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Estimation of regression
quantiles in complex surveys
with data missing at random:
An application to birthweight
determinants

Marco Geraci

Abstract

The estimation of population parameters using complex survey data requires careful statistical modelling

to account for the design features. This is further complicated by unit and item nonresponse for which a

number of methods have been developed in order to reduce estimation bias. In this paper, we address

some issues that arise when the target of the inference (i.e. the analysis model or model of interest) is the

conditional quantile of a continuous outcome. Survey design variables are duly included in the analysis and

a bootstrap variance estimation approach is proposed. Missing data are multiply imputed by means of

chained equations. In particular, imputation of continuous variables is based on their empirical distribution,

conditional on all other variables in the analysis. This method preserves the distributional relationships in

the data, including conditional skewness and kurtosis, and successfully handles bounded outcomes. Our

motivating study concerns the analysis of birthweight determinants in a large UK-based cohort of

children. A novel finding on the parental conflict theory is reported. R code implementing these

procedures is provided.
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1 Introduction

This paper offers general guidance for conducting quantile regression (QR) analysis of complex
survey data. We start considering the case in which regression quantiles are estimated from a sample
of observations taken from a finite population using a complex design. We then consider estimation
issues that arise when several variables of interest are partially observed. Our motivating example is
a study of determinants of birthweight in children of the UK Millennium Cohort Study (MCS), a
longitudinal survey of British children born at the beginning of the 21st century.1
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Conditional quantiles for continuous response variables2 have a long history in econometrics and
they have been applied in many other research fields.3 Their ability to model the location, scale and
shape of the observed distribution of the response variable conditional on a set of predictors offers
the opportunity to investigate a wide range of effects that location-shift models are unable to handle.
In addition, QR is inherently robust to outliers in the outcome and mathematically flexible in
handling transformations of the response variable that can be exploited for a variety of
purposes.4–7 In contrast, ordinary least squares methods can overshadow important associations
between the predictors and the outcome distribution.

There are a number of models for conditional quantiles which, in a sense, mirror regression
models that have been developed for the estimation of the location parameter, including
parametric, nonparametric8–10 and semiparametric11 models, linear and nonlinear models and
models for discrete4,12 and survival data.13 An overview of QR inferential and computational
issues is given in Koenker’s monograph.14

The number of applications of QR in medicine has increased in recent years. In particular, QR
has been applied in paediatric research where both methodological and applied studies have led to
improvements on several fronts, including the understanding of birthweight determinants,15–19 child
growth and obesity,20–24 malnutrition,25 cancer aetiology26 and hypertension,27 where the common
denominator is the analysis of the tails of distributions of variables strongly associated with adverse
health risks (e.g. birthweight and blood pressure).

The data used in these studies generally come from hospital registrations and national healthcare
systems data collections. However, data from population-based multi-purpose surveys are another
important source of information since they provide details on health and socioeconomic conditions
of children, their families and the environment in which they live. Moreover, longitudinal surveys
allow exploring the impact of early life exposures on long-term health outcomes from a life course
perspective.

The analysis of survey data involves the estimation of population parameters and related
measures of uncertainty by using models that handle design features such as probability sampling
weights, stratification and cluster sampling. Accounting for unequal inclusion probabilities is
necessary in order to obtain consistent estimates. A number of methodological advances have
been made in the development of multivariable models for correlational studies including linear,
logistic and probit regression models, survival analysis models and structural equation models.28

The estimation of finite population quantiles has attracted much attention in the literature of survey
analysis29–32 and, recently, a general asymptotic theory for nondifferentiable survey estimators,
including sample quantile estimators, has been proposed.33 In general, there are few applications
of QR in studies based on complex survey data.34,35

Inference for survey estimators is further complicated by nonresponse, a common problem in
survey studies. This can affect all items of the survey for units who do not respond or refuse to
participate in an interview (unit nonresponse), although some information for those units is typically
available prior to interview and can be used for nonresponse adjustments; or it can involve only
certain items due to early drop-out from the study, or questionnaire items filled with ‘don’t know’ or
‘refused’ (item nonresponse).36 The reduction of available information that follows from
nonresponse has effects of varying gravity, depending on the type and degree of missingness. The
much-celebrated Little and Rubin’s classification of missing data37 clarifies the conditions under
which inference can lead to estimation bias if the missing process is not taken into account. In
particular, missing at random (MAR) assumptions are often introduced and their tenability may be
sustained by sensible modelling choices. MAR mechanisms can be thought as a middle-way between
missing completely at random (MCAR) and missing not at random (MNAR) mechanisms.
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Here, we consider a multiple imputation (MI) strategy based on sequential conditional
regressions as opposed to joint modelling.38 The former approach avoids specifying a joint
distribution for the imputation model by using a sequence of conditional specifications for each
variable whose missing values are to be imputed. This strategy is advantageous when several
variables, continuous and discrete, are included in the analysis model. In particular, missing
values of continuous variables are imputed using conditional quantile models.39 A distribution-
free imputation procedure based on nonparametric kernel regression to estimate the distribution
function and quantiles of an incomplete response variable under MAR assumptions has been
developed.40 Other approaches to apply QR in the presence of missing data have been proposed.41–43

The rest of the paper is organized as follows. In Section 2, we describe the MCS data and the
sampling design. In Section 3, we introduce the model of interest and related methods of analysis,
including a complete case analysis of the MCS birthweight determinants. We then present an
imputation procedure for when nonmonotone missingness affects both continuous and discrete
variables, followed by a simulation study to assess the imputation models (Section 4). We
conclude with an MI analysis of the MCS birthweight determinants (Section 5) and final remarks
(Section 6).

The code to run the simulation study and the MCS analyses was written in R44 and the following
packages were used: survey,45,46 quantreg47 and mice.48 Additional R code for custom-defined
functions to implement the methods proposed in this paper is provided in Appendix B.

2 The data

The MCS is a longitudinal study of a cohort of UK children born between September 2000 and
January 2002.1 Here, we provide a background on its sampling design and briefly describe the data
selected for the analysis.

The survey population was defined as all children alive and living in the UK at age 9 months and
eligible to receive Child Benefit at that age49 (all UK residents qualify for Child Benefit if they have
children younger than 16 years). Details on the sampling population resulted from exclusion of
children who died before 9 months of age is given by Cullis.50 The population was stratified by UK
country and, in order to adequately represent disadvantaged and ethnic minority children,
stratification by these variables within country was carried out using data available at the
electoral ward level.49 In particular, population in England was stratified by: ‘ethnic’, children
living in wards that, in the 1991 Census of Population, had an ethnic minority population of at
least 30% of the total; ‘disadvantaged’, children living in wards other than ‘ethnic’ which fell into the
upper quartile of the ward-based Child Poverty Index (i.e. poorest 25%) for England and Wales;
and ‘advantaged’, children not living in wards classified as ‘ethnic’ or ‘disadvantaged’. Wales,
Scotland and Northern Ireland populations were stratified by ‘disadvantaged’ and ‘advantaged’
wards.

Families were taken from a random sample of electoral wards, the primary sampling unit (PSU),
disproportionately stratified to ensure an adequate representation of disadvantaged areas and ethnic
minority groups. Details on the calculation of sampling weights and adjustment for unit
nonresponse are given by Plewis.49,51

Parents/guardians of the children were interviewed when the children were aged nine months,
three, five and seven years. We abstracted data from the first sweep of the survey on birthweight,
gestational age and sex of singletons for whom the main respondent at the interview and the
respondent’s partner were the natural parents. This gave information for 15,070 children, with
the main respondent being the mother in 15,060 cases. Additional information for the mothers
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comprised reported weight before pregnancy, reported height, age at delivery, parity, highest
educational degree attained (including GCSE, A-level/Diploma and academic), tobacco
consumption habits before, during and after pregnancy, marital status, ethnicity, antenatal care
received and diabetes status. Reported weight and height of children’s natural fathers were also
included. Some of the questionnaire items that were missing at the first sweep were retrieved from
either the second or the third sweep if available.

A summary of the dataset, including the number of missing values, is given in Table 1. The
number of incomplete cases (i.e. with at least one missing item) was 3066, 20% of the sample.
Paternal weight had the highest proportion of missing data (15%). For this variable and for
maternal weight, we replaced 30 outliers with missing values (more details in Section 5.4).

Table 1. Details of variables included in the analysis for 15,070 MCS children.

No. Variable Description Missing

Reference

value/baseline

Range/No.

categories

1 bw Birthweight (g) (response, positive

continuous)

37 390� 7230

2 gestAge Gestational age (weeks) (positive

continuous)

151 37 23� 42

3 weightm Weight of the mother (kg) (positive

continuous)

815a 64 34� 130

4 heightm Height of the mother (cm) (positive

continuous)

122 164 102� 206

5 weightf Weight of the father (kg) (positive

continuous)

2314a 82 41� 154

6 heightf Height of the father (cm) (positive

continuous)

1495 178 120� 213

7 age Mother’s age at delivery (years) (positive

continuous)

3 30 13� 49

8 parity Parity (counts) 0 0 0� 9

9 cigDecrease Reduction in number of cigarettes smoked

daily by the mother after knowing to be

pregnant (semi-continuous)

11 0 0� 60

10 IsSmoker Indicator variable for maternal smoking

(binary)

27 Non-smoker 2

11 IsNotEdu Indicator variable for maternal educational

level (binary)

54 GCSE or higher 2

12 IsGirl Indicator variable for female (binary) 0 Male 2

13 IsNotMarried Indicator variable for parents who are not

married (binary)

0 Married 2

14 IsNotWhite Indicator variable for maternal ethnicity

other than white (binary)

48 White 2

15 IsNotCare Indicator variable for mothers who did not

receive prenatal care (binary)

33 Care received 2

16 IsDiabetic Indicator variable for maternal diabetes

status (binary)

8 Non-diabetic 2

aIncluding missing values replacing outliers.
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Reference values or baselines and variable range or number of categories are detailed as they will be
used in subsequent analyses.

2.1 Survey weights and finite population correction

We now provide a brief note on additional sampling details. MCS sampling weights were calculated
proportionally to the fraction of electoral wards selected by systematic sampling of the population
wards ordered by size within strata. Although an implicit stratification by region and ward size was
introduced, this had a marginal design effect.49 It follows that children in the same stratum received
the same weight. Also, a second set of survey weights was calculated to adjust for unit nonresponse
in the issued sample. Unit nonresponse is a source of concern in this specific case. In fact, we might
expect that children with very low birthweights are not well represented in the MCS sample (e.g.
parents refused to participate as their child was receiving postnatal care) and, thus, that a MNAR
mechanism is at play. Also, infant mortality before 9 months of age50 may have introduced
additional upward bias in the left tail of the distribution. An approximate calculation based on
population birthweight data (further details available upon request) suggests that only 5� 6% of the
low birthweights not represented in the MCS sample may be accounted for by infants who died
before becoming eligible for the survey.

Unless explicitly stated, we will make use of sampling weights adjusted for unit nonresponse in all
subsequent analyses of the MCS data.

3 QR in complex surveys

3.1 Population model

Initially, we focus on the population model, assuming that all units have been completely observed.
Let y,X,Fð Þ be the data for a sample of size n taken from a population of size N, where y denotes an
n� 1 continuous response variable, X denotes a n� q set of predictors with row vectors x0i,
i ¼ 1, . . . , n and F collects sampling design variables. Also, let FyjX,F denote the unknown
cumulative distribution function of y given X,Fð Þ. Our inferential target is the population
conditional quantile function QyjX,F � F�1yjX,F . That is, we want to make a statement about
specific quantiles of the distribution of y conditional on predictors X and design F . Matrices will
be denoted with upper case bold letters (e.g. U), while column and row vectors with lower case bold
letters (e.g. u and u0). Depending on the context, the symbol � will be used interchangeably to
indicate ‘distributed as’, ‘approximately equal to’ or as response-covariate separator in a linear
model formula (e.g. y � x).

We will only consider the case in which F defines a stratified clustered design since this represents
the design that motivated our study. Let h ¼ 1, . . . ,H index population fixed strata and let mh be the
size of a sample of clusters (e.g. counties or electoral wards) randomly selected within stratum h
(these also represent PSUs in our modelling). Survey weights are introduced to account for selection
probability and, possibly, unit nonresponse. The following developments can be easily extended to
account for other designs.

Suppose that the sample y,Xð Þ was obtained under simple random sampling (SRS) without
replacement from a large N and n� N (i.e. sampling fraction very small) and that we wanted to
fit the p-th conditional quantile function

QyjX,F pð Þ ¼ Xb pð Þ, p 2 0, 1ð Þ, ð3:1Þ
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where b pð Þ is a q� 1 vector of regression coefficients indexed by p. If we ignore the unequal
sampling probability, the p-th regression quantile b pð Þ could be the estimated by minimizing the
loss function2

Xn
i¼1

�p yi � x0ib
� �

ð3:2Þ

with respect to b, where �p sð Þ ¼ s p� Iðs5 0Þ
� �

and s 2 R, and the standard inferential theory for
regression quantiles could be applied with some approximation. See Chatterjee32 for a recent
overview of inferential issues related to marginal quantiles estimated from samples in finite
populations.

With data obtained from designs more complex than SRS, the estimation of population statistics
and their uncertainty measures needs to take into account the design. Stratification and clustering
can in principle be adjusted for by including the relevant sampling variables in the linear predictor.
Generalized linear mixed models, for example, allow modelling the intra-class correlation due to
survey clustering by means of random effects. Alternatively, cluster-specific parameters can be
entered as fixed effects though care must be taken in controlling for standard error inflation
through some form of parameter shrinkage. QR methods for repeated and clustered data have
been proposed,52–54 although models for complex hierarchical structures (e.g. more than two
levels of nesting or cross-classified multilevel models) are yet to be developed. In general, dealing
with survey weights in hierarchical models can be challenging.28

Weighting in survey estimators is used to account for unequal inclusion probabilities assigned to
sample observations. In a QR context, we consider the following weighted loss function:

Xn
i¼1

wi�p yi � x0ib
� �

, ð3:3Þ

where wi are survey weights possibly adjusted for unit nonresponse.
The unknown regression coefficient b in (3.2) and (3.3) can be estimated, for example, using well-

developed linear programming algorithms47 or gradient search methods,55 which are
computationally fast. The former include classical simplex methods, suitable for problems of
small to moderate size, and interior-point methods, such as Frisch–Newton algorithms,56

recommended for large problems. As opposed to least squares estimators, quantile estimators
involve nondifferentiable functions of the quantities to be estimated. The usual Taylor
linearization used to obtain an approximate estimate of the variance of survey estimators cannot
therefore be applied. A practical way to overcome this computational issue is to use bootstrap
estimation. In Appendix A, we briefly describe the method proposed by Canty and Davison.57–59

We also discuss preliminary results using Wang and Opsomer’s33 approach.
Details on how to fit QR models by minimizing (3.3) and estimate bootstrap standard errors in R

are given in Appendix B. The application of these methods using the MCS data is described in the
following section.

3.2 Birthweight determinants

Birthweight has long been recognized as an important surrogate for infant well-being. In particular,
birthweight is a strong predictor of infant mortality and morbidity and thus provides a well-
established base for clinical indicators. Least squares methods are commonly used in birthweight
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analyses to assess the effects of determinants such as maternal health-related lifestyle habits (e.g.
smoking and diet) and environmental factors (e.g. pollution). Mean regression, however, is generally
unable to reveal effects of these determinants on the tails of the distribution which are of particular
interest since small and macrosomic babies are at increased risk of morbidity and mortality. At the
population level, studies in different countries show that birthweight follows approximately a
normal distribution with an elongated left tail. The latter is mostly explained by preterm babies
who tend to weigh less than babies born after 37 weeks of gestation. However, even at the
population level, conditional birthweight distributions may be far from normal and distributional
effects may be more complex than those explained by location-shift models.

Early QR analyses of population birthweight can be found in Abrevaya15 and Koenker and
Hallock60 who analysed birthweights for about 200,000 US babies from the Detailed Natality
Data (National Center for Health Statistics). In their analyses, the QR estimates associated with
factors such as maternal smoking, age and weight gain were not constant across the conditional
birthweight distribution, suggesting that these predictors may exert complex distributional effects.
Cases with missing data were excluded. See also Chernozhukov and Fernández-Val61 for an
interesting application of extremal QR (i.e. very low and very high quantiles) and Abrevaya and
Dahl16 for the analysis of panel data on maternally linked births which takes into account
unobserved characteristics of the mothers.

We are interested in estimating the quantiles of MCS birthweights conditional on determinants
listed in Table 1. Here, we follow a conditional approach for gestational age mindful that the latter is
a potential mediator of other effects. Joint modelling approaches to birthweight and gestational age
have been proposed.62 Figure 1 provides a breakdown of the birthweight histogram by gestational
age. As expected, the distribution is shifted to the left for preterm infants (5 37 weeks) and departs
from normality. Figure 1 also shows the histogram of gestational age, whose distribution is highly
asymmetric and leptokurtic.
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Figure 1. Left: histogram of birthweight. Children born at 37 weeks or later (white) and children born before term

(grey) are contrasted. Right: histogram of gestational age.
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We now proceed with a complete case analysis using the methods described in Section 3.1, under
MCAR assumptions. After excluding partially observed units, there were 12,004 observations
available for the analysis. The quantiles p ¼ 0:05 and p ¼ 0:01 of the observed birthweights were
equal to, respectively, 2410 and 1626 g, approximately corresponding to standard thresholds for low
(5 2500 g) and very low (5 1500 g) birthweight.

All continuous predictors were centred at their mean value, with the exception of gestational age
which was centred at 37 weeks. Moreover, parental weight and height were divided by their standard
deviation (internal standardization) to obtain z-scores. These scores were further reparametrized as
in Griffiths et al.63 to study the effects of differential parental weight and height contributions on
birthweight, namely the effect of the half difference ðw=hÞeighthd ¼ ðw=hÞeightm � ðw=hÞeightf

� �
=2

and the independent effect of the mean (i.e. sum) ðw=hÞeightsum ¼ ðw=hÞeightm þ ðw=hÞeightf.
We considered the following QR model:

Q pð Þ ¼ �0 pð Þ þ �1 pð ÞgestAgeþ �2 pð Þweighthd þ �3 pð Þweightsum þ �4 pð Þheighthd

þ �5 pð Þheightsum þ �6 pð Þageþ �7 pð Þparityþ �8 pð Þð�cigDecreaseÞ þ �9 pð ÞIsSmoker

þ �10 pð ÞIsNotEduþ �11 pð ÞIsGirlþ �12 pð ÞIsNotMarriedþ �13 pð ÞIsNotWhite

þ �14 pð ÞIsNotCareþ �15 pð ÞIsDiabetic:

ð3:4Þ

The intercept �0 pð Þ can be interpreted as the birthweight p-th quantile for male children born
at 37 weeks gestation from: married parents whose difference/mean weight/height z-scores are zero;
30-year-old, white, non-diabetic, zero-parity mothers with GCSE educational level or higher, who
are non-smokers and who received prenatal care.

A sequence of 21 regression quantiles, p 2 0:01, 0:05, 0:1, . . . , 0:9, 0:95, 0:99f g, was then obtained
using the methods illustrated in Section 3.1. In particular, the loss function (3.3) was weighted using
MCS sampling weights. Since sampling fractions were as high as 18% due to oversampling, variance
estimates were adjusted with a finite population correction. A bootstrap sample size nB ¼ 100 was
used to estimate the variance of the regression quantiles.

Table 4 shows point estimates and standard errors for selected quantiles (results for all quantiles
are available upon request). A discussion of the results is deferred to Section 5.

4 QR and missing data

4.1 Missing data modelling

Our estimand of interest is, again, a model of the type (3.1). However, we assume that y and X are
not fully observed. Now let y,X,F ,Rð Þ be the data and define the augmented n� qþ 1ð Þ matrix
Z ¼ y,Xð Þ, with column vectors z1, . . . , zqþ1. The missing indicator matrix R contains nonresponse
information for Z and has columns r1, . . . , rqþ1 whose elements ri, j, i ¼ 1, . . . , n, j ¼ 1, . . . , qþ 1,
take the value 1 when the corresponding item zi, j is observed and 0 otherwise. Let nj and �nj ¼ n� nj
denote the number of observed and missing values in zj, respectively, and let Aj be the set indexing
the units i for which ri, j ¼ 0. In addition, let obs and mis denote restriction of variables to their
observed and missing parts, respectively. Under MAR assumptions, the distribution of R

conditional on Zobs is independent of Zmis

Pr RjZobs,Zmis, �ð Þ ¼ Pr RjZobs, �ð Þ, ð4:1Þ

where n is a vector of unknown fixed parameters.64
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Let Z�j denote Z without the j-th column and � ¼ �01, . . . , �0qþ1

� �0
be a partitioned parameter

vector, distinct from n. Without loss of generality, suppose for the moment that Z�j is completely
observed. Equation (4.1) implies that, conditionally on Z�j, the distribution of the variable zj is the
same among the cases for which zj is observed as it is among the cases for which zj is missing,64

that is

Fobs zjZ�j,F , �j
� �

¼ Fmis zjZ�j,F , �j
� �

, ð4:2Þ

which corresponds to the assumption of ignorability.65 This identity allows us to use the conditional
distribution function of respondents to draw independent samples to be imputed to Zmis. The MAR
assumption provides the basis for a consistent estimation of the conditional distribution.
Conditioning the probability model on the sampling design is considered in order to avoid
potential imputation bias.66

Here, we adopt a fully conditional specification (FCS) in contrast to joint modelling. For an
overview and discussion of these two approaches to MI, see Van Buuren38 and references therein.
The following three stages for QR estimation are considered:

(a) Draw m samples independently using, in turn, sequential conditional models Fobs zjZ�j,F , �j
� �

for all variables zj with missing values. Since in general the predictors Z�j may be incomplete, a
preliminary imputation of all missing values is carried out by SRS with replacement from the
observed values.67 The preliminary imputed values are then updated with the most recent draws
from the sequential conditional models. The process may be repeated several iterations in order
to stabilize the results.67

(b) Analyse each imputed dataset y�k,X
�
k,F

� �
, k ¼ 1, . . . ,m, using an appropriate QR model

QyjX,F pð Þ to obtain bbk pð Þ and its standard error seðbbk pÞð Þ. The latter can be calculated, for
example, using a bootstrap approach (see Appendix A for more details).

(c) Pool the m estimates bbk pð Þ and seðb�k pÞð Þ using Rubin’s rules.

The preliminary imputation of Z�j in step (a) is based on the assumption that units are
exchangeable and such assumption is commonly violated in complex surveys. In the case of a
stratified clustered sample, the preliminary imputation step could ideally be made more efficient
by conditioning the sampling on stratification as well as clustering variables, provided that the
number of observations available is sufficient for this purpose.

In the next two sections, we illustrate an imputation modelling approach to mixed (i.e. continuous
and categorical) data which assumes a generalized missing pattern and takes the sampling design
into account. Initially, we focus on continuous variables only; then, we briefly consider models for
categorical variables.

4.2 Imputation models for continuous variables

Much of the literature on MI is dedicated to location models. A linear regression model (i.e. normal)
is usually assumed for continuous data, whereas logistic, multinomial or log-linear models are used
to impute categorical variables. The assumption that all the information is contained in the location
parameter might, however, be too restrictive and lead to estimation bias associated with an
inadequately chosen imputation model. In specific situations, distributional features like
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heteroscedasticity and skewness can be accommodated by simple monotonic transformations. A
general approach to handle conditional distributions that exhibit complex relationships with the
model predictors is necessary when simpler strategies do not apply.

Some methods that deal with skewed continuous variables are described by White et al.,67

including shifted-log and (marginal) Box–Cox transformations (BCT). Because of their inability
to remove non-normal features other than skewness, such transformations cannot be generally
qualified as methods for non-normal distributions. Moreover, they require estimation of
unknown parameters from the observed data, in addition to the imputation model’s parameters.
In particular, White et al. suggested that if BCTs are applied to marginal rather than conditional
distributions, this may not be relevant for the analysis. However, no formal discussion on this topic
was provided.

Predictive mean matching68 (PMM) is an ad hoc method that can be used effectively for
imputation. Observed values whose predicted mean are closest to the predicted mean for the
missing value are elected as ‘donors’ and a value taken randomly from the set of donors is
imputed. In Schenker et al.,69 partially parametric approaches to MI were compared to normal
imputation. In particular, PMM and a modified PMM (local residual draw) were shown to be robust
to model miss-specification and different (symmetric) error distributions. However, PMM requires a
sufficient number of ‘donors’ from where to sample the values to be imputed. An interesting
approach based on transformations of the target variable is described by He et al.,70 where the
Tukey’s gh distribution is applied to accommodate for skewness and tail elongation in MI. This
transformation was shown to be preferable to a log-transformation to reduce skewness. As in the
case of BCT, the gh transformation requires estimating unknown parameters and a bootstrap
approach was suggested. These methods69,70 were explored in an MCAR framework. BCTs are
also considered by Raghunathan et al.71 for sequential regression multivariate imputation
(SRMI) based on Metropolis–Hastings sampling. These authors warned about the computational
burden of SRMI in analyses of large data sets with many variables, which are typical in survey
studies.

To overcome some of the limitations of the methods mentioned above, we build an MI procedure
starting from a distribution-free approach based on conditional quantile estimation proposed by
Bottai and Zhen39 in the context of SRS. Their approach exploits the well-known probability
integral transformation theorem which is used in pseudo-random numbers generation: if v � F
and u � Unif 0, 1ð Þ, then F�1 uð Þ � F , that is v and F�1 uð Þ have the same distribution. This
theorem and equation (4.2) provide our sampling framework for imputation. We apply it to
continuous variables only although, in principle, extensions to discrete variables can be
considered (see next section).

The aim is to impute �nj missing values of a partially observed continuous variable zj within the
FCS algorithm described in the previous section. A common imputation model for continuous
responses is the iid linear model zi, j ¼ Z�j� þ �i, with �i � N 0, �2

� �
and i 2 Aj. However, this

location-shift model may be too restrictive in some situations. We therefore consider a
distribution-free approach to sample from Fzj jZ�j,F , the distribution function of zj conditional on
Z�j and F :

(i) Obtain a sample u of size �nj independently from a standard uniform distribution. To avoid
sampling in the vicinity of the boundaries which could cause computational inconveniences in
step (ii), we can restrict the sampling domain to Unifð!, 1� !Þ with ! sufficiently small, say
! ¼ 0:001. The parameter !, as we shall see in the MCS birthweight analysis, can be used to
trim or truncate the distribution of zi, j.
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(ii) Estimate the QR model
Qzj jZ�j,F uið Þ ¼ Z�j� uið Þ ð4:3Þ

for each quantile ui, i 2 Aj.
(iii) Obtain and impute the value z�i, j ¼ Z�jbc uið Þ, i 2 Aj.

Suppose we fix ! ¼ 0:001 in step (i). The uniform values u can be grouped into small intervals
between 0.001 and 0.999 (for a maximum number of 207 breakpoints, i.e.
u 2 0:001, 0:002, . . . , 0:005, 0:01, . . . , 0:995, 0:996, . . . , 0:999f g) to reduce the number of quantiles
that are too close one to each other and for which estimates would not differ substantially.
Alternatively, rather than with pre-defined quantile breakpoints, a possibly more efficient
computation could be obtained by estimating the conditional quantile function with a number of
breakpoints determined by changes of solution. The latter, however, has been shown to grow
with n.72

There are several advantages with a quantile-based imputation. Provided that the conditional
quantile model is correctly specified, inferential results are valid without making assumptions about
the regression error term �i. The observed relationship between the covariates and the entire
distribution of the imputed variable, not just its location parameter, is preserved. It is also worth
noting that if we apply a monotone transformation h to the variable z, the equivariance property of
the quantiles ensures that

QhðzÞ pð Þ ¼ h Qz pð Þ
� �

, ð4:4Þ

therefore Qz pð Þ ¼ h�1 QhðzÞ pð Þ
� �

.
This property is very useful if a transformation is applied to achieve linearity of the conditional

model or to ensure that imputations lie within some interval a, bð Þ, e.g. 0,1ð Þ for strictly positive
variables. Some authors refer to such pre-imputation transformations as pre-processing, followed
by post-processing to transform the data back.73 In our case, transformation and back-
transformation take place within the estimation step (ii) (see function mice.impute.rq in
Appendix B). As we shall see with the MCS data, transformation in MI is strictly related to
diagnostics.

Suppose that z is gestational age. We could define the above interval using biologically plausible
values (external bounds) or the observed range (internal bounds) as given in Table 1. We use the
latter and then apply a logit function

h zð Þ � logit
z� a

b� a

� �
¼ log

z� a

b� z

� �
,

where a ¼ 23� 0:5 and b ¼ 42þ 0:5, to avoid taking logs of zero or infinity. A sample from the
distribution of gestational age is simply obtained with

z� ¼
aþ b � exp Q̂h zð Þ

� �

1þ exp Q̂h zð Þ

� � ,

where z� is bound to lie in the interval 22:5, 42:5ð Þ weeks and Q̂h zð Þ is the estimated quantile on the
logit scale. The equivariance property has also been exploited to model censored5,6 and bounded
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outcomes.7 Note that the equivariance property (4.4) does not apply to the expected value operator.
As a consequence, transformations commonly used in mean regression73 may introduce bias in the
estimates. This topic is investigated in a simulation study (Section 4.5).

Recently, Wei et al.43 proposed an MI estimator for regression quantiles with covariates MAR
which was shown to have an advantage over complete-data methods. Their procedure shares some
similarities with the QR-based procedure considered here in that their imputation method makes use
of conditional quantile estimation of distribution functions as we do in equation (4.3). However, Wei
et al.’s43 estimation of the conditional density of missing covariates is partly based on the sparsity
function and partly based on parametric modelling, which adds two layers of computation in the
overall procedure. In addition, their MI approach is applied to independent missing covariates. In
contrast, equation (4.3) can be applied to possibly dependent covariates as a result of the sequential
conditional modelling approach.

4.3 Imputation models for discrete variables

Questionnaire-based surveys typically produce many variables classified as categorical. Logistic
regression (binary), polytomous logistic regression (unordered categorical) and proportional odds
models (ordered categorical) are typically the default choices. The former will be considered for the
imputation of the MCS indicator variables (Table 1). However, it would be possible to extend the
imputation model (4.3) to discrete data. Recent work in QR for count4 and binary outcomes74 offers
interesting opportunities for developing QR-based logistic and log-linear imputation models, though
computation time may increase appreciably.

4.4 Imputation model selection

There are, of course, precautions to bear in mind when applying QR-based imputation,
part of which are common to MI methods in general and part are specific to quantile
estimation.

More in general, the interplay between the imputation model and design features is engaging and
interest lies in the ‘extent [to which] the complexities of the sample design need to be incorporated
into the imputation model’.75 The consistency of the conditional quantile estimator guarantees that
the asymptotic conditional distribution of each imputed value is equal to the conditional distribution
of the unobserved values.39 Here, we consider conditioning the imputation models indicated in
Sections 4.2 and 4.3 on all relevant sampling design variables F . As shown by Reiter et al.66 in a
simulation study, if the design features are related to the variable of interest but not taken into
account by the imputation model, then imputations based on SRS lead to severe bias of the
estimates and poor coverage of the confidence intervals. On the other hand, inclusion of
irrelevant design variables may result in a loss of efficiency, though inferences will tend to be
conservative. Reduced efficiency, therefore, seems to be a possibly reasonable insurance premium
to pay against biased results. Yet, fitting imputation models with several strata and cluster effects, let
alone their interactions with other variables, can be a formidable task. Reiter et al.,66 for example,
used a stepwise variable selection procedure. We do not pursue model selection issues here as this
goes beyond the scope of our paper. It is worth stressing, however, that the application of standard
techniques to discriminate among QR imputation models may not be appropriate as they focus
on conditional means. A penalized approach to QR model selection has been proposed by
Burgette et al.18
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Related to this issue is the assumption that the same model applies to each quantile u. Since the
application of u-specific model selection strategies for continuous values of u is unreasonable in
practice, preliminary checks can be done, for example, by testing location and location-scale shift
hypotheses and/or by testing subsets of variables over a specified range of quantiles u.14, p. 95 An
application of Khmaladze tests76 is considered further in Section 5.

Finally, model misspecification may produce quantile crossing, though this will not in general
represent an issue if crossing takes place outside the convex hull of the covariates.14, p. 55 As stressed
in Section 4.2, the correct specification of the imputation model is necessary for inferential results to
be valid. Still, crossing may occur even when the model is correctly specified but the data are sparse
in the region of interest.77 We could expect, therefore, that for close values of u, neighbouring
quantile curves will be affected by a mild form of crossing. For location and location-scale
regression models, we can, however, ensure that a proper ordering of the quantiles is maintained
by using restricted regression quantiles,77,78 at the expense of additional computation time. We
evaluate the performance of this adjustment by means of simulation in the next section. For
other approaches to the problem of quantile crossing, see for example Chernozhukov et al.79 and
references therein.

4.5 Simulation study

In a simulation study, QR-based imputation was shown to be competitive as compared to Bayesian
linear regression, PMM and unconditional mean imputation.39 In this section, we assess the
performance of this procedure in the specific case in which partially observed covariates undergo
a transformation. We intentionally use a SRS design assuming an infinite population to obtain
results that are easy to interpret.

We considered two data-generating models for the response yi, i ¼ 1, . . . , 1000, namely the simple
linear location-shift model

yi ¼ xi þ zi þ 	i, ð4:5Þ

and the heteroscedastic model

yi ¼ xi þ zi þ 1þ 2zið Þ	i: ð4:6Þ

We generated x � Unif 0, 1ð Þ and z � 
23=3, independently. In both models, the error e was
generated from 
23=3. All variables are therefore strictly positive.

We then generated missing values for the variable z under a MAR mechanism by sampling
ri � Binom 1000, 1� pið Þ,

pi ¼
e1��yi

0:1þ e1��yi
,

where � ¼ 2 under model (4.5) and � ¼ 1:5 under model (4.6). A sample of missing values for the
variable x of size 1000�

P
ri was taken without replacement under an MCAR mechanism,

therefore independently from the other variables. This resulted in a nonmonotone missing data
pattern: on average, x and z had 294 (range 262� 331) and 275 ð231� 304Þ missing values, but
501 ð447� 559Þ and 474 ð403� 522Þ overall for model (4.5) and (4.6), respectively.
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Five missing data approaches were assessed: (a) complete case analysis (CC); (b) MI using linear
QR as imputation model (QR); (c) as in (b), combined with pre-processing logx and log z (QR PP);
(d) MI using linear regression as imputation model (LM); (e) as in (d), combined with pre-processing
log x and log z (LM PP). Additionally, we assessed approach (b) using restricted QR (RQR).77 For
all MI methods, we set m ¼ 5 imputed datasets and a maximum of five iterations for each
imputation.

In both scenarios, we estimated the conditional quantile functions Qyjx, z pð Þ ¼ �0 pð Þþ
�1 pð Þxþ �2 pð Þz, p 2 0:1, 0:5f g, where standard errors were calculated using the asymptotic
variance estimator,14 either for iid (4.5) or nid (4.6) errors. For the location-shift scenario only,
we also estimated the linear conditional mean regression E yjx, zð Þ ¼ �0 þ �1xþ �2z. In each setting,
200 replicated datasets were generated.

In Table 2, we report the Monte Carlo average of the �’s point estimates obtained using the five

missing data approaches (a–e) described above and, in addition, the average of the point estimates

Table 2. Average estimate of the regression coefficients and, in brackets, variance ratio for three analysis models

using a complete case analysis (CC) and four different imputation models (QR, QR PP, LM, LM PP). The average

model-based estimate using the full datasets (FD) is also reported.

FD CC QR QR PP LM LM PP

Data generated under location-shift model (4.5)

Mean proportion of missing for x and z 29.4% (50.1% overall)

Qyjx,z 0:1ð Þ
�0 0.20 (0.94) 0.40 (3.94) 0.23 (2.35) 0.10 (4.43) 0.32 (10.91) 0.58 (11.73)

�1 1.00 (0.92) 0.92 (3.27) 0.92 (2.44) 0.96 (4.52) 0.96 (10.68) 0.35 (8.59)

�2 1.00 (1.19) 0.93 (3.65) 1.00 (2.33) 1.02 (4.35) 0.78 (25.47) 0.73 (84.84)

Qyjx,z 0:5ð Þ
�0 0.79 (1.01) 1.28 (2.99) 0.82 (1.49) 0.86 (1.61) 1.05 (1.92) 1.14 (1.58)

�1 1.00 (0.99) 0.79 (2.50) 0.98 (1.48) 0.96 (1.59) 0.91 (1.94) 0.52 (1.81)

�2 1.00 (1.00) 0.85 (2.17) 1.00 (1.25) 0.97 (1.37) 0.86 (1.35) 0.92 (1.47)

E yjx,zð Þ

�0 1.00 (0.93) 1.46 (2.53) 0.99 (1.22) 0.98 (1.32) 1.13 (1.68) 1.37 (2.40)

�1 1.00 (1.03) 0.79 (2.37) 1.03 (1.47) 1.04 (1.55) 0.99 (2.06) 0.45 (2.64)

�2 1.00 (1.09) 0.86 (2.17) 1.00 (1.15) 0.98 (1.32) 0.87 (1.42) 0.86 (4.70)

Data generated under heteroscedastic model (4.6)

Mean proportion of missing for x and z 27.5% (47.4% overall)

Qyjx,z 0:1ð Þ
�0 0.20 (1.00) 0.80 (6.71) 0.22 (3.99) 0.18 (4.45) 0.47 (4.35) 0.68 (5.83)

�1 1.00 (1.05) 0.69 (5.60) 0.89 (4.47) 0.93 (4.63) 0.88 (4.78) 0.35 (4.31)

�2 1.40 (0.89) 1.27 (2.18) 1.22 (2.18) 1.11 (3.11) 0.79 (3.90) 0.84 (9.41)

Qyjx,z 0:5ð Þ
�0 0.81 (0.96) 1.83 (3.20) 1.00 (1.59) 1.02 (1.86) 1.41 (1.56) 1.29 (1.64)

�1 0.99 (0.96) 0.58 (2.72) 0.89 (1.68) 0.92 (1.84) 0.87 (1.90) 0.47 (1.55)

�2 2.57 (1.11) 2.27 (2.13) 2.36 (1.28) 2.26 (1.39) 1.94 (0.76) 2.22 (1.58)

Bold denotes the lowest relative bias among the missing data approaches.
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from the full dataset (FD), i.e. bFD ¼
1
200

P200
j¼1
bbj, FD, for each analysis model. We also report the

variance ratio defined as the average of the model-based estimated variances divided by the Monte

Carlo variance for the FD. The mean absolute difference between point estimates and ��FD, divided

by ��FD, was used as an approximation of the absolute relative bias.

For data generated under model (4.5), QR imputation outperformed all other methods.
Despite the substantial fraction of missing values in each variable and overall, the absolute
percentage bias of QR did not exceed 27% across the three analysis models (median 8%)
(results not shown). In most occasions, the LM PP method produced heavily biased estimates,
with peaks of almost 200% (median 44%), performing even worse than the CC approach. QR
imputation was also very competitive in terms of variability, having the lowest variance ratio
among the MI methods.

For data generated using the heteroscedastic model (4.6), QR imputation performed well as
compared to the other methods. The average estimate of the regression coefficients from the two
QR-based MI methods was comparable. LM and LM PP produced estimates less biased than CC in
some cases, though LM PP did not perform well as compared to LM since the log-transformation
worsened the relative bias of LM estimates in half of cases. The MI methods did not, however, differ
greatly by variance ratio.

A sensitivity analysis with m ¼ 10 imputations was carried out, and the results were almost
identical to those described above.

Finally, we compared QR with RQR imputation (results not shown). As expected, estimates were
insensitive to this adjustment. There was a tendency of RQR imputation to be slightly less efficient
than QR imputation, though no meaningful pattern could be identified.

5 MI analysis of birthweight determinants

5.1 Missing data patterns

In this section, we give a detailed account of missing values in the MCS dataset. We also analyse the
distribution of the continuous variables. The subscript j ¼ 1, . . . , 16 will indicate the variables as
numbered in Table 1 (e.g. z1 is birthweight and r1 is its missing data indicator).

A visual summary of the missing pattern is given in Figure 2 which shows that, overall, the
pattern is nonmonotone. The most frequent missing data patterns involved parental body size
measures. In particular, paternal weight and height were both missing for 9% of all children
(15,070), followed by paternal weight only (5%) and maternal weight only (3%). Each of all the
other patterns occurred in less than 1% of the sample.

In the MCS, birthweights were obtained from interviews. Maternal recall of birthweight has been
shown to be reliable, although with few exceptions.80 We found a significant association between the
missing indicators r1 and r2 (
2 test p value 5 0:001), with birthweight more likely to be missing
when gestational age was missing, and vice versa. In particular, the odds of gestational age being
missing in women with no education and in those of non-white ethnicity were, respectively, 4
(p value 5 0:001) and 3 (p value 5 0:001) as compared to the baseline. There was also a positive
association with parity (p value 0.03). This is consistent with reported findings80 that MCS mothers
from ethnic wards, of non-white ethnic group, unemployed and with non-zero parity were more
likely than others to provide an estimate of their child’s birthweight that differed from the birth
registration’s recorded value by 100g or more. Similarly to what suggested by Tate et al.,80 cultural
differences and language barriers could also partly explain missingness for these variables. It is
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reasonable to assume that conditionally on ethnicity, parity and the stratification variable, the
missing data mechanism for birthweight and gestational age is ignorable.

Missing paternal weight and height accounted for 76% of the total number of incomplete cases
(3066). There was a significant association between the missing indicators r5 and r6 (p value
5 0:001). However, the missing data pattern showed some degree of monotonicity (Figure 2). It
could be inferred that the respondents (i.e. the mothers) were able to recall their partners’ height
more easily that their weight, as the latter is subject to greater variation. Failing to give a measure of
their partners’ height implied having a poor ability to provide information on weight as well. Again,
we assume a MAR mechanism for paternal weight and height as well as for the rest of the variables
with missing items.

5.2 The imputation models

We now consider estimating the analysis model (3.4) after MI using the FCS algorithm described in
Section 4 and we discuss some related modelling issues.

First, we establish which design variables to include in the imputation model, starting with cluster
effects. We calculated complete case intraclass correlation coefficients (ICC) for all variables in
Table 1, except reduction in number of cigarettes smoked (variable 9). We found that the ICC
varied between 0.01 and 0.12 for variables 1–8 and between � 0 and 0.22 for variables 10–13,
15, and 16. As expected, the highest ICC was seen in mother’s ethnicity (0.55) as this variable
falls in one of the stratification domains. However, its fraction of missing values accounts for
only 0.3% of the sample size. On this basis, we decided not to include clustering in the

weight_f

height_f

weight_m

gestAge

height_m

IsNotEdu

IsNotWhite

bw

IsNotCare

IsSmoker

cigDecrease

IsDiabetic

age

Figure 2. Missing data pattern in the MCS sample. Observations (x-axis) and variables (y-axis) are ordered by

number of missing values. Black denotes missing.
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imputation procedure as if would have been uninformative and the large number of clusters (� 400)
would have increased the computation time.

The MCS design stratification variable was found to be strongly associated with most of the
variables. Sampling strata were therefore included in the conditional specification as categorical, so
were sampling weights as continuous. The associated data matrix Z which was fed into mice had
dimensions 15,070�8. For comparison purposes, a larger imputation model was also considered
including stratum-specific effects (except for gestational age, and prenatal care and diabetes status
indicators which were not found to be significantly associated with the stratification variable). As a
result, the number of columns of Z increased from 18 to 121.

Next, we make some considerations about the continuous variables (we leave out age at delivery
since the number of missing values in this variable is very small). The histogram of birthweight by
gestational age and the histogram of gestational age were provided in Figure 1. Table 3 shows
skewness, kurtosis, estimated (marginal) BCT parameter � and p value of the Shapiro–Wilk test
for normality after BCT. In all cases, skewness and excess kurtosis are apparent while the BCT fails
to achieve normality even when these are relatively moderate, as in the case of paternal weight.
Normal Q-Q plots (not shown) confirmed this result. This suggests that using mean regression as
imputation model would be inappropriate.

Two pairs of variables are of particular interest in relation to MI: birthweight and gestational age,
and paternal weight and height. The former pair includes the response variable and its strongest
predictor (Spearman’s rank correlation 0.42), while the latter includes two strongly correlated (0.47)
variables with the highest proportion of missing values among all other variables. These are plotted
in Figure 3 using logit scaling on the y-axis. There is an indication that a linear relationship is
reasonable. Note also the outlying observations in both plots (this point will be discussed further in
Section 5.4).

We tested location shift and location-scale shift hypotheses by using Khmaladze tests76 for the
linear models logitðbwÞ � gestAge (sample size n¼14,907) and logit ðweightf Þ � heightf (n¼12,731)
on the range p 2 0:05, 0:95½ 	. None of the tests rejected the null hypothesis at the 5% level except for
the location shift hypothesis in the birthweight model. We repeated the tests for bw � gestAge and
weightf � heightf. The location-scale shift hypothesis for birthweight and the location shift
hypothesis for paternal weight were rejected at the 1% and 5% level, respectively. In summary,
these results suggest the following: on the untransformed scale, the relationship between birthweight
and gestational age is more complex than a location-scale shift model; in contrast, the relationship
between paternal weight and height can be defined by a heteroscedastic model. On the logit scale, the
former relationship is approximately heteroscedastic whereas the latter relationship is approximately
constant over quantiles. In other words, the logit transformation has simplified the model
specification.

Finally, we assigned an imputation model to each variable with missing data (Table 1). More
precisely, continuous variables (1–7, 9) were imputed using the QR-based approach described in

Table 3. Analysis of shape for selected MCS continuous variables.

bw gestAge weightm heightm weightf heightf

Skewness �0.52 �2.26 1.20 �0.11 0.58 �0.23

Kurtosis 4.95 12.30 5.40 5.02 3.83 4.36

� 1.60 10.40 �0.80 1.60 0.00 2.40

Shapiro–Wilk 5 0:001 5 0:001 5 0:001 5 0:001 5 0:001 5 0:001
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Section 4.2. In particular, we set ! equal to 0.001 in step (i). Since these variables are constrained to
vary within boundaries, pre-processing was carried out by applying a logit transform with
internal bounds which, as seen above, gives an additional benefit for modelling. Binary variables
(10, 11, 14–16) were assigned logistic regressions.

We set m ¼ 5 imputed datasets and a maximum of five iterations for each imputation. These are
the default values in the R function mi.48 The QR model (3.4) was then fitted to each imputed dataset
using the methods illustrated in Section 4.1. As in the complete case analysis (Section 3.2), a
bootstrap sample size nB ¼ 100 was used to estimate the variance of the regression quantiles.

5.3 Results

First and foremost, the results of the analysis did not differ sensibly when using the ‘reduced’ (i.e.
with strata effects only) or the ‘full’ (i.e. with stratum-specific effects) imputation models. Table 4
shows point estimates and standard errors for selected quantiles (results for all quantiles are
available upon request) using the reduced model. In the following, we elaborate on parental and
smoking effects which offer elements of novelty but we gloss over the other effects for the sake of
brevity.

The complete sets of estimated regression quantiles for differential and mean parental weight and
height are plotted in Figure 4. The coefficients of differential weight were positive and significant (p
value 5 0:05) for quantiles p 
 0:1, with larger magnitude at higher quantiles. For p ¼ 0:01 and
p ¼ 0:05, �2ð pÞ was not significantly different from zero at the 5% level. Similarly, the quantile
effects of parental mean weight were positive for all p and the magnitude of these effects was larger at
higher birthweight quantiles.

The quantile effects of differential parental height had large confidence intervals. However, the
least squares estimate was marginally significant (p value 5 0:05). Mean parental height had a
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positive effect on all birthweight quantiles and such effect was approximately uniform, except at the
extremes where the coefficients were larger.

These results are consistent with those reported by Griffiths et al.63 In their study based on MCS
data, a regression model for mean birthweight was fitted after incomplete parental data were
discarded under MCAR assumptions. In contrast, we allowed for variables such as maternal
education and ethnicity to account for a MAR data mechanism. Our analysis shows that the
parental effects are not constant across the birthweight distribution. This provides important
insights for the understanding of the parental conflict theory81 according to which the father’s
aim is to maximize the growth of his offspring, while mothers maximize their chance of survival
by constraining foetal growth. As reported by Griffiths et al., the influence of the mother wins over
the father’s contribution to mean birthweight. However, it seems that this influence is somehow
relaxed when the survival of the child is at high risk (low birthweight quantiles) and it is strongest at
the opposite end of the range (high birthweight quantiles) when her own survival is at higher risk. In
other words, there may be an effect gradient in the anthropometric parental factors regulating
birthweight that runs from top to bottom of the birthweight spectrum. To the best of our
knowledge, these results have not been reported before and deserve further investigation.

Smoking is known to reduce birthweights82 and this effect is approximately uniform across
birthweight quantiles, as confirmed by our results (Figure 4). Although on average a decrease in
smoking had little effect on birthweight (approximately 5 g per cigarette per day), at lower quantiles
the coefficient was twice as much (approximately 10 g per cigarette per day). Such effect was
attenuated at higher quantiles. Despite the different design and purpose of our analysis as

Table 4. Point estimates of selected regression quantiles and, in brackets, standard errors for the MCS birthweight

analysis.

Complete case analysis Multiple imputation analysis

Quantile Quantile

0.05 0.5 0.95 0.05 0.5 0.95

Intercept 2340 (28) 3006 (15) 3778 (38) 2354 (24) 3010 (12) 3784 (32)

gestAge 174 (6) 168 (4) 128 (9) 170 (5) 169 (3) 129 (8)

weighthd 20 (18) 82 (11) 119 (16) 19 (17) 80 (9) 114 (17)

weightsum 26 (7) 45 (4) 53 (10) 28 (7) 43 (4) 53 (9)

heighthd 37 (16) 12 (11) 22 (22) 30 (16) 11 (10) 20 (21)

heightsum 44 (8) 46 (4) 68 (11) 45 (8) 45 (4) 67 (10)

age �2 (2) 0 (1) 1 (3) �2 (2) 0 (1) 1 (2)

parity 58 (11) 69 (7) 88 (18) 50 (10) 62 (6) 81 (15)

cigDecrease 10 (2) 5 (2) 1 (3) 10 (2) 5 (2) 2 (3)

IsSmoker �56 (31) �58 (22) �23 (41) �51 (31) �51 (20) �20 (39)

IsNotEdu �95 (34) �22 (21) �30 (39) �84 (29) �15 (19) �39 (32)

IsGirl �116 (21) �139 (10) �108 (26) �112 (20) �143 (9) �105 (24)

IsNotMarried �46 (29) �10 (16) 23 (28) �37 (22) �12 (14) 16 (28)

IsNotWhite �149 (37) �137 (24) �32 (33) �203 (35) �162 (19) �42 (31)

IsNotCare �33 (63) �56 (31) 147 (161) �39 (51) �30 (27) 61 (133)

IsDiabetic �43 (77) �80 (31) 182 (142) �83 (115) �88 (29) 164 (149)

Complete case analysis (Section 3) and multiple imputation analysis (Section 5). Bold denotes significant at the 5% level.
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compared to England et al.,82 our results point out the different impact on birthweight that a
reduction in smoking has at different birthweight quantiles.

Similar conclusions were reached when using the results from the complete case analysis
(Table 4). In general, the latter provided estimated coefficients that were consistent with those
obtained after MI, except for the effect associated with ethnicity. The magnitude of this
coefficient was, on average, about 26% larger after imputation. This is not surprising given that
ethnicity is a strong predictor of MCS unit nonresponse51 and missing birthweight. It also falls in
one of the stratification domains. In contrast, the standard errors of the coefficients after imputation
tended to be lower than those obtained in the complete case analysis by about 10%, on average. This
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Figure 4. Estimated regression quantiles with 95% confidence intervals (error bars) for parental weight and height

and smoking effects in the MCS birthweight analysis. Horizontal black lines denote mean estimates (solid) and their

95% confidence intervals (dashed).
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can be explained by a lower within-imputation variance and by a relatively small between-
imputation variance, the latter accounting on average for about 5% of the total imputation
variance.

Sensitivity analyses were carried out, including: an analysis under MCAR and SRS assumptions
(i.e. ignoring missingness and sampling design). QR standard errors were calculated using the
asymptotic variance estimator for nid errors; an analysis where only sampling weights but not the
strata were included in the imputation model; an analysis where strata and unadjusted weights were
used. In summary, the design effect for mean and median birthweight was, respectively, 1.8 and 1.9,
which indicates that design-based estimates are around 90% less efficient than an SRS for the
selected outcome and this justifies the use of survey variables in the analysis model. Not including
strata in the imputation model had little effect on the results, as did the use of unadjusted weights.
Obviously, this has implications for the analysis of birthweight only as other MCS variables might
respond differently to such modelling adjustments. Design effects for other MCS variables that are
highly correlated with the sampling domain (e.g. ethnicity, income) can be as high as 20.49

In total, the imputation (reduced model) and analysis steps took about 43 and 24minutes,
respectively, on a 64-bit operating system machine with 16Gb of RAM and quad-core processor
at 2.93GHz. In both steps, we used a Frisch–Newton algorithm as most appropriate given the size of
the problem. The Barrodale and Roberts algorithm83 took about twice as long. Reductions of
computation time could ideally be obtained by decreasing the number of breakpoints ui in the
imputation step and by employing parallel computing in the analysis step. Changing the variables
visiting sequence48 from that in Table 1 to a sequence in increasing order of missing data did not
provide an appreciable computational advantage.

5.4 Diagnostics

MI methods are typically accompanied by diagnostic measures to assess the imputed values and the
impact of the missing data on the parameters being estimated. In Figure 5, box-centile plots of
observed and imputed values for four selected variables are reported. The distribution of each
imputed sample follows the observed distribution reasonably well. The coverage of the observed
range by the imputed values is nearly 100% and, as a consequence of the logit transformation, in no
case the range is exceeded. A similar imputation without pre-processing (results not shown)
produced values for parental weight and height outside the observed range.

Although the distributions of birthweight and gestational age stretch to very low and high points,
more extreme values were implicitly excluded by trimming the distribution of z when defining upper
and lower limits for u, that is u � Unifð0:001, 0:999Þ. In general, conditional quantiles are robust to
outliers in the outcome but may be sensitive to outliers in the design matrix. As mentioned in Section
2, several outliers in parental weight were replaced by missing values. Outliers were defined as
observations exceeding the quantiles 0.0005 and 0.9995 of these variables. In total, we detected 16
and 14 values (as low as 11kg and as high as 288kg) for, respectively, maternal and paternal weight.
Although this method is naı̈ve and a more sensible outlier detection approach could have been based
on the bivariate distribution of weight and height, it is of little practical importance in our analysis
since our aim is to assess the value of the outliers as compared to their imputed values. Figure 6
shows the bivariate plot of height and weight for both parents. In addition to the formal testing
conducted earlier, the strong heteroscedasticity that characterizes the relationship between these two
variables can now be seen. This distributional feature is taken into account by the QR-based
imputation model as shown by the range of imputed values at different heights. For example,
very low paternal weights defined as outliers had imputed values that were consistent with the
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given height, and the spread of such imputations was consistent with the spread of the observed
distribution of weight at that given height. A mean regression would not be able to preserve such
distributional relationships between variables.

For each regression quantile, the rate of missing information (RMI) can be calculated

as � ¼ rþ2= dfþ3ð Þ

rþ1 , where r ¼
1þm�1ð Þ
�̂ð pÞ

, df is the number of degrees of freedom and b is the between-

imputation variance. Overall, the maximum RMI was approximately 20% and this was observed for

weighthd. The latter variable was obviously affected by a substantial increase in variance due to a
high proportion of missing values of paternal weight. The RMI for gestational age did not exceed
8% in all quantiles but it was higher for the first regression centile (7%) as compared to the
99th (2%).

Finally, we checked the mean and variance of the imputed values at each iteration for all but the
discrete variables and no systematic pattern was observed.
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6 Discussion

Complex survey estimation and MI are two important statistical areas in the analysis of large
population-based epidemiological and socioeconomic studies. In this paper, we considered the
application of quantile modelling to the analysis of birthweight determinants in a cohort of UK
children, providing an extensive and detailed investigation of methods that can be easily
implemented using available software and little additional programming effort. The problem of
missing data was addressed by developing an MI approach under MAR assumptions, based on
an FCS algorithm in which imputation of continuous variables takes into account the distributional
features of the observed data. We discussed model selection issues associated with MI in general and
QR-based imputation in particular and explored some practical aspects in the MCS analysis.

We proposed some strategies on how to use transformations for handling outliers and bounded
variables, and, in the MCS birthweight study, we showed that transformations may also be
beneficial to the specification of the form of quantile functions. However, transformations that
are typically considered as a remedy for data that do not conform to some well-known
distribution are often unsatisfactory, may require estimating additional parameters, and pose
delicate problems for interpreting the results. Features such as skewness or kurtosis, which is
traditionally associated with peakedness and tail weight of a distribution, are not to be seen as a
nuisance but rather as informative on the unknown data-generating process. Moreover, their
conditional relationship with the covariates under study is often too complex to be normalized by
a simple marginal transformation. In contrast, quantiles are able to discriminate among
distributional shapes in a natural way, as also demonstrated by an increasing number of
proposals of quantile-based measures of asymmetry and kurtosis.84–86 QR offers a flexible and
powerful means to preserve the information in the data. In addition, it handles desired data
transformations in a simple yet mathematically rigorous fashion.

But the flexibility associated with QR may come at a cost: the difficulty in choosing among a
number of models for different quantiles. As stressed by Van Buuren38 and Schafer,75 avoiding
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specifying a joint distribution for the data and the missing data mechanism does not clearly remove
other model selection issues. Moreover, accounting for the sampling design variables in the MI
procedure can be laborious from a computational and a modelling standpoint. In addition,
analytical demonstration that the imputation is ‘proper’65 may be difficult except in trivial
cases.64, p. 145

It is worth stressing that analysis and imputation models need not be the same. It is, of course, a
logical consequence that a location-shift hypothesis for the imputation model is incompatible with
the motivation that has led, in the first place, to a conditional quantile approach for the model of
interest. Separating imputation and analysis models can be advantageous.75 In non-normal
conditions, QR-based imputation is an excellent alternative to mean imputation when the target
of the analysis is the conditional mean,39 even when the data undergo some form of pre-processing
as shown in our simulation study. It needs to be investigated whether other inferential targets (e.g.
scale and shape indices) can benefit from this approach.
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Appendix A – Standard errors for regression quantiles

For regression quantiles obtained from minimizing loss functions of the type (3.2), standard error
estimation can be performed using, for example, sandwich-type estimators or bootstrap
techniques.14 Inference can also be carried out based on regression rank scores.87

For complex survey samples, we consider the method described by Canty and Davison.57–59

Briefly, this bootstrap approach is designed to mimic the effect of sampling without replacement
and it applies a calibration of the sample to ensure that the post-strata marginal totals agree with
known population margins. This method is also implemented in the R package survey.45,46 See also
Chatterjee32 for a bootstrap approach based on sampling with replacement where the bootstrap
estimates are rescaled to guarantee consistency of the sample variance.

Let bb pð Þ be the regression quantile obtained from minimizing (3.3). Also let

fbbb pÞ : b ¼ 1, . . . , nBð
�
be a set of nB bootstrap estimates obtained from the sample data using

Canty and Davison’s method.57 Let us define the matrix B with row vectors ðbbb pÞ � b pð Þ
� �0

,

where b pð Þ ¼ 1
nB

PnB
b¼1
bbb pð Þ is the q� 1 vector of element-wise averages of bootstrap estimates.

An estimate of the variance-covariance matrix of the estimator of the regression coefficients is
given by

bV ¼ B0B � � ðA:1Þ

where � ¼ �m
�m�1ð Þ nB�1ð Þ

is the overall scaling factor and �m ¼ HP
h
m�1

h

.46 The boostrap estimated standard

error is given by seðbb pð ÞÞ ¼ ðv̂1=21 , . . . , v̂1=2q Þ
0, where v̂j is the jth diagonal element of bV. Alternatively,

one can use the mean squared error to take the bias b pð Þ �bb pð Þ into account.

The estimation of the variance of regression quantiles is an area to be investigated further.
Although bootstrap is a practical approach which is already implemented in statistical software,
other promising design-consistent estimation methods have been proposed and these might offer
substantial computational advantages. Wang and Opsomer33 recently developed a theory for
nondifferentiable survey estimators. They studied analytical and replication-based design-
consistent variance estimators, which rely on the choice of a bandwidth parameter for the kernel
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regression used to estimate the smooth limit of the nondifferentiable functions. In a simulation
experiment on sample quantiles, their proposed variance estimators were shown to perform well
compared to a naı̈ve jackknife. However, the relative bias depended on the kernel bandwidth and
further numerical and theoretical studies on this front are needed.33 Here, we report the results of a
comparison study of Canty and Davison’s survey bootstrap estimator with Wang and Opsomer’s
proposed estimators. We used a simulation setting as in Wang and Opsomer and estimated nine
population quantiles p 2 0:01, 0:05, 0:1, 0:25, 0:5, 0:75, 0:9, 0:95, 0:99f g, including four additional tail
quantiles as they are of particular interest in, for example, birthweight and body mass index studies.
We calculated the sample quantiles by inverting the population cumulative distribution function33

and, in addition, by minimizing a weighted loss function as in (3.3) with an intercept only. A
Gaussian kernel with bandwidth value set to 0.2 and a desired sample size of 400 were used. As
expected, the results showed that the two weighted survey estimators produced the same quantile
estimates. The analytic and jackknife variance estimators performed well as compared to bootstrap
(nB ¼ 100): the percentage relative bias of the three estimators ranged, respectively, from �31.3 to
34.7, from �27.2 to 35.7 and from �26.8 to 92.4. The bias, as expected, was larger for quantiles
farther away from the median.

Appendix B – R code

B.1. Regression quantiles

An example on how to fit a median regression model using survey data is provided below. The
reader is referred to the documentation available in survey45,46 and quantreg47 packages for further
details. First, the object mydesign specifying the design is defined. This is then replicated using the
function as.svrepdesign:

mydesign <- svydesign(ids¼�mycluster, strata¼�mystrata, fpc¼�myfpc,

data¼ mydata, nest¼ TRUE, weights¼�myweights)

bootdesign<- as.svrepdesign(mydesign, type¼ "bootstrap", replicates¼ 100)

Quantile estimation is carried out using the following syntax:
fit<- withReplicates(bootdesign, quote(coef(rq(y �x, tau¼0.5, weights¼.weights,

method¼"fn"))))

The resulting fitted object fit contains the estimated regression coefficients and their bootstrap
variances. This object can be then passed to the following custom-defined function to produce a
summary table, including p values:

format.rq.svy<- function(x, rdf){

V<- attr(x, "var")

FLAG<- length(V)¼¼ 1

se<- if(FLAG) sqrt(V) else sqrt(diag(V))

val<- cbind(as.matrix(x), se, NA, NA)

if(FLAG) val<- matrix(val, nrow¼1)

val[,3]<- val[,1]/val[,2]

val[,4]<- 2 * (1 - pt(abs(val[, 3]), rdf))

colnames(val)<- c("Value","Std. Error", "t value", "Pr(>jtj)")
rownames(val)<- names(x)

return(val)

}
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where the argument rdf specifies the residual degrees of freedom (i.e. n� q) for approximate p value
calculation using t-distributions.

B.2. Multiple imputation by chained equations

The mice48 routines are extremely flexible in that any method specified in the method argument of
the main function mice(data, m¼5, method¼‘‘newmethod’’,. . .) will be looked for as the function
mice.impute.newmethod(y, ry, x, . . .). The value returned by the latter has to be a vector of the
same length as the number of missing values being imputed. An example of unoptimized code for
QR imputation with logit transform argument logit is given as follows:

mice.impute.rq<- function (y, ry, x, logit¼FALSE, omega¼0.001,

method.rq¼"fn",. . .){
x<- cbind(1, as.matrix(x))

n<- sum(!ry)

p<- ncol(x)

u<- round(runif(n, omega, 1 - omega)�1e3)

u<- ifelse(u %in% c(1:4,996:999), u/1e3, (u - u %% 5)/1e3)

taus<- unique(u) # group quantiles

nt<- length(taus)

xobs<- x[ry,]

yobs<- if(!logit) y[ry] else logit(y[ry],. . .)
xmis<- x[!ry,]

fit<- matrix(NA, p, nt)

for(j in 1:nt){

fit[,j]<- as.numeric(rq.fit(xobs, yobs, tau¼taus[j],

method¼method.rq)$coefficients)} # from package quantreg

ypred<- xmis%�%fit # n times nt matrix

ypred<- diag(ypred[,match(u, taus)]) # diagonal of n times n matrix

val<- if(!logit) ypred else invlogit(x¼ypred, x.r¼attr(yobs,"range"))

return(val)

}

logit<- function(x, x.r¼NULL, epsilon¼0.5){

if(is.null(x.r)) x.r<- range(x, na.rm¼TRUE)þc(-epsilon, epsilon)

val<- log((x - x.r[1])/(x.r[2] - x))

attr(val, "range")<- x.r

return(val)

}

invlogit<- function(x, x.r¼NULL){

if(is.null(x.r)) x.r<- attr(x, "range")

x<- exp(x)

val<- (x.r[1]þx.r[2]�x)/(1þx)

attr(val, "range")<- x.r

return(val)

}
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In general, the above functions can be easily modified and generalized to include additional
arguments such as, for example, estimation control parameters. Imputation based on restricted
regression quantiles can be carried out using the following functions:

mice.impute.rrq<- function (y, ry, x, omega¼0.001, method.rq¼"fn"){

x<- cbind(1, as.matrix(x))

n<- sum(!ry)

p<- ncol(x)

u<- round(runif(n, omega, 1 - omega)*1e3)

u<- ifelse(u %in% c(1:4,996:999), u/1e3, (u - u %% 5)/1e3)

taus<- unique(u)

nt<- length(taus)

xobs<- x[ry,]

yobs<- y[ry]

xmis<- x[!ry,]

fit<- rrq.fit(xobs, yobs, tau¼taus, method¼method.rq)$coef

ypred<- xmis%*%as.matrix(fit)

val<- diag(ypred[,match(u, taus)])

return(val)

}

rrq.fit<- function(x, y, tau, method¼"fn"){

fit.lad<- rq.fit(x, y, tau¼0.5, method¼method)

r.lad<- fit.lad$residuals

r.abs<- abs(fit.lad$residuals)

beta<- fit.lad$coefficients

fit.lad<- rq.fit(x, r.abs, tau¼0.5, method¼method)

s.lad<- fit.lad$fitted.values

gamma<- fit.lad$coefficients

nt<- length(tau)

zeta<- rep(NA, nt)

for(i in 1:nt){

zeta[i]<- rq.fit(s.lad, r.lad, tau¼tau[i], method¼method)$coefficients}

val<- if (nt>1)
apply(outer(gamma, zeta, "*"), 2, function(x, b) xþb, b¼matrix(beta))

else betaþzeta * gamma

if(nt>1) colnames(val)<- tau

return(list(coef¼val, c¼zeta, beta¼beta, gamma¼gamma))

}
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