θ), x

)
= 0 ∀h

The first set of equality constraints defines how the binding function is approximated

by averaging over the auxiliary parameters of H simulations. This is the same equation

that we have in the NFXP formulation, except that it enters the problem as a constraint

here. The second set of constraints define that each µ̃h is the solution to the optimization

problem estimating the auxiliary model on a set of simulated data, h. Compared to the

case where simulation is not needed, this optimization problem has even more variables

and constraints. This can be handled by Ipopt, because the problem is very sparse;

the auxiliary estimates for one simulated dataset are independent of all other auxiliary

estimates which means that there are many zeroes in the Jacobian of the constraints.

The problem contains p+ r · (1 +H) parameters and r · (1 +H) constraints, where p

is the dimension of θ and r is the dimension of µ as before. This seems large compared

to p parameters in the outer-loop minimization in the NFXP formulation. However, for

each step updating those p parameters, H separate minimization problems with r pa-

rameters have to be solved in an inner loop. Also, the MPEC formulation contains a lot

of sparseness, which makes the problem easier to solve than a general non-linear opti-

mization problem with the same amount of parameters and constraints. The first-order

conditions of the auxiliary model are independent for the different simulated sets, which
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means that there are many zeros in the Jacobian of the constraints. In total there are

r · (1 +H) + r · (p+ r) ·H non-zero elements in the Jacobian of the constraints, whereas

the total number of elements is r · (H + 1) · (p+ r · (1 +H)). This means that the fraction

of non-zero elements is 1
(p+r)(1+H) + H

(1+H)2
.

If the structural model contains discrete outcomes, simulation of the binding function

can lead to problems with optimization (see for instance Magnac et al., 1995; An & Liu,

2000). In the NFXP formulation, simulated discrete outcomes lead to a non-smooth objec-

tive function. A solution has been proposed by Keane and Smith (2004). They introduce

a smoothing parameter λ to smooth the simulated discrete outcomes, and consequently to

smooth the objective function. This results in biased estimates of the structural parame-

ters, but Keane and Smith (2004) show that the bias can be reduced by adding one step

to the optimization procedure.
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Figure 1.3 – Gradient of NFXP objective function with λ = .01 (left) and λ = .05 (right)

The amount of smoothing that should be chosen for a particular model is a matter of

experimentation. With a small amount of smoothing, optimization problems still occur,

because the objective function is now continuous, but contains local minima. Also, con-

vergence can be slow, because the first derivative is very volatile, which leads to wrong

stepsizes in the optimization algorithm. This can be seen in figure 1.3, where the gradient

of the NFXP objective function is shown for two levels of smoothing for the same exam-

ple as above, H = 1. The figure in the panel on the left shows that there are two local
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minimum in this particular case, where the gradient is zero for two different values of θ.

In the NFXP formulation, increasing the number of simulations improves the smooth-

ness of the objective function, because the non-smoothness in the auxiliary parameters is

smoothed by averaging over all simulations. In the MPEC formulation the objective func-

tion does not depend on simulations and this function is smooth. However, the constraints

are non-smooth, which can be seen in figure 1.4. Moreover, every additional simulation

adds a new set of constraints. In the MPEC case, adding simulations does not improve the

smoothness of the constraints, but instead adds non-smooth constraints to the problem.

In section 1.5, I investigate whether this leads to problems in one of the models presented

by Keane and Smith (2004).
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Figure 1.4 – Objective function and constraints for MPEC formulation with λ = .01
(left) and λ = .05 (right)

1.4 Example 1: Linear panel data model

In this section I use indirect inference applied to a linear panel data model. Gouriéroux

et al. (2010) show that indirect inference can be used as a bias-correction mechanism for

panel data, where the bias is a result of having a short time dimension, i.e. T is small.

The model in this section is the same as the one estimated by Gouriéroux et al. (2010),

but with added covariates. For individual i = 1, . . . , N at time t = 1, . . . , T , we observe

31



CHAPTER 1. INDIRECT INFERENCE ESTIMATION USING MPEC

outcome yit, which follows an AR(1) process

yit = αi + φyit−1 + x′itγ + εit,

where αi is a fixed effect, xit is a vector of covariates of dimensionK, and εit ∼ i.i.d.N(0, σ2ε).

The initial value that we observe, yi0, is assumed to be drawn from the stationary distri-

bution of the AR(1) process above

yi0 =
αi

1− φ +
εi0√

1− φ2
,

where εi0 ∼ N(0, σ2ε) independent of all other εit. In the simulations below, αi are drawn

independently from N(0, 1)6. The value of σε is set to 1. The way xit is constructed

depends on the experiment, and will be described for each case below.

In this example, the object of interest is a vector of structural parameters θ = (φ, γ)7.

In order to estimate these parameters using indirect inference, we need to simulate values

for the endogenous variables, yi,t, given the exogenous variables, xi,t, according to the

structural model above. I start by drawing αhi and εhi,t for simulation h = 1, . . . ,H. If

the optimization procedure consists of multiple steps, we need to ensure that the same

random draws are used in every step. This could be done by simulating the data using

the same seed for the random generator, or, as I do here, by simply saving the draws in

memory. For a given value of the structural parameters θ, we can then calculate yhi,0 and

its subsequent values, yhi,1, . . . , y
h
i,T . The part that depends on the exogenous covariates,

x′itγ, is the same for all of the H simulated datasets and is calculated only once every time

the parameter γ is updated.

The auxiliary model that I use, is based on a commonly used biased estimator for

6Note that we’re implicitly assuming that we know the true distribution of αi, including the true values
of the parameters describing this distribution. Even though it looks like taking the differences of yit will
remove the effect of αi from the estimation, the binding function will depend on the distribution that was
chosen for αi. This means that if αi in the data is not N(0, 1), for instance because its variance is not
equal to 1, or because its distribution is non-normal, then the wrong binding function will be used when αi
is drawn from N(0, 1). Also, if αi is correlated with xi0 without taking this into account in the simulated
values for αi, this results in the wrong binding function being used, and thus in biased estimates. Since
this paper is about the computational aspects of indirect inference estimation, we assume that we know
the true distribution of αi.

7As in Gouriéroux et al. (2010), the variance of the error, σ2 is assumed to be known. The method
presented here is applicable to the case where σ2

ε is unknown.
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the structural parameters, and is the same as the one used by Gouriéroux et al. (2010).

One way to estimate the parameters φ and γ, is by transforming the data to eliminate αi

from the equation. Define the following time means, yi∗ = 1
T

∑T
t=1 yit, yi∗−1 = 1

T

∑T−1
t=0 yit

and xi∗ = 1
T

∑T
t=1 xit. Transformed variables can then be defined as ỹit = yit − yi∗, and

similarly for the other variables. The auxiliary model we consider is the linear model

ỹi,t = z̃i,tκ+ ε̃i,t,

where z̃i,t = (1, ỹi,t−1, x̃i,t), t = 1, . . . , T . The maximum likelihood estimator for κ returns

biased estimates for φ and γ, as shown in Nickell (1981), because the transformation

introduces a correlation between z̃i,t and ε̃it, through ỹit−1. This correlation disappears

as N →∞ and T →∞. For panel data T is fixed, resulting in an inconsistent estimator.

The set of statistics that are generated using this auxiliary model are a combination of

the regression parameters and the estimated variance of the residuals, µ = (κ, σ2). In this

specific case, the addition of an intercept to the auxiliary model, and adding σ2 to the set

of statistics is not necessary for identification of the structural parameters. The inclusion

of σ is necessary if we want to estimate the variance parameter σε. Since the auxiliary

model contains more parameters than the structural model, the model is overidentified

and we choose the LR metric to link the two sets of parameters together8.

The auxiliary model is estimated by maximizing the log-likelihood implied by the

normal linear model. The contribution to the log-likelihood is, for given i, t,

log L̃
(
κ, σ2

∣∣ ỹit, z̃it) = −1

2
ln 2π − 1

2
lnσ2 − (ỹit − z̃it′κ)2

2σ2
,

where we use ỹhi,t and z̃hi,t to calculate the log-likelihood for simulated data. In the NFXP

formulation of indirect inference, we obtain estimates of the auxiliary parameters for each

8This is different from Gouriéroux et al. (2010), who use only one parameter, φ, in the structural model.
Their auxiliary model contains one parameter, µ, which is the regression coefficient on lagged y. They
then minimize the distance between µ̂ obtained from the observed data and µ̃(φ) obtained from simulated
data. Because they have exactly the same number of structural and auxiliary parameters, they do not
need to choose a metric to link the two together.
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of the simulated datasets as the solution to the following optimization problem

µ̃h(θ) = arg max
κh,σh

T∑
t=1

N∑
i=1

log L̃
(
µh
∣∣∣ ỹhit(θ), z̃hit(θ)) .

The estimator for κh is the regular OLS estimator, which has the well-known closed form

solution, κ̂h =
(
z̃h′z̃h

)−1
z̃h′yh.

θ̂LR = arg min
θ

T∑
t=1

N∑
i=1

(
log L̃ (µ̂ | ỹi,t, z̃i,t)− log L̃ (µ̃(θ) | ỹi,t, z̃i,t)

)
,

where

µ̃(θ) =
1

H

H∑
h=1

µ̃h(θ).

For the MPEC formulation we have the following optimization problem

θ̂LR = arg min
θ,µ̃,µ̃h

T∑
t=1

N∑
i=1

(
log L̃ (µ̂ | ỹi,t, z̃i,t)− log L̃ (µ̃ | ỹi,t, z̃i,t)

)
s.t.

µ̃− 1

H

H∑
h=1

µ̃h = 0

T∑
t=1

N∑
i=1

∂

∂µ̃h
log L̃

(
µ̃h
∣∣∣ ỹhit(θ), z̃hit(θ)) = 0 ∀h.

In this case the second set of constraints consists of the derivative of the likelihood of the

normal linear model with respect to κ and with respect to σ2

∂

∂µ̃h
log L̃

(
µ̃h
∣∣∣ ỹhit(θ), z̃hit(θ)) =

 1
σ2

(
ỹhi,t(θ)− z̃hi,t(θ)′κ

)
z̃hi,t(θ)

− 1
2σ2 + 1

2σ4

(
ỹhi,t(θ)− z̃hi,t(θ)′κ

)2
 = 0.

The first rows of these constraints of course correspond to the OLS estimator of κ. The

last row corresponds to the estimator for σ2. These constraints can be simplified by

multiplying the first rows by σ2, and multiplying the last row by 2σ4. This simplification

introduces some additional sparseness in the Jacobian of the constraints, since σ2 drops

from the first rows9. Since the auxiliary model can be calculated quickly, we don’t expect

9This simplifications turns out to result in a slightly smaller number of iterations for the MPEC method
to reach the optimum.
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to see a large benefit from using MPEC in this case.

As initial values for the auxiliary parameters we use µ̂, which is obtained from esti-

mating the auxiliary model on the observed data. For the structural parameters there is

a direct link between the coefficient on lagged y and the coefficient on x in the auxiliary

model to φ and γ. We take these biased estimates from the auxiliary model as initial

values for the structural parameters.

Changing the value of φ

In the first experiment I estimate the linear panel data above with one covariate, xi,t ∼

i.i.d. N(0, 1). The two structural parameters that we estimate, are φ and γ. In this set of

experiments the true value for γ is 1, and φ is taken to be 0, .4, .85, and .99. For all of the

experiments below we simulate data for 1,000 individuals and replicate the estimations

10,000 times with different simulated sets of observed data. Table 1.2 shows the results

when we estimate using indirect inference with 20 simulated paths for each individual.

The first row shows the mean of the estimated parameters for the different Monte

Carlo replications and its standard deviation in parentheses, for fixed effect estimation.

The estimates for γ and φ are clearly biased in this case. The bias of γ is higher for larger

values of φ, because a larger value of φ introduces a higher correlation between ỹi,t−1 and

ε̃i,t. Furthermore, we see that the means and standard deviations of the NFXP, MPEC1

and MPEC2 estimates are the same, and that these provide unbiased estimates of γ and

φ. This is as expected, given the results of Gouriéroux et al. (2010).

The three methods solve the same optimization problem, which means that the solution

we obtain should be the same, not only on average, but for every simulated dataset. The

first twelve digits of the value of the objective function in the optimum are the same for

all Monte Carlo replications for NFXP, MPEC1 and MPEC2. The first four digits of

the parameter estimates are the same for virtually all Monte Carlo replications. Most of

the parameter estimates agree in more places, especially when comparing MPEC1 and

MPEC2. Except for small rounding errors, there are no differences between estimating

via NFXP, MPEC1 or MPEC2; the same optimum is found. Also, each of the methods

converge successfully for all of the simulated datasets except when φ = .99, when the
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Table 1.2 – Comparison of FE, NFXP, MPEC1 and MPEC2 estimation

φ = 0 φ = .4 φ = .85 φ = .99

method γ φ γ φ γ φ γ φ

FE 0.977 -0.115 0.951 0.222 0.886 0.584 0.860 0.706
(0.016) (0.008) (0.016) (0.009) (0.016) (0.009) (0.015) (0.009)

NFXP 1.000 0.001 1.000 0.400 0.998 0.849 0.998 0.989
(0.016) (0.009) (0.016) (0.010) (0.016) (0.009) (0.016) (0.007)

MPEC1 1.000 0.001 1.000 0.400 0.998 0.849 0.998 0.989
(0.016) (0.009) (0.016) (0.010) (0.016) (0.009) (0.016) (0.007)

MPEC2 1.000 0.001 1.000 0.400 0.998 0.849 0.998 0.989
(0.016) (0.009) (0.016) (0.010) (0.016) (0.009) (0.016) (0.007)

Mean estimates are based on 10,000 replications of simulated datasets with N = 1000 individuals
and T = 5 periods, standard deviations in parentheses. H = 20 simulated paths were used for each
individual to approximate the binding function. A value of γ = 1 was used to simulate the data.

optimization fails in 362, 440 and 569 cases for MPEC1, MPEC2 and NFXP respectively10.

To compare the performance of the different formulations, the number of iterations for

the successful optimizations are shown in the bottom panel of figure 1.5. NFXP uses one

iteration fewer than MPEC1 and MPEC2 on average, except when φ = .99. The number

of iterations for MPEC1 and MPEC2 are the same, except for φ = .99, where MPEC2

uses fewer iterations in some cases.

The total CPU time used is shown in the top panel of the same figure. The CPU time

largely reflects the differences in number of iterations. The number of seconds per iteration

are comparable for MPEC2 and NFXP, with MPEC2 being approximately 3 percent slower

for this experiment. In the current implementation MPEC1 uses approximately 30 percent

more time per iteration.

Changing the value of H

In the second experiment, I change the number of simulated paths used for each estimation.

The model again includes one covariate, xi,t ∼ i.i.d. N(0, 1). In these experiments the true

value for γ is 1, and φ is fixed to .85. The number of simulated paths, H, is varied from

20, 200, 2000 to 5000. For NFXP the number of control variables is equal to the number

of structural parameters, and independent from the number of simulated paths. A priori

10Failure to find a solution in this case means that the solver didn’t find the optimal solution within 100
iterations from the chosen starting value.
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Figure 1.5 – Comparison of CPU time in seconds and number of iterations for NFXP,
MPEC1 and MPEC2, H = 20

we expect to see no difference in performance for different values for H. A change in

the number of simulated paths, implies a change in the number of control variables and

constraints for MPEC1 and MPEC2. For each additional simulation, we add control

variables and constraints to the problem equal to the number of auxiliary parameters,

r = 4.

The bottom panel of figure 1.6 shows that the number of iterations does not depend

on the number of simulated paths for NFXP. For MPEC1 and MPEC2 the number of

iterations increases when we increase the number of simulated paths. Increasing the

number of simulated paths, increases the number of constraints. All the constraints are

linked together through the structural parameters. The effect of a change in γ or φ on the
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value of the constraints is non-linear, because yi,t is a function of φ, γ and yi,t−1, which

in itself is again a function of φ and γ etc. From the top panel we see that the number of

seconds per iteration per simulation is not increasing for both NFXP and MPEC. From

these experiments it looks like the MPEC methods are slightly less scalable in terms of

number of simulations than NFXP, but for a large number of simulations the methods are

still feasible.
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Figure 1.6 – Comparison of CPU time in seconds and number of iterations for NFXP,
MPEC1 and MPEC2

Increasing the number of structural parameters

In the third experiment we look at the effect of increasing the number of structural pa-

rameters on the computing time. The number of parameters is increased by changing K,
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the dimension of x. The variables xitk, for individual i, time period t and index k are

drawn independently from N(0, 1). The number of structural parameters is K + 1, i.e.

the dimension of x plus one for φ. Note that the number of auxiliary parameters also

increases in order to identify all the parameters. This implies that the number of variables

and constraints in the MPEC formulation increases, and for NFXP we need to solve a

linear system with an increasing dimension to obtain estimates of κ. We use 20 simulated

paths.
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Figure 1.7 – Comparison of CPU time in seconds and number of iterations for NFXP,
MPEC1 and MPEC2

Figure 1.7 shows the results. There is no clear relation between the number of iterations

and different values of K. When we look at the CPU time spent to estimate the model, we

see that NFXP increases quickest, followed by MPEC1 and MPEC2. NFXP and MPEC1
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approximate the gradient with respect to the structural parameters by finite differences.

To approximate the gradient with respect to one of the structural parameters, θj , we

re-simulate all paths using the slightly changed value θj + h. In the case of NFXP, we

obtain new estimates for κ, calculate the value of the objective function and compare this

with the value of the objective function in the original parameter vector. For MPEC1, we

calculate the value of constraints using the newly simulated data, and compare this with

the value of the constraints in the original structural parameter vector. We have to do

this for each of the structural parameters in θ.

MPEC1 is faster than NFXP, even when we look at the CPU time spent in each

iteration. I suspect this is because we need to solve Z ′Zκ = Z ′y in every step of the

gradient approximation for NFXP, but for MPEC1, we only calculate Z ′Zκ−Z ′y, without

solving the system. MPEC2 takes less time than the other two methods, because we don’t

have to re-simulate the data in order to approximate the gradient with respect to the

structural parameters. Analytic gradients are calculated instead.

Increasing the condition number of Z ′Z

In the fourth experiment we want to see the effect of increased correlation between the

covariates. We have one variable xi,t ∼ i.i.d. N(0, 1), and include powers of xit in our

structural (and auxiliary) model. For instance, when the maximum power is 2, we include

xit and x2it in the structural model. The true coefficient on xit is 1 in all cases. The

coefficients on the powers of x are all 0. The average condition numbers of the matrix

Z ′Z are 2.46, 2.53, 43.50, and 276.61 for powers 1 to 4 respectively. From figure 1.8 we

see that the number of iterations increases a lot when the condition number increases.

MPEC needs more iterations than NFXP, but NFXP spends more CPU time, which is

due to the fact that NFXP needs more function evaluations during the line search to find a

good enough update step for the parameters. Both MPEC1 and MPEC2 do not converge

within 100 iterations for 49 cases out of 10,000 when we include x4.

40



CHAPTER 1. INDIRECT INFERENCE ESTIMATION USING MPEC

maximum power of x

C
P
U

ti
m
e
(s
ec
.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
NFXP

1 2 3 4

MPEC1

1 2 3 4

MPEC2

1 2 3 4

maximum power of x

n
u
m
b
er

of
it
er
at
io
n
s

0

10

20

30

40

NFXP

1 2 3 4

MPEC1

1 2 3 4

MPEC2

1 2 3 4

mean median 5th and 95th percentile

Figure 1.8 – Comparison of CPU time in seconds and number of iterations for NFXP,
MPEC1 and MPEC2

1.5 Example 2: Dynamic probit model

In this section I use the first model presented in Keane and Smith (2004) as an example.

This is a dynamic probit model with serially correlated errors where individual i, i =

1, . . . N chooses between two alternatives in periods t = 1, . . . , T . They define a latent

utility, uit, that is attached to choosing the first alternative11

uit = γ0 + γ1xit + εit,

11Keane and Smith (2004) don’t include the intercept γ0.
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where xit is a scalar. The other alternative has utility 0. The errors are serially correlated,

for t > 1,

εit = ρεit−1 + ηit.

The exogenous variables xi,t are drawn independently from the standard normal distribu-

tion. The innovation to the disturbances, ηi,t, are i.i.d. N(0, 1), and independent of xi,t.

We do not observe the latent utilities, but instead observe the chosen alternative

yi,t =

 1 if ui,t > 0

0 otherwise.

The object of interest is a vector of structural parameters, θ = (γ0, γ1, ρ). These pa-

rameters can be estimated by indirect inference, by simulating values for the endogenous

variables, yi,t, given the exogenous variables, xi,t, according to the structural model above,

and using these to approximate the binding function between the structural model and the

auxiliary model. To capture the auto-correlation in εi,t, lagged values of yi,t are included

as covariates in the auxiliary model.

For a given value of the structural parameters θ, we have to simulate outcomes, us-

ing εhi,t and uhi,t. The simulated choice yhi,t is a non-continuous function of the structural

parameters θ, which translates into a non-smooth objective function for the NFXP for-

mulation. For the MPEC formulation, the objective function does not depend on the

structural parameters, so this function is smooth. The constraints are a function of the

structural parameters, resulting in non-smooth constraints for MPEC. Keane and Smith

(2004) use a smooth version of the simulated choice, to get a smooth objective function

yhi,t =
1

1 + e−
uh
i,t
λ

,

where λ is smoothing parameter. The same smoothing function is used to smooth the

constraints in the MPEC formulation. Smoothing the simulated variables results in bias,

because the auxiliary model estimated on the observed data and the auxiliary model

estimated on the simulated data are not the same. The smoothing procedure adds non-

classical measurement error to the auxiliary model estimated on the simulated data, result-
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ing in biased estimates for the structural parameters. As λ goes to 0, the transformation

becomes closer to the step function, and the bias goes to 0.

In a first step Keane and Smith (2004) find estimates for the structural parameters

using a small number of simulation of H = 10, and a large value for the smoothing

parameter, λ = .03. To improve on this estimate, they use a large number of simulations,

H = 300 and a smaller value for the smoothing parameter, λ = .003, and take one

additional Newton step from the previous estimate. The smaller value of λ reduces the bias

introduced by smoothing. A larger number of simulations reduces the effect of simulation

error in the standard errors and it makes the objective function more smooth.

In the MPEC formulation, increasing the number of simulations doesn’t smooth the

constraints, but adds additional constraints. This can cause problems if the score of the

simulated likelihood is very non-smooth. A way to circumvent this problem is to use

MPEC in the first step, where we have a high value of the smoothing parameter. The

additional Newton step can then be taken in the same way as proposed by Keane and

Smith (2004). This forces the algorithm to walk along the feasible set.

Keane and Smith (2004) propose different sets of auxiliary models, all of them based

on the linear probability model yi,t = zi,tαt + νi,t. For the simplest example zi,t =

(1, xi,t, yi,t−1) and αt = αs∀t, s. The initial value for yi,0, is defined to be 0. As long

as the definition for the unobserved yi,0 is the same for simulated and observed data,

putting an arbitrary value will not affect the results. This is the first auxiliary model that

I use below, which has four auxiliary parameters; an intercept, coefficients for xi,t and

yi,t−1, and the variance of the residuals of the linear model, σ2ν .

The second auxiliary model has different coefficients αt for different time periods, and

different variances of the residuals, making the total number of auxiliary parameters 19; 2

parameters for the first period, where there is no lagged yi,t, 3 parameters for each of the

subsequent periods, and 1 parameter for the variance of the residuals of the linear model

in all periods. For the third auxiliary model, I include additional lags of x and y, when

they are observed. For instance, at t = 3, I include xt−1, xt−2, yt−1 and yt−2. This model

has 35 auxiliary parameters.

I include three additional auxiliary models, based on a Probit auxiliary model, y∗i,t =
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zi,tαt + νi,t, where νi,t ∼ N(0, 1), and yi,t = 1 if y∗i,t > 0, and 0 otherwise. The same three

variations as above are used, except the Probit model does not estimate the variance

of νi,t as auxiliary parameter. This auxiliary model is expected to better capture the

non-linearity in the structural model leading to a reduction in the standard errors of the

estimated structural parameters.

1.5.1 Results

The estimations in this section are based on 2,500 different Monte Carlo datasets where

N = 1000 and T = 5. All of the results use H = 20 as the number of simulations.

The true value of both γ0 and γ1 is set to 1. Instead of taking only one Newton step

for the smaller value of λ, the optimization problem is solved until convergence for all

λ. Estimation results for the first auxiliary model are shown in table 1.3, with different

values for ρ and different values for the smoothing parameter, λ. Results for the two sets

of auxiliary models are shown next to each other; the linear probability model (LPM) and

Probit.

When looking at the first columns of table 1.3, we see that for LPM there is substantial

bias in the parameter estimates for γ0, γ1 and ρ for λ = 0.03. The bias is worse when

there is more auto-correlation, ρ is higher. The bias in the parameter estimates decreases

when we use less smoothing, and there is virtually no bias if λ = 0.003. The rightmost

columns show that for Probit, there is substantially less bias in the parameter estimates

for all values of λ.

I ran the experiments above using both NFXP and MPEC1. The initial values for

θ are set to 0. A comparison of the performance of the two methods is shown in table

1.4, where the median number of iterations and CPU time in seconds are given. Not all

optimizations completed within 100 iterations. Those optimizations were not included

in the calculations of the coefficient estimates, and for the calculation of the number of

iterations and CPU time. The percentage of failed optimizations is shown in the third

and sixth column.

From the table we see that for the linear probability model, MPEC1 takes slightly

more iterations, and slightly more CPU time to find a solution. The number of seconds
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Table 1.3 – Comparing different values of λ for dynamic probit estimation

LPM Probit

λ γ0 γ1 ρ γ0 γ1 ρ

ρ = 0
0.03 0.954 0.947 0.001 1.003 1.002 0.001

(0.025) (0.029) (0.060) (0.027) (0.031) (0.064)

0.01 0.985 0.982 0.001 1.001 1.001 0.002
(0.026) (0.031) (0.065) (0.027) (0.031) (0.065)

0.003 0.997 0.995 0.001 1.002 1.001 0.002
(0.027) (0.031) (0.066) (0.030) (0.034) (0.068)

ρ = 0.4
0.03 0.946 0.941 0.363 1.003 1.002 0.394

(0.036) (0.036) (0.061) (0.040) (0.040) (0.065)

0.01 0.984 0.982 0.388 1.003 1.003 0.400
(0.039) (0.039) (0.065) (0.042) (0.042) (0.067)

0.003 0.998 0.997 0.398 1.004 1.004 0.402
(0.042) (0.043) (0.068) (0.045) (0.044) (0.069)

ρ = 0.85
0.03 0.907 0.905 0.773 0.990 0.988 0.830

(0.071) (0.064) (0.065) (0.081) (0.074) (0.067)

0.01 0.970 0.968 0.822 1.000 0.998 0.843
(0.080) (0.073) (0.068) (0.082) (0.074) (0.067)

0.003 0.996 0.994 0.842 1.005 1.003 0.848
(0.083) (0.076) (0.069) (0.085) (0.076) (0.068)

Mean estimates are based on 2,500 replications of simulated datasets with N = 1000 individuals
and T = 5 periods, standard deviations in parentheses. H = 20 simulated paths were used for
each individual to approximate the binding function. Values of γ0 = 1 and γ1 = 1 were used to
simulate the data. Results are based on auxiliary model 1.

per iteration is also slightly higher, which is in line with what we saw in the previous

section. When there is little smoothing, λ is small, we see from the number of failed

optimizations that both NFXP and MPEC1 have more trouble finding an optimum.

For the probit auxiliary model, there is a larger difference between NFXP and MPEC1.

MPEC1 uses more iterations to find an optimum, almost twice as many when λ = .003.

However, the number of seconds per iteration is much smaller for MPEC1 than for NFXP.

The difference arises because with NFXP, H = 20 probit estimations have to be performed

in every step. For MPEC1 instead of finding estimates for the probit model, the algorithm

only checks whether the first-order conditions are satisfied for the current set of auxiliary

parameters. This difference will become larger if the number of structural parameters
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Table 1.4 – Performance of NFXP versus MPEC1 for different λ

LPM Probit

num. CPU % num. CPU %
λ iter. time failed iter. time failed

NFXP
0.03 12 0.41 0.12 11 60.31 1.04

0.01 13 0.45 0.97 12 63.90 0.82

0.003 15 0.61 1.52 14 74.77 1.07

MPEC1
0.03 13 0.53 0.11 14 2.76 1.16

0.01 15 0.60 1.01 18 3.33 1.77

0.003 19 0.87 1.72 28 5.24 2.03

Median number of iterations, median CPU time and percentage of failed optimza-
tions are based on 2,500 replications of simulated datasets. An optimization failed
if the problem did not converge within 100 iterations or if the exit code of the op-
timization procedure showed another failure. Results are obtained with auxiliary
model 1.

increases, because the gradient is calculated using finite differences. If H increases, the

number of auxiliary parameters for MPEC1 will increase, possibly leading to more itera-

tions that are needed to converge. For NFXP, every additional simulation set, implies an

additional probit estimation that needs to be solved in every step.

Keane and Smith (2004) focus in their simulations on the effect of an auxiliary model

not capturing all the dynamic features of the data generating process. In their case, for

the dynamic probit model, the different auxiliary models increasingly manage to capture

better the features of the dynamics. The same effect can be observed in table 1.5 from

the decreasing standard error on ρ, going from auxiliary model 2, to model 3. There is

an even larger improvement in the standard errors going from model 1 to 2. As described

above, auxiliary model 2 introduces time-specific coefficients in the auxiliary model. These

time-specific coefficients are important in this model, because the distribution of the errors

is non-stationary. When we compare LPM and Probit, we see that the standard errors

are slightly smaller for the Probit auxiliary model.

In table 1.6 we compare the performance for the different auxiliary models. The results

for auxiliary model 1, are the same as those for λ = 0.003 in table 1.4. The Probit auxiliary

models 1 and 2 were not estimated for NFXP, because the expected time this would take,
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Table 1.5 – Comparing three auxiliary models for dynamic probit estimation

LPM Probit

aux γ0 γ1 ρ γ0 γ1 ρ

ρ = 0
1 0.997 0.995 0.001 1.002 1.001 0.002

(0.027) (0.031) (0.066) (0.030) (0.034) (0.068)

2 0.994 0.992 0.000 0.997 0.995 0.002
(0.027) (0.031) (0.048) (0.027) (0.031) (0.047)

3 0.991 0.989 0.000 0.993 0.991 0.001
(0.027) (0.031) (0.040) (0.027) (0.031) (0.040)

ρ = 0.4
1 0.998 0.997 0.398 1.004 1.004 0.402

(0.042) (0.043) (0.068) (0.045) (0.044) (0.069)

2 0.993 0.992 0.394 0.997 0.996 0.397
(0.035) (0.036) (0.043) (0.034) (0.035) (0.042)

3 0.990 0.989 0.395 0.993 0.992 0.398
(0.033) (0.034) (0.035) (0.033) (0.032) (0.033)

ρ = 0.85
1 0.996 0.994 0.842 1.005 1.003 0.848

(0.083) (0.076) (0.069) (0.085) (0.076) (0.068)

2 0.993 0.992 0.845 0.998 0.996 0.848
(0.049) (0.047) (0.030) (0.048) (0.044) (0.029)

3 0.989 0.991 0.845 0.995 0.992 0.846
(0.046) (0.041) (0.024) (0.045) (0.038) (0.023)

Mean estimates are based on 2,500 replications of simulated datasets with N = 1000 individuals
and T = 5 periods, standard deviations in parentheses. H = 20 simulated paths were used
for each individual to approximate the binding function. Values of γ0 = 1 and γ1 = 1 were
used to simulate the data. Auxiliary models 1, 2 and 3 for LPM, use 4, 19 and 35 auxiliary
parameters respectively. Results are shown for λ = 0.003

would be too long. For the LPM auxiliary models, increasing the number of auxiliary

parameters from 4 to 19 to 35 in models 1, 2 and 3, results in an increase in CPU time. A

larger number of auxiliary parameters means that a larger system of equations has to be

solved to approximate the binding function. For MPEC1, the relative difference in CPU

time for the different auxiliary models is smaller for the LPM models, than for the Probit

models. The Probit models show a larger increase in CPU time when the number of

auxiliary parameters is increased. Finally, there are no obvious differences in the number

of iterations or the percentage of failed optimizations.
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Table 1.6 – Performance of NFXP vs. MPEC1 for 3 auxiliary models

LPM Probit

num. CPU % num. CPU %
aux iter. time failed iter. time failed

NFXP
1 15 0.61 1.52 14 74.77 1.07

2 14 0.86 0.00

3 15 1.23 0.00

MPEC1
1 19 0.87 1.72 28 5.24 2.03

2 22 1.39 0.39 24 32.03 0.72

3 24 1.72 0.69 26 34.86 2.00

Median number of iterations, median CPU time and percentage of failed opti-
mzations are based on 2,500 replications of simulated datasets. An optimization
failed if the problem did not converge within 100 iterations or if the exit code
of the optimization procedure showed another failure. Results are shown for
λ = 0.003.

1.6 Example 3: Binary time series

In the final example I look at different ways to approximate the binding function. I

approximate the binding function as before, where auxiliary parameters are estimated

from H simulated datasets. The mean of these H sets of auxiliary parameters is then

used as the binding function, which corrects for any finite sample bias. In addition, I

approximate the integral defining the binding function using sparse grid integration. This

results in a binding function that does not correct for finite sample bias.

The model is a binary time series

y∗t = φyt−1 + xtγ + εt

εt = ρεt−1 + ηt,

where ηt ∼ i.i.d. N(0, σ2η). We observe yt = 1, if y∗t > 0, and yt = 0 otherwise. The

variance of the stationary distribution of εt is normalized to 1, which implies a value of

σ2η = 1− ρ2 for the variance of the innovation. We assume that the initial shock is drawn

from the stationary distribution for the AR process for εt, ε0 ∼ N(0, 1). The structural

parameter is defined as θ = (γ, ρ). The likelihood of observing a specific sequence of
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discrete outcomes, is defined by a high-dimensional integral, because we have to integrate

over all possible latent values in the previous periods, which makes this model difficult to

estimate. Applying indirect inference reduces the dimension of this integral at the cost of

some loss in efficiency.

To capture the auto-correlation in εt and the state-dependence in yt, I add L lagged

values of yt to the linear regression that is used as an auxiliary model. I estimate two

versions of the model below. In one version we fix φ to 0. In this model we need L ≥ 1 to

identify ρ. In the other version, φ is a parameter to be estimated, and we require L ≥ 2.

The binding function from a linear auxiliary model, excluding the first L observations,

is

H(θ, µ | Z) = 0 ⇔ EFθ(G(Y,Z, µ̂) | Z = z) = 0

⇔ 1

T − (L− 1)

T∑
t=L

EFθ(Zt(Yt − Z ′tµ̂) | Zt = zt) = 0

⇔ 1

T − (L− 1)

T∑
t=L

ztz
′
tµ̂−

1

T − (L− 1)

T∑
t=L

ztEFθ(Yt | Zt = zt) = 0,

where Zt contains Xt, . . . , Xt−L and yt−1, . . . , yt−L. The auxiliary parameters from the

linear model can be interpreted as the elements of a Markov transition matrix. To find an

expression for the binding function, we calculate the expectation of Y conditional on Z

E(yt | Zt = zt) = P (y∗t > 0 | xt, . . . , xt−L, yt−1, . . . yt−L)

=
P (y∗t > 0, yt−1, . . . , yt−L | xt, . . . , xt−L)

P (yt−1, . . . , yt−L | xt−1, . . . , xt−L)

=

∫ −xtγ
−∞

∫ bt−1

at−1
· · ·
∫ bt−L
at−L

fL+1(εt, . . . , εt−L)dεt−L . . . dεt∫ bt−1

at−1
· · ·
∫ bt−L
at−L

fL(εt−1, . . . , εt−L)dεt−L . . . dεt−1
,

where as, bs are the upper and lower bounds of integration for time period s = t−1, . . . , t−

L. These bounds depend on the value of ys that we observe in the data. If ys = 0, then

the integration runs from as = −∞ to bs = −φys−1 − xsγ, and if ys = 1, then integration

runs from as = −φys−1 − xsγ to bs = ∞. For s = t − L, the lagged value ys−1 is not

known, because we do not condition on this value. In that case we substitute ys−1 = .5.

The function fL+1(εt, . . . , εt−L) is the joint density of L + 1 variables. The auto-

49



CHAPTER 1. INDIRECT INFERENCE ESTIMATION USING MPEC

regressive structure for ε implies that we can write



εt
...

εt−(L−1)

εt−L


=



1 . . . ρL−1 ρL

. . .
...

0
1 ρ

1


︸ ︷︷ ︸

A



ση
0. . .

0
ση

1


︸ ︷︷ ︸

D



ηt
...

ηt−(L−1)

εt−L


.

Without conditioning on periods before t−L, εt−L follows a standard normal distribution.

Since the ηt’s are independently distributed from each other and from εt−L, (εt, . . . , εt−L)

follows a multivariate normal distribution with variance-covariance matrix Σ = ADD′A′.

A similar procedure can be used if the error follows a moving average process.

Applying indirect inference reduces the problem from evaluating a T dimensional inte-

gral in the final period, a T−1 dimensional integral in the period before, etc., to evaluating

L+ 1 dimensional integrals in every period. This reduction in the dimension of the inte-

gral is obtained by conditioning only on the previous L periods, instead of the complete

history. This will result in a loss of efficiency of the estimator. On the other hand, it also

results in a numerically more accurate estimator, since an L+ 1 dimensional integral can

be evaluated at higher accuracy than a T dimensional integral.

There are different options to evaluate the multivariate normal probabilities defined

above. Genz (2004) has formulas for 2 and 3 dimensional multivariate normals. For higher

dimensions one option is to use simulation, as proposed by Hajivassiliou, McFadden, and

Ruud (1996). I use a combination of sparse grid integration (Heiss & Winschel, 2008)

and Genz (1992) who shows a transformation simplifying the integral. After applying the

transformation in Genz (1992), the multivariate normal probabilities can be evaluated as

an integral with bounds of integration from 0 to 1. The same transformation also reduces

the dimension of integration by 1; to evaluate the L + 1 dimensional probability, an L

dimensional integration problem has to be solved. Genz (1992) uses random draws from a

uniform distribution to evaluate the integral. I use a sparse grid based on single-dimension

Gauss-Legendre nodes.
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Results

Table 1.7 shows the estimation results using a linear probability model from a binary time

series of length, T = 1000, where we have three parameters; an intercept, γ0, which takes

the value 1, the coefficient on a covariate xt, γ1, which takes the value 1, and the auto-

correlation parameter, ρ, which takes on values 0, .3, .6, .7, .8, .9 and .95. The covariate

xt is i.i.d. N(0, 1). The average of the estimated coefficients, based on 1000 Monte Carlo

replications, are given in the table, with the standard deviation in brackets below. The

number of lags of yt that are used in the auxiliary model is denoted by L.

Table 1.7 – Comparing different L for binary time series with LPM as auxiliary model

ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.95

L = 1
γ0 1.003 1.002 1.002 1.002 1.001 1.007 1.016

(0.061) (0.069) (0.087) (0.099) (0.120) (0.166) (0.235)
γ1 1.003 1.003 1.004 1.004 1.005 1.012 1.023

(0.071) (0.072) (0.074) (0.076) (0.083) (0.102) (0.126)
ρ -0.006 0.294 0.598 0.697 0.796 0.895 0.941

(0.087) (0.081) (0.071) (0.065) (0.061) (0.052) (0.046)

L = 2
γ0 1.004 1.004 1.009 1.011 1.011 1.017 1.030

(0.061) (0.070) (0.093) (0.108) (0.134) (0.183) (0.244)
γ1 1.004 1.005 1.011 1.013 1.015 1.020 1.034

(0.071) (0.073) (0.079) (0.083) (0.094) (0.115) (0.134)
ρ -0.006 0.293 0.598 0.698 0.798 0.897 0.942

(0.088) (0.077) (0.061) (0.055) (0.048) (0.038) (0.034)

L = 3
γ0 1.004 1.004 1.010 1.013 1.014 1.022 1.034

(0.061) (0.070) (0.095) (0.112) (0.140) (0.193) (0.255)
γ1 1.004 1.005 1.012 1.015 1.017 1.026 1.036

(0.071) (0.073) (0.081) (0.087) (0.099) (0.122) (0.144)
ρ -0.006 0.293 0.598 0.698 0.797 0.898 0.946

(0.088) (0.077) (0.058) (0.051) (0.043) (0.032) (0.027)

Mean estimates are based on 1,000 replications of simulated datasets with T = 1000 periods,
standard deviations in parentheses. L denotes the number of lags of yt in the auxiliary model.
Values of γ0 = 1 and γ1 = 1 were used to simulate the data. Sparse grid integration was used to
approximate the binding function.

The approximation of the binding function used to obtain the estimates in this table

does not correct for finite sample bias. From the table it looks like there is no apparent

bias in any of the parameter estimates, except perhaps for large values of ρ. For values of

ρ close to 1, a shock in one period has a long-lasting effect on the subsequent periods. A
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large value for ρ has a similar effect as having a small number of observations, T , in the

time series, since more observations are needed to get an accurate estimate for ρ in that

case. The slight bias in ρ when its true value is close to 1, could therefore be interpreted

as a small amount of finite sample bias. On the other hand, the standard errors on γ0 and

γ1 are larger for large values of ρ, which means that the apparent bias could go away if

we estimate the same model on a larger number of Monte Carlo simulations.

Increasing the number of lags in the auxiliary model adds information about the auto-

correlation, resulting in more precise estimates for ρ. This comes at the cost of a loss of

precision in the other two structural parameters.

Instead of using a linear probability model, we can again use a Probit estimation as

auxiliary model. The results of this experiment are shown in table 1.8. Again, we observe

no bias in the estimates, except possibly for values of ρ close to 1. One benefit of using

Probit as an auxiliary model seems to be that it has smaller standard errors12. Also, if we

increase the number of lags in the auxiliary model, the precision of ρ increases, without a

decrease in the precision of the other two parameters.

Table 1.9 compares the performance of the different variations. Estimating a Probit

instead of an LPM as auxiliary model does not lead to a large increase in computing

time. Increasing the number of lags is more computationally intensive, since we have to

approximate a higher dimensional integral. For L = 1, a 1-dimensional (sparse) grid using

5 nodes is used to approximate the integral. For L = 2 and L = 3, a sparse grid used

more nodes than a grid defined by the product rule (see table 1.1), so I use the product

rule. This implies that every increase in L results in a 5-fold (the number of nodes in a

single dimension) increase in the number of nodes that we use to evaluate the function.

The timings increase by slightly more than a factor 5 if L is increased.

Instead of using a product rule grid to obtain integration nodes, I could have used a

random grid of points, in effect using Monte Carlo simulation to approximate the integral.

In that case the number of integration nodes can be chosen to be any number, where

lower numbers of integration nodes lead to slightly higher standard errors, but quicker

12Besides the efficiency of an estimator, its robustness to misspecification may also be a consideration
when deciding which auxiliary model should be used. To the best of my knowledge, no comparison has
been made between LPM and Probit auxiliary models, but a general discussion of the subject is given in
section 2.5 of Jiang and Turnbull (2004)
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Table 1.8 – Comparing different L for binary time series with Probit as auxiliary
model

ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.95

L = 1
γ0 1.003 1.001 1.001 1.001 0.999 1.005 1.017

(0.060) (0.067) (0.085) (0.097) (0.118) (0.165) (0.235)
γ1 1.003 1.003 1.003 1.003 1.003 1.010 1.023

(0.069) (0.070) (0.072) (0.073) (0.078) (0.098) (0.124)
ρ -0.006 0.294 0.598 0.697 0.796 0.895 0.941

(0.086) (0.080) (0.070) (0.064) (0.059) (0.050) (0.043)

L = 2
γ0 1.003 1.003 1.006 1.006 1.004 1.011 1.027

(0.060) (0.068) (0.085) (0.098) (0.119) (0.170) (0.246)
γ1 1.004 1.005 1.009 1.009 1.009 1.016 1.033

(0.069) (0.070) (0.072) (0.073) (0.078) (0.100) (0.131)
ρ -0.006 0.293 0.597 0.696 0.796 0.896 0.944

(0.087) (0.076) (0.059) (0.052) (0.044) (0.032) (0.029)

L = 3
γ0 1.003 1.003 1.006 1.006 1.004 1.007 1.022

(0.060) (0.068) (0.085) (0.098) (0.119) (0.169) (0.240)
γ1 1.004 1.005 1.009 1.009 1.010 1.015 1.028

(0.069) (0.070) (0.072) (0.073) (0.078) (0.100) (0.128)
ρ -0.006 0.293 0.597 0.696 0.796 0.896 0.946

(0.088) (0.076) (0.056) (0.048) (0.039) (0.027) (0.023)

Mean estimates are based on 1,000 replications of simulated datasets with T = 1000 periods,
standard deviations in parentheses. L denotes the number of lags of yt in the auxiliary model.
Values of γ0 = 1 and γ1 = 1 were used to simulate the data. Sparse grid integration was used to
approximate the binding function.

computations. This way of using simulation to approximate the binding function has the

benefit of providing a gradient that is continuous in the parameters, whereas the method

shown previously needs some form of smoothing to obtain a continuous gradient. This

comes at the cost of not having the finite sample correction property that the other method

has.

In a second set of experiments, I estimate the same model as above, but with φ included,

and its true value set to 0.5. Table 1.10 shows the results of 1000 Monte Carlo simulations,

using an LPM or Probit as auxiliary model. The number of lags in the auxiliary model is

set 2, 3, or 4. The parameter φ is not very precisely estimated, and compared with the

previous model, the precision of ρ is also smaller. A similar improvement of efficiency as

in the previous model can be seen, going from LPM to Probit.
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Table 1.9 – Performance of LPM and Probit

LPM Probit

num. CPU % num. CPU %
L iter. time failed iter. time failed

1 9 0.14 0.21 8 0.20 0.08
2 9 0.93 0.89 8 1.08 0.26
3 9 6.42 0.57 8 7.29 0.24

Median number of iterations, median CPU time and percentage
of failed optimzations are based on 1,000 replications of simulated
datasets. An optimization failed if the problem did not converge
within 200 iterations or if the exit code of the optimization pro-
cedure showed another failure.

Table 1.10 – Comparing different L for binary time series with state dependence

LPM Probit

ρ φ γ0 γ1 ρ φ γ0 γ1 ρ

L = 2
0 0.479 1.018 1.004 0.004 0.478 1.020 1.005 0.005

(0.273) (0.239) (0.080) (0.199) (0.273) (0.240) (0.079) (0.198)
0.3 0.521 0.985 1.008 0.276 0.524 0.983 1.008 0.275

(0.272) (0.221) (0.083) (0.180) (0.271) (0.220) (0.080) (0.179)
0.6 0.497 0.995 1.006 0.596 0.499 0.995 1.007 0.594

(0.187) (0.155) (0.093) (0.094) (0.188) (0.155) (0.088) (0.095)
0.9 0.495 0.978 1.004 0.887 0.504 0.991 1.019 0.889

(0.159) (0.187) (0.135) (0.043) (0.153) (0.187) (0.123) (0.042)

L = 3
0 0.481 1.018 1.004 0.003 0.480 1.020 1.005 0.005

(0.275) (0.238) (0.080) (0.198) (0.274) (0.238) (0.079) (0.197)
0.3 0.524 0.985 1.008 0.275 0.526 0.983 1.008 0.274

(0.268) (0.217) (0.083) (0.176) (0.268) (0.217) (0.080) (0.176)
0.6 0.500 1.002 1.009 0.595 0.499 1.000 1.007 0.593

(0.181) (0.152) (0.094) (0.089) (0.184) (0.153) (0.088) (0.093)
0.9 0.504 0.995 1.022 0.892 0.497 0.995 1.015 0.890

(0.159) (0.200) (0.158) (0.039) (0.140) (0.185) (0.121) (0.035)

L = 4
0 0.480 1.019 1.005 0.004 0.479 1.021 1.005 0.004

(0.273) (0.237) (0.082) (0.197) (0.273) (0.237) (0.079) (0.196)
0.3 0.523 0.987 1.009 0.276 0.527 0.983 1.009 0.274

(0.266) (0.217) (0.084) (0.175) (0.266) (0.216) (0.080) (0.175)
0.6 0.503 1.004 1.010 0.595 0.503 1.004 1.010 0.594

(0.180) (0.152) (0.097) (0.088) (0.178) (0.149) (0.088) (0.087)
0.9 0.514 1.012 1.036 0.892 0.506 1.005 1.027 0.890

(0.167) (0.207) (0.168) (0.037) (0.152) (0.196) (0.148) (0.034)

Mean estimates are based on 1,000 replications of simulated datasets with T = 1000 periods,
standard deviations in parentheses. L denotes the number of lags of yt in the auxiliary model.
Values of γ0 = 1, γ1 = 1, and φ = 0.5 were used to simulate the data. Sparse grid integration was
used to approximate the binding function. LPM or Probit are used as auxiliary models.
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Table 1.11 – Comparing different L for binary time series using NFXP

H = 10, λ = 0.03 H = 300, λ = 0.003

ρ φ γ0 γ1 ρ φ γ0 γ1 ρ

L = 2
0 0.506 1.000 1.006 -0.002 0.482 1.020 1.005 0.009

(0.272) (0.235) (0.088) (0.186) (0.255) (0.223) (0.083) (0.183)
0.3 0.521 0.989 1.007 0.280 0.509 0.998 1.007 0.294

(0.262) (0.220) (0.092) (0.166) (0.234) (0.198) (0.087) (0.157)
0.6 0.504 1.009 1.011 0.588 0.516 0.997 1.012 0.595

(0.209) (0.166) (0.102) (0.107) (0.200) (0.160) (0.097) (0.102)
0.9 0.511 1.004 1.016 0.887 0.506 0.997 1.001 0.890

(0.198) (0.194) (0.150) (0.058) (0.166) (0.176) (0.132) (0.056)

L = 3
0 0.503 1.003 1.007 0.001 0.478 1.024 1.007 0.015

(0.268) (0.231) (0.090) (0.182) (0.242) (0.211) (0.083) (0.172)
0.3 0.518 0.993 1.008 0.284 0.503 1.004 1.007 0.299

(0.241) (0.201) (0.095) (0.152) (0.224) (0.190) (0.082) (0.145)
0.6 0.504 1.008 1.011 0.588 0.513 1.000 1.012 0.596

(0.201) (0.161) (0.108) (0.095) (0.184) (0.150) (0.090) (0.090)
0.9 0.502 1.004 1.010 0.889 0.497 0.999 0.998 0.891

(0.174) (0.190) (0.136) (0.051) (0.158) (0.174) (0.134) (0.049)

L = 4
0 0.501 1.004 1.006 0.002 0.478 1.024 1.006 0.015

(0.256) (0.222) (0.091) (0.173) (0.232) (0.203) (0.082) (0.164)
0.3 0.511 0.999 1.008 0.290 0.508 1.004 1.011 0.298

(0.225) (0.194) (0.096) (0.142) (0.237) (0.186) (0.097) (0.148)
0.6 0.508 1.008 1.013 0.588 0.510 0.999 1.007 0.596

(0.199) (0.161) (0.111) (0.095) (0.181) (0.148) (0.094) (0.088)
0.9 0.500 1.007 1.010 0.892 0.497 1.000 0.999 0.891

(0.171) (0.191) (0.138) (0.047) (0.163) (0.174) (0.135) (0.046)

Mean estimates are based on 1,000 replications of simulated datasets with T = 1000 periods,
standard deviations in parentheses. L denotes the number of lags of yt in the auxiliary model.
Values of γ0 = 1, γ1 = 1, and φ = 0.5 were used to simulate the data. H = 10 or H = 300
simulated paths were used to approximate the binding function. LPM is used as auxiliary model.

Table 1.11 shows estimations of the same model where I use the NFXP formulation

combined with simulations to approximate the binding function. For both values of λ no

apparent bias is present in the parameter estimates. Increasing the number of simulations

improves the standard errors of the estimates.

The performance for the LPM auxiliary model, using sparse grid integration or sim-

ulation is shown in table 1.12. In terms of speed, using a small number of simulations

and a large value for the smoothing parameter, the second column, is by far the quickest.

When simulation is used to approximate the binding function, only a small increase in
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computing time is observed, when L is increased. This can be explained by the similarity

of the problems that are being solved. The only difference is in the number of auxiliary

parameters. This difference is small, as increasing L by one, increases the auxiliary pa-

rameters by one as well. From the right set of columns, we also see that a small value for

the smoothing parameter leads to convergence issues. The maximum number of iterations

is set to 200, and 10% of the Monte Carlo simulations fail to converge in that case.

For the sparse grid integration we see much larger differences in CPU time when

increasing L, which is due to the increasing number of integration nodes used, as explained

above. We see that the relative increase from including 3 to 4 lags, versus 2 to 3 lags,

is smaller. For L = 4, the benefit of sparse grid integration becomes visible, because the

number of nodes used in SGI is smaller compared to the product rule (385 to 625).

Table 1.12 – Comparing performance of SGI versus simulation

SGI H = 10, λ = .03 H = 300, λ = .003

num. CPU % num. CPU % num. CPU %
L iter. time failed iter. time failed iter. time failed

2 15 1.78 0.65 19 0.14 0.12 37 10.96 8.32
3 15 12.50 0.55 20 0.17 0.12 38 14.10 10.97
4 15 54.98 2.23 20 0.21 0.15 39 17.88 10.60

Median number of iterations, median CPU time and percentage of failed optimzations are based
on 1,000 replications of simulated datasets. An optimization failed if the problem did not converge
within 200 iterations or if the exit code of the optimization procedure showed another failure.

1.7 Conclusion

This paper presents an MPEC formulation to indirect inference estimation. The MPEC

formulation simplifies introduction of analytic derivatives, which is shown to reduce com-

puting time relative to the NFXP formulation if the number of structural parameters

grows. The MPEC formulation combined with simulation introduces many new variables

and constraints, but because of the sparseness structure of the problem, using a large

number of simulations, H = 5000, did not present a significant decrease in performance

for MPEC.

When using a Probit model as auxiliary model, for which no closed-form solution exists,

MPEC is an order of magnitude faster than NFXP. This is an encouraging result for cases
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where the preferred auxiliary model has to be estimated using a recursive optimization

procedure.

Finally, sparse grid integration can prove useful as an alternative to approximating the

binding function by simulation. Especially when the model contains discrete outcomes, the

non-smoothness introduced by simulation results in convergence problems, which can be

mitigated if a sparse grid approximation to the binding function is used. In that case the

binding function does not correct for finite sample bias. For the model and the parameter

values that were presented in section 1.6 this appeared to be no problem, but this does

not hold in general.

None of the methods presented here consistently outperforms the other methods in

all cases. Which formulation should be used depends on the model at hand, and the

requirements on speed and robustness. The results described here should serve as guidance

as to which method is most likely to perform best in which case.
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Wage dynamics with labour participation

2.1 Introduction

Many studies have looked at the evolution of wages of individuals over time or over the

life-cycle. A large number of papers decompose the residuals of a wage regression in a

permanent and a transitory component. These papers look at wages for males that are

working and ignore selection into work. Including work status in the model is important

for two reasons. First, instead of wages, we are typically interested in income. Wages

contribute to a large part of income for individuals that work, but if we do not model

labour participation, then we can not say anything about individuals that do not have

wages. Non-participation is more common among females and the analysis is therefore

usually restricted to males. Second, from the literature on static models of labour supply,

The data used in this chapter were made available through the ESRC Data Archive. The data were
originally collected by the ESRC Research Centre on Micro-social Change at the University of Essex now
incorporated within the Institute for Social and Economic Research. Neither the original collectors of the
data nor the Archive bear any responsibility for the analyses or interpretations presented here.
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it is known that the selection in to work is non-random; more productive individuals are

more likely to work than less productive individuals. Not correcting for this non-random

selection leads to biased estimates in these models. In this paper I combine these different

approaches, by adding a selection equation to a simple model of wage dynamics to account

for non-random selection. I then estimate this model on wage and labour participation

data from the United Kingdom for males and females and assess the amount of bias.

The data show a high level of persistence in log-wages and in participation status.

One of the main findings of this paper is that the persistence in log-wages can not fully

explain the persistence in labour participation. When I control for additional persistence

in participation independent from log-wages, by either including lagged participation or

by including a persistent unobservable that only affects participation, the non-random

selection into work becomes very small. This is opposite to the conclusion that is reached

by most papers with static models of labour participation and holds for both males and

females and for all education groups. This also implies that the bias in the parameter

estimates is small in those cases when non-participation is not included in the model.

Since wages are an important part of household income, the statistical process under-

lying wages and earnings has been used to analyse inequality and social mobility. Lillard

and Willis (1978) estimate an earnings function using U.S. panel data on male log earnings

and then decompose the residual from this regression in a permanent and a transitory com-

ponent. Assuming normality for the transitory and persistent shock, they use this model

to look at persistence in poverty status, where an arbitrary threshold in earnings is used

to define poverty. MaCurdy (1982) specifies a more general model for the structure of the

unobservables. In addition to earnings, Abowd and Card (1989) analyse the covariance

structure of earnings and hours for males with positive values for both.

Gottschalk and Moffitt (1994) and Moffitt and Gottschalk (1995)1 used a similar de-

composition to look at changes in parameters of the underlying stochastic process over

time and conclude that the increase in the variance of earnings for men in the U.S. in the

1970s and 1980s can be attributed to equal increases in the permanent and the transitory

1This working paper has been around for a long time and cited many times, and as explained in Jenkins
and Lambert (2011) has recently been published as Moffitt and Gottschalk (2011). I’ll refer to the paper
as Moffitt and Gottschalk (1995).
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part. This research has subsequently been repeated many times with different data sets,

for different countries, and using different stochastic processes for the decomposed unob-

servable (some examples include Haider, 2001; Baker & Solon, 2003; Meghir & Pistaferri,

2004). Relevant papers for the UK, the country that I study in this paper, are Dickens

(2000), Ramos (2003), and Blundell and Etheridge (2010).

Instead of looking at time-varying parameters, Browning, Ejrnæs, and Alvarez (2010)

take a slightly different approach. They start with a standard ARMA model, and intro-

duce some additional parameters. More importantly, they specify a joint distribution for

a subset of the parameters to allow for additional individual heterogeneity. They then

estimate this model on data from the Panel Study of Income Dynamics (PSID). The het-

erogeneity in the model parameters turns out to be important in their case. In this paper

I do not include as much heterogeneity in the parameters, but I find that heterogeneity in

the level of earnings and especially heterogeneity in the propensity to work is important.

In addition to inequality, another reason to look at wages, is to get a sense of uncer-

tainty. Most dynamic economic models of household decisions contain uncertainty over

future wages, and the decomposition of wages or earnings gives some idea of uncertainty.

These decompositions can not be directly interpreted as uncertainty, because the fluctua-

tions in earnings might be perfectly forecasted by the agents, even though the econome-

trician does not observe this. To characterize how much of the earnings is forecasted by

the agent, and how much is uncertainty, a model relating current economic decisions to

expectations about the future has to be formulated, see for instance (Blundell & Preston,

1998) and Blundell, Pistaferri, and Preston (2008). This is beyond the scope of the current

paper.

All of the wage dynamics studies mentioned above have in common that they focus on

males with positive wages. In this paper I add a selection equation to a simple model for

wage dynamics and compare this to the same model without correcting for selection. From

static models of labour participation it is known that selection in to work is non-random

and this non-random selection causes bias in estimation results if the selection process

is ignored (Heckman, 1979; Blundell, Reed, & Stoker, 2003). Bias is not only present

in estimates of the levels, but also in estimates of variance parameters. In this paper I
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estimate a model for wage dynamics, where I assess the bias of the variance parameters

resulting from ignoring selection if selection into work is non-random.

From the data we see that labour participation status is very persistent; individuals

that are working in one period have a high probability of working in the next period. The

estimation results show that this persistence in participation status can not be explained

by persistence in wages alone. An additional source of persistence is required to fit the

pattern of persistence in labour participation. Inluding a random effect in the participation

equation improves the match between the empirical work status transition probabilities

and the transition probabilities predicted by the model. Allowing for state dependence in

the participation equation further improves the fit. At the same time, once we control for

persistence in participation heterogeneity, non-random selection into work does not seem

to be an important problem.

There are two papers that I know of, that include discrete choices in a wage dynamics

model. Altonji, Smith, and Vidangos (2009) estimate a very rich model of wages, hours,

job mobility and participation using indirect inference. Their estimation procedure is

computationally very expensive. They do not allow for changing parameters over time,

and a comparison of their model with models of earnings dynamics that do not include

hours, job mobility and participation, but that do allow parameters to change over time

can not be made directly.

Low, Meghir, and Pistaferri (2010) estimate parameters for a wage process as an input

to their structural model of consumption, labour supply and job mobility. The process for

wages in their paper contains additional features to this paper; most notably a random

walk in the persistent part of earnings, and dynamics related to job changes. They correct

for non-random selection into work by including an inverse Mills ratio for employment in

the moment equations of the difference in log-wages. The inverse Mills ratio is obtained

from a first stage probit regression of employment status. Importantly, the error in this

first stage selection equation is independent over time. The error can be correlated with

the innovation to the persistent unobservable of wages, with the transitory shock, or with

the job innovation, but not with the persistent part of the unobservable. Consequently,

two individuals with the same values for the shocks, but with a different level of the
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cumulated persistent unobservable, will have the same probability of participating. The

results in my paper suggest that persistence in the unobservables are an important part

of the selection process.

The remainder of the paper is organised as follows. In the next section I will describe

the data that I use. Then I will describe the model, the estimation procedure and the

results. The final section concludes.

2.2 Patterns in the BHPS

To estimate the model in this paper, I use data from the British Household Panel Survey

(BHPS). The BHPS was introduced in 1991 and since then a representative sample of

the United Kingdom has been surveyed annually. The first wave of the panel consists of

approximately 5,500 households and 10,300 individuals. In later waves, additional samples

of households have been added to the main sample.

For this study, I use 16 years of data, from 1991 to 2006. The wage data has been

converted to 2008 prices. To minimize the effect of outliers, we remove the top and bottom

percent from the non-zero wage data, by gender and education group. These observations

are completely removed from the data, resulting in a mssing value for both participation

and wages for the individual for that year.

Self-employed individuals are removed from the data, because it is difficult to get

a measure for hourly wages for these individuals. In total this leads to a reduction of

about 10% of the number of observations, where the reduction is larger for males (16%)

than for females (5%). If an individual was self-employed in one year, and works as an

employee in the next, then this individual is only included in the sample when she works

as an employee. If an individual is self-employed for some periods, and not working in

other periods, the individual is included only for those periods where she is not working.

This inflates the proportion of individuals that are not working in two ways; the total

number of individuals in the sample is smaller than the number of individuals in the total

population, because self-employed individuals are dropped, which makes the denominator

smaller. And, individuals are included in the sample if they are non-working, but not when

they are self-employed. This understates the proportion of individuals that are working.
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In principle an additional layer could be added to the model to account for selection into

self-employment, similar to the way non-participation is included currently, but due to

the difficulty in getting an accurate measure for self-employed wages I do not explore this

approach here.

Observations of individuals between age 25, when most individuals have finished ed-

ucation, and the legal retirement age, 60 for women and 65 for men, are included in the

sample. The models will be estimated separately by education level and gender. Since

the education status changes during the survey for about 10% of the individuals, everyone

is classified into education groups based on the lowest education level that we observed

for them. For instance, if we observe someone with O-Levels for three years, and then

A-Levels for two years, this individual is coded as having O-Levels for the entire sample.
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Figure 2.1 – Mean log-wages by cohort, education group and gender

Figure 2.1 shows the mean of log-wages by age for males and females for different

education groups. Each panel shows the mean for different cohorts. Individuals that

are not working at a certain age, are not used in the calculation of the mean for that
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age. For the figures below, values are only shown when they are based on at least 25

observations. For example, mean log-wages is not shown for the high education group for

cohort 1930–1939, because there are too few observations.

The wages for the different cohorts follow roughly the same inverted-U shaped pattern

over the life-cycle. For males there are hardly any changes in the level between the cohorts.

For females the differences between cohorts are more pronounced. The level of mean wages

at a given age differ by cohort, which can be explained by an increase in the mean wage

over time, which can be seen in figure 2.2. It is not quite clear whether the shape of

the life-cycle pattern of wages is the same for different cohorts for women, especially for

women with education up to O-Levels.
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Figure 2.2 – Mean log-wages by education group and gender

Figure 2.2 shows the mean of log-wages by year. In a given year the wages for indi-

viduals from different cohorts are not directly comparable, because the composition of the

groups are different; the respective cohorts are at different points in the life-cycle. Wages

for the different cohorts are pooled in this figure to mask age and cohort effects. Both

from figure 2.1 and from figure 2.2 we see that for most of their career wages of working

males with A-Levels are on average about 25% higher than wages of working males with

O-Levels. For males with higher education, this difference is about 60%. Figure 2.1 shows
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that the wage-growth at young ages is steeper for individuals with more education. We

see a similar pattern for the wages of females. For males there do not seem to be large

differences in the level of wages between different cohort at the same age, except for the

higher education group. For females the differences between cohorts seem to be larger.

Figure 2.2 shows that wages of males have been relatively constant during the 90’s,

even falling a bit, and then increased in later years. The wages of females are about 20%

lower than those of males. The gap between male and female wages appears to have been

constant over the sample period, with a small decrease in the gap for individuals with

O-Levels. There are many different potential reasons for this gap, such as differences in

industries and full-time or part-time jobs between men and women.
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Figure 2.3 – Variance of log-wages residuals by cohort, education group and gender

To look at the variation of log-wages, I create log-wage residuals from a regression

of log-wages on time dummies and age dummies. These regressions are estimated by

education group, gender and cohort for figure 2.3 and by education group and gender

for figure 2.4. These figures show the variance of the wage residuals by age or year. In
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Figure 2.4 – Variance of log-wages residuals by education group and gender

most papers where earnings or wages are decomposed in separate parts, moments of these

residuals, such as variances, variances of differences and auto-covariances, are used directly

for the analysis.

We see that, depending on the education group, variances increase slightly with age.

For females, the variance seems to decrease at later ages. Because of heterogeneity in

earnings growth, or some accumulation of past shocks, the stochastic processes underlying

most earnings dynamics models do not allow for a decreasing variance with age. Including

non-participation and individuals non-randomly dropping out of work can explain a de-

crease in the variance. If at later ages individuals on one side of the earnings distribution

are more likely to stop working, the sample of individuals that is observed to be working

becomes more homogeneous, with a smaller variance in observed earnings.

To get an interpretation for these variances, we can compare the 90th percentile of

wages with the 50th percentile of wages2. Using a variance of .15 for log-wages, an

2If wages follow a log-normal distribution, which seems to be a reasonable assumption from looking
at histograms, we can write the random variable determining wages as wagesi = exp(µ + σεi). We can
compare two percentiles in the distribution of wages, by using the corresponding z-score and the standard
deviation of log-wages. For instance, approximating the percentage change in wages going from the 50th
to the 90th percentile, we have exp(µ+σz(.9))−exp(µ+σz(.5))

exp(µ+σz(.5))
= exp(σ(z(.9) − z(.5))) − 1 ≈ σ(z(.9) − z(.5)),

where I used that exp(x) ≈ 1+x for small values of x. Plugging in values for z(.5) = 0, and z(.9) ≈ 1.3, we
get that the 90th percentile of wages is approximately 100 · 1.3 · σ percent larger than the 50th percentile
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individual at the 90th percentile of the wage distribution has a wage approximately

100 · 1.3 ·
√
.15 ≈ 50 percent higher than an individual at the mean of the distribution.
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Figure 2.5 – Participation by cohort, education group and gender

Non-participation is important as we can see from figures 2.5 and 2.6. For both males

and females there is a significant group of individuals that is not working. These pro-

portions are not to be interpreted as unemployment rates, because of my definition of

participation. As explained above, self-employed individuals are not included in the sam-

ple. Also, individuals that are not working are not nescessarliy looking for work.

The pattern of participation over the life-cycle that is the same for all cohorts. For

men, the proportion of individuals that are working is roughly constant up to age 50,

when the participation rate starts to decline. Individuals with higher levels of education

are more likely to work, with over 90% of Higher educated individuals working, compared

to 80% for individuals with O-Levels. Participation rates for women are lower than for

men, and we see a slight drop in participation rates around age 30.

of wages, which is equal to the mean for the normal distribution.
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Figure 2.6 – Participation by education group and gender

Participation rates for men have been relatively constant over time, with a slight

increase for men with O-Levels, as can be seen from figure 2.6. For females we see an

increase in participation rates over the observed period for O-Levels and A-Levels.

Transition probabilities from work to work and for non-work to non-work are shown

in figures 2.7 and 2.8. These figures show the proportion of individuals that are observed

to stay in the same state from one period to the next. Only observations from individuals

that are observed in two consecutive periods are included. Both of these figures tell us that

work-status is very persistent from one period to the next. For both males and females,

over 90% of individuals that are working in one period, are observed to be working in the

next period. The transition probabilities from non-work to non-work are slightly lower

for individuals with O-Levels, and significantly lower for higher educated individuals.

Although these transition probabilities are not constant over the life-cycle, they appear to

be constant over time.
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Figure 2.7 – Transition probability by education group and gender

2.3 Model description

The goal of this paper is to develop and estimate a model for earnings dynamics that

includes a labour participation decision. In this section I describe a simple permanent-

transitory model for the dynamics of wages and labour participation. The model described

in this section is estimated separately by education group and gender. I assume the

following process for latent potential wages, in logs, for individual i, in year t

ln y∗ith = Xitθ1 + πtξit + τtεit. (2.3.1)

Xit contains a set of observable covariates, which in the estimation below consists a set of

time dummies, and a set of age dummies. The component of wages that is not explained

by observables, is decomposed in two parts; a permanent part, πtξit, and a transitory part,

τtεit. The variance of ξit is normalized to 1, which means that πt can be interpreted as the

standard deviation of the persistent part. The variance of wages that is explained by the
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Figure 2.8 – Transition probability by education group and gender

permanent part can change over time, because πt has a t subscript. The random draws

εit are independent of ξit and independent over time and have unit variance as well. The

contribution to the variance in log wages of this component may change over time through

the parameter τt, which can be interpreted as the standard deviation of the transitory

part. In some formulations of earnings dynamics models the transitory part is written

just as εit, without τt. The standard deviation of εit would then be defined as σεt , i.e.

with a subscript t, in order to have time-varying variance parameters for the transitory

shock. This is equivalent to my formulation, where the variance of εit is normalized to one.

The parameters πt and τt can be interpreted as prices, or aggregate productivity shocks.

The permanent part is written as

ξit = αi + σββiWit, (2.3.2)

where the variable αi is an individual effect, corresponding to individual i, and constant
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over time. In the baseline models the second element in this formula, the part with Wit, is

zero. This means that in the baseline model, the persistent part is constant over time. As

a variation I also present results for a model where Wit is a scalar observable. In the first

case Wit is equal to the age of individual i at time t, and in the second case Wit equals

the square root of her age. In those variations βi is an individual specific growth rate, i.e.

we allow for a heterogeneous trend.

Any variable that is not included in Xit, but with an effect on log wages, enters one

of the two unobservables. For example, if industry or region are not included in Xit and

these variables are constant over time, they enter αi. Changes in returns to working in a

certain industry will increase the relative differences between latent wages, which will be

reflected in an increase in πt. On the other hand, an increase in the level of log-wages for

all sectors will be captured by the time-dummies in Xit.

This is not the only possible way to decompose wages or earnings in a permanent and

transitory part. Many variations have been introduced where the process for ξit or εit

is more complex (see for instance Moffitt & Gottschalk, 1995, for some examples). One

variation commonly made, assumes that ξit follows a random walk, and εit contains a bit

of persistence, for instance by modelling it as an auto-regressive (AR) process, a moving-

average (MA) process or a combination of both (e.g Meghir & Pistaferri, 2004; Blundell

& Etheridge, 2010). Other authors prefer a heterogeneous trend over a random walk for

the permanent component (Guvenen, 2007, 2009), or include both a heteregeneous trend

and a random walk (Baker & Solon, 2003; Hryshko, 2012).

In this paper I choose to use a heterogeneous trend as one of the variations on the

baseline model. I do not to include a random walk to keep estimation of the wage dynamics

model tractable when I add a labour participation equation to the model. Including a

random walk to the wage dynamics model with selection is not a straightforward extension

to the model described here when it comes to estimation, as I will explain below. Allowing

for some growth of the variance of wages with age could be important, given that we saw a

slight increase in the variance of wages over the life-cycle in the BHPS data, and adding a

heterogeneous trend to the model is the computationally less burdensome way to achieve

that.
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The random walk and heterogeneous trend specification imply different theoretical

moments. Table 2.1 shows the theoretical moments for the variance and auto-covariance

of ξit and the variance and auto-covariance for the change in ξit, ∆ξit = ξit − ξit−1, where

t in this table should be seen as age. The variance for ξit increases quadratically in age

for the heterogeneous trend in t, whereas it increases linearly in age for the other two

specifications. In the data we see no evidence for a quadratic increase in the variance of

log wages. The moments for the growth in ξit as implied by the heterogeneous trend in the

square-root of age go to 0 as age increases, which does not completely match the random

walk model.

Table 2.1 – Moments for heterogeneous trend and random walk specifications

Model Moments

Heterogeneous trend in t
ξit = αi + σββit E

[
ξ2it
]

= σ2α + t2σ2β
E [ξitξit−1] = σ2α + t(t− 1)σ2β
E
[
∆ξ2it

]
= σ2β

E [∆ξit∆ξit−1] = σ2β

Heterogeneous trend in
√
t

ξit = αi + σββi
√
t E

[
ξ2it
]

= σ2α + tσ2β
E [ξitξit−1] = σ2α +

√
t(t− 1)σ2β

E
[
∆ξ2it

]
= σ2β

(√
t−
√
t− 1

)2
E [∆ξit∆ξit−1] = σ2β

(√
t−
√
t− 1

) (√
t− 1−

√
t− 2

)
Random walk
ξit = αi + uit E

[
ξ2it
]

= σ2α + tσ2v
uit = uit−1 + σvvit E [ξitξit−1] = σ2α + (t− 1)σ2v

E
[
∆ξ2it

]
= σ2v

E [∆ξit∆ξit−1] = 0

To calculate these moments, for simplicity, the correlation between αi and βi is assumed
to be 0.

Similarly to the derivation of the moments for different specifications of the persistent

part, we can derive moments for different specifications of the transitory part. Two of these

specifications are given in table 2.2. The single period transitory shock is the specification

that I use in this paper. By allowing for a moving average model with one lag, the

additional parameter can be used to better fit the data. For instance, in the single period

transitory shock, we have the following equality E
[
∆ε2it

]
= 2E

[
ε2it
]
. In the moving average

model with one lag, this equality does not need to hold. In this paper I do not include
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a moving average specification for the transitory part for the same reason that I do not

include a random walk in the persistent part; introducing this type of dependence between

two periods results in a computationally demanding estimation procedure when a labour

participation equation is added to the model. In the section describing the results, I assess

how this simplification affects the fit of the model.

Table 2.2 – Moments for different specifications for transitory part

Model Moments

Single period transitory shock
εit = σηηit E

[
ε2it
]

= σ2η
E [εitεit−1] = 0
E
[
∆ε2it

]
= 2σ2η

E [∆εit∆εit−1] = −σ2η
Moving average with one lag
εit = θ0ηit + θ1ηit−1 E

[
ε2it
]

= θ20 + θ21
E [εitεit−1] = θ0θ1
E
[
∆ε2it

]
= 2 · (θ20 − θ0θ1 + θ21)

E [∆εit∆εit−1] = 2θ1θ0 − θ20 − θ21

2.3.1 Modeling labour participation

From the figures of the BHPS data on participation, we saw that non-participation is non-

trivial. Latent wages are not observed for individuals that do not participate. Because

ignoring potential non-random participation leads to biased estimates (e.g. Blundell et

al., 2003), we want to include non-participants in the model. Below, I explicitly write

down the decision process of the agents that leads to a dynamic version of the standard

selection model by Heckman (1979). This facilitates explaining why the model may not

capture some features that we observe in the data.

We assume that individuals work if their latent wage is larger than a reservation wage,

lnw∗it, that we write as

lnw∗it = Xitθ̃2,t + Zitδ̃t + σ̃γ,tγi + ση,tηit. (2.3.3)

The reservation wage depends on the same observable variables that we included in the

wage regression, Xit, some variables that affect the reservation wage, but not the wage
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itself, Zit, and an unobservable, which is decomposed in a permanent part γi, and a

transitory part, ηit. Typically, variables that are thought to enter Zit are household

composition, assets or savings, non-labour income or your health status. Not all of these

variables are observed, which means that they will enter the unobservable, either via γi

or via ηit.

The decision to work depends on a comparision between the latent potential wage

and the reservation wage. If the potential wage is higher than the reservation wage, the

individual decides to work, and otherwise she does not work

dit =

 1 if d∗it > 0

0 otherwise,

where dit is observed participation, and d∗it is defined as the difference between the wage

and the reservation wage

d∗it = ln y∗it − lnw∗it. (2.3.4)

After substituting our definition of the latent wage from (2.3.1) and the reservation wage

from (2.3.3) in (2.3.4), we get

d∗it = Xit(θ1 − θ̃2,t)− Zitδ̃t + πtξit + τtεit − σ̃γ,tγi − ση,tηit. (2.3.5)

In this specification, all the coefficients related to the reservation wage depend on t. Since

the participation outcome, dit, is a discrete variable, for identification, we have to normal-

ize the scale of the participation equation; multiplying all elements of the participation

equation by the same amount does not change the outcome, dit, that we observe. For

instance, we can normalize all the ση,t to one. Another way to achieve identification is by

removing the time-subscript from the θ̃2,t and δ̃t and normalizing one of the ση,t to one,

e.g. only the ση,t corresponding to the first period. To decrease the number of parame-

ters that we need to estimate, I make a stronger assumption, by combining the two; i.e.

removing the time subscripts of the coefficients and relating ση,t to one parameter. First,

I define

ση,t = −
√

1− ρ2
ρ

τt,
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and multiply all elements in (2.3.5) by ρ
τt

, resulting in

d∗it = Xit
ρ

τt
(θ1 − θ̃2,t)− Zit

ρ

τt
δ̃t +

ρ

τt
πtξit + ρεit −

ρ

τt
σγ,tγi +

√
1− ρ2ηit.

This transformation introduces a new variable ρ, which is constant over time, with |ρ| < 1.

A value of ρ = 0, implies an infinite value for ση,t. In that case, the reservation wage of the

individual will be plus or minus infinity, resulting in a decision to work that is independent

from her wage. Also, defining the scale of ση,t with respect to τt implies that we assume

that the relative importance of εit and ηit for the participation decision stays constant

over time. Since we are not interested in the values of the separate parts that contribute

to the coefficients, we rename some of the parameters, by defining θ2, δ and σγ as the

combination of coefficients multiplying Xit, Zit and γi to end up with

d∗it = Xitθ2 + Zitδ +
ρ

τt
πtξit + ρεit + σγγi +

√
1− ρ2ηit.

This results in a convenient expression for the likelihood as can be seen below. Other

normalizations can be chosen and whether the choice of a particular normalization matters

for the estimation results is an empirical issue that is left for future research.

In one of the variations I include previous period participation, dit−1, in the partici-

pation equation. Introducing state dependence complicates the estimation, as explained

below. However, allowing for state dependence has been shown to be important in practice,

for instance by Hyslop (1999) who estimates a dynamic model of female labour partici-

pation. One rationalization for adding this variable, is that previous period participation

is part of the reservation wage, because if you start working you have to pay some fixed

cost, such as buying a car or spending time to arrange child support. Individuals that

were working in the previous period, already paid this fixed cost and their reservation

wage is lower. We therefore expect that individuals that worked in the previous period

are more likely to be working in this period, suggesting a positive coefficient on dit−1 in

the participation equation.

Combining both the log-wage equation and the participation equation from above,
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results in the following set of equations

ln y∗it = Xitθ1 + πtξit + τtεit

d∗it = Xitθ2 + Zitδ + φdit−1 + ρ
τt
πtξit + σγγi + ρεit +

√
1− ρ2ηit.

Here we see again that if ρ = 0, the unobservables from the latent wage do not enter the

participation equation, and there is no non-random selection into work. In that case there

will be no bias in the parameter estimates, when the model for log-wages is estimated using

observed wages alone. The direction of the bias due to non-random selection for the level

parameters is well-known. Depending on the sign of ρ parameters are biased upwards or

downwards. In a simplified version of the model, where there is no heteregeneous growth

in wages, and without covariates, the variance of latent wages is simply

var [y∗it] = π2t + τ2t .

Similarly the auto-covariance of the latent wages is

cov
[
y∗it, y

∗
it−1
]

= πtπt−1.

Using variances and covariances of non-randomly selected observed wage data, will lead

to downward biased estimates for the variance parameters, independent of whether the

correlation between the unobservables in the selection and outcome equation is positive

or negative

var [y∗it | d∗it > 0] ≤ var [y∗it] = π2t + τ2t .

The intuition is that, because individuals on one side of the distribution (either the high

end or the low end, depending on the sign of ρ) are more likely to be unobserved, the

variance of the distribution decreases. If we restrict our sample data to individuals for

which we have positive earnings in multiple periods, then the truncation gets worse if there

is correlation over time between the participation probabilities

var
[
y∗it
∣∣ d∗it > 0, d∗it−1 > 0

]
≤ var [y∗it | d∗it > 0] ≤ var [y∗it] .
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Also, the bias in estimating the underlying variance process for the latent wages is worse

if the participation rates are lower. We therefore expect to see more bias for females and

for lower education groups, because they have lower participation rates.

Any additional change to the participation equation should be rationalized by a change

in the model for wages or the model for the reservation wage. For example, if we wanted

the permanent and transitory component of wages to enter the selection equation with

different coefficients, then we need to explain why we want to include one or the other in

the reservation wage. One possibility would be to allow for correlation between γit and

ξit. If these unobservables were assumed to be correlated, and γi and ξit are drawn from

a normal distribution, then we can write γi as a linear combination of ξit and a normally

distributed variable that is independent of ξit. This would result in a different relation

between the coefficients on ξit and εit. Another way to get distinct coefficients on the

permanent and transitory shock, is to allow for instance the permanent part of wages to

enter the reservation wage directly, for instance as a proxy for assets.

The model presented above can be seen as a reduced form approximation to the policy

function describing the work decision of an individual that would follow from a dynamic

optimization model with a forward looking agent. The parameters in this model capture

the beliefs and preferences of such an agent without giving them a structural interpreta-

tion. For instance, some degree of forward looking behaviour is implicitly present in the

reservation wage of individuals. For instance, if younger individuals decide to work now,

because that increases their human capital, which in turn will increase their expected fu-

ture earnings, then this will result in a lower reservation wage for young individuals. This

is captured by age dummies in the reservation wage. However, to disentangle preferences

and beliefs, or to answer questions such as whether individuals distinguish between ξit and

εit when making their decisions, further structure has to be imposed.

2.4 Estimation

To estimate the model described above, I make some additional assumptions on the dis-

tributions of the unobservables, described below. Note that all these distributional as-

sumptions are conditional on education and gender, because estimations are performed
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separately by education and gender groups.

[A-1] Joint normality and independence of permanent shocks, αi and βi. I as-

sume that αi and βi follow a bivariate normal distribution. The diagonal elements of

the variance-covariance matrix are 1, which is again a normalization. These parameters

capture the individual specific level and growth of earnings. For older individuals this also

includes accumulated human capital. In addition, (αi, βi) is assumed to be independent of

all variables, including Xit and Zit, i.e. αi and βi are random effects. This independence

is often perceived as a strong assumption, especially if Xit contains endogenous variables.

For instance, if Xit contains education, we might be worried that the decision to go to

college is associated with higher values of αi, leading to correlation between one of the

regressors, and the unobservable. Also, dependence is mechanically introduced when the

participation equation contains lagged values of participation, because these are by def-

inition correlated with αi and βi, if ρ 6= 0. In my case, Xit contains only age and time

dummies, and the estimation is performed conditional on gender and education, which

reduces this problem. Correlation with variables in Zit, e.g. the number of kids or marital

status will be problematic.

In linear panel data models the fixed effect estimator is therefore often preferred. In

wage dynamics models the analysis is usually performed on the differences in residuals

from the wage equation. Taking differences removes the fixed effect, αi, without having

to make any assumptions on its stochastic process. Taking differences does not remove

the random growth term, so this could cause problems in earnings dynamics models with-

out participation that have education or other endogenous variables in the regression to

determine wage residuals. For the participation decision, the level of wages is important,

which is why we cannot take differences.

[A-2] Normality and independence of permanent shock to reservation wage, γi. The

random effect in the reservation wage, γi, that only affects participation is assumed to

follow a standard normal distribution independent of the other variables. The parameter

that determines its variance, σγ , is assumed to be constant over time and age. The random

effect should therefore be seen to capture the initial difference in participation probability

between individuals.
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[A-3] Normality and independence of transitory shock, εit. The transitory part of the

unobservable in the outcome equation is assumed to follow a standard normal distribution,

εit ∼ N(0, 1), independent of all other variables in the model and independent over time.

Fixing the variance of this distribution to 1 is a normalization that we need to identify the

changing price over time, τt, which captures a changing variance. The assumption that

there is no serial correlation in εit is strong and does not hold in practice.

[A-4] Normality and independence of shock to reservation wage, ηit. Similary to

the variables above, ηit is assumed to follow a standard normal distribution, independent

of the other variables and without serial correlation. Since ηit, together with γi, captures

all the variation in participation between individuals not explained by observables or their

latent wage, the credibility of the assumption of no serial correlation depends on the

instruments that are included in the participation equation. Since assets are not included

in the participation equation, it will enter γi or ηit. As far as there is no variation in assets

over time, γi can capture the effect, but in other cases we would require some form of

auto-correlation in ηit.

The normality assumptions introduced above can be used to estimate the model by

maximum likelihood. The distributional assumptions on αi, βi and γi can be relaxed.

Since the distributions of these variables are integrated out it is useful to choose a (para-

metric) distribution that can be accurately integrated over. An example of these would

be to assume a mixture of normals for these variables, as I explain below. Another ex-

ample would be a distribution that takes only a finite number of points, with associated

probabilities. This last option would make more sense for γi than for the other variables,

because γi only enters in the discrete choice.

First, I consider the case where there is no state dependence, i.e. lagged participation

does not enter the participation equation. To simplify the notation, I define

u1,it = τtεit

u2,it = ρεit +
√

1− ρ2ηit.
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Combining [A-3] and [A-4] implies a joint normal distribution for u1,it and u2,it

 u1,it

u2,it

 ∼ N

 0

0

 ,

 τ2t λτ2t

λτ2t 1


 .

Since we assume that there is no serial correlation in εit and ηit, this means that observa-

tions at different time periods, t, for the same individual i are correlated through αi, βi

and γi only. If the values of αi, βi and γi were observed, the observations for individual i

would be independent, similar to Butler and Moffitt (1982), with likelihood contribution

for individual i at time t defined as the standard likelihood in a Heckman selection model,

L (θ | dit, yit, Xit, Zit, αi, βi, γi) =

=


1− Φ

(
Xitθ2 + Zitδ + ρ

τt
πt (αi + σββiWit) + σγγi

)
if dit = 0

1
τt
φ

(
yit−Xitθ1−πt(αi+σββiWit)

τt

)
Φ

(
Xitθ2+Zitδ+σγγi+

ρ
τt

(yit−Xitθ1)√
1−ρ2

)
if dit = 1.

Given our assumed distributions for αi, βi and γi, we can integrate out their unobserved

values to obtain the likelihood contribution for individual i

Li =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

T∏
t=1

L (θ | dit, yit, Xit, Zit, αi, βi, γi) fα,β,γ(αi, βi, γi)dαidβidγi.

Taking the log and summing over all individuals gives the following log-likelihood, where

the three-dimensional integral is approximated by Gaussian quadrature, since an analytic

expression for the integral is not available

logL =
N∑
i=1

log (Li)

≈
N∑
i=1

log

(
H∑
h=1

wh

T∏
t=1

L (θ | dit, yit, Xit, Zit, αh, βh, γh)

)
.

The quadrature weights are denoted by wh, with corresponding nodes αh, βh, and γh for

the three-dimensional Normal distribution.

For the variations of the model that allow for state dependence, this procedure has to

be adapted slightly. We do not observe lagged participation when an individual is observed

80



CHAPTER 2. WAGE DYNAMICS WITH LABOUR PARTICIPATION

for the first time. Also, for some of the individuals no information is available in some of

the intermediate waves. Even though we know the participation status of this individual

at the start of the survey, for some waves we do not know the participation status for the

period that immediately precedes the current period, because the information from that

wave may be missing.

Simply removing the first observation from the analysis and using only the outcome

value from the first period as lagged participation in the second period results in biased

estimates, because the first period outcome is correlated with the unobservable random

effects in the participation equation. This problem is known as the initial conditions

problem. I take one of the solutions proposed in Heckman (1981) and Stewart (2007),

where a separate equation is specified to model the participation status in the first period.

In addition, I use an additional equation to model the participation status following a

wave with missing data.

For the first period observations, the participation status is modeled as

P (di1 = 1) = P

(
Xi1θ2,ic + Zi1δic +

ρic
τ1
π1ξi1 + σγ,icγi + ρicεi1 +

√
1− ρ2icηi1 > 0

)
.

Note that all the parameters in this equation, except π1 and τ1, have an ic (initial con-

ditions) subscript. They can take on different values than the parameters in subsequent

periods. A similar equation, with different coefficients, is used to model the participation

status when no information from a previous wave is available, because of missing data.

In that equation I also include the last value of participation status that was observed in

any of the previous waves. Because we do not have enough observations to identify all

coefficients on time and age dummies for these initial condition equations, I only include

dummies in these two equations that divide the age data in 5-year periods.

To get some idea about the performance of this method and the accuracy of the integral

approximation, I run a small Monte Carlo experiment. I simulate observations for 500

individuals that are between age 30 and 50 when we start observing them. They enter the

workforce at age 25, so they have between 5 and 25 periods of of observations affecting the

initial conditions. Furthermore, 20% of the observations are missing at random, to simulate

individuals with information from intermediate waves missing. The model contains one

81



CHAPTER 2. WAGE DYNAMICS WITH LABOUR PARTICIPATION

Table 2.3 – Monte Carlo simulations showing bias in parameter estimates, T = 6

Number of integration nodes (αi × γi)
3× 3 7× 7 11× 11 17× 17 25× 25 49× 25 99× 25

logL –2333.344 –2181.449 –2154.983 –2144.827 –2143.130 –2142.934 –2142.896
(62.017) (52.673) (51.794) (51.308) (51.577) (51.556) (51.529)

θ1,1 0.028 0.000 –0.002 –0.001 0.000 0.000 0.000
(0.046) (0.051) (0.042) (0.033) (0.027) (0.025) (0.026)

θ1,2 –0.001 0.000 0.000 0.001 0.001 0.001 0.001
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

θ2,1 –0.147 –0.014 –0.003 0.009 0.014 0.015 0.015
(0.165) (0.207) (0.214) (0.212) (0.207) (0.207) (0.207)

θ2,2 –0.023 0.004 0.006 0.008 0.008 0.008 0.008
(0.061) (0.067) (0.070) (0.069) (0.069) (0.069) (0.069)

δ –0.047 0.001 0.006 0.009 0.010 0.010 0.010
(0.077) (0.087) (0.090) (0.090) (0.089) (0.089) (0.089)

φ 0.078 0.017 0.014 0.012 0.012 0.011 0.011
(0.134) (0.145) (0.145) (0.144) (0.144) (0.144) (0.144)

τ 0.056 0.015 0.007 0.002 0.001 0.001 0.001
(0.009) (0.006) (0.005) (0.005) (0.005) (0.005) (0.005)

π –0.105 –0.068 –0.036 –0.010 –0.002 –0.001 –0.001
(0.017) (0.019) (0.020) (0.019) (0.020) (0.019) (0.019)

σγ –0.156 –0.012 –0.006 –0.006 –0.006 –0.006 –0.006
(0.114) (0.160) (0.168) (0.164) (0.164) (0.164) (0.164)

ρ 0.021 0.011 0.007 0.007 0.007 0.007 0.007
(0.085) (0.072) (0.065) (0.062) (0.061) (0.061) (0.061)

Mean bias is shown based on 100 replications of simulated datasets with 500 individu-
als, standard deviation in parentheses. These parameters were used to simulate the data
(θ1,1, θ1,2, θ2,1, θ2,2, δ, φ, τ, π, σγ , ρ) = (5, 1, 1, 0.5, 1, 1, 0.3, 0.5, 1, 0.4).

covariate, x1,it ∼ i.i.d. N(0, 1), and one instrument, z1,it ∼ i.i.d. N(0, 1). The vector

of parameters that was used to simulate the data is (θ1,1, θ1,2, θ2,1, θ2,2, δ, φ, τ, π, σγ , ρ) =

(5, 1, 1, 0.5, 1, 1, 0.3, 0.5, 1, 0.4). The model does not contain a heterogeneous trend, and

therefore we do not integrate over βi.

Table 2.3 shows the bias in the parameter estimates for different numbers of nodes

that were used to approximate the integral. The results are based on 100 Monte Carlo

replications and use T = 6 observed waves. The same results are shown for the case where

we have more observations for each individual, T = 16, in table 2.4. From these tables

we see that the bias in all parameters is substantial when a small number of integration

nodes is used, 3× 3, in the first column. When the number of integration nodes increases,

the bias decreases. Because we are interested in estimates for the variance parameters, it

is important to use a high number of integration nodes to approximate the integral. For

the estimations on the BHPS data, I use 99 quadrature nodes in the αi dimension, and 25
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Table 2.4 – Monte Carlo simulations showing bias in parameter estimates, T = 16

Number of integration nodes (αi × γi)
3× 3 7× 7 11× 11 17× 17 25× 25 49× 25 99× 25

logL –5391.377 –4791.423 –4691.189 –4634.537 –4606.182 –4590.960 –4590.367
(120.802) (89.528) (88.798) (90.434) (90.535) (89.913) (90.044)

θ1,1 0.053 0.013 0.011 0.003 0.008 0.004 0.003
(0.053) (0.067) (0.055) (0.053) (0.048) (0.035) (0.028)

θ1,2 –0.002 –0.001 –0.001 0.000 0.000 0.000 0.000
(0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

θ2,1 –0.176 –0.052 –0.020 –0.017 –0.007 –0.007 –0.008
(0.096) (0.110) (0.116) (0.109) (0.115) (0.101) (0.100)

θ2,2 –0.034 –0.009 –0.004 –0.003 –0.002 –0.002 –0.002
(0.033) (0.032) (0.033) (0.033) (0.034) (0.033) (0.033)

δ –0.062 –0.013 –0.005 –0.003 –0.002 –0.001 –0.001
(0.037) (0.039) (0.040) (0.040) (0.040) (0.040) (0.040)

φ 0.083 0.020 0.008 0.005 0.004 0.004 0.004
(0.076) (0.077) (0.079) (0.078) (0.078) (0.078) (0.078)

τ 0.059 0.015 0.009 0.005 0.003 0.001 0.001
(0.007) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003)

π –0.132 –0.134 –0.102 –0.067 –0.038 –0.005 –0.001
(0.016) (0.018) (0.020) (0.020) (0.020) (0.020) (0.018)

σγ –0.226 –0.053 –0.014 –0.008 –0.009 –0.010 –0.010
(0.048) (0.061) (0.073) (0.076) (0.075) (0.075) (0.074)

ρ –0.007 –0.013 –0.007 –0.003 –0.002 –0.001 –0.001
(0.067) (0.046) (0.042) (0.038) (0.038) (0.038) (0.038)

Mean bias is shown based on 100 replications of simulated datasets with 500 individu-
als, standard deviation in parentheses. These parameters were used to simulate the data
(θ1,1, θ1,2, θ2,1, θ2,2, δ, φ, τ, π, σγ , ρ) = (5, 1, 1, 0.5, 1, 1, 0.3, 0.5, 1, 0.4).

nodes in the γi dimension. In the models with a heterogeneous trend, I use 25 integration

nodes in the βi dimension.

2.4.1 Mixture of normal distributions

To allow for a more flexible distribution than the normal distribution, I estimate variations

of the models that contain only αi as a random effect using a mixture of two normal

distributions. This mixture has probability density function

fα(αi) = κ1f1(αi) + (1− κ1)f2(αi),

where f1 and f2 are probability density functions of a univariate normal distribution with

different means and variances. The probability that an observation is drawn from the

first component of the mixture is κ1, and because the probabilities should add to one,
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the probability that an observation comes from the second component of the mixture is

κ2 = 1− κ1.

Allowing for a normal mixture distribution increases the computational cost in two

ways. First, we need more integration nodes to accurately approximate the integral. In

the case of a mixture of two normal distributions, I approximate two integrals, conditional

on whether the observation is drawn from the first component of the mixture, or from

the second component. This means that it takes twice as long to approximate the log-

likelihood. The second way in which the problem requires more computing time, is because

the log-likelihood function is more difficult to optimize, which typically means that more

iterations are needed to converge to the optimum.

Finally, in the original formulation, αi was normalized to have zero mean and unit

variance. In this variation, αi is defined as a mixture of two non-standard normal distri-

butions; αi1 ∼ N(µ1, σ
2
1) and αi2 ∼ N(µ2, σ

2
2). In line with the original formulation, I

normalize the mean and variance of αi; E [αi] = 0, and E
[
α2
i

]
= 1. We can then express

µ2 and σ2 in terms of µ1 and σ1 to obtain this normalization, where

E [αi] = 0 ⇔ µ2 = − κ1
1− κ1

µ1.

and

E
[
α2
i

]
= 1 ⇔ σ22 =

1

1− κ1

(
1− κ1

1− κ1
µ21 − κ1σ21

)
.

The parameters µ2 and σ2 are not estimated, but their values follow directly from the

normalization.

2.4.2 Serial correlation in the unobservables

The factor structure that I assume for the dependence of unobservables over time sim-

plifies the analysis, because in that case the log-likelihood can be approximated by a

low-dimensional integral. Inluding serial correlation for individual i in a different form

is an order of magnitude more complicated. This occurs if ξit is not a function of two
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unobserved factors, as above, but follows a random walk

ξit = ξit−1 + vit,

or when u1,it, or u2,it follow some auto-regressive or moving-average process. In principle

we can condition on ξi0, and vi1, . . . viT , to integrate out these unobservables using the

product of multiple one-dimensional integration grids. In practice this approach quickly

becomes intractible if the number of time periods, T , grows. Especially since the integral

has to be approximated accurately enough to get informative estimates for the variance

parameters.

2.5 Results

This section describes the estimation results for the different variations of the earnings

dynamics models that I described above. The identifiers and characteristics of the different

variations are shown in table 2.5. The models are divided in three parts; the base models,

and two variations that use either mixture distributions or a heterogeneous trend. There

is a distinction between models that include wages only, starting with the letter W, and

models that model both wages and participation at the same time. These models include

a selection equation and start with the letter S.

The wage models are estimated using maximum likelihood, where the normality as-

sumption is used equivalently to the selection model, so that we can easily compare the

results from those models. The W models can be seen as simple benchmark wage dynamics

models that are commonly estimated. The normality assumption is stronger than the as-

sumptions that are usually made in models focusing on wages or earnings only, as most of

these models use a set of low-order moments to estimate variance parameters of the wage

process. Also, instead of running a linear regression on some observables first, to obtain

wage residuals that can be used in the subsequent analysis, I include these observables in

the estimation directly.

All models include a persistent part, ξit = αi, that affects the outcome and, if present,

the selection equation. In the base models, two selection models have an additional random
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Table 2.5 – Model variations

Selection Persistence in State Mixture Heterog.
participation Dependence distribution trend

Base models
W No – – No No
SBase Yes No No No No
SREP Yes Yes No No No
SSD Yes No Yes No No
SREP,SD Yes Yes Yes No No

Variations with mixtures
Wmix No – – Yes No
SSD,mix Yes No Yes Yes No

Variations with heterogeneous trend
Wage No – – No Yes
W
√
age No – – No Yes

SSD,age Yes No Yes No Yes
SSD,

√
age Yes No Yes No Yes

effect, γi, that enters the selection equation only. These models are labelled SREP and

SREP,SD, where REP refers to the random effect in the participation equation. For the

other variations the effect of γi is removed, i.e. σγ = 0 in those cases.

The third column of table 2.5 shows whether the model allows for state dependence,

marked by the superscript SD. It is assumed that lagged participation only enters the

selection equation. Therefore, the wage model does not have a variation including state

dependence.

In one set of variations, I estimate versions of model W and model SSD with a mixture

of two normal distributions as the distribution for αi. These variations are referred to

as Wmix and SSD,mix. The final set of variations introduces a heterogeneous trend in the

persistent part of the unobservable. I.e. ξit contains σββiWit in addition to αi. The

variable Wit defines the heterogeneous trend and is equal to age or to the square-root of

age.

2.5.1 Results for base models

The models estimated in this section contain many parameters. There are time and

year dummies in both the outcome and the selection equation, additional parameters

for instrumental variables affecting participation but not wages, time-varying variance
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parameters for the persistent and transitory part of the unobservable, and some additional

parameters related to the variances and correlation of unobservables. Not all of these

parameters are of direct interest, nor is it easy to interpret them when shown in a large

table. Therefore I present only a subset of the parameter estimates.
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Figure 2.9 – Estimated transitory and persistent variances for males by year

Figures 2.9 and 2.10 show the estimated variance parameters for the persistent vari-

ance, π2t , and the transitory variance, τ2t , in different years for models W, Base, SD, REP and

SREP,SD. The squared parameters are shown in order to simplify comparisons with other

studies, where these parameters are usually presented as variances instead of standard
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Figure 2.10 – Estimated transitory and persistent variances for females by year

deviations.

When looking at figures 2.9 and 2.10 we see that the estimates for the transitory

variances, the graphs on the right, are very similar for all variations of the model. The

transitory variances are somewhat higher in the beginning of the 1990’s especially for the

higher education group, and they increase again slightly towards the end of the sample.

The transitory variances are of similar magnitude for all education levels for males and

females.

The second thing to note is the difference in the contribution of the persistent variance
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for the different models. We see that for most models, the estimates for the persistent

variance lie almost completely on top of the estimates for model W. The exception is

SBase, where the estimated persistent variance is visibly larger. We see further that the

differences in estimates for πt between model W and model SBase are larger for the lower

education groups. The effect of not including non-random selection into work is more

important for these groups, because they contain a larger proportion of individuals that

do not work.

As we saw from the plots of transition probabilities in the BHPS data, selection into

work is very persistent. If this persistence is not due to persistence in observables, the

only way for model SBase to capture the persistence, is by having large values for πt, the

coefficients governing the persistence of latent wages. The only way to explain persistence

in participation is to have a high persistence in latent wages. The other selection models

however, include a second channel that affects the individual differences in the propensity

to participate. Model SREP contains a random effect, γi, that only enters the selection

equation and that can capture individual differences in the propensity to participate inde-

pendent from the persistence in latent wages. This factor captures all the persistence in

participation status, and a large value of πt is not required to improve the log-likelihood

for this model. Similarly, SSD contains lagged participation in the participation equation,

to allow for persistence in participation status independently from persistence in latent

wages.

We can compare the results for males to Blundell and Etheridge (2010). They estimate

a wage dynamics model for males with a slightly different specification; most notably they

pool all education groups, and only include wages of employed individuals, as I do in model

W. In their model the persistent shock follows a random walk, whereas the transitory shock

follows a moving average process. They use data from the BHPS from a similar period,

1991 – 2004. From the results of this model they calculate the implied variance for the

persistent and the transitory part of log-earnings which is shown in the top panel of figure

6.1 in their paper. Because earnings consists of a combination of hours and wages, I
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deocmpose the variance of earnings as follows

var [log (earnings)] = var [log (hours · wage)]

= var [log (hours)] + var [log (wage)] + cov [log (hours) , log (wage)] ,

which implies that the variance of log wages is a lower bounds for the variance of log

earnings, as the covriance between log hours and log wages can be assumed to be nonneg-

ative. The variance of earnings and the variance of log wages are roughly the same if the

variance of log hours and the covariance between log hours and log wages is small, which is

plausible for males. Taking this into account it looks like the estimates from Blundell and

Etheridge (2010) for the contribution of the transitory variance are very similar to mine;

their estimates are around 0.04. The contribution of the persistent variance are higher in

my case, compared to their estimates around 0.06. Also, in Blundell and Etheridge (2010)

the contribution of the persistent variance decreases over the sample period, whereas this

seems to increase for A-Levels and the Higher education group in my results.

Appendix 2.B contains tables with estimation results for a subset of the parameters.

The tables contain three sets of values, separated by horizontal rows. The top rows

show the coefficients on the instrumental variables in the selection equation. These are

not present in the wage model, W. The middle set of rows contain estimates for the

parameters related to unobservables that are not shown in figures 2.9 and 2.10. Not all of

these parameters are present in every model. The final set of rows present some additional

information, such as the log-likelihood, logL, the number of individuals, N , and the total

number of observations N ·T , used in the estimation, where not all individuals are observed

in every wave.

Finally, the implied correlation is a measure of correlation between the unobservable in

the outcome equation and the unobservable in the selection equation. These unobservables

are a combination of the separate unobservable parts, and in these calculations I use the

average over all time-periods for πt, and τt. This implied correlation can be interpreted as

the correlation between the unobservables in the outcome and selection equation for static

selection models, which measures the amount of non-random selection. See appendix 2.A
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for the exact definition.

Looking at the estimate for ρ in model SBase in the second column of tables 2.6, 2.7,

and 2.8 in appendix 2.B, we see that for O-Levels the non-random selection is stronger

than for the A-Levels or Higher education group. The implied correlation between the

unobservables in the outcome and the selection equation is 0.8 for O-Levels and 0.5, and

0.4 for A-Levels and Higher respectively. This relates directly to the differences we saw in

the estimates for πt when comparing model W and model SBase. The models with a larger

implied correlation show a larger difference.

In comparison to SBase, models SSD, SREP, SREP,SD contain additional parameters to

allow for persistence in participation that is independent from persistence in wages. SBase

is nested in SSD, and SBase is nested in SREP. All three of these models are nested in

the more complicated model SREP,SD. A likelihood ratio test can be used to compare the

models and in all cases the simpler models are rejected in favour of the more complex

model.

The size of the random effect in the participation equation in SREP, σγ , is large com-

pared to the contribution of the persistent and the transitory shock, αi and εit. Also, the

estimate for ρ as well as the implied correlation is considerably smaller than the corre-

sponding estimate in SBase. This suggests that it is important to capture the persistence

in work status separately from persistence in log wages. This also suggests that the non-

random selection in to work largely goes away once we condition on some underlying

propensity to work that is not correlated to an unobserved factor determining log wages.

Depending on the specification of the model, the bias in the variance parameters compared

to a wage dynamics model without participation is large (SBase) or virtually non-existent

(SREP).

The same changes occur when we introduce lagged participation in the participation

equation in model SSD, where the estimate for ρ is again smaller than in model SBase. The

estimated coefficient on lagged participation is large compared to the other coefficients

in the participation equation, ranging between 1.8 for Higher educated males and 2.6 for

males with O-Levels. For an easier interpretation of the magnitude of this coefficient, I

calculate the probability of working in year 2000, for a 40-year old married male, without
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kids, who owned a house in the first period. For an individual with O-Levels, this probabil-

ity changes from 16% to 95% when we change his status from not working in the previous

period, to working in the previous period. Similarly, the percentage increase from 44% to

98% for A-Levels and from 58% to 98% for Higher education. The same probability can

be calculated for model SREP,SD, where the values go from 50% to 90% for O-Levels, from

76% to 96% for A-Levels, and from 76% to 97% for Higher education.

The results for females are shown in tables 2.9, 2.10, and 2.11. The presence of kids

lowers the probability that an individual works, and the effect is stronger for young kids

than for older kids. The same as we saw in the case of males, if we introduce a random

effect or state dependence in the participation equation, the parameter estimate for ρ

decreases, and the issue of non-random selection decreases.
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Figure 2.11 – Estimated latent wage by year

Another way to look at the results of non-random selection on the level of wages is by

plotting predicted latent wages for the different models together with the observed wage

in the BHPS, see figures 2.11 and 2.12. These figures show the amount of selection present
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Figure 2.12 – Estimated latent wage by age

in each of the variations. As before, we see that the non-random selection in model SBase

is strong. The latent wage in this case is up to 25% smaller than the wage we observe

for working individuals. For the other selection models there is still some effect of the

non-random selection, especially in the early 90’s and for younger individuals, but the

effect is smaller. This can be explained by the increase in labour participation that we

observed for these groups over this period.

2.5.2 Assessment of fit

To assess the fit of the different variations, I show some figures of simulated moments in

appendix 2.C. For each individual 1000 random paths of the unobservables are drawn to

construct simulated datasets. From these simulated datasets, moments can be calculated

both by year and by age. The comparison between the wage model and the selection

models is not entirely obvious, because they operate on a different set of data. The wage

model does not include any data on individuals that are not working, and therefore we do
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not have predicted participation or transition probabilities for this model. The selection

models can utilize more parameters, but at the same time these models have to explain

more features of the data, i.e. patterns in participation. If the selection models can

replicate the log-wages in a similar way as the wage model, then we prefer the selection

models, because these also help explain an additional part.

Figure 2.13 shows the mean of log wages for the BHPS data and the different models.

The data from the BHPS is shown in black. The wage model without selection, W, is

shown as a solid line in a dark shade of gray with a plus-sign marking the years. A slightly

lighter shade of gray is used for SBase and SSD, where the distinction between the two is

made in the type of line, solid versus dashed, and the type of marker used, a dot versus

a cross. Finally SREP and SREP,SD are shown in the lightest shade of gray, with the same

distinction in line type and the type of marker as for the other selection models. This

coding of colours, line types and markers, is the same for the next few figures.

We see from figure 2.13 that the mean of log-wages is reasonably reproduced by all

models. In the first couple of years log-wages predicted by the models are lower than

observed log-wages. Because all lines are very close to each other, figure 2.14 shows the

difference between the simulated data and the observed data, where we can see more

clearly that the prediction in the first set of years is too low. The discrepancy between

observed wages and the wages predicted by W can be attributed the normality distribution

being violated, e.g. because there is some skewness in the distribution of the errors.

Figure 2.15 shows the variance of log-wages. We see that the variance for females can

be replicated reasonably well for all models except SBase. For O-Level and A-Level males,

the predicted variance is on top of the BHPS data for the first few years, but is too large

in the next years. The predicted variance of the difference in log-wages in figure 2.16 is

almost twice as high as the variance that we observe in the data. The introduction of an

MA component in the transitory shock, could reduce this difference as can be seen from

table 2.2, whereas introducing a random walk for the persistent component would only

increase the difference. According to the same reasoning, introducing an MA component

in the transitory shock would to better match the auto-covariance of the difference in log

wages in figure 2.18.
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The proportion of individuals that are working in each year is shown in figure 2.19.

The difference between simulated and observed moments are given in figure 2.20. Model

W is not shown in these figures, as participation is not present in the model. The predicted

participation is too low, but there is not one particular variation that performs better than

the others. However, if we look at the transition probabilities from non-work to non-work

in figure 2.21 and the transition probabilities from work to work in figures 2.22 it is clear

that the predicted probabilities of SSD and SREP,SD are closer to the probabilities that we

observe in the data, than the probabilities predicted by the selection models without state

dependence.

As seen before, SBase can not replicate the transition probabilities. The probability

of staying in the same state for two consecutive periods is high. The probability of not

working in the next period when not working in the current period is somewhere between

0.7 and 0.9, and the probability of working in the next period given that you’re working

in the current period is larger than 0.9. The only variable that affects persistence in

work status in model SBase is αi. Increasing the coefficient on alphai in the participation

equation, πt, however, also increases the variance of log-wage, as αi enters the equation

for log-wage with the same coefficient. The log-likelihood estimation makes a trade-off

between a large deviation from the observed variance and auto-covariance, and a large

deviation in the transition probabilities. Model SREP has an additional random effect, γi,

and its associated parameter, σγ , to separately influence the variance and auto-covariance

of wages and the persistence in labour participation. This brings the prediction closer to

the observed probabilities, but it is still about 10 percentage points too low.

Figures 2.23 to 2.32 show the same moments by age and the same remarks can be made

about these figures. In figure 2.24 we see that the mean of log wages is particularly difficult

to estimate for older individuals. Their participation rates are lower, which means that we

do have as many observations. The inclusion of age dummies in the model does not solve

this. Because the base models include only a random effect in the wage model, but not

random walk, the predicted variance is constant over age in figure 2.25. The variance for

SBase decreases with age, because of a combination of decreasing participation rates and

non-random selection. Clearly a richer structure has to be assumed for the unobservables
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to better capture the pattern of the changing variance with age.

2.5.3 Variation: mixture distribution

In these variations I relax the distributional assumptions of the base models, by assuming

a mixture of two normal distributions for αi. I re-estimate models W and SSD using a

mixture distribution. The results are given in tables 2.12 and 2.13 in appendix 2.D under

Wmix and SSD,mix. The parameters µ1,α and σ1,α are the mean and standard deviation

of the first component of the mixture. The probability that the element is drawn from

the first component is π1,α. The estimates for the mean and standard deviation from the

second component, µ2,α and σ2,α follow from the normalization that I chose for the mean

and standard deviation of αi. Their standard errors are calculated using the Delta-method.

Introducing the mixture improves the log-likelihood of the models, for instance be-

cause some skewness in the distribution of the persistent unobservable be captured by the

mixture. However, when comparing figures of simulated moments, not reproduced here,

we see virtually no difference between the base models and their mixture distribution

counterpart.

2.5.4 Variation: heterogeneous trend

As a second variation I estimate model W and model SSD with a heterogeneous trend

in age, or a heterogeneous trend in
√

age. In this case, the parameters σβ and ραβ can

be different from 0. The tables in appendix 2.E show selected parameter estimates. The

estimate correlation between αi and βi is negative, which is similar to what has been found

in other studies (such as Baker & Solon, 2003). Based on the likelihood, in most cases

the version including a heterogeneous trend in age, is preferred over the version with a

heterogeneous trend in
√

age.

I introduced the heterogeneous trend to see if we can better match the variance of

log-wages and and the variance of the difference in log-wages. Simulated moments for

these by age are shown in figure 2.33 and 2.34 in appendix 2.F. The predicted variance

of log-wages is increasing in both cases, but the predicted levels are much higher than

the observed variance, especially for the models with a heterogeneous trend in age. From
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comparing figure 2.34 with 2.26 the difference between observed and predicted variance

of the difference in log-wages is smaller in the models with heterogeneous trend than in

the base models. The large discrepancy in the predicted variance of log-wages leads me to

prefer the base models.

2.6 Conclusion

In this paper I formulated a model of wage dynamics where I included the decision to work

in a selection equation. I then estimated different variations of the model on wage and

labour participation data from the United Kingdom. From the comparison of simulated

moments for different models we saw that high auto-correlation in log-wages can not

by itself explain the persistence in work status. Allowing for a random effect in the

participation equation brings the predicted transition probabilities closer to the transition

probabilities that we observe in the data. Including state dependence in the participation

equation further improves the model fit. It was also found that conditional on work status

in the previous period, non-random selection into work is small.

Two additional experiments where performed to relax some of the assumptions I made.

First, the random effect in the latent log-wage equation was allowed to follow a mixture

of two normal distributions, instead of coming from a normal distribution. Although this

addition improves the log-likelihood of the models, no visible improvement was observed in

the simulated moments. As a second experiment, a heterogeneous trend was introduced in

the log-wage equation. This improved the predicted variance of the difference in log-wages

slightly, at the cost of highly overestimating the variance of log-wages.

Not all of the dynamics of the wage process are captured by the models presented here.

It is expected that extending the structure of the unobservables will improve the models

further, for instance by introducing a random walk in the persistent part or by introducing

a moving average component in the transitory part. Further research combining models

of wage dynamics with models of labour supply is welcomed to get a better understanding

of the importance of different drivers of heterogeneity and their persistence.
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2.A Calculation of implied correlation

From the equations in the main text we obtain the total unobservable in the outcome

equation, which I define in this section as ω1,it, and the total unobservable in the selection

equation, defined here as ω2,it

ω1,it = πtξit + τtεit

ω2,it =
ρ

τt
πtξit + σγγi + ρεit +

√
1− ρ2ηit,

with the expectation of both variables equal to 0, E [ω1,it] = E [ω2,it] = 0. We want to

calculate the correlation between ω1,it and ω2,it, which by definition is

cor [ω1,it, ω2,it] =
cov [ω1,it, ω2,it]√

var [ω1,it]
√

var [ω2,it]
.

The variances in this equation are given by

var [ω1,it] = E
[
ω2
1,it

]
= E

[
(πtξit + τtεit)

2
]

= π2t + τ2t ,

and

var [ω2,it] = E
[
ω2
2,it

]
= E

[(
ρ

τt
πtξit + σγγi + ρεit +

√
1− ρ2ηit

)2
]

=

(
ρ

τt
πt

)2

+ σ2γ + 1.

The covariance is calculated as

cov [ω1,it, ω2,it] = E [ω1,it · ω2,it]

= E

[
(πtξit + τtεit) ·

(
ρ

τt
πtξit + σγγi + ρεit +

√
1− ρ2ηit

)]
=

ρ

τt
π2t + τρ.
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These are combined to get the correlation between the unobservables in the two equations

cor [ω1,it, ω2,it] =

ρ
τt
π2t + τρ√

π2t + τ2t

√(
ρ
τt
πt

)2
+ σ2γ + 1

.

Since the parameters πt and τt are varying with time, I take the average of both over

all time periods to calculate the implied correlation. This gives a good indication if the

parameters do not vary too much over time.
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2.B Estimation results: base models

Table 2.6 – Selected estimates for base models for males with O-Levels

W SBase SREP SSD SREP,SD

Married 0.147∗∗ 0.277∗∗∗ −0.018 0.082
(0.048) (0.065) (0.065) (0.098)

Coupled −0.396∗∗∗ −0.182∗ −0.001 −0.005
(0.060) (0.087) (0.079) (0.116)

Has kids aged 0 – 2 −0.037 −0.175∗ −0.191∗∗ −0.238∗∗

(0.059) (0.101) (0.078) (0.098)
Has kids aged 3 – 4 0.016 −0.046 0.160∗ 0.115

(0.059) (0.099) (0.081) (0.099)
Has kids aged 5 – 11 −0.125∗∗ −0.172∗∗ −0.113∗ −0.185∗∗

(0.043) (0.061) (0.055) (0.075)
Has kids aged 12 – 15 −0.070 −0.062 −0.092 −0.101

(0.047) (0.071) (0.060) (0.078)
Spouse has job 0.325∗∗∗ 0.349∗∗ 0.225∗ 0.304∗

(0.087) (0.121) (0.114) (0.155)
Log-wage for spouse −0.048 0.058 0.025 0.040

(0.031) (0.049) (0.035) (0.046)
Log hrs/week spouse 0.125∗∗∗ 0.142∗∗∗ 0.074∗ 0.107∗

(0.028) (0.036) (0.035) (0.048)
Owns house period 1 0.011 1.043 0.233∗∗∗ 0.569∗∗∗

(0.035) (0.043) (0.089)
Lagged participation 2.603∗∗∗ 1.861∗∗∗

(0.042) (0.067)

σγ 1.994∗∗∗ 1.017∗∗∗

(0.041) (0.075)
ρ 0.493∗∗∗ −0.015 −0.024 −0.065∗

(0.014) (0.014) (0.016) (0.031)

logL −53.553 −5538.018 −4231.078 −3900.261 −3784.119
N 1529 1943 1943 1943 1943
N · T 9836 13752 13752 13752 13752
Implied correlation 0.798 −0.012 −0.044 −0.075

This table shows selected estimates for the wage model (W) and four selection models. SREP

contains a random effect in the participation equation, SSD allows for state dependence, and
REP,SD allows for both.
All models include an intercept, age and year dummies in the wage equation, and in addititon
the selection models have the same variables in the participation equation. These estimates
are not reported in the table.
The models SSD and REP,SD have two additional equations to model the initial conditions. The
parameter estimates for these equations are also not reported.
Standard errors are given in parentheses.

100



CHAPTER 2. WAGE DYNAMICS WITH LABOUR PARTICIPATION

Table 2.7 – Selected estimates for base models for males with A-Levels

W SBase SREP SSD SREP,SD

Married 0.190∗∗∗ 0.222∗ 0.186∗∗ 0.248∗

(0.056) (0.109) (0.072) (0.108)
Coupled −0.188∗∗ 0.023 −0.102 −0.051

(0.067) (0.121) (0.088) (0.127)
Has kids aged 0 – 2 −0.028 −0.131 −0.005 −0.043

(0.069) (0.102) (0.091) (0.114)
Has kids aged 3 – 4 −0.101 −0.092 −0.122 −0.143

(0.069) (0.096) (0.087) (0.108)
Has kids aged 5 – 11 0.013 −0.017 0.080 0.040

(0.051) (0.081) (0.065) (0.087)
Has kids aged 12 – 15 −0.096∗ −0.072 −0.044 −0.038

(0.056) (0.085) (0.071) (0.091)
Spouse has job 0.179∗ 0.198 0.150 0.076

(0.102) (0.160) (0.131) (0.172)
Log-wage for spouse −0.104∗∗ 0.042 −0.013 0.032

(0.039) (0.053) (0.042) (0.054)
Log hrs/week spouse 0.150∗∗∗ 0.083∗ 0.053 0.075

(0.032) (0.049) (0.040) (0.052)
Owns house period 1 −0.048 0.631∗∗∗ 0.111∗ 0.296∗∗

(0.046) (0.142) (0.059) (0.113)
Lagged participation 2.209∗∗∗ 1.479∗∗∗

(0.049) (0.075)

σγ 1.678∗∗∗ 0.966∗∗∗

(0.072) (0.080)
ρ 0.266∗∗∗ 0.058∗ 0.004 −0.001

(0.010) (0.034) (0.015) (0.028)

logL −278.761 −4297.736 −3398.629 −3245.505 −3152.567
N 1342 1532 1532 1532 1532
N · T 9048 11075 11075 11075 11075
Implied correlation 0.543 0.062 0.008 −0.001

This table shows selected estimates for the wage model (W) and four selection models. SREP

contains a random effect in the participation equation, SSD allows for state dependence, and
REP,SD allows for both.
All models include an intercept, age and year dummies in the wage equation, and in addititon
the selection models have the same variables in the participation equation. These estimates
are not reported in the table.
The models SSD and REP,SD have two additional equations to model the initial conditions. The
parameter estimates for these equations are also not reported.
Standard errors are given in parentheses.
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Table 2.8 – Selected estimates for base models for males with Higher education

W SBase SREP SSD SREP,SD

Married −0.030 −0.203 −0.085 −0.179
(0.092) (0.157) (0.122) (0.164)

Coupled −0.173 −0.074 −0.173 −0.167
(0.114) (0.187) (0.155) (0.203)

Has kids aged 0 – 2 0.040 0.000 −0.049 −0.027
(0.114) (0.150) (0.136) (0.160)

Has kids aged 3 – 4 −0.047 −0.105 0.090 0.092
(0.111) (0.144) (0.140) (0.164)

Has kids aged 5 – 11 −0.026 −0.098 0.012 −0.014
(0.083) (0.121) (0.102) (0.129)

Has kids aged 12 – 15 0.023 −0.023 0.065 0.023
(0.092) (0.129) (0.113) (0.140)

Spouse has job −0.062 −0.080 −0.205 −0.207
(0.139) (0.203) (0.168) (0.212)

Log-wage for spouse 0.017 0.070 0.072 0.099∗

(0.039) (0.052) (0.045) (0.055)
Log hrs/week spouse 0.095∗ 0.091 0.079 0.091

(0.041) (0.059) (0.050) (0.062)
Owns house period 1 −0.008 0.253 −0.100 −0.051

(0.069) (0.158) (0.092) (0.140)
Lagged participation 1.833∗∗∗ 1.395∗∗∗

(0.086) (0.116)

σγ 1.169∗∗∗ 0.689∗∗∗

(0.087) (0.102)
ρ 0.220∗∗∗ 0.151∗∗∗ 0.085∗∗∗ 0.106∗∗

(0.020) (0.043) (0.023) (0.035)

logL −387.268 −1786.572 −1598.455 −1510.499 −1490.213
N 597 643 643 643 643
N · T 3893 4491 4491 4491 4491
Implied correlation 0.396 0.180 0.155 0.152

This table shows selected estimates for the wage model (W) and four selection models. SREP

contains a random effect in the participation equation, SSD allows for state dependence, and
REP,SD allows for both.
All models include an intercept, age and year dummies in the wage equation, and in addititon
the selection models have the same variables in the participation equation. These estimates
are not reported in the table.
The models SSD and REP,SD have two additional equations to model the initial conditions. The
parameter estimates for these equations are also not reported.
Standard errors are given in parentheses.
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Table 2.9 – Selected estimates for base models for females with O-Levels

W SBase SREP SSD SREP,SD

Married 0.025 −0.115 −0.024 −0.067
(0.040) (0.072) (0.048) (0.067)

Coupled −0.325∗∗∗ −0.305∗∗∗ −0.283∗∗∗ −0.322∗∗∗

(0.051) (0.084) (0.061) (0.083)
Has kids aged 0 – 2 −0.843∗∗∗ −1.144∗∗∗ −0.711∗∗∗ −0.868∗∗∗

(0.042) (0.059) (0.054) (0.065)
Has kids aged 3 – 4 −0.563∗∗∗ −0.815∗∗∗ −0.237∗∗∗ −0.424∗∗∗

(0.039) (0.054) (0.051) (0.061)
Has kids aged 5 – 11 −0.219∗∗∗ −0.480∗∗∗ −0.134∗∗∗ −0.227∗∗∗

(0.029) (0.044) (0.036) (0.046)
Has kids aged 12 – 15 0.107∗∗∗ −0.003 −0.004 −0.026

(0.030) (0.043) (0.037) (0.047)
Spouse has job 0.522∗∗∗ 0.724∗∗∗ 0.491∗∗∗ 0.624∗∗∗

(0.049) (0.079) (0.060) (0.082)
Log-wage for spouse −0.021 0.036∗ −0.003 0.013

(0.014) (0.020) (0.017) (0.021)
Log hrs/week spouse 0.038∗∗ 0.024 0.021 0.027

(0.013) (0.020) (0.016) (0.021)
Owns house period 1 0.013 0.919∗∗∗ 0.105∗∗∗ 0.342∗∗∗

(0.026) (0.093) (0.032) (0.061)
Lagged participation 2.361∗∗∗ 1.789∗∗∗

(0.031) (0.042)

σγ 1.841∗∗∗ 0.873∗∗∗

(0.047) (0.047)
ρ 0.560∗∗∗ 0.014 0.104∗∗∗ 0.065∗∗

(0.010) (0.046) (0.013) (0.023)

logL −918.205 −10983.954 −9065.976 −8242.910 −8039.648
N 1944 2599 2599 2599 2599
N · T 13649 21677 21677 21677 21677
Implied correlation 0.842 0.012 0.185 0.083

This table shows selected estimates for the wage model (W) and four selection models. SREP

contains a random effect in the participation equation, SSD allows for state dependence, and
REP,SD allows for both.
All models include an intercept, age and year dummies in the wage equation, and in addititon
the selection models have the same variables in the participation equation. These estimates are
not reported in the table.
The models SSD and REP,SD have two additional equations to model the initial conditions. The
parameter estimates for these equations are also not reported.
Standard errors are given in parentheses.
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Table 2.10 – Selected estimates for base models for females with A-Levels

W SBase SREP SSD SREP,SD

Married −0.102∗ −0.293∗∗ −0.091 −0.166∗

(0.055) (0.106) (0.071) (0.095)
Coupled −0.310∗∗∗ −0.315∗ −0.234∗∗ −0.270∗

(0.078) (0.136) (0.099) (0.131)
Has kids aged 0 – 2 −0.789∗∗∗ −1.117∗∗∗ −0.581∗∗∗ −0.743∗∗∗

(0.051) (0.074) (0.066) (0.079)
Has kids aged 3 – 4 −0.601∗∗∗ −0.815∗∗∗ −0.266∗∗∗ −0.420∗∗∗

(0.050) (0.069) (0.066) (0.077)
Has kids aged 5 – 11 −0.286∗∗∗ −0.655∗∗∗ −0.166∗∗∗ −0.318∗∗∗

(0.041) (0.066) (0.052) (0.068)
Has kids aged 12 – 15 0.062 0.027 −0.017 −0.023

(0.050) (0.075) (0.064) (0.079)
Spouse has job 0.431∗∗∗ 0.458∗∗∗ 0.461∗∗∗ 0.576∗∗∗

(0.083) (0.135) (0.108) (0.140)
Log-wage for spouse −0.033∗ 0.040 0.008 0.031

(0.018) (0.028) (0.021) (0.026)
Log hrs/week spouse 0.063∗∗∗ 0.017 −0.021 −0.030

(0.020) (0.032) (0.026) (0.032)
Owns house period 1 −0.037 0.376∗∗ 0.028 0.101

(0.042) (0.128) (0.052) (0.085)
Lagged participation 2.317∗∗∗ 1.838∗∗∗

(0.047) (0.066)

σγ 1.652∗∗∗ 0.721∗∗∗

(0.070) (0.065)
ρ 0.375∗∗∗ 0.091∗∗ 0.057∗∗∗ 0.065∗∗

(0.011) (0.036) (0.016) (0.024)

logL −1009.534 −5385.392 −4506.126 −4108.965 −4050.322
N 1123 1311 1311 1311 1311
N · T 7240 9760 9760 9760 9760
Implied correlation 0.669 0.089 0.109 0.098

This table shows selected estimates for the wage model (W) and four selection models. SREP

contains a random effect in the participation equation, SSD allows for state dependence, and
REP,SD allows for both.
All models include an intercept, age and year dummies in the wage equation, and in addititon
the selection models have the same variables in the participation equation. These estimates are
not reported in the table.
The models SSD and REP,SD have two additional equations to model the initial conditions. The
parameter estimates for these equations are also not reported.
Standard errors are given in parentheses.

104



CHAPTER 2. WAGE DYNAMICS WITH LABOUR PARTICIPATION

Table 2.11 – Selected estimates for base models for females with Higher education

W SBase SREP SSD SREP,SD

Married −0.094 0.019 0.111 0.136
(0.074) (0.153) (0.095) (0.137)

Coupled −0.186 −0.205 −0.236 −0.274
(0.116) (0.200) (0.155) (0.204)

Has kids aged 0 – 2 −0.585∗∗∗ −0.818∗∗∗ −0.583∗∗∗ −0.749∗∗∗

(0.078) (0.116) (0.099) (0.122)
Has kids aged 3 – 4 −0.661∗∗∗ −0.884∗∗∗ −0.404∗∗∗ −0.628∗∗∗

(0.078) (0.112) (0.098) (0.121)
Has kids aged 5 – 11 −0.261∗∗∗ −0.439∗∗∗ −0.117 −0.201∗

(0.070) (0.116) (0.088) (0.117)
Has kids aged 12 – 15 0.104 −0.116 0.042 −0.042

(0.086) (0.129) (0.110) (0.138)
Spouse has job 0.020 −0.274 0.018 −0.077

(0.124) (0.198) (0.163) (0.211)
Log-wage for spouse −0.104∗∗ −0.014 −0.054 −0.030

(0.035) (0.049) (0.042) (0.051)
Log hrs/week spouse 0.152∗∗∗ 0.144∗∗ 0.079∗ 0.089∗

(0.033) (0.049) (0.042) (0.052)
Owns house period 1 −0.052 0.245 0.039 0.068

(0.064) (0.196) (0.083) (0.139)
Lagged participation 2.125∗∗∗ 1.560∗∗∗

(0.074) (0.103)

σγ 1.421∗∗∗ 0.782∗∗∗

(0.102) (0.097)
ρ 0.306∗∗∗ 0.068 0.059∗∗ 0.040

(0.018) (0.063) (0.024) (0.039)

logL −437.097 −2196.915 −1852.781 −1730.186 −1694.545
N 540 604 604 604 604
N · T 3301 4119 4119 4119 4119
Implied correlation 0.520 0.068 0.103 0.051

This table shows selected estimates for the wage model (W) and four selection models. SREP

contains a random effect in the participation equation, SSD allows for state dependence, and
REP,SD allows for both.
All models include an intercept, age and year dummies in the wage equation, and in addititon
the selection models have the same variables in the participation equation. These estimates
are not reported in the table.
The models SSD and REP,SD have two additional equations to model the initial conditions. The
parameter estimates for these equations are also not reported.
Standard errors are given in parentheses.
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2.C Figures with moments for base models
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Figure 2.13 – Observed and simulated mean of log-wages by education group and gender
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Figure 2.14 – Difference between simulated and observed mean of log-wages by education
group and gender
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Figure 2.15 – Observed and simulated variance of log-wages by education group and
gender
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Figure 2.16 – Observed and simulated variance of difference in log-wages by education
group and gender
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Figure 2.17 – Observed and simulated auto-covariance of log-wages by education group
and gender
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Figure 2.18 – Observed and simulated auto-covariance of difference in log-wages by
education group and gender
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Figure 2.19 – Observed and simulated participation by education group and gender
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Figure 2.20 – Difference between simulated and observed participation by education
group and gender
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Figure 2.21 – Observed and simulated transition probability from non-work to non-work
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Figure 2.22 – Observed and simulated transition probability from work to work
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Figure 2.23 – Observed and simulated mean of log-wages by education group and gender
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Figure 2.24 – Difference between simulated and observed mean of log-wages by education
group and gender
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Figure 2.25 – Observed and simulated variance of log-wages by education group and
gender
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Figure 2.26 – Observed and simulated variance of difference in log-wages by education
group and gender
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Figure 2.27 – Observed and simulated auto-covariance of log-wages by education group
and gender
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Figure 2.28 – Observed and simulated auto-covariance of difference in log-wages by
education group and gender
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Figure 2.29 – Observed and simulated participation by education group and gender
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Figure 2.30 – Difference between simulated and observed participation by education
group and gender
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Figure 2.31 – Observed and simulated transition probability from non-work to non-work
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Figure 2.32 – Observed and simulated transition probability from work to work
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2.D Estimation results: mixture distribution

Table 2.12 – Selected estimates for mixture distribution models for males

O-Levels A-Levels Higher

Wmix SSD,mix Wmix SSD,mix Wmix SSD,mix

Married −0.017 0.186∗∗ −0.084
(0.065) (0.072) (0.122)

Coupled 0.001 −0.102 −0.171
(0.079) (0.088) (0.155)

Has kids aged 0 – 2 −0.192∗∗ −0.006 −0.049
(0.078) (0.091) (0.136)

Has kids aged 3 – 4 0.160∗ −0.122 0.089
(0.081) (0.087) (0.140)

Has kids aged 5 – 11 −0.113∗ 0.080 0.011
(0.055) (0.065) (0.102)

Has kids aged 12 – 15 −0.093 −0.044 0.064
(0.060) (0.071) (0.113)

Spouse has job 0.225∗ 0.150 −0.206
(0.114) (0.131) (0.168)

Log-wage for spouse 0.026 −0.013 0.072
(0.035) (0.042) (0.045)

Log hrs/week spouse 0.073∗ 0.052 0.078
(0.035) (0.040) (0.050)

Owns house period 1 0.236∗∗∗ 0.112∗ −0.100
(0.043) (0.059) (0.092)

Lagged participation 2.604∗∗∗ 2.209∗∗∗ 1.833∗∗∗

(0.042) (0.049) (0.086)

µ1,α 0.476 0.604∗∗ 0.465∗∗∗ 0.502∗∗∗ 0.012 0.010
(0.309) (0.230) (0.077) (0.074) (0.041) (0.042)

σ1,α 0.973∗∗∗ 0.938∗∗∗ 1.012∗∗∗ 1.024∗∗∗ 1.157∗∗∗ 1.157∗∗∗

(0.094) (0.072) (0.065) (0.068) (0.063) (0.062)
µ2,α −0.656∗∗∗ −0.619∗∗∗ −0.413∗∗∗ −0.391∗∗∗ −0.025 −0.020

(0.106) (0.105) (0.127) (0.122) (0.085) (0.086)
σ2,α 0.576∗∗∗ 0.605∗∗∗ 0.784∗∗∗ 0.783∗∗∗ 0.537∗∗∗ 0.539∗∗∗

(0.110) (0.068) (0.058) (0.059) (0.124) (0.119)
π1,α 0.580∗∗ 0.506∗∗∗ 0.471∗∗∗ 0.438∗∗∗ 0.677∗∗∗ 0.676∗∗∗

(0.189) (0.131) (0.083) (0.080) (0.122) (0.120)
ρ −0.030∗ 0.003 0.084∗∗∗

(0.016) (0.014) (0.023)

logL −27.876 −3873.496 −270.996 −3235.938 −382.473 −1505.655
N 1529 1943 1342 1532 597 643
N · T 9836 13752 9048 11075 3893 4491

This table shows selected estimates for models where αi follows a mixture of two normal distributions.
All models include an intercept, age and year dummies in the wage equation, and in addititon the selection
models have the same variables in the participation equation. These estimates are not reported in the
table.
The selection models allow for state dependence and have two additional equations to model the initial
conditions. The parameter estimates for these equations are also not reported.
Standard errors are given in parentheses.
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Table 2.13 – Selected estimates for mixture distribution models for females

O-Levels A-Levels Higher

Wmix SSD,mix Wmix SSD,mix Wmix SSD,mix

Married −0.030 −0.091 0.111
(0.048) (0.071) (0.095)

Coupled −0.281∗∗∗ −0.233∗∗ −0.237
(0.061) (0.099) (0.155)

Has kids aged 0 – 2 −0.705∗∗∗ −0.581∗∗∗ −0.584∗∗∗

(0.054) (0.066) (0.100)
Has kids aged 3 – 4 −0.233∗∗∗ −0.266∗∗∗ −0.405∗∗∗

(0.051) (0.066) (0.099)
Has kids aged 5 – 11 −0.139∗∗∗ −0.165∗∗∗ −0.116

(0.036) (0.052) (0.089)
Has kids aged 12 – 15 −0.011 −0.016 0.042

(0.037) (0.064) (0.110)
Spouse has job 0.491∗∗∗ 0.461∗∗∗ 0.018

(0.060) (0.108) (0.163)
Log-wage for spouse −0.001 0.008 −0.054

(0.017) (0.021) (0.042)
Log hrs/week spouse 0.020 −0.021 0.080∗

(0.016) (0.026) (0.042)
Owns house period 1 0.114∗∗∗ 0.027 0.038

(0.031) (0.052) (0.083)
Lagged participation 2.390∗∗∗ 2.315∗∗∗ 2.122∗∗∗

(0.030) (0.047) (0.075)

µ1,α −0.750∗∗∗ −0.671∗∗∗ 0.417∗ 0.441∗ 0.282∗∗ 0.336∗

(0.065) (0.057) (0.196) (0.202) (0.104) (0.151)
σ1,α 0.431∗∗∗ 0.444∗∗∗ 0.791∗∗∗ 0.793∗∗∗ 0.533∗∗∗ 0.500∗∗∗

(0.076) (0.075) (0.092) (0.093) (0.131) (0.140)
µ2,α 0.405∗∗∗ 0.370∗∗∗ −1.094∗∗∗ −1.052∗∗∗ −0.167∗ −0.165∗

(0.101) (0.094) (0.255) (0.235) (0.076) (0.076)
σ2,α 0.986∗∗∗ 1.028∗∗∗ 0.575∗∗∗ 0.562∗∗∗ 1.161∗∗∗ 1.134∗∗∗

(0.028) (0.027) (0.111) (0.110) (0.063) (0.069)
π1,α 0.351∗∗∗ 0.355∗∗∗ 0.724∗∗∗ 0.705∗∗∗ 0.372∗∗ 0.329∗∗

(0.071) (0.067) (0.139) (0.140) (0.125) (0.128)
ρ 0.081∗∗∗ 0.059∗∗∗ 0.062∗∗

(0.013) (0.016) (0.025)

logL −863.216 −8200.487 −1001.318 −4100.017 −430.855 −1724.075
N 1944 2599 1123 1311 540 604
N · T 13649 21677 7240 9760 3301 4119

This table shows selected estimates for models where αi follows a mixture of two normal distributions.
All models include an intercept, age and year dummies in the wage equation, and in addititon the selection
models have the same variables in the participation equation. These estimates are not reported in the table.
The selection models allow for state dependence and have two additional equations to model the initial
conditions. The parameter estimates for these equations are also not reported.
Standard errors are given in parentheses.
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2.E Estimation results: heterogeneous trend

Table 2.14 – Selected estimates for participation equation for males,
O-Levels

Wage W
√
age SSD,age SSD,

√
age

Married −0.021 −0.022
(0.065) (0.065)

Coupled −0.006 −0.008
(0.079) (0.079)

Has kids aged 0 – 2 −0.188∗∗ −0.187∗∗

(0.078) (0.078)
Has kids aged 3 – 4 0.161∗ 0.161∗

(0.081) (0.081)
Has kids aged 5 – 11 −0.111∗ −0.110∗

(0.055) (0.055)
Has kids aged 12 – 15 −0.091 −0.091

(0.060) (0.060)
Spouse has job 0.224∗ 0.223∗

(0.113) (0.113)
Log-wage for spouse 0.021 0.019

(0.035) (0.035)
Log hrs/week spouse 0.076∗ 0.077∗

(0.035) (0.035)
Owns house period 1 0.223∗∗∗ 0.219∗∗∗

(0.043) (0.043)
Lagged participation 2.601∗∗∗ 2.599∗∗∗

(0.042) (0.042)

σβ 0.042∗∗∗ 0.211∗∗∗ 0.042∗∗∗ 0.210∗∗∗

(0.001) (0.004) (0.001) (0.004)
ραβ −0.597∗∗∗ −0.801∗∗∗ −0.597∗∗∗ −0.803∗∗∗

(0.027) (0.016) (0.028) (0.016)
ρ −0.006 −0.000

(0.016) (0.016)

logL −253.534 −186.543 −3594.102 −3659.352
N 1529 1529 1943 1943
N · T 9836 9836 13752 13752

This table shows selected estimates for models with a heterogeneous trend in
age or

√
age.

All models include an intercept, age and year dummies in the wage equation,
and in addititon the selection models have the same variables in the participa-
tion equation. These estimates are not reported in the table.
The selection models allow for state dependence and have two additional equa-
tions to model the initial conditions. The parameter estimates for these equa-
tions are also not reported.
Standard errors are given in parentheses.
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Table 2.15 – Estimates males, A-Levels

Wage W
√
age SSD,age SSD,

√
age

Married 0.179∗∗ 0.181∗∗

(0.072) (0.072)
Coupled −0.108 −0.107

(0.088) (0.088)
Has kids aged 0 – 2 −0.003 −0.003

(0.092) (0.092)
Has kids aged 3 – 4 −0.124 −0.123

(0.087) (0.087)
Has kids aged 5 – 11 0.080 0.080

(0.066) (0.066)
Has kids aged 12 – 15 −0.048 −0.047

(0.071) (0.071)
Spouse has job 0.142 0.144

(0.131) (0.131)
Log-wage for spouse −0.020 −0.018

(0.043) (0.043)
Log hrs/week spouse 0.060 0.059

(0.040) (0.040)
Owns house period 1 0.084 0.091

(0.059) (0.059)
Lagged participation 2.187∗∗∗ 2.194∗∗∗

(0.050) (0.050)

σβ 0.050∗∗∗ 0.228∗∗∗ 0.050∗∗∗ 0.226∗∗∗

(0.002) (0.006) (0.002) (0.006)
ραβ −0.425∗∗∗ −0.660∗∗∗ −0.417∗∗∗ −0.660∗∗∗

(0.029) (0.023) (0.030) (0.028)
ρ 0.024∗ 0.020

(0.012) (0.013)

logL −82.012 −46.133 −2877.310 −2915.548
N 1342 1342 1532 1532
N · T 9048 9048 11075 11075

This table shows selected estimates for models with a heterogeneous trend in
age or

√
age.

All models include an intercept, age and year dummies in the wage equa-
tion, and in addititon the selection models have the same variables in the
participation equation. These estimates are not reported in the table.
The selection models allow for state dependence and have two additional equa-
tions to model the initial conditions. The parameter estimates for these equa-
tions are also not reported.
Standard errors are given in parentheses.
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Table 2.16 – Estimate males, Higher

Wage W
√
age SSD,age SSD,

√
age

Married −0.084 −0.084
(0.122) (0.122)

Coupled −0.176 −0.174
(0.155) (0.155)

Has kids aged 0 – 2 −0.055 −0.053
(0.136) (0.136)

Has kids aged 3 – 4 0.082 0.084
(0.140) (0.140)

Has kids aged 5 – 11 0.011 0.011
(0.102) (0.102)

Has kids aged 12 – 15 0.064 0.064
(0.114) (0.114)

Spouse has job −0.210 −0.213
(0.169) (0.168)

Log-wage for spouse 0.070 0.070
(0.046) (0.046)

Log hrs/week spouse 0.083∗ 0.082
(0.050) (0.050)

Owns house period 1 −0.111 −0.107
(0.092) (0.092)

Lagged participation 1.810∗∗∗ 1.818∗∗∗

(0.086) (0.086)

σβ 0.052∗∗∗ 0.228∗∗∗ 0.053∗∗∗ 0.242∗∗∗

(0.002) (0.007) (0.002) (0.009)
ραβ −0.499∗∗∗ −0.728∗∗∗ −0.523∗∗∗ −0.668∗∗∗

(0.032) (0.031) (0.031) (0.033)
ρ 0.088∗∗∗ 0.085∗∗∗

(0.019) (0.020)

logL −228.077 −278.606 −1345.782 −1398.317
N 597 597 643 643
N · T 3893 3893 4491 4491

This table shows selected estimates for models with a heterogeneous trend in
age or

√
age.

All models include an intercept, age and year dummies in the wage equation,
and in addititon the selection models have the same variables in the participa-
tion equation. These estimates are not reported in the table.
The selection models allow for state dependence and have two additional equa-
tions to model the initial conditions. The parameter estimates for these equa-
tions are also not reported.
Standard errors are given in parentheses.
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Table 2.17 – Estimates females, O-Levels

Wage W
√
age SSD,age SSD,

√
age

Married −0.010 −0.017
(0.053) (0.050)

Coupled −0.293∗∗∗ −0.289∗∗∗

(0.064) (0.068)
Has kids aged 0 – 2 −0.727∗∗∗ −0.721∗∗∗

(0.052) (0.061)
Has kids aged 3 – 4 −0.246∗∗∗ −0.236∗∗∗

(0.050) (0.057)
Has kids aged 5 – 11 −0.120∗∗ −0.123∗∗∗

(0.043) (0.036)
Has kids aged 12 – 15 0.007 −0.001

(0.049) (0.041)
Spouse has job 0.497∗∗∗ 0.494∗∗∗

(0.063) (0.067)
Log-wage for spouse −0.006 −0.004

(0.019) (0.019)
Log hrs/week spouse 0.022 0.021

(0.017) (0.018)
Owns house period 1 0.084∗∗∗ 0.097∗∗∗

(0.027) (0.030)
Lagged participation 2.281∗∗∗ 2.337∗∗∗

(0.040) (0.033)

σβ 0.042∗∗∗ 0.227∗∗∗ 0.043 0.211∗∗∗

(0.001) (0.002) (0.000)
ραβ −0.713∗∗∗ −0.905∗∗∗ −0.664 −0.901∗∗∗

(0.019) (0.007) (0.001)
ρ 0.136∗∗∗ 0.111

(0.006)

logL −488.071 −528.745 −7772.715 −7826.058
N 1944 1944 2599 2599
N · T 13649 13649 21677 21677

This table shows selected estimates for models with a heterogeneous trend in
age or

√
age.

All models include an intercept, age and year dummies in the wage equation, and
in addititon the selection models have the same variables in the participation
equation. These estimates are not reported in the table.
The selection models allow for state dependence and have two additional equa-
tions to model the initial conditions. The parameter estimates for these equa-
tions are also not reported.
Standard errors are given in parentheses.
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Table 2.18 – Estimates females, A-Levels

Wage W
√
age SSD,age SSD,

√
age

Married −0.089 −0.089
(0.071) (0.071)

Coupled −0.237∗∗ −0.236∗∗

(0.100) (0.100)
Has kids aged 0 – 2 −0.586∗∗∗ −0.584∗∗∗

(0.066) (0.066)
Has kids aged 3 – 4 −0.271∗∗∗ −0.268∗∗∗

(0.066) (0.066)
Has kids aged 5 – 11 −0.154∗∗ −0.157∗∗

(0.052) (0.052)
Has kids aged 12 – 15 −0.003 −0.007

(0.064) (0.064)
Spouse has job 0.455∗∗∗ 0.457∗∗∗

(0.109) (0.109)
Log-wage for spouse 0.004 0.005

(0.021) (0.021)
Log hrs/week spouse −0.015 −0.017

(0.026) (0.026)
Owns house period 1 0.017 0.020

(0.053) (0.053)
Lagged participation 2.271∗∗∗ 2.289∗∗∗

(0.049) (0.048)

σβ 0.057∗∗∗ 0.260∗∗∗ 0.060∗∗∗ 0.248∗∗∗

(0.003) (0.010) (0.003) (0.009)
ραβ −0.404∗∗∗ −0.584∗∗∗ −0.379∗∗∗ −0.609∗∗∗

(0.032) (0.030) (0.037) (0.044)
ρ 0.077∗∗∗ 0.070∗∗∗

(0.014) (0.014)

logL −730.172 −780.990 −3823.333 −3878.932
N 1123 1123 1311 1311
N · T 7240 7240 9760 9760

This table shows selected estimates for models with a heterogeneous trend in
age or

√
age.

All models include an intercept, age and year dummies in the wage equation,
and in addititon the selection models have the same variables in the participa-
tion equation. These estimates are not reported in the table.
The selection models allow for state dependence and have two additional equa-
tions to model the initial conditions. The parameter estimates for these equa-
tions are also not reported.
Standard errors are given in parentheses.
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Table 2.19 – Estimates females, Higher

Wage W
√
age SSD,age SSD,

√
age

Married 0.104 0.108
(0.095) (0.095)

Coupled −0.241 −0.239
(0.156) (0.155)

Has kids aged 0 – 2 −0.592∗∗∗ −0.589∗∗∗

(0.100) (0.100)
Has kids aged 3 – 4 −0.418∗∗∗ −0.413∗∗∗

(0.099) (0.099)
Has kids aged 5 – 11 −0.105 −0.110

(0.089) (0.089)
Has kids aged 12 – 15 0.048 0.046

(0.110) (0.110)
Spouse has job 0.020 0.019

(0.163) (0.163)
Log-wage for spouse −0.056 −0.055

(0.042) (0.042)
Log hrs/week spouse 0.081∗ 0.081∗

(0.042) (0.042)
Owns house period 1 0.019 0.027

(0.083) (0.083)
Lagged participation 2.082∗∗∗ 2.101∗∗∗

(0.076) (0.075)

σβ 0.063∗∗∗ 0.272∗∗∗ 0.060∗∗∗ 0.263∗∗∗

(0.004) (0.014) (0.005) (0.014)
ραβ −0.387∗∗∗ −0.621∗∗∗ −0.371∗∗∗ −0.644∗∗∗

(0.046) (0.041) (0.063) (0.042)
ρ 0.086∗∗∗ 0.076∗∗∗

(0.021) (0.022)

logL −330.484 −357.297 −1621.808 −1649.110
N 540 540 604 604
N · T 3301 3301 4119 4119

This table shows selected estimates for models with a heterogeneous trend in
age or

√
age.

All models include an intercept, age and year dummies in the wage equation,
and in addititon the selection models have the same variables in the participa-
tion equation. These estimates are not reported in the table.
The selection models allow for state dependence and have two additional equa-
tions to model the initial conditions. The parameter estimates for these equa-
tions are also not reported.
Standard errors are given in parentheses.
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2.F Figures for heterogeneous trend models
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Figure 2.33 – Observed and simulated variance of log-wages by education group and
gender
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Figure 2.34 – Observed and simulated variance of difference in log-wages by education
group and gender 124
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Figure 2.35 – Observed and simulated auto-covariance of log-wages by education group
and gender
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Figure 2.36 – Observed and simulated auto-covariance of difference in log-wages by
education group and gender
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33
Integration methods for dynamic selection

models

3.1 Introduction

In this paper I focus on models with a combination of discrete and continuous outcomes.

Following Heckman (1979) these models have been used in labour economics to estimate

the joint process describing continuous log-wages and a discrete participation decision. In

most cases a single continuous and a single discrete outcome variable is considered. These

outcomes are then related through the bivariate normal distribution of two underlying

latent variables. This structure is simple to estimate, and procedures to estimate this

model are present in all standard statistical software packages. Allowing for multiple

continuous and discrete outcomes results in a multi-dimensional integral that has to be

approximated, which complicates the estimation procedure. In this paper I explain how

these multi-dimensional integrals arise, and show Monte Carlo simulations comparing
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different methods to approximate these integrals.

To approximate multi-dimensional integrals, I compare sparse grid integration (Heiss,

2010) to the use of pseudo Monte Carlo numbers and Halton sequences. The experiments

in this paper show that sparse grid integration and Halton sequences provide the highest

accuracy, when directly comparing the approximated value to the ‘true’ value. However,

when the approximations are used inside a log-likelihood maximization procedure, the

differences in the parameter values that maximize the log-likelihood are very small on

average between the different methods.

In one example, where we can approximate the same integral by a one-dimensional

integration in addition to the multi-dimensional integral approximation, we find that multi-

dimensional integration is preferred when a small number of integration nodes is used. In

that case, the one-dimensional approximation leads to biased estimates. However, the

accuracy of the one-dimensional approximation increases more rapidly when the number

of integration nodes is increased.

The same multi-dimensional integral as above is present in models that contain only

discrete outcomes. An example where we have multiple discrete outcomes, is when we have

panel data on employment status. For the same individual, employment status in different

periods will be related. A model for discrete employment status is usually formulated in

a latent variable framework, where the latent variables in different periods follow a joint

distribution. Since we do not observe the latent variable related to employment status, we

have to integrate over the underlying joint distribution of these latent variables to formu-

late a log-likelihood or moment conditions in terms of the observed discrete employment

status.

In general, analytic expressions to evaluate these multi-dimensional integrals are not

available, and numerical methods are used to obtain an approximation. Butler and Moffitt

(1982) use a random effects specification to describe the covariance structure of the latent

variables. In this way, they reduce the problem of approximating a multi-dimensional

integral, to the problem of approximating a one-dimensional integral. By assuming that

the random effect follows a normal distribution, Gauss-Hermite quadrature can be used

to accurately approximate this integral.
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There are cases where the error structure can not simply be reduced to a random effects

specification. For instance, in addition to a random effect, Hyslop (1999) allows for an

auto-regressive error component in the latent variables underlying employment status. In

his case, the multi-dimensional integral can not be reduced to a one-dimensional integral.

Similarly, when the discrete outcomes are not related to the same decision over time, but

to purchases of different goods at the same time, a random effects specification for the

unobservables may not be a plausible simplification.

Hyslop (1999) uses data from seven years of the Panel Study of Income Dynamics

(PSID), which means that he has to approximate a seven-dimensional integral. Since the

underlying random variables are assumed to follow a multivariate normal distribution, he

uses the smooth recursive conditioning (CRS) simulator, also known as the GHK simulator

to approximate this integral.

In a recent working paper, Altonji et al. (2009) use indirect inference to estimate

a model of earnings dynamics that has both continuous and discrete outcomes. Indirect

inference is usually implemented using simulations, making it a time-consuming procedure.

Also, the simulation of discrete outcomes as used in that setup, leads to a non-smooth

objective function with potential local extrema. Since they assume that the random

variables defining the process are all normally distributed, their paper fits the framework

presented here, and the parameters could be estimated using maximum likelihood. The

dimension of integration will not be reduced, but since maximum likelihood estimation

in this case usually results in a well-behaved maximization problem, I believe that the

solution path will be quick. More CPU time can then be devoted to increase the accuracy

of approximating the integral, by using more integration nodes (they use 20 integration

nodes). Instead of maximum likelihood, a method of (simulated) moments approach can

also be used, which would make the criterion function closer to indirect inference in their

case.

In the next section of the paper, I write down a general structure for models with a

combination of continuous and discrete outcomes. I also show what the likelihood looks

like, if the underlying latent variables follow a normal distribution. Because the likelihood

consists of high-dimensional integrals, I summarise some methods to approximate these
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integrals in section 3.3. The next section shows for two specific examples how to construct

the variance-covariance matrix for the latent variables in the general model; one example

has a random effects error structure, and the other has an ARMA error structure. Section

3.5 compares the performance of the different approximation methods on simulated data

that was generated using the two example models. The final section concludes.

3.2 Model

In this section I describe the general structure of the models that I consider. For ease

of presentation I consider that the data has a panel data structure, where i refers to an

individual, and t refers to time. In the examples below, the panel structure simplifies the

dependence structure between the error terms. However, t does not have to be time, it can

also correspond to the values of different variables in the same period; e.g. expenditure

on different food categories. I start with a model with two outcomes for individual i in

period t

Y ∗it = x′1,itβ1 + U1,it

D∗it = x′2,itβ2 + U2,it,

(3.2.1)

where Y ∗it is a latent random variable corresponding to a continuous outcome, and D∗it is a

latent variable corresponding to a discrete outome. An example in labour economics would

be the case where Y ∗it corresponds to latent log-wages, and D∗it corresponds to latent labour

participation. U1,it and U2,it follow a joint distribution, which we assume to be normal

here. The normality assumption is needed to be able to use the approximation methods

described below. The same methods can be used with mixtures of normal distributions as

well, in case a more flexible distribution is needed. The specification with respect to the

covariates does not nescessary have to be linear, but the unobservables have to enter the

model additively. Observations corresponding to different individuals are assumed to be

independent.

Because of the joint normality in U1,it and U2,it, we can write the joint distribution for
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Y ∗it and D∗it conditional on the observed covariates for T observations for individual i as

 Y ∗i

D∗i

 =



Y ∗i1
...

Y ∗iT

D∗i1
...

D∗iT


∼ N


 MY

MD︸︷︷︸
Mi

 ,

 ΣY Y ΣY D

ΣDY ΣDD︸ ︷︷ ︸
Σi


 . (3.2.2)

Y ∗i is a vector with the continuous latent outcomes for individual i in different time periods

stacked on top of each other. D∗i is analogously defined for the latent outcome correspond-

ing to the discrete variables. In general a variable without the t-subscript denotes a vector

or matrix with this variable for all time periods combined. Mi and Σi are a vector and

matrix that depend on parameters and possibly covariates. For instance, with the linear

in covariates specification in (3.2.1), we have

Mi =
(
x′1,i1β1, . . . , x

′
1,iTβ1︸ ︷︷ ︸

MY

, x′2,i1β2, . . . , x
′
2,iTβ2︸ ︷︷ ︸

MD

)
,

where the i subscript is not repeated on MY , and MD, for ease of notation, and similarly

for ΣY Y ,ΣY D,ΣDY , and ΣDD. The structure of Σi depends on the structure of the depen-

dence between the unobservables U1,i and U2,i. We are silent about the exact dependence

structure of the unobservables here, but examples of specific cases are provided in section

3.4 below.

The latent variables, Y ∗i and D∗i , are not observed, but instead we assume that observed

values are generated from the latent variables according to a Heckman selection model,

referred to as type 2 Tobit by Amemiya (1984). The procedure can be adapted slightly

to work with other limited dependent variable models. Instead of the continuous D∗it, we

observe a binary variable Dit

Dit =


1 if D∗it > 0,

0 otherwise.
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When Dit = 1, we observe the value of the latent Y ∗it . Otherwise we do not obtain any

information about Y ∗it and normalize the observed value to 0. The observed Yit is then

defined using the following expression

Yit = DitY
∗
it .

In terms of the wage model above; we observe whether someone has a job (Dit = 1) or is

unemployed (Dit = 0). Only if an individual has a job, we observe their log-wage (Y ∗it).

To obtain estimates for the parameters, β1, β2, and the set of parameters defining

the elements of Σi, I use the joint distribution of the latent variables, to write down a

likelihood. The probability density function of the latent variables is

fY ∗i1,...,Y ∗iT ,D
∗
i1,...,D

∗
iT

(Y ∗i1, . . . , Y
∗
iT , D

∗
i1, . . . , D

∗
iT | Mi,Σi) =

=
1

(2π)k/2|Σi|1/2
exp

−1

2


 Y ∗i

D∗i

−Mi


′

Σ−1i


 Y ∗i

D∗i

−Mi




Because the latent variables are not directly observed, we need to define the likelihood

function in terms of realizations of the observable random variables. Realizations of ran-

dom variables are denoted in lower case.

Similar to Yen (2005) it is instructive to consider three separate cases. In the first case

none of the continuous outcome values are observed for individual i. In other words, all

the realizations for dit are equal to 0. There is no information about any of the y∗it in this

case, and the likelihood, L (yi1, . . . , yit, di1, . . . , dit |Mi,Σi), only depends on the marginal

distribution of D∗i

L (yi1 = 0, . . . , yiT = 0, di1 = 0, . . . , diT = 0 |Mi,Σi) =

=

∫ 0

−∞
· · ·
∫ 0

−∞
fD∗i1,...,D∗iT (d∗i1, . . . , d

∗
iT )dd∗i1 · · · dd∗iT ,

where fD∗i1,...,D∗iT (d∗i1, . . . , d
∗
iT ) denotes the marginal distribution of the latent variable.

This integral calculates exactly the probability that dit = 0 for all t, or equivalently, the
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probability that all the underlying latent variables are smaller than 0

P (d∗i1 ≤ 0 ∩ · · · ∩ d∗it ≤ 0).

Since no assumptions have been made about the dependence structure of U2,i, the integral

above is of dimension T . In section 3.3, I describe how to calculate an approximation to

this integral.

The marginal distribution, fD∗i1,...,D∗iT (d∗i1, . . . , d
∗
iT ), is easily derived because of the

normality of the underlying variables. By selecting the elements in Mi that are related to

D∗i , i.e. MD, and selecting the elements in the rows and columns of Σi that are related

to D∗i , i.e. ΣDD, we obtain the marginal distribution of D∗i , which is again normal,

D∗i ∼ N(MD,ΣDD).

In the second case, dit = 1 for all t, which means that we observe yit = y∗it in every

period. The likelihood is

L (yi1 = y∗i1, . . . , yiT = y∗iT , di1 = 1, . . . , diT = 1 |Mi,Σi) =

=

∫ ∞
0
· · ·
∫ ∞
0

fY ∗i ,D∗i (y∗i1, . . . , y
∗
iT , d

∗
i1, . . . , d

∗
iT )dd∗i1 · · · dd∗iT

= fY ∗i (y∗i1, . . . , y
∗
iT ) ·

∫ ∞
0
· · ·
∫ ∞
0

fD∗i |Y ∗i =y∗i (d∗i1, . . . , d
∗
iT )dd∗i1 · · · dd∗iT ,

where Bayes’ rule is used to go from the second to the third equation, replacing the

joint distribution by a marginal and a conditional distribution. Values for y∗it are ob-

served, which means that we do not have to integrate over all possible realizations of y∗it.

Analogously to the first case, we only know that all d∗it are larger than 0, resulting in a

T -dimensional integral over the possible values of d∗it, where the domain of integration now

runs from 0 to infinity.

The marginal distribution of Y ∗i can be obtained similarly as described above for the

marginal distribution of D∗i . The conditional distribution of D∗i |Y ∗i = yi is a multivariate

normal distribution with mean

MD|Y = MD + ΣDY Σ−1Y Y (yi −MY ), (3.2.3)
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and variance-covariance matrix

ΣD|Y = ΣDD − ΣDY Σ−1Y Y ΣY D. (3.2.4)

In the third and final case, some of the values for y∗it are observed, but not all of them.

Define ỹ∗i as the subvector of y∗i , where di = 1. The likelihood is simlar to the second case,

L (yi1, . . . , yiT , di1, . . . , diT |Mi,Σi) =

= fỸ ∗i
(ỹ∗i ) ·

∫
DT
· · ·
∫
D1

fD∗i |Ỹ ∗i =ỹ∗i
(d∗i1, . . . , d

∗
iT )dd∗i1 · · · dd∗iT .

In this case we condition on Ỹ ∗i = ỹ∗i , because only this subset of observations contains

information about the value of y∗i . The mean for the distribution of D∗i |Ỹ ∗i = ỹ∗i is

equivalent to (3.2.3), where yi should be replaced by ỹi, and MY should be replaced by

MỸ . A similar replacement is needed in (3.2.4).

As a second point, dit = 0 for some t, and dit = 1 in other time periods. This results

in different domains of integration. The domain of integration is given by Dt, which is

(−∞, 0) if dit = 0, and (0,∞) otherwise.

For every individual, the observed outcomes can be combined with one of the three

likelihood functions above, to get the likelihood contribution for this individual. By taking

the logarithm and summing over all individuals, the total log-likelihood is obtained

logL (y, d | X, θ) =
N∑
i=1

logL (yi, di |Mi,Σi) ,

where y, d, and X are vectors and matrices with the observed outcome variables and

covariates for all individuals, and θ is a vector of parameters, including β1, β2, and the

set of parameters that determine Σi. Maximizing this log-likelihood with respect to the

parameters θ, results in an estimate θ̂. In order to calculate the log-likelihood, we need

a method to approximate the T -dimensional integrals that arise in the individual log-

likelihood contributions. A description of such a method is given in the next section.

Finally, in some cases we may have continuous variables that are observed for all

individuals, or we may have discrete variables that do not correspond to a continuous
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outcome. The likelihood functions above can be easily adjusted to incorporate those

cases. For instance, if some of the variables are not subject to selection, because a value

for these variables is observed for all individuals, we do not have to integrate out the

probability that this value is equal to 0, because it is 1 for everyone. The corresponding

D∗it can be removed from the analysis, reducing the dimension of integration by one.

3.3 Multivariate normal integration

To calculate the likelihood for the model in the previous section, we need to approximate

a T -dimensional integral of the form

P (a1 < X1 < b1, . . . , aT < XT < bT ) =

∫ bT

aT

· · ·
∫ b1

a1

fX1,...,XT (x1, . . . , xT )dx1 · · · dxT ,

where fX1,...,XT (x1, . . . , xT ) is the joint probability density function for the random vari-

ables X1, . . . , XT . These random variables are assumed to follow a joint normal distribu-

tion with vector of means M and variance-covariance matrix Σ.

Perhaps the most well-known procedure to approximate this integral is the Geweke-

Hajivassiliou-Keane or GHK simulator. The main papers developing the simulator and

testing its performance are Hajivassiliou et al. (1996), Börsch-Supan and Hajivassiliou

(1993), Geweke (1996) and Keane (1994). Around the same time, Genz (1992) developed

the method independently.

I will present a short explanation of the algorithm here, where I restrict myself to

approximating a 2-dimensional integral. The approach can be generalized to more dimen-

sions (see for instance Train, 2003, for an explanation). The GHK simulator starts from

the fact random draws from a joint normal distribution can be written as a linear combi-

nation of random draws from independent standard normal distributions with a triangular

structure  X1

X2

 =

 M1

M2

+

 ω11 0

ω21 ω22


 Z1

Z2

 , (3.3.1)

where Z1 and Z2 ∼ i.i.d. N(0, 1), and (X1, X2) ∼ N(M,Σ). The matrix containing

the ω elements is the lower Cholesky decomposition of Σ, i.e. Σ = ΩΩT . To simplify the
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notation, I change the bounds on the domain of integration, where I choose a1 = a2 = −∞,

and b1 = b2 = 0. Similar to Train (2003), we can then rewrite the probability above

∫ 0

−∞

∫ 0

−∞
fX1,X2(x1, x2)dx1dx2 =

= P [X1 < 0 ∩X2 < 0]

= P [X1 < 0]P [X2 < 0 | X1 < 0]

= P [M1 + ω11Z1 < 0]P [M2 + ω21Z1 + ω22Z2 < 0 |M1 + ω11Z1 < 0]

= P

[
Z1 < −

M1

ω11

]
P

[
Z2 < −

M2 + ω21Z1

ω22

∣∣∣∣ Z1 < −
M1

ω11

]
= Φ

(
−M1

ω11

)∫ −M1
ω11

−∞
Φ

(
−M2 + ω21z1

ω22

)
φ(z1)dz1, (3.3.2)

where φ(·) and Φ(·) are the probability density function and the cumulative distribution

function for the standard normal distribution. This reduces the 2-dimensional integral to

a 1-dimensional integral. The integral is then approximated using simulations

∫ −M1
ω11

−∞
Φ

(
−M2 + ω21z1

ω22

)
φ(z1)dz1 ≈

1

R

R∑
r=1

Φ

(
−M2 + ω21z

r
1

ω22

)
,

where zr1 is a draw from the truncated normal distribution with upper bound −M1
ω11

. A

draw from the truncated normal distribution with lower bound a1 and upper bound b1,

can be obtained from a uniform draw, ur1 ∼ U(0, 1), by inverting a transformation using

the quantile function of the normal distribution

zr1 = Φ−1 [Φ (a) + ur1 (Φ (b)− Φ (a))] .

In the more general case, the T -dimensional integral will be replaced by a T−1-dimensional

integral, with the benefit that the z1, z2, · · · , zT−1 are independent. The integral can still

be seen as an integration over independent truncated normal variables, and the multi-

dimensional integral can be approximated using random uniform draws. However, since

we have more dimensions, more random draws need to be used to sample the domain of

integration in order to get an accurate approximation.

The derivation in (3.3.2) is not unique. Instead of decomposing the elements using the
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Cholesky decomposition in (3.3.1), we can swap the elements X1 and X2 and decompose

the variables as follows X2

X1

 =

 M2

M1

+

 ω̃22 0

ω̃12 ω̃11


 Z2

Z1

 .

If we then condition on X2 in the second step of the derivation for (3.3.2) instead of

conditioning on X1 we get

Φ

(
−M2

ω̃22

)∫ −M2
ω̃22

−∞
Φ

(
−M1 + ω̃12z2

ω̃11

)
φ(z2)dz2.

This results in a different value for the approximation. For example, let M = (−2, 1) and

Σ a matrix with ones on the diagonal and 0.7 as the off-diagonal element. Approximat-

ing the integral using seven Halton draws (see below), we get 0.1309 if we use the first

approximation, and 0.1587 if we use the second.

Genz (1992) notes that in his experiments a more accurate approximation can usually

be obtained with fewer nodes by reordering the variables such that the variables with

largest domain of integration are the innermost variables in the integral. The mean of the

variables is subtracted from the bounds of integration, which implies that the mean has

an effect on the size of the domain of integration, if one of the bounds is infinite. This is

the case in our setup.

As we saw in the example above, the difference in approximation can be substantial.

However, I do not implement this re-ordering in this paper for the following reason. The

probabilities approximated here, are used to approximate a log-likelihood function. This

log-likelihood function depends on parameters, and we want to find the set of parameter

values that maximize the likelihood. Finding this optimum is achieved using an iterative

procedure, where we start with a guess for the parameters, calculate the log-likelihood

at this point, and then update the parameters. This is repeated until we have reached

the optimum. Since the mean, and therefore the bounds of integration usually depend

on the parameters that we are estimating, a change in the parameters could result in a

re-ordering of the integrals. The re-ordering could in that way cause a discontinuity in

136



CHAPTER 3. INTEGRATION METHODS FOR DYNAMIC SELECTION MODELS

the likelihood function that we are optimizing, thus causing convergence problems. The

ordering of the integrals should therefore be fixed in advance.

Note that if one wanted to use the optimal ordering, this could be achieved in steps.

The first step is to find the parameters maximizing the log-likelihood for a given ordering.

After the procedure has converged, an optimal ordering can be defined for those parame-

ters. Then, a new optimization procedure can then be started using the new ordering. One

could repeat this procedure if needed. In this paper I do not use this method. Whether

the improvement in accuracy you obtain is valuable in practice remains an open question.

Instead of using uniform random draws to sample from the domain of integration and

approximate the multi-dimensional integral by simulation, other methods can be used.

Heiss (2010) proposes to use sparse grids and compares the performance with Monte

Carlo approximation, i.e. using uniform random draws, and an approximation obtained

using Halton sequences. Both these methods have the same objective as Monte Carlo

integration, sampling the domain of integration, but achieve this in different ways. I will

first explain sparse grids, followed by Halton sequences.

A common way to approximate a one-dimensional integral is by Gaussian quadrature

(Judd, 1998). When the integral consists of a combination of a function of interest g(·)

and some nonnegative weighting function f(·), this integral can be approximated using

∫ b

a
g(x)f(x)dx ≈

R∑
r=1

wrg(xr),

where xr is an integration node and wr is a weight. Gaussian quadrature refers to the

way of choosing the integration nodes and weights in such a way that with R nodes, the

polynomial can be approximated without error if g(·) is a polynomial of degree 2R − 1.

There are different types of Gaussian quadrature that can be used depending on the domain

of integration and the weighting function f(·). For instance, Gauss-Legendre quadrature

can be used to integrate a function over a closed domain, [a, b], when the weighting function

is f(x) = 1. Gauss-Hermite quadrature is used to evaluate integrals where the domain

runs from minus infinity to infinity, and the weighting function is a Gaussian probability

density function.
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In practice we also want to evaluate integrals where the function g(·) is not a poly-

nomial. The same approach can be used, with the difference that the evaluation is no

longer exact, i.e. some approximation error is introduced. The size of the approxima-

tion error depends on how well the function g(·) can be approximated by a polynomial

of degree 2R − 1. If the function is close to being polynomial, the approximation error

is small. When the function cannot be accurately approximated by a polynomial, for

instance because the function is not continuous, the approximation error is larger.
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Figure 3.1 – Nodes of 2D integration grid with corresponding weights

One way to extend these methods for one-dimensional integrals to T -dimensional in-

tegrals, is by combining the nodes and weights for one dimension using a product rule.

The resulting nodes and weights for 2-dimensional integral are shown in figure 3.1 on

the left, where the numbers in small print correspond to the weight of a particular node.

The problem with this approach is that the number of nodes increases exponentially in

the dimension of the integral, leading to a grid with RT nodes and weights to evaluate a

T -dimensional integral.

Sparse grid integration is a different way of combining one-dimensional grids, resulting

in a polynomial increase in the number of integration nodes instead of the exponential in-

crease displayed by the product rule (Heiss & Winschel, 2008; Heiss, 2010). This comes at

a cost. For instance, if we start with a one-dimensional grid that can exactly approximate
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the integral where g(·) is a polynomial of order 2,

a0 + a1x1 + a2x
2
1,

then the integration grid that is constructed by combining two of these one-dimensional

integration nodes using the product rule can exactly approximate an integral where the

polynomial g(·) looks like

a00 + a10x1 + a01x2 + a20x
2
1 + a02x

2
2 + a11x1x2 + a21x

2
1x2 + a12x1x

2
2 + a22x

2
1x

2
2.

The maximal exponent that can enter the polynomial is 2. This bound follows directly

from the order of the polynomial that the one-dimensional grid can approximate exactly.

The sparse grid that is created by combining the same one-dimensional integration

nodes, results in an exact approximation of an integral where g(·) is

a00 + a10x1 + a01x2 + a20x
2
1 + a02x

2
2 + a11x1x2.

In this case the sum of the exponents of the separate terms in the polynomial is bounded

by 2, instead of the maximum of the exponents. The smaller class of polynomials for

which evaluation of the integral is exact, results in fewer integration nodes required by

sparse grids. If the higher-order interaction terms are important elements to approximate

the function g(·), then the approximation with sparse grids will suffer.

Heiss and Winschel (2008) assess the performance of sparse grid integration to ap-

proximate the probabilities in a mixed logit model. To evaluate the probabilities, a multi-

dimensional integral has to be approximated. In experiments with simulated data they

compare the accuracy of the approximation using sparse grids with approximations using

Monte Carlo integration for integrals up to dimension 20. Similarly, Heiss (2010) shows

the results of simulation experiments evaluating the probabilities in a dynamic probit

model using sparse grids. They conclude that sparse grid integration gives more accurate

approximations for the probabilities than pseudo-random or quasi-random Monte Carlo

integration.
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There are downsides to using sparse grid integration. First of all, the weights that

are used in sparse grid integration can be negative. Figure 3.1 on the right shows the

integration nodes that we obtain from combining the same one-dimensional grid that was

used to create the product rule grid on the left. Instead of the 7× 7 = 49 nodes that the

product rule grid contains, the sparse grid has only 17 nodes. However, as can be seen

from the figure, some of the weights, in bold, are negative; e.g. −0.240 for the node in the

center. In practice this could lead to an approximated probability lower than 0, leading

to problems when taking the log of this probability inside a log-likelihood estimation.

The second downside is that we can not choose an arbitrary number of integration

nodes. To use sparse grid integration one specifies the accuracy of the one-dimensional

polynomial that one wants to attain. The integration grid and the number of nodes that

should be used follows from this accuracy. This means that the number of integration

nodes can only be increased in pre-specified steps, e.g. from 21, to 201, to 1201, to 5281

nodes for integration in 10 dimensions. This can be problematic if a higher degree of

accuracy is required, but there are not enough computing resources available to increase

the number of nodes from one level of accuracy to the next. A potential solution for this

problem, that to the best of my knowledge has not been tested in practice, is to augment

the nodes from a sparse grid by a set of nodes obtained by some other method, e.g. a

random grid of nodes, to improve the accuracy of the final approximation.

A different way to create a set of nodes to use in the approximation to the integral, are

so-called quasi-random numbers. Since computers can not generate truly random numbers,

the random numbers that are generated, such as the random draws from the uniform

distribution above, are usually referred to as pseudo-random numbers. The approximation

of an integral using pseudo-random numbers is called pseudo Monte Carlo integration, or

simply Monte Carlo integration.

Quasi-random numbers or low discrepancy sequences differ from pseudo-random num-

bers in two respects. They cover the area that they are drawn from more evenly, and the

different draws are correlated with each other (e.g. Train, 2003). An example of the more

even coverage can be seen in figure 3.2, where 200 draws from a popular type of quasi-

random numbers, Halton sequences, are shown on the left, and pseudo-random numbers
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Halton sequence with base 2 and 3 Monte Carlo draws
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Figure 3.2 – Halton sequences versus pseudo-random numbers

are shown on the right. The Halton sequences seem to be more evenly distributed over

the two-dimensional area.

A sequence of Halton draws that cover the one-dimensional grid between 0 and 1

uniformly, are created from a base, k. If required, these draws can be transformed to

quasi-random numbers from a different distribution, e.g. the normal distribution, by using

the quantile function for this distribution. Halton sequences are constructed by splitting

the interval 0–1 into k equal parts. The values where the break between the parts occur,

are the first numbers for the sequence, i.e., 1
k ,

2
k , . . . ,

k−1
k . For instance, if k = 2, this

results in one number, 1
2 , if k = 3, we have 1

3 ,
2
3 .

The next step is to divide each of the parts in k equal parts and add the newly obtained

breakpoints to sequence we already have in a special way. With k = 2, we add 1
4 and 3

4 .

For k = 3, we first add 1
9 , 4

9 , and 7
9 , and then add 2

9 , 5
9 , and 8

9 . The process continuous by

breaking these intervals into smaller parts in every step.

For every base k, we can construct a Halton sequence and sequences with different base

numbers can be combined to form a multi-dimensional grid of nodes. The two-dimensional

grid in figure 3.2 on the left was created by combining a Halton sequence with base 2 and a

Halton sequence with base 3. Figure 3.3 shows that not all combinations of base numbers

work well. Two sequences of length 1000 are shown. On the left, base 2 and base 3 are
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Halton sequence with base 2 and 3 Halton sequence with base 2 and 4
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Figure 3.3 – Halton sequences with base 2 and 3, and with base 2 and 4

combined to get a two-dimensional grid. On the right, I combined base 2 and base 4. The

two-dimensional grid constructed from base 2 and 4 covers only a small fraction of the area.

Because 4 can be divided by 2, this means that the construction of the Halton sequences

are very similar, resulting in a two-dimensional grid with highly correlated draws. To

avoid this cycling, only prime numbers are used as a base to construct Halton sequences

in practice.

Halton sequence with base 43 and 47 Shuffled Halton seq. with base 43 and 47
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Figure 3.4 – Halton sequences with base 43 and 47 and its shuffled version

142



CHAPTER 3. INTEGRATION METHODS FOR DYNAMIC SELECTION MODELS

Bhat (2003) notes that the practice of using prime numbers can still result in problems

if we construct sequences for higher dimensions. He gives an example when there are 15

dimensions. The 14th prime number is 43, and the 15th prime number is 47, so these

numbers are used as the base for the Halton sequences corresponding to dimension 14

and 15. These sequences are correlated, as can be seen in figure 3.4 on the left, which

shows the first 200 draws for Halton sequences with base 43 and base 47. A solution to

this problem is to add the Halton numbers, 1
k ,

2
k , . . ., in a different order to the sequence.

References to papers describing different methods to construct such permutations are given

in Bhat (2003). For example, one of these methods gives 2
3 ,

1
3 ,

2
9 ,

8
9 ,

5
9 ,

1
9 ,

7
9 , and 4

9 as the

first numbers in a scrambled Halton sequence with base 3. Note that the order of the

numbers is different than the order we have above.

Good scrambling methods that permute the draws, and thus prevent correlations,

and at the same time cover the whole area, are difficult to find for higher dimensions

(Hess, Polak, & Daly, 2003). They use a simple method, referred to as shuffling, and

show that this works well for sequences of length 100 and 200 in a small simulation

experiment. A shuffled Halton sequence can be obtained by starting from a regular Halton

sequence. For every dimension the sequence corresponding to this dimension is replaced

by a (pseudo-)random permutation of the sequence. Using a different permutation for

every dimension breaks the correlation, as can be seen on the right in figure 3.4. These

nodes correspond to the same one-dimensional sequences in the figure on the left, but they

are combined in a different way to get the shuffled version. This shuffled version shows

better coverage for the area, although we do see some of the nodes lumping together.

In practice, another solution that is often used to mitigate the problem of correlations,

is to discard, or burn, the first set of Halton draws. This is what I do to construct

the Halton sequences in the experiments below. The first 500 numbers are not used.

In the experiments, I compare the use of sparse grids, pseudo Monte Carlo nodes, and

both shuffled Halton sequences and regular Halton sequences, to approximate integrals of

different dimensions.
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3.4 Examples

In this section I discuss two example models with discrete and continuous outcomes.

By defining the unobservables in the latent outcome process as a linear combination of

independent random variables with a normal distribution, we can easily specify models

with auto-regressive or moving average processes in the form described above.

It is important to note that although the examples here use observations on one con-

tinuous and one discrete outcome in different time periods for the same individual, they

can easily be adapted to models where there are observations on multiple continuous and

discrete outcomes within the same period. An example of such a model would be the

labour participation decision of a couple. In every period there are two discrete outcomes.

We see whether the female works, and whether the male works. If the female works, we

also observe her continuous wage. We do not observe the wage, if she does not work, and

similarly for the male.

The latent work decision of both spouses depend on their individual wages, but poten-

tially on the wage of the spouse as well. In addition, there may be an underlying factor

that affects the taste for work of both spouses. Some of these elements might be persistent

over time. If the underlying factors are specified in terms of normal distributions, the same

methods as described in the examples below can be used to derive the variance-covariance

matrix that describes the stochastic structure of the latent variables. A likelihood can be

formed involving the continuous and discrete outcomes of both spouses in multiple time

periods, which can then be approximated using the methods described above.

3.4.1 Example 1: random effects

This first example is similar to the random effects model presented in chapter 2. The

latent outcome variables follow the linear specification in (3.2.1). The unobservables are

defined by the following random effect model

U1,it = σααi + σεεit

U2,it =
ρ

σε
σααi + ρεit +

√
1− ρ2ηit,

(3.4.1)

144



CHAPTER 3. INTEGRATION METHODS FOR DYNAMIC SELECTION MODELS

where αi ∼ N(0, 1) is the random effect, εit ∼ N(0, 1) are transitory shocks to the contin-

uous outcome, and ηit ∼ N(0, 1) are transitory shocks to the latent variable driving the

discrete outcome. U1,it and U2,it are correlated if ρ is not equal to zero. U1,it is correlated

over time through αi, and U2,it is correlated over time through αi if ρ 6= 0.

The same relation can be written in matrix notation

U1,i

U2,i

 =



U1,iT

...

U1,i1

U2,iT

...

U2,i1


=



σε 0 0 0 σα
. . .

. . .
...

0 σε 0 0 σα

ρ 0
√

1− ρ2 0 ρ
σε
σα

. . .
. . .

...

0 ρ 0
√

1− ρ2 ρ
σε
σα︸ ︷︷ ︸

A





εiT
...

εi1

ηiT
...

ηi1

αi



.

Since the errors αi, εit, and ηit are i.i.d. and follow a standard normal distribution,

the vector (U1,i, U2,i) is also normally distributed, with mean 0, and variance-covariance

matrix AA′. This can be directly related to the joint distribution of Y ∗i and D∗i in (3.2.2),

when we define Σi = AA′, and we can use the method described in that section to find

maximum likelihood estimates for the parameters β1, β2, σε, σα, and ρ.

3.4.2 Example 2: ARMA specification

In this example, the unobservable in the continuous outcome equation follows an ARMA(1,1)

process,

U1,it = ξit + ζit

U2,it =
ρ√

θ21 + θ22
ξit +

ρ√
θ21 + θ22

ζit +
√

1− ρ2ηit,
(3.4.2)

where ξit follows an AR(1) process and ζit an MA(1) process as defined below, and ηit ∼

N(0, 1). The two unobservables are related through the parameter ρ and the contributions

of ξit and ζit in the discrete outcome equation are scaled in such a way that the combination

of ζit and ηit has unit variance.
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We have observations for individual i in periods t = 1, . . . , T . The first period value of

ξit is assumed to follow a normal distribution with standard deviation σξ0 , ξi1 ∼ N(0, σ2ξ0).

To have all expressions in terms of standard normal random variables, I write for t = 1

ξi1 = σξ0εi1,

where εi1 ∼ N(0, 1). For t > 1, the AR(1) process can be written as

ξit = φξit−1 + σεεit

= φ2ξit−2 + φσεεit−1 + σεεit

...

= φt−1σξ0εi1 +
t∑

s=2

φt−sσεεis,

where the innovations to the AR(1) process follow a standard normal distribution, εit ∼

N(0, 1). The same expression for all ξit combined can also be written in matrix notation



ξiT

ξiT−1
...

ξi2

ξi1︸ ︷︷ ︸
Ξi


=



1 φ φ2 · · · φT−1

0 1 φ · · · φT−2

0 0
. . .

. . .
...

0 0 0 1 φ

0 0 0 0 1︸ ︷︷ ︸
Φ


·



σε 0 0 0 0

0 σε 0 0 0

0 0
. . . 0 0

0 0 0 σε 0

0 0 0 0 σξ0︸ ︷︷ ︸
Σε


·



εiT

εiT−1
...

εi2

εi1︸ ︷︷ ︸
Ei


,

with the names of the matrices and vectors defined below the curly brackets.

For the MA(1) model we have

ζit = θ1νit + θ2νit−1,
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where νit ∼ N(0, 1). Again, this can be written in matrix notation



ζiT

ζiT−1
...

ζi2

ζi1︸ ︷︷ ︸
Zi


=



θ1 θ2 0 0 0 0

0 θ1 θ2 0 0 0

0 0
. . .

. . . 0 0

0 0 0 θ1 θ2 0

0 0 0 0 θ1 θ2︸ ︷︷ ︸
Θ


·



viT

viT−1

viT−2
...

vi2

vi1

vi0︸ ︷︷ ︸
Vi



.

Combining the AR(1) and MA(1) process in one equation, we can write the vector of

unobservable outcomes in (3.4.2) as follows

 U1,i

U2,i

 =

 Ξi + Zi

ρ√
θ21+θ

2
2

Ξi + ρ√
θ21+θ

2
2

Zi +
√

1− ρ2Hi



=

 ΦΣε Θ 0

ρ√
θ21+θ

2
2

ΦΣε
ρ√
θ21+θ

2
2

Θ
√

1− ρ2 · I︸ ︷︷ ︸
A

 ·


Ei

Vi

Hi

 ,

where Hi is the vector collecting all time periods of ηit, and I is the identity matrix. As

in example 1, since Ei, Vi, and Hi are all distributed according to the standard normal

distribution, the vector (U1,i, U2,i) follows a normal distribution as well, with mean 0, and

variance-covariance matrix AA′. Again, these can be plugged into (3.2.2) to obtain the

joint distribution of Y ∗i and D∗i .

3.5 Simulations

In this section I present the results for the estimation of two models on simulated data.

The first model is the random effects model from example 1. The second part shows the

results for the ARMA model from example 2.
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3.5.1 Random effects model

The random effects model that I use in this section, is the same model as the simplest

model in chapter 2, without time-varying variances. Two methods to approximate the

integral can be compared in this case. Because there is only a single random effect, the

high-dimensional integral from section 3.2 can be re-written as a one-dimensional integral

(Butler & Moffitt, 1982). In principle, approximating a one-dimensional integral accurately

should be straightforward. However for values of the number of integration nodes typically

used in applications (e.g. 25), we saw some bias in chapter 2 in the parameters related to

the variance. I compare this one-dimensional integration to a second method, where the

general solution of approximating a T -dimensional integral is used.

The results consist of two parts. In the first part I estimate parameters by maximum

likelihood for simulated datasets and compare the bias in the parameter estimates when

using the different methods to approximate the log-likelihood. The same number of inte-

gration nodes is used for all variations, but for some of the parameters that are used to

create the simulated datasets, the value is changed. These experiments show that approxi-

mating the 1D integral using pseudo or quasi Monte Carlo simulations leads to large biases

in some of the parameters. One-dimensional Gauss-Hermite integration does not result

in bias, except for some of the variance parameters, when the correlation between the

unobservables is high. Multi-dimensional sparse grid integration and multi-dimensional

Monte Carlo integration do not show any large biases.

In the second part, instead of maximizing the log-likelihood, I approximate the log-

likelihood at a fixed value for the parameters. At this point, the log-likelihood is ap-

proximated with different numbers of integration nodes and I compare these to the ‘true’

log-likelihood. This experiment shows that 1D Monte Carlo integration results in the poor-

est accuracy. One-dimensional Gauss-Hermite integration performs best when the number

of integration nodes is increased, for instance to 151 or above for T = 6. Multi-dimensional

sparse grid integration and multi-dimensional Monte Carlo integration result in reason-

ably accurate approximations for a small number of gridpoints. Increasing the number of

gridpoints improves the accuracy, but not as rapidly compared to one-dimensional Gauss-

Hermite integration.
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The model in this section is the random effects model presented above.

Y ∗it = β1,0 + β1,1x1,it + U1,it

D∗it = β2,0 + β2,1x1,it + β2,2x2,it + U2,it,

(3.5.1)

where the unobservables are defined as in (3.4.1). There is one covariate in the continuous

outcome equation, x1,it ∼ i.i.d. N(0, 1). The excluded covariate, x2,it, is also created

using independent draws from the standard normal distribution. For the simulations I use

(β1,0, β1,1) = (5, 1), (β2,0, β2,1, β2,2) = (1, 0, 1), and σε = 1. The standard deviation of the

random effect takes three different values, σα ∈ (0.5, 1, 2), and ρ takes on four different

values, ρ ∈ (0, 0.3, 0.6, 0.9). The intercept in the participation equation determines how

many values of the continuous outcome we observe. The value used here, β2,0 = 1, implies

that about 75% of the continuous outcomes are observed. Higher values for σα and ρ

imply a larger correlation between the latent variables.

Below I give the correlation matrix that corresponds to the variance-covariance matrix

for two sets of the parameters. To limit the space occupied by these matrices, I set T = 3

for these examples. In the random effect model, the correlation between two different time

periods is the same, independent of the number of periods separating them. This makes

it easy to imagine what the correlation matrix would look like when we increase T . For

the first example, I use σε = 1, σα = 1, and ρ = 0.6.

Rlow =



1.00 0.50 0.50 0.73 0.36 0.36

0.50 1.00 0.50 0.36 0.73 0.36

0.50 0.50 1.00 0.36 0.36 0.73

0.73 0.36 0.36 1.00 0.26 0.26

0.36 0.73 0.36 0.26 1.00 0.26

0.36 0.36 0.73 0.26 0.26 1.00
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The second example was created using σε = 1, σα = 2, and ρ = 0.9.

Rhigh =



1.00 0.80 0.80 0.98 0.78 0.78

0.80 1.00 0.80 0.78 0.98 0.78

0.80 0.80 1.00 0.78 0.78 0.98

0.98 0.78 0.78 1.00 0.76 0.76

0.78 0.98 0.78 0.76 1.00 0.76

0.78 0.78 0.98 0.76 0.76 1.00


The relative sizes of σε and σα determine the values off the diagonal in the upper-left

corner. A larger value for σα relative to σε increases the auto-correlation in Y ∗it , as can be

seen in Rhigh. The value of ρ affects the relation between the values in the four blocks.

For examples, a value of ρ = 0, results in a correlation matrix with zeros in the upper-right

and lower-left corner. The lower-right corner is a diagonal matrix in that case.

For each combination of the parameters and for different panel lengths, T ∈ (6, 11, 16),

I created R simulated datasets with N = 500 individuals. Estimates of the parameters

are used to calculate the bias, defined as 1
R

∑R
r=1

(
θ̂r − θ0

)
, where θ̂r is the estimate we

obtain for replication r, and θ0 is the ‘true’ value of the parameter, i.e. the one that I use

to simulate the data. The number of replications, R, is set to 500.

The results of two different ways to approximate the integral inside the log-likelihood

are shown. The first method, 1D integration, uses the approach by Butler and Moffitt

(1982), where the integration is defined in terms of the likelihood conditional on αi and

the distribution of αi. To integrate out the normally distributed αi, I use either Gauss-

Hermite integration nodes and weights (GH), a grid of random nodes from the normal

distribution (MC), or a set of Halton sequences (Halton).

The second method, xD integration, approximates the T dimensional integral using the

GHK simulator, following the algorithm described in Genz (1992). Four methods are used

to determine the integration nodes. The first method uses sparse grids to define the grid

of integration nodes (SGI). For the first experiment, I choose an accuracy level of k = 2,

which means that the integration is exact for polynomials of total order 2(k−1) = 3. This

accuracy level determines the number of integration nodes that are used, which is 11, 21
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Table 3.1 – Bias in β1,0 for different values of σα and ρ

1D integration xD integration

GH MC Halton SGI MC Halton Halton
ρ shuffled

T = 6, σα = 1
0 –0.003 –0.002 –0.003 –0.003 –0.003 –0.003 –0.003

(0.050) (0.066) (0.060) (0.049) (0.049) (0.049) (0.049)

0.6 0.001 0.046 0.034 0.002 0.002 0.001 0.001
(0.053) (0.067) (0.062) (0.052) (0.052) (0.052) (0.052)

0.9 0.006 0.052 0.045 0.003 0.005 0.006 0.006
(0.050) (0.065) (0.057) (0.050) (0.049) (0.049) (0.049)

T = 6, σα = 2
0 0.003 0.006 0.014 0.005 0.005 0.005 0.005

(0.185) (0.178) (0.176) (0.088) (0.088) (0.088) (0.088)

0.6 0.019 0.299 0.275 –0.010 –0.003 –0.002 –0.002
(0.191) (0.178) (0.165) (0.093) (0.092) (0.092) (0.092)

0.9 0.031 0.352 0.329 –0.010 –0.001 0.006 0.005
(0.187) (0.183) (0.160) (0.092) (0.093) (0.092) (0.092)

T = 16, σα = 1
0 0.004 0.004 0.003 0.003 0.003 0.003 0.003

(0.046) (0.076) (0.061) (0.044) (0.044) (0.044) (0.044)

0.6 –0.003 0.043 0.027 –0.002 –0.002 –0.002 –0.002
(0.049) (0.076) (0.059) (0.048) (0.048) (0.048) (0.048)

0.9 –0.001 0.053 0.036 –0.006 –0.002 –0.002 –0.002
(0.049) (0.075) (0.059) (0.047) (0.047) (0.047) (0.047)

T = 16, σα = 2
0 0.004 –0.020 –0.017 –0.004 –0.004 –0.004 –0.004

(0.179) (0.279) (0.206) (0.086) (0.086) (0.086) (0.086)

0.6 0.037 0.328 0.229 –0.001 0.009 0.009 0.009
(0.189) (0.235) (0.168) (0.091) (0.090) (0.090) (0.090)

0.9 0.026 0.344 0.239 –0.071 –0.014 –0.009 –0.011
(0.175) (0.235) (0.148) (0.087) (0.084) (0.084) (0.083)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1 for xD integration. SGI accuracy is 2,
which implies that 11 integration nodes are used for T = 6, and 31 integration nodes are used for
T = 16. Values for the bias larger than 0.05 in absolute value are in bold.
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Table 3.2 – Bias in β1,1 for different values of σα and ρ

1D integration xD integration

GH MC Halton SGI MC Halton Halton
ρ shuffled

T = 6, σα = 1
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.023) (0.025) (0.024) (0.023) (0.023) (0.023) (0.023)

0.6 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024)

0.9 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001
(0.022) (0.023) (0.022) (0.022) (0.022) (0.022) (0.022)

T = 6, σα = 2
0 –0.001 –0.002 –0.001 –0.001 –0.001 –0.001 –0.001

(0.024) (0.027) (0.024) (0.023) (0.023) (0.023) (0.023)

0.6 0.002 0.002 0.002 0.002 0.002 0.002 0.002
(0.025) (0.027) (0.024) (0.023) (0.023) (0.023) (0.023)

0.9 0.000 –0.001 0.000 –0.001 –0.001 –0.001 –0.001
(0.024) (0.025) (0.023) (0.022) (0.023) (0.023) (0.023)

T = 16, σα = 1
0 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

0.6 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

T = 16, σα = 2
0 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)

0.6 0.000 0.000 –0.001 –0.001 –0.001 –0.001 –0.001
(0.013) (0.014) (0.013) (0.013) (0.013) (0.013) (0.013)

0.9 0.001 0.002 0.002 0.002 0.002 0.002 0.002
(0.014) (0.015) (0.014) (0.014) (0.014) (0.014) (0.014)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1 for xD integration. SGI accuracy is 2,
which implies that 11 integration nodes are used for T = 6, and 31 integration nodes are used for
T = 16. Values for the bias larger than 0.05 in absolute value are in bold.
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Table 3.3 – Bias in β2,0 for different values of σα and ρ

1D integration xD integration

GH MC Halton SGI MC Halton Halton
ρ shuffled

T = 6, σα = 1
0 0.002 0.002 0.002 0.002 0.002 0.002 0.002

(0.033) (0.033) (0.033) (0.033) (0.033) (0.033) (0.033)

0.6 0.002 0.015 0.019 0.000 0.002 0.002 0.002
(0.044) (0.050) (0.048) (0.044) (0.044) (0.044) (0.044)

0.9 0.006 0.012 0.033 0.002 0.005 0.007 0.007
(0.053) (0.062) (0.059) (0.053) (0.053) (0.053) (0.053)

T = 6, σα = 2
0 0.003 0.003 0.003 0.003 0.003 0.003 0.003

(0.032) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032)

0.6 0.000 0.132 0.162 –0.010 –0.004 –0.001 –0.002
(0.119) (0.107) (0.105) (0.067) (0.067) (0.067) (0.067)

0.9 –0.005 0.204 0.277 –0.012 –0.004 0.004 0.003
(0.163) (0.151) (0.145) (0.087) (0.087) (0.087) (0.087)

T = 16, σα = 1
0 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021)

0.6 –0.002 0.023 0.015 –0.004 –0.002 –0.002 –0.002
(0.035) (0.049) (0.040) (0.034) (0.034) (0.034) (0.034)

0.9 0.000 0.043 0.033 –0.010 –0.002 –0.001 –0.002
(0.046) (0.069) (0.055) (0.045) (0.045) (0.045) (0.045)

T = 16, σα = 2
0 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(0.022) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022)

0.6 0.020 0.193 0.139 –0.005 0.006 0.006 0.006
(0.117) (0.143) (0.104) (0.061) (0.060) (0.060) (0.060)

0.9 0.014 0.297 0.215 –0.076 –0.015 –0.009 –0.010
(0.156) (0.208) (0.135) (0.079) (0.076) (0.076) (0.076)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1 for xD integration. SGI accuracy is 2,
which implies that 11 integration nodes are used for T = 6, and 31 integration nodes are used for
T = 16. Values for the bias larger than 0.05 in absolute value are in bold.
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Table 3.4 – Bias in β2,1 for different values of σα and ρ

1D integration xD integration

GH MC Halton SGI MC Halton Halton
ρ shuffled

T = 6, σα = 1
0 0.003 0.003 0.003 0.003 0.003 0.003 0.003

(0.030) (0.030) (0.030) (0.030) (0.030) (0.030) (0.030)

0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.031) (0.030) (0.030) (0.031) (0.031) (0.031) (0.031)

0.9 0.000 –0.001 0.000 0.000 0.000 0.000 0.000
(0.028) (0.028) (0.028) (0.028) (0.028) (0.028) (0.028)

T = 6, σα = 2
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031)

0.6 0.000 0.000 0.001 0.000 0.000 0.000 0.000
(0.032) (0.031) (0.032) (0.032) (0.032) (0.032) (0.032)

0.9 0.000 –0.001 0.000 0.000 0.000 0.000 0.000
(0.031) (0.029) (0.031) (0.031) (0.031) (0.031) (0.031)

T = 16, σα = 1
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

0.9 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001
(0.018) (0.017) (0.018) (0.017) (0.018) (0.018) (0.018)

T = 16, σα = 2
0 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

0.9 0.001 0.001 0.001 0.001 0.001 0.001 0.001
(0.018) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1 for xD integration. SGI accuracy is 2,
which implies that 11 integration nodes are used for T = 6, and 31 integration nodes are used for
T = 16. Values for the bias larger than 0.05 in absolute value are in bold.
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Table 3.5 – Bias in β2,2 for different values of σα and ρ

1D integration xD integration

GH MC Halton SGI MC Halton Halton
ρ shuffled

T = 6, σα = 1
0 0.004 0.004 0.004 0.004 0.004 0.004 0.004

(0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039)

0.6 0.003 –0.016 –0.003 0.003 0.003 0.003 0.003
(0.040) (0.039) (0.039) (0.040) (0.040) (0.040) (0.040)

0.9 0.000 –0.040 –0.012 0.000 0.000 0.001 0.001
(0.034) (0.033) (0.033) (0.034) (0.034) (0.034) (0.034)

T = 6, σα = 2
0 0.002 0.002 0.002 0.002 0.002 0.002 0.002

(0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038)

0.6 –0.017 –0.056 –0.014 –0.005 –0.004 –0.002 –0.002
(0.040) (0.039) (0.040) (0.040) (0.040) (0.040) (0.040)

0.9 –0.033 –0.100 –0.023 –0.001 –0.001 0.002 0.002
(0.031) (0.032) (0.033) (0.033) (0.033) (0.033) (0.033)

T = 16, σα = 1
0 0.002 0.002 0.002 0.002 0.002 0.002 0.002

(0.025) (0.025) (0.025) (0.025) (0.025) (0.025) (0.025)

0.6 0.003 0.000 0.002 0.002 0.003 0.003 0.003
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024)

0.9 0.002 –0.006 –0.001 0.000 0.001 0.001 0.001
(0.020) (0.020) (0.020) (0.020) (0.020) (0.020) (0.020)

T = 16, σα = 2
0 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024)

0.6 –0.004 –0.007 0.000 –0.003 0.000 0.000 0.000
(0.024) (0.025) (0.024) (0.024) (0.024) (0.024) (0.024)

0.9 –0.012 –0.014 –0.002 –0.009 –0.002 –0.001 –0.001
(0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1 for xD integration. SGI accuracy is 2,
which implies that 11 integration nodes are used for T = 6, and 31 integration nodes are used for
T = 16. Values for the bias larger than 0.05 in absolute value are in bold.
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and 31 nodes for T = 6, T = 11 and T = 16 respectively. As a second method, I again use a

grid of random points (MC). The final two methods are based on Halton sequences, where

the distinction between the two is whether or not the sequences for different dimensions are

shuffled when combining them in a multi-dimensional grid (Halton and Halton shuffled).

Conditional on the number of periods, the four integration methods use the same

number of nodes. However, there is a slight difference between the definition of a node

for 1D integration and for xD integration. A node is a single number in the case of 1D

integration. For xD integration, a node is a vector of T − 1 numbers. This implies that

for one-dimensional MC integration, for one individual the same random draws are used

to approximate the likelihood in each of the separate periods. Whereas different random

draws are used in the case of Monte Carlo xD integration. This corresponds to integrat-

ing out the distribution of the one-dimensional αi, or integrating out the distribution of

multiple dependent random variables.

Since the same number of nodes is used for all integration methods, the computer

run times are very similar. In the approximation of the integral, most time is spent on

evaluating Φ(·), the standard normal CDF. Independent of the approximation method, for

a given individual, this function is evaluated T times for every integration node. Increasing

the number of individuals, the number of time periods, or the number of integration nodes,

all have a similar effect on the total run time. There is no trade-off in computation time

between the different methods, so in order to determine which method to use for a given

number of nodes, we only have to compare the accuracy of the approximation.

Tables 3.1 to 3.8 show the results from estimating the random effect model. Each

table shows the bias in one of the estimated parameters. To economize on space, only a

subset of all experiments is shown in the table. Different values for σα and ρ were used to

simulate datasets. The three sets of rows separated by whitespace, correspond to different

values of σα, σα ∈ {1, 2}. Within the sets of rows the results for three different values

of ρ are shown. The top and bottom half show the difference between two lengths of the

panel T = 6 and T = 16. The left three columns correspond to 1D integration and the

four columns on the right correspond to xD integration. The results for T = 11 and the

results for σα = 0.5 or ρ = 0.3 show the same pattern. Biases larger than 0.05 in absolute
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value are shown in bold.

Table 3.1 shows the bias in β1,0, the intercept in the continuous outcome equation. We

see that there is substantial bias when the log-likelihood is approximated using 1D Monte

Carlo integration or 1D Halton sequences, and the auto-correlation in the error is high,

σα = 2. For this type of integration, 11 nodes for T = 6, and 31 nodes for T = 16 does

not result in an accurate approximation of the log-likelihood, leading to biased estimates.

When the correlation in the unobservables is largest, σα = 2, and ρ = 0.9, there is also

a bit of bias for the other approximation methods, most notably for xD integration using

sparse grids. There are no large differences in bias when looking at the different panel

lengths, T = 6 and T = 16. This is a consequence of using more nodes to approximate

the integral for T = 16, than for T = 6.

The second difference that we see, is when we compare the standard deviations of

the bias for 1D integration and xD integration. For small values of σα, there are no

apparent differences between the two methods. For σα = 2, the standard deviation for

xD integration, both for SGI and MC, is less than half the size of the standard deviation

for 1D Gauss-Hermite integration. This suggests that xD integration results in a more

accurate approximation of the log-likelihood for this number of nodes, compared to 1D

integration. This is confirmed in the experiment described below, where I look directly

at the accuracy of the log-likelihood approximation for different numbers of integration

nodes.

In table 3.2 we see that there is no bias in the estimates for β1,1, the coefficient on the

covariate in the continuous outcome equation. The only difference that we see, is that the

standard deviation of the bias is smaller for T = 16 than for T = 6. Since the number of

individuals is the same for both experiments, and we have observations for all individuals

in all time periods, the number of observations is 16/6 = 22
3 times larger for T = 16, than

for T = 6. Since the precision of an estimate increases with the square-root of the number

of observations, we expect the standard deviation of the bias to be
√

22
3 ≈ 1.6 larger for

T = 6 compared to T = 16, which is precisely what we see in the table.

The bias for the intercept of the discrete outcome equation is given in table 3.3. The

results are the same as for the intercept in the continuous outcome equation in table
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3.1. I.e. if the correlation between the unobservables is high, then using Monte Carlo

integration or Halton sequences to approximate the 1D integral leads to large biases. Also,

for the high correlation case the approximation of the log-likelihood is more accurate for

xD integration, compared to 1D integration, for the number of integration nodes shown in

this table. Similar to the coefficient on the covariate in the outcome equation in table 3.2,

the coefficient on the covariate in the discrete outcome equation does not exhibit bias, as

can be seen in table 3.4. Table 3.5 shows that the coefficient on the instrument, β2,2 does

show bias for 1D Monte Carlo integration when the correlation between the unobservables

is high.

Tables 3.6, 3.7, and 3.8 show the bias in σε, σα, and ρ respectively. Again, we see that

1D Monte Carlo integration leads to large biases in σε and σα. We also see that 1D Gauss-

Hermite integration and 1D Halton sequences lead to somewhat biased estimates for σε

when T = 6 and σα = 2. The largest bias is found for σα in table 3.7, where all three 1D

integration methods lead to biased estimates when the correlation between unobservables

is large. Gauss-Hermite integration results in a downward bias, whereas Monte Carlo

integration and Halton sequences result in an upward bias for this parameter.

In a second set of experiments I compare different approximations to the log-likelihood

with the ‘true’ value of the log-likelihood. This experiment is similar to the exercise

presented in Heiss (2010). Instead of calculating estimates of the parameters from sim-

ulated data by maximizing the log-likelihood function, I evaluate approximations to the

log-likelihood at fixed values of the parameters. The same set of parameters as above

are used to simulate data for N individuals, where N = 1000. I.e. I use (β1,0, β1,1) =

(5, 1), (β2,0, β2,1, β2,2) = (1, 0, 1), and σε = 1. Again, σα and ρ take on different values,

σα ∈ (0.5, 1, 2), and ρ ∈ (0, 0.3, 0.6, 0.9). For each of the 1000 individuals I approximate

the individual contribution to the log-likelihood at the same values for the parameters

that were used to simulate the data. I use the same parameters that were used to sim-

ulate the data, because we are mostly interested in the quality of the approximation to

the log-likelihood around the maximal value of the log-likelihood. This results in 1000

approximated log-likelihood contributions for every set of parameters.

We want to compare these approximated individual contributions to the log-likelihood
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Table 3.6 – Bias in σε for different values of σα and ρ

1D integration xD integration

GH MC Halton SGI MC Halton Halton
ρ shuffled

T = 6, σα = 1
0 0.000 0.055 0.017 –0.001 –0.001 –0.001 –0.001

(0.016) (0.019) (0.017) (0.016) (0.016) (0.016) (0.016)

0.6 0.001 0.052 0.017 –0.001 –0.001 –0.001 –0.001
(0.019) (0.021) (0.019) (0.019) (0.019) (0.019) (0.019)

0.9 0.000 0.047 0.015 –0.001 –0.001 –0.001 –0.001
(0.017) (0.020) (0.018) (0.018) (0.018) (0.018) (0.018)

T = 6, σα = 2
0 0.041 0.168 0.050 0.000 0.000 0.000 0.000

(0.017) (0.030) (0.022) (0.017) (0.017) (0.017) (0.017)

0.6 0.041 0.141 0.040 –0.002 –0.001 –0.001 –0.001
(0.019) (0.032) (0.022) (0.019) (0.019) (0.019) (0.019)

0.9 0.039 0.131 0.037 –0.002 –0.001 –0.001 –0.001
(0.019) (0.031) (0.022) (0.019) (0.019) (0.019) (0.019)

T = 16, σα = 1
0 0.001 0.011 0.004 0.001 0.001 0.001 0.001

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

0.6 –0.001 0.008 0.002 –0.002 –0.001 –0.001 –0.001
(0.010) (0.011) (0.010) (0.010) (0.010) (0.010) (0.010)

0.9 –0.001 0.008 0.002 –0.002 –0.001 –0.001 –0.001
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

T = 16, σα = 2
0 0.011 0.024 0.006 0.000 0.000 0.000 0.000

(0.009) (0.011) (0.010) (0.009) (0.009) (0.009) (0.009)

0.6 0.012 0.021 0.006 –0.001 0.000 0.000 0.000
(0.010) (0.012) (0.011) (0.010) (0.010) (0.010) (0.010)

0.9 0.013 0.020 0.007 –0.001 0.001 0.001 0.001
(0.011) (0.013) (0.011) (0.011) (0.011) (0.011) (0.011)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1 for xD integration. SGI accuracy is 2,
which implies that 11 integration nodes are used for T = 6, and 31 integration nodes are used for
T = 16. Values for the bias larger than 0.05 in absolute value are in bold.
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Table 3.7 – Bias in σα for different values of σα and ρ

1D integration xD integration

GH MC Halton SGI MC Halton Halton
ρ shuffled

T = 6, σα = 1
0 –0.004 0.067 0.083 0.000 0.000 0.000 0.000

(0.036) (0.063) (0.058) (0.037) (0.037) (0.037) (0.037)

0.6 –0.009 0.059 0.074 –0.005 –0.004 –0.004 –0.004
(0.039) (0.061) (0.059) (0.040) (0.040) (0.040) (0.040)

0.9 –0.008 0.066 0.078 –0.002 –0.003 –0.002 –0.002
(0.039) (0.064) (0.060) (0.040) (0.040) (0.040) (0.040)

T = 6, σα = 2
0 –0.240 0.449 0.518 –0.001 –0.001 –0.001 –0.001

(0.072) (0.190) (0.204) (0.068) (0.068) (0.068) (0.068)

0.6 –0.258 0.356 0.410 0.006 –0.002 –0.001 –0.001
(0.070) (0.162) (0.180) (0.072) (0.071) (0.070) (0.071)

0.9 –0.282 0.361 0.391 0.021 0.004 0.000 0.001
(0.071) (0.169) (0.190) (0.074) (0.075) (0.075) (0.075)

T = 16, σα = 1
0 –0.003 0.135 0.081 –0.002 –0.002 –0.002 –0.002

(0.034) (0.070) (0.059) (0.034) (0.034) (0.034) (0.034)

0.6 –0.002 0.127 0.075 –0.001 –0.001 –0.001 –0.001
(0.034) (0.064) (0.056) (0.034) (0.034) (0.034) (0.034)

0.9 –0.001 0.131 0.074 0.000 0.000 0.000 0.000
(0.036) (0.067) (0.057) (0.037) (0.036) (0.036) (0.036)

T = 16, σα = 2
0 –0.203 0.641 0.442 –0.007 –0.007 –0.007 –0.007

(0.085) (0.253) (0.212) (0.064) (0.064) (0.064) (0.064)

0.6 –0.211 0.486 0.317 0.008 –0.002 –0.002 –0.002
(0.081) (0.238) (0.189) (0.071) (0.069) (0.068) (0.069)

0.9 –0.225 0.450 0.292 0.071 0.007 0.002 0.004
(0.084) (0.223) (0.191) (0.072) (0.065) (0.065) (0.065)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1 for xD integration. SGI accuracy is 2,
which implies that 11 integration nodes are used for T = 6, and 31 integration nodes are used for
T = 16. Values for the bias larger than 0.05 in absolute value are in bold.
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Table 3.8 – Bias in ρ for different values of σα and ρ

1D integration xD integration

GH MC Halton SGI MC Halton Halton
ρ shuffled

T = 6, σα = 1
0 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001

(0.030) (0.032) (0.031) (0.029) (0.029) (0.029) (0.029)

0.6 0.001 0.025 0.010 –0.002 0.000 0.000 0.000
(0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031)

0.9 0.002 0.011 0.006 0.000 0.001 0.001 0.001
(0.014) (0.014) (0.014) (0.015) (0.014) (0.014) (0.014)

T = 6, σα = 2
0 –0.002 –0.002 –0.002 –0.001 –0.001 –0.001 –0.001

(0.016) (0.018) (0.016) (0.015) (0.015) (0.015) (0.015)

0.6 0.021 0.058 0.020 –0.001 –0.001 0.000 0.000
(0.023) (0.025) (0.023) (0.023) (0.023) (0.023) (0.023)

0.9 0.008 0.023 0.010 –0.001 –0.001 0.000 0.000
(0.013) (0.012) (0.013) (0.014) (0.014) (0.014) (0.014)

T = 16, σα = 1
0 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001

(0.018) (0.019) (0.018) (0.018) (0.018) (0.018) (0.018)

0.6 –0.001 0.004 0.001 –0.004 –0.001 –0.001 –0.001
(0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

0.9 0.000 0.002 0.001 –0.002 0.000 0.000 0.000
(0.008) (0.008) (0.008) (0.009) (0.008) (0.008) (0.008)

T = 16, σα = 2
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.009) (0.010) (0.009) (0.009) (0.009) (0.009) (0.009)

0.6 0.006 0.010 0.003 –0.002 0.000 0.000 0.000
(0.014) (0.014) (0.014) (0.013) (0.013) (0.013) (0.013)

0.9 0.004 0.006 0.003 –0.002 0.000 0.001 0.001
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1 for xD integration. SGI accuracy is 2,
which implies that 11 integration nodes are used for T = 6, and 31 integration nodes are used for
T = 16. Values for the bias larger than 0.05 in absolute value are in bold.
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to the ‘true’ contribution to the log-likelihood for each individual. However, this ‘true’

contribution is not available. Instead, I use Monte Carlo approximation using xD inte-

gration with 1,000,000 integration nodes and refer to this as the truth. This true value

can then be used to calculate a measure of the approximation error, averaging over the

log-likelihood contributions of the 1000 individuals. The measure that I use, is the mean

absolute percentage error (MAPE), defined as

1

N

N∑
i=1

∣∣∣∣100 · logLi − logL0i
logL0i

∣∣∣∣ ,
where logLi is the approximated log-likelihood contribution for individual i evaluated at

values for the parmeters defined above, and logL0i is the ‘true’ log-likelihood for individual

i, i.e. without approximation error.

GH MC Halton
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1

1D
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‘true’ log-likelihood

D
iff

er
en

ce

Figure 3.5 – Difference between ‘true’ and approximated log-likelihood for 1D integration
with T = 16, σα = 2, and ρ = 0.6

Before looking at the mean absolute percentage error, a combined measure, I first show

the difference between the ‘true’ log-likelihood and its approximation for each of the 1000

simulated individuals separately. Figure 3.5 shows these differences for 1D integration,

where T = 16, σα = 2 and ρ = 0.6. The same figures are shown for xD integration in

figure 3.6. The approximations in these figures are obtained using 451 integration nodes,

which corresponds to sparse grid accuracy, k = 3. The patterns that we see in these figures

are the same for other values of T , σα, and ρ and for different numbers of integration nodes.

From figure 3.5 we see that for 1D integration the error in the approximation is small-

est for Gauss-Hermite integration. Monte Carlo integration has the largest variation in
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approximation error and integration using Halton sequences is in between the two. They

can not be directly compared with 3.6, because of the difference in scale on the y-axis.

For xD integration the variation in error seems smallest for Halton sequences, and slightly

larger for its shuffled version. Both sparse grid integration and Monte Carlo integration

have more variation. The approximation that is obtained using sparse grid integration

is always smaller than the true log-likelihood, all the differences are smaller than zero,

whereas the other approximation methods are centered around the true-loglikelihood.

SGI MC Halton Halton – shuffled
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Figure 3.6 – Difference between ‘true’ and approximated log-likelihood for xD integration
with T = 16, σα = 2, and ρ = 0.6

Tables 3.9 to 3.11 show the MAPE of the log-likelihood approximation for T = 6, T =

11, and T = 16. The effect of different values for ρ are shown in the four horizontal blocks.

For σα a value of 2.0 is used. Again, there are three columns related to the three variants

of 1D integration, and four columns related to the variants of xD integration. Values 2,

3, 4, 5, and 6 are used as SGI accuracies, and the corresponding number of gridpoints

used to approximate the integral, is shown in the adjacent column. The conclusion from

the results presented below are the same if root mean-squared error (RMSE) is used as a

measure to compare the different methods. Tables with RMSE are not included in this

paper.

From table 3.9 we can see that all three types of 1D integration lead to a poor ap-

proximation of the integral in terms of mean absolute percentage error when using 11

integration nodes. The MAPE is about 10% for Monte Carlo integration and about 5%

for Gauss-Hermite integration and Halton sequences. From the previous experiment we
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saw that this results in large biases for the estimated σα for all three types of integration.

The approximation for Monte Carlo integration has the largest MAPE of the three, and

as we saw lead to biased estimates for some of the other parameters as well. When the

number of integration nodes is increased, the accuracy of the approximation quickly im-

proves for Gauss-Hermite integration. The improvement is more gradual for Monte Carlo

integration and Halton sequences. The MAPE when using Halton sequences is a factor

ten smaller than the MAPE we estimate when using Monte Carlo integration.

When we look at xD integration, we see that the MAPE is smaller than 1% for all cases

but one. In this model the unobservables in the discrete outcome equation are only auto-

correlated if ρ is different from 0. If ρ = 0, αi does not enter the latent variable related to

the discrete outcome and the matrix ΣDD is equal to the identity matrix. Similarly, the

matrices ΣDY and ΣDD are zero. This means that from (3.2.4) we have that ΣD|Y is the

identity matrix if ρ = 0. In that case, the unobservables related to the discrete outcome

equation are independent, and the calculation of their joint probability reduces to the

multiplication of univariate normal CDFs. These can be approximated very accurately,

which results in the negligible size of the mean absolute percentage error that we see for

xD integration when ρ = 0.

Similar to 1D integration, for xD integration the MAPE for sparse grid integration is

smaller than the MAPE for Monte Carlo integration when T = 6, but the difference is

not of the same magnitude as in the 1D integration case. The MAPE goes down when

the number of integration nodes is increased. However, for SGI it looks like the MAPE

goes down in steps. There is not much difference between the MAPE for SGI accuracy

2 and 3. The MAPE for accuracy 4 is smaller than the MAPE for accuracy 3, but then

stays somewhat the same when the accuracy is increased to 5 or 6. This also holds if we

look at root mean-squared error as a measure of approximation error. The plots with the

results in Heiss (2010) do not show enough detail to see whether he finds the same results

for the dynamic probit model, but on the scale of his plots the differences between these

accuracy levels seem to be very small as well.

Halton sequences result in a smaller approximation error than Monte Carlo integration.

This difference is especially clear for accuracies 4 and 5, where the MAPE is almost a factor
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10 smaller than the MAPE for Monte Carlo integration. The performance of Halton

sequences and sparse grid integration is of the same order, where in some cases one is

preferred slightly above the other, and vice versa in other cases.

The shuffled Halton sequences do not seem to provide an improvement on regular

Halton sequences for this dimension. We expect a benefit from using shuffled Halton

sequences for larger dimensions. In tables 3.10 and 3.11 the results are shown for T = 11

and T = 16, but again we do not see an improvement in MAPE of the shuffled Halton

sequences over regular Halton sequences.

The results for T = 11 and T = 16 in tables 3.10 and 3.11 show a different picture.

Sparse grid integration is no longer preferred over Monte Carlo integration in all cases. For

T = 11 their performance in terms of MAPE is similar, but for T = 16 xD integration with

Monte Carlo nodes results in a more accurate approximation than xD integration with

sparse grids, if the number of integration nodes is increased to 451 or more. In addition,

we see that the use of Halton sequences clearly outperforms the other methods.

These results are different from the results described by Heiss (2010). He concludes

that Halton sequences result in a better approximation than using Monte Carlo integra-

tion, which can also be seen in my results. However, in his case sparse grid integration

dominates the other methods, which is only true in my experiments when a small number

of gridpoints is used for the integration, and T = 6. One potential explanation for this

difference is the fact that he uses a different model, with a different correlation structure

between the unobservables. Heiss (2010) considers a panel probit model where the er-

rors follow an AR(1) process. Because of the auto-regressive process for the errors, the

correlation between the unobservables in two different periods decreases if the number of

intermediate periods increases. This is different from my specification, where the correla-

tion is the same between all periods. Also, it appears from his results that the difference

between sparse grid integration and Halton sequences becomes smaller if the correlation

between unobservables increases or the dimension of the integral increases. For instance,

the experiment with the highest correlation between the unobservables, has a coefficient

for the AR(1) process of 0.9 and uses T = 10. In that case, which is shown in figure 5(f)

in Heiss (2010), sparse grid integration has a RMSE which is about 10% lower than using

168



CHAPTER 3. INTEGRATION METHODS FOR DYNAMIC SELECTION MODELS

Halton sequences.

Another way to explain the different conclusions could be in the way Halton sequences

are used. For instance, it is not clear whether Heiss (2010) throws away the first set of

Halton draws, the so called burn-in. Similarly, the paper does not specify whether the

same Halton sequence is used for all individuals, or whether a different sequence is used

for every individual, which is what I do. From experiments that I do not report here, the

difference in MAPE between re-using the same Halton sequence and using different Halton

sequences is a factor five for T = 16. Combined with the different correlation structure in

Heiss (2010) this could explain the difference in conclusion.

3.5.2 ARMA model

The results in this section are based on the model from example 2 in section 3.4.2. The

covariates that I use are the same as in (3.5.1) in the random effect model in the previous

section, repeated here for convenience

Y ∗it = β1,0 + β1,1x1,it + U1,it

D∗it = β2,0 + β2,1x1,it + β2,2x2,it + U2,it.

(3.5.2)

The difference with the model in the previous section is the structure of the unobserv-

ables, U1,it and U2,it. These follow the ARMA(1,1) process described in (3.4.2). The

covariates are simulated similarly to the previous experiment, x1,it ∼ i.i.d. N(0, 1), and

x2,it ∼ i.i.d. N(0, 1). For the simulations I use (β1,0, β1,1) = (5, 1) as coefficients in the

continuous outcome equation. The constant in the discrete outcome equation, β2,0 takes

on three values, β2,0 ∈ {−1, 0, 2}, and the values of the other two coefficients are fixed to

(β2,1, β2,2) = (0, 1). The different values of β2,0 correspond to a proportion of 25%, 50%

and 90% of observations respectively for which we observe the continuous outcome.

The standard deviation of the initial value of the auto-regressive part of the unob-

servable is σξ0 = 1, the standard deviation of the innovations to the auto-regressive

process is σε = 0.5, and the auto-regressive parameter takes on four different values,

φ ∈ {0, 0.3, 0.6, 0.9}. The coefficients for the moving average process are set to θ1 = 0.8

and θ2 = −0.4. Finally, the parameter governing the correlation between the unobserv-
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ables in the continuous and the discrete outcome equation, ρ, is the same for all variations.

I choose an intermediate value, ρ = 0.6.

Similar to the previous section, I present two different experiments. In the first ex-

periment, I estimate the parameters of this process on simulated datasets, while keeping

the number of gridpoints used to approximate the integral the same. The second ex-

periment keeps the value of the parameters the same, and compares the accuracy of the

log-likelihood at that point for different accuracy levels.

For the first experiment, I create R = 500 simulated datasets with N = 500 individuals.

The number of periods for the created panel datasets is set to T = 6, T = 16, and T = 26.

I set the accuracy for the sparse grid integration to 2, which implies that 11, 31 and 51

integration nodes are used for T = 6, T = 16, and T = 26 respectively. In contrast to

the previous section, only xD integration can be used, because the error structure of the

unobservables can not be rewritten using a simple factor structure with one factor in this

case.

Tables 3.12 to 3.16 show the bias in the level parameters, β1,0, β1,1, β2,0, β2,1 and β2,2.

The results for T = 6 are shown in the left four columns, and the results for T = 26 are

shown on the right. Three blocks of rows correspond to the different values of β2,0 that

we used to generate the simulated datasets. Within each of these three blocks, four rows

show the results for different φ. I compare four ways to create the integration nodes that

are used to approximate the integral; sparse grid integration (SGI), Monte Carlo draws

(MC), Halton sequences (Halton), and shuffled Halton sequences (Halton shuffled).

When we look at the results in table 3.12, we see no apparent bias in β1,0 for any

of the methods, except perhaps for SGI when T = 26, β2,0 = −1, and φ = 0.9. We

do see differences in the standard deviations. There is more variation in the parameter

estimates, and thus in the bias, when β2,0, the constant in the discrete outcome equation,

is smaller. If β2,0 = −1, we observe a continuous outcome for only 25% of the observations,

compared to 50% and 90% when β2,0 is 0 or 2 respectively. This implies that there are

fewer observations that contain information about β1,0 if β2,0 is smaller, hence the loss

in precision. Similar reasoning explains the decrease in the standard deviation when

comparing T = 6 to T = 26.
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Table 3.12 – Bias in β1,0 for different values of β2,0 and φ

T = 6, xD integration T = 26, xD integration

SGI MC Halton Halton SGI MC Halton Halton
φ shuffled shuffled

β2,0 = −1
0 –0.004 0.003 0.002 0.002 –0.005 0.001 0.001 0.001

(0.069) (0.069) (0.069) (0.069) (0.030) (0.031) (0.031) (0.031)

0.3 –0.004 –0.001 –0.001 –0.001 –0.003 0.001 0.001 0.001
(0.070) (0.070) (0.070) (0.070) (0.033) (0.033) (0.033) (0.033)

0.6 0.008 0.007 0.006 0.006 0.003 0.001 0.001 0.001
(0.079) (0.079) (0.079) (0.079) (0.036) (0.036) (0.036) (0.036)

0.9 0.000 0.001 –0.003 –0.003 0.015 0.000 0.000 0.000
(0.089) (0.088) (0.088) (0.088) (0.047) (0.046) (0.046) (0.046)

β2,0 = 0
0 –0.002 0.001 0.000 0.000 –0.002 0.000 0.001 0.001

(0.033) (0.033) (0.033) (0.033) (0.015) (0.015) (0.015) (0.015)

0.3 0.000 0.001 0.001 0.001 –0.002 0.000 0.000 0.000
(0.036) (0.036) (0.036) (0.036) (0.017) (0.017) (0.017) (0.017)

0.6 0.001 0.000 0.000 0.000 0.001 0.000 0.000 –0.001
(0.046) (0.046) (0.046) (0.046) (0.021) (0.020) (0.020) (0.020)

0.9 –0.003 –0.004 –0.005 –0.005 0.005 0.000 0.000 –0.001
(0.056) (0.056) (0.056) (0.056) (0.037) (0.037) (0.037) (0.037)

β2,0 = 2
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.016) (0.016) (0.016) (0.016) (0.007) (0.007) (0.007) (0.007)

0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.019) (0.019) (0.019) (0.019) (0.009) (0.009) (0.009) (0.009)

0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.024) (0.024) (0.024) (0.024) (0.013) (0.013) (0.013) (0.013)

0.9 0.001 0.001 0.001 0.001 –0.001 –0.001 –0.001 –0.001
(0.044) (0.044) (0.044) (0.044) (0.033) (0.033) (0.033) (0.033)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1. SGI accuracy is 2, which implies that 11
and 51 integration nodes are used for T = 6, and T = 26 respectively. Values for the bias larger than
0.05 in absolute value are in bold.
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Table 3.13 – Bias in β1,1 for different values of β2,0 and φ

T = 6, xD integration T = 26, xD integration

SGI MC Halton Halton SGI MC Halton Halton
φ shuffled shuffled

β2,0 = −1
0 –0.003 –0.003 –0.003 –0.003 0.000 0.000 0.000 0.000

(0.036) (0.036) (0.036) (0.036) (0.017) (0.017) (0.017) (0.017)

0.3 –0.004 –0.004 –0.004 –0.004 0.000 0.000 0.000 0.000
(0.035) (0.035) (0.035) (0.035) (0.017) (0.017) (0.017) (0.017)

0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.038) (0.038) (0.038) (0.038) (0.018) (0.018) (0.018) (0.018)

0.9 –0.001 –0.001 –0.001 –0.001 0.000 0.000 0.000 0.000
(0.038) (0.038) (0.038) (0.038) (0.018) (0.018) (0.018) (0.018)

β2,0 = 0
0 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001

(0.025) (0.025) (0.025) (0.025) (0.012) (0.012) (0.012) (0.012)

0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.025) (0.025) (0.025) (0.025) (0.012) (0.012) (0.012) (0.012)

0.6 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
(0.027) (0.027) (0.027) (0.027) (0.013) (0.013) (0.013) (0.013)

0.9 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.000
(0.028) (0.028) (0.028) (0.028) (0.014) (0.014) (0.014) (0.014)

β2,0 = 2
0 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000

(0.018) (0.018) (0.018) (0.018) (0.009) (0.009) (0.009) (0.009)

0.3 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
(0.021) (0.021) (0.021) (0.021) (0.009) (0.009) (0.009) (0.009)

0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.021) (0.021) (0.021) (0.021) (0.010) (0.010) (0.010) (0.010)

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.021) (0.021) (0.021) (0.021) (0.010) (0.010) (0.010) (0.010)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1. SGI accuracy is 2, which implies that 11
and 51 integration nodes are used for T = 6, and T = 26 respectively. Values for the bias larger than
0.05 in absolute value are in bold.
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Table 3.14 – Bias in β2,0 for different values of β2,0 and φ

T = 6, xD integration T = 26, xD integration

SGI MC Halton Halton SGI MC Halton Halton
φ shuffled shuffled

β2,0 = −1
0 0.004 –0.004 –0.004 –0.004 0.013 0.003 0.003 0.003

(0.078) (0.082) (0.083) (0.083) (0.046) (0.051) (0.051) (0.051)

0.3 0.015 0.009 0.009 0.009 0.016 0.009 0.008 0.008
(0.061) (0.061) (0.062) (0.061) (0.045) (0.044) (0.043) (0.043)

0.6 0.008 0.006 0.006 0.006 –0.002 0.000 0.000 0.000
(0.054) (0.054) (0.053) (0.053) (0.029) (0.029) (0.029) (0.029)

0.9 0.003 0.007 0.007 0.007 –0.022 –0.003 –0.003 –0.002
(0.053) (0.053) (0.053) (0.053) (0.032) (0.031) (0.031) (0.031)

β2,0 = 0
0 0.002 0.001 0.001 0.001 0.000 –0.001 –0.001 –0.001

(0.026) (0.026) (0.026) (0.026) (0.013) (0.013) (0.013) (0.013)

0.3 0.001 0.000 0.000 0.000 0.000 –0.001 –0.001 –0.001
(0.028) (0.028) (0.028) (0.028) (0.013) (0.013) (0.013) (0.013)

0.6 –0.001 –0.001 –0.001 –0.001 –0.002 –0.001 –0.001 –0.001
(0.030) (0.030) (0.030) (0.030) (0.015) (0.015) (0.015) (0.015)

0.9 –0.007 –0.004 –0.003 –0.003 –0.011 –0.003 –0.003 –0.003
(0.037) (0.037) (0.037) (0.037) (0.026) (0.026) (0.026) (0.026)

β2,0 = 2
0 –0.001 –0.001 –0.001 –0.001 –0.002 –0.002 –0.003 –0.003

(0.097) (0.097) (0.097) (0.097) (0.073) (0.072) (0.073) (0.073)

0.3 –0.003 –0.003 –0.003 –0.003 0.000 0.000 0.000 0.000
(0.100) (0.100) (0.100) (0.100) (0.058) (0.058) (0.058) (0.058)

0.6 0.005 0.005 0.006 0.006 0.003 0.003 0.003 0.003
(0.084) (0.084) (0.084) (0.084) (0.040) (0.040) (0.040) (0.040)

0.9 0.007 0.008 0.009 0.009 0.001 0.003 0.003 0.003
(0.076) (0.076) (0.076) (0.076) (0.039) (0.039) (0.039) (0.039)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1. SGI accuracy is 2, which implies that 11
and 51 integration nodes are used for T = 6, and T = 26 respectively. Values for the bias larger than
0.05 in absolute value are in bold.
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Table 3.15 – Bias in β2,1 for different values of β2,0 and φ

T = 6, xD integration T = 26, xD integration

SGI MC Halton Halton SGI MC Halton Halton
φ shuffled shuffled

β2,0 = −1
0 –0.002 –0.002 –0.002 –0.002 0.000 0.000 0.000 0.000

(0.030) (0.030) (0.030) (0.030) (0.014) (0.014) (0.014) (0.014)

0.3 –0.001 –0.001 –0.001 –0.001 0.000 0.000 0.000 0.000
(0.029) (0.030) (0.030) (0.030) (0.014) (0.014) (0.015) (0.015)

0.6 –0.001 –0.001 –0.001 –0.001 0.000 0.000 0.000 0.000
(0.032) (0.032) (0.032) (0.032) (0.015) (0.015) (0.015) (0.015)

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.031) (0.031) (0.031) (0.031) (0.016) (0.016) (0.016) (0.016)

β2,0 = 0
0 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001

(0.027) (0.027) (0.027) (0.027) (0.012) (0.013) (0.013) (0.013)

0.3 –0.001 –0.001 –0.001 –0.001 0.000 0.000 0.000 0.000
(0.025) (0.025) (0.025) (0.025) (0.013) (0.013) (0.013) (0.013)

0.6 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
(0.028) (0.028) (0.029) (0.029) (0.013) (0.013) (0.013) (0.013)

0.9 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
(0.029) (0.029) (0.029) (0.029) (0.014) (0.014) (0.014) (0.014)

β2,0 = 2
0 0.000 0.000 0.000 0.000 –0.001 –0.001 –0.001 –0.001

(0.040) (0.040) (0.040) (0.040) (0.020) (0.020) (0.020) (0.020)

0.3 0.000 0.000 0.000 0.000 –0.001 –0.001 –0.001 –0.001
(0.041) (0.041) (0.041) (0.041) (0.020) (0.020) (0.020) (0.020)

0.6 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
(0.041) (0.041) (0.041) (0.041) (0.020) (0.020) (0.020) (0.020)

0.9 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002
(0.042) (0.042) (0.042) (0.042) (0.019) (0.019) (0.019) (0.019)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1. SGI accuracy is 2, which implies that 11
and 51 integration nodes are used for T = 6, and T = 26 respectively. Values for the bias larger than
0.05 in absolute value are in bold.
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Table 3.16 – Bias in β2,2 for different values of β2,0 and φ

T = 6, xD integration T = 26, xD integration

SGI MC Halton Halton SGI MC Halton Halton
φ shuffled shuffled

β2,0 = −1
0 –0.003 0.005 0.005 0.005 –0.014 –0.004 –0.004 –0.003

(0.081) (0.085) (0.086) (0.086) (0.046) (0.051) (0.051) (0.051)

0.3 –0.015 –0.008 –0.008 –0.008 –0.017 –0.010 –0.009 –0.009
(0.063) (0.063) (0.064) (0.064) (0.045) (0.044) (0.043) (0.043)

0.6 –0.006 –0.003 –0.004 –0.004 0.002 0.000 0.000 0.000
(0.056) (0.056) (0.056) (0.056) (0.028) (0.028) (0.028) (0.028)

0.9 –0.005 –0.006 –0.005 –0.005 0.003 0.001 0.000 0.000
(0.050) (0.050) (0.050) (0.050) (0.021) (0.021) (0.021) (0.021)

β2,0 = 0
0 –0.008 –0.004 –0.005 –0.005 –0.009 –0.004 –0.003 –0.004

(0.061) (0.063) (0.063) (0.063) (0.043) (0.045) (0.045) (0.045)

0.3 –0.007 –0.004 –0.005 –0.005 –0.008 –0.004 –0.004 –0.004
(0.055) (0.056) (0.055) (0.055) (0.039) (0.037) (0.037) (0.037)

0.6 0.000 0.000 0.001 0.001 0.002 0.000 0.000 0.000
(0.044) (0.045) (0.044) (0.044) (0.023) (0.023) (0.023) (0.023)

0.9 –0.006 –0.006 –0.005 –0.005 –0.003 –0.002 –0.002 –0.002
(0.040) (0.040) (0.040) (0.040) (0.017) (0.017) (0.017) (0.017)

β2,0 = 2
0 0.000 0.000 0.000 0.000 –0.001 –0.001 –0.001 –0.001

(0.060) (0.060) (0.060) (0.060) (0.041) (0.041) (0.041) (0.041)

0.3 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001
(0.066) (0.066) (0.066) (0.066) (0.036) (0.035) (0.035) (0.035)

0.6 0.006 0.006 0.006 0.006 0.002 0.002 0.002 0.002
(0.058) (0.058) (0.058) (0.058) (0.029) (0.029) (0.029) (0.029)

0.9 0.005 0.005 0.005 0.005 0.001 0.002 0.002 0.002
(0.055) (0.055) (0.055) (0.055) (0.026) (0.026) (0.026) (0.026)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1. SGI accuracy is 2, which implies that 11
and 51 integration nodes are used for T = 6, and T = 26 respectively. Values for the bias larger than
0.05 in absolute value are in bold.
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For the other level parameters we see a similar pattern. There are no large biases and

the standard deviations are smaller when T = 26 compared to T = 6. Increasing β2,0

leads to a decrease in the standard deviation for β1,1. A change in β2,0 does not have any

effect on the information we have about the discrete outcome equation, so the standard

deviations for β2,0, β2,1, and β2,2 do not show this pattern.

In addition, we see for β2,0 and β2,2 in tables 3.14 and 3.16 that the standard deviation

for the estimated parameter is smaller when we use sparse grids and φ = 0. This suggests

that in that case, sparse grids result in a more accurate approximation of the log-likelihood

in terms of variance than the other three methods.

Tables 3.17, 3.18, and 3.19, show the bias in the parameters related to the AR(1)

process, σξ0 , σε, and φ. From these tables we do not see a lot of bias in the estimates

for parameter φ, but the bias in σξ0 and σε is substantial for some combinations of the

parameters. The bias is largest when φ is small, and the bias decreases if φ increases. The

bias is also smaller if β20 is larger, i.e if there are more continuous outcomes observed.

Also, the bias is smaller if T = 26, compared to T = 26. Finally, the bias is larger when

sparse grids are used to approximate the integral.

The parameter σε denotes the standard deviation of the innovations to the auto-

regressive process. The difference between the persistence over time for the AR(1) process

and the MA(1) process identifies this parameter and θ1 and θ2, the parameters in the

moving average process. If the persistence of the AR(1) process is low, i.e. when φ is

small, the difference between these processes is difficult to pick up from a short sample.

This problem get worse when the panel is shorter, T = 6 versus T = 26, or when there

are fewer continuous outcomes that add information, β20 is smaller.

To check whether the bias that we see is due to a bad approximation of the integral

or due to the small sample that is available, I run an additional experiment. In this

experiment I use β20 = −1 and φ = 0 to generate data for 500 or 2000 individuals. The

number of periods is T = 6. I estimate the parameters from these datasets using sparse

grid integration and Halton sequences with three different levels of accuracy. The results

are shown in table 3.20.

We see from this table that increasing the accuracy does not improve the bias. However,
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Table 3.17 – Bias in σξ0 for different values of β2,0 and φ

T = 6, xD integration T = 26, xD integration

SGI MC Halton Halton SGI MC Halton Halton
φ shuffled shuffled

β2,0 = −1
0 –0.026 –0.015 –0.016 –0.015 –0.042 –0.026 –0.026 –0.025

(0.160) (0.165) (0.166) (0.166) (0.138) (0.143) (0.142) (0.142)

0.3 –0.063 –0.051 –0.051 –0.051 –0.051 –0.037 –0.035 –0.035
(0.148) (0.150) (0.150) (0.150) (0.143) (0.140) (0.139) (0.139)

0.6 –0.039 –0.034 –0.033 –0.033 0.008 –0.004 –0.004 –0.004
(0.139) (0.139) (0.138) (0.138) (0.096) (0.099) (0.099) (0.099)

0.9 –0.023 –0.026 –0.021 –0.022 –0.005 0.000 0.002 0.001
(0.095) (0.096) (0.095) (0.095) (0.064) (0.065) (0.064) (0.064)

β2,0 = 0
0 –0.040 –0.035 –0.036 –0.036 –0.027 –0.018 –0.017 –0.018

(0.136) (0.138) (0.137) (0.137) (0.123) (0.125) (0.125) (0.124)

0.3 –0.040 –0.034 –0.035 –0.035 –0.026 –0.020 –0.019 –0.019
(0.136) (0.137) (0.135) (0.135) (0.122) (0.119) (0.119) (0.119)

0.6 –0.020 –0.020 –0.018 –0.018 0.007 0.001 0.001 0.001
(0.111) (0.111) (0.110) (0.110) (0.075) (0.076) (0.076) (0.076)

0.9 –0.021 –0.020 –0.018 –0.018 –0.005 0.002 0.003 0.003
(0.073) (0.073) (0.073) (0.073) (0.051) (0.051) (0.051) (0.051)

β2,0 = 2
0 –0.019 –0.019 –0.019 –0.019 –0.012 –0.012 –0.012 –0.012

(0.109) (0.109) (0.109) (0.109) (0.098) (0.098) (0.098) (0.098)

0.3 –0.022 –0.022 –0.022 –0.022 –0.010 –0.010 –0.010 –0.010
(0.111) (0.111) (0.111) (0.111) (0.092) (0.091) (0.091) (0.091)

0.6 –0.013 –0.013 –0.013 –0.013 0.001 0.001 0.001 0.001
(0.077) (0.077) (0.077) (0.077) (0.060) (0.060) (0.060) (0.060)

0.9 –0.002 –0.002 –0.001 –0.001 0.000 0.000 0.000 0.000
(0.054) (0.054) (0.054) (0.054) (0.042) (0.042) (0.042) (0.042)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard devi-
ation in parentheses. Dimension of integration is T − 1. SGI accuracy is 2, which implies that 11 and 51
integration nodes are used for T = 6, and T = 26 respectively. Values for the bias larger than 0.05 in
absolute value are in bold.
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Table 3.18 – Bias in σε for different values of β2,0 and φ

T = 6, xD integration T = 26, xD integration

SGI MC Halton Halton SGI MC Halton Halton
φ shuffled shuffled

β2,0 = −1
0 –0.190 –0.163 –0.164 –0.161 –0.168 –0.124 –0.123 –0.121

(0.299) (0.305) (0.306) (0.305) (0.265) (0.264) (0.262) (0.262)

0.3 –0.213 –0.179 –0.182 –0.181 –0.166 –0.120 –0.113 –0.112
(0.285) (0.285) (0.286) (0.285) (0.256) (0.236) (0.231) (0.230)

0.6 –0.080 –0.074 –0.076 –0.076 0.009 –0.008 –0.009 –0.009
(0.205) (0.203) (0.202) (0.202) (0.089) (0.089) (0.089) (0.089)

0.9 –0.042 –0.045 –0.047 –0.047 0.020 0.001 0.000 0.000
(0.126) (0.128) (0.126) (0.126) (0.025) (0.027) (0.027) (0.027)

β2,0 = 0
0 –0.152 –0.139 –0.140 –0.140 –0.130 –0.103 –0.101 –0.103

(0.279) (0.281) (0.280) (0.280) (0.254) (0.250) (0.249) (0.249)

0.3 –0.140 –0.124 –0.126 –0.126 –0.078 –0.057 –0.055 –0.055
(0.265) (0.263) (0.260) (0.260) (0.194) (0.177) (0.175) (0.175)

0.6 –0.038 –0.038 –0.038 –0.038 0.007 –0.002 –0.003 –0.003
(0.140) (0.139) (0.139) (0.139) (0.063) (0.064) (0.064) (0.064)

0.9 –0.025 –0.026 –0.026 –0.026 0.004 0.001 0.000 0.001
(0.092) (0.092) (0.092) (0.092) (0.020) (0.020) (0.020) (0.020)

β2,0 = 2
0 –0.100 –0.100 –0.100 –0.100 –0.075 –0.074 –0.075 –0.075

(0.251) (0.251) (0.251) (0.251) (0.219) (0.217) (0.218) (0.218)

0.3 –0.099 –0.098 –0.098 –0.098 –0.024 –0.024 –0.024 –0.024
(0.224) (0.223) (0.224) (0.224) (0.118) (0.117) (0.117) (0.117)

0.6 –0.022 –0.022 –0.022 –0.022 0.000 0.000 0.000 0.000
(0.089) (0.089) (0.089) (0.089) (0.047) (0.047) (0.047) (0.047)

0.9 –0.005 –0.005 –0.005 –0.005 0.000 0.000 0.000 0.000
(0.062) (0.062) (0.062) (0.062) (0.015) (0.015) (0.015) (0.015)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard deviation
in parentheses. Dimension of integration is T − 1. SGI accuracy is 2, which implies that 11 and 51
integration nodes are used for T = 6, and T = 26 respectively. Values for the bias larger than 0.05 in
absolute value are in bold.
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Table 3.19 – Bias in φ for different values of β2,0 and φ

T = 6, xD integration T = 26, xD integration

SGI MC Halton Halton SGI MC Halton Halton
φ shuffled shuffled

β2,0 = −1
0 –0.009 –0.004 –0.005 –0.006 –0.005 0.002 0.000 0.000

(0.211) (0.217) (0.217) (0.217) (0.210) (0.221) (0.220) (0.220)

0.3 –0.025 –0.011 –0.011 –0.010 –0.009 0.014 0.015 0.016
(0.192) (0.191) (0.190) (0.189) (0.176) (0.169) (0.169) (0.167)

0.6 0.004 0.011 0.013 0.013 –0.025 0.004 0.005 0.005
(0.107) (0.106) (0.107) (0.107) (0.058) (0.059) (0.059) (0.059)

0.9 0.011 0.012 0.013 0.013 –0.011 –0.001 0.000 0.000
(0.050) (0.050) (0.050) (0.050) (0.009) (0.009) (0.009) (0.009)

β2,0 = 0
0 0.009 0.011 0.011 0.011 0.002 0.005 0.004 0.004

(0.139) (0.143) (0.143) (0.143) (0.136) (0.140) (0.140) (0.140)

0.3 –0.001 0.003 0.006 0.006 0.007 0.016 0.016 0.016
(0.120) (0.123) (0.119) (0.119) (0.098) (0.094) (0.094) (0.094)

0.6 0.007 0.011 0.012 0.012 –0.011 0.002 0.002 0.003
(0.067) (0.067) (0.067) (0.067) (0.040) (0.041) (0.041) (0.041)

0.9 0.007 0.007 0.008 0.008 –0.002 0.000 0.000 0.000
(0.039) (0.038) (0.038) (0.038) (0.008) (0.007) (0.007) (0.007)

β2,0 = 2
0 0.001 0.001 0.001 0.001 0.004 0.004 0.004 0.004

(0.093) (0.093) (0.093) (0.093) (0.091) (0.091) (0.091) (0.091)

0.3 0.008 0.008 0.008 0.008 0.011 0.012 0.012 0.012
(0.069) (0.069) (0.069) (0.069) (0.057) (0.057) (0.057) (0.057)

0.6 0.008 0.008 0.008 0.008 0.001 0.001 0.001 0.001
(0.045) (0.045) (0.045) (0.045) (0.030) (0.030) (0.030) (0.030)

0.9 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
(0.027) (0.027) (0.027) (0.027) (0.006) (0.006) (0.006) (0.006)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1. SGI accuracy is 2, which implies that 11
and 51 integration nodes are used for T = 6, and T = 26 respectively. Values for the bias larger than
0.05 in absolute value are in bold.
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when we increase the number of observations from 500 to 2000 individuals, the bias drops

by about 50% for sparse grid integration and more than 50% for the Halton sequences. It

is therefore likely that the bias that we see is not due to the accuracy of the approximation

of the integral, but is instead due to the small number of observations that our synthetic

sample has.

Table 3.20 – Bias in σε for different values of N

No. of N = 500 N = 2000

Accuracy Points SGI Halton SGI Halton

2 11 –0.190 –0.164 –0.100 –0.069
(0.299) (0.306) (0.226) (0.218)

3 51 –0.191 –0.161 –0.100 –0.072
(0.298) (0.306) (0.226) (0.220)

4 151 –0.167 –0.162 –0.080 –0.073
(0.305) (0.306) (0.224) (0.222)

Mean bias is shown based on 500 replications of simulated datasets with 500 and 2000
individuals, standard deviation in parentheses. Dimension of integration is T − 1. The
number of periods is, T = 6. Parameters values used for simulation are β20 = −1.0
and φ = 0.0. Values for the bias larger than 0.05 in absolute value are in bold.

In table 3.21 and 3.22 we see some bias in the parameter estimates for θ1 and θ2. For

T = 26, β20 = −1 and β20 = 0 the bias is larger when φ is large and sparse grids are used

for the approximation. This suggests that when the correlation between the unobservables

is high, sparse grids result in a poorer approximation than the other methods. No large

biases are found for ρ in table 3.23, except that sparse grid integration performs slightly

worse than the other methods in some cases.

I run a second experiment to directly compare the differences in the approximation

between the different methods, similar to the second experiment in the previous section,

which considers the random effect model. Again, we simulate outcome data for 1000 indi-

viduals, and compare the log-likelihood that we get from different approximation methods

with the ‘true’ log-likelihood. The ‘true’ log-likelihood is obtained using pseudo Monte

Carlo integration with 1,000,000 draws. A subset of the results from the experiments is

shown in tables 3.24, 3.25, and 3.26, for T = 6, T = 16, and T = 26 respectively. Results

are shown for β20 ∈ {−1, 0, 2}, and φ ∈ {0.3, 0.9}.

In all three tables we see that if we keep the number of integration points and the
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Table 3.21 – Bias in θ1 for different values of β2,0 and φ

T = 6, xD integration T = 26, xD integration

SGI MC Halton Halton SGI MC Halton Halton
φ shuffled shuffled

β2,0 = −1
0 –0.009 –0.026 –0.026 –0.027 0.025 –0.005 –0.006 –0.008

(0.206) (0.216) (0.218) (0.218) (0.148) (0.164) (0.165) (0.166)

0.3 0.028 0.008 0.007 0.007 0.034 0.000 –0.004 –0.004
(0.209) (0.206) (0.207) (0.207) (0.181) (0.181) (0.180) (0.179)

0.6 –0.024 –0.030 –0.028 –0.028 –0.055 –0.038 –0.036 –0.036
(0.190) (0.189) (0.188) (0.188) (0.136) (0.134) (0.133) (0.133)

0.9 –0.030 –0.020 –0.019 –0.019 –0.092 –0.021 –0.018 –0.018
(0.166) (0.168) (0.167) (0.167) (0.085) (0.078) (0.076) (0.077)

β2,0 = 0
0 –0.001 –0.013 –0.013 –0.012 0.012 –0.007 –0.009 –0.008

(0.172) (0.180) (0.179) (0.179) (0.144) (0.152) (0.153) (0.152)

0.3 –0.007 –0.021 –0.019 –0.019 –0.007 –0.024 –0.025 –0.025
(0.195) (0.197) (0.193) (0.193) (0.168) (0.163) (0.163) (0.163)

0.6 –0.035 –0.034 –0.034 –0.034 –0.042 –0.031 –0.030 –0.030
(0.162) (0.162) (0.162) (0.162) (0.112) (0.110) (0.110) (0.110)

0.9 –0.020 –0.016 –0.016 –0.016 –0.026 –0.010 –0.009 –0.009
(0.139) (0.138) (0.139) (0.139) (0.054) (0.050) (0.049) (0.049)

β2,0 = 2
0 –0.015 –0.015 –0.015 –0.015 –0.010 –0.010 –0.010 –0.010

(0.152) (0.152) (0.152) (0.152) (0.130) (0.130) (0.131) (0.131)

0.3 –0.017 –0.018 –0.018 –0.018 –0.026 –0.027 –0.027 –0.027
(0.173) (0.173) (0.173) (0.173) (0.136) (0.135) (0.135) (0.135)

0.6 –0.024 –0.024 –0.024 –0.024 –0.018 –0.017 –0.017 –0.017
(0.136) (0.136) (0.136) (0.136) (0.079) (0.079) (0.079) (0.079)

0.9 –0.025 –0.025 –0.025 –0.025 –0.002 –0.002 –0.002 –0.002
(0.109) (0.110) (0.109) (0.109) (0.029) (0.029) (0.029) (0.029)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1. SGI accuracy is 2, which implies that 11
and 51 integration nodes are used for T = 6, and T = 26 respectively. Values for the bias larger than
0.05 in absolute value are in bold.
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Table 3.22 – Bias in θ2 for different values of β2,0 and φ

T = 6, xD integration T = 26, xD integration

SGI MC Halton Halton SGI MC Halton Halton
φ shuffled shuffled

β2,0 = −1
0 –0.004 0.010 0.013 0.012 –0.001 –0.002 –0.002 –0.003

(0.157) (0.165) (0.168) (0.169) (0.085) (0.100) (0.102) (0.102)

0.3 0.027 0.024 0.021 0.021 0.029 0.006 0.002 0.002
(0.179) (0.186) (0.184) (0.185) (0.145) (0.152) (0.153) (0.152)

0.6 –0.007 –0.007 –0.006 –0.006 –0.050 –0.032 –0.030 –0.030
(0.203) (0.202) (0.202) (0.202) (0.135) (0.133) (0.133) (0.133)

0.9 –0.023 –0.012 –0.012 –0.012 –0.080 –0.018 –0.015 –0.015
(0.188) (0.189) (0.189) (0.189) (0.099) (0.092) (0.090) (0.091)

β2,0 = 0
0 –0.011 –0.011 –0.013 –0.012 –0.001 –0.008 –0.009 –0.008

(0.103) (0.108) (0.110) (0.110) (0.078) (0.084) (0.086) (0.085)

0.3 –0.007 –0.014 –0.016 –0.016 –0.007 –0.021 –0.022 –0.022
(0.161) (0.163) (0.162) (0.162) (0.136) (0.134) (0.134) (0.134)

0.6 –0.026 –0.025 –0.026 –0.026 –0.038 –0.028 –0.027 –0.027
(0.162) (0.162) (0.162) (0.162) (0.111) (0.109) (0.109) (0.109)

0.9 –0.013 –0.008 –0.009 –0.009 –0.019 –0.008 –0.007 –0.007
(0.150) (0.150) (0.150) (0.150) (0.063) (0.058) (0.058) (0.058)

β2,0 = 2
0 –0.021 –0.021 –0.020 –0.020 –0.015 –0.015 –0.015 –0.015

(0.094) (0.094) (0.094) (0.094) (0.078) (0.078) (0.079) (0.079)

0.3 –0.021 –0.022 –0.022 –0.022 –0.026 –0.027 –0.027 –0.027
(0.147) (0.147) (0.147) (0.147) (0.113) (0.113) (0.113) (0.113)

0.6 –0.024 –0.024 –0.025 –0.025 –0.016 –0.016 –0.016 –0.016
(0.138) (0.138) (0.138) (0.138) (0.079) (0.079) (0.079) (0.079)

0.9 –0.022 –0.022 –0.022 –0.022 –0.001 –0.001 –0.001 –0.001
(0.122) (0.122) (0.122) (0.122) (0.036) (0.036) (0.036) (0.036)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1. SGI accuracy is 2, which implies that 11
and 51 integration nodes are used for T = 6, and T = 26 respectively. Values for the bias larger than
0.05 in absolute value are in bold.
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Table 3.23 – Bias in ρ for different values of β2,0 and φ

T = 6, xD integration T = 26, xD integration

SGI MC Halton Halton SGI MC Halton Halton
φ shuffled shuffled

β2,0 = −1
0 0.000 –0.015 –0.015 –0.015 0.014 –0.001 –0.002 –0.002

(0.111) (0.118) (0.120) (0.120) (0.053) (0.061) (0.061) (0.061)

0.3 0.014 0.006 0.006 0.006 0.016 0.006 0.005 0.005
(0.087) (0.082) (0.082) (0.081) (0.055) (0.053) (0.052) (0.052)

0.6 0.003 0.002 0.003 0.003 –0.005 –0.001 –0.001 –0.001
(0.061) (0.060) (0.060) (0.060) (0.031) (0.031) (0.031) (0.031)

0.9 0.005 0.007 0.010 0.010 –0.029 –0.003 –0.002 –0.002
(0.050) (0.051) (0.050) (0.050) (0.020) (0.021) (0.021) (0.021)

β2,0 = 0
0 0.006 –0.002 –0.001 –0.001 0.009 0.000 0.000 0.000

(0.070) (0.076) (0.075) (0.075) (0.046) (0.049) (0.050) (0.049)

0.3 0.009 0.003 0.005 0.005 0.008 0.002 0.002 0.002
(0.065) (0.069) (0.063) (0.063) (0.041) (0.040) (0.040) (0.040)

0.6 0.002 0.003 0.003 0.003 –0.006 –0.002 –0.001 –0.001
(0.049) (0.049) (0.049) (0.049) (0.024) (0.024) (0.025) (0.025)

0.9 0.002 0.005 0.007 0.007 –0.015 –0.002 –0.002 –0.002
(0.038) (0.038) (0.038) (0.038) (0.015) (0.015) (0.015) (0.015)

β2,0 = 2
0 0.006 0.006 0.006 0.006 0.002 0.001 0.001 0.001

(0.062) (0.062) (0.062) (0.062) (0.043) (0.043) (0.043) (0.043)

0.3 0.010 0.009 0.010 0.010 0.001 0.001 0.001 0.001
(0.061) (0.061) (0.061) (0.061) (0.038) (0.038) (0.038) (0.038)

0.6 0.008 0.008 0.009 0.009 –0.002 –0.002 –0.002 –0.002
(0.058) (0.058) (0.058) (0.058) (0.030) (0.030) (0.030) (0.030)

0.9 0.000 0.001 0.001 0.001 –0.001 0.000 0.000 0.000
(0.041) (0.041) (0.041) (0.041) (0.018) (0.018) (0.018) (0.018)

Mean bias is shown based on 500 replications of simulated datasets with 500 individuals, standard
deviation in parentheses. Dimension of integration is T − 1. SGI accuracy is 2, which implies that 11
and 51 integration nodes are used for T = 6, and T = 26 respectively. Values for the bias larger than
0.05 in absolute value are in bold.
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approximation method fixed, the approximation has the least error when β20 = 2. The

difference between the approximation errors is smaller between β20 = 0 and β20 = −1, but

the errors are somewhat smaller when we observe more continuous outcomes, i.e. when

β20 = 0. Also, a higher correlation between the unobservables, φ = 0.9 compared to

φ = 0.3, corresponds to an increase in the approximation error.

When looking at the effect of an increase in accuracy we see again that the approxi-

mation error for sparse grid integration decreases in steps. This is especially clear when

T = 6 or T = 16. For accuracy 2 and 3, the approximation error is virtually the same.

Then the approximation error improves by almost a factor ten, when we go from accuracy

3 to 4. Increasing the accuracy further, to 5 and 6, does hardly show any improvement

over accuracy 4.

If we compare between approximation methods, we see that sparse grid integration

has the lowest approximation error for T = 6 and T = 16 when a small number of nodes

is used, accuracy is 2. In some cases this method has a factor 10 lower approximation

error. However, when we increase the number of integration points, Halton sequences often

perform better, especially in the more difficult cases, e.g when β20 = −1 or φ = 0.9. Again,

shuffled Halton sequences do not show an improvement over regular Halton sequences.

3.6 Conclusion

In this paper I formulated a model with multiple continuous and discrete outcomes and

I gave some examples of the dependence structure that could generate the underlying

latent variables. If the unobservable elements in the model are random draws from the

normal distribution, the multi-dimensional integral entering the log-likelihood, can be

approximated using the GHK simulator.

Instead of using pseudo-random draws from the uniform distribution to use in com-

bination with the GHK simulator, I follow Heiss (2010) and use sparse grids and Halton

sequences. In two models with different error structures I compare the performance of

these methods to pseudo-random draws. Similar to Heiss (2010), I compare the approxi-

mations of the log-likelihood that we obtain using different numbers of integration nodes

to the ‘true’ log-likelihood at a fixed value for the parameters. My conclusion is somewhat
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Table 3.24 – MAPE of log-likelihood approximation, T = 6

No. of Halton
Accuracy points SGI MC Halton shuffled

β2,0 = −1, φ = 0.3
2 11 3.93 × 10−2 3.45 × 10−1 1.90 × 10−1 1.88 × 10−1

3 51 3.96 × 10−2 1.60 × 10−1 5.82 × 10−2 5.87 × 10−2

4 151 5.92 × 10−3 9.25 × 10−2 2.15 × 10−2 2.19 × 10−2

5 391 6.06 × 10−3 5.94 × 10−2 9.55 × 10−3 9.84 × 10−3

6 903 6.06 × 10−3 3.90 × 10−2 5.32 × 10−3 5.42 × 10−3

β2,0 = −1, φ = 0.9
2 11 2.18 × 10−1 1.90 × 10+0 8.65 × 10−1 8.54 × 10−1

3 51 2.54 × 10−1 8.33 × 10−1 2.05 × 10−1 2.16 × 10−1

4 151 2.43 × 10−2 4.88 × 10−1 7.90 × 10−2 9.36 × 10−2

5 391 3.53 × 10−2 3.16 × 10−1 3.49 × 10−2 4.54 × 10−2

6 903 3.48 × 10−2 2.11 × 10−1 1.75 × 10−2 2.52 × 10−2

β2,0 = 0, φ = 0.3
2 11 1.56 × 10−2 1.38 × 10−1 6.46 × 10−2 6.44 × 10−2

3 51 1.58 × 10−2 6.50 × 10−2 2.35 × 10−2 2.38 × 10−2

4 151 2.09 × 10−3 3.72 × 10−2 7.97 × 10−3 7.94 × 10−3

5 391 2.16 × 10−3 2.28 × 10−2 3.52 × 10−3 3.58 × 10−3

6 903 2.15 × 10−3 1.56 × 10−2 1.96 × 10−3 2.05 × 10−3

β2,0 = 0, φ = 0.9
2 11 1.21 × 10−1 6.70 × 10−1 2.86 × 10−1 2.91 × 10−1

3 51 1.23 × 10−1 2.60 × 10−1 7.73 × 10−2 8.00 × 10−2

4 151 1.64 × 10−2 1.70 × 10−1 2.92 × 10−2 3.10 × 10−2

5 391 1.68 × 10−2 1.03 × 10−1 1.37 × 10−2 1.66 × 10−2

6 903 1.68 × 10−2 7.01 × 10−2 6.18 × 10−3 9.57 × 10−3

β2,0 = 2, φ = 0.3
2 11 5.56 × 10−4 4.03 × 10−3 2.25 × 10−3 2.29 × 10−3

3 51 5.56 × 10−4 2.17 × 10−3 6.71 × 10−4 6.77 × 10−4

4 151 6.71 × 10−5 1.33 × 10−3 2.65 × 10−4 2.72 × 10−4

5 391 6.71 × 10−5 6.85 × 10−4 1.03 × 10−4 1.06 × 10−4

6 903 6.71 × 10−5 4.16 × 10−4 8.27 × 10−5 9.22 × 10−5

β2,0 = 2, φ = 0.9
2 11 4.92 × 10−3 2.68 × 10−2 1.39 × 10−2 1.41 × 10−2

3 51 4.78 × 10−3 9.98 × 10−3 3.29 × 10−3 3.35 × 10−3

4 151 7.24 × 10−4 6.76 × 10−3 1.42 × 10−3 1.44 × 10−3

5 391 6.80 × 10−4 4.12 × 10−3 5.19 × 10−4 5.39 × 10−4

6 903 6.80 × 10−4 3.29 × 10−3 3.22 × 10−4 3.80 × 10−4

The ‘true’ log-likelihood used to calculate the mean absolute percentage error (MAPE), is
based on xD Monte Carlo integration with 1,000,000 integration nodes.
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Table 3.25 – MAPE of log-likelihood approximation, T = 16

No. of Halton
Accuracy points SGI MC Halton shuffled

β2,0 = −1, φ = 0.3
2 31 3.68 × 10−2 1.17 × 10−1 1.01 × 10−1 1.01 × 10−1

3 451 3.79 × 10−2 2.97 × 10−2 1.43 × 10−2 1.41 × 10−2

4 4151 5.13 × 10−3 1.02 × 10−2 1.71 × 10−3 1.75 × 10−3

5 27671 5.61 × 10−3 3.99 × 10−3 7.36 × 10−4 7.90 × 10−4

6 145607 5.61 × 10−3 1.79 × 10−3 6.59 × 10−4 6.70 × 10−4

β2,0 = −1, φ = 0.9
2 31 3.56 × 10−1 6.87 × 10−1 4.43 × 10−1 4.48 × 10−1

3 451 3.44 × 10−1 1.87 × 10−1 5.79 × 10−2 7.67 × 10−2

4 4151 6.06 × 10−2 6.18 × 10−2 8.22 × 10−3 1.91 × 10−2

5 27671 4.88 × 10−2 2.30 × 10−2 3.98 × 10−3 7.43 × 10−3

6 145607 5.16 × 10−2 1.11 × 10−2 3.94 × 10−3 4.99 × 10−3

β2,0 = 0, φ = 0.3
2 31 1.77 × 10−2 6.17 × 10−2 5.55 × 10−2 5.56 × 10−2

3 451 1.84 × 10−2 1.64 × 10−2 7.26 × 10−3 7.11 × 10−3

4 4151 2.20 × 10−3 5.38 × 10−3 8.78 × 10−4 9.34 × 10−4

5 27671 2.46 × 10−3 2.12 × 10−3 3.81 × 10−4 3.97 × 10−4

6 145607 2.46 × 10−3 9.73 × 10−4 3.42 × 10−4 3.45 × 10−4

β2,0 = 0, φ = 0.9
2 31 1.75 × 10−1 2.35 × 10−1 1.67 × 10−1 1.73 × 10−1

3 451 1.36 × 10−1 6.41 × 10−2 2.25 × 10−2 2.79 × 10−2

4 4151 3.42 × 10−2 2.18 × 10−2 3.07 × 10−3 6.24 × 10−3

5 27671 2.09 × 10−2 8.25 × 10−3 1.45 × 10−3 2.50 × 10−3

6 145607 2.06 × 10−2 3.75 × 10−3 1.31 × 10−3 1.71 × 10−3

β2,0 = 2, φ = 0.3
2 31 7.47 × 10−4 4.08 × 10−3 2.57 × 10−3 2.56 × 10−3

3 451 7.50 × 10−4 9.90 × 10−4 3.47 × 10−4 3.46 × 10−4

4 4151 9.16 × 10−5 3.29 × 10−4 3.93 × 10−5 3.97 × 10−5

5 27671 9.24 × 10−5 1.33 × 10−4 2.20 × 10−5 2.21 × 10−5

6 145607 9.24 × 10−5 6.21 × 10−5 2.00 × 10−5 1.99 × 10−5

β2,0 = 2, φ = 0.9
2 31 7.78 × 10−3 1.73 × 10−2 1.21 × 10−2 1.19 × 10−2

3 451 7.03 × 10−3 4.69 × 10−3 1.52 × 10−3 1.63 × 10−3

4 4151 1.26 × 10−3 1.44 × 10−3 2.26 × 10−4 2.71 × 10−4

5 27671 1.02 × 10−3 5.77 × 10−4 1.09 × 10−4 1.30 × 10−4

6 145607 1.01 × 10−3 2.68 × 10−4 9.55 × 10−5 9.86 × 10−5

The ‘true’ log-likelihood used to calculate the mean absolute percentage error (MAPE), is
based on xD Monte Carlo integration with 1,000,000 integration nodes.
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Table 3.26 – MAPE of log-likelihood approximation, T = 26

No. of Halton
Accuracy points SGI MC Halton shuffled

β2,0 = −1, φ = 0.3
2 51 3.55 × 10−2 7.18 × 10−2 9.54 × 10−2 9.61 × 10−2

3 1251 3.74 × 10−2 1.36 × 10−2 6.93 × 10−3 6.78 × 10−3

4 19751 4.65 × 10−3 3.51 × 10−3 6.94 × 10−4 7.47 × 10−4

5 226951 5.49 × 10−3 1.19 × 10−3 5.00 × 10−4 5.07 × 10−4

β2,0 = −1, φ = 0.9
2 51 4.66 × 10−1 4.05 × 10−1 4.13 × 10−1 3.94 × 10−1

3 1251 3.39 × 10−1 8.03 × 10−2 3.96 × 10−2 4.56 × 10−2

4 19751 1.01 × 10−1 2.09 × 10−2 4.69 × 10−3 9.41 × 10−3

5 226951 5.38 × 10−2 6.85 × 10−3 3.08 × 10−3 3.94 × 10−3

β2,0 = 0, φ = 0.3
2 51 1.72 × 10−2 3.93 × 10−2 5.29 × 10−2 5.27 × 10−2

3 1251 1.83 × 10−2 8.29 × 10−3 3.68 × 10−3 3.68 × 10−3

4 19751 2.01 × 10−3 2.04 × 10−3 3.72 × 10−4 4.04 × 10−4

5 226951 2.44 × 10−3 6.62 × 10−4 2.87 × 10−4 2.90 × 10−4

β2,0 = 0, φ = 0.9
2 51 1.95 × 10−1 1.59 × 10−1 1.71 × 10−1 1.64 × 10−1

3 1251 1.37 × 10−1 3.20 × 10−2 1.58 × 10−2 1.67 × 10−2

4 19751 4.27 × 10−2 8.24 × 10−3 1.79 × 10−3 2.86 × 10−3

5 226951 2.32 × 10−2 2.64 × 10−3 1.17 × 10−3 1.41 × 10−3

β2,0 = 2, φ = 0.3
2 51 8.15 × 10−4 3.13 × 10−3 3.56 × 10−3 3.55 × 10−3

3 1251 8.18 × 10−4 6.39 × 10−4 2.57 × 10−4 2.53 × 10−4

4 19751 1.00 × 10−4 1.80 × 10−4 3.24 × 10−5 3.16 × 10−5

5 226951 1.01 × 10−4 5.36 × 10−5 2.29 × 10−5 2.28 × 10−5

β2,0 = 2, φ = 0.9
2 51 6.48 × 10−3 1.11 × 10−2 1.14 × 10−2 1.15 × 10−2

3 1251 5.86 × 10−3 2.23 × 10−3 1.01 × 10−3 1.04 × 10−3

4 19751 1.04 × 10−3 5.84 × 10−4 1.09 × 10−4 1.23 × 10−4

5 226951 8.44 × 10−4 1.77 × 10−4 8.02 × 10−5 7.88 × 10−5

The ‘true’ log-likelihood used to calculate the mean absolute percentage error (MAPE), is
based on xD Monte Carlo integration with 1,000,000 integration nodes.

187



CHAPTER 3. INTEGRATION METHODS FOR DYNAMIC SELECTION MODELS

different from Heiss (2010). He sees strong benefits of using sparse grid integration in all

cases, where my experiments show that sparse grid integration works better than the other

methods if only a few number of nodes are used. When more nodes are used or when the

correlation between the unobservables is high, Halton sequences are preferred.

In a separate experiment, I find the parameters that maximize the log-likelihood for

different sets of simulated data. In those experiments I keep the number of integration

nodes that I use to approximate the integral the same. These experiments show that for

the random effects model 1D approximation of the integrals does not work well if a small

number of nodes is used. This results in biased estimates for the variance parameters,

even when Gauss-Hermite quadrature is used. With the same number of integration

nodes, xD integration does not result in biased estimates. When we increase the number

of nodes, the approximation error for 1D integration decreases much more rapidly than

the approximation error for xD integration. Care has to be taken in choosing the number

of nodes when using 1D integration to approximate the log-likelihood in a random effects

model. If a higher-dimensional integral has to be approximated, because data from more

periods is available, a higher number of nodes is required to ensure a high enough accuracy

for the approximation.

For the xD integration methods we do not find substantial differences in the bias of the

parameters between the different approximation methods. Even though Halton sequences

and sparse grid integration provide more accurate approximations to the log-likelihood

than pseudo Monte Carlo integration with the same number of nodes, on average only

very small differences can be found in the actual values for the parameters that maximize

the likelihood.

There are two possible explanations for this. The mean average percentage error is

for almost all approximation methods smaller than one percent. The differences in ap-

proximation error could be too small to have a noticeable effect on the set of parameters

that maximize the log-likelihood. As a second reason, this could be the result of how the

synthetic datasets are constructed. The observable variables, x1,it and x2,it, are generated

from the normal distribution. Perhaps, when summing over the log-likelihood contribu-

tions of every individual, we are averaging out approximation errors. This averaging out
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would potentially not happen when the covariates that enter the model follow a different

distribution, which is almost always the case in practice. In practice, it is a good idea to

run a similar experiment assessing the performance of the different approximation meth-

ods using the same data that will be used for the actual estimation. This will give a good

sense for which method works better for that particular dataset and model.
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Börsch-Supan, A., & Hajivassiliou, V. A. (1993). Smooth unbiased multivariate probability

190



BIBLIOGRAPHY

simulators for maximum likelihood estimation of limited dependent variable models.

Journal of Econometrics, 58 (3), 347–368.

Browning, M., Ejrnæs, M., & Alvarez, J. (2010). Modelling Income Processes with Lots

of Heterogeneity. Review of Economic Studies, 77 (4), 1353–1381.

Butler, J. S., & Moffitt, R. (1982, May). A Computationally Efficient Quadrature Proce-

dure for the One-Factor Multinomial Probit Model. Econometrica, 50 (3), 761–764.

Byrd, R. H., Nocedal, J., & Waltz, R. A. (2006). KNITRO: An integrated package

for nonlinear optimization. In Large scale nonlinear optimization, 35-59, 2006 (pp.

35–59). Springer Verlag.

Dickens, R. (2000, January). The Evolution of Individual Male Earnings in Great Britain:

1975–95. The Economic Journal , 110 (460), 27–49.
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