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Abstract
In airport baggage scanning it is desirable to have a system that can scan
baggage moving at standard conveyor belt speeds. One way to achieve this is
to use multiple electronically switched sources rather than a single source on a
mechanically rotated gantry. In such a system placing the detectors opposite the
sources would obstruct the beam, so they have to be offset (hence offset multi-
source geometry). This results in asymmetrical axial truncation of the cone
beam projections. As such projections do not constitute complete data in the
sense of integral geometry, the standard cone beam reconstruction algorithms
do not apply. In this series of papers we introduce a new family of rebinning
methods for reconstruction from axially asymmetrically truncated cone beam
projections. In the first paper we discussed the approximation of the data on
the multi-sheet surface with the truncated projection data obtained from offset
multi-source geometries. In this second paper we focus on the recovery of
the volumetric image from the reconstruction of data rebinned to multi-sheet
surfaces. Multi-sheet rebinning effects an implicit relation between the fan
beam transforms on the individual sheets and the rebinned data. This relation
in conjunction with the linearity of the ray transform allows us to formulate
the deconvolution problem for the recovery of the volume from a stack of
reconstructed images on multi-sheet surfaces. We discuss the errors in the
right-hand side of the deconvolution problem (reconstruction on multi-sheet
surfaces) resulting from rebinning approximation. We introduce convolution
matrix models based on the distribution of the distances of the rays from the
multi-sheet surface, which considerably improve the data model fit and in turn
lead to a superior solution. Multiple strategies for solution of the deconvolution
problem are discussed and an efficient and robust implementation is presented,
which makes the method capable of real time reconstruction. We conclude with
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some reconstruction results from simulated as well as real data collected with
a Rapiscan RTT80 scanner.

(Some figures may appear in colour only in the online journal)

1. Introduction

The demand for fast (near real time) fully three-dimensional x-ray imagery motivated the
development of a new scanning geometry offset multi-source geometry. In standard cone beam
scanners, the detector is placed centrally opposite the source of radiation, and the source-
detector assembly rotates around the object while the object is translated resulting in a helical
trajectory of the source relative to the object. In contrast in the offset multi-source geometry the
mechanical motion of the gantry was eliminated by introduction of a static ring of electronically
switchable sources and a static cylindrical array of detectors, which is axially offset from the
ring of sources, so that the (back of the) detector array does not obstruct the x-ray cone
emitted from the active source. As a consequence the measured cone beam projections are
axially asymmetrically truncated i.e. data is collected only in a subset of the Tam–Danielsson
window, rendering standard cone beam reconstruction techniques not applicable.

In this series of papers we propose a new family of multi-sheet rebinning methods, for
reconstruction from the axially truncated projections. Multi-sheet rebinning methods [1, 3]
combine analytical and numerical techniques to provide efficient methods with local data
dependence, as is the case for single-sheet surface rebinning methods [4–7, 9–12, 16, 19, 20],
while allowing for high resolution reconstruction from, in the sense of integral geometry,
severely limited data.

Multi-sheet rebinning methods comprise three stages. First the truncated cone beam
projections are rebinned to a stack of two-dimensional (2D) problems, each corresponding to
fan beam transform on a multi-sheet surface. In the second stage the fan beam data on multi-
sheet surfaces is reconstructed using full scan filtered backprojection algorithm. Finally, the
reconstructed data on a stack of multi-sheet surfaces is deconvolved to provide the volumetric
image, as opposed to simple interpolation used in single-sheet surface rebinning methods.
The approximation of the data on multi-sheet surfaces and the problem of finding an optimal
multi-sheet surface and rebinning function pair was the subject of the first paper in this series
[3]. This second paper deals with the axial deconvolution problem.

The remainder of the paper is organized as follows. In the next section we briefly
summarize the results on rebinning to multi-sheet surfaces obtained in [3]. In section 3
we discuss reconstruction of the fan beam data on a multi-sheet surface. The impact of the
rebinning errors is discussed in section 4. In section 5 we set up the deconvolution problem for
the recovery of the volumetric image from a stack of reconstructed images on the multi-sheet
surfaces. We introduce a realistic convolution matrix model based on the back projection
formulae and demonstrate its effectiveness compared to a simple model assuming that the
rebinning of the rays to the multi-sheet surface is exact. In section 6 we discuss an efficient
implementation of the deconvolution step. Different solution strategies for the deconvolution
problem are discussed in section 7. Section 8 demonstrates the performance of the multi-sheet
surface rebinning methods on simulated phantom data as well as the real data acquired with
a Rapiscan Systems RTT80 scanner (RTT). We conclude with a summary of the multi-sheet
surface rebinning methods and some prospective research directions.
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2. Multi-sheet surface rebinning

Offset multi-source geometry as deployed in the Rapiscan RTT80 scanner features a static ring
of sources, and multiple static rings of detectors located in axially offset planes parallel to
the plane of sources (here, the xy-plane). The object moves through the system on a conveyor
belt in the z-direction. This results in an effective trajectory of the source respective to the
object, which can be described as a function z : [−π, (2t − 1)π ] → Iz ⊂ R. Here t is
the winding number of the trajectory i.e. the number of activations of one physical source λ

within one period of z. In the following the cone beam rays are parametrized by the Cartesian
coordinates (u, v) of their intersection with a virtual detector plane D(λ), containing the
z-axis, perpendicular to the xy-plane and facing the active source λ at the right angle.

Two sets of coordinates in a plane are used throughout the paper: the Cartesian coordinates
(x, y) and the ray based coordinates (λ, u, l), where the source λ ∈ [−π, π ) along with the
horizontal coordinate in the virtual detector plane, |u| � umax, uniquely identify a ray in a
plane, while the parameter l fixes a point along the ray (λ, u). The transformation from (λ, u, l)
to the (x, y) coordinates and its inverse are

X (λ, u, l) = R cos λ + l(−R cos λ − u sin λ)

Y (λ, u, l) = R sin λ + l(−R sin λ + u cos λ), (1)

L(λ, x, y) = R − x cos λ − y sin λ

R

U (λ, x, y) = R(−x sin λ + y cos λ)

R − x cos λ − y sin λ
, (2)

respectively, where R denotes the radius of the ring of sources.
The offset multi-source geometry over one effective trajectory period maps the spacial

density function f (x, y, z) which vanishes outside of the bounded cylinder

� = {(x, y, z) ∈ R
3 | x2 + y2 � R2

FOV, z ∈ Z = [zbot, ztop]} (3)

into the 3D ray transform g(λ̃, u, v)

g(λ̃, u, v) =
√

R2 + u2 + v2

∫ l0(u)+�l(u)

l0(u)−�l(u)

dl f (X (λ̃, u, l),Y (λ̃, u, l), z(λ̃) + lv) (4)

where

λ̃ ∈ [−π, (2t − 1)π ), u ∈ [−umax, umax], v ∈ [v1(λ̃, u), v2(λ̃, u)] > 0,

with v1(λ̃, u), v2(λ̃, u) projections of the first and last cylindrical detector row on the virtual

planar detectorD(λ̃) and umax = RRFOV/

√
R2 − R2

FOV. The integration limits in (4) correspond

to the intersection points of the planar ray (λ̃, u) with the transaxial field-of-view, where

l0(u) = R2/(R2 + u2),

�l(u) =
√(

u2
max − u2

)(
R2 − R2

FOV

)
/(R2 + u2). (5)

In the first paper in this series we defined the multi-sheet surface ζ0 as an ordered set of
surfaces (sheets) that are graphs of functions ζ s

0 , s = 1, . . . , S, where S = 2t is the number of
sheets. The 2D fan beam transform on the multi-sheet surface ζ0 (including all its sheets) was
defined as

p0(λ, u) =
S∑

s=1

ps
0(λ, u), λ ∈ [−π, π ), |u| � umax (6)

3
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with

ps
0(λ, u) =

√
R2 + u2

(
S∑

i=1

∫
�i

dl fζ s
0
(X (λ, u, l),Y (λ, u, l))

)
, (7)

a 2D fan beam transform on a single sheet of the surface, ζ s
0 . Here fζ s

0
(x, y) = f (x, y, ζ s

0 (x, y)),
a 2D image selected from a function f defined on a 3D volume �, as its values at the
intersection of the volume and the sth sheet of the surface z = ζ s

0 (x, y).
The rebinning of the offset multi-source geometry data to the multi-sheet surface ζ0 is

prescribed by the rebinning function V0 : [−π, (2t − 1)π ) × [−umax, umax] → R+

g0(λ̃, u) =
√

R2 + u2

∫ l0(u)+�l(u)

l0(u)−�l(u)

dl f (X (λ̃, u, l),Y (λ̃, u, l), z(λ̃) + lV0(λ̃, u)). (8)

The rebinned data g0 approximates the following mixed 2D fan beam transforms on the
multi-sheet surface ζ0

g̃(r)
0 (λ, u) =

√
R2 + u2

(
S∑

i=1

∫
�i

dl f
ζ

μi (r)
0

(X (λ̃, u, l),Y (λ̃, u, l))

)
, r = 1, . . . , t, (9)

where �i denotes the ith segment of the ray (λ̃, u). The superscript r = 1, . . . , t refers to the
rth activation of the same physical source, λ ∈ [−π, π ), within one period of the effective
trajectory, λ̃ ∈ [−π, (2t − 1)π ), and is implicitly defined through the relation

λ̃ = λ + (r − 1)2π. (10)

The sheet ζ s
0 on which f is integrated along the ray segment �i is determined by the mapping

μi(r) = s,

μi : {1, . . . , t} → {1, . . . , S}, i = 1, . . . , S (11)

which in the interval �i, assigns the ith ray segment (λ̃, u, v, l), l ∈ �i of the r(λ̃)th ray (λ̃, u, v)

to the sheet ζ s
0 .

The following implicit relation holds between the fan beam transforms on the S = 2t
sheets and the t mixed fan beam transforms on the multi-sheet surface

p0(λ, u) =
S∑

s=1

ps
0(λ, u) =

t∑
r=1

(
g̃(r)

0 (λ, u) + g̃(r)
0 (λc, uc)

)
, (12)

where (λc, uc) := (λ + π − 2 atan2(u, R),−u)3 denotes the complementary ray to (λ, u) in a
plane (reversed ray (λ, u)). As each g̃(r)

0 (λ, u) and g̃(r)
0 (λc, uc) can be approximated using the

rebinned offset multi-source data, (12) provides an approximation to p0.

3. Reconstruction on a multi-sheet surface

By definition the fan beam transform on the multi-sheet surface p0, λ ∈ [−π, π ), |u| � umax is
a sum of fan beam transforms on individual sheets ps

0, s = 1, . . . , S. Substituting the expression
for the transform on an individual sheet (7) into the definition of p0 (6) and interchanging the
order of summation and integration using linearity of those operators reveals that p0 is also
the fan beam transform of the superposition of the images on all sheets of the surface

p0(λ, u) =
S∑

s=1

ps
0(λ, u) =

√
R2 + u2

(
S∑

i=1

∫
�i

dl
S∑

s=1

fζ s
0
(X (λ, u, l),Y (λ, u, l))

)
. (13)

3 Here we define atan2(y, x) := arg(x + iy) ∈ [−π, π ).
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Figure 1. Effective sampling of a two-sheet surface: (a) bottom sheet, (b) top sheet for the geometry
in section 8. The rings outside inwards are: sources (blue), detectors (red) and boundary of the
field-of-view (black). In order not to obscure the plot, both the sources and detectors have been
subsampled by factor 96.

Thus the task is to reconstruct the image fζ0 := ∑S
s=1 fζ s

0
containing superposed information

about the images on all individual sheets for subsequent deconvolution (unmixing the sheets).
As in standard rebinning methods this stage is inherently parallelizable as the 2D problems on
multi-sheet surfaces are independent from one another.

3.1. Sampling of the multi-sheet surface

In the ideal continuous case, the domain of the full scan fan beam transform in the plane for each
ray contains the corresponding complementary ray and vice versa. Hence in the continuous
case, it does not matter if the integral is taken along the primary or the complementary ray.
However, as soon as we move to discretization, the exact complementary ray is in general not
present in the domain of the discrete transform. A notable exception is what Natterer terms
the PET geometry [15], in which the source and the detector positions coincide. The offset
multi-source geometry could be in principle realized so that its projection on the transaxial
plane is a PET geometry, by choosing the radius of the cylinder of detectors to be equal to the
radius of the ring of sources and placing the sources and detectors at the same locations in
the xy-plane but axially displaced from one another. The PET geometry is theoretically very
appealing for its sampling efficiency [15], also it can be rearranged to parallel projection data.
If the offset multi-source geometry is not a PET geometry, the assignment of ray segments
to sheets (11), μi, i = 1, . . . , S, in the mixed fan beam transform (9) will result in different
effective sampling on different sheets. Figure 1 illustrates the sampling on sheets of a two-sheet
surface.

3.2. Filtered backprojection on multi-sheet surface

As p0 is a full scan fan beam transform, we can invert it using any full scan reconstruction
formula.

While using fan beam filtered backprojection for inversion of p0 we encounter two sources
of transaxial error due to discretization. Recall that p0(λ, u) = ∑t

r=1

(
g̃(r)

0 (λ, u)+g(r)
0 (λc, uu)

)
.

5
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As explained in the previous section after the discretization in general g̃(r)
0 (λc, uu) is not

available for a given (λ, u) thus it will need to be interpolated from neighboring values of
g̃(r)

0 . The second problem is the cylindrical detector in the RTT geometry, in particular the
non-uniform sampling it effects on p0(λ, u) along u. Mapping to arc instead of flat detector
fan beam geometry also results in non-uniform sampling.

In contrast, in parallel geometry or PET geometry (which is a special case of parallel
geometry) with even number of projections over 2π , for each ray (λ‖, u‖) (λ‖ ∈ [−π, π )

and |u‖| � u‖
max are the parallel projection angle and detector coordinate, respectively) the

complementary ray (λ‖
c, u‖

c ) := (π+λ‖,−u‖) is also contained in the domain of the discretized
transform, thus the discretized sinogram preserves the symmetry of the Radon transform
R f2D(λ‖, u‖) = R f2D(π + λ‖,−u‖). Therefore a preferable solution is to interpolate the
parallel projection data or the PET data p‖

0(λ
‖, u‖) and reconstruct using parallel filtered

backprojection.
From (12) we obtain for the parallel transform on multi-sheet surface

p‖
0(λ

‖, u‖) =
S/2∑
r=1

(
g̃‖,(r)

0 (λ‖, u‖) + g̃‖,(r)
0 (λ‖

c, u‖
c )
)

=
S/2∑
r=1

(
g̃‖,(r)

0 (λ‖, u‖) + g̃‖,(r)
0 (π + λ‖,−u‖)

)
. (14)

As the mixed fan beam transform is non-redundant, the interpolation of g̃(r)
0 (λc, uc) and the

fan to parallel interpolation g̃‖,(r)
0 should use only proximate rays going in the same direction

as the interpolated ray.
Due to the symmetry it is sufficient to reconstruct using only the first half of the parallel

sinogram, λ‖ ∈ [−π, 0),

fζ0 (x, y) =
∫ 0

−π

dλ p‖,F
0 (λ‖,U‖(λ‖, x, y)), (15)

where p‖,F
0 denotes the filtered parallel projection

p‖,F
0 (λ‖, u‖) =

∫ u‖
max

−u‖
max

du′ p‖
0(λ

‖, u′)hramp(u
‖ − u′), (16)

with hramp the ramp filter and U‖(λ‖, x, y) = x cos λ‖ + y sin λ‖.

4. Errors in the rebinned sinograms

In the previous section we discussed the reconstruction of the exact up to sampling full
scan fan beam transform on the multi-sheet surface (12), p0. In practice however, we only
have the rebinning approximation to p0. As the rebinned cone beam rays, g0, in general do
not exactly lie in the surface (in contrast to g̃0), this approximation suffers from errors in
the axial direction. One consequence of the axial error is axial blurring in the reconstructed
volumetric image. Incorporating blur model into the axial deconvolution problem significantly
reduces this effect as explained in the next section. Another manifestation of the rebinning
errors is inconsistency of the rebinned sinogram meaning that it is not a Radon transform of
any nonnegative compactly supported function. Filtered backprojection of such an erroneous
sinogram introduces an additional numerical error to the reconstruction on the multi-sheet
surface. In contrast to the axial blur, these errors are non-local in the xy-plane.

The axial resolution phantom defined in section 8.3 was designed to reveal the axial errors
due to rebinning. The error is expected to be the largest for a multi-sheet surface cutting

6
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Figure 2. (a) RTT data, gRTT
378 , for the geometry in section 8 rebinned to ζ378 (subscript 378 refers to

the axial index in figure 5) with λ the source and φ the detector angular coordinates equispaced in
the interval [−π, π ). (b) Parallel 2π -sinogram, g‖

378, obtained with an unidirectional fan to parallel
rebinning with linear interpolation from gRTT

378 . (c) Rebinning approximation to p‖
378, λ ∈ [−π, 0)

(app. p‖
378). (d) Filtered backprojection of the rebinning approximation to p‖

378 (B(app.p‖
378)).

through the phantom where the frequency of variation of the attenuation coefficient is the
highest, here ζ378 (378 refers to the index of multi-sheet surface in figures 4 and 5). Figure 2(a)
shows the data rebinned to the multi-sheet surface ζ378, gRTT

378 , presented in a format we call
an RTT sinogram with the abscissa indexing the full ring of sources, λ ∈ [−π, π ), and the
ordinate the full ring of detectors, φ ∈ [−π, π ). The 2π -parallel sinogram, g‖

378, obtained
from gRTT

378 with a fan to parallel rebinning algorithm is depicted in figure 2(b). The rebinning
approximation to p‖

378 in figure 2(c) was computed as the sum of rebinning approximations
to the primary and complementary rays, g‖

378(λ
‖, u‖) + g‖

378(π + λ‖,−u‖), q.v. (14). Due to
the Radon transform symmetry, it is sufficient to approximate p‖

0 in the interval [−π, 0). The
rebinning approximation to p‖

378 is an inconsistent sinogram, which gives rise to streak artifacts
concentrated around the edges of the cylinders in the reconstructed image in figure 2(d).

On the other hand, figure 3(a) shows the axially blurred phantom image on a multi-
sheet surface ζ378, (A f̂ )378 := (Ai j f̂ i j)378, i = 1, . . . , I, j = 1, . . . , J, obtained using the
convolution matrices Ai j defined in (25) and the point spread function (PSF) model (28). The

7
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Figure 3. (a) Axially blurred phantom image, (A f̂ )378, on multi-sheet surface fζ378 obtained with
the parallel backprojection model (25), (28) for the geometry in section 8. (b) Radon transform
(π -parallel sinogram) of the axially blurred phantom image (A f̂ )378 in (a). (c) Discrepancy between
the model in (a) and the reconstruction from the rebinned data in figure 2(d). (d) Discrepancy
between the Radon transform of the axially blurred phantom image in (b) and the rebinned
π -parallel sinogram in figure 2(c).

corresponding π -parallel sinogram, R((A f̂ )378) is displayed in figure 3(b), and it is obviously
consistent.

Figures 3(c) and (d) show the difference between the model of the blurred phantom image,
(A f̂ )378 (figure 3(a)) and the image reconstructed from the data rebinned to the multi-sheet
surface ζ378 (figure 2(d)) and their corresponding π -parallel sinograms, respectively. Thus
figure 3(d) depicts the component of the error in the data not captured by the PSF model.
Nonetheless, in the image space the densities seem to be quite faithfully reproduced with the
PSF convolution model and the errors take the form of streak artifacts concentrated around
the edges of the cylinders. Some image post-processing of the reconstructions on multi-
sheet surfaces could be employed prior to the axial deconvolution to mollify those artifacts.
Alternatively, algebraic reconstruction methods enhanced with e.g. sparsity constraints could
be used for the reconstruction on the multi-sheet surfaces instead of filtered backprojection.
Practical applications would however require extremely efficient implementation of the latter.
In section 7.3 using local intra-block regularization during the axial deconvolution was
suggested as a way of suppressing local variations in the xy-plane at a cost of solving

8
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Figure 4. Idealized axial convolution model (19), Ai j
none f̂ i j , versus the reconstruction on the multi-

sheet surface, b̃i j , for the axial resolution phantom defined in section 8.3: (a) A400,400
none f̂ 400,400

(dashed blue), b̃400,400 (continues red); (b) A512,288
none f̂ 512,288 (dashed blue), b̃512,288 (continues red).

While jumps in the right-hand sides b̃i j are smeared out due to rebinning approximation, any
nontrivial linear combination of the columns of the system matrix Ai j

none contains sharp jumps.

larger least-squares problems with a single right-hand side. Unfortunately, the size of the
blocks directly relates to both the effectiveness of streak removal and the increase of the
computational cost.

5. Axial deconvolution

5.1. Idealized model of the convolution matrix

In section 3 using linearity of the fan beam transform we demonstrated that pζm is the fan
beam transform of the superposition of images on all sheets of the multi-sheet surface ζm.
Therefore, we can first filter backproject the fan beam transform on the multi-sheet surface
pζm (reconstructing an image fζm = ∑S

s=1 ζ s
m which is a superposition of images on all the
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Figure 5. Axial convolution PSF model (25), (28), Ai j
‖ f̂ i j , versus the reconstruction on the multi-

surface, b̃i j , for the axial resolution phantom defined in section 8.3: (a) A400,400
‖ f̂ 400,400 (dashed

blue), b̃400,400 (continues red); (b) A512,288
‖ f̂ 512,288 (dashed blue), b̃512,288 (continues red).

sheets of the surface) and subsequently in the image domain solve the system of simultaneous
equations (17) to recover the volumetric density function f

fζm (x, y) =
S∑

s=1

fζ s
m
(x, y), (x, y) ∈ �2D, m ∈ MZ, (17)

where MZ := {m : ζm ∩ � �= ∅} is the set of indices of multi-sheet surfaces intersecting
the bounded cylindrical volume �. The equation system (17) is coupled due to intersection
between surfaces filling the volume �. A unique solution exists provided the multi-sheet
surfaces sample the volume � densely enough. Furthermore, the system (17) decouples into
independent blocks for each fixed value of (x, y) as it is the case for the interpolation in
single-sheet surface rebinning.

In the numerical procedure the function f is reconstructed on a voxel grid. We define a grid
of cubical voxels, where x̂ = (x1, x2, . . . , xI ), ŷ = (y1, y2, . . . , yJ ) and ẑ = (z1, z2, . . . , zK )

are the centers of the voxels along x, y, and z axis, respectively. On this grid we have the
discretized versions of the volumetric density function f̂ (i, j, k) = f (xi, y j, zk) and the

10
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multi-sheet surface ζ̂m(i, j) : ζ̂ s
m(i, j) = [(ζ s

m(xi, y j) − z1)/hz]hz + z1, s = 1, . . . , S, where
[·] performs the rounding to the nearest integer and hx, hy, hz denote the voxel size along the
respective axes.

Taking advantage of the independence of the equations between different pairs (xi, y j),
i ∈ 1, . . . , I, j ∈ 1, . . . , J, the discrete version of (17) decouples into I × J much smaller
mutually independent systems of equations

Ai j f̂ i j = bi j (18)

where

Ai j
m,k =

S∑
s=1

χk(ζ̊
s
m(i, j)), m ∈ MZ, k : zk ∩ Z �= ∅ (19)

bi j
m = f

ζ̂m
(xi, y j), m ∈ MZ (20)

f̂ i j = f (xi, y j, zk), k : zk ∩ Z �= ∅. (21)

Here χb : Z → {0, 1} is the following set indicator function

χb( j) =
{

1, j = b
0, j ∈ Z \ {b} (22)

and ζ̊m : ζ̊ s
m(i, j) = [

(ζ s
m(xi, y j) − z1)/hz

]+ 1, s = 1, . . . , S is the voxel valued multi-sheet
surface. All of the independent systems (18) can be solved in parallel.

In practice we do not have the exact image on the multi-sheet surfaces f
ζ̂m

, but only its
approximation obtained from reconstructing the data rebinned to ζm which results in erroneous
right-hand side b̃i j = bi j + εi j and hence inconsistency of the system (18). In the next section
we will show that better reconstructions can be obtained considering backprojection based
models of the axial convolution matrix, which will result in a smaller data misfit.

5.2. Backprojection based model of the convolution matrix

The axial point spread function PSFm := PSFζm associated with the surface ζm captures the
distribution of the axial distances of the rebinned rays from the surface at every point (x, y). As
the PSFm(x, y) depends only on z(λ̃), ζm(x, y),Vm(λ̃, u), whenever the problem of computing
(ζm(x, y),Vm(λ̃, u)) can be reduced to computing a single function pair (ζ0(x, y),V0(λ̃, u)),
the corresponding PSFm can be obtained from the PSF0 by means of rotation

PSFm(x, y) = PSF0(x cos(λm − λ0) + y sin(λm − λ0),−x sin(λm − λ0) + y cos(λm − λ0)).

Recall, that the reconstructed image on the multi-sheet surface is

fζm (x, y) = B(pm(λ, u)),

where B is the filter backprojection of the general form

B(pm(λ, u)) =
∫ π

−π

dλW (λ, x, y)pF
m(λ,U (λ, x, y)). (23)

If we disregard the filtering (which corresponds to filtering with the Dirac delta kernel), we
are left with backprojection, which is a local operation in the xy-plane in the sense that only
those rays crossing the point (x, y) contribute to the backprojected image at this point each
with the backprojection weight W (λ, x, y).

We define the PSF0(x, y) as the ordered set of histograms PSFζ s
0
(x, y) of the axial distances

of the rebinned rays from the sheet ζ s
0 at the point (x, y) weighted by the corresponding

11
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backprojection weights

PSFζ s
0
(x, y, b)= 1∫ ′(2t−1)π

−π
dλ̃W (λ̃, x, y)

×
∫ ′(2t−1)π

−π

dλ̃W (λ̃, x, y)χb

([
1

hz

(
z(λ̃)+L(λ̃, x, y)V̂ (λ̃,U (λ̃, x, y))−ζ̂ s

0 (x, y)
)])

,

(24)

where
∫ ′ integrates only over the sheet ζ s

0 , i.e. λ̃ : μi
(⌊

λ̃+π
2π

⌋+ 1
) = s with i : L(λ̃, x, y) ∈ �i.

Notice, the use of ζ̂ s
0 and V̂0 which refer to the discretized version of ζ s

0 and quantized version
of V0, respectively. By quantization we mean that V0 has been projected on the cylindrical RTT
detector, binned to the detector rings and subsequently projected back onto the virtual central
detector plane D(λ̃). As PSF is used to setup a convolution matrix for the discrete problem,
using the discretized quantities results in a model which closer matches the data.

This definition allows us to retain the benefit of independence of the deconvolution
problems in the xy-plane. For each point (xi, yi) in the grid we individually assemble the
convolution matrices according to the following formula

Ai j
m,k =

S∑
s=1

PSFζ s
m

(
xi, y j, k − ζ̊ s

m

)
, m ∈ MZ, k : zk ∩ Zext �= ∅, (25)

where Zext ⊃ Z is an extension of the Z interval to accommodate the side lobes of PSFζm . Note,
that (19) and (25) have the same form, thus formally the idealized convolution matrix can be
thought of as constructed using (25) and

PSFnone
ζ s

m
(xi, y j, b) = χ0(b). (26)

This allows for unified treatment of the idealized and PSF model convolution matrices.
Obviously, the PSF should be computed with backprojection formula matching the one

used in the filtered backprojection on the multi-sheet surface. In the following we are going to
give explicit expressions for the PSF models for different backprojection formulae.

5.3. Full scan fan beam backprojection

In section 3.2 of [3] we introduced a concept of a non-redundant fan beam transform. In
a nutshell, the full scan fan beam transform in a plane is a sum of two non-redundant fan
beam transforms, in which each ray is measured exactly once. The angular ranges of those
transforms are complementary, [λ1, λ2), [λ2, λ1 + 2π), respectively and they depend on the
considered point (x, y). The backprojection formula for the non-redundant fan beam transform
at (x, y) reads
1

2

∫ λ2

λ1

dλ

(
1

L2(λ, x, y)
+ 1

(2L0(λ, x, y) − L(λ, x, y))L(λ, x, y)

)
g2D(λ,U (λ, x, y)).

The PSF model for the fan beam backprojection is obtained from (24) substituting the non-
redundant backprojection weights above

PSFfan
ζ s

0
(x, y, b) = 1∫ ′(2t−1)π

−π
dλ̃
(

1
L2(λ̃,x,y)

+ 1
(2L0(λ̃,x,y)−L(λ̃,x,y))L(λ̃,x,y)

)
×
∫ ′(2t−1)π

−π

dλ̃

(
1

L2(λ̃, x, y)
+ 1

(2L0(λ̃, x, y) − L(λ̃, x, y))L(λ̃, x, y)

)

× χb

([
1

hz

(
z(λ̃) + L(λ̃, x, y)V̂0(λ̃,U (λ̃, x, y)) − ζ̂ s

0 (x, y)
)])

.

(27)

12
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The trick of reparametrizing the continuous form saved us the cumbersome interpolation of the
complementary rays in the discrete fan beam backprojection (see discussion in section 3.2).
While discretization of (27) does not exactly match the discrete fan beam backprojection it
turns out the PSFs are rather insensitive to the exact numerical formula and in any case due to
the complementary rays interpolation, any PSF model derived for that backprojection would
be approximate.

5.4. Full scan parallel beam backprojection

While constructing the PSF for the parallel beam backprojection we need to revert to
approximation of the distance of the parallel ray to the surface at a given point, as in general
the projections of the approximating cone beam rays on the xy-plane will not cross this point.

To approximate PSF‖
ζ s

0
at a chosen point (x, y) we proceed as follows.

(i) For each of the angles λ̃‖ we find the corresponding detector u‖-coordinate of the parallel
ray through (x, y), r‖(λ̃‖, u‖ = U‖(λ̃‖, x, y)).

(ii) Compute the interpolating fan beam rays rfan
j (λ̃fan

j (λ̃‖, u‖), ufan
j (λ̃‖, u‖)) and their

corresponding weights wfan
j (λ̃‖, u‖), for the interpolation of r‖(λ̃‖, u‖) with fan to parallel

rebinning algorithm.
(iii) For each of the interpolating fan beam rays rfan

j

(
λ̃fan

j , ufan
j

)
evaluate the axial coordinate

of the rebinned cone beam ray rcone
j

(
λ̃fan

j , ufan
j , V̂0

(
λ̃fan

j , ufan
j

))
at the point of the closest

approach,
(
xc
(
λ̃fan

j , ufan
j

)
, yc
(
λ̃fan

j , ufan
j

))
, of rfan

j

(
λ̃fan

j , ufan
j

)
to (x, y):

z
(
λ̃fan

j

)+ L
(
λ̃fan

j , xc
(
λ̃fan

j , ufan
j

)
, yc
(
λ̃fan

j , ufan
j

))
V̂0
(
λ̃fan

j , ufan
j

)
.

(iv) Approximate the distance of the parallel cone beam ray rcone,‖(λ̃‖, u‖) to the sheet ζ s
0 at

the point (x, y) as∑
j

wfan
j

(
z
(
λ̃fan

j

)+ L
(
λ̃fan

j , xc
(
λ̃fan

j , ufan
j

)
, yc
(
λ̃fan

j , ufan
j

))
V̂0
(
λ̃fan

j , ufan
j

)− ζ̂ s
0 (x, y)

)
.

Using the above approximation we obtain the following expression for the PSF

PSF‖
ζ s

0
(x, y, b) = 1∫ ′(2t−1)π

−π
dλ̃‖(∑

j w
fan
j (λ̃‖,U‖(λ̃‖, x, y))

)
×
∫ ′(2t−1)π

−π

dλ̃‖∑
j

(
wfan

j (λ̃‖,U‖(λ̃‖, x, y))

×χb

([
1

hz

(
z(λ̃fan

j ) + L(λ̃fan
j , xc, yc)V̂0(λ̃

fan
j , ufan

j ) − ζ̂ s
0 (x, y)

)]))
, (28)

where
∫ ′ integrates over λ̃‖ : μi

(⌊
λ̃‖+π

2π

⌋ + 1
) = s with i indicating the �i segment of the

parallel ray (λ̃‖, u‖), which corresponds to the sheet ζ s
0 . In the above formula we chose to

apply the indicator function to the distance of each of the approximating cone beam rays
separately, as this again results in a model more closely resembling the data.

Figure 5 shows the fit of the parallel backprojection PSF model and the reconstruction on
the multi-sheet surfaces for the axial resolution phantom. Before constructing the convolution
matrix the PSF‖

ζ s
0
(x, y, :), s = 1, . . . , S have been smoothed by convolution with a rectangular

window of length 3. The data fit has been greatly improved in comparison to the same
experiment without the PSF model in figure 4. The PSFfan

ζ0
obtained with (27) is almost

identical to the PSF‖
ζ0

, hence we did not include the corresponding plots of the data fit and
henceforth we will restrict ourselves to the parallel backprojection.
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5.5. Uniqueness of the deconvolution

In general (18) and so (31), are not square but rectangular, overdetermined systems of possibly
inconsistent equations, and hence they have to be solved in the least-squares sense. In order
to obtain a uniquely solvable least-squares problem, the system matrix has to be of a full
column rank which in general holds for a sufficiently dense axial sampling with the multi-
sheet surfaces. For the idealized convolution model (19), this can be intuitively quantified as
that each of the voxels has to be intersected by at least S different sheets, which we believe in
general is also sufficient for the PSF model case. For a sufficiently dense sampling then the
condition numbers of the convolution matrices Ai j will be bounded (and reasonably small) and
the least-squares solution will approach the solution of the original problem as the norm of
the error in the right-hand side ‖εi j‖2 goes to 0. In practice in presence of the right-hand side
errors it may be beneficial to quite generously oversample the problem to alleviate the errors.

6. Efficient implementation of the deconvolution

Apart from the obvious parallelism mentioned in section 5, there is a number of ways in which
the solution of the systems (18) can be made numerically efficient.

6.1. Local data dependence

First we observe that the convolution matrices Ai j are banded. Obviously, the band is larger
for the convolution matrices assembled using PSF models. The band structure localizes the
dependence of the solution on the right-hand side. Thus it is possible to split the large system
obtained for the whole object into a series of small systems with matrices and right-hand
sides corresponding to overlapping blocks of Ai j, bi j, respectively. As a consequence, the
deconvolution step can be implemented using a small buffer window at a given time holding
only a fraction of the reconstructions on multi-sheet surfaces.

6.2. Assembling a computational block of the convolution matrix

For periodic effective trajectory, sampling of the volume with multi-sheet surfaces is also
periodic. Due to the periodicity the banded convolution matrix decomposes into identical
blocks (tiles), each corresponding to one period of the effective trajectory. Thus it suffices to
assemble only one tile, then the large matrix Ai j for the entire object can subsequently be built
using shifted copies of this tile. We do not however want to build the matrix for the entire
object but rather a smallest possible computational block for block-wise solution of the large
system. In practice we may want to consider tiles corresponding to more than one effective
trajectory period. This allows additional flexibility when choosing the block overlap.

First, we assemble the tile, Ai j
tile corresponding to the axial field-of-view of the scanner,

Ztile, during ttile periods of the effective trajectory. To this end we use (25) but we consider
only those surfaces, ζ̂m : m ∈ MZtile that intersect Ztile:

Ai j
tile; m,k =

S∑
s=1

PSFζ s
m
(xi, y j, k − ζ̊ s

m), m ∈ MZtile , k : zk ∩ Zext.tile �= ∅, (29)

where Zext.tile ⊃ Ztile extends Ztile to accommodate the side lobs of PSFζm . Figure 6 shows
a fragment of Ai j, A2tile, corresponding to two consecutive Ai j

tile, stacked on the top of one
another, while the second tile is also shifted by Ktile = #Ztile.

We are going to use A2tile to construct the matrix A for a block-wise solution of the large
system. We choose a matrix [Ai j

block,0 | Ai j
block] in such a way that it contains all the rows of A2tile

14
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Figure 6. Ai j
2tile, a fragment of Ai j corresponding to two consecutive tiles, Ai j

tile. In all our examples,
Ai j

tile corresponds to two effective trajectory periods and Zblock to the half Ztile.

with non-zero entries in Zblock (the part of the axial region Z, for which we want to solve with
A) and crop all the zero columns, thus for [ f̂ i j

block,0 | f̂ i j
block | f̂ i j

block,∞]T , the corresponding part of

the solution f̂ i j, we have

[
Ai j

block,0 | Ai j
block

]
︸ ︷︷ ︸

A

⎡
⎢⎣ f̂ i j

block,0

f̂ i j
block

f̂ i j
block,∞

⎤
⎥⎦

︸ ︷︷ ︸
x

= bi j
block︸ ︷︷ ︸

b

, (30)

where bi j
block is the part of the right-hand side of (18) with m ∈ MZblock . Solving the large system

block by block, corresponds to solving for portions of f̂ i j which move through Z in Kblock size
steps. In each step f̂ i j

block,0 corresponds to the solution computed in the previous step, hence

f̂ i j
block,0 is already known and [ f̂ i j

block | f̂ i j
block,∞]T can be obtained solving the rearranged system

of equations

Ai j
block︸ ︷︷ ︸
A

[
f̂ i j
block

f̂ i j
block,∞

]
︸ ︷︷ ︸

x

= bi j
block − Ai j

block,0 f̂ i j
block,0︸ ︷︷ ︸

b

. (31)

f̂ i j
block,∞ corresponds to the part of f̂ i j, which is not completely determined by (30) (or (31))

and will be recomputed in the next step. In principle Ai j
block could be chosen differently: smaller

or larger changing f̂ i j
block,∞. Our choice corresponds to the smallest possible matrix capturing

all the information available on f̂ i j
block.

While solving (30) corresponds to almost independent solution of each of the blocks, the
solutions of (31) are coupled between the blocks by the adjustment to the right-hand side.
Therefore choosing to solve the system (31) instead of (30) carries the risk of error propagation
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Figure 7. Deconvolution matrices evaluated on the coarse grid (5 × 5 pixels) at the centers of
the cylinders in the axial resolution phantom in section 8.3. (a) A400,400

none , (b) A512,288
none , (c) A632,168

none ,
(d) A400,400

‖ , (e) A512,288
‖ , (f) A632,168

‖ .

between the blocks if f̂ i j
block,0 from the previous steps should be of low accuracy (e.g. a more

challenging part of the image). The error in f̂ i j
block,0 will introduce an error to the right-hand

side, block by block degrading the overall solution. In such a case it could be beneficial to solve
the larger system (30), where the value of f̂ i j

block,0 from previous step is not used. We would
like to stress that when solving (30) we do not attempt to correct the solution from the previous
step, just decouple it from the solution of the currently considered block. In the remainder of
the paper we consider the system (30) for block-wise solution of the deconvolution problem,
but all the results carry over to the system (31) without restrictions.

6.3. Using local similarity of convolution matrices

As the convolution matrices depend on slowly varying functions ζm, Vm and z, it is a valid
simplification to evaluate ζm and PSFζm on a coarser grid and compute the corresponding
coarse grid matrices A. We then have to solve a much smaller number of systems of equations,
each with many right-hand sides saving both memory and computational time.

7. Numerical solution of the deconvolution equation

Throughout this section we used a 32-threaded helix trajectory. The choice of trajectory
influences the regularity of the sampling of the volume. An ideal sampling is achieved with
rotationally symmetric surfaces which have rotationally symmetric PSF, [2]. In general, the
more regular the sampling the better stability of the deconvolution step can be expected. This in
turn allows us to use fewer multi-sheet surfaces per period of the effective trajectory resulting
in smaller size convolution matrices saving storage and computational time.

Figure 7 shows both the idealized and the PSF model convolution matrices evaluated on
the coarse grid (5 × 5 pixels), for the blocks corresponding to the centers of the cylinders
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Figure 8. Generalized singular values of the convolution matrices in figure 7. (a) Idealized
deconvolution: A400,400

none , A512,288
none , A632,268

none . (b) Deconvolution with the PSF model (25), (28):
A400,400

‖ , A512,288
‖ , A632,168

‖ .

of the axial resolution phantom. The generalized singular values of each of these matrices,
paired with the matrix L chosen as a forward difference discretization of the first derivative, are
plotted in figure 8. The decay of the generalized singular values quantifies the ill-posedness
of the deconvolution problem. In both cases the matrices corresponding to the central region
in the transaxial plane have fewer small generalized singular values than those corresponding
to the outward region, indicating that the deconvolution problems are more ill-posed away
from the center of the xy-plane. The ill-posedness of the deconvolution problems makes
it necessary to regularize them to stabilize the solution. The trends in the generalized
singular values are qualitatively similar for both the idealized and the PSF model convolution
matrices. Thus we expect the residual error to be the decisive factor for the quality of the
reconstruction.

7.1. Regularized L2 solution

We consider a regularized version of the system (30) for a block-wise solution of the
deconvolution problem. As mentioned in section 6.3 the convolution matrices used for block-
wise solution in (30) can be evaluated on a coarser grid (of center points of kx ×ky pixel blocks
in the xy-plane). In this way the computational time can be reduced by solving kxky times
fewer systems each with kxky right-hand sides

min
X

‖AX − B‖2
F + α2‖LX‖2

F . (32)

Here, X and B are block matrices, which columns are solution and right-hand side vectors,
respectively, corresponding to the pixels in the considered kx × ky block in the xy-plane, and
‖ · ‖F denotes the Frobenius norm.

To take advantage of multiple right-hand sides it is necessary to factorize the system
matrix. While QR factorization is more economical in storage, in the context of regularization
a particularly useful factorization is the (G)SVD [8]. For each sparse convolution matrix,
using a precomputed (G)SVD requires storage of two square dense matrices as well as the
(generalized) singular values. Once the (G)SVD factorization is available we can compute for
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instance a Tikhonov regularized solution or a truncated (G)SVD solution for any value of the
regularization parameter at a cost of order of dense matrix vector multiplication.

It is well known that imposing nonnegativity constraints when appropriate can result in a
better quality reconstruction. In section 8.3 we used the nonnegative least squares algorithm
by Lawson and Hanson [13] to solve the regularized version of (30). Unfortunately the method
cannot benefit from multiple right-hand sides and moreover, even for a single right-hand side
it converges rather slowly, which prohibits its use in practice.

7.2. Regularized Lp/Lq solution

Deconvolution problems are frequently tackled minimizing Lp, 1 � p < 2 norms

min
x

‖b − Ax‖p
p + αq‖Lx‖q

q. (33)

In particular for q = 1 and L the forward difference operator we obtain the total variation (TV)
regularization.

Minimization problem (33) can be solved e.g. using iteratively reweighted least-squares
method (IRLS). The convergence of the scheme has been proven in [18] for 1 < p < 3,
and p = 1 under uniqueness assumption on the solution. IRLS algorithm minimizes the
residual norm ‖r‖p

p solving a series of least-squares problems, where in the kth step of
IRLS the residual rk+1 has been reweighted rk+1|rk|(p−2)/2 (multiplication is componentwise)
using the residual from the previous step, rk. As reweighting changes the system matrix
for each right-hand side individually, IRLS does not benefit from multiple right-hand
sides in a general case. If however, we assume that the neighboring right-hand sides
and so the solutions are sufficiently similar, we can use the same weights for the entire
block.

The resulting block iteratively reweighted least-squares (BIRLS) method is summarized
in algorithm 1. The BIRLS weights in the kth step, Dk, are chosen as either

Dk = diag

⎛
⎜⎝
⎛
⎝∑

i j

wi j|ri j
k |
⎞
⎠(p−2)/2

,

⎛
⎝∑

i j

wi j|ηi j
k |
⎞
⎠(q−2)/2

⎞
⎟⎠ , (34)

Dk = diag

⎛
⎝∑

i j

wi j|ri j
k |(p−2)/2,

∑
i j

wi j|ηi j
k |(q−2)/2

⎞
⎠ , (35)

where ri j
k , η

i j
k are the columns of Rk, ηk, respectively, and wi j are normalized coefficients

weighting each equation in the kx × ky block. Note, that (34) corresponds to using the
constructed averaged residual to compute the BIRLS weights, while (35) to computing the
IRLS weights for each individual right-hand side and then constructing the BIRLS weights as
their weighted average.

The cost of BIRLS iteration is dominated by the cost of solution of the least-squares
problem including the QR factorization (as opposed to the L2 case where factorization could
be precomputed once for all). In addition updating techniques could be used to further reduce
the cost [17]. Our experiments have shown that only very few, around 3, BIRLS iterations are
necessary to obtain a good solution.
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Algorithm 1 Block iteratively reweighted least squares (for 1 � p < 2)

Require: X0 initial approximation
1: for k = 0, 1, 2, . . . until convergence do
2: Rk = B − AXk, ηk = αLXk

3: Choose Dk as (34) or (35)

4: δXk = arg minδX

∥∥∥∥Dk

[
Rk − AδX
ηk − αLδX

]∥∥∥∥2

F
5: Xk+1 = Xk + δXk

6: end for

7.3. 3D intra-block regularization

Until now each of the right-hand sides in the kx × ky block in the xy-plane has been treated
as independent and regularization was only applied in the axial direction. However, it may
be beneficial to impose some regularity conditions on the solution locally in the xy-plane.
Such conditions will couple the until now independent f̂ i j

block for different values of i, j. This
approach is therefore not feasible for the entire transaxial plane as the resulting least-squares
problems would be too large. However, within one kx × ky block we obtain a least squares
problem with the matrix of kxky times the size of the size of A in (32)

min
x

‖Aintrax − b‖2
2 + α2‖Lx‖2

2, (36)

where

Aintra =

⎡
⎢⎢⎢⎣

A
A

. . .
A

⎤
⎥⎥⎥⎦

kxky×kxky

, A = R
m×n, (37)

the regularization matrix

L =
⎡
⎣Lz

Ly

Lx

⎤
⎦, (38)

comprises Lz, Ly, Lx penalty operators applied along the axial and transaxial directions and
x ∈ R

kxkyn and b ∈ R
kxkym are vectors obtained by concatenation of the columns of X and

B in (32), respectively. The 3D intra-block regularization can be seen as an alternative to
image processing, e.g. filtering of images reconstructed on the multi-sheet surfaces prior to
the deconvolution.

8. Reconstruction

In this section we show examples of volumetric images reconstructed with multi-sheet
rebinning method. In our phantom experiments we used an offset multi-source geometry
with a static ring containing 1152 sources and 10 rings each containing 1400 detectors. The
axial offset of the first detector ring from the plane containing the sources was 10 mm and
the axial spacing between the consecutive detector rings 2 mm. The radii of the source and
detectors rings were 600 mm and 450 mm, respectively and the radius of the field-of-view
RFOV was 400 mm. We assumed a constant axial translation of the scanner of 16 mm per period
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of the firing sequence, 2π . The effective trajectory was a 32-threaded helix. The images were
reconstructed on an 1 × 1 × 0.5 mm grid.

The simulated data was obtained with the Siddon algorithm using voxels of half the size
of those used for the reconstruction. The detector aperture was emulated shooting rays to nine
equally distributed points on the detector pixel. Subsequently 3% of Gaussian pseudorandom
noise was added.

For the reconstruction of the phantom images, the simulated cone beam data was rebinned
to 96 multi-sheet surfaces per effective trajectory period (corresponds to three times the
number of the transaxial slices through the volume we want to recover). The reconstruction
on the multi-sheet surfaces was performed using parallel filtered backprojection following
unidirectional fan to parallel rebinning with 800 parallel rays and 1258 angles over 360◦

range. The PSF model (25), (28) used for construction of the convolution matrices has been
evaluated on a grid of 5×5 pixel blocks in the transaxial plane. The PSFs have been posteriori
smoothed with a rectangular window of width 3. For all forms of the deconvolution problem
we used the regularization parameter calculated in section 8.1, but it was multiplied with an
image specific factor for the TV regularization. The L1 and TV regularized solutions have
been obtained with at most three BIRLS iterations subject to relative residual change of more
than 10−3.

8.1. Regularization parameter

Underlying our heuristic choice of the regularization parameter for the deconvolution problem
(32) is an assumption of spatial variation of the standard deviation of the data in the xy-plane,
proportional to the axial deviation of the rays from the multi-sheet surfaces. The axial deviation
from the multi-sheet surface is given by function Qq(x, y) = (

1
S

∑S
s=1 Qs

q(x, y)/C(x, y)
)1/q

,
where Qq has been discussed in detail in [3]. As the convolution matrix corresponds to
multi-sheet surfaces at different rotations (throughout the range [−π, π )), Qq is subsequently

radially averaged over annuli in
√

k2
x + k2

y radial steps, and normalized to have average value

of 1 (scaling such that Q̄q on the annuli containing the radius RFOV/
√

2 becomes 1). Finally, we
choose the spatially varying standard deviation as σ Q̄2(x, y) (note that its average value is σ , the
estimated standard deviation of the error between the PSF model and the reconstruction of the
phantom on multi-sheet surfaces). Under assumption of zero mean and a diagonal covariance
matrix, (σ Q̄2(xi, y j))

2I, the expected value of the error norm ‖Ax−b‖2 is σ Q̄2(xi, y j)
√

m(i, j),
where m(i, j) is the number of rows of the convolution matrix A, (30). The spatially dependent
value of the regularization parameter has been evaluated for the axial resolution phantom
defined in section 8.3 and is shown in figure 9. It was then used for all reconstructions from
simulated and real data for all choices of norms and penalties.

In particular in the L2 case it is possible to evaluate the regularization parameter on fly
using criteria such as L-curve to adapt to the local content of the image. In the multiple
right-hand side case this could be done either for each column of X separately resulting is
a different regularization parameter for each column, or for all the columns simultaneously
resulting in one parameter for the entire block. While our experiments indicate that automated
evaluation of the optimal regularization parameter can be unreliable, it can be part of the
post-processing step, where the user specifies the part of the image to be deconvolved
with different values of the regularization parameter. Note that due to the locality of the
deconvolution problem in all three dimensions of space, any desired part of the image can be
recomputed for any regularization parameter value without necessity of recomputing the entire
volume.
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Figure 9. Spatially varying regularization parameter, Q̄2(xi, yi)
√

m(i, j), based on the posterior
criterion for the geometry in section 8 using different convolution matrix models in (30).
(a) Idealized model (19), (b) PSF model (25), (28), and standard deviation estimated for the
axial resolution phantom defined in section 8.3.
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Figure 10. Evaluation of the error in the solution of the deconvolution problem with matrices
A := A‖ in figures 7(d)–(f) and idealized right-hand side corresponding to the model edge using
(a) L2 regularization with the regularization parameter α as in figure 9(b), (b) TV regularization
with the regularization parameter 0.1α.

8.2. Impact of the regularization on the discontinuities of the solution

The effect of regularization on the jump singularities can be evaluated as follows. We
consider Heaviside function, H(z), as a model jump singularity. Using the deconvolution
matrix A, we construct the ideal data for this model, b = AH. Subsequently, we solve the
regularized deconvolution problem, and compare the solution to the Heaviside function. The
same approach has been invoked in [14] to investigate the impact of window parameter in
the windowed singular value solution of the deconvolution problem for functions with point
singularities.

Figures 10(a) and (b) show the L2 and TV regularized solutions for deconvolution problems
(30) with A400,400

‖ , A512,288
‖ and A632,168

‖ and L the forward difference operator. The regularization
parameter α for L2 is shown in figure 9(b) and 0.1α is used for the TV regularization. TV
regularization recovers sharper jumps without over or under shooting in contrast to the L2
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Figure 11. Phantom containing three cylinders with centers equidistributed along the radius of the
transaxial field-of-view of the scanner. (a) The transaxial cross-section (parallel to the xy-plane),
showing the position and size of the cylinders. (b) xz-plane cross-section of the phantom, showing
the axial variation of the attenuation coefficient for the central cylinder (the other two cylinders are
the same but centered at different positions).

regularization. The reconstructed jumps are the sharpest in the center of the transaxial plane,
and diffuse away from the center.

8.3. Axial resolution phantom

As all rebinning methods, multi-sheet surface rebinning suffers diminished axial resolution due
to the rebinning errors. Our first phantom is therefore tailored to demonstrate the limitations
of the axial resolution of the method. The axial resolution phantom contains three cylinders,
which centers have been equidistributed along the radius of the transaxial field-of-view of the
scanner, see figure 11(a). The attenuation coefficient of each of those cylinders has been chosen
to vary in decreasing frequency along the axial direction from every 2 to 5 mm finishing with
a longer cylinder of constant attenuation, see figure 11(b). Placing the oscillating cylinders at
different positions, tests the axial resolution throughout the transaxial plane. The best resolution
is expected in the central region as the bands of the corresponding convolution matrices are
the slimmest, degrading outwards due to the increasing bandwidth. This phantom has been
used to illustrate the errors in the rebinned sinograms and their reconstructions in section 4 as
well as to evaluate the data fit of the convolution matrix models in section 5.

The reconstructions of the volume with different strategies of solving the deconvolution
problem are illustrated in figures 12–14. Contrast in all reconstructed images have been
set equal for better comparability. Figure 12 shows the superposition of the reconstruction on
xz-planes crossing through the centers of each of the cylinders, y = 400, 288, 168. The profiles
of the solutions corresponding to cross-section through the centers of each of the cylinders are
shown in figure 14 for a selection of solution methods. A selected transaxial slice through the
volumes in the high oscillatory region at z = 136 is depicted in figure 13.

Comparison of figures 12(a) and (b) immediately confirms that using the PSF model yields
superior results. With the idealized deconvolution it is not possible to resolve the 3 mm spaced
discs of the middle cylinder and not even the 5 mm spaced ones of the outward cylinder, while
the 3 mm spaced discs in both cylinders can be made out for the PSF model. Minimizing the
L1 norm provides slightly sharper image but is more prone to overshooting in some higher
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Figure 12. Reconstruction of the axial resolution phantom in figure 11, with different strategies
for solution of the regularized deconvolution problem: (a) the regularized L2 solution, (32), with
A := Anone the idealized convolution matrix (25), (26) and L := Lz the forward difference
discretization of the first derivative; (b) the regularized L2 solution, (32), with A := A‖ the
PSF model convolution matrix (25), (28) and L := Lz; (c) the regularized L1 solution, (33)
with p = q = 1, A := A‖ and L := Lz; (d) the 3D intra-block regularized L2 solution, (36),
with A := A‖ and L given as (38) forward difference discretization of the first order directional
derivatives; (e) the TV regularized solution, (33) with p = 2, q = 1, A := A‖ and L := Lz; (f) the
nonnegative regularized L2 solution, (32), with A := A‖ and L := Lz. For compactness, the figures
show superposition of the reconstruction on xz-planes crossing through the centers of each of the
cylinders, y = 400, y = 288, y = 168, respectively.
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Figure 13. Cross-section at z = 136 through the reconstruction of the axial resolution phantom
in figure 11 with different strategies for solution of the regularized deconvolution problem: (a)
the regularized L2 solution, (32), with A := Anone the idealized convolution matrix (25), (26) and
L := Lz the forward difference discretization of the first derivative; (b) the regularized L2 solution,
(32), with A := A‖ the PSF model convolution matrix (25), (28) and L := Lz; (c) the regularized
L1 solution, (33) with p = q = 1, A := A‖ and L := Lz; (d) the 3D intra-block regularized L2
solution, (36), with A := A‖ and L given as (38) forward difference discretization of the first order
directional derivatives; (e) the TV regularized solution, (33) with p = 2, q = 1, A := A‖ and
L := Lz; (f) the nonnegative regularized L2 solution, (32), with A := A‖ and L := Lz.
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Figure 14. Cross-section through centers of the cylinders of the L2, TV and L1 regularized
reconstructions of the axial resolution phantom in figures 12(b), (c), (e): (a) the central cylinder
at (x, y) = (400, 400), (b) the middle cylinder at (x, y) = (512, 288), (c) the outmost cylinder at
(x, y) = (632, 168).
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Figure 15. Clock phantom (a) transaxial cross-section, (b) yz-plane cross-section of the phantom
through the center x = 400. Reconstruction of the clock phantom: (c), (d) the regularized L2
solution, (32), with A := A‖ the PSF model convolution matrix (25), (28), L := Lz the forward
difference discretization of the first derivative, and regularization parameter α as in figure 9(b); (e),
(f) the TV regularized solution, (33) with p = 2, q = 1, A := A‖ and L := Lz and regularization
parameter 0.1α. Note, the differently scaled axes in (b) and (d), (f).
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Figure 16. Cross-section through centers of the balls of the L2 and TV regularized reconstructions
of the clock phantom in figures 15(d), (f): (a) the larger ball at (x, y) = (400, 175), (b) the smaller
ball at (x, y) = (400, 260).

frequency parts of solution as seen for the outward cylinder in figure 14(c). While the streak
artifacts are preserved by the L1 reconstruction (figure 13(c)), they are largely suppressed by the
TV solution (figure 13(e), regularization parameter 0.1α) which provides sharpness similar
to L1, but seems slightly more stable, see figure 14(c). The 3D intra-block regularization
in figure 13(d) slightly smoothed the streak artifacts but the intensity variation of the
background remained, while the nonnegativity constraint reduced the streaks considerably, see
figure 13(f).

8.4. Clock phantom

Our second example is the sphere clock phantom [20] depicted in figures 15(a) and (b).
Motivated by the results in the previous section, we reconstructed the clock phantom using
the PSF convolution matrix model (25), (28) and computing the L2 (32) and TV (33)
(p = 2, q = 1) regularized solutions. The results are shown in figures 15 and 16. The
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Figure 17. Reconstruction of a five string bass guitar imaged with Rapiscan RTT80 cone beam
x-ray scanner, integrated along the thinnest dimension: (a) the regularized L2 solution, (32), with
A := A‖ the PSF model convolution matrix (25), (28), L := Lz the forward difference discretization
of the first derivative and the regularization parameter α as in figure 9(b); (b) the TV regularized
solution, (33) with p = 2, q = 1, A := A‖ and L := Lz and the regularization parameter 0.1α.

TV regularization effectively eliminates the oscillations in the L2 solution as well as the streak
artifacts.

8.5. Real data

Finally, we would like to demonstrate the performance of the MSSR on the real data. The data
were obtained with the Rapiscan Systems RTT80 machine. Figure 17 shows the computed x-ray
images (integrated along the thinnest dimension) of an L2 and TV regularized reconstruction
of a five string bass guitar.
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9. Conclusions

We presented a new family of methods for reconstruction from axially asymmetrically
truncated cone beam projections. The methods combine analytical and numerical ideas,
exploiting the linearity of ray transforms to reconstruct data on multi-sheet surfaces and
subsequently perform axial deconvolution to recover the volumetric image from a stack of
images reconstructed on multi-sheet surfaces. In the first paper in this series we discussed
the approximation of the data on multi-sheet surfaces. We set up a variational problem for
obtaining an optimal multi-sheet surface and rebinning function and showed that it can be
solved by a globally convergent iteration in the case of quadratic cost function. In this second
paper in the series we have shown how the volumetric image can be reconstructed from
data rebinned to multi-sheet surfaces. We discussed in detail the reconstruction on a multi-
sheet surface and the effect of the rebinning errors. We set up a deconvolution problem for
the recovery of the volumetric image from a stack of the images on multi-sheet surfaces.
We developed backprojection based models of axial convolution matrix, which substantially
reduced the data model misfit and hence improved the quality of the solution. We outlined
an efficient implementation of the deconvolution step and explored different strategies for its
solution. Finally, we demonstrated the performance of the method on both the simulated data
and real data collected with a Rapiscan RTT80 cone beam scanner.

An interesting future research direction is combining the ideas of rebinning with sparsity
enhanced reconstruction from subsampled projections. This would allow for even faster
data acquisition provided the imaged objects have sparse representation in the chosen basis.
Furthermore, fitting fewer projections to a surface potentially reduces the rebinning errors.
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