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ABSTRACT
We present a framework for the retrieval of highly dynamic
information in an unstructured peer-to-peer network. Non-
exhaustive search in an unstructured network is necessar-
ily probabilistic, and we utilize the probably approximately
correct (PAC) search architecture to determine the required
replication rate for a document in order to guarantee a high
probability of retrieval. Once this replication rate is deter-
mined, the problem becomes how to replicate a new docu-
ment across the network to meet this requirement, without
overloading the communication capacity of the network. To
solve this, we model the problem as rumour spreading, and
use techniques from this field to propagate new documents.
Our document spreading algorithm is designed such that a
document has a very high probability of being replicated to
the required number of nodes, but the probability of spread-
ing to fewer or more nodes is small. Apart from facilitating
rapid and restrained dissemination, our proposed method
also withstands sudden spikes in the data creation rate. We
illustrate the utility of the framework in the context of a
micro-blogging social network. However it could also be used
to index dynamic web pages in a distributed search engine
or for a system which indexes newly created BitTorrents in a
de-centralized environment. Simulations performed on net-
work of 100,000 nodes validate our proposed framework.

1. INTRODUCTION
In general, a micro-blog can be defined as short sentences,

small images, or video links1. Whereas regular blog postings
may contain multiple paragraphs and are usually published
once a week or at a lower frequency, the short nature of a
micro-blog encourages users to publish multiple posts each
day, usually consisting of personal status updates, current
events, news etc. [1, 2].

Over the last few years, micro-blogging social networks
have proved extremely popular with Twitter gaining approx-
imately 200 million users. Internet giants such as Google,
Amazon, Microsoft, Facebook, and Twitter spend hundreds
of millions of dollars each year maintaining vast data centres
to support their centralized services. This high cost may dis-
courage competition and innovation. Furthermore, since a
micro-blogging social network provides a convenient way to

1http://en.wikipedia.org/wiki/Microblog
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report and spread news and opinion, Twitter has been a tar-
get for censorship by authoritarian governments2. Finally,
there have also been several outages of the centralized sys-
tem, which has led to the entire service becoming unavail-
able3. Such concerns of cost, security, fault tolerance and
privacy provide motivation for a decentralized distributed
P2P architecture.

We assume search of an unstructured network is based on
a probabilistic search that queries a fixed number of nodes.
This form of search is known as probably approximately
correct (PAC) search [3], and a strong theoretical framework
exists to predict the probability of a successful search based
on the distribution of documents in the network. Retrieval
and search in a dynamic environment such a decentralized
micro-blogging network is then determined by how quickly
new information can be randomly distributed through the
network. To achieve this rapid replication, we use a modified
rumour spreading algorithm.

Previous research into information retrieval (IR) in peer-
to-peer networks has generally assumed that the information
on the network is relatively static. The main contributions
of this paper is to present a framework for a micro-blogging
social network in an unstructured peer-to-peer network and
in particular
• a framework for micro-blogging in an unstructured P2P

network by decomposition of the problem into proba-
bilistic search and restrained dissemination
• use of transfer buffers to enable restrained and rapid

dissemination
• simulation results confirming our theoretical models

2. PRIOR WORK
P2P networks can be generally categorized into two classes,

namely structured and unstructured networks. Structured
networks, typically based on distributed hash tables (DHTs),
bind data to designated locations within the network. The
advantage of a structured architecture is that the query la-
tency, proportional to the number of nodes a query must
visit, is O(logn) where n is the number of nodes in the net-
work. However this binding makes structured networks par-
ticularly susceptible to adversarial attack [4], and to churn.
Furthermore, since the DHT needs to be kept up-to-date,
structured networks are generally unsuitable for data which
is highly dynamic.

Unstructured networks exhibit no such binding between
data and nodes. As such, they are much less affected by
churn, and are generally more resistant to adversarial at-
tack. However, since a particular document being sought
by a user can be anywhere in the network, the only way to

2http://en.wikipedia.org/wiki/Censorship of Twitter
3http://royal.pingdom.com/2007/12/19/twitter-growing-
pains-cause-lots-of-downtime-in-2007/



guarantee searching the entire collection is to exhaustively
query all nodes in the network. This is, of course, impracti-
cal. To be practical, any search must only query a relatively
small subset of nodes in the network. Thus, search in an
unstructured P2P network is necessarily probabilistic.

Whilst there has been research on P2P information re-
trieval, it has mainly focused on structured networks [5, 6]
or super-node networks [7] where a few stable high-capacity
nodes are chosen to federate the traffic. Whilst these ap-
proaches provide various strategies for text retrieval, they
do not address how a P2P network would cope with highly
dynamic data. To our knowledge there has been no prior
study of highly dynamic information creation and retrieval
in unstructured P2P networks.

Probabilistic storage and search in an unstructured P2P
network can be modelled as follows. Given a set of n nodes in
the network, we assume that the object of interest is stored
on a random subset of r nodes. A query is issued to a ran-
dom subset of z nodes. We are interested in the probability
that the two subsets have a non-empty intersection, as this
implies a successful search for that object.

In the context of information retrieval, this abstract model
is equivalent to known item search. In general, IR is broader
than this, and it is therefore necessary to provide a set of
documents, usually ranked by relevance. The probabilistic
model can be extended to encompass other information re-
trieval requirements, as discussed in Section 2.0.2.

2.0.1 Search in Unstructured Networks
Early work on probabilistic search in unstructured P2P

networks has its origins in the study of probabilistic quo-
rum systems [8] to improve the availability and efficiency of
replicated systems. Ferreira et al. [9] proposed the use of
probabilistic quorum model to describe search in an unstruc-
tured P2P network. Given n nodes in the network, an object
is replicated γ

√
n times onto a random subset of nodes. A

query is also sent to a random subset of γ
√
n nodes. It can

then be shown that the probability of finding the desired

object of the query is at least 1− e−γ
2

.
BubbleStorm [10] provides the underlying network over-

lay required to implement a system where both data and
query are replicated onto nodes, such as the one described
by Ferreira et al [9]. The previous analysis assumed that
an object/document is uniformly randomly replicated across
nodes in the network. Other replication strategies are also
possible [11].

2.0.2 PAC Search
The previous work on randomized search looked at the ex-

pected search length necessary to find a specific document.
Assuming a query is sent to a constant number of nodes,
z, we can also ask what the probability of finding a docu-
ment is. This, and related questions, are addressed in recent
papers on PAC search [3, 12, 13].

In the PAC search architecture, a query is sent to z ma-
chines, and the results returned by the different machines
are consolidated and then displayed to the user. If we are
searching for a single, specific document di, then the proba-
bility of retrieving this document is given by

P (di) = 1− (1− ρ

m
)z (1)

where ρ is the capacity (number of documents indexed) on
each node and m is the number of unique documents in the
network.

In IR, it is more common to be interested in the top-k
retrieved documents. In this case, the correctness of a PAC
search is measured by retrieval accuracy. Let D denote the

set of top-k documents retrieved when searching the full
index, i.e. an exhaustive search, and D′ denote the set of
top-k documents retrieved when querying z nodes. Then the

retrieval accuracy, a, is defined as a = |D∩D′|
|D| = k′

k
where k ′

denotes the size of the overlap of the two sets, i.e. |D ∩D′|.
The size of the overlap in the result sets, k ′ is a random

variable drawn from a binomial distribution, and is given by

P (k ′) = (
k
k′

)P (di)
k′(1− P (di))

k−k′ (2)

Since Equation (2) is a binomial distribution, the expected
value of k′ is E(k′) = kP (di) and the expected retrieval
accuracy µ is

µ =
µk′

k
=
k × P (di)

k
= 1−

(
1− ρ

m

)z
= 1−

(
1− r

n

)z
(3)

where r is the number of nodes a file is replicated on, and
n in the number of nodes in the network. The ratio, r

n
is

referred to as the replication rate. Note that ρ
m
≡ r

n
holds

only for uniform replication.
Equation (3) approximates to 1−e−zr/n [3]. The product

of the replication rate, r
n

, and the number of nodes queried,
z, equivalent to zρ

m
, is the sample index, which is the ratio

of the number of documents in a sample of z nodes, i.e. zρ
to the number of documents in the global collection, m. We
can utilize different combinations of the replication rate, r

n
,

and nodes queried, z, to arrive at the same accuracy. A
more detailed analysis can be found in [3].

2.1 Information Dissemination in P2P networks
Rumour spreading algorithms, also known as gossip spread-

ing protocols or epidemic protocols, provide an efficient way
to rapidly spread information within a network. The theory
of rumour spreading algorithms originates from the mathe-
matical modelling of the spread of infectious diseases within
a community [14].

Suppose we have a group of n individuals, and at t = 0,
only one individual knows the rumour. At time t, let x de-
note the individuals who do not know the rumour (suscepti-
bles), and y denote the number of individuals who know the
rumour (infectives), so that x + y = n. Bailey [14] showed
that the number of individuals who have received the ru-
mour, y, is given by y = n

1+ne−ntη where η is the contact

rate. The contact rate is analogous to the number of nodes
each peer communicates with. Clearly, as t → ∞, y → n
and the entire network is infected. However, we desire in-
formation to be spread only to a portion of the network.

One of the earliest uses of rumour spreading was by De-
mers et al. [15] to synchronize replicated databases. Demers
et al. introduce a new class of nodes which know the rumour
but do not participate in spreading it (stiflers). An infective
becomes a stifler with a probability θ when it is contacted
by another infective.

The study of information diffusion is not limited to com-
puter networks; it has been studied in various different fields
such as P2P recommendation [16] and viral marketing [17].

3. INFORMATION DISSEMINATION AND
RETRIEVAL

Our goals are two-fold. First, a user should be able to
retrieve the micro-blog posts4 of other users he/she is fol-
lowing, with a sufficiently high accuracy by querying z ran-
dom nodes in the network. Second, a user should be able
to perform a keyword search, akin to a search engine, by

4Henceforth, blog is used interchangeably with micro-blog
and post(s) is used as an abbreviation for micro-blog post(s)



sending the query to, again, z random nodes. To retrieve
the required posts, a node in the network makes a request to
z other nodes every s seconds. By randomizing the request
time at each node, we can ensure that the number of nodes
making a request, at any given moment, is roughly equal.

To participate in the network, each node contributes some
disk space. Of this disk space, a proportion is utilized for
storage of the posts, and the remaining proportion for in-
dexing the stored posts.

When a post is published, it must be given some time
to spread through the network before it can be retrieved.
Since all nodes perform a request every s seconds, an appro-
priate value for the time a post is allowed to spread before
becoming available for retrieval is s. Note, this is somewhat
arbitrary.

The load on individual nodes can also be calculated as fol-
lows: Assuming that roughly the same number of peers

(
n
s

)
issue a request at any given second, and each peer selects z
random nodes for its request, the probability of being picked
is simply ( z

n
), and therefore the number of requests any ran-

dom node in the network is expected to receive per second
is n

s
× z

n
= z

s
.

3.1 Node Behaviour
When a node queries other nodes, or is queried by another

node, it transfers its most recent post, thereby spreading the
post into the network. Unfortunately, sending only the most
recent post to contacted nodes does not spread the post into
the network at an acceptable rate. To increase the rate of
spreading, we introduce a transfer buffer, T , which stores
a small fraction of the most recent posts that the peer has
encountered.

To retrieve the posts Node A is following, it makes a re-
quest to z nodes every s seconds. A request contains
• the list, LA, of the user IDs Node A follows
• the most recent post created at Node A
• the posts contained in the transfer buffer TA of Node A

When Node B receives a request, it sends back a response,
which contains
• the most recent posts of all the peers specified in LA,

which are found in its storage area
• the most recent post created at Node B
• the posts contained in its transfer buffer TB

In addition to the request and response, when a post is cre-
ated at a node, it immediately performs a request to z nodes.
By performing a request at the time of post creation, the
newly created post immediately starts to spread through
the network.

To perform a keyword search, the list L is replaced by
the keyword query in the request, and the response contains
the posts matching the query, which are then merged and
re-ranked at the originating node.

At the completion of a request, the responders store the
contents of the requester’s transfer buffer in the storage area.
Similarly, the requester stores the contents of the responders’
buffers in its storage area. After responding to a request or
processing all the responses from the z queried nodes, each
node reconstructs its transfer buffer.

3.2 Transfer Buffer
The goal of selecting posts for the transfer buffer is to

continue spreading newer posts at the expense of older ones.
Since each post is allowed s iterations to spread in the net-
work, we consider only the posts which are s seconds old or
younger. Posts are selected into the buffer with an expo-
nentially decreasing probability which is a function of the
age of the post: P (sel) = e−t/α, where t is is the number of

seconds a post has been in existence and α is the dissemina-
tion parameter. The higher the value of the dissemination
parameter, α, the higher the probability that an older post
will be selected into the buffer and hence the larger the size
of the node’s transfer buffer, |T |. Note, once a post is not
selected into the transfer buffer of a node, it is permanently
set for no further selection at that node even if its age is less
than s seconds. Another way of describing this probabilistic
selection process, is that at every iteration a node stifles a
post with a probability 1− e−t/α.

4. ASSUMPTIONS
We assume that the interval between requests, s, is 30

seconds, which allows for a user experience that is similar to
Twitter5. Equation (3) provides the basis for determining
the required replication rate of a document in order to meet
a required level of accuracy. We assume that the required
accuracy (as defined in Section 2.0.2) is 95% and that the
number of nodes queried is fixed at 25. An accuracy of 95%
implies that on average we will retrieve 95% of the posts we
want by querying z nodes, as compared to searching the en-
tire network. Both assumptions are arbitrary. However, an
accuracy of 95% seems sufficiently high that most users will
be satisfied with the performance. Note that the accuracy
is for one request, which consists of querying z randomly
selected nodes. Performing another request for the same
information increases the accuracy further. The decision
to query 25 nodes is also arbitrary and reflects a compro-
mise. Querying a larger number of nodes will increase the
probability of finding a post, but at the expense of network
bandwidth and latency. We can rearrange Equation (3) to
extract the replication ratio:

R =
r

n
= 1− exp

(
log(1− µ)

z

)
(4)

Setting µ = 0.95 and z = 25, we get r
n

= 0.12, i.e. a
post needs to be replicated to 12% of the network. The
accuracy measure applies to both the retrieval of the followed
posts as well as to searching the contents of all the posts in
the network. Note, since each node makes a request every
s = 30 seconds, 95% accuracy does not imply that a user
will miss 1 in 20 of his/her followed posts. The accuracy is
indeed 95% at the first request, but increases to 99.83% by
the second request, and 99.99% by the third request, since
making two requests to two sets of z random nodes is the
same as making one request to 2z random nodes as long as
the same information is requested.

Next, we define a micro-blog post as text limited to 500
characters including white-space. This is approximately 3.5
times larger than a Twitter message and is large enough for a
small paragraph of text or a couple of sentences with a URL.
We assume UTF-86 encoding of a post, and, on average, 2
bytes per character. Thus each post requires 1 KB of disk
space.

We assume that each node in the network contributes,
on average, 1GB of disk space to support the services. Of
this contributed disk space, we assume that 90% is utilized
for storage of the posts, and the remaining 10% for index-
ing the stored posts. The allocation of 90% of the storage
area (900 MB) to the storage of posts allows 9 million posts
to be stored on each node, assuming a compressed post re-
quires 0.1 KB 7. Since the replication rate is 12%, the total

5https://dev.twitter.com/docs/rate-limiting
6http://tools.ietf.org/html/rfc3629
7Assuming 90% text compression when multiple posts are
stored together in the storage area.



Table 1: Accuracy as a function of the dissemination parameter, α in a network of 100,000 nodes. Note that the keyword search is
performed using BM25 with parameters set using a node’s local statistics

Blog Post Keyword Search
α Retrieval @ 10 @ 20 @ 30

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
14.6 94.885 3.145 84.414 3.336 86.697 3.419 87.828 3.099
14.7 95.032 2.919 84.296 2.760 86.566 3.195 87.809 2.720
14.8 95.457 3.230 84.970 3.213 87.277 2.922 88.361 3.509
14.9 95.552 2.919 85.036 2.692 87.381 3.064 88.684 2.915
15.0 95.963 2.921 85.486 2.805 87.767 2.657 89.085 2.888

Table 2: Accuracy as a function of the size of the dissemination parameter, α, in a network of 100,000 nodes, when each node has
access to global BM25 parameter values

Blog Post Keyword Search
α Retrieval @ 10 @ 20 @ 30

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
14.7 95.032 2.919 91.990 2.655 92.454 2.695 92.645 2.769
14.8 95.457 3.230 92.796 3.362 93.284 3.274 93.338 3.105
14.9 95.552 2.919 92.838 3.047 93.365 3.003 93.628 2.981

number of unique posts (m) that can be stored is 75 mil-
lion8. Note that this number can be increased by reducing
the replication rate and correspondingly increasing the num-
ber of nodes queried. Once full capacity has been reached,
older posts will start to get replaced by newer ones in the
nodes’ storage area. This is probably an acceptable storage
capability, and we note that search for historical tweets on
Twitter is highly variable depending on the popularity of
the tweet9.

For the selected values of our parameters, on average any
random node in the network would have to answer z

s
= 0.83

requests per second or 50 requests per minute.
The system parameters described in this section allow for

various combinations which are under the control of the de-
signer. For instance, we could envisage a network where the
required accuracy is 95%, with s = 60, and z = 50. In
this case, the load on the nodes would be the same as our
previous configuration, but the posts would only need to be
replicated to 6% of the network.

5. SIMULATIONS
Our framework describes the network at a higher level

(overlay) than the network topology. At the abstract level
it can be considered to be a fully connected graph where
only z random connection are active when a node makes a
request, and where the messages travel directly to the tar-
get nodes. We implemented our framework at this abstract
level, i.e. the network of nodes is fully connected. The net-
work topology is outside the scope of this paper, and we refer
the reader to [18, 19] for an extensive overview of informa-
tion dissemination in various types of networks as well as
to [20, 21] for efficient ways to perform P2P bootstrapping,
membership, and random node sampling.

Note that since the number of nodes queried, z = 25, is
small, we assume that each iteration is one second in magni-
tude, i.e. the latency is less than 1 second, and that iteration
and second can be used interchangeably.

At each iteration, 25 new posts are created at random
nodes in the network. This is the normalized rate of post
creation for a network of 1M nodes based upon Twitter’s

8Since, as previously stated, the replication rate ( r
n

= ρ
m

),
where ρ is the number of documents stored on a node and
m is the total number of unique documents in the network.
Thus, m = 75 million.
9Tweetreach (http://help.tweetreach.com/entries/140464-
how-far-back-can-tweetreach-search) estimates that the old-
est retrievable tweets are between 4 and 7 days old.

average of 2,300 tweets per second10 and a 100 million ac-
tive user base11. We also introduced a spike in the post
creation rate where 125 posts are created at random nodes
temporarily. This is motivated by the fact that on Twitter,
a five-fold increase in tweets-per-second is known to happen
when important events occur. For completeness, we also in-
troduced a lull period where the post creation rate drops to
5 posts per second. A blog post creation rate of 25 posts per
second in a network of 100,000 nodes corresponds 10 times
Twitter’s average.

We used the TREC Micro-blog Tweets2011 corpus12 as
the source of posts for each node, i.e. when a node created a
post, it sampled, without replacement, a random post from
the collection. To evaluate the accuracy of keyword search,
we generated a selection of keywords from the collection.
In order to measure the accuracy of keyword search, each
time a node publishes a post, it is also stored in a central
database. When a node performs a keyword search, the
results obtained by the node are compared to the results
obtained searching the centralized database, the latter serv-
ing as a gold standard, being equivalent to performing an
exhaustive search of all nodes in the network.

A node that received a keyword query performed a search
of its local collection using the BM25 ranking algorithm.
Experiments are reported for the cases where the parameters
of the BM25 algorithm are set based on (i) the statistics of
a node’s local collection, and (ii) the statistics of the global
collection of tweets. The querying node received the ranked
lists from each of the z queried nodes and merged them
based on the BM25 scores each node provided. The baseline
search of the centralized database is performed using BM25
and the statistics of the global collection.

We assumed each node follows 10 randomly chosen user
ID’s. This is a rather arbitrary number but seems reason-
able based on the following three Twitter statistics13: 1)
Only half the registered users follow 2 or more people, 2)
Only about 10% of accounts follow more than 50 people,
and 3) 92.4% follow less than 100 people. To evaluate the

10http://news.cnet.com/8301-13506 3-20076022-17/twitter-
tallies-200-million-tweets-per-day/

11Twitter’s user base is estimated to be around 200 million
users. However a fraction of the user accounts are dormant
and another fraction are fake accounts. The active user base
is estimated to be only half of the total user base [22].

12http://trec.nist.gov/data/tweets/
13http://www.sysomos.com/insidetwitter/



Table 3: Replication rate (% of network) as a function of the dissemination parameter, α in a network of 100,000 nodes.

α Overall Fraction of posts replicated to between x-y% of the network
Mean Std Dev 0-5 5-10 10-15 15-20 20-25 25-30 >30

14.6 12.139 5.862 9.729 30.792 30.147 18.864 7.632 2.355 0.481
14.7 12.269 5.946 9.540 30.666 29.755 19.029 8.036 2.398 0.576
14.8 12.622 6.051 8.405 30.013 29.678 19.519 8.887 2.725 0.774
14.9 12.899 6.118 8.038 28.069 30.322 20.478 9.259 2.957 0.877
15.0 13.251 6.223 7.159 26.970 30.305 20.705 10.503 3.257 1.100

Table 4: Replication rate (% of network), blog post retrieval accuracy, and keyword search accuracy as a function of dissemination
parameter value of α = 15.7 and various maximum transfer buffer sizes, |T |max.

Blog Post Keyword Search
|T |max Replication Retrieval @ 10 @ 20 @ 30

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
∞ 15.124 7.003 96.910 2.580 87.010 2.778 89.442 2.558 90.664 2.323
20 12.233 6.342 94.490 2.947 84.069 3.032 86.052 2.805 87.090 2.705
25 12.882 6.546 95.126 2.731 84.982 2.505 86.897 2.948 87.921 2.748
30 13.190 6.568 95.421 2.650 85.396 2.467 87.397 2.510 88.600 2.410

effect of the dissemination parameter, α, we performed 10
simulations for each value of α. Each simulation lasted for
600 iterations, so that each node in the network would make
at-least 20 requests. At each iteration of each simulation, we
recorded the number of posts in each node’s transfer buffer
(|T |). In our simulations, when a node made a request to
retrieve its required posts, it also included a keyword search
within the request. For every node which made a request, at
an iteration, we recorded the accuracy, as defined in Section
2.0.2 for both post retrieval and keyword search. The ac-
curacy values reported are averaged over all iterations of all
simulations of each dissemination parameter (α) value. To
calculate the dissemination of posts, we recorded each post’s
replication at the end of each simulation.

Table 1 illustrates the accuracy for retrieval of followed
posts and retrieval based on keyword search. The post
retrieval accuracy is the proportion of posts retrieved by
querying z nodes relative to performing an exhaustive search
of all nodes. The keyword accuracy @ k is the proportion
of posts in the top-k of the merged results of querying z
nodes in comparison with the top-k results of performing
the identical search on the centralized database.

We note that the accuracy of keyword search is lower than
post retrieval (following) accuracy. This is due to the fact
that the BM25 ranking algorithm requires parameters (e.g.
the number of documents in the collection, the number of
documents matching a query term) that are calculated from
each node’s local collection. These values differ from the cor-
responding values of the global collection. To confirm this,
we re-ran our simulations and made the global values of the
BM25 parameters available to all nodes. Table 2 illustrates
the keyword search accuracies with global BM25 parameter
values. The values are much closer to the expected 95% ac-
curacy. We utilized BM25 to demonstrate the viability of
keyword search within the PAC search architecture. How-
ever, BM25 may, on its own, not be the best method for
ranking very short documents, such as tweets, and query
independent features, such as user influence, need to be im-
plemented.

In our network of 100,000 nodes, a dissemination param-
eter, α, value of 14.8 provides the required 95% retrieval
accuracy. Table 3 shows the replication rate of the posts.
As the value of α increases, the percentage of posts which
spread to a higher percentage of the network increases, as
expected.

We observed that the mean and maximum buffer sizes
were approximately 3.5 and 22 blog posts respectively when
the system was generating 25 posts per second. However,
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Figure 1: The accuracy and mean values of the transfer buffer,
T , in a network of 100,000 nodes and a dissemination parameter
value of α = 15.7 with |T |max = 25.

during a spike, when the blog post creation rate increases
to 125 posts per second, the maximum buffer size increased
to approximately 130 blog posts. This may overwhelm the
few nodes which have very large buffer sizes during a spike.
We, therefore, repeated our simulations with a set maximum
transfer buffer size, |T |max, where the posts are selected into
T from the storage area using the same probabilistic method
until |T | = |T |max.

Table 4 illustrates the effect of an upper-bound on the size
of T on post replication, retrieval and keyword search. We
can achieve the required 95% accuracy with |T |max = 25.
However we need to increase the dissemination parameter,
α from 14.8 to 15.7. Figure 1 shows the post creation rate,
retrieval accuracy, and the mean buffer size for a network
of 100,000 nodes, α = 15.7, and |T |max = 25. The figure
demonstrates that setting a maximum buffer size does not
impede the ability of the system to respond to a spike or a
lull in the post creation whilst maintaining the required 95%
accuracy. The important point to note is that the accuracy
remains at around 95% even when there is a spike or lull in
the post creation rate, and our proposed system can auto-
matically deal with spikes which are encountered in actual
centralized systems such as Twitter.

6. CHURN
Churn is an important factor in any P2P application. We

refer the reader to [23] for an overview of churn in P2P
networks. Typically, a node may join the network for periods
(mean session lengths) from 1 minute to 1 hour, depending
on the type of P2P application, e.g. Gnutella, BitTorrent.
Further, it has been observed that the network generally



Table 5: The transfer buffer size, |T |, blog post retrieval ac-
curacy, and keyword search accuracy @10 as a function of the
dissemination parameter, α, for a network of 100,000 nodes un-
der heavy churn and a maximum buffer size of |T |max = 25.

|T | Blog Post Keyword @ 10
α Mean Std Mean Std Mean Std

15.7 4.757 0.356 92.526 2.682 84.204 2.008
17.2 6.310 0.407 95.367 2.739 87.378 2.526
17.3 6.374 0.494 95.460 2.554 87.470 2.515
17.4 6.490 0.266 95.524 2.655 87.601 2.474

consists of a small portion of highly stable nodes with the
remaining peers exhibiting high turnover with session times
following an exponential distribution.

We tested our framework with a high level of churn by
setting the mean of the session time exponential distribution
to just 60 seconds. We initiated a network of 100,000 nodes
with a maximum transfer buffer size |T |max = 25, a creation
rate of 25 posts per second, and 50,000 active nodes. Churn
was then induced into the simulation. New nodes join with
a Poisson arrival rate to balance out the exponential exit
rate [10].

Table 5 illustrates the effect of churn on the accuracy of
followed post retrieval and keyword search. As expected, the
net effect of churn is to reduce the post retrieval accuracy as
well as the the keyword search accuracy. The dissemination
of the posts with α = 15.7, which was previously sufficient
to obtain our desired retrieval accuracy (Table 4), is now
reduced by heavy churn. Of course, we can compensate for
the effects of churn by increasing the replication rate of posts
or by querying more nodes in the network. We can observe
from Table 5, that increasing the value of the dissemination
parameter, α, from 15.7 to 17.3 restores the accuracy to
desired levels.

7. CONCLUSIONS
This paper considered the design of a micro-blogging so-

cial network in an unstructured peer-to-peer network. The
general problem is one of probabilistically retrieving highly
dynamic information, and therefore the solution is applica-
ble to indexing dynamic web pages in a distributed search
engine or for a system which indexes newly created BitTor-
rents in a de-centralized environment.

We analyzed the problem as into one of rapid yet re-
strained dissemination and this problem is solved using our
proposed transfer buffers. Simulations of a 100,000 node
network, supporting a normalized post creation rate of mag-
nitude 10 larger than Twitter, provided empirical support
to the theoretical analysis and we were consistently able to
achieve the required 95% accuracy. Importantly, our pro-
posed system was able to adapt to spikes in the post creation
rate. It is worthwhile emphasizing that 95% accuracy does
not imply that a user will miss 1 in 20 of his/her followed
posts. As each node makes a request every s seconds, the
accuracy is indeed 95% at the first request, but increases
to 99.83% by the second request, and 99.99% by the third
request. Note, the second and subsequent requests are not
redundant, but in fact necessary, because they facilitate the
dissemination of posts via the buffers of the request and the
response.

Apart from churn, P2P networks are also afflicted by the
problem of malicious nodes which censor, spam or poison
results or try to disable the network via flooding. Various
solutions have been proposed to identify and eliminate ma-
licious nodes [24]. Nodes can also be encouraged to behave
responsibly and contribute fairly [25]. We plan to investi-
gate these solutions within our proposed framework as part
of our future work.

In our simulations, each user follows 10 other randomly
chosen users and blogs are created randomly over the net-
work. Analysis of Twitter shows that the blog creation rate
of individual users is not constant, but follows a power law
distribution, as do the follower and followed by statistics.
We plan to incorporate these statistics into our framework
as part of our future work.
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