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Abstract

Long series of simulated rainfall are required at point locations for a range of applications,

including hydrological studies. Clustered point process-based rainfall models have been

used for generating such simulations for many decades. One of their main advantages

is the fact that they generate simulations in continuous time, allowing aggregation to

different timescales in a consistent way, and such models generally perform well in rep-

resenting rainfall at hourly to daily timescales. An important disadvantage, however, is

their stationarity. Although seasonality can be allowed for by fitting separate models for

each calendar month or season, the models are unsuitable in their basic form for climate

impact studies.

In this thesis we develop new methodology to address this limitation. We extend the cur-

rent fitting approach by replacing the discrete covariate, calendar month, with continuous

covariates which are more directly related to the incidence and nature of rainfall. The

covariate-dependent model parameters are estimated for each time interval using a kernel-

based nonparametric approach within a Generalised Method of Moments framework.

An empirical study using the new methodology is undertaken using a time series of five-

minute rainfall data. In addition to addressing the need for temporal non-stationarity,

which is our main focus, we also carry out a systematic comparison of a number of key

variants of the basic model, in order to identify which features are required for an optimal

fit at sub-hourly resolution. This generates some new insights into the models, leading to

the development of a new model extension, which introduces dependence between rainfall

intensity and duration in a simple way. The new model retains the ‘rectangular pulses’

(i.e. rain cells with a constant intensity) of the original clustered point process model,

which had previously been considered inappropriate for fine-scale data, obviating the need

for a computationally more intensive ‘instantaneous pulse’ model.

3



Acknowledgements

Becoming a student again over twenty years after leaving university was a significant

change for me, and I missed many aspects of my previous office life, especially my former

colleagues. However, this was more than made up for by the joy of exchanging routine

for days full of learning and research, and the excitement of facing new challenges. I am

glad that I chose to return to my studies at UCL, and that I had Professor Valerie Isham

and Dr. Paul Northrop as my supervisors. I would like to thank Valerie and Paul for

their support and guidance during the last three years. As well as providing invaluable

feedback on my work and advice on statistical theory, they were always good company

and generous with their time. I would also like to thank Dr. Richard Chandler for his

helpful ideas at my MPhil Upgrade, and for always giving detailed and considered answers

to any questions I asked him. Thanks also to Dr. Christian Onof from Imperial College

who provided helpful input from a hydrological perspective.

The Engineering and Physical Sciences Research Council is gratefully acknowledged

for their financial support, and Deutsche Montan Technologie and Emschergenossen-

schaft/Lippeverband in Germany and the National Institute of Water and Atmospheric

Research in New Zealand for providing the data.

Finally, thanks are due to my family, especially my husband, Andrzej, for their love and

support, and to my friends and fellow PhD students for their companionship.

4



Contents

Declaration of Authorship 2

Abstract 3

Acknowledgements 4

List of Figures 9

List of Tables 12

Abbreviations 13

1 Introduction 15

1.1 Clustered point process-based rainfall models . . . . . . . . . . . . . . . . . 20

1.2 Downscaling approaches using point process models . . . . . . . . . . . . . 21

1.3 Generating rainfall at finer resolution . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Research objectives and outline of thesis . . . . . . . . . . . . . . . . . . . . 23

2 Existing point process models 26

2.1 Description of the BLRP model . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Fitting methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Generalised method of moments . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Fitting approach: the rainfall application . . . . . . . . . . . . . . . . . . . 30

2.4.1 The weighting matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Fitting properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.3 Numerical Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Estimation of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Extreme value performance . . . . . . . . . . . . . . . . . . . . . . . 39

5



Contents 6

3 Review of Bartlett-Lewis models 42

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Bochum data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Existing Model descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Random Parameter Bartlett-Lewis Rectangular Pulse (BLRPR) model 45

3.3.2 Bartlett-Lewis Instantaneous Pulse (BLIP) model . . . . . . . . . . 47

3.4 Development of the Random Parameter Bartlett-Lewis Instantaneous Pulse
(BLIPR) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Models Fitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Initial performance comparison of the fitted models . . . . . . . . . . . . . . 50

3.7 Testing our hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Performance comparison of the fitted models . . . . . . . . . . . . . . . . . 53

3.8.1 Fitted Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8.2 Wet/dry properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8.3 Extreme value performance . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Parameter Identifiability and Confidence Intervals . . . . . . . . . . . . . . 59

3.10 Potential further improvements . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.11 Conclusions: optimal model for fine-scale data? . . . . . . . . . . . . . . . . 65

4 New approach to address non-stationarity 67

4.1 Motivation for local modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Kernel Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.2 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Local mean approach to point process models . . . . . . . . . . . . . . . . . 73

4.2.1 Background to the asymptotic derivations, and key assumptions . . 74

4.2.2 Target of the estimation . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.3 Asymptotic Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.4 Asymptotic bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.5 Asymptotic distribution . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.6 The weighting matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Extending to higher order polynomials . . . . . . . . . . . . . . . . . . . . . 87



Contents 7

4.3.1 Derivations for the local linear model . . . . . . . . . . . . . . . . . 89

4.3.2 Alternative local approach . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Choosing a bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Plug-in method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.2 Cross-validation techniques . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.3 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.4 Suggested approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Multiple covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Methodology in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6.1 Fitting methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6.2 The weighting matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6.3 Estimation of the variance of the estimators . . . . . . . . . . . . . . 105

5 Choice of suitable covariates 106

5.1 Variables used in the existing literature on rainfall downscaling . . . . . . . 107

5.1.1 Studies with predictors at a daily level . . . . . . . . . . . . . . . . . 108

5.1.2 Studies with predictors at a monthly level . . . . . . . . . . . . . . . 109

5.2 Selection of covariates for further research . . . . . . . . . . . . . . . . . . . 109

5.2.1 Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Practical results 116

6.1 Initial exploration using a single covariate . . . . . . . . . . . . . . . . . . . 117

6.1.1 Impact of the bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.2 Variance and bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.3 Fitting points and binning . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.4 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Local linear estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Choice of bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Multiple covariates and model comparison . . . . . . . . . . . . . . . . . . . 131

6.5 Further analysis of selected models . . . . . . . . . . . . . . . . . . . . . . . 134

6.5.1 Interpretation of results . . . . . . . . . . . . . . . . . . . . . . . . . 134



Contents 8

6.5.2 Uncertainty and the curse of dimensionality . . . . . . . . . . . . . . 137

6.5.3 Assessment of the fit of the models . . . . . . . . . . . . . . . . . . . 138

6.6 Other datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.7 More complex model variants . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7 Conclusions and future research 156

7.1 What have we achieved? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.1 Point process-based models . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.2 Potential improvements to our local fitting methodology . . . . . . . 158

7.2.3 Practical application . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.2.4 Curse of dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . 161

A Formulae for fitting properties 163

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.2 Bartlett-Lewis Rectangular Pulse (BLRP) model: Derivations . . . . . . . . 165

A.3 Bartlett-Lewis Rectangular Pulse (BLRP) model: Fitting Properties . . . . 171

A.4 Random Parameter Bartlett-Lewis Rectangular Pulse (BLRPR) model . . . 173

A.5 Random Parameter Bartlett-Lewis Rectangular Pulse model with depen-
dent intensity-duration (BLRPRX) . . . . . . . . . . . . . . . . . . . . . . . 176

A.6 Bartlett-Lewis Instantaneous Pulse (BLIP) model . . . . . . . . . . . . . . . 178

A.7 Random Parameter Bartlett-Lewis Instantaneous Pulse (BLIPR) model . . 180

B Fitted parameters in respect of selected monthly models 183

C Plots for variants of the BLRPRX model 186

D Fitted parameters v selected predictors 190



List of Figures

2.1 Illustration of a single storm within the BLRP model . . . . . . . . . . . . . 27

3.1 Samples of the Bochum series of 5 minute rainfall totals. . . . . . . . . . . . 44

3.2 Mean hourly rainfall in Bochum by year and month. . . . . . . . . . . . . . 45

3.3 Mean 1-hour rainfall by month, fitted v observed. . . . . . . . . . . . . . . . 54

3.4 Coefficient of variation by month, fitted v observed. . . . . . . . . . . . . . 54

3.5 Lag-1 autocorrelation by month, fitted v observed. . . . . . . . . . . . . . . 55

3.6 Coefficient of skewness by month, fitted v observed. . . . . . . . . . . . . . 55

3.7 Proportion dry by month, fitted v observed. . . . . . . . . . . . . . . . . . . 56

3.8 Wet/wet transition probability by month, fitted v observed. . . . . . . . . . 56

3.9 Gumbel plots of extremes for July, BLRPRX model. . . . . . . . . . . . . . 58

3.10 Gumbel plots of annual extremes, BLRPRX model. . . . . . . . . . . . . . . 58

3.11 Annual Gumbel plots for variants of the Bartlett-Lewis model. . . . . . . . 59

3.12 Profile objective function plots for the BLRPRX model. . . . . . . . . . . . 60

3.13 Mean parameters and confidence intervals for the BLRPRX model. . . . . . 61

3.14 Parameter estimates for the BLRPRX model (bootstrap fits). . . . . . . . . 62

4.1 Simple motivating example: local mean scatterplot smoothing. . . . . . . . 69

4.2 Simple motivating example: local mean v local linear fits. . . . . . . . . . . 88

4.3 Example contours of a Gaussian Kernel for a bivariate covariate. . . . . . . 103

5.1 Relationship between calendar month and selected covariates. . . . . . . . . 115

6.1 Fitted parameters; covariate: temperature. . . . . . . . . . . . . . . . . . . 118

6.2 Fitted v observed mean; covariate: temperature. . . . . . . . . . . . . . . . 119

9



List of Figures 10

6.3 Selected fitted v observed statistics; covariate: temperature. . . . . . . . . . 120

6.4 Variability bands for µX with three different bandwidths. . . . . . . . . . . 121

6.5 Estimated variance of the statistics at the 1-hour timescale. . . . . . . . . . 122

6.6 Revised variability bands for µX with three different bandwidths. . . . . . . 122

6.7 Bias-adjusted estimates for λ and µX with three different bandwidths. . . . 123

6.8 Parameter estimates using ‘linear binning’ approximation. . . . . . . . . . . 125

6.9 Autocorrelation of residuals in respect of selected fitting statistics. . . . . . 126

6.10 Fitted parameters: local mean and local linear fits; covariate: temperature . 127

6.11 Mean weighted sum of squared errors v bandwidth, single hold-out sample. 128

6.12 Mean weighted sum of squared errors v bandwidth, 25 hold-out samples. . . 129

6.13 Density of the optimal bandwith for each predictor; 25 hold-out samples. . 130

6.14 Mean weighted sum of squared errors: various combinations of covariates. . 132

6.15 Mean weighted sum of squared errors: selected covariates; revised bandwidths.134

6.16 Fitted parameters v temperature, mean-square optimal bandwidth . . . . . 135

6.17 Fitted parameters v sea-level pressure and temperature. . . . . . . . . . . . 136

6.18 Effective sample sizes in respect of selected models. . . . . . . . . . . . . . . 139

6.19 Observed and fitted statistics at the 1-hour timescale; covariates: sea-level
pressure and temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.20 Mean hourly rainfall v binned values of selected covariates. . . . . . . . . . 141

6.21 Breakdown of the mean weighted sum of squared errors. . . . . . . . . . . . 143

6.22 Simulated distributions of mean annual rainfall for Bochum. . . . . . . . . . 144

6.23 Mean weighted sum of squared errors; Kelburn, selected covariates . . . . . 145

6.24 Breakdown of the mean weighted sum of squared errors; Kelburn & Bochum.146

6.25 Fitted parameters v sea-level pressure and temperature; Kelburn. . . . . . . 147

6.26 Fitted parameters v sea-level pressure and temperature; Kelburn, adjusted
scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.27 Fitted parameters v sea-level pressure and temperature; Heathrow. . . . . . 150

6.28 Fitted parameters vs sea-level pressure and temperature; Bochum, no 5-
minute statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.29 Fitted parameters v sea-level pressure and temperature; Heathrow, revised
bandwidths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.30 Mean weighted sum of squared errors; BLRP v BLRPRX models. . . . . . . 153



List of Figures 11

6.31 Mean 1-hour proportion dry v binned values of selected covariates; Bochum 154

6.32 Fitted parameters v sea-level pressure and temperature; BLRPRX model . 155

C.1 Mean 1-hour rainfall by month, fitted v observed (new model variants). . . 187

C.2 Coefficient of variation by month, fitted v observed (new model variants). . 187

C.3 Lag-1 autocorrelation by month, fitted v observed (new model variants). . . 188

C.4 Coefficient of skewness by month, fitted v observed (new model variants). . 188

C.5 Proportion dry by month, fitted v observed (new model variants). . . . . . 189

C.6 Annual Gumbel plots for variants of the BLRPRX model. . . . . . . . . . . 189

D.1 Fitted parameters of the BLRP model v selected single covariates. . . . . . 191

D.2 Fitted parameters of the BLRP model v slp, temp & uwind. . . . . . . . . . 193



List of Tables

3.1 Comparison of minimum objective function values. . . . . . . . . . . . . . . 51

3.2 Comparison of minimum objective function value; α > 2. . . . . . . . . . . . 52

3.3 Hypothesis tests for the rainfall intensity distribution; BLRPRX model. . . 64

3.4 Minimum objective function values for variants of the BLRPRX model. . . 64

5.1 Correlations between selected covariates and Bochum rainfall statistics. . . 111

5.2 Correlations between potential predictor variables. . . . . . . . . . . . . . . 112

6.1 Optimal bandwidths based on 25 hold-out samples, single covariates. . . . . 131

6.2 Estimated mean-square optimal bandwidths, multiple covariates. . . . . . . 133

6.3 Estimated mean-square optimal bandwidths for Kelburn. . . . . . . . . . . 145

B.1 Parameters: BLRP model, exponential intensity distribution. . . . . . . . . 184

B.2 Parameters: BLIP model; independent within-cell pulse depths, exponential
intensity distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.3 Parameters: BLIPR model; common within-cell pulse depths, exponential
intensity distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.4 Parameters: BLRPRX model, exponential intensity distribution . . . . . . 185

B.5 Parameters: BLRPRX model, Weibull intensity distribution . . . . . . . . 185

B.6 Parameters: BLRPRXc model, exponential intensity distribution . . . . . . 185

12



Abbreviations

Models

BLIP Bartlett Lewis Instantaneous Pulse model

BLIP2 Bartlett-Lewis Instantaneous Pulse model with two superposed processes

BLIPR Random Parameter Bartlett-Lewis Instantaneous Pulse model

BLRP Bartlett-Lewis Rectangular Pulse model

BLRP2 Bartlett-Lewis Rectangular Pulse model with two superposed processes

BLRPR Random Parameter Bartlett-Lewis Rectangular Pulse model

BLRPRX Random Parameter Bartlett-Lewis Rectangular Pulse model with dependent
intensity-duration (µX ∝ η)

BLRPRXc Random Parameter Bartlett-Lewis Rectangular Pulse model with dependent
intensity-duration (µX ∝ ηc)

Covariates

geo200 Geo-potential height at 200 hPa, m (similarly, geo500 & geo700 are geo-
potential heights at 500 hPa and700 hPa respectively)

rhum Relative surface humidity, %

rhum700 Relative humidity at 700 hPa, %

shum Specific surface humidiy, g/kg

shum700 Specific humidiy at 700 hPa, g/kg

slp Sea-level pressure, mb

temp Surface temperature, ◦C

thick Thickness of the atmosphere between 500hPa and 1000hPa

uwind Zonal (west-east) wind component, m/s

vwind Meridional (north-south) wind component, m/s

Other Acronyms

AIC Akaike’s information criterion

AOGCM Atmosphere-Ocean General Circulation Model

BIC Bayes’ information criterion

13



Abbreviations 14

GAM Generalised Additive Model

GCM Generalised Circulation Model

GEV Generalised Extreme Value

GLM Generalised Linear Model

IPCC Intergovernmental Panel on Climate Change

MOS Model Output Statistics

NAO North Atlantic Oscillation

NCEP National Centre for Environmental Prediction

RCM Regional Climate Model

SRES Special Report on Emission Scenarios

UKCIP02 UK Climate Impacts Programme, 2002

UKCP09 UK Climate Projections, 2009



Chapter 1

Introduction

Long series of simulated rainfall are required by hydrologists, telecommunications engineers

and those involved in the modelling of climate impacts on agriculture and the environment.

The timescales at which these are required depend on the particular application, and range

from monthly down to a few minutes. Applications for which very fine scale data are

required at point locations include urban drainage design and radio telecommunications

networks. Observed data series are generally too short (and may suffer from quality

issues), particularly at these finer timescales. Over the last few decades this has led to

the development of stochastic rainfall models, from which series of any desired length

can be simulated. These simulated series are required to resemble real precipitation in

terms of reproducing key characteristics such as variability, correlations between successive

intervals, extremes and wet/dry sequences. A number of different approaches exist and

practical applications are numerous.

More recently, however, the issue of climate change has become an increasing concern.

Warming of the climate system is now “unequivocal”, according to the Intergovernmen-

tal Panel on Climate Change (IPCC), whose latest report (the Fourth Assessment report

(IPCC 2007)), warns that, expressed as a global average, surface temperatures have in-

creased by about 0.74◦C over the past hundred years, and are projected to increase by

about 0.2◦C per decade over the next two decades. Further projections increasingly depend

on specific SRES (Special Report on Emission Scenarios, Nakićenović & Swart (2000))

emission scenarios. Observed changes to precipitation have also been noted, including

changes to the amount, intensity, frequency and type of precipitation. There is more un-

certainty here, due to the difficulties of measurement, regional influence of aerosols, gaps

in our understanding of certain precipitation feedbacks, and high natural variability. Pre-

cipitation is influenced by El Niño and atmospheric circulation patterns such as the North

Atlantic Oscillation, which are themselves influenced by climate change (Trenberth et al.

(2007)). Despite these uncertainties, it is considered very likely that hydrological charac-

teristics will change in the future, including in particular an increase in the frequency of

15



1. Introduction 16

heavy precipitation events (Bates et al. 2008).

Although various different approaches have been proposed in order to generate artificial

rainfall series that incorporate climate change scenarios at a point location, none has so

far done so in a way that addresses all the requirements in a straightforward way, and this

remains an ongoing challenge. The simpler approaches tend not to be able to reproduce

the structure and characteristics of rainfall (such as the correlations between successive

intervals, extremes, variability etc.). Another common limitation of many models is that

they are only applicable at a single timescale, usually daily. More sophisticated models

address these issues, but typically at the expense of a great deal of complexity and compu-

tational burden, often requiring several components, particularly where sub-hourly series

are required.

Generalised Circulation Models (GCMs) are the main tool for predicting future climate

impacts resulting from the increase of greenhouse gases in the atmosphere (see Barry &

Chorley (2003) for an introduction). They model large-scale movements over the entire

globe, which is divided into a coarse grid of boxes, over tens to hundreds of years using a

set of physical equations. Typical surface resolutions are 1–2.5◦ × 1.5–4◦, with of the order

of ten to twenty atmospheric levels. The equations link the five key physical quantities

of the atmosphere — wind velocity, air temperature, pressure, density and humidity, and

are numerically integrated forward in small time-steps (of the order of a few minutes to

tens of minutes), starting from a set of initial conditions, and respecting a set of boundary

conditions (e.g. between the atmosphere and the Earth’s land or ocean surface). In

order to solve the coupled equations, the models also need to keep track of processes

within the grid boxes (known as ‘parameterisations’) such as absorption and scattering of

radiation, cloud formation, precipitation etc. Typically details of coastlines, mountains,

surface vegetation and soil are incorporated, but much of the regional detail is lost in

the averaging over grid squares. According to the Fourth Assessment report, there is

considerable confidence that Atmosphere-Ocean General Circulation Models (AOGCMs)

provide credible quantitative estimates of future climate change, although confidence in

these estimates is higher for some climate variables e.g. temperature, than for others, e.g.

precipitation (Randall et al. 2007). However, AOGCMs cannot provide information at

scales finer than their computational grid, typically of the order of 200 km. (Christensen

et al. 2007).

The techniques for generating data at a finer temporal and/or spatial resolution from

climate model output are referred to as ‘downscaling’, and are classified as either dynamical

or statistical. The former are physically based, such as Regional Climate Models (RCMs).

These cover smaller areas with a finer resolution, typically with grid cells of approximately

50km by 50km (although a few recent models have had grid sizes below 20km), allowing

more local features to be represented. RCMs are often embedded into a GCM in a region

of interest and use the global model information as boundary conditions. However, even
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at the finer resolution level of RCMs, the models’ ability to produce realistic future rainfall

projections at sub-daily resolution at point locations is questionable. This type of physical

model is also computationally very intensive, making it infeasible for impact studies which

require the analysis of a large number of possible scenarios.

Statistical downscaling techniques have the important advantage of computational speed.

They exploit observed relationships between the large-scale climate variables of the GCM

(or RCM) and local climate. Since modelled values of future atmospheric variables are

considered fairly reliable, future rainfall may be derived by relating rainfall to these at-

mospheric variables e.g. using regression techniques.

There are numerous different approaches to statistical downscaling. These are difficult to

categorise as many use combinations of a number of different elements and techniques.

Useful recent reviews which focus specifically on precipitation and hydrological modeling

include Fowler et al. (2007) and Maraun et al. (2010). One of the most popular techniques

is regression, which can involve different levels of complexity, and form part of more

sophisticated methods. At the simplest level, a multiple regression may be used to estimate

mean monthly rainfall amounts conditionally on a set of suitable large-scale atmospheric

predictor variables. At the daily timescale, this is likely to be problematic, due to the

highly non-normal distribution of rainfall. Transformations are commonly used to address

both non-normality and non-linear relationships between the predictor and predictand.

A common solution in respect of daily rainfall amounts is to use a power-transformed and

truncated normal distribution (e.g. Bardossy & Plate (1992)). An alternative approach is

to use separate models for daily rainfall occurrence and daily rainfall amounts, condition-

ally on a wet day. For example, Kilsby et al. (1998) take the log of the rainfall amount

and use the logit function log( p
1−p) for daily rainfall occurrence, p. However these trans-

formations introduce bias when applying the backward transformation, which needs to be

adjusted for. A better approach is to use generalised linear models (GLMs), which can

respect the actual distribution of the data. Thus rainfall occurrence, a binary variable,

may be modelled using logistic regression, whereas for wet-day amounts, the normal distri-

bution assumption of the linear regression may be replaced by a more suitable alternative,

say gamma, within the GLM (Chandler & Wheater 2002, Furrer & Katz 2007).

Non-parametric regression techniques are a more flexible way to address the issue of non-

linear relationships between the predictors and predictand e.g. Generalised Additive Mod-

els (GAMs) (Beckmann & Buishand 2002) which replace the linear functions of GLMs with

nonparametric ones. Another nonlinear regression technique is the artificial neural net-

work (e.g. Haylock et al. (2006), Cavazos & Hewitson (2005)). Techniques to reduce

the dimensionality of the covariates include the use of principal components (Cavazos &

Hewitson 2005) or canonical correlation analysis (von Storch & Zwiers 1999).

Another popular statistical downscaling approach involves the use of weather typing
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schemes (Jones et al. 1993, Buishand & Brandsma 1997). This approach categorises

weather into discrete types, and associates each type with either a rainfall mean, or some

more extensive properties of rainfall (such as the parameters of a rainfall model). The

weather types may be defined using subjective judgement, or using an objective approach,

such as cluster analysis. Climate change is then estimated by evaluating the change in

frequency of the weather classes simulated by the GCM. An advantage of weather types

is that that are a straightforward way to allow for nonlinear relationships between the

underlying raw climate variables and the response (Maraun et al. 2010). However, a

disadvantage of discrete weather types, highlighted by Wilby (1997), is the difficulty of

maintaining the uniqueness of rare events at the same time as grouping sufficient data to

ensure statistical integrity. The weather types are also potentially local in character, and

not readily used across locations.

Random cascade models represent another methodology that is sometimes included under

the umbrella of statistical downscaling. These are models that use multifractal techniques

to subdivide rainfall at a coarse resolution repeatedly to successively smaller subintervals.

These models cannot (at least currently) be used as a stand-alone method of statistical

downscaling, since the precipitation output from GCMs is not considered reliable, and the

random cascade models have no parameters that relate to climate variables. However, they

are often used in conjunction with other methods, and discussed briefly in this context in

Section 1.3.

Usually, statistical downscaling models are fitted to (or calibrated against) historical ob-

served or reanalysis data, and it is assumed that the predictors are perfectly modeled

by the GCM or RCM, in which case they are categorised as ‘perfect prognosis’ models.

An alternative category of models, termed MOS (Model Output Statistics) models, are

instead calibrated against simulated predictors. Typically this involves using simulated

precipitation from an RCM as a predictor, in which case MOS can effectively be thought

of as ‘correcting’ the precipitation of the RCM, although usually spatial downscaling to

a more local scale is also involved. MOS was originally developed in weather forecasting

(Klein & Glahn 1974), and is only recently being applied in this way (Maraun et al. 2010).

Some of the simpler downscaling approaches do not allow a random element, and thus tend

to underestimate local-scale variability. Many do not explicitly impose an appropriate tem-

poral structure (although there will be an implicit assumption within the predictors), and

this may lead to performance issues in terms of reproducing the characteristics of real

weather series. Weather generators are stochastic models which produce local synthetic

time series of weather data, and which address both of these issues. Often daily precipita-

tion is modelled first because of its importance and relative complexity, with other variables

of interest at the local scale, such as daily maximum and minimum temperature, solar ra-

diation, humidity and windspeed then modelled conditionally on precipitation occurrence.

Weather generators can be used for statistical downscaling in a number of different ways,
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with varying levels of sophistication, and may involve both regression and weather typing.

A simple example of an unconditional weather generator (i.e. one which does not involve

large-scale covariates) is just a two-state (wet/dry) first order Markov chain with daily

transition probabilities, and a distribution (typically gamma) for precipitation amounts on

wet days (Katz 1977, Richardson 1981). Second or third order Markov chains may be used

instead in order to reflect the temporal structure more accurately (Stern & Coe 1984).

The GLMs described above may also be categorised as weather generators, and are essen-

tially extensions of the Markov chain approach. This type of model can be categorised as

purely statistical, and makes no attempt to represent the physical rainfall process itself

in any way. A consequent limitation is that the model provides estimates only at the

timescale at which it has been fitted, which is typically daily. GLMs and similar models

are not feasible at subdaily resolution, as the complicated dependency structure of rainfall

would require an excessive number of parameters at these scales (Chandler et al. 2007a).

An example of a recent, more sophisticated (multi-site) model of this type used in the

context of statistical downscaling is the extended nonhomogeneous hidden Markov model

of Charles et al. (2004), which combines an underlying unobserved (hidden) stochastic

process of weather states with an observed process of daily rainfall occurrence, which is

assumed to be temporally independent given the hidden process. The hidden process of

weather states is assumed to follow a first order Markov chain, with transition probabilities

conditional on atmospheric predictors.

One of the most important categories of weather generator, particularly in the field of

hydrology, consists of clustered point process-based rainfall models, which are the focus

of this thesis. These models differ from the purely statistical ones described above, in

that they attempt to model the physical rainfall process, albeit in a very simplified way.

The deterministic differential equations of numerical weather models are replaced by a

stochastic process with a small number of physically interpretable parameters. Because

the underlying process runs in continuous time, simulations can be generated which can

be aggregated to different timescales in a consistent way, and this is one of the principal

advantages of this type of model.

Clustered point process-based models do not in themselves constitute a statistical down-

scaling method, since in their basic form they are simply fitted to historical observed

rain-gauge data and used to simulate a stationary rainfall series. In this form they are

classed as unconditional weather generators. However, the recent literature includes many

approaches where these have been used in conjunction with large-scale atmospheric vari-

ables, as part of a statistical downscaling methodology. In the next sections we introduce

the basic models and then discuss how these have been used within a statistical downscal-

ing context. We conclude this introduction with a summary of the research question that

is addressed in this thesis, and an outline of the thesis structure.
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1.1 Clustered point process-based rainfall models

Empirical evidence has shown that rainfall exhibits clustering in both space and time

(Austin & Houze 1972). Clustered point process-based rainfall models have been used for

over twenty-five years, since a seminal paper by Rodriguez-Iturbe et al. (1987). Examples

of practical application are numerous (Onof et al. 2000, Wheater et al. 2005, Cowpertwait

2006, Kilsby et al. 2007, Burton et al. 2008), with generally very good performance. A

clustered point process rainfall model is also used within the Weather Generator tool of

the UK Climate Projections (UKCP09) project to downscale climate projections (Jones

et al. 2009). The original single-site models have been extended to the spatial-temporal

domain, but here we focus on point locations.

The models assume that rain-events or ‘storms’ arrive in a Poisson process. Each rain

event consists of a cluster of rain cells, with the temporal location of cells relative to the

event origin specified by one of two clustering mechanisms — Bartlett-Lewis or Neyman-

Scott. Each cell is assumed to have a random duration and intensity. In the most com-

monly used models, the intensity remains constant over the duration of the cell, giving

rise to their description as ‘rectangular pulse models’. The models are fitted to discrete

data from rain-gauges, typically using the generalised method of moments. This is a fairly

subjective method, for which there is considerable flexibility, particularly in terms of the

number and types of properties chosen for fitting. The dependence structure of the models,

particularly when aggregated, makes a maximum likelihood method impracticable.

Since their introduction, many refinements have been introduced in order to improve the

fit of the basic models to specific rainfall properties. Key amongst these have been those

which have allowed for different types of rainfall. These include models with multiple cell-

types (Cowpertwait 1994), or multiple superposed processes (Cowpertwait 2004, Cowpert-

wait et al. 2007). In order to keep parameter numbers manageable, these methods have

generally limited the number of cell types or processes to just two, which can be thought

of as representing heavy, short-duration convective and lighter, long-duration stratiform

types of rainfall. An alternative modification to enable variation between storms is the

randomisation of the cell duration parameter between storms (Rodriguez-Iturbe et al.

(1988), Entekhabi et al. (1989)). In effect this allows a continuous range of storm types.

While much of the application of the models has been at hourly or longer timescales, the

requirement for sub-hourly resolution, in particular for the design of stormwater sewer-

age systems, was the motivation for the development of the Bartlett-Lewis Pulse model

(Cowpertwait et al. 2007), which replaces the rectangular rain cells of the original Bartlett-

Lewis model with a Poisson process of instantaneous pulses (thus incorporating two levels

of clustering, and allowing greater variability in rain intensity at short timescale). How-

ever, no study has as yet investigated the performance of the rectangular-pulse models at

sub-hourly timescales, nor compared these against the new instantaneous pulse version. In
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order for the models to be able to reproduce rainfall properties at a sub-hourly timescale,

properties at this timescale must be included within the fit.

Apart from issues relating to a sub-hourly timescale, the most commonly noted shortcom-

ings of the models, with respect to their ability to simulate realistic rainfall series, relate

to the reproduction of wet/dry properties and to extremes. The former was addressed

to some extent by randomising the cell duration parameter, as discussed, the latter by

the introduction of the skewness coefficient as one of the fitting properties (Cowpertwait

1998). Parameter identifiability can also be a problem, particularly with the model vari-

ants with relatively high numbers of parameters, such as those with multiple cell types or

superposed processes.

The most significant shortcoming of these models, however, is that they are stationary.

Historically, as for most unconditional weather generators, seasonal variation in rainfall

characteristics has been addressed by fitting a separate model for each calendar month

or season. However, this approach is no longer viable in a world of changing climate

and seasons. In the next section we consider approaches to this problem in the existing

literature.

1.2 Downscaling approaches using point process models

As mentioned above, the point process rainfall models are fitted to a selected set of rain-

fall statistics. A simple approach re-scales some or all of the historical statistics to allow

for future climate change, with separate models then fitted to each such re-scaled set of

statistics. Examples of this approach include Kilsby et al. (1998), Kilsby et al. (2007) and

Burton et al. (2010). Kilsby et al. (1998) fit separate models for each month, updating just

two rainfall statistics (the mean daily rainfall amount and the proportion of dry days),

and allowing two of the parameters, the storm arrival rate and the mean cell intensity to

vary, keeping the other model parameters (which are based on the present climate) con-

stant over the whole period. The two statistics are regressed on large-scale atmospheric

variables each month. Rather than using regression to predict future values of rainfall

statistics, Kilsby et al. (2007) derive these simply by multiplying current observed val-

ues (or appropriately transformed values) by ‘change factors’, based on UKCIP02 future

climate scenarios (Hulme et al. 2002). A ‘change factor’ is just the ratio of the appro-

priate rainfall statistic’s value from the given climate model in respect of a future ‘time

slice’ divided by its value for the control period. Separate models are fitted for three time

slices — 2020s, 2050s and 2080s, and four IPCC SRES emissions scenarios. Note that this

scaling approach can be thought of as a simple MOS (Maraun et al. 2010). Burton et al.

(2010) extend this work to allow for a greater level of non-stationarity, interpolating the

‘change factors’ to provide a monthly series of statistics. While these approaches are con-

ceptually simple, they are computationally burdensome and rather inflexible. Typically
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constraints need to be imposed in order to ensure smoothness (e.g. by keeping some pa-

rameters constant). Parameter uncertainty has not been considered, and its estimation is

likely to be difficult, given the fitting to ‘quasi-observed’ data. The change factor approach

also makes the implicit assumption that the observations represent a stationary climate

(Burton et al. 2010).

Fowler et al. (2000) present a rather different model which combines a semi-Markov chain

with a clustered point process model. The former generates a sequence of daily weather

states. A point process model is fitted for each of the (six) weather states, and the

combined model is used to provide synthetic rainfall series at a single site. Climate change

scenarios can be accommodated by changing the frequencies of the different weather types.

There are some issues with this model, in terms of the behaviour of rainfall at the transition

points between states, as storm durations may exceed the daily time scale at which weather

states are modelled. It is thus not straightforward to determine the rainfall belonging to

each state in the observed data.

Typically these downscaling approaches have been used only for downscaling to a daily

timescale. A second step is then required, if rainfall at a sub-daily timescale is required.

Here again, clustered point processes form a part of many techniques. A brief description

of some of the key methods is given below, which may be applied to the daily data from

any of the downscaling techniques.

1.3 Generating rainfall at finer resolution

One of the simplest methods of generating rainfall at a sub-daily scale from a coarser

resolution is by using scaling relationships (Kilsby et al. 2007, Chandler et al. 2007b).

Sub-daily statistics are derived using observed relationships between sub-daily and daily

statistics, and then these are included as fitting statistics within the point process model.

Very broadly the relationship between log timescale and log statistic is close to linear for

the variance and proportion of intervals which are wet, although more complex relation-

ships are required in practice to avoid some odd results. However, scaling relationships to

derive sub-hourly statistics from the daily values have not been developed as yet.

Various alternative methods exist, some of which are suitable for generating rainfall down

to a sub-hourly resolution. If the method attempts to match actual daily totals, rather than

just the distribution or moments, then it is termed ‘disaggregation’, rather than ‘down-

scaling’. Several disaggregation approaches are based on point process models (Glasbey

et al. 1995, Koutsoyiannis & Onof 2000, 2001). The broad idea behind these is to simulate

long records at the appropriate timescales from the point process model, and then find

short sequences which provide good matches for the daily level series (or more specifically

for each wet-day cluster), within some level of tolerance. A different class of disaggrega-
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tors is based on the fact that rainfall intensities exhibit simple scaling behaviour (Lovejoy

& Schertzer 1995, Gupta & Waymire 1993) and uses multifractal techniques. The cas-

cade model of Onof et al. (2005) subdivides rainfall at a coarser scale iteratively until the

required resolution is achieved.

If historical data at an appropriate resolution are available, it would clearly be preferable

to fit a model that is suitable at the desired timescale directly, without the need for further

disaggregation or downscaling.

1.4 Research objectives and outline of thesis

The performance of both dynamical and statistical downscaling methods is continually

improving, with developments in technology allowing ever finer resolution, and numerous

research initiatives identifying and refining useful methodologies. However, a number of

gaps remain between currently available approaches, and end-user requirements. Here, we

focus on the ability to generate subdaily rainfall, allowing for temporal non-stationarity,

with relatively low computational demands.

Our proposed approach is based on the Bartlett-Lewis model (although it could equally

well be applied to the Neyman-Scott models), and thus shares the advantages of other

clustered point process-based approaches, discussed in the previous sections. It has simi-

larities with those of Kilsby et al. (1998) and Burton et al. (2010), in that we assume that

future climate is stationary over monthly periods. Similarly to Kilsby et al. (1998) also,

we use regression techniques to relate local rainfall to large-scale atmospheric variables.

However, Kilsby et al. (1998)’s approach requires a two stage process — firstly the regres-

sion models are used to derive a series of statistics, then a series of point process based

models must be fitted to each set of statistics.

We propose instead to remove a stage of the process by relating atmospheric variables

directly to the model parameters within the fitting process, using a kernel-based nonpara-

metric approach. It will be shown that the method proposed is a natural extension of the

current approach, replacing the discrete covariate, calendar month, with various contin-

uous covariates within a Generalised Method of Moments framework. We will also show

how a tuning constant (‘bandwidth’) can be adjusted in order to ensure optimal use of

the available data, such that an appropriate effective sample size is used at each covariate

point, with parameters changing smoothly with covariate values.

A key advantage of our method over many other approaches is that, by using a range of

statistics over a set of different timescales, we relate not just one or two key statistics,

such as the mean daily rainfall and proportion of dry days, to large scale atmospheric pa-

rameters, but also other important properties of rainfall, such as variability and skewness.

This means that our method allows great flexibility in allowing the structure of rainfall to
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vary if the relationships and future values of our predictands indicate that this should be

so. In addition, no constraints are imposed on the form of the relationships between the

fitted parameters and the covariates, and valuable intuition is gained by examining these

relationships. As well as allowing the clustered point process-based models to incorporate

potential climate change scenarios, relating the model parameters to suitable large scale

atmospheric covariates should also improve the interannual variability, which is generally

under-estimated, even in a stable climate.

Although the main new development of this thesis is the non-stationary version of the

Bartlett-Lewis clustered rainfall model, we are interested also in the feasibility of a model

with just one fitting stage, capable of providing a rainfall series down to a five minute

resolution (assuming that appropriate historical data are available for fitting), without

the need for downscaling or disaggregation. We therefore first carry out a review of the

key existing variants of the Bartlett-Lewis based model, developing two new alternatives

as part of this review. Our aim is to clarify the drivers behind model performance at a

sub-hourly timescale, and to identify the optimal choice for fine-scale data.

The structure of the rest of this thesis is as follows. First, in Chapter 2, we discuss the

fitting methodology of the point process-based models, looking at new developments in the

theory, including the issue of parameter uncertainty and identifiability. In Chapter 3 we

carry out a review and introduce two new model variants, as discussed, using a time series

of 69 years of five minute data from Bochum in Germany. We focus solely on the Bartlett-

Lewis suite of models here, rather than on models based on the Neyman-Scott clustering

mechanism, principally because methodology for an additional level of clustering has been

developed for the former, but the two mechanisms generally exhibit similar performance

(Rodriguez-Iturbe et al. 1987). Chapter 4 introduces the methodology for the proposed

nonparametric models, with Chapters 5 and 6 providing a practical study, including the

selection of suitable covariates and detailed results of the fitting respectively. The focus

of this practical work is to demonstrate the viability of the methodology using reanalysis

data, and we do not produce any simulations in respect of future climate scenarios here.

This next stage would require consideration of the most appropriate source of large-scale

atmospheric variables, including issues such as model biases, model uncertainty and the

use of ensembles, different grid scales etc. Chapter 7 concludes the thesis with some

thoughts on this and other future work.

The software: momfit (Chandler et al. 2010) has been used for fitting the global models

in Chapter 3, and individual functions from this suite have also been used within Chapter

6. All the programs developed within this thesis, have been written in R (R Development

Core Team 2010). R packages used include:

• RNetCDF (Michna 2012) for interfacing with the NCEP NetCDF datasets,

• Lattice (Sarkar 2010) and Fields (Furrer et al. 2011) within some of the plotting
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routines, and

• mvtnorm (Genz et al. 2012, Genz & Bretz 2009) for sampling from the Multivariate

Normal distribution.

The methodology developed here is intended for practical application, and so computation

times are of interest. Any such times given throughout the thesis are based on runs carried

out on a home computer.



Chapter 2

Methodology in respect of existing

point process-based models

In this chapter, we consider the fitting methodology in respect of the point process-

based rainfall models, focusing on the simplest of the clustered Bartlett-Lewis models,

the Barlett-Lewis Rectangular Pulse (BLRP) model, as an example. We start by examin-

ing the structure of this model, then give a description of the fitting method and associated

issues. We decide on the fitting properties that are used in all the empirical work of this

thesis, describe our numerical optimisation approach, and consider the uncertainty of the

parameter estimates. The chapter concludes with some thoughts on the assessment of

model performance, and on model selection. More complex variants of the basic model

are considered in Chapter 3.

2.1 Description of the BLRP model

The specification of the basic Bartlett-Lewis Rectangular Pulse (BLRP) model (Rodriguez-

Iturbe et al. 1987) is as follows:

• Rain-events (or ‘storms’) arrive in a Poisson process of rate λ.

• Each event generates a cluster of cell arrivals, with a cell at the storm origin itself.

The Bartlett-Lewis clustering mechanism assumes that the time intervals between

successive cells are independent, identically distributed random variables. It is nor-

mally assumed that the intervals between cells are exponentially distributed, so that

the cell arrivals constitute a secondary Poisson process of rate β.

• Each cell is associated with a rectangular pulse of rain, of random duration, L, and

with random intensity, X. In the simplest version of the model, these are both

26
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assumed to be exponentially distributed with parameters η and 1/µX respectively,

and are independent of each other.

• The cell origin process terminates after a time that is exponentially distributed with

rate γ.

This basic version thus has five parameters in total. Both storms and cells may overlap,

and the total intensity of rain at any point in time, Y (t) is given by the sum of all pulses

‘active’ at time t. Note that there may be periods of zero rain within a storm. The process

in respect of a single storm is illustrated in Figure 2.1.

TimeStorm

(λ, γ)

t �

Cell arrivals
(β) t t t t t

Cell durations
and intensities
(η, µX)

Rainfall intensity

Figure 2.1: Illustration of a single storm within the Bartlett-Lewis Rectangular Pulse model,
with parameters shown in blue.

Additional flexibility can be added by allowing for a distribution with more parameters

for pulse intensities. In particular, a distribution with a longer tail may help with the fit

of extreme values, and popular variants include the Gamma and Weibull distributions.

One additional parameter is required for either of these. Moving away from the exponen-

tial distribution for cell durations would be less straightforward, however, as the Markov

structure of the model would be lost, and hence its mathematical tractability.

2.2 Fitting methodology

As mentioned in Section 1.1, the models are fitted to discrete data from rain-gauges, and

their dependence structure, particularly when aggregated, makes a full maximum like-

lihood method impracticable. Some attempts have been made to use likelihood based
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methods, however, and we consider these very briefly. Chandler (1997) uses an approxi-

mate likelihood function based on the Fourier transform of the data. This simplifies the

likelihood construction, because the sample Fourier coefficients are asymptotically inde-

pendent and normally distributed. However, the method’s reliance on only the mean and

second-order properties of the data, results in poor performance in respect of wet and dry

interval properties. Salim & Pawitan (2003) create a ‘quasi-likelihood’ by assuming that

vectors of rainfall data over disjoint seventy-two hour intervals are independently drawn

from a 72-dimensional multivariate normal distribution. The dependence of the rainfall

process is thus characterised by the variance-covariance matrix of the 72 hourly totals.

This choice is made primarily for computational convenience, and clearly does not reflect

the highly skewed nature of hourly rainfall. The fit to the proportion of intervals that are

dry is shown to be poor, and it is unlikely that such a method could accurately reflect

properties other than those of first and second-order.

A different approach is taken by Northrop (2006), who constructs a marginal likelihood for

the binary sequence of rainfall occurrences over consecutive time intervals for the unclus-

tered Poisson rainfall model. The temporal parameters of the Poisson model are estimated

from this marginal likelihood, with the intensity parameters estimated using the method

of moments. However, for the more realistic, clustered models, direct maximisation of the

marginal likelihood is computationally intensive, so strategies to alleviate the computa-

tional burden would be necessary. Rodriguez-Iturbe et al. (1988) warn that in any case, it

is not at all clear that a method such as maximum likelihood could be the optimal method

because of the idealised nature of the model, particularly the rectangular pulses. They

argue that a likelihood function would tend to give undue emphasis to this unrealistic

feature.

Due to the difficulties inherent in a likelihood-based approach, fitting of the point process-

based rainfall models was originally carried out by the method of moments (Rodriguez-

Iturbe et al. 1987). In this method, sample moments (or indeed other sample statistics or

‘properties’) are equated with their expectations according to the model. The number of

statistics selected exactly matches the number of parameters, resulting in a set of simul-

taneous equations. For example, Rodriguez-Iturbe et al. (1987) apply the five-parameter

BLRP model to data from Denver, Colorado with a fit based on the hourly mean, and the

variance and lag-1 autocorrelations at aggregation levels of six and twelve hours. Later, it

was deemed preferable to fit a larger set of sample moments approximately, rather than

a smaller set exactly (Cowpertwait et al. 1996, Wheater et al. 2005), and models are now

generally fitted using the generalised method of moments (GMM).

Some of the drive to use likelihood-based methods stems from a desire to compare different

models using measures such as the Akaike information criterion (see, for example, Section

4.7 of Davison (2003)). The alternative generalised method of moments fitting approach, is

also perceived as being overly subjective, due to the choice of weights and fitting properties.
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However, as we highlight in this chapter, there is a theoretically optimal choice in respect

of the weights, and methods for model and moment selection in the GMM framework also

exist, albeit they are not widely used or developed.

We will use the generalised method of moments methodology to fit the models in this

thesis. The theory is introduced in the next section, and we consider its application to

the point process-based models in more detail in Section 2.4.

2.3 Generalised method of moments

The generalised method of moments is an extension of the method of moments, in which

the number of fitting properties exceeds the number of unknown parameters. The GMM

estimator is very popular in econometrics, dating in particular from the seminal paper

of Hansen (1982). Advantages include the fact that it is computationally convenient,

and, assuming certain conditions, gives consistent, asymptotically normally distributed

estimators of the parameters. Hall (2010) provides a useful summary of GMM estimation,

and Hall (2005) a comprehensive treatment. In this chapter the key results are presented

without proofs. The methodology described is the starting point from which the new local

approach of Chapter 4 is developed.

GMM estimation requires an equation of the form:

E[g(Y, θ0)] = 0, (2.1)

where θ0 is the unknown parameter vector, of dimension q say, Y is a vector of random

variables, and g(·) is a vector of functions. Such an equation is known as a set of ‘population

moment conditions’. In order for the system to be ‘identified’, this equation must have a

unique solution, so that E[g(Y, θ0)] does not equal zero for θ 6= θ0.

Commonly, and for the rainfall models fitted here, g takes the form:

g(Y, θ) = T (Y )− τ(θ),

where T (Y ) is a vector of summary statistics, and τ(θ) is the vector of their expected

values under the model.

If T (Y ) also has dimension q, then the estimator θ̂, obtained by replacing the population

moment condition with its sample equivalent, is the usual ‘method of moments’ estimator.

If, however, T (Y ) has dimension k > q, then generally, due to sampling variation, there

will be no unique solution. The model is then said to be ‘over-identified’. In that case,

the GMM estimator is given by the value of θ that minimises the distance between T (Y )
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and τ(θ), with distance measured by the following quadratic form:

Sn(Y, θ) = [T (Y )− τ(θ)]TWn [T (Y )− τ(θ)], (2.2)

for some positive definite weighting matrix Wn, which ensures that we put a positive,

non-zero weight on all the moment conditions. The subscript n here indicates the sample

size, and Sn is referred to as the ‘objective function’. Wn may depend on the data, but

in order for the estimator to be well-defined it is required to converge in probability to

W , a positive definite matrix of constants. The theoretically optimal approach (in terms

of minimising the variance of the parameter estimates) of Hansen (1982), takes Wn as

proportional to the inverse of the covariance matrix of the statistics. This is intuitively

appealing, since a statistic with a relatively small variance is more informative than one

with a large variance, and therefore should be given a greater weight. Also, it seems

sensible to adjust for the correlations between the statistics, which are unlikely to be

entirely uncorrelated in practice.

The estimators are consistent, provided certain regularity conditions are met. As already

discussed, a valid set of population moment conditions is required which identifies θ0.

Identification requires both an appropriate model structure, and sufficient information

in the observed data so that θ0 can be determined. In practice, identification problems

are often addressed by restricting the possible parameter space. The primary purpose of

other conditions is to ensure that the Law of Large Numbers can be applied to the sample

statistics, T (Y ), so that these tend in probability to their expectations τ(θ). This is true

for the statistics typically selected in rainfall model fitting.

2.4 Fitting approach: the rainfall application

In this section, we consider the GMM fitting approach in more detail, in the context

of our practical application. Note that GMM may be thought of as a special case of an

estimating function, and the theory and methodology are reviewed in this context by Jesus

& Chandler (2011), who derive asymptotic results, and take the Poisson rainfall model as

an example. This is the simplest of the point process-based models, with no clustering.

The fitting methodology used for the models in this thesis broadly follows that described

by Jesus & Chandler (2011).

In order to apply the methodology in practice, a number of decisions are required in respect

of various components, key amongst which are the following:

• derivation of the weighting matrix,

• selection of the fitting properties,
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• minimisation of the objective function, which typically requires numerical optimisa-

tion techniques.

These will be considered in turn in this section. In addition, it is important to consider

the level of uncertainty involved in the parameter estimates, as well as validation of the

model, and selection between alternative models. These are covered in Sections 2.5 and

2.6 respectively.

2.4.1 The weighting matrix

Historically, a diagonal weighting matrix has generally been assumed, so that the objective

function becomes:

Sn(Y, θ) =
k∑
i=1

wi [Ti(y)− τi(θ)]2,

where the weight wi is applied to statistic i. Usually, the weights have been chosen

so that each property contributes broadly equally to the fit. Jesus & Chandler (2011)

carry out a simulation study involving the Poisson rainfall model, and compare results

using these traditional approaches, against those obtained with the theoretically optimal

inverse covariance matrix. The analytical expressions in respect of our fitting statistics are

complex, and deriving theoretical expressions for the covariances between the statistics

is not possible. However, empirical estimates can be used instead. Jesus & Chandler

(2011) confirm that variance-based weighting schemes deliver much less variable estimators

than the popular fixed weighting schemes. However, they find that a two-step approach

is required in order to derive a reliable sample estimate of the full covariance matrix.

Using just a single step with the sample covariance matrix, the diagonal matrix of inverse

variances performs as well as the full covariance matrix, and is close to optimal. In order

to reduce the computational burden (which becomes more onerous in the local estimation

of Chapter 4), we have therefore chosen to use the simpler diagonal matrix in the practical

applications in this thesis.

In order to estimate the diagonal matrix of inverse variances, we follow the approach

originally suggested by Rodriguez-Iturbe et al. (1988), which involves first calculating the

fitting properties separately for each observation month, to give T (Yt), t = 1, . . . n, where

Yt denotes the data for observation month t, and we have n months of data. Separate

models are fitted in respect of each calendar month to allow for seasonality, with monthly

vectors of statistics assumed independent across years. The vector of mean summary

statistics in respect of calendar month m is then given by:

Tm =
1

nm

n∑
t=1

I(mt = m) T (Yt),

where mt is the calendar month of the tth observation month, and nm =
∑n

t=1 I(mt = m).
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I is the indicator function, such that I(x) = 1 if x is true, and 0 otherwise. The sample

covariance matrix of the mean of the statistics in respect of calendar month m can then

be calculated as:

Var(Tm) =
1

nm(nm − 1)

n∑
t=1

I(mt = m) (T (Yt)− Tm)(T (Yt)− Tm)T. (2.3)

We take the inverse of the diagonal elements as our weights. (Note that we have used the

variance of the mean statistics here, but we could equally well have used the variance of

the statistics themselves.)

There is an issue in terms of finite sample bias with this approach, since components of

the statistics vector T (Yt) that are at the daily timescale will be based on only around 30

observations. However, in their simulation study Jesus & Chandler (2011) found that any

bias in the summary statistics was negligible compared with sampling variability, and this

is not thought to be a significant issue from a practical perspective.

Bootstrapping is an alternative approach to the calculation of the covariance matrix of

fitting statistics. In order to preserve the dependencies in the rainfall time-series, some

form of block-bootstrapping is required. The main advantage of such an approach is the

reduction of the finite-sample biases discussed above, since statistics can be calculated

over the entire re-sampled data sets. However, the method adds a substantial additional

computational burden, and was found not to yield any clear improvement (in terms of the

coverage of confidence intervals for the parameters) by Jesus (2012), in the context of his

simulation study of the Poisson rainfall model.

An additional appeal of the proposed approach, whereby we treat the data for each model

as a sample of nm replicates of the summary statistics, is that it extends neatly to the

local modelling framework.

2.4.2 Fitting properties

The choice of which, and how many, statistics to include, and at which aggregation levels

is a fairly subjective one. Rodriguez-Iturbe et al. (1988) suggest that the properties chosen

should be likely to have relatively small sampling errors, and not to be highly mutually

correlated. Chandler (2003) recommend choosing statistics that have variances that are

as small as possible, and that vary rapidly with respect to the model parameters. In prac-

tice, the choice of properties is rather restricted if it is deemed essential that analytical

expressions be available for τ(θ). Although simulations can be used, they substantially in-

crease the computational burden. Thus most studies have focused on the mean, variance,

autocorrelations and the proportion of dry intervals at a range of aggregation levels. Cow-

pertwait (1998) argues for the inclusion of the skewness coefficient in order to get a better

fit to the tail of the empirical distribution. In order to reflect the observed structure of the
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rainfall process, there need to be properties at a timescale which will provide information

on the behaviour of single rain cells, and at least one property should correspond to the

timescale of the interval between storms.

Cowpertwait et al. (2002) favours dimensionless properties, so, for example, the coefficient

of variation would be included instead of the variance. These have a particular advantage

when fitting multi-site models, when most parameters can be found using dimensionless

properties across all sites, with the scale parameter for cell intensity calculated separately

for each site, based on its sample mean.

Here we follow Cowpertwait et al. (2007) in our choice of fitting properties and use

the hourly mean, plus the coefficient of variation, lag-1 autocorrelation and skewness

at timescales of 5 minutes, 1 hour, 6 hours and 24 hours. Thus T and τ are vectors of

dimension 13.

The derivations of the mean and second order properties of the aggregated rainfall series

for the BLRP model are shown in some detail in Appendix A.2 as an example of the

methodology required for these derivations. Appendix A.3 gives the analytical expressions

for the fitting properties for the BLRP model.

2.4.3 Numerical Optimisation

Equation (2.2) can be expressed in the form of an estimating equation by differentiating

with respect to θ and setting equal to zero, but in practice the estimator is found by

minimising the objective function itself using numerical optimisation techniques. The

approach followed here is that of Wheater et al. (2005), and we have used the optimisation

routines developed for that project. Firstly, a set number of optimisations are carried out

using the Nelder-Mead simplex method, each starting with a different initial value for the

set of parameters. This set of initial values is generated by random perturbation about a

single user-supplied value. The best parameter set is then used as a new starting value

for a further set of optimisations, which now use a Newton-type algorithm. The reason

for the use of two different optimisation routines is that the first is more robust and thus

well suited to identifying promising regions of the parameter space, whereas the second is

more powerful if given good starting values.

If different starting values give radically different final parameters, then it suggests that

the model is over-parameterised. If we do not wish to reduce the number of parameters,

it may be necessary to introduce constraints on the parameters, as discussed in Section

2.3 to keep them within physically realistic bounds (see for example Cowpertwait (1998)),

and to try to ensure smoothly changing parameters month on month.

An alternative approach to encourage smoothly changing parameters is to carry out this

two-stage optimisation only for the first fit, for the month of January, say. The fitted
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parameter set from January is then taken as the initial value for the fit in February, and

so on. Each of these subsequent fits is based on only a single Newton-type optimisation.

This helps to ensure both a quick calculation time, and smooth changes in the parameters

between months, since the fits in respect of neighbouring months should be close. These

issues are far more important when we consider continuous covariates in Chapters 4 and

6, for which we have many more evaluation points. For the initial review of Chapter 3,

however, models only include calendar month as a single, discrete covariate. Here we will

take the first approach, i.e. that of Wheater et al. (2005). A brief comparison of the two

approaches is undertaken in Section 4.6.1.

In practice, for the purposes of the numerical optimisation, we parameterise the objective

function with the logarithms of the rainfall model parameters. This ensures that the fitted

parameters are positive, and has also been found to improve the stability of the numerical

optimisation. Thus for the five-parameter BLRP model, the parameter vector is given

by θ = (log λ, logµX , log β, log γ, log η)T. If we want to replace the exponential intensity

distribution with the Weibull, for example, we need to add a shape parameter, log %, say.

2.5 Estimation of uncertainty

Different approaches to estimating parameter uncertainty have been taken in the litera-

ture. Rodriguez-Iturbe et al. (1988) look at parameter stability for the random parameter

Bartlett-Lewis model by perturbing the input statistics by small amounts (± 2%) and

looking at the impact on the resulting parameter estimates. Cowpertwait (1998) uses a

bootstrap approach, obtaining 100 sets of parameter estimates by fitting a Neyman-Scott

model 100 times, each time using whole years sampled with replacement from the series

of observed data. Sampling whole years (separately for each calendar month) ensures that

the dependencies in the rainfall series are captured.

Approximate standard errors can be calculated using the theory of estimating functions.

This broadly involves taking a Taylor series expansion of the estimating equation and

considering the limiting behaviour as the sample size increases. The theory gives an

asymptotic distribution for the estimated parameter vector θ̂m for calendar month m

(where θm is the true value of the parameter vector and Wm is the limiting weighting

matrix), of:

n1/2
m {θ̂m − θm} ∼ Nq

(
0,

{[
∂τ(θm)

∂θ

]T

Wm
∂τ(θm)

∂θ

}−1 [∂τ(θm)

∂θ

]T

Wm

Var[T (Y )|M = m] Wm
∂τ(θm)

∂θ

{[
∂τ(θm)

∂θ

]T

Wm
∂τ(θm)

∂θ

}−1)
, (2.4)

where Var[T (Y )|M = m] denotes the covariance matrix of the statistics conditional on

the calendar month being m, and the notation ∂τ(θm)
∂θ is used to represent ∂τ

∂θ

∣∣
θ=θm

.
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The standard errors of the parameter estimates can then be approximated by taking the

square root of the diagonal elements of the covariance matrix, divided by n
1/2
m . We replace

θm by θ̂m, the limiting weights matrix, Wm with that based on our sample, Wnm , and

estimate n−1
m Var[T (Y )|M = m] by the sample covariance matrix of the mean statistics,

given by Equation (2.3). The derivatives are calculated numerically. We can use the

asymptotic distribution to construct approximate confidence intervals for the individual

parameters, or a confidence region for the whole parameter set. Examination of the

correlation matrix for the parameter set can identify where a model is over-parameterised.

Bootstrapping may also be useful here, allowing the relationships between pairs of fitted

parameters to be plotted and examined.

If we choose Wnm to be the optimal weights matrix given by the inverse of Var[T (Y )|M =

m] as explained in Section 2.3, then the variance estimate simplifies to:

Var(θ̂m) ≈
{[

∂τ(θm)

∂θ

]T

{Var[Tm]}−1 ∂τ(θm)

∂θ

}−1

. (2.5)

Another approach, used by Chandler (2003), is the examination of profile objective func-

tions. Each parameter in turn is fixed at each of a set of values, and the objective function

is optimised over the remaining parameters. The resulting plot for each parameter show-

ing the set of parameter values against the optimised objective function provides a useful

means for assessing the identifiability of the parameter — for example, a very flat objective

function indicates a wide range of plausible values. Approximate confidence regions can

also be calculated using the objective function Sn(Y, θ) itself, defined as the set of param-

eters for which Sn(Y, θ) is less than some threshold. In order to determine the appropriate

threshold for a given level of confidence, Chandler (2003) takes a second order Taylor series

expansion of Sn(Y, θ) about θ̂, to get:

2[Sn(Y, θm)− Sn(Y, θ̂m)] ≈ (θm − θ̂m)T H(θm)(θm − θ̂m), (2.6)

which is a quadratic form in normally distributed random variables. Here H(θm) is the ex-

pected value of the second derivative of the objective function, given by−
[
∂τ(θm)
∂θ

]T

Wm
∂τ(θm)
∂θ .

Chandler (2003) then follows an idea of Bowman & Azzalini (1997) (Chapter 5) whereby

the real distribution of this quadratic form (which is intractable unless the optimal weight-

ing matrix is used) is replaced by a more convenient distribution with the same first three

moments: a scaled and shifted χ2 distribution.

The rth cumulant of the quadratic form is given (Kuonen 1999) by:

κr = 2r−1 Γ(r) tr{[Var(θ̂m)H(θm)]r}, (2.7)

where tr() denotes the trace operator. In practice we replace θm with θ̂m as before.
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The distribution of the quadratic form is then approximated by that of aX + c, where

X ∼ χ2
b and:

a =
|κ3|
4κ2

b =
8κ3

2

κ2
3

c = κ1 − ab. (2.8)

A 100(1 − α)% confidence region can then be taken as the set of parameter values for

which the objective function is below the threshold given by:

Sn(Y, θ̂m) +
1

2

[
aχ2

b,(1−α) + c
]
,

where χ2
b,(1−α) is the upper 100α% percentile of the χ2 distribution with b degrees of

freedom.

Confidence intervals for an individual parameter, ρ, say, can be derived using similar

methodology. In that case, Chandler (2003) shows that H(θm) in Equation (2.7) should

be replaced by the inverse of the element of H−1 that corresponds to ρ, and Var(θ̂m)

should be replaced with the variance of ρ. Denoting these two scalars respectively by h

and v, the constants of Equation (2.8) are then given by a = hv, b = 1 and c = 0.

Generally, throughout this thesis approximate 95% confidence intervals are derived, where

given, by adding ±2 standard errors to the parameter estimates, with the standard er-

rors calculated using Equation (2.4). Since we are fitting logged parameters, these are

confidence intervals about the geometric, rather than the arithmetic, mean parameter es-

timates. Other ideas discussed here will also be illustrated for certain models. Care must

be taken with all inference, given that results are asymptotic, whereas we have a finite

sample, and further noting that the asymptotic results rely on Equation (2.1) being true.

This is discussed in a bit more detail in the next section.

2.6 Model selection, assessment of model performance and

model misspecification

In the literature there are numerous variants of the basic BLRP model, some of which

have a very high number of parameters. Although generally increasing the complexity

of the models improves the fit, as expected, it comes with a number of disadvantages,

including identifiability issues, and consequent variation in the fitted parameter sets from

month to month. Since one of the claimed advantages of this type of model is the fact

that the parameters have physical meaning, this is rather undesirable. Further, while

different parameter sets may give similar estimates in respect of the fitting properties, it

is possible that they generate very different behaviour in respect of other features of the

rainfall process, which again is unlikely to be desirable. Some form of objective approach

to model selection would be helpful.
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Jesus & Chandler (2011) consider formal tests that allow us to compare two competing

models, where one model can be defined as a constrained version of the other. A set of r < q

linear constraints may be expressed in the form Cθm = c0 where C is an r×q matrix, and c0

an r×1 vector. For example, we can test whether a Weibull intensity distribution is prefer-

able to an exponential by setting: θm = (log λm, logµXm , log %m, log βm, log γm, log ηm)T,

C = (0, 0, 1, 0, 0, 0) and c0 = 0.

Using the asymptotic results from Section 2.5, we have that ĉm, the estimator of c0 for

month m, has the approximate distribution:

ĉm ∼ Nr(C θm, C Var(θ̂m)CT). (2.9)

Then

(ĉm − c0)T[C Var(θ̂m)CT]−1(ĉm − c0) (2.10)

has approximately a χ2 distribution with r degrees of freedom, and so we reject the null

hypothesis H0 : Cθm = c0 if this statistic is greater than, say, the 95% quantile of the

χ2
r distribution. This hypothesis would need to be tested separately in respect of each

calendar month, m. This is known as a ‘quasi-Wald’ test. This test may also be extended

to the case where the restrictions are not linear: see Hall (2005), Section 5.3 for this and

alternative nested hypothesis tests in respect of the parameter vector.

These types of methods are only useful in certain limited situations. For likelihood-based

fitting, more general techniques are available for selection between non-nested models, in-

cluding for example Akaike’s information criterion (AIC) and Bayes’ information criterion

(BIC). Both of these methods include penalties for additional parameters. Similar ap-

proaches are currently under-developed, however, for models fitted using the generalised

method of moments, although some ideas have been proposed. Andrews & Lu (2001)

suggest selection criteria for both model and moment selection (MMSC), which are based

on the so-called ‘J-statistic’ for testing over-identifying restrictions (i.e. the validity of

the model), with a penalty term for the use of more parameters, and a reward term for the

use of more moment conditions. The J-statistic is analogous to (minus) the log-likelihood

of methods such as AIC and BIC. It is given by the value of the sample size times the

objective function evaluated at θ̂, with the weights matrix given by the inverse of the co-

variance matrix of the statistics, using a two-step estimation procedure, so for our model

by:

Jnm = nm [Tm − τ(θ̂m)]T (Var[T (Y )|M = m])−1 [Tm − τ(θ̂m)]. (2.11)

Jnm converges to the χ2
k−q distribution under the null hypothesis that the moment condi-

tions given by Equation (2.1) hold, and so may be used to test whether these are supported

by the data. Andrews & Lu (2001)’s MMSC-BIC criterion selects the model with q pa-
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rameters, and k moment conditions, such that Jnm − (k − q) log nm is minimised.

It is important to note, however, that all these tests, and the asymptotic theory in general,

only hold if our model is correctly specified, i.e. if the moment conditions given by Equation

(2.1) hold. Where the model is misspecified, (nm)1/2[Tm− τ(θ̂m)] diverges, and Jnm →∞
as nm →∞. Hall (2005) (Section 5.3) therefore stresses the importance of using a model

specification test (such as the J-test using the J-statistic described above) first before

undertaking inference about the parameters.

In practice, however, we may want to find the model that gives the best prediction,

without assuming that any of the models are correct. As in the likelihood setting, an

alternative approach to model selection uses cross-validation or some other form of out-of-

sample validation. We use this type of approach in Section 6.4 in the context of covariate

selection for the local models. However, this method (discussed in more detail in Section

6.4) is arguably less appropriate in the case where the selection is between competing

models with different numbers of parameters. This is because it effectively minimises

the approximate weighted sum of mean squared errors of the estimated statistics, not of

the estimated parameters. There is thus no effective penalty applied in respect of badly

identified models, with markedly different parameter sets in different months, as long as

the fitted statistics are stable. As discussed earlier, however, such variation is considered

undesirable.

Another alternative is to use a form of selection based on the AIC. In the likelihood setting

this is based on the minimisation of the expected (over the distribution of θ̂) Kullback-

Leibler discrepancy. After some approximation, this leads to the minimisation of the

statistic:

2{−l(θ̂) + trace(Ĥ−1K̂)} (2.12)

where H is minus the expected second derivative of the log-likelihood, and K is the

covariance matrix of the score function. The factor of 2 is there for historical reasons,

and could be omitted. For a correctly specified model, K = H−1, so that trace(H−1K) =

trace(Iq) = q, where q is the dimension of the parameter vector, θ.

In the GMM framework, Andrews & Lu (2001) replace minimisation of the negative log-

likelihood by minimisation of the J-statistic, as discussed earlier in the case of the MMSC-

BIC statistic. Taking H as the expected second derivative of the objective function, and

K as the covariance matrix of its gradient vector, we have:

H = 2

[
∂τ(θm)

∂θ

]T

Wm
∂τ(θm)

∂θ
(2.13)
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and

K = 4

[
∂τ(θm)

∂θ

]T

Wm Var[T (Y )|M = m] Wm
∂τ(θm)

∂θ
. (2.14)

With the optimal weighting matrix, given by the inverse of the covariance matrix of the

fitting statistics, it can be seen that trace(H−1K) = 2 trace(Iq) = 2q. So the statistic to

be minimised is given by Jnm + 2q. If we also reward additional moment conditions by

subtracting 2k, then this gives Andrews & Lu (2001)’s MMSC-AIC criterion.

In the case of a sub-optimal weighting matrix, however, such as the diagonal matrix of

inverse variances used in the empirical work here, the penalty would not reduce in this

way, and would be given by trace(H−1K). It is not immediately clear, however, whether

the model selection criterion based on minimisation of Jnm + trace(H−1K) would give a

proper analogue of the usual (likelihood-based) selection procedures. In particular, further

analysis is required in order to understand the implication of the J-statistic no longer

having a χ2 distribution. Since the main focus of this thesis is to develop and fit point

process-based rainfall models that allow for temporal non-stationarity, we do not consider

the issues of moment selection or model misspecification and its impact on inference further

here. However, the latter is undoubtedly a topic of interest for further research in respect of

the point process-based rainfall models, and some form of Information Criterion selection

procedure looks promising.

It could be argued in any case that, given that none of the models are considered to be

‘correct’(even if the moment conditions hold), it is sensible to consider model selection

in the context of how well they perform in respect of features that are important to

practitioners, rather than in terms of global measures of fit (Hansen 2005). Since the

number of properties included in the objective function exceeds the number of parameters

and we have a finite sample, there is no guarantee that there will be a good fit to all the

fitting properties. In Chapter 3, the adequacy of the fit is thus assessed by considering

properties used in the fitting procedure, as well as others that are of interest in hydrological

applications. Some properties will need to be assessed using simulations, for example,

extreme values (which are considered in Section 2.6.1). Assessing the output from some

hydrological model for which our simulations form an input, such as a rainfall-runoff model,

may also be a good way to investigate lack of fit, although not considered here.

2.6.1 Extreme value performance

Finally in this chapter we consider model performance in respect of rainfall extremes.

These are very important for hydrological design, but unfortunately the point process-

based models often do not perform well in this respect. This is a feature of many stochastic

weather generators, and successfully modelling both typical and extreme rainfall with a
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parsimonious number of parameters is a challenging undertaking. It is particularly so

here, where we try and achieve a good fit simultaneously at timescales ranging from five

minutes, to daily.

In order to assess the fit to extremes, we compare observed maxima at each timescale (five

minutes, and one, six and twenty-four hours) against 100 simulations from each model,

where each simulation is of the same length as the observed data. In order to reflect

parameter uncertainty, the parameter set θm for each of these simulations is sampled

from the MVNq(θ̂m,Var[θ̂m]) distribution (described in Section 2.5). Note that, since

θm represents the logarithms of the underlying rainfall model parameters, the latter are

assumed to be distributed as multivariate lognormal, and so are right-skewed.

It is normally assumed that the yearly rainfall maxima at each required timescale are

distributed according to a type I Generalised Extreme Value (GEV) distribution, otherwise

known as a Gumbel distribution, which has the cumulative distribution function:

F (z) = exp

{
− exp

(
−z − µ

σ

)}
, −∞ < z <∞, (2.15)

where µ and σ are location and scale parameters respectively. Re-arranging to find the

upper pth quantile, zp, we get:

zp = µ− σ log{− log(1− p)}. (2.16)

The upper pth quantile, zp, is known as the ‘return level’ associated with the ‘return

period’ 1/p i.e. the approximate average time period within which rainfall of the specified

magnitude can be expected to occur once (see Coles (2001), Chapter 3 for a description of

the GEV models and related inference). The quantity y(p) = − log{− log(1−p)} is known

as the ‘Gumbel reduced variate’, and it can be seen that if zp is plotted against y(p), then

we should get an approximately straight line. This representation is potentially useful for

extrapolating past the range of the observed data. Effectively, F (z) is transformed onto a

more convenient scale.

This type of plot, which is known as a ‘return level plot’, is commonly used in the hy-

drological literature to examine extreme value performance. Both the observed maxima,

and those from the model simulations can be plotted in this way, and the plots compared.

In practice (Shaw et al. 2011), to eliminate bias, p is often calculated according to the

Gringorten plotting position formula, given by:

p =
k − 0.44

n+ 0.12
, (2.17)

where k is the rank of the observation in the ordered set of maxima, and n is the number

of years of data.
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The fit to extremes should be examined separately for each calendar month in order to

assess the individual models, and also (and more onerously) annually.

In the next chapter we carry out an empirical study, fitting the BLRP model and a number

of variants to a time-series of five-minute rainfall data from Bochum in Germany, using

the GMM methodology discussed here.



Chapter 3

Review of Bartlett-Lewis models,

and further development

3.1 Motivation

So far, we have considered the simplest of the clustered Bartlett-Lewis rainfall mod-

els — the Bartlett Lewis Rectangular Pulse (BLRP) model. However, a variant of this,

the Random Parameter Bartlett-Lewis Rectangular Pulse (BLRPR) model, in which the

cell duration parameter is allowed to vary randomly between storms, is usually preferred

(Rodriguez-Iturbe et al. 1988, Onof & Wheater 1993, Wheater et al. 2005). The BLRPR

model effectively allows for a continuous range of storm types, with the addition of one

further parameter. Both of these models have been considered unsuitable at sub-hourly

resolution, however, because of the rectangular structure of the rain cells, and this led to

the development of the Bartlett Lewis Instantaneous Pulse (BLIP) model (Cowpertwait

et al. 2007). In this model, the rectangular cells with constant intensities of the original

BLRP model are replaced by a Poisson process of instantaneous pulses, in order to allow

greater variability in rainfall intensity over small time intervals. A version with two super-

posed processes provided a good fit to five-minute data from New Zealand, but required

an excessive number of parameters (11 or 12).

The reason for using two superposed processes is to allow for the two main types of rainfall:

convective and stratiform. The former is thus named as it arises from the convective clouds

formed from rising thermals. These are more common in the summer months, when land

temperatures heat up during the day, and the warm air close to the surface starts to

rise. As condensation occurs, latent heat is released, and the rising air can continue to

remain warmer than its surroundings. In an unstable atmosphere it will develop vertically

into deep cumulus or even cumulonimbus clouds. These deep clouds, with their vigorous

updraughts, give plenty of time for large raindrops to develop, and rain from these types of

42
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clouds is typically of short duration, but heavy. In the extreme, these are thunderstorms.

Stratiform rain is less intense, but with a longer duration, and arises from clouds that

form in sheets or strata as a result of a mass of air being lifted, either due to a physical

barrier such as a mountain, or due to the meeting of two distinct masses of air at different

temperatures. Drizzle is produced by very shallow stratus clouds, where the raindrops

have little time to develop.

Weather in the mid-latitudes is characterised by frontal systems, which are the areas where

large air masses meet. Cold fronts tend to bring primarily convective rain, whereas warm

fronts bring stratiform, although in practice these systems can produce many different

kinds of weather, often in quick succession.

The BLRPR model addresses the issue of different types of storm in a far more parsi-

monious way than the approach with two superposed processes. The original motivation

behind the work in this chapter was therefore to develop a random parameter version

of the new BLIP model, and to undertake a systematic comparison of the performance

of the three versions of the two model types when fitted to a time series of rainfall at

five minute intervals. The versions here refer to: fixed parameter/random parameter/two

superposed processes, and the types to: rectangular pulse/cluster of instantaneous pulses.

Fitting follows the methodology described in Chapter 2, using the generalised method of

moments, with the thirteen fitting properties selected in Section 2.4.2. This is not in-

tended as a comprehensive review, rather a limited review of a few selected variants of the

Bartlett-Lewis based models in order to find the one most suitable where fine-scale data

is available.

In this chapter, we first introduce our dataset. The existing models of interest are then

described, followed by the development of the new Random Parameter Bartlett-Lewis In-

stantaneous Pulse (BLIPR) model. All the models are fitted, and preliminary comparisons

made using minimum objective function values. Conclusions drawn from these results lead

us to the development of a new model variant, and selected models are then compared in

more detail, using simple plots of observed versus fitted properties. Parameter uncertainty

is considered using a number of methods from Chapter 2 in respect of our chosen model.

Finally, we conclude with some thoughts for further improvements, and a summary of the

key findings.

3.2 Bochum data

The data to which we fit the models is from a single site in Bochum in Germany, and

includes sixty-nine years of five minute rainfall data, from January 1931 to December

1999. Bochum is a city in North Rhine-Westphalia, in the urban Ruhr area of Western

Germany, with a temperate climate. Most of the rainfall measurements were obtained
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using a Hellmann rain gauge, in which rain displaces a float and a marking pen attached

to the float makes a continuous trace on a recording chart.

The percentage of days with missing data was highest for the month of December, at

3.4%, and lowest for September, at 0.9%. Inspection of the data identified three (non-

consecutive) days where the date field had clearly been mis-coded. This was clear since

the file contains duplicates of all the intervals within these days, with different data in each

duplicated interval, and in each of the three cases, there is no record coded as belonging

to the previous day. We have therefore recoded the dates of the first of each of these

duplicated records to the previous days’ dates. No other quality issues were found.

Samples of the Bochum rainfall series are shown in Figure 3.1, the first over the whole

month of January 1981, and the second zooming in on a single day. A key characteristic of
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Figure 3.1: Samples of the Bochum series of 5 minute rainfall totals. (a) January 1981 (b) 14th
January 1981

these data, clear in the first plot, is the fact that the totals are very often exactly zero, and

this is what makes rainfall more difficult to model than other weather variables. The second
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plot shows the high variability in rainfall intensities over five minute intervals, which, as

discussed, was the motivation behind the new BLIP model. Two further exploratory

plots are given in Figure 3.2. These examine the mean hourly rainfall by year and by

calendar month. The high interannual variability of rainfall is evident, as are the seasonal

differences, with no trend discernible over the period. As discussed in Section 2.6, model

performance will be assessed by comparing moments and other properties of the observed

and fitted series, and therefore further graphs summarising various features of the data

will be given throughout the thesis, as appropriate.
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Figure 3.2: Mean hourly rainfall, mm, in Bochum (a) by year, with the overall mean of the series
given in blue (b) by calendar month.

3.3 Existing Model descriptions

The basic BLRP model has been described in Section 2.1. The other two models of interest

are summarised in this section. Both of these are based on the Bartlett-Lewis clustering

mechanism, with an exponential distribution for inter-cell arrivals, so that cells within

storms arrive according to a secondary Poisson process. Analytical expressions for the

thirteen fitting properties for each of the models are given in Appendix A.

3.3.1 Random Parameter Bartlett-Lewis Rectangular Pulse (BLRPR)

model

This randomised version of the BLRP model was introduced by Rodriguez-Iturbe et al.

(1988), and the analytical expressions for the fitting properties are given in Appendix

A.4. In this model the parameter η, that specifies the duration of cells, is allowed to vary

randomly between storms. This is achieved by assuming that the η values for distinct

storms are independent, identically distributed random variables from a gamma distribu-
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tion with index α and scale parameter ν. The model is re-parameterised so that, rather

than keeping the cell arrival rate, β, and the storm termination rate, γ constant for each

storm, it is the ratio of both of these parameters to η that is kept constant. Thus, for

a higher η (i.e. typically shorter cell durations), we have correspondingly shorter storm

durations, and shorter cell interarrival times. Essentially the effect is that all storms have

a common structure, but distinct storms occur on different (random) timescales.

The durations of cells and storms (more precisely cell origin processes) are both expo-

nentially distributed, conditional on the cell duration parameter, η. Their unconditional

distributions are Pareto type II. For example, the unconditional density of the cell dura-

tion, L, is given by:

f(l) =

∫ ∞
0

f(η)f(l|η)dη

=
να

Γ(α)

∫ ∞
0

ηαe−η(ν+l)dη

=
ανα

(ν + l)α+1
, l ≥ 0.

This heavy-tailed distribution has an infinite mean if α is less than 1, and an infinite

variance if α is less than 2. Also, in terms of the aggregated rainfall process, it turns

out that, for values of α smaller than 3, the variance is infinite, and for values smaller

than 4, the skewness is infinite. This is potentially problematic. For example, in practice

it has been found that simulations with unconstrained values of α occasionally generate

unrealistically long periods of rainfall (Onof & Arnbjerg-Nielsen 2009, Verhoest et al.

2010). Potential solutions to this issue include:

• setting constraints on α,

• rejecting storms or cells beyond a certain length or cells with an excessive intensity

within any simulations,

• truncating the Gamma distribution for the cell duration parameter, η, with support

(ε,∞) (Onof & Arnbjerg-Nielsen 2009). The lower limit, ε, for the integrals over

η can be pre-specified, or alternatively, can constitute a further parameter to be

determined. This approach requires integrals in the analytical expressions to be

evaluated using approximations.

Initial fits using the truncated Gamma approach were not successful here, with very long

computation times, and this method was not pursued. Further investigation would be

required to identify which features of our fit were causing the problem, which was not

encountered by Onof & Arnbjerg-Nielsen (2009). This might, for example, relate to the

inclusion of properties at five minutes, the particular fitting properties selected, the nu-

merical optimisation routine used etc. In any case, for the fits using the BLRPR model
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carried out here, α was not found to be small.

3.3.2 Bartlett-Lewis Instantaneous Pulse (BLIP) model

The Bartlett Lewis Instantaneous Pulse model (Cowpertwait et al. 2007), intended for

fitting to fine-scale (of the order of five to fifteen minute) data, has a minimum of six

parameters (one more than the original Bartlett-Lewis model), and is defined and param-

eterised as follows:

• Storm origins arrive in a Poisson process of rate λ.

• Each storm origin initiates a Poisson process of cell origins of rate β; in contrast

to the basic Bartlett-Lewis model, it is not assumed that there is a cell at the

storm origin itself, so a storm may have no rainfall. This is purely for mathematical

convenience and does not lead to any loss of generality.

• Each cell origin initiates a further Poisson process of rainfall pulses of rate ξ. Again,

it is not assumed that there is a pulse at the cell origin, so a cell may have no rainfall.

Note that the pulses are instantaneous — they have a depth, but no duration. This

Poisson process of instantaneous pulses replaces the rectangular pulse assumption of

the original Bartlett-Lewis model.

• Both the duration of the cell origin process, and the cell duration are assumed to be

exponentially distributed, the former with rate γ, and the latter with rate η. The

process of pulses terminates with the cell or storm lifetime, whichever is the sooner.

• Associated with each pulse is a depth, X, so the pulse process is a marked point

process (Cox & Isham (1980)). The model developed by Cowpertwait et al. (2007)

allows pulse depths from a single cell to be dependent, but those from distinct

cells are assumed independent. No specific dependence structure is specified, and

the model fitted in the paper assumed independent, exponentially distributed pulse

depths, with mean depth µX .

Analytical expressions for the fitting properties are given in Appendix A.6. As discussed,

the model actually fitted by Cowpertwait et al. (2007) assumed two superposed processes.

A common depth parameter was assumed across the two storm types, giving a total of

eleven parameters.
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3.4 Development of the Random Parameter Bartlett-Lewis

Instantaneous Pulse (BLIPR) model

For the randomisation of η in the BLIP model, we take the same approach as for the

original Bartlett-Lewis model, but now with the additional assumption that the ratio,

(ω = ξ/η), of the pulse arrival rate to the cell duration parameter is kept constant.

In order to calculate the moments, it is helpful to think of the random parameter model

as the superposition of a continuum of independent processes with random cell duration

parameter, η, and storm origin rate, λf(η), where f(η) is the density function of η. Now,

the rth cumulant of a sum of independent random variables is the sum of their rth cu-

mulants. Therefore the mean, variance and 3rd central moment (which are the first three

cumulants) can simply be obtained by replacing λ with λ f(η) in their original equations,

and integrating over possible values of η.

The integration approach described requires some expectations of functions of η. In par-

ticular, we need Eη

[(
1
η

)k
e−ηx

]
for k = 1 and various values of x, given by:

Eη

[(
1

η

)k
e−ηx

]
=

να

Γ(α)

∫ ∞
0

ηα−1−ke−(ν+x)ηdη

=
να

Γ(α)
× Γ(α− k)

(ν + x)α−k
.

Note that, in order for the integral not to diverge at zero, we require α > k. This proved

to be an issue for the original Bartlett-Lewis model, as discussed in Section 3.3.1, where

the skewness integral included elements with k = 4. For the Bartlett-Lewis Instantaneous

Pulse model, we only require α > 1 in order for the integrals for the variance and skewness

of the aggregated rainfall not to diverge. However, we may still want the constraint α > 2

in order to prevent the simulation of unrealistically long rain events, as discussed in Section

3.3.1

The moments are derived from the original equations of Cowpertwait et al. (2007), by

taking expectations over η and using the formula above. All the moments can be expressed

exactly, which is an advantage for this type of model where numerical integrations can lead

to slow computational speeds. The moments for the new model are given in Appendix A.7.

As in the original fixed parameter BLIP model, this retains the flexibility to allow pulse

depths to be dependent within cells. In their empirical fits, Cowpertwait et al. (2007)

assumed these to be independent, but intuitively, dependent pulse depths should allow

higher values of extremes at short timescales. This is desirable since the fits understated

five-minute extreme values.
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3.5 Models Fitted

The models were fitted, using the methodology and fitting properties discussed in Chapter

2, to the Bochum data. A separate fit was produced for each month, to allow for season-

ality. In each case, we assume that σX/µX = 1, and that E[X3] = 6µ2
X (consistent with

X being exponentially distributed). Initially, no further constraints were imposed on the

parameters, other than that they should be greater than zero. The six models initially

fitted were:

Rectangular Pulse Models

1. the Bartlett-Lewis Rectangular Pulse model (BLRP)

2. the Random Parameter Bartlett-Lewis Rectangular Pulse Model (BLRPR)

3. the Bartlett-Lewis Rectangular Pulse model with two superposed processes (BLRP2);

Instantaneous Pulse Models

1. the Bartlett-Lewis Instantaneous Pulse Model (BLIP)

2. the Random Parameter Bartlett-Lewis Instantaneous Pulse model, introduced in

Section 3.4 (BLIPR)

3. the Bartlett-Lewis Instantaneous Pulse model with two superposed processes (BLIP2).

For the Bartlett-Lewis Rectangular Pulse model, on randomising the cell duration pa-

rameter, η, the fitted solution gave such a high precision to the mean cell duration, that

it effectively replicated the non-random solution. Thus, the fitted parameter set for the

BLRPR model is simply a re-parameterised version of the set of BLRP parameters, and

there is thus no improvement in the fit compared with the fixed η version. This appears

to contradict examples in the literature where the randomised η version had shown an

improved fit compared to the fixed η model (Rodriguez-Iturbe et al. 1988, Wheater et al.

2005). On further investigation, we concluded that the improvement in the fit to pro-

portion dry that had previously been found by randomising η was at the expense of a

deterioration in the fit to the skewness, which had not been included as a fitting property

in these earlier analyses. In particular, if skewness is not included in the fit, it is highly

overestimated in the summer months at timescales of six and twenty-four hours.

Fitting the models with two superposed processes proved problematic. Although the

BLRP2 model with no parameter constraints gave a very good fit in terms of a low mini-

mum objective function value, the parameters thus obtained were highly unstable, unre-

alistic and inconsistent from month to month, and no standard errors could be found. It

was clear that there was insufficient information in our observed data to identify the large
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number of required parameters. Introducing constraints for the parameters increased the

minimum objective function values, and did not resolve the situation, with resulting solu-

tions having many parameters lying on the constraint boundaries. We therefore concluded

that ensuring realistic and reasonably smooth parameters across months would require

constraints on the relationships between parameters, rather than just setting bounds on

individual parameters. There were similar issues with the BLIP2 model. Ultimately we

decided that both of these models’ parameter identifiability issues made them unsuitable

for practical application.

Given the above findings, we present further results here for the following three models

only: BLRP, BLIP, BLIPR.

For the BLIP and BLIPR models we initially followed Cowpertwait et al. (2007) and

assumed that pulses within a single cell had independent depths. However, for the BLIPR

model an alternative assumption was also considered, whereby pulses within a single cell

have a common depth (the most extreme form of dependance). The latter achieved a lower

minimum objective function value in all months, and a better fit in respect of properties

not included in the fitting process, such as wet/dry properties. For both of these options,

the unconstrained solution gave an extremely high number of pulses per hour (of the order

of 105–106), so for practical reasons, µX was constrained to be 0.001, reducing the number

of parameters by one. All other fitted parameters were broadly as before, except for a

corresponding change in ω. The quality of the fit was unchanged with this constraint, as

the product term µX ω effectively forms a single composite parameter over most of the

possible parameter space. We also considered two alternative constraints on α: α > 1 or

α > 2, as discussed in Section 3.4. The former only affects July, whereas the latter affects

all the summer months.

A comparison of the performance of the three fitted models, together with the findings

discussed earlier in this section and consideration of the fitted parameter sets (shown in

Tables B.1 to B.3 of Appendix B) led us to a hypothesis, which we present in the next

section.

3.6 Initial performance comparison of the fitted models

Table 3.1 shows the minimum objective function value for each of the models that we have

successfully fitted, for each month. Since the same set of moments and weights were used

for each model, these are directly comparable.

Key findings from the results are summarised below:

• The BLRP model outperforms the BLIP model, with a lower minimum objective
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BLIP1 BLIPR1, BLIPR1, BLIPR2,
BLRP independent independent common common

pulse depths pulse depths pulse depths pulse depths

Jan 83 67 45 40 40
Feb 38 56 30 24 24
Mar 100 113 58 48 48
Apr 110 168 85 66 66
May 141 239 93 76 78
Jun 152 275 92 72 80
Jul 162 345 110 95 97
Aug 140 268 86 76 79
Sep 149 271 87 65 72
Oct 92 150 71 50 50
Nov 68 76 30 25 25
Dec 68 67 32 28 28

Table 3.1: Comparison of minimum objective function values; 1: α > 1; 2: α > 2.

.

function value in all months except January and December. The model with rectan-

gular pulses has generally been considered unsuitable for timescales shorter than the

mean cell duration, due to the unrealistic intensity shape. However, when fine-scale

data are available for fitting, the fitted model tends to have shorter, more frequent

cells than if only hourly data are available (of the order of 5–10 minutes, compared

with 20–40 minutes for most months), which are still within a realistic range. With

these shorter cells, and given also the potential for cells to overlap, repetition of the

same rainfall totals over consecutive five minute intervals is relatively infrequent.

The fitted parameters are shown in Table B.1 of Appendix B, along with some key

properties such as mean storm and cell inter-arrival times and durations.

• When skewness is included in the fit, there is no benefit to randomising the cell dura-

tion parameter in respect of the BLRP model, as discussed in Section 3.5. However,

there is a clear benefit in respect of the BLIP model, with the randomised version

showing the best performance of all the models.

• The fitted BLIPR model has a very high number of pulses per cell (particularly if we

do not apply constraints, as discussed), with very short inter-arrival times, and the

better performing version has common within-cell pulse depths. Effectively then,

the cells are ‘rectangular’.

These results imply that it is not the replacement of rectangular pulses by clusters of

instantaneous ones that leads to the improved performance of the BLIPR model, compared

with the BLRPR model. Instead, the improved performance can be attributed to the fact

that the BLIPR model allows rainfall intensity to vary with cell duration, since the pulse

rate effectively drives the intensity and is proportional to the cell duration parameter, η.

Our new model variant thus gives a simple, but effective way of introducing dependence
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between cell duration and intensity.

This suggests that the same effect could be achieved by amending the BLRPR model, so

that the mean cell intensity parameter, µX is also varied in proportion to the cell duration

parameter, η. This is preferable from a computational point of view, eliminating the need

for simulation of a vast number of instantaneous pulses.

3.7 Testing our hypothesis

Extending the BLRPR model to allow µX to vary in proportion to the cell duration

parameter, η, is straightforward, and follows the methodology discussed in Section 3.4.

We re-parameterise the BLRPR model so that the ratio, ι = µX/η is now kept constant,

and express E(X2) and E(X3) in terms of ι also (for which the formulae depend on the

choice of distribution for the rainfall intensity). We then take expectations over η as before.

The analytical expressions for this new model, which we denote the BLRPRX model, are

given in Appendix A.5, with the required moments of the rainfall intensity distribution,

X specified in Appendix A.1.

Unlike the cell and storm durations considered in Section 3.3.1, which have an uncon-

ditional Pareto Type II distribution when conditionally exponentially distributed, the

unconditional distribution of X does not have a tractable form (again assuming X is con-

ditionally exponentially distributed). Using simulations for a typical parameter set, we

find that the unconditional distribution has a higher skewness, and fatter tails than the

exponential distribution.

The fitted parameter set, assuming an exponential distribution for cell intensities as before,

is given in Table B.4 of Appendix B. Comparing this with the fitted parameters of the

Random Parameter Bartlett-Lewis Instantaneous Pulse (BLIPR) model with common

within-cell pulse depths, shown in Table B.3, the strong similarity between the two models

is evident. In particular, the new parameter, ι, of the BLRPRX model broadly equates

to µX ω of the BLIPR model (noting that µX represents an intensity in the rectangular

pulse models, but a depth in those with instantaneous pulses). Values of the minimum

objective function (see Table 3.2) and plots of the two fits are also found to match, thus

supporting our hypothesis.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

BLIPR 40 24 48 66 79 80 97 79 72 50 25 28
BLRPRX 39 22 46 63 74 76 92 74 68 47 23 26

Table 3.2: Comparison of minimum objective function value; α constrained to be at least 2.

We have therefore established that the new rectangular pulse model variant is effectively
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equivalent to the BLIPR model with common within-cell pulse depths, and that there is

therefore no need to replace the rectangular pulses with a process of instantaneous pulses

for fine-scale data. This is the optimal model, at least in terms of the minimum objective

function values. In the next section we examine the performance of the three models

(BLRP, BLIP, BLRPRX) in more detail, firstly in terms of the fitted moments, and then

by considering wet/dry properties, which were not included within the objective function,

and extreme value performance.

3.8 Performance comparison of the fitted models

3.8.1 Fitted Moments

Plots of the fits of the models (BLRP, BLIP, BLRPRX) against the observed data for each

month in respect of the mean, coefficient of variation, lag-1 autocorrelation and skewness

coefficient are shown in Figures 3.3-3.6. The y-axes for these and other similar plots in

this thesis have been selected automatically such that, for each individual plot, the axis

spans the range covered by the observed and fitted values. This means that the fit in

respect of an individual model tends to look worse if all models fit well, than if at least

one of the other plotted models has a poor fit (since in the latter case the scale will be

wider). Care should therefore be taken to consider also the scale when examining such

plots. All the models generally perform well with respect to the properties included in

the fitting. They reproduce the mean exactly (this is not a given, since the number of

properties fitted exceeds the number of parameters), and fit the coefficient of variation well

at all timescales. All tend to underestimate the lag-1 autocorrelation at longer timescales.

All also tend to underestimate the skewness at the shorter timescales, with the BLRPRX

model showing the best fit in respect of 5 minute skewness, and the BLIP model the worst.

3.8.2 Wet/dry properties

The proportion of dry intervals is a very important property for hydrological applications.

Although this could have been included as one of the fitting properties, it is useful to reserve

an important feature for subsequent model validation, as this gives an independent test

of the appropriateness of the model structure. Plots of the fits of the models against the

observed data for each month in respect of the proportion dry are shown in Figure 3.7.

The BLRPRX model can be seen to outperform the other models with respect to the fit

to proportion dry, across all timescales. It is also of interest to consider the wet and dry
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Figure 3.3: Mean 1-hour rainfall by month, fitted v observed.
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Figure 3.4: Coefficient of variation by month, fitted v observed.
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Figure 3.5: Lag-1 autocorrelation by month, fitted v observed.
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Figure 3.6: Coefficient of skewness by month, fitted v observed.
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Figure 3.7: Proportion dry by month, fitted v observed.
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Figure 3.8: Transition probability of a wet interval being followed by another wet interval, by
month, fitted v observed.
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spell transition probabilities (i.e the probability that a wet interval is followed by another

wet interval, or a dry by another dry), which are important for the accurate modelling

of antecedent conditions. Figure 3.8 shows that the BLRPRX model again outperforms

the other models with respect to the wet spell transition probability. While the BLRP

model has a good fit at the hourly timescale, it performs poorly at other timescales, with

only the BLRPRX model showing consistency of performance across timescales. There is

less difference between models for the dry spell transition probabilities, with all models

providing a reasonable fit at all timescales. The fit to the wet/dry properties in respect of

the summer months would be further improved if we did not impose the constraint that

α > 2. However, this would be at the expense of allowing storms and cells of unrealistic

durations in the simulations (as discussed in Section 3.4), and also a slight deterioration

of the fit to the 24 hour variance, and 6 hour lag-1 autocorrelation.

3.8.3 Extreme value performance

For our data, the months with the highest rainfall, rainfall variability and skewness are the

summer months, and these are also the months with the highest extremes. A comparison

of the fit of extremes for July for the BLRPRX model is given in Figure 3.9, using Gumbel

plots, following the methodology of Section 2.6.1. We use 100 simulations of 69 years each,

sampling from the distribution of the parameter set for each simulation. The graphs for

July show that the model has a tendency to underestimate extremes, as has been noted

before for this type of model. Results for other months give a fairly similar picture. A

comparison for the BLRPRX model showing annual extremes is shown in Figure 3.10.

Again, we use 100 simulations of 69 years here, sampling from the distribution of the

appropriate parameter set each month. A good fit here is a more onerous requirement

than that for a single month, and the effect of a slight understatement in respect of

most individual months can be seen to lead to a more substantial understatement in

the annual comparison. A comparison showing mean annual extremes (averaged over fifty

simulations) for a number of alternative models at the five minute and hourly timescales is

also shown in Figure 3.11. At the five minute timescale, the BLRPRX model gives the best

performance, although all the models underestimate the extremes. Results are closer at

the one-hour timescale, and for longer timescales, there is essentially no difference between

models. Based on our analysis, the BLRPRX is shown to be the best performing of the

models compared, both in terms of the moments fitted, and more importantly, in respect

of the wet/dry properties and extreme values, neither of which is included in the fit. It is

also intuitively appealing, since we know that the intensity of rainfall does vary inversely

with the duration of the rain event. Further, this dependence has been introduced to the

BLRPR model without the need for any additional parameters or complexity. Considering
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Figure 3.9: Gumbel plots of observed (black) v simulated (purple) extremes for July, using the
BLRPRX model and 100 simulations, each of 69 years; rainfall intensity assumed to follow an
exponential distribution; α constrained to be greater than 2.
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Figure 3.10: Gumbel plots of observed (black) v simulated (purple) annual extremes, using the
BLRPRX model and 100 simulations, each of 69 years; rainfall intensity assumed to follow an
exponential distribution; α constrained to be greater than 2.
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Figure 3.11: Annual Gumbel plots of observed v simulated extremes for variants of the Bartlett-
Lewis model; rainfall intensity assumed to follow an exponential distribution.

the fitted parameter set, shown in Table B.4 of Appendix B, the parameter values change

fairly smoothly from month to month. Comparing with empirical observations from Houze

& Hobbs (1982), the parameter values seem reasonable. Winter storms last several hours,

have around 20 cells, which each last on average around 22 minutes. In summer, storms

and cells are shorter, and have around 8 cells. However, these have a correspondingly much

higher intensity, giving broadly the same amount of rainfall per storm over all months.

In Section 3.10 we consider how performance might be further improved, particularly in

respect of extreme values. First though, we take a look at parameter uncertainty, and

identifiability in respect of the new model.

3.9 Parameter Identifiability and Confidence Intervals

Parameter identifiability with this type of model is a known problem, particularly for the

variants with a large number of parameters, as noted in Section 2.6. This can be explored

using plots of profile objective functions, as described in Section 2.5. Profile objective

functions for the logarithm of the parameters of our optimal model, the BLRPRX model,

are shown in Figure 3.12 for the month of January. As before, we have constrained the

value of α to be greater than 2 (except in the plot for α itself). The first set of plots

shows a wide range of possible parameter values, allowing us to check whether there are

multiple local minima, for example, or extensive regions where the objective function is

flat. We have then reduced the parameter range so that the approximate 95% confidence

intervals can be seen more clearly. These are based on the objective function, again as

described in Section 2.5. The plots show that the parameters are fairly well identified
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Figure 3.12: Profile objective function plots for the Random Parameter Bartlett-Lewis Rectan-
gular Pulse model with dependent intensity-duration; rainfall intensity is assumed to follow an
exponential distribution, conditional on η. The plots are for January.
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in January. The confidence intervals are found to be in agreement with those based on

±2 asymptotic standard errors about the mean parameter values. Results for July (not

shown) again indicate good parameter identification (although now a lower limit for α

cannot be found). Profile objective functions have not been considered for other months,

but intervals have been calculated instead using asymptotic standard errors.

Figure 3.13 shows pointwise confidence intervals based on asymptotic standard errors for

all months, and compares these against approximate bootstrap intervals. The latter have

been obtained by resampling whole years with replacement, and re-fitting the model 500

times. The interval limits are then taken as the 2.5th and 97.5th percentiles over the 500

samples. The asymptotic intervals are generally close to the bootstrap intervals, which

indicates that parameters are fairly well-identified in all months. (For models where this

is not the case, the bootstrap intervals are much wider.) There is slightly more parameter

uncertainty in the summer months, which is fairly typical.
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Figure 3.13: Mean parameters and 95% pointwise confidence intervals for the BLRPRX model:
asymptotic results (purple) v bootstrap estimates (blue) based on 500 samples; the asymptotic
intervals are based on the mean ± 2 standard errors, and marked with blue dotted lines. The
bootstrap intervals are based on the 2.5th and 97.5th percentiles, and indicated with purple shading
(α > 2).

Plotting pairs of parameter estimates against each other in respect of the 500 bootstrap fits

gives an indication of the relationships between them, and again can highlight problems

with parameter identifiability. Scatterplots are shown for January and July in Figure 3.14.

The strongest relationships in January include those between ˆα/ν (which is the mean value

of the cell duration parameter η) and ι̂, between ˆα/ν and φ̂, and between ι̂ and κ̂. The last
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of these shows that, to some extent, a particular rain event may be generated by fewer,

more intense cells or by a greater number of lighter ones. These relationships are far

weaker in July, perhaps due to a greater proportion of the rain being convective, with the

highest correlation in the summer months being between κ̂ and φ̂. This indicates that the

mean number of cells per storm, µC , which is equal to 1 + κ/φ remains broadly constant

over the different parameter sets. The asymptotic correlation matrix indicates the same

relationships.
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Figure 3.14: Scatterplots of parameter estimates for the BLRPRX model from 500 bootstrap
fits.

3.10 Potential further improvements

Although the new model fits fairly well, there are areas for improvement, the most im-

portant of which is the fit to extreme values, which are understated. This is perhaps

surprising, as intuitively the inclusion of the skewness coefficient as one of the fitting

properties should lead to an improved fit in respect of extremes. On investigation, we

found that our approach of averaging the skewness over 69 separate observation months,

rather than calculating a single statistic over the whole of the data, tends to understate

the skewness coefficient itself, particularly at the 5 minute timescale. This is found to

be related to the effective weights that are applied to periods of high skewness under the

two alternative approaches, rather than to sampling variation, or to the choice of mean

(local or global) about which the moments are centred. The ‘separate observation months’
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approach was originally introduced purely as a means of deriving a covariance matrix for

the fitting properties, but it is integral to the fitting approach when we introduce large

scale atmospheric covariates in Chapter 4. We considered exchanging the dimensionless

properties of coefficient of variation and skewness coefficient for variance and the third

central moment respectively, since these are much more robust in respect of the choice

of calculation methodology. However, at least in the context of the Bochum data, this

was not found to be effective, leading to a substantial deterioration to the fit of the mean

rainfall and proportion of intervals that are dry (although extremes were then well fitted).

For the rest of the thesis, we maintain our original set of fitting properties. Note that the

problem with averaging the dimensionless properties should in any case be reduced if we

can find suitable covariates which explain some of the interannual variability, and this is

addressed in the rest of this thesis.

It is generally thought that a distribution for the rainfall intensity with ‘fatter tails’ should

improve the fit to extremes. We investigated this by replacing the exponential distribution

with the gamma and Weibull distributions, both of which have the exponential as a special

case, and which can therefore be tested against the exponential using the quasi-Wald test

of Section 2.6. The Weibull distribution gave the better performance here. However, we

found that the addition of a further parameter caused problems in terms of parameter

identifiability, with less consistency from month to month. Also the asymptotic results

showed a very high correlation (between 0.92 and 0.98) between the estimated shape

parameter, % and the intensity parameter, ι, suggesting that an additional parameter is

not justified. Table B.5 of Appendix B shows that the fitted shape parameter is close

to 0.6 in most months. We therefore chose to consider the two alternative constraints

of a shape parameter of 1 (our original exponential) and a shape parameter of 0.6. The

objective function values may be compared in Table 3.4.

Applying the quasi-Wald test, we calculate the statistic log(%̂)2/Var(%̂) to test H0: inten-

sity is exponential, and [log(%̂)− log(0.6)]2/Var(%̂) to test H0: shape parameter is 0.6. In

each case, we reject the null hypothesis at a significance level of α if the statistic is greater

than the 100(1 − α)% quantile of the χ2 distribution with one degree of freedom. The

statistics and p-values in respect of the two tests are given in Table 3.3. The 95% quantile

of the χ2
1 distribution is equal to 3.84, and the 99% quantile to 6.63. The tests suggest

that a shape parameter of 0.6 is reasonable, since we would not reject the hypothesis in

any month at the 99% level, and only in July at the 95% level (assuming that we have a

correctly specified model).

Another alternative considered for the BLRPRX model involved allowing a more flexible

intensity/duration relationship, by letting the mean intensity be proportional to the cell

duration parameter, raised to some fixed power, the level of which is to be determined i.e.

to have ι = µX/η
c for some additional parameter, c. Fitting properties can be calculated
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% Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 s 2.81 9.72 4.49 45.36 41.36 17.61 0.59 3.04 14.06 71.89 14.09 2.78
p 0.094 0.002 0.034 0.000 0.000 0.000 0.442 0.081 0.000 0.000 0.000 0.095

0.6 s 0.39 0.00 0.25 0.65 1.56 0.71 6.19 0.41 0.01 3.59 0.00 0.28
p 0.532 1.000 0.617 0.420 0.212 0.399 0.013 0.522 0.920 0.058 1.000 0.597

Table 3.3: Statistics (s) and p-values (p) in respect of hypothesis tests for the shape parameter,
% of the rainfall intensity distribution; BLRPRX model.

following the approach of Section 3.7, but now with µX = ιηc, E(X2) = f1ι
2η2c and

E(X3) = f2ι
3η3c, with f1 = E(X2)/µ2

X and f2 = E(X3)/µ3
X . The fitted parameter set

for this model, which we denote the BLRPRXc model, is shown in Table B.6 of Appendix

B. It can be seen that the fitted values of c are fairly close to 1, and we could test

whether c = 1 as we did for the shape parameter. The minimum objective function values

may be compared against our original model, and the variants with Weibull intensity

distributions in Table 3.4. This model has the lowest minimum objective function value,

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

BLRPRX , Exp 39 22 46 63 74 76 92 74 68 47 23 26
BLRPRX , Wei1 38 20 43 54 61 59 90 69 53 35 21 25
BLRPRX , Wei2 38 20 44 54 61 60 95 69 53 36 21 26
BLRPRXc Exp 26 4 36 45 59 66 69 54 61 32 17 18

Table 3.4: Comparison of minimum objective function values for variants of the BLRPRX model
(Exp = exponential intensity distribution, Wei = Weibull); α constrained to be at least 2; 1:
unconstrained shape parameter; 2: shape parameter of 0.6

although the differences between the variants tend to be rather small in most months.

Plots in respect of selected properties comparing the new model variants are shown in

Appendix C. These show that there is little difference in the fits of the three models, and

that an improvement in one property is generally at the expense of some deterioration

in another. Using a Weibull conditional intensity distribution rather than an exponential

improves the fits to 5 minute skewness and to extremes at short timescales, but with some

deterioration in the lag-1 autocorrelation at longer timescales. Allowing more flexibility in

the intensity/duration relationship gives the best minimum objective function values, but

the improvements are primarily to the longer term coefficient of variation and skewness,

and cause a deterioration in the fit to extremes at all timescales, probably due to the

problems with using these dimensionless properties, discussed earlier.

Our preferred model is therefore the BLRPRX model with a Weibull intensity, conditional

on η, with a fixed shape parameter of 0.6, but there is little to choose between this and

the exponential intensity distribution.
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3.11 Conclusions: optimal model for fine-scale data?

As has been evident in this review, there are numerous different elements involved in

the fitting of point process-based models, including the choice of fitting properties and

weights applied to these, the specific model variant selected, the location and resolution

of the data, and the numerical optimisation method. These make comparisons between

different studies and recommendations based on a single study rather difficult.

Our review has highlighted some limitations in all the models, notably an inability to

achieve a good fit to all properties in the summer months of a temperate climate, when

rainfall exhibits particularly high variability and skewness. However, such limitations

are not surprising when we consider the simplicity of these models compared with the

highly complex (and as yet not even fully understood) real physical rainfall process. The

challenge of achieving a good fit at timescales that cover the wide range from five minutes

up to daily, is particularly demanding, and the performance of the original rectangular

pulse model has far exceeded prior expectations.

The key findings of this review (which have been validated using an alternative series of

5-minute rainfall from Kelburn in Wellington, New Zealand, from 1940 to 2004) include

the following:

• The BLRP model, originally considered unsuitable for fine-scale data due to the

unrealistic rectangular pulses, achieves a reasonable fit across the range of properties

(when fitted to 5 minute data), and outperforms the model with instantaneous pulses

(the BLIP model).

• Although a random parameter version of the BLIP model with dependent pulse

depths shows an improved performance, the same effect can be achieved more easily

by amending the Random Parameter Bartlett-Lewis Rectangular Pulse (BLRPR)

model, so that the mean rainfall intensity, µX , is also randomised. Compared to

the non-random version, the fit is improved in respect of short term skewness and

extremes, and wet/dry properties. This dependency is also intuitively desirable, and

adds no additional complexity or parameters.

• The BLRPRX model, with six parameters, provides a robust solution, with consis-

tent parameters from month to month. Adding further parameters adds little to the

fit, since typically improvements in some properties cause degradation in others, and

more parameters bring issues of parameter identifiability and consistency. Replacing

the exponential intensity distribution with a Weibull with a fixed shape parameter,

however, may be desirable.

In theory, properties such as variance and the third central moment are preferred to the

dimensionless coefficient of variation and skewness coefficient when using average prop-
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erties over separate observation months, since their estimation is more robust. However,

where, as here, a desirable fit cannot be achieved in all months, these may not be desirable

in practice. As discussed in Section 3.10, if we can identify covariates that can explain

some of the interannual variability in our fitting properties, then the problems with the

dimensionless properties will in any case be reduced.

There were generally fewer issues with the Kelburn data, where there is much less vari-

ability across months in respect of most of the statistics, and where the skewness levels at

short timescales are much lower. We found, for example, that the estimated α in an un-

constrained fit was only below 2 for a single month. Fitting with the 3rd central moment

rather than the skewness coefficient did not cause the same deterioration to the mean

rainfall (although some slight deterioration did occur), and the differences between the

skewness coefficient, if calculated as the mean over separate observation months rather

than over the whole period, were also much smaller. The fitted values of the shape pa-

rameter of the Weibull distribution covered a similar range, with an average of 0.66.

In Chapter 4 we introduce the theory in respect of continuous covariates, and consider the

selection of suitable variables in Chapter 5. For the practical application of Chapter 6 we

start with the simplest of the clustered models — the BLRP model with an exponential

intensity distribution. Once the ideas have been proven viable, our preferred model is also

considered.



Chapter 4

New approach to address

non-stationarity

In the previous chapter we compared different versions of the Bartlett-Lewis point process-

based rainfall model. All of the models reviewed suffer from the limitation that they are

stationary. As discussed, to accommodate seasonal variation in rainfall characteristics,

current practice is to fit a separate model for each calendar month or season. This allows

for seasonality given a stable climate. However, under climate change scenarios, calendar

month is likely to become increasingly less reliable as an indicator of rainfall behaviour, and

is in any case just a proxy for the real drivers, atmospheric variables such as temperature

and pressure. In this chapter, we therefore extend the current approach by replacing the

discrete covariate, calendar month, with continuous covariates which are more directly

related to the incidence and nature of rainfall. We find that a natural extension to current

practice is to use a kernel-based nonparametric approach within a generalised method of

moments framework (local GMM). Discussion of the selection of suitable covariates is

covered in Chapter 5. First though, in this chapter, we develop the methodology.

4.1 Motivation for local modelling

4.1.1 Kernel Smoothing

Recall our original (global) fitting approach. Here we minimise the following objective

function with respect to θ:

Sn(Y, θ) = [T (Y )− τ(θ)]TWn [T (Y )− τ(θ)],

where T (Y ) is a vector of statistics, and τ(θ) is the corresponding vector of expected

values, determined from our chosen model (e.g. the Bartlett-Lewis Rectangular Pulse

67
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model, or a more complex variant of this). θ is a q-dimensional parameter vector, and

we fit to k properties, where k > q so that T and τ are k × 1, and Wn, the weighting

matrix, is k × k. (If we have k = q then a weighting matrix is not required, and we solve

T (Y )− τ(θ) = 0.)

In practice, T (Y ) is taken as the mean of statistics calculated over each month of the

observation period. This approach is taken in order to be able to calculate a sample

covariance matrix, which is required for the weighting matrix. As discussed above, it is

common practice to allow for seasonality by fitting a separate model for each calendar

month. We can express this approach by writing the equation for the estimator of θ for

calendar month m as:

θ̂m = argminθ

[{
1∑n

t=1 I(mt=m)

n∑
t=1

I(mt = m)[T (Yt)− τ(θm)]

}T

×Wnm

{
1∑n

t=1 I(mt=m)

n∑
t=1

I(mt = m)[T (Yt)− τ(θm)]

}]
, (4.1)

where Yt is the vector of all the rainfall data in observation month t, mt is the calendar

month of the tth observation month, and T (Yt) is the vector of statistics for that month,

with τ(θm) the vector of expected values for calendar month m. Wnm is the weighting

matrix for month m (for which we have nm observation months of data), and I is the

indicator function, such that I(x) = 1 is x is true, and 0 otherwise.

Now we want to replace the discrete covariate, calendar month, with one or more con-

tinuous covariates. Firstly, we need to decide on a suitable time interval over which to

measure the covariates. We already calculate statistics separately for each observation

month (denoted by t in the equations), as discussed above, and this would seem a natural

choice. Although detail of individual weather systems is clearly lost at this timescale,

a monthly interval length has many advantages. Firstly it is short enough such that it

is reasonable to treat the series within each interval as stationary. On the other hand,

sample autocorrelations for monthly rainfall series tend to be very small, so a month is

long enough to permit treatment of the data as independent between intervals. It is also

long enough for any small sample biases in the statistics to be negligible, which is an issue

primarily in respect of statistics at the daily timescale. Additionally, mean monthly values

of many atmospheric variables are readily available. Of course, a key requirement for the

modelling to be successful is that there must exist reasonably strong relationships between

rainfall behaviour over a month, and suitable covariates, aggregated over the month. Ev-

idence from existing literature suggests that this should be so (e.g. Kilsby et al. (1998)).

This is discussed further in Chapter 5, and investigated in respect of the Bochum data.

For the rest of this chapter, we assume that such covariates can indeed be found, and

that the distribution of the monthly rainfall statistics, conditional on these covariates, is

stationary.
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A very simple way of proceeding might be to partition the monthly continuous covariate

into a number of discrete ordered bins, then fit a separate model for each bin, as per the

existing method. However, this type of approach, while easy, is very crude and unlikely

to be helpful in terms of allowing for a gradually changing climate over time.

As a simple motivating example, we consider the same issue in respect of the relationship

between two random variables X and Y , which is examined by means of a scatterplot. In
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Figure 4.1: Scatterplots showing the relationship between x and y, generated from the equation
Y = sin(6∗X)+1.5+ε, ε ∼ N(0, 0.14), with two different smoothing approaches. The lower curve

in the righthand plot shows the relative weights used in fitting θ̂(x0), the point on the dashed line.
The blue rectangle shows the range over which observations contribute non-negligible weight to
the fit at this point. The true curve is shown by the black line.

the first plot of Figure 4.1, we have grouped the data into 10 bins, calculated the average

in each bin, and plotted the resulting step function. We can think of this as fitting a value

y at x0 that is a weighted average of the observed y, where the weights are either 1 if

within our defined ‘neighbourhood’ (here bin), or 0 if not. However, in estimating y at

x0, it is clearly desirable to give greater weight to observations that are closest to x0. A

better approach therefore is to use weighted averages, where the weights are dependent

on the distance away. This gives a smooth curve, as shown in the graph on the right.

Here, we have used a ‘local mean’ or ‘Nadaraya-Watson’ (Nadaraya 1964, Watson 1964)

estimate of θ(x0) = E[Y |X = x0], given by:

θ̂(x0) =

∑n
i=1w(Xi − x0) yi∑n
i=1w(Xi − x0)

,

which must be calculated for each required value of x0. This is clearly just a weighted

average. The weight function, w(z), peaks at zero, is symmetric, and decreases as |z|
increases. The weights in our example have been calculated using the Normal density

function with mean x0 and standard deviation 0.1. Altering the standard deviation would
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alter the size of the neighbourhood (the blue rectangle on the graph), and hence the

smoothness of the curve. Weight functions used in this context are known as ‘kernel’

weights. The weights depend on a parameter which determines the amount of smoothing,

which here is given by the standard deviation of the normal density function. Such a

parameter may be referred to as a ‘tuning constant’, and, depending on the smoothing

approach used, may take the form of a ‘bandwidth’ (as here) or a ‘span’ (a fixed percentage

of the data that contributes a positive weight to each local fit). A kernel function, denoted

by K(·), is usually chosen to be a symmetric density function which integrates to 1, and

is scaled to have a variance of 1. Assuming a bandwidth of h, the weights are then given

by:

w(Xi − x0) = Kh(Xi − x0) =
1

h
K

(
Xi − x0

h

)
.

In practice, the choice of kernel function is relatively unimportant compared to the choice

of h (Wand & Jones 1995), and the Gaussian kernel function is often used for convenience.

It is given by K(t) = (
√

2π)−1 exp(−t2/2). We can see that:

Kh(Xi − x0) =
1√

2πh2
exp (− 1

2h2
(Xi − x0)2)

is the normal density function with mean x0 and standard deviation h. (Note that the

constant term 1√
2πh2

does not need to be included in the fitting.)

This simple example has illustrated the idea of replacing the indicator weighting functions

of a discrete covariate or binning approach, with kernel weighting functions which provide a

smooth fit in respect of a continuous covariate. In the local mean example, as the width of

the neighbourhood is increased, the solution tends to the horizontal line given by ȳ, hence

the description of this method as ‘local mean’ or ‘local constant’. This approach can be

extended, so that the solution tends instead to a best fit straight line through the points

(‘local linear regression’), or indeed to any order of polynomial. Now we approximate

E[Yi|Xi] = θ(Xi) locally by the polynomial ψ(Xi) of order p such that:

ψ(Xi) = θ(x0) + (Xi − x0)θ(1)(x0) +
(Xi − x0)2

2
θ(2)(x0) + ...+

(Xi − x0)p

p!
θ(p)(x0)

≡
p∑
j=0

bj(x0)(Xi − x0)j , (4.2)

where θ(j) denotes the jth derivative of θ with respect to x, and bj(x0) = θ(j)(x0)/j!.

Estimation of θ̂(x0) involves solving for the set of parameters b̂(x0) = (b̂0(x0), . . . , b̂p(x0))T

to minimise:

n∑
i=1

Kh(Xi − x0)

{
Yi −

p∑
j=0

bj(x0)(Xi − x0)j
}2

. (4.3)
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Differentiating with respect to the bj and setting to zero gives the following p+1 equations:

n∑
i=1

Kh(Xi − x0)(Xi − x0)k
{
Yi −

p∑
j=0

b̂j(x0)(Xi − x0)j
}

= 0, k = 0, . . . p. (4.4)

The estimate at x0 is given by θ̂ = b̂0(x0), and the whole curve is obtained by running

the local polynomial regression across the set of required covariate values, as for the local

mean example. We can see that taking p = 0 gives the local mean equation. Estimators

for the derivatives of θ up to the pth derivative are also available.

The complexity of the model is determined both by the bandwidth (the smaller the neigh-

bourhood, the greater the effective number of parameters in the model), and by the order

of the polynomial chosen. A very small value of h effectively interpolates the data, whereas

as h increases, the curve becomes smoother, but important features may be lost. As h

increases to ∞, the solution becomes equivalent to that of the global polynomial regres-

sion of order p. Ultimately an appropriate compromise must be reached, and much of

the literature addresses the issues of selection of the optimal order and bandwidth, which

we will consider in Sections 4.3 and 4.4 respectively. These sections also include a brief

overview of other weighting options.

The idea of local polynomial regression has been around for a long time, proposed originally

by Cleveland (1979) and other authors, and there is a wealth of literature in the field.

Useful general references include Fan & Gijbels (1996), Wand & Jones (1995), Bowman

& Azzalini (1997) and Wasserman (2006).

These ideas have been extended to local likelihood-based methods (see Tibshirani & Hastie

(1987), Section 4.9 of Fan & Gijbels (1996) and Section 3.4 of Bowman & Azzalini (1997)).

Carroll et al. (1998) combine the theory of estimating equations with local polynomial

regression to give an approach with very wide applicability. If we let g(Y, v) = Y −v, then

the set of p+ 1 equations (4.4) can be written as:

n∑
i=1

Kh(Xi − x0)(Xi − x0)k g

{
Yi,

p∑
j=0

b̂j(x0)(Xi − x0)j
}

= 0, k = 0, . . . p. (4.5)

Carroll et al. (1998) extend the methodology by allowing θ to be vector valued, and the

function g to be any estimating function (which must have the same dimension as θ).

The Yi are independent, and possibly vector-valued. Taking g to be the derivative of

the log-likelihood function, for example, would give local maximum likelihood estimation.

The principal example of the paper has g as the usual method of moments function. The

unknown parameter set was taken to be the vector of conditional moments of Y given

X = x, in which case g(Y, v) = M(Y )− v, with M(·) the vector of sample moments.

Another interesting development is that of Gozalo & Linton (2000) who present a local



4. New approach to address non-stationarity 72

estimation method which allows one to shrink to a favourite non-linear shape, rather than

just towards a constant or polynomial. The rationale behind this idea is that, if the form

of the local function is close to the true function, then the bias of the estimator will

be very small. This is considered particularly relevant for binary data, and in nonlinear

time series estimation. The empirical example is of a binary response variable, with the

cumulative distribution function of the standard normal distribution as the local function.

There are many similarities and areas of overlap between these different nonparametric

estimation methods. For example, this empirical example could be framed as a local

estimating equation, and local polynomial regression is a special case of both Gozalo &

Linton’s method, and Carroll et al.’s local estimating equations

Lewbel (2007) develops a local GMM method which uses a local mean estimator in a GMM

framework. A number of authors in the econometrics literature combine local fitting with

GMM estimation, although generally only in cases where the equations can be explicitly

solved (regression-type models with instrumental variables); see for example Cai & Li

(2008) and Tran & Tsionas (2010), both of whom consider local GMM in the context of

panel data models with varying coefficients.

4.1.2 Splines

All the approaches discussed so far in this section have been based on kernel smoothing.

A rather different alternative would be to regress the response on a set of basis functions.

Regression splines take these basis functions as polynomials (typically cubics). Splines are

piecewise polynomials, joined at certain values of the covariate, x, known as the ‘knots’.

At the knots there are constraints to ensure smoothness: these require that the 1st to

(k − 1)th derivatives, where k is the degree of the polynomials, are equal at the joins. In

order to fit a regression spline, one needs to fix the degree of the spline, the number of

knots and their position. The choice of basis set (i.e. the polynomial building blocks)

for the splines is key for efficient computation, and a popular choice is the B-spline basis

(de Boor 2001). For a cubic spline with k fixed internal knots, a basis set of dimension

k + 4 is required, and the regression involves solving for the coefficients aj to minimise∑n
i=1

{
yi −

∑k+4
j=1 ajBj(xi)

}2
, where Bj(xi) denotes the value of the jth B-spline at xi.

The difficulty here is the choice of the number and position of the knots. One approach,

‘smoothing splines’, is to fix these at the observed data points, and then to reduce the

dimensionality by adding a term to the sum of squares that penalises roughness, based

on the second derivative of the regression function. Penalised splines (or ‘P-splines’) use

a similar idea, but here the number of knots is large, but not fixed, and the penalty is

based on the differences between the coefficients, aj , in adjacent segments (see Eilers &

Marx (1996), who also give an overview of B-splines). In either case, the effect of the

roughness penalty is controlled by a smoothing parameter, which acts in a similar way to

the bandwidth in kernel smoothing.
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Both kernel-based smoothers and splines are widely used, and both are potential options

for relating the parameters of the point-process based models to continuous covariates.

Within this thesis we have decided to focus on kernel-based smoothing, since it represents

a very natural and intuitive extension of the existing fitting approach. Splines are briefly

considered in the context of future work in Chapter 7. In the next section we return to the

point process-based rainfall model and consider how these local modelling ideas can be

applied, starting with the local mean approach. Although there are potential advantages

to assuming a higher order polynomial, in particular a local linear approach, this is a

sensible starting point, given the additional complexities that are involved in our models.

4.2 Local mean approach to point process models

Recall the formula with the discrete covariate, calendar month of our current approach,

as expressed in Equation (4.1), and re-stated below:

θ̂m = argminθ

[{
1∑n

t=1 I(mt=m)

n∑
t=1

I(mt = m)[T (Yt)− τ(θm)]

}T

×Wnm

{
1∑n

t=1 I(mt=m)

n∑
t=1

I(mt = m)[T (Yt)− τ(θm)]

}]
.

Now applying the logic from the scatterplot example above to our rainfall model, we can

simply replace the indicator functions with kernel summation to solve for parameters at

a given covariate value X = x0:

θ̂(x0) = argminθx0

[{
1

n

n∑
t=1

Kh(Xt − x0) [T (Yt)− τ(θ(x0))]

}T

×Wn(x0)

{
1

n

n∑
t=1

Kh(Xt − x0) [T (Yt)− τ(θ(x0))]

}]
, (4.6)

where Wn(x0) is a weighting matrix, which will be discussed further in Section 4.2.6. At

the moment we need assume only that it depends on the covariate value X = x0, and

converges to a positive-definite matrix of constants, which we will denote by Wx0 .

This is effectively the local mean GMM approach of Lewbel (2007). The evaluation points

(i.e. the values of x0 at which we choose to solve the equation) can coincide with the

observed covariate values, xi, which will permit an assessment of the goodness of fit.

Alternatively an arbitrary set of points can be used, for example a regularly spaced grid,

or a set of future values projected by a GCM or other climate model. In the latter case,

though, care should be taken over any parts of the range which are sparsely represented

in the observed data.
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We now consider the methodology for the local mean model, including the derivation of

the asymptotic variance and bias of the parameter estimates. In Section 4.3, we extend

the equations to a local linear framework, and consider the issues involved in choosing

the optimal order of local polynomial. Note that for the local linear case, we refer to the

true function at x as θ(x), and the polynomial approximation at x close to a neighbouring

point x0 as ψ(x), where ψ(x) = θ(x0) + (x− x0)θ′(x0). For the local mean case, however,

we just use θ throughout, since it is clear whether we are referring to the true value of

the function at x given by θ(x) or the local mean approximation given by θ(x0). Finally,

we will conclude this chapter with an investigation of methods for determining a suitable

bandwidth, and a recommended approach for our model.

At this stage, we do not need to specify any particular point process model, and assume

only that our parameter vector, θ has q components, and that we fit to k properties, with

q < k.

4.2.1 Background to the asymptotic derivations, and key assumptions

The principal aim of this thesis is to develop a local fitting approach to the point process-

based rainfall models that can be applied in practice, and the asymptotic expressions are

not directly used in such an application. The primary purpose of the derivations is rather

to gain an understanding of the key drivers behind the behaviour of the local estimators,

and to inform our choice of bandwidth. In addition, a ‘quasi-asymptotic’ expression for

the variance, together with the asymptotic normality of the estimators, will allow us to

determine approximate uncertainty levels associated with our estimators.

Throughout the derivations, we assume that the regularity conditions required for stan-

dard GMM (discussed briefly in Section 2.3) hold. The moment conditions and further

conditions required for identifiability are discussed in Section 4.2.2, and broadly follow

Jesus & Chandler (2011), except that now we condition on the covariate, X. We assume

that the density at any required evaluation point, x0 is greater than zero (i.e. (f(x0) > 0).

Various smoothness conditions are required in order to allow local averaging. These ensure

that Taylor series expansions about x0 can be taken to the required order, such that

remainder terms tend to zero as the sample size increases to infinity and the bandwidth

goes to zero. Here we assume that the following functions are sufficiently smooth in a

neighbourhood of x0 to permit differentiation as required, and that the functions and

derivatives are finite at x0: the parameter vector function, θ(x), the design density, f(x),

the conditional variance Var[T (Y )|X = x], and the composite function τ(θ(x)). The last

of these requires similar smoothness for τ in θ.

Finally we assume that the kernel function is a continuous, symmetric density function
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with the following properties:∫
K(z) dz = 1,

∫
zK(z) dz = 0

∫
z2K(z) dz = k2 6= 0.∫

z2rK(z) dz <∞, r = 1, 2, . . . .
(4.7)

Although the kernel function does not have to be compactly supported, it should decay

fast enough to eliminate the impact of a remote data point (Fan & Gijbels 1996). Recall

also, that we assume that the pairs (Xt, Yt) are independent across months.

4.2.2 Target of the estimation

As for standard GMM, we want to establish whether the proposed equation, Equation

(4.6), has a ‘target’ value, i.e. a unique value θ0(x0) in respect of each covariate value

x0 to which the estimator θ̂(x0) converges in probability. Jesus & Chandler (2011) have

shown this to be the case for the global GMM case in respect of the point process-based

rainfall models (assuming appropriate choice of moment conditions). Here we extend their

results to kernel-based estimation, and then consider the asymptotic bias, variance and

distribution of the parameter estimators. Conditions on τ are as for standard GMM: we

require that τ(·) is twice differentiable with respect to θ, the parameter vector, and that

the derivatives are bounded, for all θ such that θ(x) ∈ Θ(x), a compact subset of Rq. It is

also required that ∂τ/∂θ be of full rank.

Then, for a particular rainfall process, for example in Bochum, we assume that there exists

a unique, true value of the parameter vector, θ0(x) ∈ Θ(x), such that:

E[T (Y )|X = x] = τ(θ0(x)), (4.8)

where x is fixed, but arbitrary. This is our moment condition.

For the asymptotic derivation, for simplicity, we assume that X is scalar, although the

theory can be extended to a vector covariate, and we will be considering multivariate

predictors in our empirical study. We assume also that we are considering an ‘internal

point’ i.e. a point x which does not lie near the boundary of the design region.

We define:

Gn(θ(x)) =
1

n

n∑
t=1

Kh(Xt − x) [T (Yt)− τ(θ(x))], (4.9)

where t is the observation month, and the pairs (Xt, Yt) are i.i.d., as (X,Y ). The band-

width is assumed to be a function of the sample size, n, although for notational simplicity

we write h rather than hn. Note that Gn is a vector of dimension k. Then the local GMM
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estimator at x = x0 is given by:

θ̂(x0) = argmin{θ(x0)} Gn(θ(x0))TWn(x0)Gn(θ(x0)), (4.10)

where Wn(x0) is a k × k weighting matrix, which may depend on the data (Xt, Yt), but

which converges in probability to a positive-definite weighting matrix: Wn(x0) →p Wx0 .

This is an example of an extremum estimator, sometimes referred to as an ‘M-estimator’

(see Chapter 5 of van der Vaart (1998) or Newey & McFadden (1986)). Note that, although

the theory generally refers to estimators which maximise an objective function, it is equally

applicable here, where we solve for a minimum, since this could be considered as the

maximum of the negative objective function. At θ(x0) = θ̂(x0) the derivative of the

minimand in Equation (4.10) is equal to zero. In this form, the equation is an example of

an estimating equation, and is given by:

0 =

[
∂Gn(θ̂(x0))

∂θ

]T

Wn(x0) Gn(θ̂(x0)) (4.11)

=

{
1

n

n∑
t=1

Kh(Xt − x0)

[
∂τ(θ̂(x0))

∂θ

]}T

Wn(x0)

{
1

n

n∑
t=1

Kh(Xt − x0)[T (Yt)− τ(θ̂(x0))]

}
,

where the notation ∂Gn(θ̂(x0))
∂θ and ∂τ(θ̂(x0))

∂θ is used to represent ∂Gn
∂θ

∣∣
θ=θ̂(x0)

and ∂τ
∂θ

∣∣
θ=θ̂(x0)

respectively (i.e. the Jacobian matrices of Gn and τ , evaluated at θ = θ̂(x0) ).

In order to demonstrate consistency of the estimator θ̂(x0) for θ0(x0), Newey & McFadden

(1986) argue that it is preferable to consider the estimator as the global maximum (here,

minimum) of an objective function, rather than as a solution to first order conditions i.e.

in the form of Equation (4.10), rather than Equation (4.11). This is because the first-

order condition can have multiple roots even when the objective function has a unique

maximum. The former is the equation that we actually solve numerically, and is in any

case arguably the more straightforward, so this is the approach that we take here.

In order for there to exist a unique value to which the estimator converges as the sample size

increases, we require that Gn(θ(x0))TWn(x0)Gn(θ(x0)) converges uniformly in probability

to a non-random function which has a unique minimum at the true value θ(x0) = θ0(x0).

It should also be the case that only parameters in the neighbourhood of θ0 give values

of the objective function close to this minimum value. The convergence is required to

be uniform (and the parameter space compact, as already assumed), in order to allow

minimising and limiting operations to be exchanged i.e. for the limit of the minimum to

be equal to the minimum of the limit as the sample size goes to infinity.
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Consider first the asymptotic behaviour of Gn(θ(x0)). We have:

E[Gn(θ(x0))] = E

{
1

n

n∑
t=1

Kh(Xt − x0) [T (Yt)− τ(θ(x0))]

}
= E {Kh(X − x0) [T (Y )− τ(θ(x0))]}

=

∫ ∫
1

h
K

(
x− x0

h

)
[T (y)− τ(θ(x0))] f(y|x) f(x) dy dx

=

∫
1

h
K

(
x− x0

h

)
E[T (Y )− τ(θ(x0))|X = x] f(x) dx. (4.12)

Letting Rθ(x) = E[T (Y )− τ(θ(x0))|X = x] and making the substitution z = (x− x0)/h,

we have:

E[Gn(θ(x0))] =

∫
K(z) Rθ(x0 + zh) f(x0 + zh)dz

=

∫
K(z)

{
Rθ(x0)f(x0) + zh

[
R′θ(x0)f(x0) +Rθ(x0)f ′(x0)]

+
(zh)2

2

[
R′′θ(x0)f(x0) + 2R′θ(x0)f ′(x0) +Rθ(x0)f ′′(x0)

]
+ o(h2)

}
dz,

where we have taken a Taylor series expansion of the product Rθ(x0 + zh) f(x0 + zh)

about x0, keeping terms up to order h2. Now
∫
K(z) dz = 1 and

∫
K(z)z dz = 0 from the

kernel properties defined in (4.7), so we are left with:

E[Gn(θ(x0))] = Rθ(x0)f(x0) + h2

∫
K(z)z2 dz

{
1

2
R′′θ(x0)f(x0) +R′θ(x0)f ′(x0)

+
1

2
Rθ(x0)f ′′(x0)

}
+ o(h2). (4.13)

Now consider the variance of Gn(θ(x0)).

Var[Gn(θ(x0))]

= Var

{
1

n

n∑
t=1

Kh(Xt − x0) [T (Yt)− τ(θ(x0))]

}
=

1

n
Var {Kh(X − x0) [T (Y )− τ(θ(x0))]}

=
1

n
E
{
K2
h(X − x0)[T (Y )− τ(θ(x0))] [T (Y )− τ(θ(x0))]T

}
− 1

n
E
{
Kh(X − x0)[T (Y )− τ(θ(x0))]

}
E
{
Kh(X − x0)[T (Y )− τ(θ(x0))]

}T

=
1

n

∫ ∫
K2
h(x− x0) [T (y)− τ(θ(x0))] [T (y)− τ(θ(x0))]T f(y|x) f(x) dydx+O

( 1

n

)
=

1

n

∫
1

h2
K2

(
x− x0

h

)
× E{[T (Y )− τ(θ(x0))] [T (Y )− τ(θ(x0))]T |X = x} f(x) dx+O

( 1

n

)
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=
1

n

∫
1

h2
K2

(
x− x0

h

) [
Var[T (Y )|X = x] +Rθ(x)Rθ(x)T

]
f(x) dx+O

( 1

n

)
=

1

n

∫
1

h
K2(z)

[
Var[T (Y )|X = x0 + zh] +Rθ(x0 + zh)Rθ(x0 + zh)T

]
f(x0 + zh) dz

+O
( 1

n

)
=
f(x0)

nh

∫
K2(z) dz

[
Var[T (Y )|X = x0] +Rθ(x0)Rθ(x0)T

]
+O

( 1

n

)
, (4.14)

where we have made the substitution z = (x− x0)/h in the second from last line, and the

last line follows by taking a Taylor series expansion of
[
Var[T (Y )|X = x0 + zh] +Rθ(x0 +

zh)Rθ(x0 + zh)T
]
f(x0 + zh) of order zero about x0. Note that the same approach and

definition of z as used for the derivations of E[Gn(θ(x0))] and Var[Gn(θ(x0))] will be used

in the derivation of subsequent results involving kernel summations, which will therefore

be shown in less detail.

By the weak law of large numbers, Gn(θ(x0)) converges in probability to its expectation,

provided its variance converges to zero, which requires that nh→∞ as n→∞. Further,

the expectation converges to Rθ(x0)f(x0) provided h→ 0. Therefore, for Gn(θ(x0)) to be

a consistent estimator of Rθ(x0)f(x0), we must have the bandwidth tending to zero, but

at a slower rate than 1/n.

If we choose the weighting matrix such that it converges to a matrix of constants, then,

by Slutsky’s theorem, Gn(θ(x0))TWn(x0)Gn(θ(x0)) tends to a non-random function of θ,

given by:

f2(x0)Rθ(x0)T Wx0Rθ(x0). (4.15)

We have shown pointwise convergence and assumed compactness of Θ. Stochastic equicon-

tinuity is then a sufficient condition for the convergence to be uniform (Newey 1991). In

order to demonstrate this, we first consider the asymptotic behaviour of ∂Gn(θ(x0))
∂θ , given

by:

− 1

n

n∑
t=1

Kh(Xt − x0)

[
∂τ(θ(x0))

∂θ

]
.

Since ∂τ(θ(x0))
∂θ is a matrix of constants, we need only consider 1

n

∑n
t=1Kh(Xt− x0), which
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is just the standard density estimator of f(x0), with:

1

n

n∑
t=1

Kh(Xt − x0) = E[Kh(Xt − x0)] +OP


√√√√Var

[
1

n

n∑
t=1

Kh(Xt − x0)

]
=

∫
1

h
K

(
x− x0

h

)
f(x) dx+OP

{
1√
n

√
Var[Kh(X − x0)]

}
=

∫
K(z) f(x0 + zh) dz +OP

(
1√
nh

)
= f(x0)

∫
K(z)dz + hf ′(x0)

∫
zK(z)dz + o(h) +OP

(
1√
nh

)
= f(x0) +OP

(
h2 +

1√
nh

)
, (4.16)

where, as before, we have made the substitution z = (x−x0)/h, and noted that
∫
K(z) dz =

1 and
∫
zK(z) = 0. Provided that h → 0 and nh → ∞, and given that the first order

derivative of τ is bounded, we have shown that ∂Gn(θ(x0))
∂θ is Op(1), and converges to

−f(x0)∂τ(θ(x0))
∂θ .

Now, by the Mean Value Theorem for vector valued functions of several variables (see, for

example, Apelian & Surace (2009)), we have:

Gn(θ̃(x0))−Gn(θ(x0)) =


∂Gn1 (ϑ1(x0))

∂θ
∂Gn2 (ϑ2(x0))

∂θ
...

∂Gnk
(ϑk(x0))

∂θ

 [θ̃(x0)− θ(x0)] (4.17)

= DG(ϑ1, ϑ2, . . . ϑk) [θ̃(x0)− θ(x0)],

say, where
∂Gni (ϑi(x0))

∂θ represents the ith row of the matrix ∂Gn
∂θ evaluated at the point ϑi,

which lies on the segment (θ̃, θ) (which is assumed to be entirely contained within Θ). So:

||Gn(θ̃(x0))−Gn(θ(x0))|| =
∣∣∣∣∣∣DG(ϑ1, ϑ2, . . . ϑk)[θ̃(x0)− θ(x0)]

∣∣∣∣∣∣
≤ ||DG(ϑ1, ϑ2, . . . ϑk)|| ||θ̃(x0)− θ(x0)||

≤M ||θ̃(x0)− θ(x0)||, (4.18)

where M = maxϑ1...ϑk∈Θ ||DG(ϑ1, ϑ2, . . . ϑk)|| is Op(1), as demonstrated earlier, and ||A|| =√∑
i,j |aij |2 (i.e. || · || represents the Euclidean matrix norm). This Lipschitz condition

is sufficient for stochastic equicontinuity (Newey 1991), and therefore implies uniform

convergence, as required.

The limiting function (4.15) (which only takes values greater than or equal to zero) has a

unique minimum at the true value θ = θ0, since Rθ0(x0) = 0, and Rθ(x0) 6= 0 for θ 6= θ0

(by our initial moment condition). These conditions mean that as n → ∞ (with the
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additional proviso that h → 0 and nh → ∞), our estimating equation defines a unique

estimator θ̂ that is consistent for θ.

4.2.3 Asymptotic Variance

Now we consider the asymptotic variance of the estimator. We apply the mean value

theorem again, now for the line segment (θ̂, θ0), so we have:

Gn(θ̂(x0)) = Gn(θ0(x0)) +


∂Gn1 (θ̌1(x0))

∂θ
∂Gn2 (θ̌2(x0))

∂θ
...

∂Gnk
(θ̌k(x0))

∂θ

 [θ̂(x0)− θ0(x0)] (4.19)

= Gn(θ0(x0)) +DG(θ̌1, θ̌2, . . . θ̌k) [θ̂(x0)− θ0(x0)],

where the points θ̌1, θ̌2, . . . θ̌k lie on the line segment (θ̂, θ0). Substituting this into Equation

(4.11) gives:

0 =

[
∂Gn(θ̂(x0))

∂θ

]T

Wn(x0)
[
Gn(θ0(x0)) +DG(θ̌1, θ̌2, . . . θ̌k) [θ̂(x0)− θ0(x0)]

]
. (4.20)

Since θ̂ is consistent and converges to θ0, then so do θ̌1, θ̌2, . . . θ̌k, as they lie on the segment

(θ̂, θ0). We have also shown that ∂Gn(θ(x0))
∂θ converges in probability to the non-random

function −∂τ(θ0(x0))
∂θ f(x0), and we have Wn(x0)→p Wx0 (by appropriate selection) and so

this may be restated as:

−f(x0)

[
∂τ(θ0(x0))

∂θ

]T

Wx0

[
Gn(θ0(x0))− f(x0)

[
∂τ(θ0(x0))

∂θ

]
[θ̂(x0)− θ0(x0)]

]
= op(1).

(4.21)

Since ∂τ(θ0(x0))
∂θ is of full rank, and Wx0 is positive-definite, then

[
∂τ(θ0(x0))

∂θ

]T

Wx0
∂τ(θ0(x0))

∂θ

is invertible, and we have:

θ̂(x0)− θ0(x0) ≈ 1

f(x0)

{[
∂τ(θ0(x0))

∂θ

]T

Wx0

∂τ(θ0(x0))

∂θ

}−1

×
[
∂τ(θ0(x0))

∂θ

]T

Wx0Gn(θ0(x0)). (4.22)
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So:

Var[θ̂(x0)] ≈ 1

f2(x0)

{[
∂τ(θ0(x0))

∂θ

]T

Wx0

∂τ(θ0(x0))

∂θ

}−1 [∂τ(θ0(x0))

∂θ

]T

Wx0 Var[Gn(θ0(x0))]Wx0

∂τ(θ0(x0))

∂θ

{[
∂τ(θ0(x0))

∂θ

]T

Wx0

∂τ(θ0(x0))

∂θ

}−1

.

(4.23)

From Equation (4.14) above, noting that Rθ0(x0) = 0 by the moment condition, we have:

Var[Gn(θ0(x0))] ≈ f(x0)

nh
Var[T (Y )|X = x0]

∫
K2(z)dz.

So finally, the asymptotic expression for the variance of our estimator is given by:

Var[θ̂(x0)] ≈ 1

nhf(x0)

∫
K2(z) dz

×
{[

∂τ(θ0(x0))

∂θ

]T

Wx0

∂τ(θ0(x0))

∂θ

}−1 [∂τ(θ0(x0))

∂θ

]T

Wx0

×Var[T (Y )|X = x0]Wx0

∂τ(θ0(x0))

∂θ

{[
∂τ(θ0(x0))

∂θ

]T

Wx0

∂τ(θ0(x0))

∂θ

}−1

.

(4.24)

It can be seen that the asymptotic variance decreases as the bandwidth h increases and

as the density f(x0) increases. This is as expected, as the factor nhf(x0) can be thought

of as controlling the effective local sample size. As h increases, we increase the size of the

local neighbourhood, and, where f(x0) is relatively higher, the density of points in the

neighbourhood is greater.

Alternatively, we can take a ‘quasi-asymptotic’ approach, whereby we replace expressions

in Equation (4.24) with appropriate sample summations. This approach is advocated by

both Fan & Gijbels (1995) (in the context of local polynomial regression) and Carroll

et al. (1998) (in the context of local estimating equations), for making no more use of

asymptotics than needed. Replacing θ0(x0) with θ̂(x0), and W (x0) with Wn(x0) we get:

Var[θ̂(x0)] ≈
∑n

t=1K
2
h(Xt − x0)

{
∑n

t=1Kh(Xt − x0)}2

×

[[
∂τ(θ̂(x0))

∂θ

]T

Wn(x0)
∂τ(θ̂(x0))

∂θ

]−1 [
∂τ(θ̂(x0))

∂θ

]T

Wn(x0) Var[T (Y )|x0]

×Wn(x0)
∂τ(θ̂(x0))

∂θ

[[
∂τ(θ̂(x0))

∂θ

]T

Wn(x0)
∂τ(θ̂(x0))

∂θ

]−1

. (4.25)

The conditional variance of T (Y ) is unknown, and will have to be estimated at each

required value of X. We can use a local mean estimator with some fixed bandwidth h∗ as
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follows:

Var[T (Y )| X = x0] ≈
∑n

t=1Kh∗(Xt − x0)[T (yt)− τ(θ̆(x0))][T (yt)− τ(θ̆(x0))]T∑n
t=1Kh∗(Xt − x0)

. (4.26)

where θ̆ denotes the parameter vector fitted with the bandwidth, h∗. Carroll et al. (1998)

take a slightly simpler approach, which here would involve estimating the variance of

Gn[θ0(x0)] directly as:

Var(Gn[θ0(x0)]) ≈ 1

n2

n∑
t=1

K2
h(Xt − x0) [T (yt)− τ(θ̂(x0))][T (yt)− τ(θ̂(x0))]T. (4.27)

We will consider the relative merits of these two approaches in the context of our practical

application in Section 6.1.

4.2.4 Asymptotic bias

Next we consider the bias, returning to Equation (4.22) and taking the expectation of

both sides to get:

Bias[θ̂(x0)] ≈ 1

f(x0)

{[
∂τ(θ0(x0))

∂θ

]T

Wx0

∂τ(θ0(x0))

∂θ

}−1

×
[
∂τ(θ0(x0))

∂θ

]T

Wx0 E[Gn(θ0(x0))]. (4.28)

From Equation (4.13), now putting Rθ0(x0) = 0:

E[Gn(θ0(x0))] ≈ h2

∫
K(z)z2 dz

{
1

2
R′′θ0(x0)f(x0) +R′θ0(x0)f ′(x0)

}
. (4.29)

We have:

Rθ0(x) = E[T (Y )− τ(θ0(x0)) |X = x]

= E[T (Y ) |X = x]− τ(θ0(x0))

= τ(θ0(x))− τ(θ0(x0)). (4.30)

Also:

R′θ0(x) =
∂τ(θ0(x))

∂θ
θ′0(x) (4.31)

and

R′′θ0(x) =
d

dx

[
∂τ(θ0(x))

∂θ

]
θ′0(x) +

∂τ(θ0(x))

∂θ
θ′′0(x). (4.32)
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Substituting back:

E[Gn(θ0(x0))] ≈ h2

∫
K(z)z2 dz

×
{[

1

2

d

dx

[
∂τ(θ0(x0))

∂θ

]
f(x0) +

∂τ(θ0(x0))

∂θ
f ′(x0)

]
θ′0(x0)

+
1

2

∂τ(θ0(x0))

∂θ
f(x0) θ′′0(x0)

}
. (4.33)

We leave the first term in this form for ease of notation, since the second differential of

τ(θ) with respect to θ would give a three-dimensional array and consequent notational

complexity. So finally, the asymptotic expression for the bias is given by:

Bias[θ̂(x0)] ≈ h2

∫
K(z)z2 dz

{[
∂τ(θ0(x0))

∂θ

]T

Wx0

∂τ(θ0(x0))

∂θ

}−1 [∂τ(θ0(x0))

∂θ

]T

Wx0

×
{[

1

2

d

dx

[
∂τ(θ0(x0))

∂θ

]
+
∂τ(θ0(x0))

∂θ

f ′(x0)

f(x0)

]
θ′0(x0) +

1

2

∂τ(θ0(x0))

∂θ
θ′′0(x0)

}
.

(4.34)

As for the variance, we can gain some useful insights by considering this asymptotic result.

It can be seen that the absolute bias increases as the size of the local neighbourhood, which

is controlled by the bandwidth h, is increased. This is intuitive, since it means that the

estimator at a given value x0 is based on observations which include values increasingly

dissimilar to x0. The bias also depends on both the gradient and the curvature of the

true curves (given by the first and second derivatives θ′(·) and θ′′(·) respectively). The

problem is that the expression involves a number of unknown terms, including the design

density and its derivative, and the first and second derivatives of θ. In practice, it may be

possible to estimate these using ‘plug-in estimators’. This is discussed further in Section

4.4.

An alternative approach to the asymptotic calculation of E[Gn(θ0(x0))] follows Carroll

et al. (1998), and uses the fact that E[T (Y ) − τ(θ0(x)) |X = x] = 0. This allows us to

re-write Equation (4.12) (now writing θ for θ0 for notational simplicity), as:

E[Gn(θ(x0))] =

∫ ∫ [
T (Y )− τ(θ(x0))− {T (Y )− τ(θ(x))}

]
×Kh(x− x0) f(y|x) f(x) dy dx

=

∫ [
τ(θ(x))− τ(θ(x0))

]
Kh(x− x0) f(x) dx. (4.35)

Carroll et al. (1998)’s approach next involves taking a first order Taylor series expansion
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of τ(θ(x0)) about θ(x), which for our equation gives:

E[Gn(θ(x0))] ≈
∫ [

∂τ(θ(x))

∂θ

]
[θ(x)− θ(x0)] Kh(x− x0) f(x) dx. (4.36)

Then θ(x) is estimated by taking terms up to second order in a Taylor series expansion

about x0, such that [θ(x)− θ(x0)] is given by:

θ′(x0) (x− x0) + θ′′(x0) (x− x0)2/2.

Thus:

E[Gn(θ(x0))] ≈
∫ [

∂τ(θ(x))

∂θ

]
Kh(x− x0)×

[
θ′(x0) (x− x0) + θ′′(x0)

(x− x0)2

2

]
f(x) dx

=

∫
K(z)

[
∂τ(θ(x0 + zh))

∂θ

]{
hz θ′(x0) +

(hz)2

2
θ′′(x0)

}
f(x0 + zh) dz.

(4.37)

Next we take a Taylor series expansion of

[
∂τ(θ(x0+zh))

∂θ

]
f(x0 +zh) about x0, keeping terms

up to order h2 to give:

E[Gn(θ(x0))]

≈ h2

∫
K(z)z2 dz

×
{[

d

dx

[
∂τ(θ(x0))

∂θ

]
f(x0) +

∂τ(θ(x0))

∂θ
f ′(x0)

]
θ′(x0) +

1

2

∂τ(θ(x0))

∂θ
f(x0) θ′′(x0)

}
,

(4.38)

where terms in
∫
K(z)z dz have been eliminated as they are equal to zero.

In this alternative approach, the idea of going up to order p+2 in the polynomial expansion

of θ(x) (so that the bias is based on the (p+ 1)th and (p+ 2)th terms) is in line with that

followed by Fan & Gijbels (1996) and is particularly appealing when considering higher

order local polynomial regression i.e. when p > 1.

If we compare Equation (4.38) with our earlier Equation (4.33) then we see that the first

term in the latter is half of that in the former. This difference arises because the calculation

as given by Carroll et al. (1998) omits a term in h2, for which we need to include a second

order term in the approximation of τ(θ(x0)) in Equation (4.36). We demonstrate this

below, where we take the case where θ is scalar for simplicity, and now have:

τ(θ(x0)) ≈ τ(θ(x)) +

[
dτ(θ(x))

dθ

]
[θ(x0)− θ(x)] +

1

2

[
d2τ(θ(x))

dθ2

]
[θ(x0)− θ(x)]2. (4.39)

Approximating [θ(x) − θ(x0)] by θ′(x0) (x − x0) + θ′′(x0) (x − x0)2/2 and making the



4. New approach to address non-stationarity 85

substitution z = (x−x0)/h as before, the new quadratic term gives an additional element

in the estimation of E[Gn(θ(x))] of:

−
∫
K(z)

1

2

[
d2τ(θ(x0 + zh))

dθ2

]
(hz)2

[
θ′(x0)

]2
f(x0 + zh) dz + o(h2)

= −1

2
h2

∫
K(z)z2dz

[
d2τ(θ(x0))

dθ2

][
θ′(x0)

]2
f(x0) + o(h2)

= −1

2
h2

∫
K(z)z2dz

{[
d

dx

[
∂τ(θ(x0))

∂θ

]
f(x0) θ′(x0) + o(h2). (4.40)

Adding this term to Equation (4.38), we now have agreement with our original Equation

(4.33).

We can replace expressions with appropriate sample summations, as we did for the asymp-

totic variance calculation, setting θ to θ̂, and replacing Wx0 with Wn(x0) to give the bias

estimate:

Bias[θ̂(x0)] ≈

[[
∂τ(θ̂(x0))

∂θ

]T

Wn(x0)
∂τ(θ̂(x0))

∂θ

]−1 [
∂τ(θ̂(x0))

∂θ

]T

Wn(x0)

×
∑n

t=1Kh(Xt − x0)
[
τ(θ̂(xt))− τ(θ̂(x0))]∑n

t=1Kh(Xt − x0)
. (4.41)

This fairly crude approach to the calculation of bias is similar to that used in deriving

the bias-corrected ‘twicing estimator’ of Stuetzle & Mittal (1979) for ordinary kernel

regression and of Kauermann et al. (1998) for local estimating equations.

4.2.5 Asymptotic distribution

Finally, we consider the asymptotic distribution of our estimator, where we can appeal

to a form of the Central Limit Theorem to demonstrate the approximate large sample

normality of θ̂(x0) (Schuster 1972). We have already specified that we must have h → 0

and nh → ∞ in the derivations above. We have also seen that there is a bias-variance

trade-off in selecting h: as h increases, the variance decreases, but the bias increases and

vice-versa. If we want to choose the mean-square optimal bandwidth, then we require

h = h∗ to equate the rates of convergence to zero of the squared bias and variance. Thus

we need h∗ to satisfy:

O((h∗)4) = O

(
1

nh∗

)
(4.42)

i.e. we want h4 ∝ 1
nh , so we pick h such that nh5 → c, a constant. Note that, given this

choice of h, the limiting distribution will be biased, although the bias term disappears

asymptotically as h→ 0.
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We define the bias at x0 as h2B(x0), where (from Equation (4.34)):

B(x0) =

∫
K(z)z2 dz

{[
∂τ(θ0(x0))

∂θ

]T

Wx0

∂τ(θ0(x0))

∂θ

}−1 [∂τ(θ0(x0))

∂θ

]T

Wx0

×
{[

1

2

d

dx

[
∂τ(θ0(x0))

∂θ

]
+
∂τ(θ0(x0))

∂θ

f ′(x0)

f(x0)

]
θ′0(x0) +

1

2

∂τ(θ0(x0))

∂θ
θ′′0(x0)

}
.

(4.43)

Then, returning to Equation (4.22), subtracting the bias, multiplying both sides by (nh)1/2,

and using the variance result from Equation (4.24), we have:

(nh)1/2{θ̂(x0)− θ0(x0)− h2B(x0)} →D

N(0,
1

f(x0)

∫
K2(z) dz

{[
∂τ(θ0(x0))

∂θ

]T

Wx0

∂τ(θ0(x0))

∂θ

}−1 [
∂τ(θ0(x0))

∂θ

]T

Wx0

× V (x0)Wx0

∂τ(θ0(x0))

∂θ

{[
∂τ(θ0(x0))

∂θ

]T

Wx0

∂τ(θ0(x0))

∂θ

}−1

, (4.44)

where:

V (x0) = Var[T (Y )|X = x0]. (4.45)

Note that, using the mean square optimal bandwidth, which is proportional to n−1/5, the

estimator converges at rate n−2/5, compared with a rate of n−1/2 for a parametric fit.

An alternative approach, taken by Lewbel (2007) and many other authors, assumes nh5 →
0. This assumption for the bandwidth makes the bias shrink faster than the variance

(‘undersmoothing’), so is not mean square optimal, but simplifies the limiting distribution

since no bias term is then required. It is not clear, however, how one chooses such an

estimator in practice. This approach is also criticised by Hansen (2012) for giving an

inefficient and misleading estimator, which misses the bias-variance trade-off that is an

inherent part of nonparametric estimation. We prefer the mean-square optimal approach.

The limiting distribution (given by Equation (4.44)) can be used to calculate approximate

pointwise confidence intervals, although note that these will be for E(θ̂(x0)) rather than

θ(x0) itself, due to the bias. Although it is possible to estimate the bias term, this

would itself involve terms in θ̂ (its first and second derivatives), and so would increase

the variance of the estimator from that given in Equation (4.44). In practice it is usually

deemed sufficient to indicate a level of variability without adjusting for bias. In order to

avoid confusion such intervals are referred to as ‘variability bands’, rather than confidence

intervals (Bowman & Azzalini 1997).
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4.2.6 The weighting matrix

So far we have just assumed that the weighting matrix Wn(x0) may depend on the data,

and that it converges to the positive definite non-random matrix, Wx0 . Now we see that,

if we take the weighting matrix to be the inverse of the conditional covariance matrix of

the statistics, such that Wx0 = V (x0)−1, then the expression for the variance simplifies

and we have:

(nh)1/2{θ̂(x0)− θ0(x0)− h2B(x0)} →D

N

(
0,

1

f(x0)

∫
K2(z) dz

{[
∂τ(θ0(x0))

∂θ

]T

V (x0)−1∂τ(θ0(x0))

∂θ

}−1)
. (4.46)

This choice for the weighting matrix gives optimal efficiency, and a two-step procedure can

be used, as described in Section 2.3 in respect of standard GMM. However, computation

time is now an even more onerous constraint, since this procedure would be required in

respect of each evaluation point. As before we use the conclusions of Jesus & Chandler

(2011)’s simulation study to justify using just a diagonal matrix of inverse variances. With

a continuous covariate, however, we only have a single observation at each evaluation point,

so we cannot take a straightforward sample estimate, as we did when modelling conditional

on month. A practical approach may be to group the data into bins based on the value of

the covariate, calculating sample variances within each bin, and then potentially smoothing

across individual observations. This is considered in more detail in Section 4.6.2, which

describes our practical approach.

4.3 Extending to higher order polynomials

The Nadaraya-Watson or local mean approach suffers from some limitations. Consider a

covariate value, x0, at which the true curve has a positive gradient, and where there are

more observation points in the local neighbourhood with a lower covariate value, then a

higher one. The local mean weighting approach will then give a fitted value at x0 which

is biased downwards. The converse is true if there are more points with a higher covariate

value. This sort of bias is known as design bias, and arises when the design is not equi-

spaced. A similar problem arises at (or near) the boundaries where the observation points

in the local neighbourhood lie only (or primarily) to one side, and the fitted curve will

tend to be too flat as a result. This is known as boundary bias. Various approaches exist

in the literature aimed at addressing these limitations. These include boundary kernel

methods (Müller 1991, Jones 1993), reflection methods and ‘pseudo-data’. The methods

are reviewed by Dai & Sperlich (2010), who note that boundary correction methods are

not much used in practice, perhaps because they are not allowed for in most standard

software, and are also seen as complex. These methods are in any case primarily aimed at



4. New approach to address non-stationarity 88

density estimation, rather than regression, since in the latter, extending to a local linear

approach is generally considered to be a more appealing way to address boundary issues.

In Figure 4.2 we return to the simple motivating example of Section 4.1 to illustrate the

difference between a local mean and local linear fit. The local linear fit’s correction for the

boundary bias is evident. In fact Fan & Gijbels (1996) (Section 3.3) show that taking the

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
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Local mean v local linear

x

y

local mean
local linear

Figure 4.2: Scatterplots showing the relationship between x and y, generated from the equation
Y = sin(6X) + 1.5 + ε, ε ∼ N(0, 0.14), showing local mean (blue) and local linear (red) fits.

order of the polynomial to be odd in local polynomial regression reduces bias compared

with the preceding even order estimate, without increasing asymptotic variance. So it

appears that odd order fits are (at least asymptotically) preferable to those using even

orders. There is no clear-cut comparison between two odd order fits however — increasing

the order (from 1 to 3, say) reduces bias, but at the expense of increased variance.

Order p = 1 is therefore a very popular choice, although a higher value of p may be required

if estimates of the derivatives of θ are also required (in which case, one might choose the

order of derivative required plus 1). Ruppert & Wand (1994) give a word of caution,

however, against taking the local linear estimator as the automatic benchmark. They

acknowledge the importance of reducing boundary bias, but they point out that, while for

interior points, the ratio of the asymptotic variance of the local linear estimator to the

variance of the local mean estimator is 1, at the boundaries it can be considerably higher,

and in some circumstances, near the boundary, the latter may provide a more accurate

estimate. Note also that while the two methods have identical asymptotic variances at

interior points, in finite samples the Nadaraya-Watson estimator tends to have a smaller

variance. Thus in cases where the regression function is fairly flat, the Nadaraya-Watson

estimator may have the advantage. We now consider the estimating equation, variance



4. New approach to address non-stationarity 89

and bias for the local linear fitting approach in respect of our model.

4.3.1 Derivations for the local linear model

Now, when solving for the parameters at the evaluation point x0, we have ψ(Xt) = b0(x0)+

b1(x0)(Xt − x0), where b0(x0) = θ(x0) and b1(x0) = θ′(x0). The fitted value of θ at x0 is

therefore equal to b̂0(x0), with b̂1(x0) providing an estimator for the gradient of the curve

at x0. The parameters b0(·) and b1(·) will need to be found for each required evaluation

point, as before. For ease of manipulation we will write the parameter set in a vector of

length 2q as b(x) = (b0(x)T, b1(x)T)T, and define the vector Xx0 as (1, Xt − x0)T. We no

longer write a subscript of 0 to denote the ‘true’ values of parameters, with the subscripts

here simply indicating the appropriate coefficient.

We develop the method for the local linear case using a mixture of practical and theoretical

investigation. We will describe the route by which we reach our conclusions here, including

our original approach, although this was ultimately proven to be invalid. We define Gn

broadly as before, but now it is a function of the vector b(x), which includes components

in respect of θ and θ′, and we write ψ(Xt) in the summation rather than θ(x0), since θ is

no longer assumed to be constant in the neighbourhood of x0:

Gn(b(x)) =
1

n

n∑
t=1

Kh(Xt − x) [T (Yt)− τ(ψ(Xt))], (4.47)

where ψ(Xt) = b0(x) + b1(x)(Xt − x). We originally attempted to solve for b̂ at the point

x0, by minimising Gn(b(x0))TWn(x0)Gn(b(x0)) numerically, as before. This practical

approach failed, with estimates of b0 and b1 varying wildly with x. Returning to the

theory, it is clear that the problem is that the moment condition implicit in this approach

is just:

E[T (Y )|X = x] = τ(b0(x)), (4.48)

which only defines b0, and gives no information on b1. Further, the matrix ∂Gn(b(x))
∂b is

(asymptotically) not of full rank, since:

E

[
∂Gn(b(x0))

∂b

]T

= E

[
− 1

n

n∑
t=1

Kh(Xt − x0) Xx0 ⊗
[
∂τ(ψ(Xt))

∂θ

]T
]

= −
∫ (

1

zh

)
K(z)⊗

[
∂τ(ψ(x0 + zh))

∂θ

]T

f(x0 + zh)dz

= −

(
1

0

)
⊗
[
∂τ(b0(x0))

∂θ

]T

f(x0) + o(h2), (4.49)

where the notation ∂τ(ψ(Xt))
∂θ represents ∂τ

∂θ evaluated at θ = ψ(Xt) = b0(x0) + b1(x0)(Xt−
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x0), and the ⊗ symbol denotes the Kronecker product, which takes two matrices, and

multiplies each element of the first matrix by the entire second matrix, putting each result

in place of the element of the first matrix. Then, if we let MT
x0 =

(
1

0

)
⊗
[
∂τ(b0(x0))

∂θ

]T
f(x0),

the calculations for the asymptotic bias and variance require us to invert the matrix

MT
x0Wx0Mx0 , but this matrix is not invertible. (For example, in the case where q = 1,

k = 2, only the (1, 1)th entry in this 2× 2 matrix is non-zero.)

It is clear then, that an alternative fitting equation is required, which allows the gradients

of the components of θ to be identified. We show in the next section that this can be

achieved by applying the kernel weights to the quadratic form in [T (Yt) − τ(ψ(Xt))],

rather than to [T (Yt)− τ(ψ(Xt))] itself.

4.3.2 Alternative local approach

Recall that we have so far been considering a local GMM approach where we solve for

θ̂(x0) using the equation:

θ̂(x0) = argminθ(x0)

{
1

n

n∑
t=1

Kh(Xt − x0)[T (Yt)− τ(ψ(Xt))]

}T

Wn(x0)

×
{

1

n

n∑
t=1

Kh(Xt − x0)[T (Yt)− τ(ψ(Xt))]

}
, (4.50)

where ψ(Xt) is equal to θ(x0) for the local mean case, and b0(x0) + b1(x0)(Xt − x0) (i.e.

θ(x0) + θ′(x0)(Xt − x0)) for the local linear case. Our alternative approach applies the

kernel weights to the quadratic form instead, to give:

θ̂(x0) = argminθ(x0)

{
1

n

n∑
t=1

Kh(Xt − x0) [T (Yt)− τ(ψ(Xt))]
T Wn(x0) [T (Yt)− τ(ψ(Xt))]

}
.

(4.51)

The determination of the appropriate weighting matrices to use here is less clear, but we

have chosen to use Wn(x0) rather than Wn(xt) in the equation since this will prove to be

more convenient, and in any case we are assuming local homoscedasticity. For simplicity,

we will also treat the weighting matrix in the local linear derivations as it were known,

and so will refer to it as Wx0 . In practice, this is not necessarily the case (e.g. if it is

based on the variance of the statistics), in which case the results will include an additional

element of approximation. Differentiating this equation with respect to b will give us the
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following two sets of equations:

0 =
1

n

n∑
t=1

Kh(Xt − x0)

[
∂τ(ψ(Xt))

∂θ

]T

Wx0 [T (Yt)− τ(ψ(Xt))]. (4.52)

0 =
1

n

n∑
t=1

Kh(Xt − x0) (Xt − x0)

[
∂τ(ψ(Xt))

∂θ

]T

Wx0 [T (Yt)− τ(ψ(Xt))]. (4.53)

These equations exactly identify the 2q parameters, and are effectively the sample equiv-

alents of the required moment conditions.

Now we consider the asymptotic variance and bias of the estimators using this alternative

approach, for the local linear case. We follow Carroll et al. (1998) by letting the unknown

parameters be a0 = b0 and a1 = h b1, which simplifies the expressions. Now ψ(Xt) =

a0(x) + a1(x) (Xt − x)/h.

We differentiate the right-hand side of Equation (4.51) with respect to a = (aT
0 , a

T
1 )T,

ignoring the constant multiplier of 2 (which does not affect the location of the minimum),

and define:

Ln(a(x0)) = − 1

n

n∑
t=1

Kh(Xt − x0) Xh
x0 ⊗

[
∂τ(ψ(Xt))

∂θ

]T

Wx0 [T (Yt)− τ(ψ(Xt))], (4.54)

with Xh
x0 denoting the vector (1, (Xt − x0)/h)T, and Ln(â(x0) = 0. Note that Ln(â(x0))

is a vector of length 2q.

Then:

∂

∂(aT
0 , a

T
1 )
Ln(a(x0)) =

1

n

n∑
t=1

Kh(Xt − x0)Xh
x0X

h
x0

T

⊗
{[

∂τ(ψ(Xt))

∂θ

]T

Wx0

∂τ(ψ(Xt))

∂θ
− Φ(Xt, Yt)

}
where Φ(Xt, Yt) is the q × q matrix with (i, j)th term given by:

Φ(Xt, Yt)(i,j) =

k∑
l=1

k∑
m=1

∂2τl(ψ(Xt))

∂θi∂θj
W(l,m)x0

[Tm(Yt)− τm(ψ(Xt))]
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So,

∂

∂(aT
0 , a

T
1 )
Ln(a(x0))

= E

[
Kh(X − x0)Xh

x0X
h
x0

T ⊗
{[

∂τ(ψ(X))

∂θ

]T

Wx0

∂τ(ψ(X))

∂θ
− Φ(X,Y )

}]
+Op(1/

√
nh)

=

∫
Kh(x− x0)

(
1 (x− x0)/h

(x− x0)/h (x− x0)2/h2

)
⊗

{[
∂τ(ψ(x))

∂θ

]T

Wx0

∂τ(ψ(x))

∂θ

− E[Φ(X,Y )|X = x]

}
f(x) dx + Op(1/

√
nh)

=

∫
K(z)

(
1 z

z z2

)
⊗{[

∂τ(ψ(x0 + zh))

∂θ

]T

Wx0

∂τ(ψ(x0 + zh)

∂θ

}
f(x0 + zh) dz +O(h2) +Op(1/

√
nh)

= f(x0)

(
1 0

0
∫
K(z)z2dz

)
⊗
[
∂τ(a0(x0))

∂θ

]T

Wx0

∂τ(a0(x0))

∂θ
+Op(h+ 1/

√
nh). (4.55)

Note that this is a matrix of dimension 2q×2q. The term in E[Φ(X,Y )|X = x] in the first

line is O(h2) since, if we treat it as a function of x and take a Taylor series expansion about

x0, the first two terms are equal to zero. This is because E[Tm(Y ) − τm(ψ(X))]|X = x0]

and its first derivative with respect to x are both zero in the local linear case. (A similar

result in respect of E[Ln(a(x0))] which is discussed below in more detail, should make this

clearer.)

In order to derive the asymptotic variance and bias of the estimators we use a first order

Taylor series expansion of Ln(â(x0)), which is equal to zero, about a(x0), and rearrange

to get:(
â0(x0)− a0(x0)

â1(x0)− a1(x0)

)

≈ − 1

f(x0)

{(
1 0

0
∫
K(z)z2dz

)
⊗
[
∂τ(a0(x0))

∂θ

]T

Wx0

∂τ(a0(x0))

∂θ

}−1

Ln(a(x0)). (4.56)

Next we derive E[Ln(a(x0)] and Var[Ln(a(x0)]:

E[Ln(a(x0))]

= −
∫
Kh(x− x0)

(
1

(x− x0)/h

)
⊗
[
∂τ(ψ(x))

∂θ

]T

Wx0 [T (y)− τ(ψ(x))] f(y|x) f(x) dydx

= −
∫
Kh(x− x0)

(
1

(x− x0)/h

)
⊗ χ[ψ(x)]TWx0R(x) f(x) dx,
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where we write χ[ψ(x)] for ∂τ
∂θ evaluated at ψ(x) = a0(x0)+a1(x)(x−x0)/h for notational

convenience, and

R(x) = E[T (Y )− τ(ψ(x)]|X = x]

= τ(θ(x))− τ(ψ(x)), (4.57)

noting that R(x0) and R′(x0) are both zero, since θ(x0) = a0(x0) and θ′(x0) = a1(x0)/h.

Also:

R′′(x) =
d

dx

(
∂τ(θ(x))

∂θ

)
θ′(x) +

∂τ(θ(x))

∂θ
θ′′(x) +

d

dx

(
∂τ(ψ(x))

∂θ

)
a1

h
,

and so:

R′′(x0) =
∂τ(θ(x))

∂θ
θ′′(x). (4.58)

Continuing by letting z = (x− x0)/h as before:

E[Ln(a(x0))] = −
∫
K(z)

(
1

z

)
⊗ χ[ψ(x0 + zh)]TWx0R(x0 + zh) f(x0 + zh) dz

= −1

2

(
h2
∫
K(z)z2dz

0

)
⊗ χ[a0(x0)]TWx0R

′′(x0) f(x0)

− 1

6

(
0

h3
∫
K(z)z4dz

)
⊗
[
3χ′[a0(x0)]TWx0R

′′(x0) f(x0)

+ χ[a0(x0)]TWx0R
(3)(x0)f(x0) + 3χ[a0(x0)]TWx0R

′′(x0)f ′(x0)

]
+ o(h3)

(4.59)

and:

Var[Ln(a(x0)] =
1

n
Var

[
Kh(X − x0) Xh

x0 ⊗ χ[ψ(X)]TWx0 [T (Y )− τ(ψ(X))]
]

=
1

n

∫
K2
h(x− x0)Xh

x0X
h
x0

T ⊗ χ[ψ(x)]TWx0

× [T (y)− τ(ψ(x))] [T (y)− τ(ψ(x))]TWx0 χ[ψ(x)] f(y|x)f(x) dy dx+O

(
1

n

)
=

1

n

∫
K2
h(x− x0)Xh

x0X
h
x0

T ⊗ χ[ψ(x)]TWx0

×
[
Var[T (Y )|X = x] +R(x)R(x)T

]
Wx0 χ[ψ(x)] f(x) dx+O

(
1

n

)
=
f(x0)

nh

∫
K2(z)

(
1 z

z z2

)
dz ⊗ χ[a0(x0)]TWx0

× Var[T (Y )|X = x0]Wx0 χ[a0(x0)] + O

(
1

n

)
,
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where the last line follows since R(x0) = 0. Now we use the approximations of E[Ln(a(x0))]

and Var[Ln(a(x0)] and Equation (4.56) to derive the variance and bias of the parameter

estimates:

Var

(
â0(x0)

â1(x0)

)
≈ 1

nh f(x0)

{(
1 0

0
∫
K(z)z2dz

)
⊗
[
∂τ(a0(x0))

∂θ

]T

Wx0

∂τ(a0(x0))

∂θ

}−1

×
∫
K2(z)

(
1 z

z z2

)
dz

⊗
[
∂τ(a0(x0))

∂θ

]T

Wx0 Var[T (Y )|X = x0]Wx0

∂τ(a0(x0))

∂θ

×
{(

1 0

0
∫
K(z)z2dz

)
⊗
[
∂τ(a0(x0))

∂θ

]T

Wx0

∂τ(a0(x0))

∂θ

}−T

(4.60)

and:

Bias

(
â0(x0)

â1(x0)

)
≈ − 1

f(x0)

{(
1 0

0
∫
K(z)z2dz

)

⊗
[
∂τ(a0(x0))

∂θ

]T

Wx0

∂τ(a0(x0))

∂θ

}−1

E[Ln(a(x0)]. (4.61)

We are interested primarily in the bias of â0(x0) = θ̂(x0), which we now write in full as:

Bias[â0(x0)] ≈
{[

∂τ(a0(x0))

∂θ

]T

Wx0

∂τ(a0(x0))

∂θ

}−1

× 1

2
h2

∫
K(z)z2dz

[
∂τ(a0(x0))

∂θ

]T

Wx0

[
∂τ(a0(x0))

∂θ
θ′′(x0)

]
, (4.62)

where we have substituted for R′′(x0) using Equation (4.58). We can see that the asymp-

totic variance of b̂0 (= â0) of the local linear estimator, given by Equation (4.60), is

equivalent to that of the local mean estimator in Equation (4.24), whereas the asymptotic

bias is reduced (comparing Equations (4.62) and (4.34)). The bias is no longer dependent

on the gradient of θ, nor on the design density. This is similar to results in respect of local

regression, and in line with expectations.

As for the local mean estimator, the asymptotic expressions include unknown terms, and

we can instead take a quasi-asymptotic approach, replacing expressions with sample sum-
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mations. For example, the expression for the variance of â(x0) is given by:

Var[â(x0)]

≈
{ n∑
t=1

Kh(Xt − x0) Xh
x0X

hT

x0 ⊗
[
∂τ(ψ̂(Xt))

∂θ

]T

Wx0

∂τ(ψ̂(Xt))

∂θ

}−1

×
n∑
t=1

K2
h(Xt − x0) Xh

x0X
hT

x0 ⊗
[
∂τ(ψ̂(Xt))

∂θ

]T

Wx0 Var[T (Y )|X = x0]Wx0

∂τ(ψ̂(Xt))

∂θ

×
{ n∑
t=1

Kh(Xt − x0) Xh
x0X

hT

x0 ⊗
[
∂τ(ψ̂(Xt))

∂θ

]T

Wx0

∂τ(ψ̂(Xt))

∂θ

}−1

, (4.63)

with the variance for â0(x0) given by the (1,1)th term.

Note that if we used this alternative approach for the local mean estimator (i.e. applying

the kernel weights to the quadratic form), then we would find the same solution as before,

and the asymptotic bias and variance would also be unchanged. The advantage of our

original method in the local mean case is purely practical. Averaging the statistics, rather

than the quadratic form, allows practitioners to use existing software for the optimisation

routine, simply replacing the average over calendar month, with the appropriate kernel

based average before calling the routine.

We will not consider polynomials of order greater than 1, since it is clear that these are

neither desirable nor likely to be viable for the rainfall models, requiring the estimation

of too many parameters relative to the amount of available information.

So far we have been assuming that the bandwidth h is a function of the sample size, but

we have not considered how it may be determined in practice. We look at this in the next

section.

4.4 Choosing a bandwidth

We use a global bandwidth, which means that h is constant across the whole data range,

but will briefly consider the alternatives. A local bandwidth allows h to be different at

each evaluation point. This gives more flexibility, for example allowing a smaller value of

h over areas with high curvature and/or where the density of observation points is high.

Another approach allows a fixed percentage of the data (termed the ‘span’) to contribute

a positive weight to each local fit. This is the idea behind ‘nearest-neighbour’ methods

such as Loess (Cleveland 1979, Cleveland & Devlin 1988), which aim to give a broadly

constant variance for the estimator across all covariate values (assuming the variance of

the response is itself broadly constant). However, as already discussed, choosing a tuning

constant is a question of balancing the bias and variance, which move in opposite directions

as the tuning constant is varied. Thus the stability of variance that the nearest neighbour
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method brings is at the expense of more variable bias. This type of method is likely to be

desirable for curves with a complex structure, whereas a constant global bandwidth should

be adequate for relatively smooth curves, or where the amount of data is not sufficient to

justify a local approach.

Now we consider how a suitable global bandwidth may be chosen. A popular practical

approach in the case of local regression is simply to choose this subjectively after a visual

inspection of the fits with different values of h. In the case of a scatterplot smooth, the

fitted line can be compared to the actual data points, and a practitioner can take an

informed view as to whether particular features identified in the fits are ‘real’ or just

due to randomness. A slightly more complex, but still subjective, idea is to decide on

an appropriate complexity of the model in terms of ‘effective degrees of freedom’. Thus

for example, if it is felt that a function should be equivalent in complexity to a cubic

polynomial, then a fit would be desirable which gives an effective degree of freedom of

around 4. This approach requires the approximation of the effective degrees of freedom

for a given bandwidth. For local regression an explicit solution exists which is linear

in the response, so that the estimator can be expressed in the form θ̂ = Sy. This means

that the approximate degrees of freedom can be determined by analogy with normal linear

regression as the trace of the smoothing matrix, S. (Recall that in normal linear regression,

the degrees of freedom are given by the trace of the ‘hat’ matrix, H = X(XTX)−1XT,

where Ŷ = HY .)

For our model, however, there is no explicit solution, and it is not clear how one might

estimate the effective degrees of freedom. Subjective assessment is also more difficult be-

cause we can only compare the statistics T (Y ) against their expectations τ(θ) (of which we

have k components), and cannot directly compare our fitted parameters against observed

responses.

Alongside these subjective approaches, automatic bandwidth selection methods generally

aim to minimise the integrated mean squared error or a proxy for this. Fan & Gijbels

(1996) define the IMSE as:

IMSE =

∫
[Bias(θ̂(x))2 + Var(θ̂(x))] w(x)dx,

for some weight function w. Bowman & Azzalini (1997) have w(x) = f(x), the design

density.

4.4.1 Plug-in method

One of the main approaches to automatic bandwidth selection is called the ‘plug-in’

method, and involves the minimisation of the asymptotic expression for the IMSE (or

MSE for local h). The asymptotic expression is thus differentiated with respect to h and
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set to zero to get an expression for the optimal h. This gives a bandwidth that is O(n−1/5)

as we saw in Section 4.2.5. The problem is that this depends on a number of unknown

quantities, so these then need to be estimated or ‘plugged-in’. Returning to the asymptotic

equations for the variance and bias of the local mean estimator given by Equations (4.24)

and (4.34) respectively, we see that estimates would be required of f(x), f ′(x), θ′(x), θ′′(x)

and Var(T (Y )|X = x) (or appropriate functions of these).

Fan & Gijbels (1996) suggest a relatively simple approach to estimating the unknown

derivatives of θ in the context of local polynomial regression which they call the ‘rule of

thumb’ method. This involves fitting a polynomial of order p+ 3 (e.g. of order 4 for local

linear regression) globally to θ(x), so that we get a parametric fit given by:

θ̆ = ᾰ0 + ...+ ᾰ4x
4.

Then an estimator for θ′′(x) is given by the quadratic 2ᾰ2 + 6ᾰ3x+ 12ᾰ4x
2, which allows

a reasonable flexibility in estimating the curvature. An estimator for θ′ is also clearly

available (although not required in the case of local linear regression). The conditional

variance is estimated by the standardised residual sum of squares from this parametric fit,

and the need to estimate f(x) is avoided by replacement of an integral with a summation

over observed data. Fan & Gijbels (1996) suggest that this method is in a sense similar

to the normal reference method used for density estimation (where unknown values in

the calculation for the optimal bandwidth are estimated by simply assuming the normal

density). The added complexity of the regression estimation problem means that there is

no straightforward equivalent.

This method is not viable for the local rainfall model, since, even for the local mean

estimator, it would require of the order of 20 parameters in the global fit, and it is highly

unlikely that enough independent moment conditions could be found for a numerically

stable solution. Other approaches to finding higher order derivatives of θ involve carrying

out local fits of the required order using a ‘pilot bandwidth’. Since we require the second

derivative of θ, we would need at least a local quadratic fit at the pilot bandwidth, which

again would give rise to identification problems. Overall, this would appear to be a general

problem with plug-in methods, making them inappropriate for our models.

The main alternative to the plug-in method is some form of cross-validation approach,

which we will consider in the next section.

4.4.2 Cross-validation techniques

An ideal way to select an optimal smoothing parameter would be to compare the prediction

performance of the model with different values of h on a new set of test data. Each model

would be estimated from the original ‘training’ data set, and the models’ prediction



4. New approach to address non-stationarity 98

errors could be compared on the new ‘test’ data set. Such new test data are not generally

available, however, and a simple alternative approach is just to split the data randomly

into two sets — estimating the model from one, and testing it on the other, which is known

as a ‘hold-out’ sample.

Cross-validation techniques are more sophisticated versions of the simple ‘hold-out’ sam-

ple, artificially splitting the data into several ‘training’ and ‘test’ data sets, using various

different approaches (see Arlot & Celisse (2011) for a comprehensive survey).

Leave-one-out cross-validation is an example of exhaustive data splitting, which means

that all possible combinations of a given split ratio are considered: in this case the split

ratio is 1 : n− 1. We will consider this first in the context of a scatterplot smoother. The

idea is to predict a response value for each data point, (Yi, Xi) from the remainder of the

data i.e. excluding the ith observation itself. The estimator calculated this way is denoted

θ̂h,−i. An estimate of the performance of the estimation is then obtained from the least

squares loss function:

CV (h) = n−1
n∑
i=1

{Yi − θ̂h,−i}2.

The expectation of this is given by:

E[CV (h)] = n−1
n∑
i=1

E[{θ̂h,−i − θ(Xi)}2] + n−1
n∑
i=1

σ2(Xi),

where σ2(Xi) is the conditional variance of Y given X = xi. The first term is a discrete

approximation to the IMSE, and the second term is independent of h, so we can see that

minimising CV (h) with respect to h will minimise the IMSE.

However, as already discussed, our local rainfall models have a multivariate response, which

is the set of parameters of the underlying point process model. This can be addressed by

taking as our CV statistic (assuming a diagonal weights matrix):

CV (h) = n−1
n∑
t=1

k∑
i=1

[Ti(Yt)− τi(θ̂h,−t)]2wti ,

where the wti are the k diagonal components of the matrix Wxt . The expectation of this

is given by:

E[CV (h)] = n−1
n∑
t=1

k∑
i=1

E{[τi(θ̂h,−t)− τi(θ(Xt))]}2wti + n−1
n∑
t=1

k∑
i=1

Var(Ti(Yt)|Xt)wti

and so minimising this cross-validation criterion would effectively minimise the integrated

weighted sum of the mean squared errors of the components of τ . This is arguably prefer-

able to consideration of the mean squared errors of the individual parameter estimates in

any case, since practitioners are more concerned with the simulations that are subsequently
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generated from the models, than with the values of the individual parameters. However,

it is worth noting that, although there should be no problem with a well-identified model,

this would potentially allow very variable parameters for some of the more complex vari-

ants. The cross-validation (CV) approach is appealing as it is straightforward to apply,

and does not require estimation of any additional parameters. The computation time for

leave-one-out cross-validation is likely to be prohibitive, however. Also, while it is approx-

imately unbiased for the true prediction error, it can have high variance as the n ‘training’

data sets are so similar to each other. A similar, but computationally cheaper approach is

K-fold cross-validation, where the data set is randomly partitioned into K equally sized

subsets. The same approach is taken as for leave-one out CV, but now we leave out the

kth data set, and fit to the remaining K−1 sets, doing this for k = 1, 2, ...K and summing

the prediction errors of the K sets. If K = n, this is equivalent to leave-one-out CV. The

lower the value of K, the lower the variance, and the quicker the calculation time, but

potentially at the expense of some upward bias i.e. overestimation of the true prediction

error (Hastie et al. 2001). Values of K = 5 or K = 10 are recommended as a good com-

promise. Hastie et al. (2001) note that in practice the model chosen is often that which

is the most parsimonious of models whose prediction error is no more than one standard

error above the error of the best model.

Another alternative, where calculation times are a constraint, is repeated random sub-

sampling, which improves on the simple hold-out sample by averaging over several such

random splits of the data. K-fold cross-validation is often preferred to repeated random

sub-sampling, on the basis that in the former all observations are used for both training

and validation, and all are used for validation only once, whereas in the latter there may be

overlaps. However, it could be argued that its reliance on a single random permutation may

result in an ‘unfortunate’ split, which is not representative. It also has the disadvantage

that the choice of K specifies both the number of repetitions, and the size of the validation

set. There are no such restrictions with repeated random sub-sampling, where there is

flexibility over the training/validation split, and no limit to the number of repetitions. In

the context of the rainfall models, this is our preferred approach. Hengartner & Wegkamp

(2002) carry out a simulation study where such a method performs well against the Akaike

information criterion (AIC) and Generalised Cross Validation (which is an approximation

to leave-one-out CV which is generally faster, but only applicable where a solution can be

expressed as a linear function of the response). The test/training split is derived by taking

the size of the testing sample as nβ where n is the size of the training sample and β is in

the range 0.8–0.95. The optimal bandwidth is calculated for each such split — a histogram

or density plot of the results across all the splits then also provides useful insight. Either

the mean or the median may be selected as the optimal bandwidth.
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4.4.3 Other approaches

Other approaches aim to minimise the IMSE using alternative methods to estimate the

variance and bias at the observation points over an appropriate grid of bandwidths, from

which the optimal choice can be made. These may involve jacknife or bootstrap estima-

tion, although computation time is likely to be a serious constraint, given the requirement

for a large number of bootstrap samples at each required covariate point at each poten-

tial bandwidth. There are also empirical approaches which rely on the estimation of the

variance and bias using ‘quasi-asymptotic’ methods. For example, the asymptotic vari-

ance can be estimated by the sandwich method (see Equation 4.25). Ruppert (1997) also

proposes an empirical method of bias estimation, where the bias is approximated by a

polynomial function f(h, γ), the parameters of which are found using least-squares esti-

mation. This idea is based on asymptotic theory which shows that the asymptotic bias

has an expansion in powers of h, beginning with power p + 1. Carroll et al. (1998) deal

with a multivariate response by minimising the mean squared error of a scalar function of

all the responses. The variance of this derived scalar is estimated using the delta method,

and the bias is estimated directly using the empirical bias approach.

4.4.4 Suggested approach

Key constraints in the context of our model include computation time and the identifi-

ability of parameters, as already discussed. Also, as mentioned, we have a multivariate

response. It could be argued that each element of the response (i.e. each of the rainfall

model parameters) should have a different bandwidth, since the relationships between the

parameters and the covariates may differ in terms of their relative complexity. However,

it is not clear how such an approach could be implemented in the local GMM framework,

and in any case it is unlikely to be viable from a practical perspective.

It is often said that plug-in methods perform better than cross-validation (Gasser et al.

1991, Ruppert et al. 1995), which is criticised for variability and a tendency to lead to

under-smoothing, with the main advantage of cross-validation cited as its universal appli-

cability. However, Loader (1999) challenges this opinion, finding that plug-in methods are

highly dependent on the pilot bandwidth, and are prone to over-smoothing complex func-

tions. He argues that the variability of cross-validation is not a problem, but a symptom

of the difficulty of bandwidth selection, where the selector has to make a decision purely

from the data. Where performance of CV is poor, this may be caused by other problems,

and might be better addressed in different ways, for example by allowing the bandwidth

to vary, or by the use of robust techniques. Blind reliance on any automatic method of

bandwidth selection should in any case be avoided.

In the context of the point process-based rainfall models, we need a pragmatic approach.
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We do not expect the relationships to be unduly complex, and are limited by issues of

computation time and numerical stability of solutions. We therefore look for a method that

is straightforward to apply, but aim to use it in conjunction with a subjective assessment,

as recommended by Loader (1999).

We have discounted plug-in methods due to the difficulties of identification of the large

number of required parameters. Either the empirical estimation methods or cross-validation

are feasible, although on balance, a cross-validation-type approach is preferred. Due to

computational time constraints, rather than leave-one-out cross-validation, we have de-

cided to use repeated random sub-sampling, which involves randomly splitting the data

into test and training sets a number of times. We have based the proportions on the

suggestions of Hengartner & Wegkamp (2002) (described in Section 4.4.2). For each such

split the model is fitted to the test data points using just the training observations, and

the bandwidth is identified that gives the lowest prediction error over the test data. The

prediction error is taken as the mean weighted sum of squared residuals i.e. as:

n−1
ts

nts∑
t=1

k∑
i=1

[Ti(Yt)− τi(θ̂th,tr)]2wti (4.64)

where the summation is over observations in the test set (denoted ts), with θ̂ based on

observations in the training set (denoted tr), and with the weights based on the smoothed

sample variances of the statistics as before. This method is appealing not only in terms

of computation time, but also because it gives some insight into the variability of the

optimal bandwidth across samples. Further details are given in Section 6.3 which describes

practical results.

4.5 Multiple covariates

So far we have assumed a univariate covariate. In theory at least, generalisation to multi-

dimesional X is straightforward. Examples of practical application (using loess) are given

by Cleveland & Devlin (1988), while the theoretical properties, including the asymptotic

bias and variance of local linear regression are discussed by Ruppert & Wand (1994).

The local mean model can be expressed as before, but now X is a d-dimensional vector,

i.e. Xt = (Xt1, ...Xtd)
T. In order to define neighbourhoods in d dimensions, we need

a d-dimensional kernel function, K, and a d × d symmetric positive definite smoothing

matrix, H. As for the univariate case, K is assumed to be a probability density function

that integrates to 1, and has zero mean and other odd-order moments. We assume also

that: ∫
zizjK(z)dz = δij µ2(K), (4.65)
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where δij is the Kronecker delta, and µ2(K) is a scalar greater than 0. We define:

KH(z) =
1

|H|1/2
K
(
H−1/2 z

)
, (4.66)

where z is a d-dimensional vector. Taking K as the N(0, Id) density, for example, would

give:

KH(Xt − x0) =
1

(2π)d/2|H|1/2
exp (−1

2(Xt − x0)TH−1(Xt − x0)), (4.67)

which is the multivariate normal density with variance matrix H, and mean x0. The

bandwidth matrix, H controls both the size and the direction of smoothing.

Wand & Jones (1995) describe various levels of sophistication when specifying the band-

width matrix H. The simplest approach is to take H = h2Id, where Id is the d-dimensional

identity matrix. (Note that we have h2 here because we have defined H to be the covari-

ance matrix of the kernel density. Some authors define KH(z) = 1
|H|K

(
H−1 z

)
instead, in

which case here we would have H = hId.) This means that the same amount of smoothing

is carried out along each of the coordinate axes of the covariates (so in the bivariate case,

the contour plots of the kernel are circles). For this to be sensible, it would be necessary

to standardise the covariates first, so that they are on the same scale. Using this approach

(which is taken by Cleveland & Devlin (1988) for their loess procedure), we would have:

KH(Xt − x0) = h−dK

([ d∑
j=1

(Xtj − x0j)
2
]1

2 /h

)
, (4.68)

where K is a one-dimensional kernel function, and we use Euclidean distance.

A more flexible, but still straightforward, approach is to take H to be diagonal, but allow

the diagonal elements to be different, so that we can apply different degrees of smoothing

to the different covariates. The kernel contours are now ellipses with axes corresponding to

the coordinate directions. We can then write KH(Xt − x0) as a product of the univariate

kernels (i.e. we use a ‘product’ kernel):

KH(Xt − x0) = Kh1(Xt1 − x01)Kh2(Xt2 − x02)...Khd(Xtd − x0d). (4.69)

The most flexible option is to specify a full bandwidth matrix, which allows smoothing

in directions different to those of the coordinate axes. This requires d(d − 1) additional

smoothing parameters. Wand & Jones (1995) acknowledge that in certain circumstances

such a choice may be warranted, but suggest that the diagonal option is generally sufficient.

The three options in respect of a bivariate covariate are illustrated in Figure 4.3.

To find an optimal bandwidth matrix, cross-validation techniques could be used. Alter-

natively one could develop multivariate versions of the plug-in methods (see for example
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Figure 4.3: Contours of a Gaussian Kernel illustrating different choices of bandwidth matrix for
a bivariate covariate: (1) H = h2I2; (2) H diagonal; (3) fully flexible H.

Fan & Gijbels (1996) for a brief description of a possible method).

The main problem with multiple polynomial regression is what has been termed the ‘curse

of dimensionality’ (Bellman 1961) which simply means that as the dimension of the co-

variate vector increases, so the data become increasingly sparse. This means that there

are either very few points in the local neighborhood, or the neighborhood ceases to be

very ‘local”. You therefore either need to increase the size of your data exponentially with

the dimension d, to maintain a given degree of accuracy, or, for the same sized data set,

suffer highly increased uncertainty in your estimates. Hansen (2012) refers to the curse

of dimensionality as “the phenomenon that the rate of convergence of nonparametric esti-

mation decreases as the dimension increases”. Assuming a common bandwidth, h, for all

dimensions, then the variance in the multivariate case (with d-dimensional covariate) will

be of order 1/(nhd), with bias of order h2, as for the single covariate case. Thus the mean

square optimal value of h is O
(
n−1/(4+d)

)
, and the estimator converges at rate n−2/(4+d).

The dimension therefore either needs to be kept appropriately low, or some kind of con-

straints need to be introduced in the model, which effectively reduce the dimensionality.

Thus, the fully flexible model, as defined above tends to be limited in practice to two or

three variables.

In our practical investigation we consider up to three covariates for the local mean es-

timator, and assume a diagonal bandwidth matrix. The asymptotic expressions for the

variance and bias could in principle be derived, but would include further unknowns, since

we would now also need the first and second partial derivatives of τ(θ) with respect to the

vector X, as well as joint density functions. Rather than using asymptotic expressions,

we will estimate the variance using the sandwich method and, as discussed, will use cross-

validation type techniques in order to determine the optimal bandwidth. No additional

theory is then required, and we simply replace the single Gaussian kernel in our equations

with the product of individual kernels in respect of each required covariate, as in Equation

(4.69). While this is conceptually very simple, there are practical limitations and even

with a diagonal bandwidth matrix, selecting the optimal values in the multidimensional

setting is computationally intensive. This is considered further in Section 6.4, where we

take a pragmatic approach and impose some constraints on the possible bandwidths in or-
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der to reduce the computational burden. Extension to the local linear case is also possible

in theory, in which case θ would be given by b0 + b11(Xt1 − x01) + . . . b1d(Xtd − x0d).

4.6 Methodology in Practice

In the next two chapters we carry out a practical study, using the techniques and equations

discussed in this chapter to fit local point process-based rainfall models to the rainfall

time series from Bochum. We primarily focus on the local mean approach, which is

considered to be more appropriate given constraints in respect of computational time and

parameter identification. However, the impact of extending to a local linear estimator

will also be examined. We will start with the simplest of the Bartlett-Lewis clustered

point process-based models, the Bartlett-Lewis Rectangular Pulse model with a single-

parameter distribution for the rainfall intensity, so that θ has five components (i.e. q = 5).

The same set of fitting properties as in Chapter 3 will be used, so that k = 13. Key

elements of our proposed methodology are summarised below.

4.6.1 Fitting methodology

The evaluation points (i.e. the values of x0 at which we choose to solve the equation) will

be taken as the observed covariate values, which will allow us to test the goodness of fit

of the models. As for the global model, numerical optimisation is used to solve Equation

(4.50) for the local mean estimator, or Equation (4.51) for the local linear estimator, and

we solve for the logarithms of the rainfall parameters, as before. Now, however, we have

to carry out a fit at each required evaluation point, which gives of the order of several

hundred fits, compared with the 12 for the seasonal models. Recall that when fitting the

monthly models we followed the approach of Wheater et al. (2005), using the optimisation

routines developed for that project. Firstly, a set number of optimisations are carried out

using the Nelder-Mead method, each starting with a different initial value for the set of

parameters. The best parameter set is then used as a new starting value for a further set

of optimisations, which now use a Newton-type algorithm.

For the local fits carried out here, this two-stage optimisation is carried out only once for

a selected observation with a large number of neighbours. Subsequent fits are carried out

in covariate order, stepping from the selected observation down to that with the smallest

value of the covariate, then returning to the selected observation and stepping up to that

with the highest value. Each fitted parameter set in turn is then taken as the initial

value for the next fit. Each of these subsequent fits is based on only a single Newton-type

optimisation. This ensures both a quick calculation time, and a smooth curve, since the

fits in respect of neighbouring covariates should be close.
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The impact of this approach was tested for the discrete covariate, calendar month, where

we fitted a model for January using the two stage method, and then the other months in

turn using just a single optimisation. Results were then compared with those of Chapter

3. For the BLRP model, there were no significant differences found in the parameters

for the other months. Computation time for January was of the order of 0.3 minutes,

with a total computation time for all 12 months of 0.4 minutes (including calculation of

standard errors), giving a reduction in computation time of around 90% using our method,

compared with using the two-stage optimisation for every month. Time savings will be

even more substantial for the continuous covariates. In the case of multivariate predictors,

we take a pragmatic approach and sort by an arbitrarily chosen covariate.

4.6.2 The weighting matrix

As discussed in Section 4.2.6, we will use a single step GMM fit, with a diagonal matrix

of weights of inverse conditional variances. The practical approach we take here involves

first binning the observations into 12 equally sized groups, based on the value of the

covariate. The sample variance is then calculated for each bin, and this is treated as the

variance conditional on the covariate value given by the midpoint of the bin. Variances

conditional on other values of the covariate are then derived from these 12 midpoints using

a Nadaraya-Watson estimator. It was found that the fits were not overly sensitive to the

bandwidth used in this smoothing, which was thus selected subjectively. In the case of

multiple covariates, a single covariate is picked for the calculation of the weights, rather

than grouping observations into bins based on all the covariates. Altering the choice of

covariate was not found to have a significant difference on the fitted parameter sets.

4.6.3 Estimation of the variance of the estimators

The variance of the estimators is calculated using the sandwich approach of Equation

(4.25), and will be used to determine approximate variability bands. A difference from

the approach used in Chapter 3 is that in the calculation of the conditional covariance

matrix of the statistics, Var[T |X], the conditional expected values of the statistics will be

estimated by their fitted values, τ(θ(X)), rather than by sample means, since the latter

are not available for a continuous covariate. An alternative approach would be to estimate

the variances by the smoothed sample values used for the weights matrix.

We now move on to a practical study, where we will consider the application of the theory

discussed in this chapter to our Bochum database.



Chapter 5

Choice of suitable covariates

In this chapter we identify a suitable set of covariates for further investigation in the prac-

tical application of Chapter 6. First we consider selected studies in the existing literature,

in order to identify a range of potential predictors of interest. Note, though, that there is a

key difference between our statistical downscaling methodology and the majority of appli-

cations in the literature. The latter generally only consider rainfall occurrence or rainfall

amounts as predictands, whereas we are also interested in identifying predictors that ex-

plain the variability of other rainfall properties, such as autocorrelations, and skewness.

In the second part of this chapter, therefore, we look more specifically at relationships

between various potential predictors and the rainfall properties of Bochum.

Within this thesis, we only consider historical observed data (or surrogate observed data

from reanalysis initiatives). This allows the methodology to be developed, and relation-

ships between the fitted parameters of the clustered point process-based rainfall models,

and components of the climate system to be examined. In order for the methodology

to be of practical use, however, it is important that any predictors selected will be well

represented by climate models. As discussed in Section 4.1, the methodology is based on

monthly time intervals, so the predictors should be aggregated to this timescale. Monthly

mean values of the sort of large scale atmospheric variables that we consider here are

expected to meet this requirement. There are numerous issues in sourcing suitable future

predictor values, however. For example, it is now generally accepted that output from an

‘ensemble’ of climate models is required, rather than from a single model, and various

techniques exist for combining such outputs and allowing for the uncertainty within them.

These include Bayesian hierarchical models, as well as much less sophisticated methods,

such as simple weighting schemes (see Knutti et al. (2010) for a discussion of the issues,

and Chandler (2011) for a recent example of the Bayesian approach, which also includes

a simple ‘poor man’s version’). Biases in the climate model outputs are another problem,

and it is common to work with standardised, rather than absolute, values of the predictors

to allow for this. Standardisation involves subtraction of the mean and division by the

106
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standard deviation of the predictor for a baseline period, which is often taken as 1961–

1990. Averaging may be carried out separately for each calendar month, if seasonality

is to be allowed for explicitly. There may also be differences between the grid resolution

of historical and model data, so that data need to be re-gridded. These considerations

are common to all statistical downscaling techniques, and constitute an active area of

research. Wilby et al. (2004) provide some useful guidelines, which cover standardisation

and re-gridding. For the purposes of developing and testing the methodology in this thesis,

we use absolute values of the predictors rather than standardised values, for ease of inter-

pretation. We do not allow for seasonality explicitly, but assume it is implicitly included

within the predictors (which importantly allows seasonal behaviour to change under the

impact of climate change).

For our modelling methodology to be successful, there must exist reasonably strong rela-

tionships between at least some of our fitting properties and the large-scale atmospheric

predictors. An implicit assumption is that these observed, empirical relationships remain

valid under future climate conditions i.e. that the relationships are stationary. Again,

this assumption is common to statistical downscaling techniques in general. Although

it is impossible to ascertain in respect of future climate conditions that are outside the

historical observed experience, this does not seem unreasonable.

5.1 Variables used in the existing literature on rainfall down-

scaling

Numerous studies in the existing literature covering different regions, and taking different

approaches to downscaling, have identified a range of suitable predictors, with no clear

consensus as to which are optimal. In part this clearly depends on the exact definition,

spatial resolution and timescale of the predictand e.g. rainfall occurrence or amounts, at a

point location, or averaged over a grid cell, monthly or daily, etc. The strong correlations

between many of the atmospheric variables themselves is another factor, so that essentially

the same information can be obtained from different combinations of variables.

Consideration of the precipitation process, in order to identify physically meaningful pre-

dictors, is a natural starting point. Obvious candidates are the atmospheric circulation

variables (such as sea-level pressure, geopotential heights, zonal and meridional wind ve-

locities etc.), as well as temperature and humidity-related variables. Availability of quality

data over a sufficiently long timescale is clearly a requirement, and many recent studies

have used NCEP (National Centre for Environmental Prediction) reanalysis data (Kalnay

et al. 1996, Kistler et al. 2001), which uses an analysis/forecast system to perform data

assimilation using historical data from 1948 to the present. This includes an extensive set

of weather variables with 4-times daily, daily and monthly values at a range of heights in
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the atmosphere on a 2.5◦ × 2.5◦ grid covering the whole globe.

Most commonly, predictor variables are selected from the grid overlying the target location,

but it has been shown that often this is not optimal (Wilby & Wigley 2000), and the

optimal location and spatial extent of each predictor should also be considered.

5.1.1 Studies with predictors at a daily level

A very comprehensive study of predictor variables has been carried out by Cavazos &

Hewitson (2005), who examined the performance of twenty-nine potential atmospheric

variables from the NCEP reanalysis dataset as predictors of grid cell area-averaged daily

precipitation in fifteen locations using artificial neural networks. The results were then

tested also at individual stations and at regional scales. Not surprisingly, the performance

was found to be poorer at the local scale due to the importance of elements such as con-

vection, local topography and sea breezes. However, there was generally good agreement

between modelled synoptic events at local and regional scales. The potential predictors

included sea-level pressure plus the following seven variables at different pressure level

in the atmosphere — zonal (west-east) and meridional (north-south) wind components,

divergence, vorticity, geopotential height, specific and relative humidity, as well as the

atmospheric thickness of two pressure bands. The thickness of an atmospheric layer is

effectively a measure of temperature, since the height of the troposphere fluctuates as a

result of the different heating of the Earth’s surface — the stronger the heating the thicker

the tropospheric layer. Geopotential height is the height necessary to reach a given pres-

sure level, and this gives similar information to surface pressure charts, but for the upper

air. Vorticity is a measure of atmospheric rotation, with positive values corresponding to

cyclonic flow (low pressure), and negative values corresponding to anticyclonic flow (high

pressure). Divergence measures the horizontal outflow of air from a region. Divergence

at the upper levels of the atmosphere is associated with low pressure systems and storms.

Cavazos & Hewitson (2005) found that mid-tropospheric geopotential heights (at 500 and

700 hPa) and mid-tropospheric specific humidity (at 700 hPa) were the most important

predictors at all the locations and both the seasons analysed (Dec–Feb and Jun–Aug).

The tropospheric thickness (500–1000 hPa) and surface and mid-tropospheric meridional

wind components were also important, but they were regionally and seasonally dependent.

Generally performance was better in the winter than the summer, and for mid-latitude

locations rather than the tropics or equatorial regions. This is likely to be due at least

in part to the greater difficulties of predicting convective processes, particularly given the

spatial resolution at which predictors are available.

An earlier extensive study carried out by Wilby & Wigley (2000) looked at fifteen po-

tential predictor variables for six US regions. The predictands were daily precipitation

occurrence, and wet-day amounts. They also found that in general the highest explained
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variances for observed data are in winter and that they tend to be higher for rainfall occur-

rence, than for wet-day amounts. The largest percentages of variance in observed rainfall

occurrence are explained by: specific humidity, maximum (summer) or minimum (win-

ter) temperature, mean sea level pressure, zonal velocity component, 500hPa geopotential

height and divergence at 500hPa. For observed wet-day amounts, these were: specific hu-

midity (winter only), maximum (summer) or minimum (winter) temperature, divergence,

and 500hPa geopotential height.

5.1.2 Studies with predictors at a monthly level

At the monthly timescale, detail of individual weather systems is lost, but a monthly

timescale has a number of advantages, as discussed in Section 4.1 and noted also by

Kilsby et al. (1998). Kilsby et al. (1998)’s study into 67 sites across England and Wales,

at the monthly timescale, was carried out before the development of the reanalysis data,

and hence restricted by the availability of data. The mean daily rainfall amount and the

proportion of dry days were originally regressed on four atmospheric circulation variables:

mean sea-level pressure, zonal and meridional flow and vorticity, as well as a number of

geographic variables. Temperature was not found to improve performance for this study,

although the authors acknowledge its importance for future impact studies. Sea-level

pressure was preferred as an alternative to vorticity.

Chandler et al. (2007b) used mean monthly sea-level pressure, relative humidity and tem-

perature as predictors for daily rainfall occurrence and wet-day rainfall amounts. The

motivation for using covariates at the monthly level was partly one of convenience, be-

cause the number of days in a climate model year does not match those in actual calendar

years. However, the improved reliability of climate model outputs at the monthly timescale

compared with daily was also noted as a positive factor. Further, the nature of the models

(GLMs with covariates relating also to previous days’ rainfall) were such that weather

systems on smaller temporal scales would still be well represented by the simulations.

This should also be the case for our approach — we are fixing parameters at a monthly

level, but the continuous and stochastic nature of the model should ensure realistic rainfall

simulations down to sub-daily timescales.

5.2 Selection of covariates for further research

We return now to our rainfall time-series from Bochum, Germany for a practical study.

Recall that we have 5-minute rainfall observations from 1931 to 1999. We fit the BLRP

model to 13 selected statistics as before: mean hourly rainfall, plus the coefficient of

variation, skewness and lag-1 auto-correlation at timescales of 5 minutes, and 1, 6 and 24

hours.
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We have decided to focus on the NCEP reanalysis data, given their accessibility and

quality. These are available from January 1948, giving a total of 624 monthly observations

(52 years) when combined with the time span over which we hold rainfall data. We start by

selecting a number of variables based on the studies above, taking the time series of their

monthly mean values. The correlations between each of these and our statistical properties

are considered to get an idea of their relevance. We found that these correlations were

not necessarily strongest for the grid point nearest to Bochum’s location. However, the

optimal point varied with the predictor and property considered, so for simplicity a single

location was selected for all predictors, based on an overall impression of these results.

This is the grid point with latitude 52.5N and longitude 7.5E. The variables considered

included:

• sea-level pressure (slp),

• geo-potential heights at 200, 500 and 700 hPa (geo200, geo500, geo700)

• surface temperature (temp),

• thickness of the atmosphere between 500hPa and 1000hPa (thick),

• relative humidity at the surface, and at 700hPa (rhum, rhum700),

• specific humidity at the surface, and at 700hPa (shum, shum700),

• zonal (west-east) and meridional (north-south) wind components (uwind, vwind).

In addition to monthly mean values, we include monthly minima and maxima of temper-

ature. These have been derived from NCEP series of daily minima and maxima, based on

six-hour hindcasts at 2m. We also consider the North Atlantic Oscillation (NAO Index),

which tracks the normalised pressure difference between the permanent low in Iceland

and the permanent high in the Azores. These pressure differences, which vary over time,

control the strength and direction of westerly winds and storm tracks across the North

Atlantic. A large difference leads to increased westerlies and generally higher rainfall in

Central Europe, with the strongest impact on the weather in the winter months. There

are various versions of the index, with slightly different definitions and different southern

stations. The index used here is the monthly index based on stations in Gibraltar and

Iceland, which has been extended back to 1821 (Jones & Thornton 1997). We consider

both the overall correlation, and that taking only the winter months — December, January

and February. Table 5.1 shows the correlations between these potential predictor variables

and selected Bochum statistics. Correlations between the potential predictors themselves

are given in Table 5.2.

The choice of which covariates to include for further investigation is influenced by the

following points:
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mean coeff of var skewness ac lag 1
5 min 6 hour 5 min 6 hour 5 min 6 hour

slp -0.538 0.304 0.526 0.121 0.385 0.046 -0.013
geo200 0.030 0.608 0.414 0.525 0.364 -0.470 -0.305
geo500 -0.096 0.629 0.499 0.512 0.420 -0.422 -0.280
geo700 -0.195 0.627 0.550 0.485 0.451 -0.372 -0.258
temp (mean) 0.170 0.577 0.275 0.546 0.265 -0.542 -0.344
temp (min) 0.217 0.493 0.196 0.488 0.208 -0.512 -0.318
temp (max) 0.102 0.579 0.307 0.539 0.276 -0.530 -0.339
thick 0.085 0.592 0.370 0.527 0.331 -0.484 -0.307
rhum 0.140 -0.586 -0.417 -0.465 -0.318 0.413 0.240
rhum700 0.169 -0.580 -0.434 -0.448 -0.328 0.385 0.229
shum 0.243 0.538 0.224 0.528 0.238 -0.534 -0.343
shum700 0.289 0.479 0.195 0.467 0.217 -0.478 -0.295
uwind 0.374 -0.204 -0.384 -0.092 -0.275 -0.068 -0.022
vwind 0.213 -0.356 -0.368 -0.232 -0.286 0.124 0.084
nao 0.069 -0.045 -0.094 -0.030 -0.087 -0.036 -0.012
nao(winter) 0.372 -0.182 -0.235 0.070 -0.207 -0.164 0.016

Table 5.1: Correlations between selected potential covariates and selected Bochum rainfall statis-
tics.

• For the purposes of this investigation, we narrow down the selection of variables

early, leaving only a small number for further investigation. This is because of

the twin constraints of calculation times and the ‘curse of dimensionality’. For

computationally simpler models, and where more data are available, such an initial

filter may not be required.

• Sea-level pressure is the variable with the strongest (linear) relationship with mean

rainfall, which is arguably the most important property, so this is a strong contender.

• All three predictors relating to temperature have a very low correlation with sea-level

pressure and fairly strong relationships with all the other properties (coefficient of

variation, skewness and lag-1 autocorrelation), particularly at the shorter durations.

Temperature is also intuitively appealing, given its significance in future climate

change scenarios. There is little to choose between the three options, which are

very highly correlated with each other, as expected, and we have selected the mean

monthly series.

• Geo-potential heights at the lower pressure levels are very highly correlated with

temperature, whereas at higher pressure levels, they are highly correlated with sea-

level pressure. Therefore, they are not expected to contribute much further useful

information, given the inclusion of these two variables. Thickness is also highly

correlated with temperature, and therefore excluded.

• Although the wind components generally exhibit lower correlations with the proper-

ties of interest than some of the other variables, they do benefit from low correlation

with the other potential predictor variables and are therefore likely to add useful
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information. However, they are also likely to be less universally applicable i.e. they

apply at local levels. We have decided to include the zonal component (uwind) only

at this stage, due to its higher correlation with mean rainfall.

• On first investigation, relationships with the NAO index look weak. However, the

correlation with mean rainfall in the winter is actually fairly high at 0.37, with lower

correlations in the other seasons (negative in summer). As for the wind compo-

nents (with which it shows moderate positive correlations), the relationship will be

location-dependent, rather than having universal application. We have not investi-

gated it further here.

• Relative humidity is intuitively appealing, with similar levels of correlation to tem-

perature. Although the relationship with temperature is clearly strong (correlation

of -0.7), this may still add useful information. There is little to choose between the

surface and the 700hPa levels

• Finally, the specific humidity is included as a potential alternative to temperature.

Here, we take the value at 700hPa, primarily because the surface level data are not

available for the same grid point as our other data.

The following five potential covariates have been selected for further investigation: sea-

level pressure, temperature, relative humidity, specific humidity at 700hPa, and the zonal

wind component. All are monthly mean values.

5.2.1 Seasonality

As discussed at the start of this chapter, seasonality is not explicitly allowed for, and

we assume that it is effectively captured by the covariates. This is a deliberate choice,

since seasonal behaviour may change under the impact of climate change. In Figure 5.1

we examine the relationship between calendar month and selected covariates at Bochum,

over the period of our data (1948–1999). It is clear that there is a very strong relationship

between calendar month and temperature, which is expected to capture much of the

seasonality effect. Strong relationships are also seen between calendar month and specific

humidity, which is highly positively correlated with temperature, and between calendar

month and relative humidity, which has a negative correlation with temperature. The

median sea-level pressure is fairly constant throughout the year, but variability is much

higher in the winter months. The zonal wind component also shows more variability in the

winter. Variability of minimum temperatures is higher in the winter, whereas variability

of maximum temperatures is higher in the summer.

A potential concern is that, while the seasonal behaviour in a future climate might change,

there are nevertheless seasonal effects that will not be captured by temperature. For
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example, while summer and winter are clearly differentiated by mean temperature, spring

and autumn have similar temperature levels, but experience different weather. This is due

to various factors, including, for example, differences in ocean temperatures between these

seasons (since these lag behind the changes to surface temperatures). These differences

should be captured, at least to some extent, by the other selected covariates. The zonal

wind component can be seen to be higher in autumn then in spring (a mean of 1.5 m/s

over September to November, compared with 0.7 m/s over March to May), in line with a

greater frequency of Westerlies, and relative humidity also tends to be higher.

Another concern, raised at a presentation of this research, is that temperature is effectively

being used here for two purposes, both to indicate seasonality, and anomalies (e.g. Indian

summers etc.). A suggested solution to this issue is to represent seasonality by mean

temperature averaged across all the grid squares at our selected latitude, and local relative

differences from seasonal averages by the anomalies at Bochum. We have not pursued this

idea here, but it may be of interest for future work, although the value of adding another

covariate needs to be considered carefully.

A compromise solution might be to include seasonality explicitly, but rather than taking

month as a discrete covariate, it could be smoothed using a fairly large bandwidth, so that

broad seasonal effects could be allowed for, without using too many degrees of freedom.

In order to allow for the periodic nature of month, the Gaussian kernel weights should be

replaced by a periodic kernel function such as the von Mises distribution.
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Figure 5.1: Relationship between calendar month and selected covariates. In (a), mean temper-
atures are shown in pink, minimum temperatures in blue, and maxima in orange.



Chapter 6

Practical results

In this chapter we apply the methodology of Chapter 4 to fit a local BLRP model (with

an exponential intensity distribution) to the Bochum rainfall time series. This model is

selected as the simplest of the clustered point process-based models. The key components

of our study, which have been discussed in the earlier sections, are summarised below for

convenience:

• The BLRP model, assuming a one-parameter rainfall intensity distribution, has five

free parameters, so θ is a vector of length 5, with elements: λ, the storm arrival rate;

γ, the storm termination rate; β, the cell arrival rate; η, the cell termination rate;

µX , the mean rainfall intensity.

• We fit the model to the following 13 statistics as before: mean hourly rainfall, plus

the coefficient of variation, skewness and lag-1 auto-correlation at timescales of 5

minutes, and 1, 6 and 24 hours.

• The required sample statistics are calculated for each observation month between

January 1948 and December 1999, giving a total of 624 monthly observations (52

years). Potential continuous covariates investigated are monthly averages in respect

of sea-level pressure (slp), temperature (temp), relative humidity (rhum), specific

humidity at 700hPa (shum), and the zonal wind component (uwind).

Initially, we consider a single covariate in order to carry out some exploratory analysis,

including examination of the impact of the bandwidth, and to examine the suitability of

the methodology in practice. We focus on local mean estimation, but briefly consider local

linear fitting in Section 6.2. Section 6.3 covers automatic bandwidth selection. Multiple

covariates are introduced in Section 6.4, where we also consider model selection, in respect

of the optimal choice of covariates. A small number of preferred models are analysed in

more detail in Section 6.5. Finally, alternative datasets and more complex model variants

(such as the BLRPRX model), are briefly considered in Sections 6.6 and 6.7 respectively.

116
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6.1 Initial exploration using a single covariate

6.1.1 Impact of the bandwidth

At this stage we are primarily interested in the methodology rather than interpretation of

the results, and we consider the impact of the bandwidth (which we take to be global, as

discussed in Section 4.4), with just the single continuous covariate: temperature. When a

very small bandwidth is used, fitted parameters (and more particularly, their variability

bands) can cover a very wide range. For this reason, we plot the natural logarithm of

parameters (indeed, this is what has been fitted). In Section 6.3 we choose the optimal

bandwidth for all the univariate options, and plots with these bandwidths will show the

actual (i.e. not logged) parameters, for ease of interpretation.

Figure 6.1 shows graphs of the fitted model parameters with temperature as the single

covariate, using three different bandwidths. Fitted values have been calculated and plotted

at all 624 observed data points. The low numbers of observations at the two ends of the

range, which are particularly clear in the graphs with the smallest bandwidth, should be

noted. In a straightforward local polynomial regression, as discussed in Section 4.4, the fit

can be subjectively assessed by comparison with the scatterplot of observed points. Here,

no such visualisation is possible in respect of the fitted parameters, given their indirect

relationship with the covariates. However, it still seems intuitively clear that the smallest

bandwidth shown of 0.5 is over-fitting with an unreasonably ‘wiggly’ curve, whereas the

largest bandwidth shown of 5 is potentially smoothing out genuine features. It can also be

seen that as the bandwidth increases, the curves get smoother and flatter, as expected. A

visual comparison of fitted versus observed results is possible, if we consider the statistics,

rather than the parameters, as shown in Figures 6.2 and 6.3. The former compares the

fitted mean against the observed points with the three different bandwidths, whereas the

latter shows the other twelve statistics, at the middle bandwidth of 1.5 only. These graphs

broadly confirm the relationships that we saw in the correlations of Section 5.2, and a fit

with a bandwidth of around 1.5 seems to be of the right order, although the sparsity of

points at the boundaries is problematic.

6.1.2 Variance and bias

As discussed in Section 4.4, automatic bandwidth selection is generally based on some

means of balancing the bias-variance trade-off. Here, an indication of variance can be given

by calculating and plotting variability bands of ± 2 standard errors, as described in Section

4.2.5. Recall that these are not confidence intervals, but pointwise bands for the expected

values of the parameters. Plots showing the fit for the parameter µX including variability
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Figure 6.1: Fitted parameters with temperature as a covariate and three different bandwidths
(denoted by h).
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Figure 6.2: Fitted v observed mean with temperature as a covariate and three different band-
widths: h = 0.5 (blue), h = 1.5 (green), h = 5 (red).

bands for the three selected bandwidths are shown in Figure 6.4. Here we have taken

the simple approach of Carroll et al. (1998), in which the calculation of the conditional

variance of the statistics, T , is an integral part of the calculation of Var[Gn(θ0(x0)], and

hence is based on the same bandwidth as the fit (see Section 4.2.3 and Equation (4.27)). It

is clear how the variability decreases as the bandwidth gets larger, and more observations

are included in each local fit, particularly at the ends of the range. However, there is an

undesirable feature apparent in these plots. With the smallest bandwidth, the estimate

of µX at the highest value of temperature is rather surprisingly shown as having a very

small variance — this is because very few points have been given non-negligible weight

here, and the fit at this point itself is very good. The problem lies in the fact that the

conditional variance of T should not depend on the selected value of the bandwidth, but

in this estimate, it does. Potentially we could improve our calculations by taking the

variance out of the summation and evaluating it separately at a fixed bandwidth, h∗, in

line with the alternative approach of Equation (4.26), and shown again below:

Var[T (Y )|x0] ≈
∑n

t=1Kh∗(Xt − x0)[T (yt)− τ(θ̆(x0))][T (yt)− τ(θ̆(x0))]T∑n
t=1Kh∗(Xt − x0)

. (6.1)

where θ̆ denotes the parameter vector fitted with the bandwidth, h∗.

Another alternative would be to use the smoothed sample variance values that we cal-

culated for the weights. Recall from Section 4.6.2 that these are based on a ‘double-

smoothing’ approach, whereby we first group observations into 12 bins, by the covariate

value, and then smooth the 12 sample variances over the individual observations, using

a local mean approach. (We used a bandwidth of 2 in respect of temperature.) Figure
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Figure 6.3: Fitted v observed coefficient of variation, skewness and lag-1 auto-correlation at
selected timescales, with temperature as a covariate, h = 1.5.
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Figure 6.4: Variability bands for µX with three different bandwidths; the ‘rug’ plot along the
x-axis indicates the density of the covariate, temperature.

6.5 shows estimated variances of each of the fitting properties at the one hour timescale.

The graphs include three curves based on Equation (6.1) with the three bandwidths used

in Figure 6.1, as well as the curve based on the smoothed sample variances used for the

weighting matrices. Ultimately, we have chosen to use Equation (6.1), which is more con-

venient than the fully sample-based ‘double-smoothing’ approach in the case of multiple

covariates. We set h∗ to 2, which gives a fairly smooth variance curve, while being small

enough such that the local variances are not unduly overestimated.

Using the variance estimate for T |X given by Equation (6.1), we have recalculated the

three variability bands of Figure 6.4, and these are shown in Figure 6.6 (using a bandwidth

of 2). The main differences are at the extremes of the range, particularly at the smallest

bandwidth. Further variability bands will be based on this alternative method, which is

preferred.

Now we take a look at the bias using the approach described in Section 4.2.4 and Equation
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Figure 6.5: Estimated variance of the statistics, T , at the one hour timescale using three different
bandwidths (0.5 blue, 1.5 green, 5 red) and Equation (4.26). The smoothed sample variance used
for the weighting matrices is also shown in pink.
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Figure 6.6: Revised variability bands for µX with three different bandwidths: the variance of
T |X is estimated as in Equation (4.26) and indicated by the blue lines; the original bands are
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(4.41), restated below:

Bias[θ̂(x0)] ≈

[[
∂τ(θ̂(x0))

∂θ

]T

Wn(x0)
∂τ(θ̂(x0))

∂θ

]−1 [
∂τ(θ̂(x0))

∂θ

]T

Wn(x0)

×
∑n

t=1Kh(Xt − x0)
[
τ(θ̂(xt))− τ(θ̂(x0))]∑n

t=1Kh(Xt − x0)
. (6.2)

Figure 6.7 illustrates this calculation for two of the parameters, λ and µX , at the three

bandwidths, where the original estimates have been plotted along with ‘corrected’ esti-

mates from which the above bias estimate has been deducted. The estimated bias increases

with the bandwidth, as expected, although is clearly understated at the highest bandwidth

of 5. Attempting to estimate the bias with such a high level of h is clearly nonsensical

(in the extreme the estimated curve will be a horizontal line, and the bias will be esti-

mated as zero!). At the other bandwidths, the estimated bias reflects the findings from the

asymptotic calculations: we have higher bias where the curve is steeper, in areas of high

curvature and at the boundaries. Note that the reduction in bias of the bias-corrected

estimator comes at the expense of an increase in variance (estimated at approximately

40% by Kauermann et al. (1998) in the context of local estimating equations). While of

interest as part of the analysis, we will not be pursuing this undersmoothing approach

further, but will instead try to derive the mean square optimal bandwidth, as described

in the next section.
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Figure 6.7: Bias-adjusted estimates for λ and µX with three different bandwidths: the original
estimates are shown as continuous lines, the bias-adjusted estimates as dotted lines.
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6.1.3 Fitting points and binning

So far, and indeed for the rest of our investigation, parameters have been estimated at

the observation points, which permits an assessment of the goodness of fit. One could

instead evaluate parameters at an equally spaced grid of covariate points, or indeed at any

required set of points (e.g. the covariate values obtained from a climate model output),

provided care is taken not to extrapolate too far beyond the range for which we have

information.

For large data sets, ‘binning’ is sometimes used in combination with local polynomial

regression, as a means of speeding up calculation times, and we consider the technique

briefly here. Figure 6.8 illustrates the fitted parameters with temperature as a covariate,

where we have binned the observations into equally spaced grids of 30 and 100 points.

The resulting fits may be compared with those obtained using the original data. The

technique which we have used here is referred to as ‘linear binning’ and is a refinement

of simple binning. It involves splitting each observed point (Xt, T (Yt)) into two fractional

points assigned to the grid points on either side of Xt, with the fractions reflecting the

relative nearness of the two points. The statistic T is then calculated at each grid point as

a weighted average of all the allocations to that point, with the fractions as weights. Once

the data have been binned, we proceed as normal with the fitting, except that we multiply

each point in the kernel summation by the sum of the fractions allocated to that point.

Binning is less useful in our situation than in local regression. This is because in the latter,

the kernel evaluations are the most computationally expensive element and further time

reductions are possible by recognising that, with an equally spaced grid, many of these

are the same. For our (non-linear) model, however, it is the numerical optimisations that

are computationally expensive, and the number of kernel evaluations is not in any case

high. For the local mean case, calculation times are not prohibitive (a few minutes for all

evaluation points). This approach also makes the degree of smoothing less transparent,

since binning is itself a smoothing technique. Given the relative sparsity of points over

parts of our range, binning is not recommended, and we will not consider it further here.

6.1.4 Residuals

Finally, as part of our initial exploration of local mean estimation with a single covariate,

we consider the residuals. Our methodology assumes that the vectors of statistics T (·) are

independent across months, conditional on the covariate. In order to check the validity

of this assumption, we plot correlograms of the residuals in respect of a number of the

statistics. Here we are again using a bandwidth of 1.5. The plots are given in Figure 6.9.

It can be seen that most of the residual autocorrelations fall within the 95% confidence

band around zero, demonstrating that our assumption of independence across months is
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Figure 6.8: Parameter estimates with temperature as a covariate, using ‘linear bin-
ning’ approximation, with 30 points (red) and 100 points (blue). The original fit is indicated
by the black line. The bandwidth is 1.5.

not unreasonable. Residuals plotted against the fitted statistics and against the covariate,

temperature, may also be of interest. Note, though, that we are not assuming constant

variance, and that the mean residuals are also not expected to be zero, given that we have

an over-identified model. Examination of such plots did not indicate any concerns, with

all mean residuals close to zero, and no strong non-random behaviour.

6.2 Local linear estimation

As discussed in Section 4.3, local linear estimation has many advantages over local mean,

particularly in respect of design bias, and boundary bias. We have seen also that the

asymptotic variance is unchanged from that of the local mean estimator (at least for

interior points), despite the increase in the number of parameters. However, this may not

be the case for finite samples or at the boundaries. In the context of our point process-

based models, numerical stability and computation time are also potential issues.

In this section we fit a local linear model with the single covariate, temperature, using

a global bandwidth of 1.5, and compare the results to the local mean fit. Computation

times are found to be of the order of 200 times slower. This is primarily due to the

increased number of calculations required in respect of a single evaluation of the objective



6. Practical results 126

0 5 10 15

0.0

0.5

1.0

Lag

A
C

F
mean

0 5 10 15

0.0

0.5

1.0

Lag

A
C

F

coeffv5m

0 5 10 15

0.0

0.5

1.0

Lag

A
C

F

coeffv24h

0 5 10 15

0.0

0.5

1.0

Lag

A
C

F

skew5m

0 5 10 15

0.0

0.5

1.0

Lag

A
C

F

skew24h

0 5 10 15

0.0

0.5

1.0

Lag

A
C

F
ac1.5m

0 5 10 15

0.0

0.5

1.0

Lag

A
C

F

ac1.24h

Figure 6.9: Autocorrelation of residuals in respect of selected fitting statistics. The covariate is
temperature, with a bandwidth of 1.5.

function. For example, at a given value of the covariate x0, the vector of expected values

of the statistics given by τ(θ(xt)) is the same for all t in the local mean case, since

θ(xt) = θ(x0), a constant. In the local linear case, θ(xt) = b0(x0) + b1(x0)(xt−x0), and so

a separate calculation of τ is required for each t. Another important factor, is the number

of iterations required by the numerical optimisation routine in order to find the solution.

This is expected to increase with the number of parameters: here we have ten, compared

with five for the local mean fit.

In order to keep run times relatively short, the comparison is carried out over an equally

spaced grid of sixty temperature values, rather than over all 624 observed data points.

This leads to a run time for the local linear fit in respect of all sixty points of around an

hour. With sixty equally spaced points, the mean number of iterations required for a local

mean fit is 19 (with a range of 11 to 22). For the local linear fit, the mean number of

iterations is approximately doubled to 39, with a range of 19 to 63. The higher numbers

tend to correspond to points nearer to the boundaries. Note that we are still using the

full observed data set within the fitting (i.e. we are not binning).

Figure 6.10 shows the fitted parameters with the two different orders of fit. The results

are broadly in line with expectations, with the local linear fitted curve similar for interior

points, but generally steeper near the boundaries. While we have tried to ensure that

the code is as efficient as possible (for example, by the use of vectors and matrices rather

than ‘for loops’), it is possible that further analysis might yield additional time savings.

The use of a compactly supported kernel, such as the Epanechnikov kernel, instead of the

Gaussian kernel, should also improve the speed, since calculations at each fitting point
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Figure 6.10: Fitted parameters with local mean (black) and local linear (red) fits. The fitted
mean is also shown. The covariate is temperature, with a bandwidth of 1.5.

would then require θ(xt) to be evaluated over a smaller range of t. It is not obvious,

however, that the local linear fit is preferable here, even if the computation speed were not

an issue. This is because of the extreme sparsity of observation points at very low and very

high mean temperatures, coupled with the high variability of the statistics themselves, so

our confidence that the observed statistics at the boundaries are representative is fairly

low. In that case, assuming a flatter curve may actually be preferred. Of course, this

decision may vary given a particular location and climate. However, it is also likely

that computation time and difficulties with numerical optimisation will increase with the

number of covariates, and/or with a more complex model. For these reasons, we have

decided to focus on the local mean approach for the rest of this thesis.

6.3 Choice of bandwidth

A number of methods for deriving an optimal bandwidth have been discussed in Section

4.4. We have chosen to use a global bandwidth as initial investigations indicated our

functions were not ‘too wiggly’, and our data are relatively limited, given the number of

parameters to be estimated. As discussed, we use a form of cross-validation, involving

repeated random sub-sampling. This involves randomly splitting the data into test and

training sets a number of times. Initially we consider univariate predictors i.e. we search

for an optimal bandwidth for each of our set of one-dimensional covariates.
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We split our 624 observations into 225 in the test data set, and 399 in the training set, i.e.

a split of 36%/64%, which is broadly in line with the recommendation of Hengartner &

Wegkamp (2002), who suggest taking the size of the test data-set as the size of the training

set to a power between 0.8 and 0.95. We run the exercise twenty-five times, using the same

random split for each of the covariates within a run, but a different random split for each

of the twenty-five runs. For a given run, and for a given covariate, X, the model is fitted

at a grid of potential bandwidths using the data in the training sample, at the covariate

values corresponding to the points in the test sample. The optimal bandwidth for each

run is then taken as the one that minimises the mean weighted sum of squared errors of

the statistics within the test sample (as described in Section 4.4.4 and given by Equation

(4.64)). We then calculate the median and mean of the results from the twenty-five runs,

and choose our bandwidth based on a combination of these, the distribution of results over

the twenty-five runs, and a subjective assessment of graphs at various fixed bandwidths.

Within a given run, and for a given covariate, X, we need to select the grid of potential

values of h, the bandwidth. Such grids typically have a geometric progression, with hj =

Cjhmin, for some factor, C. Here, we first take a wide, but relatively coarse grid over a

single sample to get an idea of the approximate location of the optimal bandwidth and the

shape and steepness of the curve. We then carry out more runs over a finer, but narrower

grid. For the coarse grid we initially had hmin = (X(n)−X(1))/n, hmax = (X(n)−X(1)), and

C = 1.4, which gave a grid of 20 points. However, we found that the smallest bandwidth

gave very unstable results for the observations with the most extreme covariate values, so

we removed this point. The resulting graphs are shown in Figure 6.11. The finer grid has

27 points, with hmin = 10 × (X(n) −X(1))/n, hmax = (X(n) −X(1))/5, and C = 1.1, and

the resulting graphs are shown in Figure 6.12. The computation time for a full set of 25

runs across the 27 grid points in respect of a single covariate is of the order of 7 hours.
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Figure 6.11: Mean weighted sum of squared errors of the fitting properties v bandwidth for a
single hold-out sample of 225 observations.
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Figure 6.12: Mean weighted sum of squared errors v bandwidth for 25 hold-out samples, each of
225 observations; the dotted lines show the positions of the minima, with the red line indicating
the median of these.
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Figure 6.11 shows that there is a global minimum for the bandwidth in respect of all

the univariate predictors. The curve is steepest for sea-level pressure, and rather flat for

specific humidity. This can be seen even more clearly in Figure 6.12. Here we show the

curves for all twenty-five test (or ‘hold-out’) samples over the narrower grid of bandwidths,

and scale the error statistics so that the minimum for each run is set to 1. The positions of

the minima are also shown. A histogram and density plot of the optimal bandwidth based

on the 25 hold-out samples is given in Figure 6.13. Finally, Table 6.1 shows the mean

and median optimal bandwidths over the 25 samples. Given the high level of noise in the

observed data (which is clear in the graphs of Figures 6.2 and 6.3), it is to be expected

that there will be a certain amount of variability in the ‘optimal’ bandwidth, derived over

different subsets of the data. Nevertheless, the appropriate ballpark levels are reasonably

clear, and the selected bandwidths, also included in the table, are based on these results,

combined with a subjective view of the resulting curves.
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Figure 6.13: Density of the optimal bandwith for each univariate predictor, based on 25 hold-out
samples, each of 225 observations.
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covariate Mean optimal bandwidth Median optimal bandwidth Selected bandwidth

temp 1.36 1.28 1.3
slp 1.40 1.41 1.5
rhum 2.92 2.78 2.75
shum 0.26 0.26 0.25
uwind 0.79 0.75 0.75

Table 6.1: Optimal bandwidths based on 25 hold-out samples, single covariates.

6.4 Multiple covariates and model comparison

So far we have just considered single covariates, but models with two or three covariates

(the maximum likely to be viable given the curse of dimensionality) are also of interest.

In this section, we carry out a preliminary comparison of all possible combinations of one,

two or three of our selected predictors. A number of pragmatic decisions have been made

in respect of the fits with two or three covariates, given the limited amount of data, and

desire to avoid unnecessary computational burden. Firstly, in terms of both the order

in which the fits are carried out, and the calculation of the weighting matrix, a single

component of the covariate has been used, as discussed in Section 4.6. Secondly, initially

we use the bandwidths derived in Section 6.3 for each of the single covariates within

the product kernels. While these are unlikely to be optimal, this is just intended as a

first step, based on the belief that the choice of predictors is more important than using

the optimal bandwidth matrix, provided that the bandwidths are in the right ballpark. A

small number of models are then selected for more detailed analysis, and these bandwidths

are reviewed.

We include also a fit with no covariates, and one with calendar month as the covariate,

which is current practice. The model selection approach broadly follows that used in the

selection of the optimal bandwidth i.e. we compare the mean weighted sum of squared

errors of the thirteen estimated statistics, over the twenty-five hold-out samples. Now,

however, the weights used in the calculation of the prediction errors are based on the

unconditional empirical variance matrix of the statistics, since a fair comparison requires

the same weights to be used for all covariate options.

This preliminary comparison is shown in Figure 6.14, where the errors have been scaled

so that the median for no covariates (i.e. a global fit) is 100. Clearly there are various

combinations of covariates that give similar results in terms of the levels of error, and

our analysis is not sufficient to indicate definitively that one particular set is optimal. In

practice, such a decision might depend on a number of factors of which such a comparison

would be one, but issues such as consideration of climate physics, and the availability and

reliability of the covariate values might be others. Based on these results, we investigate



6. Practical results 132

●

●

slp/temp/uwind
slp/temp

slp/shum/uwind
slp/shum

slp/temp/shum
slp/rhum/shum
slp/temp/rhum

slp/rhum/uwind
temp/shum/uwind

temp/uwind
slp/rhum

temp/shum
temp/rhum

temp
temp/rhum/uwind
rhum/shum/uwind
temp/rhum/shum

rhum/shum
slp/uwind

shum/uwind
rhum/uwind

month
rhum
shum

slp
uwind
none

70 80 90 100

S
ca

le
d 

E
rr

or
 S

ta
tis

tic
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three models in more detail, first refining the selection of the bandwidths for those with

multiple covariates. The three models are the best with one, two and three covariates,

given by the nested sets below:

1. temperature

2. temperature and sea-level pressure

3. temperature, sea-level pressure and zonal wind component

In order to get closer to the mean square optimal bandwidth for the multivariate pre-

dictors, we compare the mean weighted sum of squared errors across a set of potential

bandwidth matrices. Full flexibility here would be very onerous, so we limit the investiga-

tion to a simple re-scaling of the original diagonal bandwidth matrix (where the diagonal

elements comprised the optimal bandwidths for the univariate predictors). Our results

give the revised bandwidths shown in Table 6.2. We repeat the model comparison for the

Covariate As single covariate With 2 covariates With 3 covariates

temp 1.3 1.75 2.1
slp 1.5 2.00 2.5
uwind 0.75 1.25

Table 6.2: Estimated mean-square optimal bandwidths for multiple covariates, based on twenty-
five hold-out samples.

selected models, using these revised bandwidths, and the results are shown in Figure 6.15,

again including also a fit with no covariates, and one with calendar month. The model

comparison shows that, using month as a covariate, as is common practice, reduces the

median prediction error by around 13% compared with just fitting a global model. Tem-

perature, the best performing single covariate, gives an improved reduction of around 17%

compared with no covariates. Results for the other single covariates are similar to month,

with the exception of the zonal wind component which performs less well, as expected.

The addition of a second covariate, sea-level pressure, to the optimal single covariate,

temperature, gives a substantial further improvement, with an overall reduction of 25%

compared to the global model, based on the revised bandwidths. Further improvement

from the addition of a third covariate, is more limited, reducing the error by a further

2%. The optimal choice, the zonal wind component, reflects its low correlation with the

other covariates. These are encouraging results. Replacing month with other covariates

potentially has value even if the level of prediction error is broadly the same, if we believe

that climate change will lead to different seasonal patterns. Here we have shown that this

approach can in fact also lead to a notable improvement in fit.
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Figure 6.15: Comparison of the mean weighted sum of squared errors for selected covariates
over 25 hold-out samples of 225 observations (based on training samples of the remaining 399
observations); figures shown are median errors. The bandwidths are as in Table 6.2.

In the next section we look at the fitted values of the parameters against the covariates

for our three selected nested models, and consider the potential interpretation of these in

the context of physical weather processes. We consider also the uncertainty involved in

these estimates. We then examine the fit of the models.

6.5 Further analysis of selected models

6.5.1 Interpretation of results

The fitted parameters with the single covariate, temperature, are shown in Figure 6.16,

including variability bands of ± 2 standard errors as before. We have also shown the fitted

mean hourly rainfall, for which the standard errors have been calculated using the delta

method approximation:

Var[h(θ(x))] ≈ h′[θ̂]T Var(θ̂)h′[θ̂], (6.3)

where h(θ) denotes the required function of θ (here the expected mean rainfall), with h′(θ)

the first derivative with respect to θ.

The derivative of the mean rainfall with respect to θ is already available from the numerical

calculations required for the calculation of the variance of θ. A similar calculation could

be undertaken to assess the uncertainty in the estimation of any of the other statistics
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of interest. Similar graphs in respect of the other single covariates: sea-level pressure,
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Figure 6.16: Fitted parameters plus mean rainfall v temperature, h = 1.3. Variability bands
plotted at ± 2 standard errors.

relative humidity, specific humidity and zonal wind component are shown in Figure D.1

of Appendix D.

Fitted parameters with the best combination of two covariates, sea-level pressure and

temperature, are shown in Figure 6.17. In order to make it easier to identify interesting

relationships, we have plotted two sets of graphs. These both show exactly the same re-

sults, but the axes have been exchanged in the second set. The fitted parameters with the

optimal set of three parameters: sea-level pressure, temperature, and the zonal wind com-

ponent, are shown in Figure D.2 of Appendix D, using panel plots. In higher dimensions,

it is harder to show the uncertainty in a way that is readily interpretable, and this will be

examined in the next subsection. Examining the results from the plotted fits in the con-

text of physical weather processes, we recall that the covariates are monthly means, and

so we are not capturing details of individual weather events. Plotting the relationships as

points rather than lines or curves allows us to see where data are sparse, and relationships

here need to be treated with care. We observe the following:

• Rainfall intensity, µX , can be seen to increase with temperature. This is in line

with intuition, since increased temperatures lead to greater moisture content in the

atmosphere, and increased convective activity. The marked increase in steepness at

around 10 degrees could represent the point at which convective rainfall becomes
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Figure 6.17: Scatterplots of fitted parameters vs sea-level pressure and temperature; bandwidths:
sea-level pressure: 2.0; temperature: 1.75.
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more dominant, in contrast to the stratiform rainfall arising from the meeting of air

masses, which will tend to dominate at lower temperatures. Higher temperatures

affect convective rainfall, not just because of increased moisture in the air, but also

because the strength of updraughts is increased as the land is subject to greater

heating.

• As temperatures increase, we also see that storms are generally shorter (γ tends to

be higher), although there is a peak at around 15 degrees. There are also fewer cells

per rain event (represented by 1+β/γ in the BLRP model), and the cells are shorter.

These effects occur at all levels of sea-level pressure, and tie in with the fact that

convective storms tend to have fewer cells than stratiform.

• The storm arrival rate, λ, decreases almost linearly with increasing sea-level pressure,

at all temperatures i.e. we have fewer storms with increasing pressure. Again,

this is in line with intuition, since rainfall is related to low pressure systems. The

relationship between temperature and λ is less clear — the two peaks persist at all

levels of sea-level pressure, but may be related to some other factor that we have not

considered. Note also that the shape of this curve mimics the peaks in the density

of temperature. This is something to investigate further.

• The key impact of the zonal wind component is an increase in the storm arrival rate,

which reflects the fact that strong westerly winds across central Europe are usually

associated with cyclonic conditions (Beckmann & Buishand 2002).

6.5.2 Uncertainty and the curse of dimensionality

Variability bands of ± 2 standard errors have been shown in all the plots with a single

covariate (Figures 6.16 and D.1). As discussed in Section 4.2.5, these cannot be taken as

95% confidence intervals for the parameter estimates. However, from a practical perspec-

tive, they are probably sufficient to give an idea of the level of uncertainty involved. As

expected, uncertainty is much higher in areas where the data are sparse, which tends to

be at the ends of the ranges, and also in areas where there is a high curvature. Overall

though, the levels of uncertainty over the central range of data are not unreasonable.

It is interesting to consider how this uncertainty compares with the uncertainty involved

in fitting separate models for each calendar month, and also to assess how the variance

increases as the covariate increases in dimension: the so-called ‘curse of dimensionality’.

As mentioned earlier, comparison of the standard errors when the covariate is multi-

dimensional is not straightforward. It is difficult to find a visually appealing way of showing

it, and any approach that compares standard errors for the same observation point suffers

from the fact that the fits themselves may be rather different as more covariates are added.

One approach, that is quite useful, is to consider the distribution of the ‘effective sample
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size’ in respect of each fit. Consider again the equation for the variance, given by:

Var[θ̂(x0)] ≈
∑n

t=1K
2
h(Xt − x0)

{
∑n

t=1Kh(Xt − x0)}2

×

[[
∂τ(θ̂(x0))

∂θ

]T

Wn(x0)
∂τ(θ̂(x0))

∂θ

]−1 [
∂τ(θ̂(x0))

∂θ

]T

Wn(x0) Var[T (Y )|x0]

× Wn(x0)
∂τ(θ̂(x0))

∂θ

[[
∂τ(θ̂(x0))

∂θ

]T

Wn(x0)
∂τ(θ̂(x0))

∂θ

]−1

.

In the case of the discrete covariate, calendar month, where there are nm observations

available for month m, then the sample size in respect of month m is clearly just nm. The

equation for the variance in this case is given by Equation (2.4) as:

Var[θ̂(x0)] ≈

[[
∂τ(θ̂m)

∂θ

]T

Wm
∂τ(θ̂m)

∂θ

]−1 [
∂τ(θ̂m)

∂θ

]T

Wm
Var[T (Y )|m]

nm

× Wm
∂τ(θ̂m)

∂θ

[[
∂τ(θ̂m)

∂θ

]T

Wm
∂τ(θ̂m)

∂θ

]−1

.

Here the variance of T is divided by nm, because we are estimating the covariance of

the mean summary statistics. By analogy, the inverse of the factor
∑n

t=1K
2
h(Xt−x0)

{
∑n

t=1Kh(Xt−x0)}2 can

be treated as the effective sample size for a continuous covariate at the observation with

covariate value x0.

Figure 6.18 shows a boxplot of the results using this approach, across all observation points

for each of our models of interest. This shows that, at the (approximately) mean-square

optimal bandwidths, the effective sample sizes are generally reasonable for the majority of

points, and indeed higher than for the current approach. Clearly, some care needs to be

taken with the fits at some observation points, particularly in respect of those with 2 or 3

dimensional covariates, but it should be clear which these are. Possibly, fitted models from

other locations with slightly different ranges of the covariates could be used to supplement

the sparse information here, or alternatively the bandwidth close to the boundaries could

be increased (although of course this would lead to a corresponding increase in bias). The

graphs would also tend to suggest that three is the maximum number of covariates that

could reasonably be used, noting that we have also had to increase bandwidths (and hence

bias) as the dimension has increased.

6.5.3 Assessment of the fit of the models

In this section, we assess the fit of our selected models in more detail, using various

graphical representations. As we have seen, the fit of a point process-based rainfall model

depends on a number of different factors, including the basic model structure (reviewed in
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Figure 6.18: Effective sample sizes in respect of selected models, and all modelled observation
points.

Chapter 3), the fitting properties selected (discussed in Sections 2.4.2 and 3.10), the choice

of covariates, and the smoothing method and smoothing parameters. Numerous different

plots are possible, depending in particular on what aspect of the performance we wish

to focus. Here we are interested primarily in the impact of relating model parameters to

atmospheric covariates. Note that the purpose is not to estimate accurately the size of the

errors, but to get an idea of the relative performance of models with different covariates

across the properties of interest, and so (except where stated otherwise) we now consider

the whole data set.

In Figures 6.2 and 6.3, we showed scatterplots of the monthly fitting statistics against

temperature, and used the plots for a visual assessment of the bandwidth used in the fit.

We show a similar plot in Figure 6.19 for the model with the optimal pair of covariates:

sea-level pressure and temperature. The results are broadly in line with expectations: the

relationships between the fitted statistics and the covariates are similar to those of the

observed data, but a great deal of the noise has been smoothed out. There is also some

evidence of slight understatement of the one hour coefficient of variation and the one hour

skewness at higher temperatures.

Rather than considering the raw statistics over individual observation months, the per-

formance of the point process-based rainfall models is usually assessed by plotting mean
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Figure 6.19: Observed (left column) and fitted (right column) statistics at the one hour timescale,
with sea-level pressure and temperature as covariates (bandwidths of 1.75 and 1.5 respectively).
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statistics over each calendar month, as discussed in Chapters 2 and 3. Here, as well as

considering the performance by month, we are also interested in how the observed and

fitted properties vary over the covariates. In order to produce comparable plots, we have

created factors for each of our selected covariates in turn, by binning the observations

into twelve bins (with equal numbers in each bin), based on the covariate value. We then

average both observed and fitted properties over the bins. On each of the graphs, we

compare four models. The first is a separate fit for each calendar month, the others are

the three nested models of one, two and three continuous covariates i.e. the four sets of

covariates are:

1. calendar month,

2. temperature,

3. temperature and sea-level pressure,

4. temperature, sea-level pressure, and the zonal wind component.

Figure 6.20 shows the plots in respect of the mean hourly rainfall. The current practice of
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Figure 6.20: Mean hourly rainfall v binned values of selected covariates. Observed values are
shown in black; The fitted values correspond to the BLRP model with covariates: month (red);
temperature (purple); sea-level pressure and temperature (green); sea-level pressure, temperaure
and zonal wind (blue).

a separate model for each calendar month reproduces the monthly means exactly, as we
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saw earlier in Figure 3.3 of Chapter 3. It also gives a reasonable fit across the temperature

bands, except at the lowest and highest values. If, however, the seasonal pattern of

temperatures in the future is different to that in the data, then simulations from this

model will not correctly reflect this, as already discussed. The mean rainfall can be seen

to show much greater variation over the sea-level pressure bins than over calendar month

or the temperature bins, and this variation is not reflected at all in the current approach.

The model with the optimal pair of covariates: sea-level pressure and temperature reflects

the variation in mean rainfall well across month, pressure bands and temperature bands.

Adding the zonal wind component also reflects the variation in the wind velocity bands, as

expected. Given the curse of dimensionality, and the consequent increase in bandwidths

required with the addition of a further covariate, it is expected that this will adversely

affect the fit across the other factors, due to an increase in bias. From the graphs, it can be

seen that this effect is minimal (at this level of aggregation), and in fact, adding the wind

component has also improved the fit by month, for the winter months, when compared

with the model with just the two continuous covariates. Similar graphs could be plotted

in respect of other properties of interest.

Given the various covariate options to be compared, and the numerous statistics of interest,

a fairly large number of plots of this type would be required in order to examine them

all, and plotting against single-dimensional factors only can be misleading. Alternatively,

we can get a broad idea by breaking down our error statistic (the mean weighted sum of

squared residuals of the fitted statistics) into its component parts. This will indicate how

the improvements in fit shown in Figure 6.15 are distributed across the thirteen fitting

properties. Figure 6.21 shows the mean error statistic over the 25 hold-out samples, broken

down into the thirteen fitting properties. Again, we have scaled the errors, so that here

we have an error of 100 for the global model. Note that it is the change in the component

values as covariates are added, rather than the absolute values of the components, that

are of primary interest. The figure shows that the optimal model with covariates: sea-level

pressure, temperature and zonal wind component, has substantially improved the fit to

the mean rainfall, and to the coefficient of variation at all timescales, with a reduction in

error of the order of 40% to 50% for these properties, The skewness and auto-correlations

at the shorter timescales also show a reasonable improvement (of the order of 25% to 35%).

The properties showing the least improvement are the daily skewness and autocorrelation.

Finally in this section, we consider interannual variability, the underestimation of which

is one of the criticisms of many of the rainfall models. Figure 6.22 shows a range of

percentiles between the 5th and the 95th in respect of the mean hourly rainfall, based

on 200 simulations, over 52 years. In the first graph, the simulations have been based on

the twelve monthly sets of parameters, sampling from the appropriate calendar month’s

parameter distribution for each observation month in turn. In the second graph, a different

parameter distribution has been used for each observation month, reflecting that month’s



6. Practical results 143

none month temp slp/temp
slp/temp/

uwind

Covariate

S
ca

le
d 

M
ea

n 
E

rr
or

 S
ta

tis
tic

0

20

40

60

80

100

ac1.24h
ac1.6h
ac1.1h
ac1.5m
skew24h
skew6h
skew1h
skew5m
coeffv24h
coeffv6h
coeffv1h
coeffv5m
mean

Figure 6.21: Breakdown of the mean weighted sum of squared errors over the individual compo-
nents; results based on the mean over 25 hold-out samples

covariate values. It can be seen that allowing the parameters to depend on these covariates

gives a much improved representation of the interannual variability. Similar simulations

were also used to compare the fit to extreme values. However, no improvement was seen,

compared with a separate model for each calendar month, so these graphs are not included

here. While this is a little disappointing, it primarily reflects the issues already identified

with respect to the BLRP model’s fit to extremes, and the set of fitting properties used

here, as discussed in Sections 3.8.3 and 3.10 respectively. Note that the new approach

should nevertheless outperform the current one in a warming climate, since simulations

in respect of future time periods can reflect the higher mean temperatures, and this will

lead to a greater incidence of extreme values.

Overall, the assessment of the performance has shown that, with just two or three covari-

ates, we can improve considerably the explanatory power of the BLRP model. If the same

approach can be extended to more complex models, then a combination of the optimal

model structure, and the new covariate-dependent parameters should lead to an important

improvement in hydrologists’ ability to simulate realistic rainfall, allowing for the impact

of climate change. We consider the application of the new methodology to the BLRPRX

model in Section 6.7. First though, we consider briefly two alternative datasets in order

to check that the methodology can be extended to other types of location and climate.
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Figure 6.22: Simulated distributions of mean annual rainfall (expressed in mm per hour) for
Bochum. The blue bands show the 5th, 10th, 25th, 50th (thicker blue line), 75th, 90th, and 95th
percentiles from 200 simulations, and the thick black line shows the observed values.

6.6 Other datasets

In this section we start by considering the five-minute rainfall series from Kelburn, New

Zealand, introduced in Section 3.11. Combined with the appropriate monthly mean pre-

dictors from the NCEP reanalysis data, we have 57 complete years of data, from 1948 to

2004. Initial analysis indicates that the climate of Kelburn shows far less seasonality than

Bochum, with very mild winters. Mean monthly temperature values range from 6.3◦C to

18◦C, compared with a range of -6.4◦C to 21.5◦C at Bochum. Rainfall levels are greater

than in Bochum, with mean hourly rainfall varying from around 0.1mm in January and

February, to 0.19mm in the wettest month, June. Although the range of the mean hourly

rainfall is wider than at Bochum, the other fitting statistics show far less variability across

months, particularly at the shorter timescales. Lag-1 autocorrelation at the 5 minute level

is almost constant over the year, and skewness levels are much lower. Relationships be-

tween the fitting statistics and the monthly mean values of the atmospheric variables are

generally weaker (with the exception of relative humidity, which here shows a stronger re-

lationship with the mean hourly rainfall). We surmise that rainfall here may be primarily

affected by individual weather systems; these are not well captured within the monthly

mean data.

Note that our primary purpose here is to validate the methodology, rather than to find

the optimal model for Kelburn. Therefore, we restrict models to the best choice of one

or two covariates from the three covariates: temperature, sea-level pressure and relative

humidity, and consider mean parameter estimates only. It is also of interest to consider

to what extent the relationships found at Bochum apply in a different climate, and to

identify any potential new issues. Using the same methodology as before to find optimal

bandwidths, we find a similar level for temperature, but a higher value in respect of sea-
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level pressure (2.5 compared with 1.5 as a single covariate), and a lower value in respect

of relative humidity (1.5 compared with 2.5 for Bochum). The selected bandwidths for

the Kelburn data are shown in Table 6.3.

Covariate/s Bandwidth/s

temp 1.3
slp 2.5
rhum 1.5
temp/slp 1.5/2.9
temp/rhum 1.75/2
rhum/slp 1.75/2.9

Table 6.3: Estimated mean-square optimal bandwidths for Kelburn, based on twenty-five hold-out
samples.

A comparison of the mean weighted sum of squared errors in respect of the six possible

models, using these bandwidths, is shown in Figure 6.23, again including also a fit with no

covariates, and one with calendar month. This shows that, as expected, the introduction
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Figure 6.23: Comparison of the mean weighted sum of squared errors for Kelburn for selected
covariates over 25 hold-out samples of 250 observations; figures shown are median errors. The
bandwidths are as in Table 6.3.

of covariates into the model has less impact in respect of Kelburn data, than for Bochum.

Here there is only a 13% reduction in the mean weighted sum of squared errors for the

optimal two-covariate model, when compared with the global model. The corresponding

reduction for Bochum is 25%. Nevertheless, a combination of continuous atmospheric
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covariates does show a better performance than using calendar month, and allows for

parameters to reflect future climate change, which was our original motivation.

There is little to choose between the three pairs of covariates, and we consider the optimal

model (sea-level pressure and relative humidity), and the model with covariates sea-level

pressure and temperature in a little more detail. Figure 6.24 gives a breakdown of the mean
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Figure 6.24: Breakdown of the mean weighted sum of squared errors over the individual compo-
nents; results based on the mean over 25 hold-out samples. For each of the locations, the errors
have been scaled so that the model with no covariates has mean 100.

weighted sum of squared errors, over the components for these two models, and for the

model with no covariates. Plots for Bochum are also shown for comparison. At Kelburn,

the model with sea-level pressure and relative humidity gives a greater improvement to the

fit of mean rainfall, but otherwise the two pairs of covariates perform similarly, reducing

the error in the coefficient of variation at all timescales by of the order of 20%–30%. There

is a small improvement in respect of skewness, but no change at all in respect of lag-1

autocorrelation.

In order to assess whether the nature of the relationships between the parameters and the

covariates are similar to what we have seen at Bochum, we plot the parameter sets for

the model with sea-level pressure and temperature as covariates, and compare these with

the Bochum parameters of Figure 6.17. In Figure 6.25 we plot the Kelburn parameters,

using ‘natural’ scales which reflect the actual ranges of the data. In Figure 6.26, we

show the same results, but here the scales have been adjusted to allow direct comparison
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Figure 6.25: Scatterplots of fitted parameters vs sea-level pressure and temperature for Kelburn;
bandwidths: sea-level pressure: 2.9; temperature: 1.5.
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Figure 6.26: Scatterplots of fitted parameters vs sea-level pressure and temperature for Kelburn;
bandwidths: sea-level pressure: 2.9; temperature: 1.5; scales adjusted to match those for Bochum
in Figure 6.17.
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with Bochum. The two most important relationships from Bochum are seen to hold

at Kelburn too. The storm arrival rate, λ can be seen to decrease with increasing sea-

level pressure, and the mean rainfall intensity, µX increases with increasing temperature,

although the latter, in particular, shows far less variation (even when considered over the

same temperature range). In terms of the other parameters, most of the relationships are

similar. It is interesting to note, though, that the peaks in the Bochum plot of λ against

temperature are not repeated here, with λ decreasing with increasing temperature up to

around 15◦C, and then remaining level.

The other dataset that we consider is a rainfall series from Heathrow in England. This

series is at an hourly, rather than a five-minute level, and runs for 52 years from 1949

to 2000. The climate at Heathrow shows more similarity to Bochum, although rainfall

levels are a little lower, and the range of mean hourly rainfall across calendar months

is slightly narrower (between 0.054mm (February) and 0.084mm (October)). An initial

analysis of relationships between the potential predictors and the nine fitting statistics

(now excluding those at the five minute timescale) indicates that these are similar to

those seen at Bochum.

We have not considered the Heathrow dataset in the same level of detail as Kelburn, but

found that some initial fits, using the same bandwidths as for Bochum, raised a new issue,

which we discuss here. The fitted parameters with temperature and sea-level pressure as

covariates, using the same bandwidths as for Bochum, are shown in Figure 6.27. As can be

seen, although the plots for λ, β and γ are comparable to those from Bochum, the mean

rainfall intensity, µX , and the cell duration parameter, η, if unconstrained, become ex-

tremely large, so that storms effectively comprise a few very intense instantaneous bursts.

This is clearly unrealistic. Since the most significant difference between the Heathrow fit

and that of Bochum, is that the latter includes statistics also at the five-minute timescale,

we investigate this, by repeating the fit for Bochum, but now including only the statistics

at hourly and longer timescales. The results, in Figure 6.28, indicate a similar effect to

that at Heathrow. Further investigation, including fitting models with sea-level pressure

and temperature as single covariates, revealed that the problem arises particularly at the

higher values of temperature (although at Heathrow, with both covariates, it occurs at

all except the most central observations). An intuitive explanation for the problem, is

that, over a longer timescale, it is not possible to differentiate between an instantaneous

high-intensity pulse, and a longer low-intensity rain cell, particularly if the overall duration

of the storm is short (i.e. if it does not last beyond a single hourly interval). There is

therefore no longer a unique solution for θ. The problem is exacerbated by the fact that,

after the initial fit, we use the parameter set from the previous fit as a starting point for

the numerical optimisation of the next fit. Thus, once this region of the parameter space

is entered, later fits tend to be similar. When each hour is split into twelve intervals,

however, the smoother nature of the rainfall is apparent, and the more realistic parameter
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Figure 6.27: Scatterplots of fitted parameters vs sea-level pressure and temperature for Heathrow;
bandwidths: sea-level pressure: 2; temperature: 1.75

sets that we had before are found. The solution to this problem could involve one or more

of the following:

• Restricting the parameter space by introducing constraints in the fit, to prevent the

very large values (although in our experience it is difficult to pick these individually

for parameters without finding solutions that lie on the boundaries).

• Widening the bandwidths, or allowing these to vary locally, so that they can be

wider at the observations more prone to this type of solution.

• Trying more than just the single initial value at each fit, to prevent the parameters

getting ‘stuck’ in an undesirable part of the parameter space.

• Creating statistics at the five-minute timescale using ‘scaling relationships’ between

statistics at different timescales. This type of methodology was discussed in Section

1.3, although it was noted that such relationships had not yet been developed in

respect of sub-hourly rainfall.

The last of these options would be the preferred approach, but it is not known if such

relationships can be found down to the fine scale required. This would require further

development. For Bochum, we found that simply increasing both of the bandwidths to
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Figure 6.28: Scatterplots of fitted parameters vs sea-level pressure and temperature for Bochum,
excluding all statistics at a five-minute timescale; bandwidths: sea-level pressure: 2; temperature:
1.75

around 3 gave a realistic parameter set. For Heathrow, even with much wider bandwidths,

we obtained extreme values for µX and η for some observations. No suitable constraints

could be found that did not lead to some observations lying on a constraint boundary.

Both of the bandwidths had to be increased to 4.5 before parameter sets with no extreme

values were found, and the resulting plot is shown in Figure 6.29. It is not suggested that

this is an effective solution, and a better solution would retain the narrower bandwidth in

the central range of temperatures, widening it only close to the boundaries. Alternatively,

rather than setting a global bandwidth, a global span would probably be more appropriate.

However, the plot does give a rough indication of the nature of the relationships that

hold at Heathrow, which are broadly similar to those at Bochum. The storm arrival

rate decreases with increasing sea-level pressure, as at Bochum. Mean rainfall intensity

increases and storms and cells become shorter with increasing temperatures, again as

at Bochum. Differences here are that the storm arrival rate decreases with increasing

temperatures across the whole range of temperatures (in line with Kelburn), and the cell

arrival rate increases. The latter effect is seen also in the Bochum fit, when 5-minute data

are excluded, so appears to be related to the minimum timescale of the statistics, rather

than any differences in the locations.

Overall, the analyses of Kelburn and Heathrow show that the local GMM methodology
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Figure 6.29: Scatterplots of fitted parameters vs sea-level pressure and temperature for Heathrow;
bandwidths: sea-level pressure: 4.5; temperature: 4.5

may usefully be applied at other locations, and that parameter relationships are expected

to be similar. While there will undoubtedly be issues to address in respect of any new

locations, these do not appear to be insurmountable.

6.7 More complex model variants

We selected the BLRP model (with an exponential intensity distribution) for the devel-

opment of the local GMM methodology, as the simplest of the Bartlett-Lewis clustered

models. It also has the advantage, compared to the models with randomised cell duration

parameter, that the parameters are easy to interpret. However, the results in Chapter 3

indicate that the BLRPRX model gives a better fit to the data. In this section therefore,

we apply the local GMM methodology to this model, and compare results with those for

the BLRP model.

The same bandwidths as for the BLRP model are used for all the fits. Figure 6.30 compares

the mean weighted sum of squared errors of the BLRPRX model, against the BLRP model.

The former can be seen to outperform the latter consistently by around 2%–3% across all

the covariate options. The BLRPRX model is preferred not only on the basis of its fit

to the properties used in the fitting process, but also because other important properties,
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Figure 6.30: Comparison of the mean weighted sum of squared errors for selected covariates
over 25 hold-out samples of 225 observations, for Bochum; figures shown are median errors. The
bandwidths are as in Table 6.2. The green boxes are in respect of the BLRP model, and the blue
the BLRPRX model.

not included in the fit (such as the proportion of intervals that are dry), are also better

represented. The fits of the two models in respect of further properties of interest may be

compared using plots similar to Figure 6.20. As an example, in Figure 6.31, we compare

the fit to 1-hour proportion dry of the two models. This indicates that the BLRPRX

model outperforms the BLRP model, as expected, and that the impact of the covariates

is essentially independent of the impact of the chosen model structure. Here we have used

the optimal set of covariates i.e. sea-level pressure, temperature and zonal wind.

Finally, in Figure 6.32, we plot the fitted parameters with the optimal pair of covariates,

sea-level pressure and temperature. Recall that the parameter α/ν here represents the

mean of the cell duration parameter, η, which varies randomly over storms, and which

is distributed as Gamma(α, ν). Also, ι, κ and φ are the ratios of µX (the mean rainfall

intensity), β (the cell arrival rate) and γ (the storm termination rate) to η respectively. The

relationships of the parameters to the covariates are as expected given the earlier BLRP

fits. The storm arrival rate, λ, decreases with increasing sea-level pressure, exactly as

before, and the parameter representing the mean cell duration, α/ν follows the behaviour

of η in the BLRP model. The parameter ι increases with increasing temperature, so that

the mean rainfall intensity, µX , increases with temperature more steeply than η, again as

before. Similarly, the behaviour of κ and φ can also be seen to be consistent with earlier

results. Note that, as discussed in Section 3.3.1, α has been constrained to be greater

than 2, and lies at this constraint level for the majority of the points. Interestingly, when
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Figure 6.31: Mean observed and fitted 1-hour proportion dry v binned values of selected co-
variates at Bochum. Observed values are shown in black; The fitted values correspond to the
BLRP model (green), and the BLRPRX model (blue), both with covariates: sea-level pressure and
temperature.

we added zonal wind as a third covariate, the fitted solution at a few points close to one

of the boundaries reverted to the ‘fixed η’ fit. This effect could be eliminated, if desired,

by allowing some local variation to the bandwidth, for example allowing the bandwidth

to increase close to the boundaries, as discussed earlier. The effect was found to be more

pronounced when we replaced the exponential intensity distribution with the Weibull,

with a shape parameter of 0.6. Recall from Section 3.10 that we had a slight preference

for the latter. Here we find essentially no difference between the two options in terms of

the out-of-sample errors, and all the figures in respect of the BLRPRX model assume the

exponential distribution.

In conclusion, the local GMM fitting methodology, with large scale atmospheric variables

as covariates, is capable of being applied to different climates and model structures. Issues

with non-unique parameter sets and numerical instabilities may arise, as indeed they do

for the monthly models, particularly where models have a high number of parameters

and where observed rainfall series are relatively short. These issues may be addressed

pragmatically as and when they arise, typically by the local adjustment of bandwidths,

or by restrictions on the parameter space (i.e. fixing or constraining parameters). Some

further thoughts on these issues, and suggestions for potential further developments are

given in Chapter 7.
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Figure 6.32: Scatterplots of fitted parameters vs sea-level pressure and temperature for the
BLRPRX model ; bandwidths: sea-level pressure: 2.0; temperature: 1.75.



Chapter 7

Conclusions and future research

7.1 What have we achieved?

In this thesis we have considered both the structure and the fitting methodology of the

point process-based rainfall models. We have introduced a new model version, and de-

veloped a local fitting approach that allows for a nonstationary climate. We believe that

both of these developments will be useful to the hydrological community and to other

practitioners who require artificial rainfall simulations for their applications. Importantly,

they are also readily implementable.

Using a structured comparison of different versions of the Bartlett Lewis clustered point

process-based models, including two new model extensions, we have clarified some key

aspects of performance. Our focus here has been on fine scale data, for which models

with rectangular pulses were previously assumed inappropriate. We showed that the main

driver behind improved performance, particularly in respect of skewness and extremes at

short timescales, is the introduction of an inverse dependence between rainfall intensity and

cell duration. Our proposed new model, which is an extension of the Random Parameter

Bartlett-Lewis Rectangular Pulse model, gives a simple but effective way of introducing

such dependence, with no increase in the number of parameters. It allows the rainfall

intensity parameter, µX , previously assumed to be constant, to vary in proportion to

the cell duration parameter, η, which itself varies randomly between storms. Although

instantaneous pulses were useful in leading us to this conclusion, ultimately we discovered

that they are not required, and the computationally simpler rectangular pulse version is

preferred.

We believe that acknowledging the limitations of all such models is important. Modelling

a complex process by a relatively simple statistical model invariably requires some compro-

mises in the quality of the fit to different features of the process. Adding ever-increasing

complexity to such models in order to gain marginal improvements in fit is unlikely to be

156



7. Conclusions and future research 157

desirable, since it leads to parameters that are not well-identified. Appropriately allowing

for the uncertainty in the parameter estimates is important, and this is generally not ad-

dressed in the hydrological literature. We do this here, when generating simulations, by

sampling parameters from the multivariate lognormal distribution. In this way, rare, but

potentially damaging scenarios should be better represented in simulations, particularly

if, as here, extreme values tend to be underestimated by the model.

Although finding an optimal model structure is important to practitioners, of greater

concern currently is the ability to allow for a changing climate. We have shown that a

local generalised method of moments methodology offers a useful new approach to fitting

point process-based rainfall models. With just two or three covariates, we can produce

a model with better explanatory power than the current approach, with more realistic

interannual variation, and the ability to generate simulations that reflect future climate

change scenarios. Note that, while replacing the BLRP model with the optimal BLRPRX

model reduces the mean weighted sum of squared errors over a validation set by around

2%–3%, replacing the default covariate, calendar month, with the optimal three continuous

covariates (sea-level pressure, temperature and zonal wind velocity) can reduce errors by

of the order of 25% (depending on the location and climate).

A key advantage over other types of rainfall model, is that the fitting process here allows

various properties of rainfall to be related to large-scale atmospheric covariates, not just

the mean rainfall or probability of occurrence, thus imposing fewer restrictions on future

rainfall patterns. The methodology is flexible, so that the amount and variability of the

data can be adjusted for, using a tuning parameter, ensuring an appropriate degree of

smoothness in the relationships between the parameter estimates and the covariates. The

framework also allows estimation of uncertainty.

7.2 Future Research

Throughout the thesis, we have highlighted possible areas for further investigation. These

are summarised here, together with additional thoughts on potential future work. First

we consider aspects relating to point process-based models in general, and then focus on

research ideas relating specifically to the local fitting methodology.

7.2.1 Point process-based models

Point process-based rainfall models have evolved since their introduction by Rodriguez-

Iturbe et al. (1987) via a mixture of theoretical and empirical developments. The recent

research of Jesus & Chandler (2011) considered the theory behind the generalised method

of moments fitting methodology, and focused in particular on the choice of the weighting
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matrix. The optimal number and choice of moments together with model and moment

selection criteria is another area that, in our view, merits further research.

As discussed in Chapter 2, the test for model misspecification, known as the ‘Hansen

J-test’ or the ‘test for overidentifying restrictions’, is frequently used in the econometrics

literature. If a model fails the test, then in theory at least, the moment conditions must be

amended, or (typically) reduced in number, until the model is deemed correctly specified.

In the context of our simple rainfall models, this is likely to lead to a model where the

number of moment conditions exactly matches the number of unknown parameters (which

is always correctly specified within the GMM framework), particularly where we have a

reasonably large amount of data. This is unlikely to be considered desirable by practition-

ers, however. We know that our model is just a useful approximation for a specific purpose

(typically the creation of artificial rainfall time series for testing hydrological designs), and

the hydrological literature tends to suggest a preference for a model which fits a greater

number of properties less well, over one that fits a small number exactly. In this case,

as discussed in Section 7.1, we should acknowledge that the model is misspecified, and

consider how this impacts on the asymptotic results and related inference, and consider

potential moment and model selection criteria in this context. The paper by Hall & Inoue

(2003), which discusses the impact of misspecification with four different options for the

weighting matrix, may be a good starting point.

The greater difficulties with the local fitting encountered with the Heathrow dataset, com-

pared with Bochum, were found to relate to the absence of five-minute statistics. Simula-

tions at this timescale are also increasingly required, not just for hydrological applications

such as urban drainage design, but also for radio telecommunications, which are adversely

affected by heavy rainfall. Unfortunately, in practice, data at this timescale, and even at

an hourly timescale, are not often available. As discussed in Section 1.3, various methods

exist to disaggregate or downscale data to a shorter timescale. The use of scaling rela-

tionships (Kilsby et al. 2007, Chandler et al. 2007b) is particularly appropriate if, as for

the local modelling, we require statistics at this level prior to local fitting. Investigating

whether suitable relationships can be found down the the sub-hourly level is therefore

another useful area for further research.

7.2.2 Potential improvements to our local fitting methodology

We decided to use a global bandwidth in our empirical work, on the basis that our data were

unlikely to be sufficient to justify a local approach, and we did not expect the relationships

to be unduly complex. While this appeared adequate for the Bochum data, on which most

of our analysis was carried out, the other datasets led us to question whether this was

indeed the most appropriate option. The problem is that, in order to avoid high variability

and parameter identification problems near to the boundaries, a global bandwidth may
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force us to have a high bandwidth across the whole range. Close to the boundaries, not

only is there an issue because neighbouring points lie only to one side, but the density

of observation points also tends to be very sparse, making estimates highly variable, and

leading to identification problems. As discussed in Section 6.6, this could be addressed by

allowing the bandwidth to vary locally in a limited way in order to overcome this problem.

However, a better and simpler solution might be to replace the global bandwidth with a

global span. Here, a fixed proportion of the data is given a positive weight at each

evaluation point, which therefore gives a broadly constant variance (albeit at the expense

of more variable bias). A compactly supported kernel function is required, such as the

tri-cube or Epanechnikov kernels. This alternative method of adjusting the smoothness

should be investigated.

Another practical issue that requires further investigation, relates to the numerical optimi-

sations. In order to ensure that a global, rather than a local, minimum is found, it is usual

practice to try different starting values. Here, in order to reduce computation time and

ensure a smooth curve, we did this only in respect of the fit at the first evaluation point,

with subsequent points fitted using just a single optimisation, with starting values based

on the estimates from a neighbouring point. The risk with this approach is that, once an

undesirable region of the parameter space is entered, later fits will tend to be similar. In

practice, this is likely to occur close to the boundaries, where a sparsity of design points

may lead to poorly identified parameters. Therefore, if the first evaluation point is chosen

appropriately, it should not cause significant problems, particularly if, as discussed, we use

a global span rather than a bandwidth. However, some minor adjustments to the fitting

approach might be desirable, for example trying parameter estimates from a small number

of previous fits as starting values, rather than just using a single set. Another related issue

here is the choice of the first evaluation point, and the order in which subsequent fits are

undertaken. While this is straightforward in the case of a univariate predictor, it is less

so in the multivariate case. Our approach has been to base these on an arbitrarily chosen

single covariate, but other approaches may be preferable. One idea might be to use the

first principal component (with suitably standardised covariates) for this purpose, so that

we move between evaluation points in the direction of maximum variability.

We also made an arbitrary choice of a single covariate when calculating smoothed sample

variances, for the purpose of deriving a weighting matrix. Here too, it should be rela-

tively straightforward to improve the methodology in the case of multivariate predictors.

For example, this could be done by applying K-means clustering to the (standardised)

covariates, and calculating a sample variance in respect of each cluster. The conditional

variance in respect of each individual evaluation point could then be derived using a local

mean estimator, assuming that the cluster sample variances apply to the mean point of

each cluster.

In addition to these suggested potential improvements, another area that might warrant
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some further thought is the visual representation of results, which is particularly prob-

lematic with multiple dimensions, particularly where we wish to demonstrate levels of

uncertainty. Given the models are intended to be applied in practice by non-statisticians,

it is particularly important that model output is readily interpretable.

7.2.3 Practical application

So far we have only considered reanalysis data, as we have focused on developing the

methodology. The ultimate aim, however, is to apply this methodology to data projected

by climate models, whereby the local point process-based model is trained on the reanalysis

data, but fitted at evaluation points given by the climate model output. Most of the issues

involved, such as climate model biases and uncertainties, different grid scales between the

reanalysis data and the climate model etc., are not particular to our model, and research

already exists in the literature which should inform these aspects. However, it is likely that

other issues relating to climate model output data will also arise and require consideration.

One aspect that is clearly a problem is that we have very sparse data at the boundaries,

but it is likely that these areas of the design density will be encountered more often in

a future climate, for example the upper end of the temperature range. A possible way

of addressing this is to use relationships found across a variety of locations and climates,

to inform the extrapolation at a given location. The methodology may also be useful for

providing simulations at a location for which no suitable rainfall series exists, by using large

scale atmospheric data from that location, coupled with a model fitted at an alternative

location, with a similar climate.

In this thesis we have focused purely on temporal models i.e those fitted to a single site.

Such models are appropriate given the sort of urban areas for which fine-scale models are

generally required. However, much hydrological design relates to much more extensive

regions, for which models with a spatial dimension are required. The point process-based

rainfall models may readily be extended to the spatio-temporal domain and fitted to mul-

tiple rain-gauges, following the approach of Cowpertwait (1995) or Chapter 5 of Wheater

et al. (2000). In these models, the temporal structure replicates that of the corresponding

single-site model, and the same fitting methodology is used, so it should be relatively

straightforward to extend our methodology to these models and to incorporate the rela-

tionships between the temporal parameters and the large-scale atmospheric variables. In

the simplest case (circular cells moving with zero velocity), there is just one additional

parameter: the mean cell radius, which could be assumed constant or also related to

covariates.
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7.2.4 Curse of dimensionality

Finally, we consider the curse of dimensionality, which is a significant constraint for this

type of model, limiting the number of covariates that we can reasonably incorporate to

a maximum of three. Two possible approaches could be used to address this issue. The

first, simpler alternative is to use some form of dimension reduction, such as principal

components analysis or factor analysis, on the desired set of covariates, so that exactly

the same fitting approach is used as before, and we are still limited to the same number of

covariates. It is not clear how effective this would be. Combining predictors with different

units of measurement is not appealing, nor are the created predictors likely to be easy

to interpret. However, this approach could be used in a limited way, such that these

disadvantages are minimised: for example by combining the same predictor at a range

of pressure levels, or in respect of several neighbouring grid-squares, in order to capture

more information.

The alternative approach is to impose some additional structure on the model itself. Our

original intention, before starting this research, was to use the local fitting as an ex-

ploratory tool, ultimately assuming parametric forms for the relationships. However, we

have reached the conclusion that this is not appropriate as it requires many global param-

eters, even assuming very simple relationships. We prefer the more flexible nonparametric

approach, with a small number of local parameters. In the case of local regression, an

approach that adds some structure, whilst still retaining flexibility, is the additive model

(Hastie & Tibshirani 1990). In its simplest form, the additive model assumes that there

are no interactions between the covariates, and the equation has the form:

Y = α+ θ1(x1) + . . . θd(xd) + ε,

for some response vector Y , and d-dimensional covariate, X = (X1, . . . Xd)
T, with ε rep-

resenting the error. The θj are flexible functions, which may be nonparametric. In order

to ensure identifiability, the functions are standardised so that E[θj(Xj)] = 0. It can be

seen that this is essentially an extension of multiple regression, since the contribution of

each covariate is assumed to be additive, but here the relationships between the response

and the covariates are no longer constrained to be linear. Limited interaction terms can

be added, if desired, by making some of the θj functions of more than one covariate. This

type of model is solved via a ‘back-fitting’ algorithm. At each iteration we fit a univariate

regression in respect of one of the covariates, cycling through the covariates in turn, and

continuing until convergence. Each univariate regression takes the residual after fitting

all the other covariates as the response. So, for the lth covariate, for example, we fit

Y −
∑

j 6=l θ
∗
j (xj) = θl(xl) + ε, where θ∗ denotes estimates from the previous iteration.

In the same way that the generalised linear model (GLM) extends linear regression to

cases where the response is not normally distributed, so the generalised additive model
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(GAM) is an extension of the additive model. The GLM has greater similarity with our

scenario than normal regression, because its equations also cannot be solved explicitly,

and a Newton-type iterative method must be used. For the GAM, fitting requires two

calculation loops: the inner carrying out the backfitting algorithm, and the outer the

Newton-type iteration. A similar approach should be possible for our model, although the

simplifications that arise from the exponential family assumption in GLMs will not apply,

and so the process is expected to be more complex still.

An alternative idea that retains the assumption of additive covariate effects, but avoids

the inner backfitting loop, is to use regression splines, as discussed briefly in Section

4.1.2. Although splines are more difficult to extend to multiple covariates than kernels

in the general case, they are more straightforward if the constraint of additive effects is

applied. A choice of knots and the corresponding set of B-splines would be required for

each dimension, with the coefficients found by minimising the following objective function:

S =
1

n

n∑
t=1

[T (yt)− τ(θ(xt))]
T Wn(xt) [T (yt)− τ(θ(xt))], (7.1)

with θ(xt) = a0 +
∑d

l=1

∑kd
m=1 almBlm(xlt) where Blm(xlt) is the mth of kl B-splines for the

lth covariate, evaluated at the tth data point, and alm denotes the respective coefficient

(with a0 the intercept). However, regression splines have some undesirable properties.

In order to keep the dimensions reasonably low, a small number of knots is required, but

poor placement of these can lead to misleading results, and strange local behaviour (Hastie

& Tibshirani 1990). Splines with a large number of knots with penalties to reduce the

dimensionality show better local behaviour. Eilers & Marx (1996) suggest that P-splines

could also be used in this simple additive way, with a separate penalty introduced for each

dimension, and this is an approach that is worth investigating further.

It should be noted, however, that our principal aim is for a modelling methodology that is

useful to practitioners. Therefore, any additional complexity, particularly where it leads

to significantly increased computation times, should be carefully considered against any

additional benefit that it generates. Identifying ways to improve the computational speed

in respect of any of the methods discussed (local mean or linear, fully flexible or additive

versions) is of course, also a potentially useful area of future work.



Appendix A

Formulae for fitting properties

A.1 Introduction

The generalised method of moments fitting methodology requires a set of moments or

‘fitting properties’ in respect of each model. The set of properties used for all the models

fitted here consists of the mean, and the dimensionless properties: the coefficient of varia-

tion, skewness coefficient and autocorrelation at lag 1. The dimensionless properties have

been included at four levels of aggregation: 5 minutes, and 1, 6 and 24 hours.

In this Appendix, we give the formulae for the mean, variance, lag-1 autocovariance and

3rd central moment of the discrete-time aggregated process in respect of each of the

Bartlett-Lewis model variants fitted in this thesis. Throughout, the timescale to which

the continuous process is aggregated is denoted as h. The required fitting properties can

be derived from those given here, as follows:

Coefficient of variation =

√
Var[Y h

i ]

E[Y h
i ]

, (A.1)

Skewness coefficient =
E[(Y h

i − E(Y h
i ))3]

Var[Y h
i ]3/2

, (A.2)

Lag 1 autocorrelation =
Cov(Y h

i , Y
h
i+1)

Var[Y h
i ]

. (A.3)

A number of other properties, not involved in the fitting, are also examined within the

practical study in order to assess the goodness of fit of the models. These include the

proportion of intervals with no rain, as well as wet and dry transition probabilities and

extreme values. These properties are generally derived by simulation.
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The random cell intensity (or random pulse depth in the case of the instantaneous pulse

models), denoted X, has been assumed to have either a one or a two parameter distri-

bution. In terms of the mathematical expressions for the fitting properties, an actual

distribution does not need to be specified. However, since skewness, which involves terms

in E(X3), represents one of the fitting properties, we do at least need to specify the rela-

tionship between the 3rd moment and the two chosen parameters. Of course, the intensity

distributions need to be fully specified when carrying out simulations. The intensity dis-

tributions considered, and their parameterisations have been as follows:

Gamma:
Parameters: µX , r = σX/µX

Moments: E(X) = µX .

E(X2) = (r2 + 1)µ2
X .

E(X3) = (1 + 3r2 + 2r4)µ3
X .

Note: the Exponential distribution is a special case of the Gamma, with r constrained

to be 1. In terms of the usual parameterisation of a Gamma distribution with shape

parameter α and rate parameter β, our parameters are given by µX = α/β and r = 1/
√
α.

Therefore, the usual parameterisation would give: α = 1/r2 and β = 1/(r2µX).

Weibull:
Parameters: µX , %

Moments: E(X) = µX .

E(X2) = µ2
X Γ(1 + 2/%) / [Γ(1 + 1/%)]2.

E(X3) = µ3
X Γ(1 + 3/%) / [Γ(1 + 1/%)]3.
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A.2 Bartlett-Lewis Rectangular Pulse (BLRP) model: Deriva-

tions

In this section we show the derivation of the first and second order fitting properties in

respect of the BLRP model. This is included here as an example of the general approach

used for the models, and does not constitute new theory. The properties were originally

derived by Rodriguez-Iturbe et al. (1987), and the same approach is followed here, but

with the addition of the detailed steps, omitted in the original.

Rainfall data are available only in aggregated form, so the properties are required in

respect of rainfall totals over disjoint intervals of some fixed length, h say. In order to

calculate these, however, we first need to derive the properties of the continuous rainfall

process.

Notation

• λ - storm arrival rate

• β - cell arrival rate

• γ - exponential parameter of the storm duration

• η - exponential parameter of the cell duration

• µX - mean cell intensity

• E(X2) - mean of squares of cell intensities

• E(X3) - mean of cubes of cell intensities

• µC = 1 + β/γ - mean number of cells per storm

First and second order properties of the continuous process

Let Y (t) be a random variable denoting the rainfall intensity at time t. Let Xt−u denote

the intensity of a rain cell, beginning at time t−u, measured a time u later, and N denote

the counting process of cell origins. The shorthand notation dN(t) denotes the count in

the small interval of time (t − dt, t]. We assume that the sequence of X’s is independent

of the counting process, and independent of each other, i.e. the X’s are i.i.d.

Then, Y (t) is given by the summation of the intensities of all cells active at time t, and

can be expressed as:

Y (t) =

∫ ∞
u=0

Xt−u dN(t− u), (A.4)
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where:

Xt−u =

X with probability e−ηu

0 with probability 1− e−ηu.

The mean of the continuous process Y (t) is given by:

E[Y (t)] =

∫ ∞
u=0

E[Xt−u] E[dN(t− u)] (by independence of {X} and {N})

=

∫ ∞
u=0

µXe
−ηu λµCdu

=
λµCµX

η
. (A.5)

The covariance function of the continuous process Y (t) is given by:

Cov(Y (t), Y (t+ τ)) = Cov

(∫ ∞
u=0

Xt−u(u)dN(t− u),

∫ ∞
v=0

Xt+τ−v(v)dN(t+ τ − v)

)
=

∫ ∞
v=0

∫ ∞
u=0

Cov
(
Xt−u(u)dN(t− u), Xt+τ−v(v)dN(t+ τ − v)

)
=

∫ ∞
v=0

∫ ∞
u=0

{
E
(
Xt−u(u)Xt+τ−v(v)

)
E
(
dN(t− u)dN(t+ τ − v)

)
− E

(
Xt−u(u)

)
E
(
dN(t− u)

)
E
(
Xt+τ−v(v)

)
E
(
dN(t+ τ − v)

)}
,

again by independence of {X} and {N}.

Now E
(
Xt−u(u)Xt+τ−v(v)

)
= E

(
Xt−u(u)

)
E
(
Xt+τ−v(v)

)
except for the set u, v such that

u = v − τ (i.e. the cell intensities are independent unless they relate to the same cell).

Therefore we can change E
(
Xt−u(u)

)
E
(
Xt+τ−v(v)

)
to E

(
Xt−u(u)Xt+τ−v(v)

)
in the inte-

gral, since they are only distinct on a set of measure zero.

So:

Cov(Y (t), Y (t+ τ)) =

∫ ∞
v=0

∫ ∞
u=0

E[Xt−u(u)Xt+τ−v(v)] Cov(dN(t− u), dN(t+ τ − v)).

(A.6)
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Now,

Cov{dN(t− u), dN(t+ τ − v)}

= E[dN(t− u) dN(t+ τ − v)]− E[dN(t− u)]E[dN(t+ τ − v)]

= P [dN(t− u) = dN(t+ τ − v) = 1]

− P [dN(t− u) = 1]P [dN(t+ τ − v) = 1] + o(dudv)

= {λµC δ(u+ τ − v) + (λµC)2 + λµC βe−γ|u+τ−v| − (λµC)2} dudv + o(du dv)

= {λµCδ(u+ τ − v) + λµC βe−γ|u+τ−v|}dudv + o(dudv), (A.7)

where we use the stationarity of the process, so that the covariance does not depend on t.

In the third step, the first term relates to the case where u = v − τ , and δ(z) is the Dirac

delta function, such that δ(z) is zero everywhere except at z = 0 and integrates to 1. The

second term relates to two cell origins from separate storms which are therefore placed

independently, whereas the third term relates to two cell origins from the same storm, in

which case the rate at a time |u+ τ − v| after the first origin is β as long as the storm has

not yet terminated, which has probability e−γ|u+τ−v|.

Substituting the results of Equation (A.7) into Equation (A.6):

c(τ) ≡ Cov(Y (t), Y (t+ τ))

=

∫ ∞
0

E(X2)e−η(u+τ)λµCdu+ λµCβ

∫ ∞
0

∫ τ+u

v=0
µ2
Xe
−ηue−ηve−γ(τ+u−v)dvdu

+ λµCβ

∫ ∞
0

∫ ∞
v=τ+u

µ2
Xe
−ηue−ηveγ(τ+u−v)dvdu

=
λ

η
µCE(X2)e−ητ +

λµCβµ
2
X

γ − η

∫ ∞
0

(e−2ηu−ητ − e−(η+γ)u−γτ )du

+
λµCβµ

2
X

γ + η

∫ ∞
0

e−2ηu−ητdu

=
λ

η
µCE(X2)e−ητ +

λµCβµ
2
X

γ − η

[
e−ητ

2η
− e−γτ

γ + η

]
+
λµCβµ

2
X

γ + η

[
e−ητ

2η

]
=
λ

η
µCE(X2)e−ητ +

λµCβµ
2
Xe
−ητγ

η(γ2 − η2)
−
λµCβµ

2
Xe
−γτ

γ2 − η2

=
λµC
η

{
E(X2)e−ητ +

βµ2
Xγe

−ητ

γ2 − η2
−
βµ2

Xηe
−γτ

γ2 − η2

}
. (A.8)
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First and second order properties of the aggregated process: generic equations

Now let Y h
i be the total aggregated rainfall over the ith interval of length h. First we

derive the generic formulae:

E(Y
(h)
i ) =

∫ ih

(i−1)h
E(Y (w))dw

= hE(Y (t)). (A.9)

Var(Y
(h)
i ) = Cov(Y

(h)
1 , Y

(h)
1 )

=

∫ h

0

∫ h

0
Cov(Y (s), Y (t)) ds dt

= 2

∫ h

0

∫ t

0
Cov(Y (s), Y (t)) ds dt (by symmetry)

= 2

∫ h

0

∫ t

0
Cov(Y (t− w), Y (t)) dw dt (substituting w = t - s)

= 2

∫ h

0

∫ h

w
Cov(Y (t− w), Y (t)) dt dw

= 2

∫ h

0
(h− w) c(w)dw (by stationarity). (A.10)

Cov(Y
(h)
i , Y

(h)
i+k) = Cov(Y

(h)
1 , Y

(h)
1+k) for k ≥ 1

=

∫ (k+1)h

kh

∫ h

0
Cov(Y (s), Y (t)) dsdt

=

∫ (k+1)h

kh

∫ t

t−h
c(w)dw dt (substituting w = t− s)

=

∫ kh

(k−1)h

∫ w+h

kh
c(w)dt dw +

∫ (k+1)h

kh

∫ (k+1)h

w
c(w)dt dw

=

∫ kh

(k−1)h
(w + h− kh) c(w)dw +

∫ (k+1)h

kh
((k + 1)h− w) c(w)dw

=

∫ 0

−h
(h+ z) c(z + kh) dz +

∫ h

0
(h− z) c(z + kh) dz

(substituting z = w − kh). (A.11)

First and second order properties of the aggregated process: BLRP equations

Now, substituting the results of Equation (A.5) into Equation (A.9), and Equation (A.8)

into Equations (A.10) and (A.11) gives the first and second order moments of the aggre-
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gated process. So, we have:

E(Y
(h)
i ) = hE(Y (t))

=
λµX µC h

η
. (A.12)

Var(Y
(h)
i ) = 2

∫ h

0
(h− w) c(w)dw

=
2λµC
η

∫ h

0
(h− w)

{
E(X2)e−ηw +

βµ2
Xγe

−ηw

γ2 − η2
−
βµ2

Xηe
−γw

γ2 − η2

}
dw. (A.13)

Integrating by parts:∫ h

0
(h− w)e−ηwdw =

1

η

[
− (h− w)e−ηw +

1

η
e−ηw

]h
0

=
h

η
+

1

η2
(e−ηh − 1). (A.14)

Similarly, ∫ h

0
(h− w)e−γwdw =

h

γ
+

1

γ2
(e−γh − 1). (A.15)

So, substituting the results of Equations (A.14) and (A.15) into Equation (A.13):

Var(Y
(h)
i ) =

2λµC
η

{(
E(X2) +

βµ2
Xγ

γ2 − η2

)(
h

η
+

(e−ηh − 1)

η2

)
−

βµ2
Xη

γ2 − η2

(
h

γ
+

(e−γh − 1)

γ2

)}
=

2λµC
η

[
(E(X2) + βµ2

X/γ)h

η
+
βµ2

Xη(1− e−γh)

γ2(γ2 − η2)

−

(
E(X2) +

βγµ2
X

γ2 − η2

)(
1− e−ηh

η2

)]
. (A.16)

Similarly,

Cov(Y
(h)
i , Y

(h)
i+k) =

∫ 0

−h
(h+ z) cY (z + kh) dz +

∫ h

0
(h− z) cY (z + kh) dz

=
λµC
η

[
E(X2) +

βµ2
Xγ

γ2 − η2

]{∫ 0

−h
(h+ z) e−η(z+kh) +

∫ h

0
(h− z) e−η(z+kh)

}
dz

−
λµCβµ

2
X

γ2 − η2

{∫ 0

−h
(h+ z) e−γ(z+kh) +

∫ h

0
(h− z) e−γ(z+kh)

}
dz. (A.17)
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Integrating by parts, we have:∫ 0

−h
(h+ z) e−η(z+kh)dz =

[
− h+ z

η
e−η(z+kh) − 1

η2
e−η(z+kh)

]0

−h

= −h
η
e−ηkh − 1

η2
e−ηkh +

1

η2
e−η(k−1)h,

and: ∫ h

0
(h− z) e−η(z+kh)dz =

[
− h− z

η
e−η(z+kh) +

1

η2
e−η(z+kh)

]h
0

=
1

η2
e−η(k+1)h +

h

η
e−ηkh − 1

η2
e−ηkh.

And so:∫ 0

−h
(h+ z) e−η(z+kh)dz +

∫ h

0
(h− z) e−η(z+kh)dz = − 2

η2
e−ηkh +

1

η2
e−η(k−1)h +

1

η2
e−η(k+1)h

=
e−η(k−1)h

η2
(1− e−ηh)2. (A.18)

Similarly, with γ replacing η:∫ 0

−h
(h+ z) e−γ(z+kh)dz +

∫ h

0
(h− z) e−γ(z+kh)dz =

e−γ(k−1)h

γ2
(1− e−γh)2. (A.19)

Finally, substituting the results of Equations (A.18) and (A.19) into Equation (A.17):

Cov(Y
(h)
i , Y

(h)
i+k) =

λµC
η

[(
E(X2) +

βγµ2
X

γ2 − η2

)(
(1− e−ηh)2e−η(k−1)h

η2

)

−
µ2
Xβη(1− e−γh)2e−γ(k−1)h

γ2(γ2 − η2)

]
(A.20)

A similar, but much lengthier calculation is required for the 3rd central moment. The final

properties are restated in Appendix A.3, which also includes the 3rd central moment.
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A.3 Bartlett-Lewis Rectangular Pulse (BLRP) model: Fit-

ting Properties

Sources: The mean, variance, and covariance were derived by Rodriguez-Iturbe et al.

(1987). The 3rd central moment is derived from Wheater et al. (2006)’s 3rd moment

about zero.

Notation

• λ - storm arrival rate

• β - cell arrival rate

• γ - exponential parameter of the storm duration

• η - exponential parameter of the cell duration

• µX - mean cell intensity

• E(X2) - mean of squares of cell intensities

• E(X3) - mean of cubes of cell intensities

• µC = 1 + β/γ - mean number of cells per storm

Mean

E[Y h
i ] =

λµX µC h

η
. (A.21)

Variance

Var[Y h
i ] =

2λµC
η

[
(E(X2) + βµ2

X/γ)h

η
+
µ2
Xβη(1− e−γh)

γ2(γ2 − η2)

−

(
E(X2) +

βγµ2
X

γ2 − η2

)(
1− e−ηh

η2

)]
. (A.22)

Covariance at lag k ≥ 1

Cov(Y h
i , Y

h
i+k)

=
λµC
η

[(
E(X2) +

βγµ2
X

γ2 − η2

)(
(1− e−ηh)2e−η(k−1)h

η2

)
−
µ2
Xβη(1− e−γh)2e−γ(k−1)h

γ2(γ2 − η2)

]
.

(A.23)
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3rd central moment

E[(Y h
i − E(Y h

i ))3]

=
λµc

(η2 + 2γη + γ2)(γ4 − 2ηγ3 − 3η2γ2 + 8η3γ − 4η4)η4γ3

×
{

12γ7µ3
Xβ

2e−ηh − 48µ3
Xe
−γhβ2η7 + 72γ7E(X3)η2 + 48γµXE(X2)βη7

− 24γhµ3
Xη

7β2 + 24µXE(X2)γ4he−ηhβη5 + 24µXE(X2)γ2βη6 − 36µXE(X2)γ3βη5

− 72µXE(X2)γ6hβη3 − 84γ2µ3
Xβ

2η5 − 36γ5hµ3
Xβ

2η3 + 54γ3hµ3
Xη

5β2

+ 6µXE(X2)γ5βη3 + 6γ7hµ3
Xηβ

2 − 24µXE(X2)γ2e−ηhβη6 + 117µXE(X2)γ6βη2

− 18γ4µ3
Xe
−ηhβ2η3 + 54γ5hE(X3)η5 + 39γ5µ3

Xβ
2η2 − 36γ7hE(X3)η3

− 24γ3hE(X3)η7 − 12γ9E(X3) + 6ηγ9hE(X3)e−ηh

+ 6µXE(X2)γ4e−γhβη4 − 30µXE(X2)γ6he−ηhβη3 − 48µXE(X2)γ2hβη7

− 48γµXE(X2)e−γhβη7 − 24γhµ3
Xe
−γhη7β2 + 6γ5µ3

Xe
−γhβ2η2

+ 6µXE(X2)γ8he−ηhβη − 138µXE(X2)γ4βη4 + 48µ3
Xβ

2η7 + 30γ3hµ3
Xe
−γhη5β2

− 24µXE(X2)γ2e−γhβη6 + 36µXE(X2)γ3e−γhβη5 + 24µXE(X2)γ3e−ηhβη5

− 132µXE(X2)γ6e−ηhβη2 − 6µXE(X2)γ5e−γhβη3 + 150µXE(X2)γ4e−ηhβη4

− 42γ5µ3
Xe
−ηhβ2η2 − 6γ5hµ3

Xe
−γhβ2η3 + 12µXE(X2)γ8hβη

− 6µXE(X2)γ5e−ηhβη3 − 24E(X2)µXβγ
3e−h(η+γ)η5 − 12E(X2)µXγ

4βe−2ηhη4

− 6E(X2)µXγ
4βe−h(η+γ)η4 + 6γ5E(X2)µXβe

−h(η+γ)η3 − 3E(X2)µXγ
8βe−2ηh

+ 24E(X2)µXβγ
2e−h(η+γ)η6 + 15E(X2)µXγ

6βe−2ηhη2 − 3γ7µ3
Xβ

2e−2ηh

+ 18γ4µ3
Xβ

2e−h(η+γ)η3 − 12γ3µ3
Xβ

2e−h(η+γ)η4 − 6γ5µ3
Xβ

2e−h(η+γ)η2

+ 3γ5µ3
Xβ

2e−2ηhη2 − 9γ7µ3
Xβ

2 + 108γ5E(X3)e−ηhη4 + 48γ3E(X3)η6

− 72γ7E(X3)e−ηhη2 − 48E(X3)γ3e−ηhη6 + 84γ2µ3
Xe
−γhβ2η5 + 18γ4µ3

Xβ
2η3

+ 24E(X2)µXγ
8βe−ηh + 54γ5hE(X3)e−ηhη5 − 24η7hE(X3)γ3e−ηh

− 36η3γ7hE(X3)e−ηh − 21γ8E(X2)µXβ + 6γ9hE(X3)η + 12γ3µ3
Xe
−ηhβ2η4

+ 12γ3µ3
Xe
−γhβ2η4 − 18γ4µ3

Xe
−γhβ2η3 − 12γ3µ3

Xβ
2η4 − 108γ5E(X3)η4

+ 108µXE(X2)γ4hβη5 + 12γ9E(X3)e−ηh
}
. (A.24)
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A.4 Random Parameter Bartlett-Lewis Rectangular Pulse

(BLRPR) model

Sources: The mean, variance, and covariance were originally derived by Rodriguez-Iturbe

et al. (1988). Here all moments are expressed by first re-parameterising the expressions for

the BLRP model in Appendix A.3, then grouping together terms in η−ke−ηs for possible

values of k and s, and taking expectations over η. The expectations are left in the form

Eη
[
η−k e−ηs

]
, which is convenient for coding. They may be evaluated as:

Eη

[
η−ke−ηs

]
=

να

Γ(α)
× Γ(α− k)

(ν + s)α−k
, for α > k.

Notation

• λ - storm arrival rate

• α - shape parameter for the Gamma distribution of the cell duration parameter, η

• ν - scale parameter for the Gamma distribution of η

• κ - ratio of the cell arrival rate to η (i.e. β/η)

• φ - ratio of the storm (cell process) termination rate to η (i.e. γ/η)

• µX - mean cell intensity

• E(X2) - mean of squares of cell intensities

• E(X3) - mean of cubes of cell intensities

• µC = 1 + κ/φ - mean number of cells per storm

Mean

E[Y h
i ] = λhµxµcEη

(
η−1
)
. (A.25)

Variance

Var[Y h
i ] = 2λµc

{
Eη(η

−2)

{
E(X2) +

κµ2
x

φ

}
h+ Eη(η

−3)

{
µ2
xκ(1− φ3)

φ2(φ2 − 1)
− E(X2)

}

− Eη(η
−3e−φηh)

µ2
xκ

φ2(φ2 − 1)
+ Eη(η

−3e−ηh)

{
E(X2) +

κφµ2
x

φ2 − 1

}}
. (A.26)
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Covariance at lag k ≥ 1

Cov(Y h
i , Y

h
i+k) = λµc

{(
E(X2) +

κφµ2
x

φ2 − 1

)[
Eη(η

−3e−η(k−1)h)− 2 Eη(η
−3e−ηkh)

+ Eη(η
−3e−η(k+1)h)

]
− µ2

xκ

φ2(φ2 − 1)

[
Eη(η

−3e−φη(k−1)h)− 2 Eη(η
−3e−φηkh)

+ Eη(η
−3e−φη(k+1)h)

]}
. (A.27)
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3rd central moment

Eη[(Y
h
i − E(Y h

i ))3]

=
λµc

(1 + 2φ+ φ2)(φ4 − 2φ3 − 3φ2 + 8φ− 4)φ3

×

{
Eη

[
η−4e−ηh

](
12φ7µ3

xκ
2 − 24µxE(X2)φ2κ− 18φ4µ3

xκ
2 + 24µxE(X2)φ3κ

− 132µxE(X2)φ6κ+ 150µxE(X2)φ4κ− 42φ5µ3
xκ

2 − 6µxE(X2)φ5κ+ 108φ5E(X3)

− 72φ7E(X3)− 48E(X3)φ3 + 24E(X2)µxφ
8κ+ 12φ3µ3

xκ
2 + 12φ9E(X3)

)

+ Eη

[
η−3e−ηh

](
24µxE(X2)φ4hκ+ 6φ9hE(X3)− 30µxE(X2)φ6hκ+ 6µxE(X2)φ8hκ

+ 54φ5hE(X3)− 24hE(X3)φ3 − 36φ7hE(X3)

)

+ Eη

[
η−4e−ηφh

](
− 48µ3

xκ
2 + 6µxE(X2)φ4κ− 48φµxE(X2)κ+ 6φ5µ3

xκ
2

− 24µxE(X2)φ2κ+ 36µxE(X2)φ3κ− 6µxE(X2)φ5κ+ 84φ2µ3
xκ

2 + 12φ3µ3
xκ

2 − 18φ4µ3
xκ

2

)

+ Eη

[
η−3e−ηφh

](
− 24φhµ3

xκ
2 + 30φ3hµ3

xκ
2 − 6φ5hµ3

xκ
2

)

+ Eη
[
η−4
](

72φ7E(X3) + 48φµxE(X2)κ+ 24µxE(X2)φ2κ− 36µxE(X2)φ3κ− 84φ2µ3
xκ

2

+ 6µxE(X2)φ5κ+ 117µxE(X2)φ6κ+ 39φ5µ3
xκ

2 − 12φ9E(X3)− 138µxE(X2)φ4κ+ 48µ3
xκ

2

− 9φ7µ3
xκ

2 + 48φ3E(X3) + 18φ4µ3
xκ

2 − 21φ8E(X2)µxκ− 12φ3µ3
xκ

2 − 108φ5E(X3)

)

+ Eη
[
η−3
](
− 24φhµ3

xκ
2 − 72µxE(X2)φ6hκ− 36φ5hµ3

xκ
2 + 54φ3hµ3

xκ
2 + 6φ7hµ3

xκ
2

+ 54φ5hE(X3)− 36φ7hE(X3)− 24φ3hE(X3)− 48µxE(X2)φ2hκ+ 12µxE(X2)φ8hκ

+ 6φ9hE(X3) + 108µxE(X2)φ4hκ

)

+ Eη

[
η−4e−2ηh

](
− 12E(X2)µxφ

4κ− 3E(X2)µxφ
8κ+ 15E(X2)µxφ

6κ− 3φ7µ3
xκ

2

+ 3φ5µ3
xκ

2

)

+ Eη

[
η−4e−ηh(1+φ)

](
− 24E(X2)µxκφ

3 − 6E(X2)µxφ
4κ+ 6φ5E(X2)µxκ

+ 24E(X2)µxκφ
2 + 18φ4µ3

xκ
2 − 12φ3µ3

xκ
2 − 6φ5µ3

xκ
2

)}
. (A.28)
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A.5 Random Parameter Bartlett-Lewis Rectangular Pulse

model with dependent intensity-duration (BLRPRX)

Source: derived from the BLRPR model as described in Section 3.7. All expectations are

left in the form Eη
[
η−k e−ηs

]
for various values of k and s, and may be evaluated as:

Eη

[
η−ke−ηs

]
=

να

Γ(α)
× Γ(α− k)

(ν + s)α−k
, for α > k.

Notation

• λ - storm arrival rate

• α - shape parameter for the Gamma distribution of the cell duration parameter, η

• ν - scale parameter for the Gamma distribution of η

• κ - ratio of the cell arrival rate to η (i.e. β/η)

• φ - ratio of the storm (cell process) termination rate to η (i.e. γ/η)

• ι - ratio of mean cell intensity to η (i.e. µX/η)

• f1 - E(X2)/µ2
x (depends on distribution of X, see Appendix A.1)

• f2 - E(X3)/µ3
x (depends on distribution of X, see Appendix A.1)

• µC = 1 + κ/φ - mean number of cells per storm

Mean

E[Y h
i ] = λhιµc. (A.29)

Variance

Var[Y h
i ] = 2λµcι

2

{{
f1 +

κ

φ

}
h+ Eη(η

−1)

{
κ(1− φ3)

φ2(φ2 − 1)
− f1

}

− Eη(η
−1e−φηh)

κ

φ2(φ2 − 1)
+ Eη(η

−1e−ηh)

{
f1 +

κφ

φ2 − 1

}}
. (A.30)

Covariance at lag k ≥ 1

Cov(Y h
i , Y

h
i+k) = λµcι

2

{(
f1 +

κφ

φ2 − 1

)[
Eη(η

−1e−η(k−1)h)− 2 Eη(η
−1e−ηkh)

+ Eη(η
−1e−η(k+1)h)

]
− κ

φ2(φ2 − 1)

[
Eη(η

−1e−φη(k−1)h)− 2 Eη(η
−1e−φηkh)

+ Eη(η
−1e−φη(k+1)h)

]}
. (A.31)
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3rd central moment
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A.6 Bartlett-Lewis Instantaneous Pulse (BLIP) model

Source: Cowpertwait et al. (2007)

Notation

• λ - storm arrival rate

• β - cell arrival rate

• γ - exponential parameter of the storm duration

• η - exponential parameter of the cell duration

• ξ - pulse arrival rate

• µX - mean pulse depth

• E(X2) - mean of squares of pulse depths

• E(X3) - mean of cubes of pulse depths

• E(XijkXijl) - product moment of the depths of 2 pulses within the same cell

• E(XijkXijlXijm) - product moment of the depths of 3 pulses within the same cell

• µp = βξ
γ(γ+η) - mean number of pulses per storm

Mean

E[Y h
i ] = λµpµXh. (A.33)

Variance

Var[Y h
i ] = λµp

{
E(X2)h+ 2µ2

Xβξ

(
e−γh − 1 + γh

ηγ2

)

+ 2ξ

[
E(XijkXijl)− µ2

Xβ
γ

η(γ + 2η)

](
e−(γ+η)h − 1 + (γ + η)h

(γ + η)2

)}
. (A.34)

Covariance at lag k ≥ 1

Cov(Y h
i , Y

h
i+k)

= λµpξ

[
µ2
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(
e−γ(k−1)h(1− e−γh)2

ηγ2
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(
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Xβ
γ

η(γ + 2η)

)(
e−(γ+η)(k−1)h(1− e−(γ+η)h)2

(γ + η)2

)]
. (A.35)
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3rd central moment
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A.7 Random Parameter Bartlett-Lewis Instantaneous Pulse

(BLIPR) model

Source: derived from the BLIP model as described in Section 3.4.

Notation

• λ - storm arrival rate

• α - shape parameter for the Gamma distribution of the cell duration parameter, η

• ν - scale parameter for the Gamma distribution of η

• κ - ratio of the cell arrival rate to η (i.e. β/η)

• φ - ratio of the storm (cell process) termination rate to η (i.e. γ/η)

• ω - ratio of the pulse arrival rate to η (i.e. ξ/η)

• µX - mean pulse depth

• E(X2) - mean of squares of pulse depths

• E(X3) - mean of cubes of pulse depths

• E(XijkXijl) - product moment of the depths of 2 pulses within the same cell

• E(XijkXijlXijm) - product moment of the depths of 3 pulses within the same cell

• µp = κω
φ(φ+1) - mean number of pulses per storm

Mean

E[Y h
i ] = λµpµXh. (A.37)

Variance

Var[Y h
i ] = λµp

{
E(X2)h+
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Covariance at lag k ≥ 1
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3rd central moment
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Appendix B

Fitted parameters in respect of

selected monthly models

In the tables below, we show the fitted parameter sets for selected models, fitted to a five

minute time series of rainfall data from 1931 to 1999 from Bochum in Germany. A separate

model is fitted in respect of each calendar month. The fitting properties are the hourly

mean, plus the coefficient of variation, lag-1 autocorrelation and skewness at timescales of

5 minutes, 1 hour, 6 hours and 24 hours.

For each model, as well as the fitted parameters, we show a number of key properties,

in order to allow a better comparison of models with different parameterisations. The

acronyms used for these properties are given below:

MSIT mean storm inter-arrival time, hours
MSD mean duration of storm activity, hours
MCIT mean cell inter-arrival time, minutes
MCD mean cell duration, minutes
MCS mean number of cells per storm (= µC)
MPC mean number of pulses per cell
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λ µX β γ η MSIT MSD MCIT MCD MCS

Jan 0.022 0.960 5.422 0.231 5.975 45.0 4.3 11.1 10.0 24.5
Feb 0.021 0.942 5.142 0.260 5.310 47.1 3.8 11.7 11.3 20.7
Mar 0.021 1.334 4.478 0.262 7.061 47.2 3.8 13.4 8.5 18.1
Apr 0.022 1.944 3.829 0.271 8.387 45.7 3.7 15.7 7.2 15.1
May 0.023 3.662 3.157 0.370 9.239 44.3 2.7 19.0 6.5 9.5
Jun 0.025 6.431 2.694 0.413 11.154 39.2 2.4 22.3 5.4 7.5
Jul 0.023 10.136 1.672 0.356 12.011 43.5 2.8 35.9 5.0 5.7
Aug 0.023 7.072 2.411 0.408 11.066 43.4 2.5 24.9 5.4 6.9
Sep 0.021 5.306 2.945 0.379 10.470 47.1 2.6 20.4 5.7 8.8
Oct 0.019 2.209 4.071 0.275 8.104 53.3 3.6 14.7 7.4 15.8
Nov 0.023 1.207 5.884 0.276 6.741 42.8 3.6 10.2 8.9 22.3
Dec 0.024 1.059 5.475 0.265 5.906 41.1 3.8 11.0 10.2 21.7

Table B.1: Parameters for Bartlett-Lewis Rectangular Pulse model, with exponential intensity
distribution.

λ µX β γ η ξ MSIT MSD MCIT MCD MCS MPC

Jan 0.023 0.013 0.220 0.078 1.166 124.9 43.0 12.9 272.2 51.5 2.8 100
Feb 0.025 0.008 1.387 0.239 2.547 182.7 39.7 4.2 43.3 23.6 5.8 66
Mar 0.022 0.020 0.188 0.079 1.393 97.8 44.7 12.7 319.8 43.1 2.4 66
Apr 0.024 0.033 0.209 0.094 1.684 77.3 41.0 10.7 287.6 35.6 2.2 43
May 0.028 0.038 1.452 0.420 5.696 144.1 35.8 2.4 41.3 10.5 3.5 24
Jun 0.033 0.086 1.237 0.488 6.101 100.8 30.0 2.1 48.5 9.8 2.5 15
Jul 0.032 0.141 0.707 0.423 6.558 100.9 30.8 2.4 84.9 9.1 1.7 14
Aug 0.031 0.095 1.042 0.477 6.023 103.2 32.2 2.1 57.6 10.0 2.2 16
Sep 0.027 0.068 1.355 0.442 5.826 105.3 37.1 2.3 44.3 10.3 3.1 17
Oct 0.021 0.022 1.652 0.282 4.758 145.8 46.5 3.6 36.3 12.6 5.9 29
Nov 0.029 0.018 0.237 0.107 1.208 107.4 34.8 9.4 253.0 49.7 2.2 82
Dec 0.028 0.014 0.213 0.093 1.183 129.4 35.2 10.8 281.4 50.7 2.3 101

Table B.2: Parameters for Bartlett-Lewis Instantaneous Pulse model, with independent within-
cell pulse depths and an exponential intensity distribution.

λ µX α α/ν κ φ ω MSIT MSD MCIT MCD MCS MPC

Jan 0.024 0.001 2.147 4.591 1.027 0.046 173 42.3 8.9 23.8 24.5 22.4 165
Feb 0.023 0.001 3.680 4.394 1.096 0.058 187 42.6 5.4 17.1 18.8 18.8 177
Mar 0.023 0.001 2.000 5.525 0.712 0.043 204 44.1 8.3 30.5 21.7 16.4 195
Apr 0.024 0.001 2.000 6.740 0.517 0.039 248 41.7 7.7 34.4 17.8 13.4 239
May 0.027 0.001 2.000 7.760 0.437 0.054 413 37.3 4.8 35.4 15.5 8.1 392
Jun 0.031 0.001 2.000 9.607 0.310 0.050 606 32.1 4.1 40.3 12.5 6.2 576
Jul 0.030 0.001 2.000 10.413 0.167 0.039 908 33.4 4.9 69.2 11.5 4.2 874
Aug 0.029 0.001 2.000 9.683 0.293 0.053 663 34.4 3.9 42.2 12.4 5.6 630
Sep 0.025 0.001 2.000 8.901 0.345 0.047 534 40.1 4.8 39.1 13.5 7.4 510
Oct 0.021 0.001 2.126 6.698 0.580 0.041 286 48.4 6.9 29.2 16.9 14.3 274
Nov 0.025 0.001 2.000 5.389 1.055 0.049 182 39.9 7.6 21.1 22.3 21.5 173
Dec 0.026 0.001 2.035 4.584 1.093 0.054 188 37.9 7.9 23.6 25.7 20.1 179

Table B.3: Parameters for Random Parameter Bartlett-Lewis Instantaneous Pulse model, with
common within-cell pulse depths and an exponential intensity distribution (conditional on η);
constraints: α > 2, µX = 001.
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λ ι α α/ν κ φ MSIT MSD MCIT MCD MCS

Jan 0.022 0.164 2.075 5.014 0.996 0.042 46.2 9.1 23.2 23.1 24.6
Feb 0.021 0.177 3.451 4.818 1.063 0.053 47.5 5.5 16.5 17.5 20.9
Mar 0.020 0.196 2.000 5.910 0.695 0.041 48.8 8.3 29.2 20.3 18.0
Apr 0.022 0.241 2.000 7.083 0.509 0.037 46.5 7.6 33.3 16.9 14.8
May 0.023 0.400 2.000 8.127 0.434 0.052 43.9 4.7 34.0 14.8 9.4
Jun 0.026 0.586 2.000 10.015 0.311 0.049 38.9 4.1 38.5 12.0 7.3
Jul 0.024 0.879 2.000 10.777 0.173 0.040 42.3 4.6 64.3 11.1 5.3
Aug 0.024 0.639 2.000 10.109 0.299 0.052 42.3 3.8 39.7 11.9 6.8
Sep 0.021 0.518 2.000 9.257 0.343 0.045 47.4 4.8 37.7 13.0 8.6
Oct 0.019 0.277 2.051 7.006 0.575 0.039 53.8 7.1 29.1 16.7 15.7
Nov 0.023 0.175 2.000 5.832 1.018 0.045 43.9 7.6 20.2 20.6 23.5
Dec 0.024 0.179 2.000 5.018 1.056 0.050 42.0 8.0 22.6 23.9 22.2

Table B.4: Parameters for Random Parameter Bartlett-Lewis Rectangular Pulse model, with
dependent intensity/duration (µX ∝ η) and an exponential intensity distribution (conditional on
η); constraint: α > 2.

λ ι % α α/ν κ φ MSIT MSD MCIT MCD MCS

Jan 0.022 0.096 0.690 2.433 5.284 1.627 0.041 45.0 7.9 11.9 19.3 41.0
Feb 0.022 0.078 0.598 5.877 5.240 2.209 0.050 45.6 4.6 6.2 13.8 45.4
Mar 0.021 0.102 0.661 2.400 6.389 1.253 0.039 46.7 6.9 12.8 16.1 33.1
Apr 0.023 0.086 0.560 3.774 8.185 1.268 0.034 43.4 5.0 7.9 10.0 38.8
May 0.025 0.119 0.531 4.307 9.768 1.272 0.046 40.0 2.9 6.3 8.0 28.8
Jun 0.029 0.136 0.528 2.000 13.819 1.679 0.063 34.3 2.3 5.2 8.7 27.8
Jul 0.025 0.720 0.887 2.000 11.271 0.228 0.044 40.6 4.1 46.7 10.6 6.2
Aug 0.026 0.297 0.688 2.000 12.270 0.802 0.066 38.5 2.5 12.2 9.8 13.2
Sep 0.023 0.205 0.609 2.336 10.782 0.883 0.047 43.0 3.4 11.0 9.7 19.8
Oct 0.020 0.082 0.518 4.964 8.264 1.676 0.035 50.2 4.4 5.4 9.1 49.3
Nov 0.024 0.077 0.595 2.450 6.247 2.169 0.043 42.1 6.3 7.5 16.2 51.2
Dec 0.025 0.102 0.679 2.353 5.297 1.767 0.048 40.7 6.8 11.1 19.7 37.9

Table B.5: Parameters for Random Parameter Bartlett-Lewis Rectangular Pulse model, with
dependent intensity/duration (µX ∝ η) and a Weibull intensity distribution (conditional on η)
with no constraints on the shape parameter; constraint: α > 2.

λ ι α α/ν κ φ c MSIT MSD MCIT MCD MCS

Jan 0.027 0.116 2.001 4.175 0.973 0.043 1.13 36.9 11.2 29.5 28.7 23.7
Feb 0.031 0.103 2.001 3.401 1.077 0.058 1.23 32.7 10.2 32.7 35.3 19.6
Mar 0.024 0.154 2.001 5.144 0.673 0.041 1.09 41.8 9.5 34.7 23.3 17.5
Apr 0.026 0.179 2.001 6.048 0.490 0.037 1.09 38.7 9.0 40.4 19.8 14.3
May 0.026 0.331 2.002 6.897 0.387 0.049 1.07 38.5 5.9 44.9 17.4 8.9
Jun 0.028 0.513 2.001 8.849 0.275 0.046 1.04 35.6 5.0 49.3 13.6 7.0
Jul 0.027 0.728 2.001 9.055 0.138 0.034 1.06 37.5 6.5 95.9 13.2 5.1
Aug 0.027 0.538 2.001 8.365 0.236 0.045 1.06 37.5 5.4 60.8 14.3 6.3
Sep 0.023 0.462 2.001 8.352 0.318 0.043 1.04 43.9 5.5 45.2 14.4 8.3
Oct 0.022 0.216 2.001 6.024 0.554 0.039 1.08 46.1 8.5 35.9 19.9 15.2
Nov 0.026 0.145 2.001 5.225 0.990 0.046 1.07 38.9 8.4 23.2 23.0 22.7
Dec 0.028 0.140 2.001 4.305 1.017 0.050 1.10 35.5 9.2 27.4 27.9 21.2

Table B.6: Parameters for Random Parameter Bartlett-Lewis Rectangular Pulse model, with
dependent intensity-duration relationship ι = µX/η

c and an exponential intensity distribution
(conditional on η); constraint: α > 2.



Appendix C

Plots of observed v fitted

properties for variants of the

BLRPRX model

The models plotted in this Appendix are all versions of the Random Parameter Bartlett-

Lewis Rectangular Pulse model with dependent intensity/duration. In all cases, we have

constrained the shape parameter, α, of the distribution of the cell duration parameter, η,

to be greater than 2. Further details of the individual model variants are given below:

BLRPRX (E) Exponential intensity distribution conditional on duration parameter,
mean cell intensity, µX , proportional to η.

BLRPRX (W) Weibull intensity distribution conditional on duration parameter,
with fixed shape parameter of 0.6; mean cell intensity,
µX , proportional to η

BLRPRXc (E) Exponential intensity distribution conditional on duration parameter,
mean cell intensity, µX , proportional to ηc for some additional
parameter, c.
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Figure C.2: Coefficient of variation by month, fitted v observed (new model variants).
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Figure C.3: Lag-1 autocorrelation by month, fitted v observed (new model variants).
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Figure C.4: Coefficient of skewness by month, fitted v observed (new model variants).
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Figure C.5: Proportion dry by month, fitted v observed (new model variants).
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Figure D.1: Fitted parameters of the BLRP model (with exponential intensity distribution) plus
mean rainfall v selected single covariates. Variability bands plotted at ± 2 standard errors.
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Figure D.1: Fitted parameters of the BLRP model (with exponential intensity distribution) plus
mean rainfall v selected single covariates. Variability bands plotted at ± 2 standard errors.
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Figure D.2: Fitted parameters of the BLRP model (with exponential intensity distribution) v
sea-level pressure (shown on the x-axis), temperature (indicated by different colours), and the zonal
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