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Abstract

We deal with five different problems from convex geometry, each on its own

chapter of this Thesis. These problems are the following.

Random copies of a convex body: We study the probability that a ran-

dom copy of a convex body intersects the integer lattice in a certain

way.

A conjecture by Erdős: We study the statement by Erdős “On every

convex curve there exists a point P such that every circle with centre

P intersects the curve in at most 2 points.”

A Yao-Yao type theorem: Given a nice measure in Rd, we show that

there is a partition P of Rd into 3 ·2d/2 convex pieces of equal measure

such that every hyperplane avoids at least 2 elements of P.

Line transversals: Given a family F of balls in Rd such that every three

have a transversal line, we bound the blow-up factor λ needed so that

λF has a transversal line.

Longest lattice convex chains: Given a triangle with two specified ver-

tices v1, v2 ∈ Z2, we bound the size of the largest lattice convex chain

from v1 to v2.

The techniques used to tackle these problems are very diverse and include

results from analysis, combinatorics, number theory and topology, as well

as the use of computers.
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Chapter 1

Introduction

During the three years of my PhD I have come across several problems in the

area of Convex Geometry. I have worked on them and I consider that there

are five problems in which I have made non-trivial progress. I include these

problems together with the advancements made in this thesis. The proof

methods are diverse, results are used from analysis, geometry, topology and

at some point a computer was used to analyse a large amount of cases.

Every following chapter is dedicated to one of these problems, below is

a short summary of each.

Some of the work presented here has been done in collaboration with

other people, I will indicate when this is the case.

Random copies of a convex body and the integer lattice

The first two problems involve the integer lattice Zd ⊂ Rd. Let K be a

fixed convex body and ρ be a randomly chosen isometry on Rd. Bárány and

Matoušek proved in [7, 8] that the probability that ρ(K) does not intersect

Zd is at most C/|K| for some C > 0 that depends only on the dimension

d. They also showed that this result is asymptotically correct by exhibiting

a family of convex bodies with a probability of intersecting Zd larger than
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c/|K| for some constant c > 0.

This left several questions open, for example: What is the smallest possi-

ble value of the constant C? Which convex body gives rise to this constant?

What can be said if ρ(K) ∩ Zd is some larger set?

We answer the first two questions in an asymptotic sense, and the third

question is tackled when ρ(K) ∩ Zd consists of k points and when it has a

given dimension. These results are published and can be found in [32].

A conjecture by Erdős

In [14], P. Erdős conjectured that for every convex body K there is a

point P ∈ ∂K such that every circle centred at P intersects ∂K in at most

2 points.

This turned out to be false, but there is still something to be done here.

Given a convex body K, consider the smallest number N so that there is

a point P ∈ ∂K with the property that every circle centred at P intersects

∂K in at most N points.

There is no known global upper bound for N . We show that no convex

body has N = ∞ and that there are convex bodies for which N ≥ 6.

Furthermore, we prove that a typical point P in the boundary of a typical

convex body K (in the Baire sense) satisfies that every circle centred at P

intersects ∂K in an infinite amount of points. This is joint work with I.

Bárány.

An extension of the Yao & Yao theorem

A theorem by Yao & Yao (see [40, 25]) states that given a nice measure

in Rd there exists a convex partition of Rd into 2d parts of equal measure

such that every hyperplane avoids one of these parts. This is useful in

computation for developing fast algorithms for some geometric queries.

Let k be a positive integer. We work on the problem of determining the
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smallest n so that the following holds: For any nice measure in Rd, there

is a partition of Rd into n convex parts of equal measure such that every

hyperplane avoids at least k elements of the partition.

We apply our results in a problem regarding separation of points and

hyperplanes.

This joint work P. Soberón and can be found in [33]. It was presented

in EuroCG 2012.

Line transversals

This is joint work with J. Jerónimo-Castro. The results here also appear

in [21].

Given a family F = {K1, . . . ,Kn} of convex bodies in Rd, we say that

they have property T if there is a line intersecting every member of F . Also,

if k is a positive integer we say that F has property T (k) if every subset of

F with k elements has property T .

Assuming some conditions on the family F , we want to determine the

minimum λ > 0 such that the family λF = {λK1, . . . , λKn} satisfies prop-

erty T .

In [20, 22] bounds for λ are given when F consists of translates of a

convex body K ⊂ R2 and has property T (3) or T (4). Special interest has

been given when K is the unit ball in R2.

Now we consider the case when F consists of closed balls in Rd with

property T (k) and write λd(k) = λ. We prove that λd(d + 1) ≤ 4, λ2(4) ≤

2
√

2 and λ2(3) < 2.88.

Longest lattice convex chains

Let Zt = 1
tZ

2 ⊂ R2. In [5, 6] Bárány showed that if K ⊂ R2 is a convex

body then, as t → ∞, almost all convex polytopes contained in K with

vertices in Zt are close in Hausdorff metric to a certain convex body Q ⊂ K.
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It is also proved that Q is characterised as the convex body contained in

K with maximal affine perimeter. Let Qt ⊂ K be a Zt-lattice polytope

with maximum amount of vertexes. Bárány and Prodromou showed in [9]

that, with respect to the Hausdorff metric, the sequence of convex bodies

Qt converges to the convex body Q. Furthermore, they showed that if t is

large, the amount of vertexes Qt has is essentially equal to

3t2/3

(2π)2/3
A(K),

where A(K) is the supremum of the affine perimeter of all convex sets con-

tained in K.

To prove these theorems it is necessary to find large Zt-lattice convex

chains contained in a given triangle. Let a, b ∈ R2 be the vertexes of a

triangle with a ∈ Z2, the parabola of Oab is the parabola that passes through

the origin O and a such that Ob and ab are tangent to the parabola at O

and a, respectively. If t is large enough then the longest convex Zt-lattice

chain O = p0, p1, . . . , pn = a contained in the triangle Oab consists of points

close to this parabola and n ≤ c|Oab|1/3 for some constant c.

This gives raise to a new question: Given a convex Z2-lattice chain with

n + 1 vertexes p0, . . . , pn, there is a unique minimal area triangle that has

p0 and pn as vertexes and contains {p0, . . . , pn}. If we fix the area A of such

a triangle, how large can n be?

Together with I. Bárány, we answer this question assuming A is large

enough.
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Chapter 2

Random copies of a convex

body

This chapter contains research which has been published in [32].

Let Zd ⊂ Rd denote the d-dimensional lattice of integer points. An isom-

etry ρ of Rd is a pair (r, t) given by a rotation r ∈ SO(d) and a translation

vector t ∈ Rd. For a given K ⊂ Rd and ρ = (r, t), we write ρ(K) = r(K)+ t.

In this chapter we are interested in properties of the set ρ(K) ∩ Zd. If

t′ ∈ Zd, then (ρ(K)+t′)∩Zd and ρ(K)∩Zd are essentially the same. Because

of this it makes sense to consider exactly one vector in each equivalence class

of Rd/Zd. One way to do this is to consider only the vectors in the unit cube

[0, 1)d, however it is useful not to fix this set.

The set SO(d) × (Rd/Zd) has a natural probability measure given by

the product of the normalised Haar measures in SO(d) and Rd/Zd. To any

element (r, t̄) ∈ SO(d)× (Rd/Zd) we can assign an isometry ρ = (r, t) such

that t ∈ t̄. In this way we can assign a probability measure to a subset

of the isometries of Rd. The probabilities we deal with in this paper are

independent of the assignment of t.
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To avoid unnecessary long statements, in this chapter we use the letter

C to represent an appropriate constant each time it is used. Thus, C need

not represent the same value each time it appears. If C is dependent on

other variables, they will appear as subscripts, for example, Cd represent a

suitable constant dependent on d.

In [7, 8] it is shown that

Prob
{
ρ(K) ∩ Zd = ∅

}
≤ Cd
|K| (2.1)

for all convex bodies K ⊂ Rd, and that

Prob
{
ρ(K) ∩ Zd = ∅

}
≥ Cd
|K|

for all convex bodies K ⊂ Rd with small enough width.

A natural question now is to compute the probability that ρ(K) con-

tains a certain number of integer lattice points. This seems to be hard in

dimensions d ≥ 3, but for d = 2 we obtained the following theorem.

Theorem 2.1. For every positive integer n and every convex body K ⊂ R2

with |K| ≥ Cn 3
2 ,

Prob
{

#
(
ρ(K) ∩ Z2

)
= n

}
≤ C n2

|K|2 .

For every rectangle K with small enough width and |K| > n, we have

Prob
{

#
(
ρ(K) ∩ Z2

)
= n

}
≥ C 1

|K|2 .

It would be interesting to know how large |K|2Prob{#
(
ρ(K) ∩ Z2

)
= n}

can be for each n. We must be careful here if n is not fixed, for example,
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there are families of convex bodies such that this probability is larger than

n0.3

|K|1.5 for infinitely many values of n. Without the hypothesis on the size of

|K| in the first part of Theorem 2.1, then a bound of n3

|K|2 can be obtained

using the same proof method.

The next theorem tells us that the upper bound cannot be lowered too

much.

Theorem 2.2. For every ε > 0, c > 0 and N > 0 there is a rectangle K

and n > N such that

Prob
{

#
(
ρ(K) ∩ Z2

)
= n

}
> c

n1−ε

|K|2 .

Returning to the general case, we may also consider the probability that

ρ(K) ∩ Zd has dimension k.

Theorem 2.3. Let k < d be a non-negative integer, then

Prob
{

dim
(
ρ(K) ∩ Zd

)
= k

}
≤ Cd

1

|K| .

If k = d− 1 then this is best possible.

We believe that this bound is not best possible if k 6= d−1, this is indeed

the case when d = 2 as Theorem 2.1 implies.

Finally, we return to the probability that ρ(K) does not contain any

lattice points. If d = 2 we can obtain a near-optimal bound.

Theorem 2.4. For every ε > 0, there exist constants k0 and w0 such that

if K is a planar convex body with k0 < |K| and width w < w0, then

Prob
{
ρ(K) ∩ Z2 = ∅

}
<

1

4|K|(1 + ε).
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Furthermore, the constant 1
4 is best possible.

We conjecture that 1
4 is actually the best possible value the constant C2

from (2.1) can have for all bodies K with large enough area.

Theorem 2.4 can also be stated as

lim
w→0
|K|→∞

sup
K

{
|K|Prob

{
ρ(K) ∩ Z2 = ∅

}}
=

1

4
,

where the supremum is taken over all convex bodies K with width w. If we

take the supremum over the family of ellipses we still have this equality, but

if we take it over the family of rectangles we obtain 2
π2 .

From the proof we can see that the main reason for this is the Blaschke-

Santaló inequality. If we take a family F of convex bodies that are not

similar to the ellipse (in the sense that
∣∣K∣∣ ∣∣KP

∣∣ < π2 − ε for all K ∈ F),

then by taking the supremum over F the result is smaller than 1
4 (see section

2 for statements and definitions).

Bárány asked in [7] for which convex body of fixed volume is this proba-

bility largest. In dimension 2, the proof of the last theorem shows that thin

ellipses have relatively high probability of not containing lattice points. It

is likely that the body that maximises this probability does not exist but

with a thin enough ellipse we can get arbitrarily close.

2.1 Preliminaries

The lattice-width of a convex body K is defined as

W (K) = min
z∈Zd
z 6=0

max{z · (x− y) : x, y ∈ K}.
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Any vector z ∈ Zd that minimises this quantity is called a lattice-width

vector of K. Note that the lattice-width vectors come in pairs, if z is one

then so is −z.

The set of primitive vectors Pd is the set of vectors in Zd such 1
mz is not

an integer-lattice point for any positive integer m. This set is also referred

to as the set of lattice points visible from the origin. If z is a lattice-width

vector of K then z must be a primitive vector.

Given z ∈ Pd, the z-lattice hyperplanes are the hyperplanes perpendicu-

lar to z that pass through some integer-lattice point. The distance between

two consecutive z-lattice hyperplanes is 1
|z| . If z is a lattice-width vector

of K, then the number of z-lattice hyperplanes intersecting K is at most

W (K) + 1.

An essential tool for our results is a generalisation of the Flatness The-

orem which can be found in [23].

Theorem (Generalised Flatness Theorem). If L ⊂ Rd is a d-dimensional

lattice and K ⊂ Rd is a convex body with #(K ∩ Zd) ≤ n, then there exists

a nonzero element z of the dual L∗ such that max{z · (x− y) : x, y ∈ K} ≤

C(n+ 1)
1
dd2.

This is stronger than the usual Flatness Theorem (see [24]) which only

deals with the case n = 0.

If L = Zd then what the Generalised Flatness Theorem states is that

W (K) ≤ C(n+ 1)
1
dd2.

In the case d = 2, ifK contains no lattice points and its area is larger than

some fixed constant c, then K can only have one pair of lattice-width vectors.

Otherwise there is a parallelogram containing K with sides perpendicular
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to two linearly independent lattice-width vectors. The Flatness Theorem

implies that the area of this parallelogram is bounded by some constant c.

If d > 2 this is not always the case. However, if the projection of K onto

any 2-dimensional plane has area larger than some constant cd, then K can

only have one pair of lattice-width vectors.

If d = 2, then we can strengthen the conclusion of the Generalised Flat-

ness Theorem by making |K| large.

Lemma 2.5. Let n be a non-negative integer. There exists a constant c

such that if K ⊂ R2 is a convex body that contains at most n integer lattice

points and |K| > c(n + 1)
3
2 , then there is a unique pair {z,−z} ⊂ P such

that K intersects at most 2 z-lattice lines.

Proof. By the Generalised Flatness Theorem there exists a constant c′ and

z ∈ P2 such that K intersects at most c′
√
n+ 1 z-lines. Let s be a section

of K perpendicular to z with largest length. Note that |K| ≤ |s| c′
√
n+1
|z| .

Therefore if |K| > c(n + 1)
3
2 > c′

√
n+1(2n+4)
|z| for some large enough c, then

|s| > 2n+4. From here it follows that if K intersects more than one z-lattice

line on the same side of s, then K must contain at least n+ 1 lattice points

in some z-lattice line. We conclude that K intersects at most two z-lattice

lines.

For the uniqueness, if there are two independent lattice-width directions,

then K is contained in a parallelogram of area 9.

In the proofs of Lemma 4.4 in [8] and Theorem 1.1 in [7] what is basically

proved is the following.

Lemma 2.6. Let W0 > 0 and K ⊂ Rd be a convex body. Then

Prob
{
W
(
ρ(K) ∩ Zd

)
< W0

}
≤ CW0,d

1

|K| .
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We also need some properties of the distribution of P2 in Z2, several of

these are described in [18]. The following lemma is well known, but we could

not find a reference for it, so we include a sketch of the proof.

Lemma 2.7. If m ≥ −1 is an integer, then

∑
z∈P2

|z|≤R

|z|m =
12Rm+2

π(m+ 2)

(
1 +O

(
log(R)

R

))
.

Here the implicit constant depends on m.

Proof. Let µ be the Möbius function. If z ∈ Z2 and d is a positive integer,

we write d|z if d divides both coordinates of z. All the implicit constants in

this proof will depend on m. Using standard arguments we have

∑
z∈P2

|z|≤R

|z|m =
∑
z∈P2

|z|≤R

∑
d|z

µ(d)|z|m =
R∑
d=1

∑
w∈Z2

|dw|≤R

µ(d)|dw|m

=
R∑
d=1

dmµ(d)
∑
w∈Z2

|w|≤R/d

|w|m. (1)

To deal with the last term, let B(r) ⊂ R2 be the disc centred at 0 with

radius r and set c =
√

2/2. Then

∑
z∈Z2

|z|≤r

|z|m =

∫
B(r)
|x|mdx+O

(∫
B(r+c)\B(r−c)

|x|mdx
)

=
2πrm+2

(m+ 2)
+O

(
rm+1

)
.

Using this in (1) and the well-known identity

R∑
d=1

µ(d)

d2
=

6

π2
+O

(
1

R

)

18



we obtain

∑
z∈P2

|z|≤R

|z|m =
2πRm+2

m+ 2

R∑
d=1

(
µ(d)

d2
+

1

d
O

(
1

R

))

=
12Rm+2

π(m+ 2)

(
1 +O

(
log(R)

R

))
.

The polar reciprocal of a convex body K relative to a point P is defined

as

KP = {y : x · (y − P ) ≤ 1 for all x ∈ K}.

The Santaló point of a convex body K is the point P ∈ Rd that minimises

the volume
∣∣KP

∣∣. If K is centrally symmetric then its centre coincides with

its Santaló point. The properties of KP have been widely studied. We need

the following theorem which can be found in [29].

Theorem (Blaschke-Santaló inequality). If K is a convex body in R2 with

Santaló point P , then ∣∣K∣∣∣∣KP
∣∣ ≤ π2,

with equality if and only if K is an ellipse.

2.2 Proof method

Let K ⊂ Rd be a convex body and let P be a property of K which is

invariant under translations by vectors in Zd. Most proofs in this chapter

involve estimating some probability of the form

p = Prob {ρ(K) has property P} .
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For example, Theorem 2.1 gives bounds for p when P is the property “in-

tersects Z2 in n points”.

We now describe a general method that will be used several times below

to bound p.

Assume that for every isometry ρ, ρ(K) has only one pair of lattice-width

vectors of ρ(K). This is done by considering K with large enough area when

d = 2.

For a fixed z ∈ Pd, let Pz be the property “has property P and has z as

a lattice-width vector” and define

pz = Prob {ρ(K) has property Pz} .

In the cases we consider, pz = 0 if 1
|z| is small compared to the width of

K. To compute pz more easily, we fix a starting isometry ρz and define the

set

A = {α ∈ SO(d) : ∃t such that α(ρz(K)) + t satisfies Pz}.

If d = 2, we also think of α as a angle.

For every α ∈ A we define

T (α) = {t ∈ Rd/Zd : α(ρz(K)) + t satisfies Pz}.

Then we have

pz =

∫
A
|T (α)|dα.

Since every ρ(K) has exactly two lattice-width vectors (z and −z) and the

property Pz is identical to P−z, we may compute p by adding pz over all
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primitive vectors and dividing the result by 2. We do this to obtain

Prob {ρ(K) has property P} =
1

2

∑
z∈Pd

pz.

In the proofs where this method is used we give bounds for |A| and

|T (α)|.

2.3 Proof of Theorems 2.1 and 2.2

In this section we will only deal with bodies in R2, so we refer to the z-lattice

hyperplanes as z-lattice lines.

First we prove Theorem 2.1, but the proof we give also gives us another

useful fact.

Lemma 2.8. Let K ⊂ R2 be a convex body. For every isometry ρ fix a

lattice-width vector zρ of ρ(K). Then

Prob{ρ(K) ∩ Z2 = ∅ and ρ(K) intersects a zρ-lattice line} ≤ C 1

|K|2 .

Note that it is enough to prove this for K with large enough area.

Proof of Lemma 2.8 and the first part of Theorem 2.1. Let n ≥ 0

be an integer. By Lemma 2.5 there is a z ∈ P2 for every isometry ρ such

that ρ(K) intersects at most 2 z-lines.

Let R be a rectangle containing K with smallest possible width and such

that all of its sides touch K. Let w and l be the lengths of the sides of R

with w ≤ l. Then we have that 1
2wl ≤ |K| ≤ wl.

Now we use the method described in Section 2.2 with property P being

“intersects a zρ-lattice line and contains at most n of its lattice points”. If

21



R

(n+ 1)|z|

(n+ 1)|z|K

Figure 2.1: The caps of ρ(K).

n = 0 this is exactly what we need for Lemma 2.8 and if n ≥ 1 it is a weaker

condition than the one needed in Theorem 2.1.

Fix z ∈ P2 and choose ρz such that the long side of ρz(R) is perpendicular

to z. We may assume that w < 3
|z| , otherwise ρz(R) intersects more than

one zρ-lattice line and pz = 0. If α ∈ A, then

|sin(α)| ≤ 3√
l2 + w2|z|

<
3

l|z| .

Therefore, we can think of A as a subset of

[
− 3π

2l|z| ,
3π

2l|z|

]
∪
[
π − 3π

2l|z| , π +
3π

2l|z|

]
.

Now fix α ∈ A and consider the chords of α(ρz(K)) perpendicular to z.

Let s be the length of the longest of these chords, then we have |K| ≤ 3
|z|s.

Since the area of K is large, this implies s ≥ |K||z|3 > (n+ 1)|z|.

To measure T (α) if n > 0, it is easier to think of α(ρz(K)) as being fixed

and translating Z2. We can bound this by the area of the region where O

can be translated to. This region must be contained in the union of the

caps of ρ(K) cut off by chords perpendicular to z of length (n + 1)|z| (see

Figure 2.2). If O is outside of these caps, then the chord perpendicular to

22



z through O would have length larger that (n + 1)|z| and therefore would

contain at least n+1 points. If n = 0 the same holds by a similar argument.

Lemma 2.9. The area of any of these caps is at most (n+1)2|z|2
(
α+ l

wα
2
)
.

This lemma is proved below. With this bound for |T (α)| we have

pz ≤ Cn2

∫ π
2l|z|

0

(
|z|2α2 l

w
+ |z|2α

)
dα ≤ Cn2

(
1

|z|wl2 +
1

l2

)
.

Summing over z ∈ P2 with |z| ≤ 3
w and using Lemma 2.7 we obtain

Prob
{

#(ρ(K) ∩ Z2) = n
}
≤ Cn2

∑
z∈P2

z≤ 3
w

(
1

|z|wl2 +
1

l2

)
≤ C n2

w2l2
≤ C n2

|K|2 .

Proof of Lemma 2.9. Let D be one of the caps and let A be the point of

D farthest away from the line determined by the chord of D perpendicular

to z with length (n+ 1)|z|. Set h as the distance between A and this line.

The convexity of K implies that any chord perpendicular to z inside the

cap has length at most (n + 1)|z|, therefore the area of the cap is at most

(n+ 1)|z|h. It only remains to bound h.

Choose new coordinates so that the vertices of ρ(R) are (0, 0), (l, 0),

(l, w), (0, w), and z = |z|(sin(α), cos(α)). Let A = (a, b) (see Figure 2.2).

For simplicity, we write s = sin(α) and c = cos(α).

The line generated by z is the given by the equation sx + cy = 0. Now

consider lines perpendicular to z passing through A and (l, 0). The distance

between these lines is sl−sa−cb. Note that the line through A must separate

the origin from the points (l, 0) and (0, w).

Let P be the point in the line joining A and (l, w) such that the vector
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(0, w)

(0, 0)

(a, b)

P

(l, w)

(l, 0)

(n+ 1)|z|

Figure 2.2: Figure for Lemma 2.9.

Q = (l, 0)− P is perpendicular to z. By measuring the area of the triangle

with vertices (l, 0), (l, w) and (a, b) in two different ways we obtain 1
2 |Q|(l−

a,w − b) · (s, c) = 1
2w(l − a). Therefore

|Q| = w(l − a)

sl + cw − sa− cb
.

The convexity of K implies that h must be smaller than the distance

between A and the marked line in the picture. This line is the chord of

the angle ∠(l, w)(a, b)(l, 0) with length (n + 1)|z| perpendicular to z. This

distance can be computed using similarity to obtain the following:

h ≤(sl − sa− cb)
(n+ 1)|z|
|Q|

=(n+ 1)|z|(sl − sa− cb)(sl + cw − sa− cb)

w(l − a)

≤(n+ 1)|z|(sl − sa)(sl + cw)

w(l − a)
< (n+ 1)|z|α(αl + w)

w
.

Proof of the second part of Theorem 2.1. Let z ∈ P2 be a vector with

|z| < 1
w .

Choose ρz such that the width side of ρz(K) is parallel to z. Let α be

an angle such that 0 < sin(α) < 1
|z|l . We can rotate ρz(K) by this angle and
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translate so that it does not touch any z-lattice line, therefore α ∈ A.

By thinking of α(ρz(K)) as fixed and translating Z2, it is easy to see

that T (α) contains a rectangle with sides parallel to those of K with lengths

|z| sin(α) and |z| cos(α). This gives

pz ≥
∫ 1
|z|l

0
|z|2 sin(α) cos(α)dα ≥ C 1

l2
.

Finally, we sum over |z| < 1
w and use Lemma 2.7 to obtain

Prob
{

#
(
ρ(K) ∩ Z2

)
= n

}
≥ C

∑
|z|< 1

w

1

l2
≥ C 1

|K|2 .

Proof of Theorem 2.2. It is well known that if t ∈ [0, 1]2 is chosen with

uniform probability, then the expected value of the number of integer lattice

points in K + t is |K|. This implies that the expected value of the number

of integer lattice points in a random isometry of K is also |K|.

We may assume that c is large compared to N1+ε, then Theorem 2.1

implies

Prob
{

#
(
ρ(K) ∩ Z2

)
= n

}
≤ cn

1−ε

|K|2

for every convex body K and n ≤ N . For the sake of contradiction, assume

that this is also true for all n > N .

Let l > 0 be large and K be a rectangle with side lengths l and l−ε/6.

Fix an isometry ρ. Since l−ε/6 < 1√
2

then every vertical chord or every

horizontal chord of ρ(K) has length less than 1. Assume this happens in the

vertical direction, then clearly ρ(K) can contain at most one lattice point

in each vertical lattice line. Since there can be at most l + 1 such lines

intersecting ρ(K), Prob
{

#
(
ρ(K) ∩ Z2

)
= n

}
= 0 for every n > l + 1. We
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then have

l3−
ε
2 = |K|3 =|K|2

∞∑
n=1

nProb
{

#
(
ρ(K) ∩ Z2

)
= n

}
≤C

bl+1c∑
n=1

n2−ε ≤ Cl3−ε,

a contradiction.

2.4 Proof of Theorem 2.3

Proof of the first part of Theorem 2.3. Let K ⊂ Rd be a convex body

such that dim(K ∩Zd) = k. There exists a lattice vector z ∈ Pd perpendicu-

lar to the affine space generated by K∩Zd. Consider the family {Hn : n ∈ Z}

of z-lattice hyperplanes ordered in the natural way such that all the points

of Zd ∩K are in H0. Let

L =
⋃
n odd

(
Zd ∩Hn

)
.

The set L is the translate of a lattice of determinant 2 and K does not

intersect any point of L. By using the Flatness Theorem it can be shown

that there is a constant W smaller than twice of the implicit constant in

the Flatness Theorem such that W (K) ≤W . We conclude by using Lemma

2.6.

Now we prove that this bound is best possible if k = d− 1.

Proof of the second part of Theorem 2.3. Given r, w > 0 such that w

is small but rw is large, let K be the cylinder Bd−1(r, 0) × [−w
2 ,

w
2 ] ⊂ Rd,

where Bd−1(r, 0) is the closed (d − 1)-dimensional ball with radius r and

centre 0. The symmetry of the cylinder is useful here because measuring on
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SO(d) can be reduced to measuring on the sphere Sd−1. The natural way

to do this is by identifying an element λ ∈ Sd−1 with the elements of SO(d)

that send K to a cylinder with its axis parallel to λ.

Since rw is large, the projection of K onto any 2-dimensional plane has

large area. Therefore, if K contains no lattice points, it has a unique pair

of lattice-width vectors. For every z ∈ Pd, we define Lz ⊂ Zd as the d − 1

dimensional lattice of vectors in Zd perpendicular to z. The determinant of

the lattice Lz is |z|.

Assume that the first coordinate of z = (z1, . . . , zd) is not zero. If {ei} is

the canonical basis of Rd, then the family {zie1 − z1ei}di=2 ⊂ Lz is linearly

independent and all its elements have norm smaller than |z|. Therefore we

can find a basis B of Lz such that all its elements have norm smaller than

|z|.

Let λz = z
|z| ∈ Sd−1. If r > |z| and w < 1

|z| , then λz(K) ∩ Z2 has

dimension d − 1. Note that if |K| is large enough then w < 1
|z| implies

r > |z|.

Let α be an angle such that sin(α) = 1
2|z|r . Consider the set A ⊂ Sd−1

of elements that form an angle smaller than α from λz, then the (d − 1)-

dimensional measure of A is

|A| ≥ Cd
(

1

|z|r

)d−1

.

At this point we choose a representative for every element of Rd/Zd. The

set of representatives is the parallelotope determined by B and z
|z|2 .

By considering projections of K onto 2-dimensional planes that contain

λ ∈ A it can be easily seen that if w < 1
|z| , then λ(K) can be translated

by a set of vectors with volume at least Cd|z|w cos(α) ≥ Cd|z|w so that the
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resulting body intersects Zd in a set of dimension d− 1.

Using the method described in section 2.2 with P being “intersects Zd

in a set of dimension d− 1”, we obtain

p =
∑
|z|< 1

w

pz ≥ Cd
∑
|z|< 1

w

w

rd−1|z|d−2

≥ Cd
1

rd−1w
≥ Cd

1

|K| .

2.5 Proof of Theorem 2.4

Proof of Theorem 2.4. First we express the probability as

Prob
{
ρ(K) ∩ Z2 = ∅

}
= p+ q,

where

p = Prob{ρ(K) ∩ Z2 = ∅ and ρ(K) intersects no zρ-lattice line}

and

q = Prob{ρ(K) ∩ Z2 = ∅ and ρ(K) intersects a zρ-lattice line}.

Lemma 2.8 states that

q ≤ C 1

|K|2 ,

so we only need to bound p. Once again, we do this using the method

described in section 2.2.

Let w be the width of K and assume w < 1. Clearly pz > 0 if and only
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if |z| < 1
w .

For a given z, let ρz be a rotation such that the width of ρz(K) is attained

in the horizontal direction. Let w(α) be the width in direction α of ρz(K),

then w = w(0). Set l = w(π2 ). Note that

|T (α)| = |z|
(

1

|z| − w(α)

)
.

Proposition 2 in [27] states that for every convex body K ⊂ Rd,

∫ 2π

0

1

(w(α)/2)2d
dα ≤ 2

∣∣KP
∣∣ (2.2)

with equality if and only if K is centrally symmetric with centre P . We use

this below for d = 2.

Now we can compute p very accurately. The following computations are

explained below. For small enough w we have

p =
1

4π

∑
|z|< 1

w

∫
{
α:w(α)< 1

|z|

}(1− |z|w(α))dα

=
1

4π

∫
{α:w(α)<1}

∑
|z|< 1

w(α)

(1− |z|w(α))dα

=
1

4π

∫
{α:w(α)<1}

2

π

1

w(α)2
+O

(
log(w(α))

w(α)

)
dα (2.3)

=
1

8π2

∫ 2π

0

1

(w(α)/2)2
dα+O

(
w log(w)2

|K|

)
(2.4)

≤ 1

4π2

∣∣KP
∣∣+O

(
w log(w)2

|K|

)
(2.5)

≤ 1

4|K| +O

(
w log(w)2

|K|

)
(2.6)

where P is the Santaló point of K. The equality (2.3) is by Lemma 2.7,

(2.4) is easy to obtain by using the fact that w + lα ≤ Cw(α) ≤ C(w + lα)
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for 0 ≤ α ≤ π/2. The inequality (2.5) is a direct consequence of (2.2), and

(2.6) is the Blaschke-Santaló inequality.

From here it follows that

Prob
{
ρ(K) ∩ Z2 = ∅

}
≤ 1

4|K|

(
1 + Cw log(w)2 +

C

|K|

)
.

To see that the 1
4|K| is best possible, notice that if K is an ellipse, then

(2.5) and (2.6) are equalities.

30



Chapter 3

A conjecture by Erdős

This is joint work with I. Bárány and has been submitted to Discrete and

Computational Geometry.

In his celebrated paper [14] “On sets of distances of n points”, Paul

Erdős makes the following conjecture:

“On every convex curve there exists a point P such that every circle with

centre P intersects the curve in at most 2 points.”

This conjecture turned out to be false, for any point P on the boundary of

a regular triangle there is a circle centred at P that intersects the boundary

of the triangle 4 times. In fact, any regular (2k + 1)-gon has this property.

Perhaps the number 2 in Erdős’s conjecture can be replaced by some

other number independent of the convex curve. We wish to determine how

large this number can be.

Let K be a planar convex body. We define N = N(K) ∈ N ∪ {∞} as

the smallest number for which there is a point P ∈ ∂K such that every

circle with centre P intersects ∂K in at most N points. With this notation,

Erdős’s original conjecture states that N(K) ≤ 2 for every convex body

K. We conjecture that N(K) is indeed bounded by some finite constant
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independent of K, probably by 6.

Theorem 3.1. There is a planar convex body K with N(K) = 6.

The simplest example we found for this is a 15-gon and it is constructed

in Section 3.2. On the other hand we can show the following.

Theorem 3.2. For every planar convex body K, N(K) <∞.

A stronger version of this theorem is proved in Section 3.1. So far we

have not been able to find a finite upper bound that works for all K. Part

of the difficulty of improving this bound may come from the following two

theorems.

For n ∈ N∪{∞}, let J(K,n) be the set of points P ∈ ∂K such that there

is a circle centred at P that intersects ∂K in at least n points. Note that, in

view of Theorem 3.2, N = N(K) is the largest N such that J(K,N) = ∂K.

We denote by |X| the 1-dimensional Hausdorff measure (perimeter) of a

set X ⊂ R2.

Theorem 3.3. Let ε > 0, then there is a convex body Kε such that

|J(Kε,∞)|
|∂Kε|

> 1− ε.

If K0 is a segment or an acute triangle, then we can construct Kε as

in Theorem 3.3 so that limε→0Kε = K0 in the Hausdorff metric. These

examples are also constructed in Section 3.2.

The next theorem is in the Baire category sense (see Section 3.3 and

Chapter 20 of [35] for notions and definitions).. Let K be the set of planar

convex bodies together with the Hausdorff metric.

Theorem 3.4. For most convex bodies K ∈ K, the set
⋂∞
n=1 J(K,n) con-

tains most points of ∂K.
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We give the proof of this theorem in Section 3.3.

3.1 The finiteness of N

First we fix some notation. We write B for the closed unit disk and B(Q, r)

resp. S(Q, r) for disk and the circle centred at Q with radius r > 0.

If K is a convex body and P ∈ ∂K, then a line l is a normal of K at P

if P ∈ l and the line orthogonal to l through P supports K at P .

Fix a convex body K and define the set

Γ = {(Q, l) : Q ∈ ∂K, l is a normal of K at Q}.

The set Γ is actually a curve, this can be seen by considering the smooth

convex body K ′ = K+B. The set Γ is in bijective correspondence with ∂K ′

in the following way: For every point Q′ ∈ ∂K ′, let l be the normal line of

K ′ at Q′ and let Q be the point in l ∩ ∂K at distance 1 from Q′. Then the

pair (Q, l) ∈ Γ corresponds to the point Q′ ∈ ∂K ′.

The distance between two points Q′1, Q
′
2 ∈ ∂K ′ is the length of the

shortest arc of ∂K ′ bounded by these points. We use the above bijection

to measure the distance between points in Γ and the Euclidean metric to

measure distances between points in the plane.

Now we go back to the problem in question. Take P ∈ ∂K and assume

that there are two different points Q1, Q2 ∈ S(P, r) ∩ ∂K. Let H ⊂ ∂K be

the closed arc bounded by Q1 and Q2 that does not contain P . Consider the

function g(Q) = dist(P,Q) for Q ∈ H. Since g(Q1) = g(Q2), there exists Q

in the relative interior of H such that g attains either its maximum or its

minimum on Q. For this Q there is a line l so that (Q, l) ∈ Γ, and P ∈ l.

Hence, if P ∈ ∂K is a point such that there are exactly M pairs (Q, l) ∈ Γ
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with P ∈ l and P 6= Q, then any circle centred at P intersects ∂K in at most

M + 1 points. This implies N(K) ≤M + 1, therefore to prove Theorem 3.2

it is enough to show the following.

Theorem 3.5. Given a convex body K, there is a point P ∈ ∂K such that

the number M of pairs (Q, l) ∈ Γ with P 6= Q and P ∈ l is finite.

It may even be possible thatM is bounded by some constant independent

of K. From the proof it can be seen that M is finite in a positive fraction

of the perimeter of K.

To prove this theorem we define Γ0 ⊂ Γ as the set of pairs (Q, l) for

which l∩ ∂K contains exactly one point besides Q, let f(Q, l) be this point.

We shall study the function f : Γ0 → ∂K.

If (Q, l) ∈ Γ \ Γ0 then l ∩ ∂K contains either one point (namely Q) or

an infinite number of points (namely an edge of K with Q as an endpoint).

In either case, ∂K is not smooth at Q and the internal angle formed at this

point is at most π
2 . We call such a point Q a small angle of K. Since there

are at most 4 small angles on a closed convex curve, Γ \Γ0 contains at most

8 connected components.

Given (Q, l) ∈ Γ0, define α(Q, l) as the smallest angle between the line

l and a supporting line of K at f(Q, l). Note that α(Q, l) > 0 and that

α : Γ0 → R is a lower semi-continuous function and therefore the sets

∆t = {(Q, l) ∈ Γ0 : α(Q, l) > t}

are open in Γ0.

Lemma 3.6. For every t > 0, the function f |∆t : ∆t → ∂K is locally

Lipschitz. If D is the diameter of K, then Lip(f) ≤ max{1,D}
sin( t

2
)

in any small-

enough open set of ∆t.
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Q

(a) (b)

Figure 3.1: Lemma 3.6.

Proof. Let (Q, l) ∈ ∆t and P = f(Q, l). Since K is convex, there exists

ε > 0 such that any point R ∈ B(P, ε)∩ ∂K satisfies ∠QPR > t
2 (see Figure

3.1(a)).

It is not difficult to see that there is a δ > 0 such that if the pair (Q′, l′) ∈

∆t is at distance less than δ from (Q, l), then the point P ′ = f(Q′, l′) is in

B(P, ε).

Since dist(Q,Q′) ≤ dist((Q, l), (Q′, l′)) and the angle between l and l′ is

at most dist((Q, l), (Q′, l′)), the region where P ′ is can be further bounded. If

we assume in Figure 3.1(a) that Q′ is to the left of Q, then we have ∠P ′QP ≤

dist((Q, l), (Q′, l′)) if P ′ is right of P , and dist(P ′, l) ≤ dist((Q, l), (Q′, l′)) if

P ′ is to the left of P . This determines the marked region in Figure 3.1(b).

Thus,

dist(P, P ′) ≤ 1

sin( t2)
dist((Q, l), (Q′, l′))

if P ′ is right of P , and

dist(P, P ′) ≤ dist(Q,P ′)

sin( t2)
dist((Q, l), (Q′, l′))

if P ′ is to the left of P . In both cases we have

dist(P, P ′) ≤ max{1, D}
sin( t2)

dist((Q, l), (Q′, l′)).
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This implies for the Lipschitz constant of f that

Lip(f) ≤ max{1, D}
sin( t2)

in any small-enough open set of ∆t.

Lemma 3.7. If the convex body K is not a polygon with at most 6 sides,

there is a set F ⊂ ∂K with |F | > 0 and a number t > 0 such that f−1(F ) ⊂

∆t.

Proof. For every small angle Q ∈ ∂K the set of pairs (Q, l) ∈ Γ is a closed

arc, let (Q, l+) and (Q, l−) be its boundary points. Define the set L =⋃
(l+ ∪ l−), where the union is taken over all small angles of K.

Since K is not a polygon with at most 6 sides, then ∂K \ L is open

relative to ∂K and non-empty. Therefore, there is a closed set F ⊂ ∂K \ L

with non-empty interior relative to ∂K (and hence, with positive perimeter).

Suppose that there is a sequence of pairs {(Qi, li)}∞i=1 with f(Qi, li) ∈ F

and satisfying limi→∞ α(Qi, li) = 0. Let l′i be a supporting line of K at

f(Qi, li) that forms an angle of α(Qi, li) with li. By taking a subsequence

if necessary, we may assume that (Qi, li) converges to a pair (Q, l) and that

l′i converges to a line l′. Then l′ must support K at (Q, l), thus Q ∈ L.

This contradicts the definition of F , therefore there exists t > 0 such that

α(Qi, li) > t for all (Q, l) ∈ F and hence f−1(F ) ⊂ ∆t.

Proof of Theorem 3.5. If K is a polygon with at most 6 sides, then for

any P ∈ ∂K the set f−1(P ) contains at most 12 points, so M ≤ 12 there.

Assume now that K is not a polygon with at most 6 sides and take F

as in Lemma 3.7. By Lemma 3.6, f is locally Lipschitz on f−1(F ) and the
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coarea formula (see [15]) gives

∫
F

#f−1(P ) dP =

∫
f−1(F )

|∇f(Q, l)| d(Q, l) ≤
∣∣f−1(F )

∣∣Lip(f).

Therefore, there is a point P ∈ F which is taken only finitely many times

by f|f−1(F ). Since no other pair (Q, l) ∈ Γ with Q 6= P can have P ∈ l, we

are done.

3.2 Examples

In this section we give examples for Theorems 3.1 and 3.3. First we need a

couple of lemmas.

Lemma 3.8. Fix N ∈ N∪{∞}. Let A,B,C,D be points in convex position

ordered counter-clockwise such that the angle ∠ABC ∈ (0, π2 ). For any

neighbourhood V of B there is a sequence of points {Ci}Ni=1 such that:

i) The points D,C,C1, C2, . . . B,A are all extreme points of their convex

hull and are ordered clockwise.

ii) For every P ∈ [A,B] outside of V , there is a circle centred at P that

intersects the broken line CC1C2 . . . BA in at least 2N + 2 points.

Proof. Given a point P on the line AB, let SP be the circle centred at P

that passes through B. Let B′ ∈ [A,B] ∩ V so that C is outside of SB′ .

We construct the points Ci inductively starting with C0 = C. Once Ci−1

is constructed, let Ci be a point such that:

• The points D,C0, . . . , Ci, B,A are all extreme points of their convex

hull and are ordered clockwise,

• Ci is outside of the circle SA,
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Ci−1

Ci

BB′A

SA

SB′

Figure 3.2: Lemma 3.8.

• ∠ABCi < π
2 ,

• the segment (Ci−1, Ci) intersects SB′ twice.

See Figure 3.2 for a non-realistic example of this construction. Clearly con-

dition (i) holds.

For a given P ∈ [A,B′] the circle SP is between the circles SB′ and

SA, therefore SP intersects each of the segments (C,C1) and (A,B] at least

once and each of the segments (Ci, Ci+1) twice, giving an infinite number

of intersections when N = ∞. If N < ∞, then a circle slightly smaller

that SP will, in addition, intersect (CN , B) twice giving a total of 2N + 2

intersections.

Lemma 3.9. Let A1, B,A2 be points in the plane. For i = 1, 2 let Ci be

the midpoint of AiB and Si be the set of points P such that the orthogonal

projection of P on AiB is contained in the segment (B,Ci]. Then for any

point P ∈ S1 ∩ S2 there is a circle centred at P that intersects each of the

segments (Ai, B) twice.

Proof. Let P ∈ S1 ∩ S2 and assume that dist(P,A1B) ≤ dist(P,A2B). It

is easy to see that there is a real number r larger than dist(P,A2B) and

smaller than dist(P,B), dist(P,A1) and dist(P,A2). Therefore, the circle

centred at P with radius r intersects each of the segments (Ai, B) twice.

We note that the set of points P that satisfy the above lemma is actually

larger. The regions we use are simple and enough for our purposes.
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A1

C4

A2

A3

Figure 3.3: Construction for Theorem 3.1 with the regions from Lemma 3.9.

Now we are ready to construct the examples which prove Theorems 3.3

and 3.4.

Proof of Theorem 3.1. Consider the points with coordinates

A1 = (1000, 0), A2 = (906, 114), A3 = (645, 359), A4 = (−498, 871).

For i = 1, . . . 4, let Bi and Ci be the rotation around the origin of Ai by an

angle of 2π/3 and 4π/3, respectively. The 12 points Ai, Bi, Ci are in convex

position (see Figure 3.3).

Using Lemma 3.9 on the triples C1, C2, C3 and C2, C3, C4, it can be

shown by direct computation that for any point P in some neighbourhood V

of the broken line A4B1B2B3 there is a circle centred at P that intersects the

broken line C1C2C3C4 in at least 6 points. This direct computation amounts

to checking that the two shaded strips in Figure 3.3 together contain the

broken line B3B2B1A4 in their interior.

The angle ∠A3A4B1 is acute. This is again a simple computation.

Lemma 3.8 implies the existence of points A5 ∈ V such that for any point

P on [A3, A4] \V there is a circle centred at P that intersects A3A4A5B1 in

at least 4 points. Define B5 and C5 as above to obtain a 15-gon K having
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Ai, BiCi as its vertices. The radius of the circle SP is close to |PA4| and

therefore intersects ∂K an additional 2 times, once between C3 and P and

once again between A5 and B3.

By the rotational symmetry of the figure, K has the desired property.

It can also be verified that there are points P ∈ ∂K that are not in

J(K, 7), for example the midpoint of [A3A4].

An interactive version of Figure 3.3 made with GeoGebra1 can be found

on-line at http://www.geogebratube.org/student/m33469.

Proof of Theorem 3.3. As mentioned before, the convex body Kε can be

constructed so that it is close to any triangle or a straight line segment.

Fix a triangle A1A2A3 and let ε > 0. Choose points B1, B2 and B3

so that A1B1A2B2A3B3 is a convex 6-gon, each Bi is ε-close to Ai and the

angles ∠AiBiAi+1 are acute. Using Lemma 3.8 with N = ∞ on the points

AiBiAi+1Bi+1, we obtain three families of points that together with the

points Ai and Bi determine the required convex body.

For a straight segment [A,B] a similar thing is done. Choose points C

close to A and D close B such that ACBD is a convex 4-gon and the angles

∠ACB and ∠ADB are acute, then Lemma 3.8 on BCAD and ADBC gives

the required convex body.

3.3 Generic behaviour

The set of planar convex bodies K with the Hausdorff metric is a complete

metric space, thus, it is a Baire space.

The defining property of Baire spaces is that the intersection of countably

many dense open sets is also dense. The intersection of countably many open

1http://www.geogebra.org
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sets is called a Gδ set. Such sets are considered large. It is said that most

points in a Baire space satisfy a property if the set of points satisfying this

property contains a dense Gδ set. These notions can be found in Chapter

20 of [35] and similar techniques are applied in [36].

We prove Theorem 3.4 here, but we need some definitions and lemmas

first. Let K be a convex body and assume the circle S intersects ∂K at Q.

If for every ε > 0 there are points Q1, Q2 ∈ B(Q, ε)∩S such that Q1 ∈ intK

and Q2 6∈ K, then we say that S intersects ∂K transversally at Q.

To make things simpler, we work with the set J0(K,n) ⊂ J(K,n) of

points P ∈ ∂K such that there is a circle centred at P that intersects ∂K

transversally in at least n points. If n <∞ then the sets J0(K,n) are clearly

open relative to ∂K.

Remark. It can be shown that if n <∞ and ∂K contains no circle-arcs

(which is true for most convex bodies) then J0(K,n) = J(K,n), but we do

not need this.

Instead of proving Theorem 3.4 we prove the following stronger state-

ment.

Theorem 3.10. For most convex bodies K ∈ K, the set
⋂∞
n=1 J0(K,n)

contains most points of ∂K.

Let Kn,m be the set of convex bodies K ∈ K such that for every point

P ∈ ∂K, the set J0(K,n) ∩ B(P, 1
m) is non-empty.

Lemma 3.11. The set Kn,m is open and dense in K.

Proof. First we prove that Kn,m is open. Let K ∈ Kn,m and choose a

finite family {Pi} such that {B(Pi,
1

2m)} covers ∂K. From the definition of

J0(K,n) and the finiteness of {Pi}, it follows that there exists ε > 0 such

that whenever dist(K,K ′) < ε the following hold:
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• {B(Pi,
1

2m)} covers ∂K ′,

• if Q ∈ J0(K,n) and Q′ ∈ ∂K ′ ∩ B(Q, ε) then Q′ ∈ J0(K ′, n).

This implies that Kn,m is open.

To show that it is dense, let K ∈ K and ε > 0. We construct a convex

body K ′ ∈ Kn,m such that dist(K,K ′) < ε.

Let K0 be a polygon such that dist(K,K0) < ε and the distance between

any two consecutive vertices of K0 is less than 1
4m . Let {P1, . . . , PM} be the

set of midpoints of the sides of K0. Given these points we construct new

polygons K1, . . . ,KM recursively, the following way.

Once Ki−1 has been constructed, let Q,R, S be consecutive vertices of

Ki−1 such that R is a vertex of Ki−1 farthest away from Pi. Now we remove

the vertex R from Ki−1 and add vertices R1, . . . , Rn to form a new polygon

Ki with the following properties:

• The points R1, . . . , Rn are between Q and S,

• the distance between Pi and any Rj is some r > 0,

• the points P1, . . . , PM belong to ∂Ki and are not vertices of Ki,

• dist(K,Ki) < ε.

Note that any circle centred at Pi with radius slightly smaller than r will

intersect ∂Ki−1 transversally in at least n points.

It clear that the polygon obtained at the end of this process belongs to

Kn,m.

Proof of Theorem 3.10. By Lemma 3.11 and since K is a Baire space,

the set
⋂∞
n,m=1Kn,m is a dense Gδ subset of K. Let K ∈ ⋂∞n,m=1Kn,m, then

each J0(K,n) is open and dense relative to ∂K. Therefore
⋂∞
n=1 J0(K,n) is

a dense Gδ subset of ∂K.
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Chapter 4

A Yao-Yao type theorem

This is joint work with P. Soberón, it was presented in EuroCG 2012 and has

been submitted for publication to Discrete and Computational Geometry.

A convex partition of Rd into n parts is a covering P = {C1, . . . , Cn} of

Rd consisting of closed convex bodies with pairwise disjoint interiors. We

say that a hyperplane H ⊂ Rd avoids a set C if it does not intersect its

interior.

The classical Yao-Yao theorem [40] states the following.

Theorem (Yao and Yao). Let µ be a nice measure in Rd, then there is a

convex partition P of Rd into 2d parts of equal µ-measure such that every

hyperplane in Rd avoids at least one element of P.

In the original proof of this theorem, the measure has to have a continu-

ous density function bounded away from the origin. Later, in [25], this was

weakened by J. Lehec to the condition that the measure of every hyperplane

be 0. We require the measure µ to satisfy the original conditions, as in [40].

We call a measure that satisfies these conditions a nice measure.

This theorem gives a partition in which all hyperplanes, except for those

passing through a certain point, intersects exactly 2d − 1 pieces. The proof
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gives a unique partition for each ordered orthonormal basis (u1, . . . , ud).

We give an extension of this theorem to the case when every hyperplane is

required to avoid 2 pieces.

Theorem 4.1. Let µ be a nice measure in Rd, then there is a convex parti-

tion P of Rd into 3·2d−1 parts of equal µ-measure such that every hyperplane

in Rd avoids at least two elements of P.

For d = 2 this follows from a theorem by Buck and Buck [11] which

states that any nice measure µ in R2 can be divided into six parts of equal

measure by three concurrent lines. Our method gives in this case a partition

by three lines, two of which are parallel. The proof of Theorem 4.1 is given

in section 4.3. Some details of Yao and Yao’s proof are necessary, so we give

a sketch of their proof in section 4.2.

Let Nd(k) be the smallest positive integer such that the following holds:

For every nice measure µ on Rd there exists a partition of Rd into Nd(k)

convex parts of equal measure such that every hyperplane avoids at least k

parts. We call such a partition a k-equipartition. The Yao-Yao Theorem and

Theorem 4.1 are equivalent to the bounds Nd(1) ≤ 2d and Nd(2) ≤ 3 · 2d−1.

There is another number which seems useful, although it is less natural.

Let Md(k, α) be the smallest positive integer satisfying that for every nice

measure µ on Rd there is a family of Md(k, α) convex sets, each with measure

at least α, such that every hyperplane avoids at least k of them. Then we

have

Nd(k) ≥Md

(
k,

1

Nd(k)

)
. (4.1)

Lemma 4.2. Let p ≤ q be non-negative integers, then M2(q − p, p2q ) ≤ 2q.

From the proof of this lemma (found in section 4.4) we also obtain a

bound for N2.
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k N2(k) k N2(k) k N2(k) k N2(k)

1 4 6 14 11 24 16 32
2 6 7 16 12 24 17 32
3 8 8 18 13 28 18 36
4 10 9 20 14 30 19 36
5 12 10 22 15 32 20 36

Table 4.1: Upper bounds for N2.

Corollary 4.3. N2(k) ≤ 2k + 2.

This improves the bounds that can be obtained by using the Yao-Yao

Theorem, Theorem 4.1, and equations 4.3 and 4.4 from section 4.4 for all

k ≤ 15 except k = 1, 2, 7, 12. In Table 4 we give the best bounds obtainable

by these methods.

For a fixed d, we can determine the asymptotic behaviour of Nd(k).

Theorem 4.4. lim
k→∞

Nd(k)

k
= 1.

This means that the condition of equipartitioning a given measure is not

very strong in the sense that, if there are enough parts, it can be done so

that every hyperplane avoids almost all of them. This is the same behaviour

as one would expect from a generic partition. In section 4.1 these results

are applied to an apparently simple problem regarding separation of points

and hyperplanes.

Problem (The (α, β)-problem). Determine all pairs (α, β) ∈ R2
+ such that

for any finite set X of points in Rd and any finite set Y of hyperplanes in

Rd, there are sets A ⊂ X and B ⊂ Y such that:

• |A| ≥ α|X|,

• |B| ≥ β|Y |,

• no two points in A are separated by a hyperplane in B.
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We note that this problem is similar to Theorem 18 in [12] by Bukh and

Hubard, the proof method used for that problem also involves the Yao-Yao

Theorem. Trying to solve the question above we found a lower bound for

Nd(1) in terms of hd(t), the measure of a spherical cap of Sd with central

angle t computed with the usual probability measure in Sd.

Theorem 4.5. Let α > 0 be such that there is a family A of convex sets in

Rd with the following properties:

• Every set in A has measure at most α,

• every hyperplane avoids at least one set of A,

• the sum of the measures of the sets in A is not greater than 1.

Then

α ≤ hd
(π

4

)
≈ C · 2− d2

for some universal constant C > 0.

The hypotheses of this theorem can be written simply as 1 ≥ α·Md(1, α).

Note that if A is a 1-equipartition, the conditions above hold. Thus, we can

set α = 1
Nd(1) . This is also implied by (4.1).

Corollary 4.6.

Nd(1) ≥ C · 2 d2 .

For the approximation of the cap measure see [3], for example. This

answers a question by B. Bukh on whether the number of pieces needed

is indeed super-polynomial. Similar bounds can be obtained for Nd(k) for

any k in terms of spherical caps of Sd. However, explicit approximations

are hard to find. These results are a consequence of Theorems 4.7 and 4.10

below.
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The Yao-Yao theorem can be generalised in the following way:

Given a1, a2, . . . , a2d > 0 such that
∑
ai = µ(Rd), there is a partition of

Rd into 2d convex parts {C1, C2, . . . , C2d} such that µ(Ci) = ai for all i and

every hyperplane avoids the interior of at least one Ci. Theorem 4.1 can

also be generalised in the same way. This is made clear in the next sections,

but a complete proof is not included.

4.1 The (α, β)-problem

The so called (α, β)-problem deals with how well behaved points and hyper-

planes are with each other in terms of separation. It has the difficulty that

it is not self-dual, so we work with a second version which does have this

property. Namely,

Problem (Second version). Find all pairs (α, β) ∈ R2
+ such that for any

two nice centrally symmetric probability measures µ1, µ2 in Sd there are sets

A,B ⊂ Sd with µ1(A) ≥ α, µ2(B) ≥ β such that either

a · b ≥ 0 for all a ∈ A, b ∈ B

or

a · b ≤ 0 for all a ∈ A, b ∈ B. (4.2)

Here the condition of the measures being centrally symmetric is not

really needed. If they are not then we can consider the measures given by

µ′1(A) = 1
2(µ1(A) + µ1(−A)) and µ′2(A) = 1

2(µ2(A) + µ2(−A)) and obtain

the same pairs (α, β) for these measures.

Let C′d be the set of pairs (α, β) satisfying the conditions of the original

problem and Cd be the set of pairs satisfying the conditions of the second
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version of the problem. Then (α, β) ∈ C′d if and only if (α2 ,
β
2 ) ∈ Cd.

This is done simply by embedding Rd in Rd+1 as a hyperplane not con-

taining the origin O. Then every point a ∈ Rd corresponds to the pair of

points {a′,−a′} in Sd in the line Oa and every hyperplane H ∈ Rd cor-

responds to the pair of points {b′,−b′} in Sd such that b′ is orthogonal to

every line Ob with b ∈ H. With this transformation we see that the original

problem is essentially equivalent to one similar to the second version but

with symmetric finite sets of points instead of probability measures. The

change to measures follows from the fact that every nice measure can be

approximated by linear combinations of Dirac measures and vice versa.

The sets A and B in this problem can (and will) be taken as the inter-

section of Sd and a convex cone in Rd+1 with apex at the origin.

We shall denote by Md the usual probability measure on Sd. Given

0 ≤ t < π and x ∈ Sd, let Cd(x, t) be the spherical cap of Sd with centre x

and central angle t. Denote by hd(t) its Md-measure.

For A ⊂ Sd, let A⊥ be the set of points x ∈ Sd such that there exists

a ∈ A with a · x = 0. Note that if A is connected, the largest set B ⊂ Sd

that satisfies (4.2) is one of the connected components of the complement of

A⊥.

Given a set A of fixed measure, in order to bound the measure of B we

need a variant of Lévy’s isoperimetric inequality [26]. With our notation,

Theorem 2.1 in [16] states the following.

Theorem. Let A be a closed subset of Sd and set t > 0 so that Md(A) =

hd(t). Then for every ε > 0, Md(Aε) ≥ hd(t + ε), where Aε is the set of

points x ∈ Sd with geodesic distance smaller than ε from x (i.e. the set of

points for which there exists a ∈ A with arccos(a · x) < ε).

If ε = π
2 and A is connected, then Sd \ Aε is one of the two connected
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components of Sd \A⊥. Therefore, if A,B ⊂ Sd satisfy (4.2) and Md(A) =

hd(t) for some t > 0, then Md(B) ≤ hd(π2−t). This is the following theorem.

Theorem 4.7. All points in Cd lie on or below the curve

{(
hd(t), hd

(π
2
− t
))

: 0 ≤ t ≤ π

2

}
.

This turns out to be best possible if d = 1.

Theorem 4.8.

C1 =

{
(α, β) : α+ β ≤ 1

2

}
.

The Yao-Yao type partition theorems can be used to find pairs in the

(α, β) problem. The following lemma is the main tool for this purpose.

Lemma 4.9. Let 0 ≤ ρ ≤ 1. Suppose that for any nice measure µ1 on Sd

there exists a family F of closed connected subsets of Sd and a probability

measure µF on F such that

• µ1(A) ≥ α for all A ∈ F ,

• For every b ∈ Sd, the set Fb = {A ∈ F : A ∩ {b}⊥ 6= ∅} is µF -

measurable and µF (Fb) ≤ ρ.

Then (α, 1−ρ
2 ) ∈ Cd.

Using this with Nd(k) and Md(k, α), we obtain the following.

Theorem 4.10. For any two positive integers k and d,

(
1

2Nd(k)
,

k

2Nd(k)

)
∈ Cd.

More generally, if α > 0,

(
α

2
,

k

2Md(k, α)

)
∈ Cd.
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Figure 4.1: Bounds for C2 and C3.

With this theorem and Theorem 4.7 we obtain the lower bounds in The-

orem 4.5. It should be noted that this also implies lower bounds for Nd(k)

for any k.

Applying the results obtained for Nd(k), we can show the following.

Corollary 4.11. For any two non-negative integers k1 and k2, not both

equal to 0, we have

1

2

((
1

2d

)k1 ( 1

3 · 2d−1

)k2
, 1−

(
1− 1

2d

)k1 (
1− 1

3 · 2d−2

)k2)
∈ Cd.

This gives in particular that
(

1
2d+1 ,

1
2d+1

)
∈ Cd and

(
1

3·2d ,
1

3·2d−1

)
∈ Cd.

The fact that
(

1
2d+1 ,

1
2d+1

)
∈ Cd was obtained earlier in [1] using a similar

method. In Fig. 4.1 there are plots of these points together with the bound

obtained in Theorem 4.7 in dimensions 2 and 3.

Corollary 4.12. There are pairs (α, β) ∈ Cd arbitrarily close to (0, 1
2).

This last corollary comes from the fact that limNd(k)/k = 1. However,

as the pairs given by Corollary 4.11 get close to (0, 1
2), they are significantly

smaller than what Theorem 4.7 gives.

We can obtain better bounds if further conditions are imposed on one of

the measures. Let Cd(∆) be the set of pairs (α, β) such that for any measure
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µ1 on Sd with density function f respect to Md satisfying Lip(f) ≤ ∆, and

every nice measure µ2 on Sd, the following holds: There are sets A,B in Sd

with µ1(A) = α, µ2(B) = β and either a · b ≥ 0 for all a ∈ A, b ∈ B or

a · b ≤ 0 for all a ∈ B, b ∈ B.

Theorem 4.13. For every 0 < λ ≤ 1 and 0 < r < 1−λ
∆ we have,

(
λhd(r), hd−1

(
π

2
− 2 arcsin

(
sin(r)

sin(1−λ
∆ − r)

)))
∈ Cd(∆).

If r is close to 0, then the pairs obtained are close to

(
λhd(r), hd−1

(π
2
− c2r

))

for some constant c2 depending on λ and ∆. That is, the difference in

dimension with respect to the bounds of Theorem 4.7 is compensated by

the constants. The idea of the proof is to use a small Sd−1 in Sd and the

Lipschitz condition to construct sets as in the proof of Lemma 4.9. If instead

of this we use a hypercube (of dimension d−1) in Sd, we can obtain bounds

of the type (
c1

md−1
,
1

2
− c2d

m

)
.

These are worse than the ones in Theorem 4.13 but are easier to grasp.

4.2 Yao-Yao’s original proof

We give a sketch of the original proof by Yao and Yao since its spirit is

followed in the proof of our main theorem. This will also allow us to note

some additional properties and fix notation.

Let O(d) be the space consisting of d× d matrices u such that uTu = I,

the space SO(d) ⊂ O(d) consists of matrices with determinant 1. A matrix
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u ∈ O(d) can be expressed as u = (u1, . . . , ud) where ui is the i-th row vector

of u. In this way every u can be identified with an ordered orthonormal base

of Rd.

Fix a base u = (u1, . . . , ud) of Rd. If H is a hyperplane orthogonal to

u1, define the open half-spaces

H+ ={x+ tu1 : x ∈ H, t > 0},

H− ={x− tu1 : x ∈ H, t > 0}.

Let v be a unit vector in Rd not orthogonal to u1 and let pv : Rd → H

be the projection such that pv(x+ tv) = x for all x ∈ H and t ∈ R. We can

identify H with Rd−1 by means of the base u2, . . . , ud. There is a natural

way to define measures µ+
v and µ−v in H: For any measurable S ⊂ H, set

µ±(S) = µ(p−1
v (S) ∩H±).

In Yao and Yao’s proof [40], a centre c ∈ Rd for µ relative to the base

u1, . . . , ud is defined as follows:

• If d = 1 then c is the point that splits R into two parts of equal

µ-measure.

• If d > 1, let H be the hyperplane orthogonal to u1 that splits Rd into

two parts of equal µ-measure. Then c lies on H and there exists a unit

vector v (with u1 · v > 0) such that c is a centre for both µ+
v and µ−v

relative to u2, . . . , ud.

This induces a partition into 2d parts, if a hyperplane intersects the line

through c parallel to v in H+ then it avoids one of the elements of the

partition contained in H− and vice versa.

It is then proved that c exists and is unique. Note that since v is uni-

tary and because c exists, v must be contained in some fixed hyperplane
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orthogonal to u2. Otherwise µ+
v and µ−v would not be equipartitioned by

the corresponding hyperplane. This argument can be continued up to ud to

obtain that the projection vector v is unique. Using the uniqueness of v and

c we can also obtain that they vary continuously with u in a similar way.

If we want each element of the partition to have a pre-described value,

then the same proof works by changing the choice of H appropriately.

4.3 Proof of Theorem 4.1

Problems involving partitions of measures are topological in nature. There is

a standard way to approach such problems, known as the test map scheme.

First, we parametrise a subset of possible partitions by a space X (called

phase space), and construct a space Y (called target space) of parameters

of a partition. These spaces are related by a natural function f : X → Y

(called test map). Ideally, there is group acting on both X and Y such that

f is equivariant. The existence of the target partition is then reduced to

showing that any equivariant function on those spaces always takes some

value (e.g. [28], [37]). We follow this sketch and reduce the problem to

showing that some equivariant functions always have a zero.

In our construction, we parametrise a set of partitions by O(d), the space

of all orthonormal basis of Rd. There is an action of (Z2)d on O(d), such

that given g ∈ (Z2)d and u ∈ O(d), gu is the result of changing the sign of

some elements of u, depending on g. The target space and the action on it

are much more elaborate and will be shown in the proof.

We start with the geometrical part of the proof of Theorem 4.1 and

continue with the topological part.

Let u = (u1, . . . , ud) be an orthonormal base of Rd, we think of u1 as the

upwards direction. If H is a hyperplane orthogonal to u1, define the open
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Figure 4.2: The hyperplanes, centres and projection vectors.

half-spaces

H+ ={x+ tu1 : x ∈ H, t > 0},

H− ={x− tu1 : x ∈ H, t > 0}.

Let H1 and H2 be the hyperplanes orthogonal to u1 such that the sets

A = H+
1 , B = H−1 ∩ H+

2 and C = H−2 have equal µ-measure. Let µ1 =

µ|A ∪B and µ2 = µ|B ∪ C.

Yao-Yao’s theorem applied to µ1 gives a unique centre O1 ∈ H1 and a

unique projection vector v1 pointing downwards (i.e. u1 · v1 < 0).

Let J1 ⊂ H1 be the (d − 2)-dimensional flat through O1 orthogonal to

u2. Note that the hyperplane K1 = {J1 + tv1 : t ∈ R} splits B into two

parts of equal µ1-measure.

Define analogously O2 ∈ H2, v2 pointing upwards, J2 and K2 (see Fig.

4.2). Since K1 and K2 each divide B into two parts of equal µ-measure,

they intersect in a (d− 2)-dimensional flat J ⊂ B parallel to J1 and J2.
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The centres O1 and O2 as well as the vectors v1 and v2 vary continuously

with u.

Our aim is to find u such that the vectors v1 and v2 are parallel to the

line O1O2. We first show how, using this, we can construct the desired

partition. Let P1 and P2 be the corresponding Yao-Yao partition to µ1 and

µ2.

Then we can use the partition P consisting of the elements of P1 con-

tained in A, the elements of P2 contained in C and the non-empty elements

K ∩B such that K ∈ P1. Every hyperplane avoids at least two elements of

P. This is because if it hits the line O1O2 in section A, it misses a section

contained in B and one contained in C, if it hits O1O2 in B it misses a

section in A and one in C and if it hits O1O2 in C it misses a section in A

and one in B.

Now we use topology to search for the base u. First we need some

definitions.

Given x = (x1, . . . , xn) ∈ Rd1 × · · · × Rdn , we define gi(x) as the result

of changing the sign of the i-th coordinate of x. We always use gi to denote

this function independently of the target space, since it causes no confusion.

We denote the j-th coordinate of xi ∈ Rdi by x
(j)
i . Given v ∈ Rd−1×Rd−2×

· · · × R1, define v(j) = (v
(j)
1 , . . . , v

(j)
d−j) and vT ∈ Rd−1 × Rd−2 × · · · × R1 as

vT = (v(1), . . . , v(d−1)).

An easier way to visualise this last construction is to consider a (d−1)×

(d − 1) matrix V induced by v in the following way. In the k-th row write
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the coordinates of vk followed by k − 1 signs “×”,

V =



v
(1)
1 v

(2)
1 · · · v

(d−2)
1 v

(d−1)
1

v
(1)
2 v

(2)
2 · · · v

(d−2)
2 ×

...
...

. . .
...

...

v
(1)
d−2 v

(2)
d−2 · · · × ×

v
(1)
d−1 × · · · × ×


.

Then vT is the set of vectors induced in the same way by the transpose V T

of V , namely

V T =



v
(1)
1 v

(1)
2 · · · v

(1)
d−2 v

(1)
d−1

v
(2)
1 v

(2)
2 · · · v

(2)
d−2 ×

...
...

. . .
...

...

v
(d−2)
1 v

(d−2)
2 · · · × ×

v
(d−1)
1 × · · · × ×


.

Let r : Rd → Rd−1 be the projection such that r(O1) = r(O2) = O and

{r(u2), . . . , r(ud)} is the canonical basis.

The affine hyperplane r(J) is orthogonal to u2, so it is of the form {v :

v · u2 = λ} for some λ ∈ R. Let x ∈ Rd−2 and y ∈ Rd−2 be the vectors

consisting of the last d− 2 coordinates of r(v1) and r(v2), respectively.

Let h(u) = (x, y, λ) ∈ Rd−2 × Rd−2 × R, note that if h(u) = 0 for some

u, then the vectors v1 and v2 are parallel to the line O1O2 and we are done.

The map h satisfies the following conditions:

• h(g1(u)) = (y, x, λ),

• h(g2(u)) = (x, y,−λ),

• h(gi+2(u)) = (gi(x), gi(y), λ) for i = 1, . . . , d− 3.
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Where for any z, gi(z) is the result of changing the sign on the i-th coordi-

nate.

Let f : O(d)→ Rd−1 × Rd−2 × · · · × R1 be defined by

f(u) = ((x+ y, λ), x− y, 0, . . . , 0).

Finding a zero of h is equivalent to finding a zero of f . We will prove

something more general.

Claim. Assume f : O(d)→ Rd−1 × · · · × R1 is a continuous function such

that whenever f(u) = v, the following conditions hold:

• f(g1(u)) = g2(v),

• f(g2(u)) = gd−1(vT )T ,

• f(gi+2(u)) = gi(v
T )T for i = 1, . . . , d− 3.

Then there exists u ∈ O(d) such that f(u) = 0.

We use a similar proof method to the one Bárány used to prove the

Borsuk-Ulam theorem in [4]. This method is thoroughly explained in Chap-

ter 2.2 of [28] and in [30].

Together with composition, we can think of {g1, . . . gd} as a set of gen-

erators of the group Zd2. Given the conditions on f , there are natural

group actions of Zd2 on O(d) and Rd−1 × · · · × R1 such that f is equiv-

ariant. However, the space O(d) is too large for our needs, so instead we

consider the restriction f1 = f |SO(d) and the group actions of Zd−1
2 on

SO(d) and Rd−1 × · · · × R1 obtained by taking the group generated by

{g1 ◦ gd, . . . , gd−1 ◦ gd}.

The main idea is of the proof is to show that, given two equivariant

functions on these spaces, the parity of the number of orbits (of Zd−1
2 in
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SO(d)) that are sent to 0 is invariant. This is done via an equivariant

homotopy, and is the last step in the proof. Let us first find a function

f0 : SO(d)→ Rd−1 × . . . ,R1 that sends exactly one orbit of Zd−1
2 to 0.

Define f0 : SO(d)→ Rd−1 × . . . ,R1 as the function given by

f0(u) = (v1, . . . , vd−1),

where

• v1 = (u
(1)
3 , . . . , u

(1)
d , u

(1)
2 ),

• v2 = u
(1)
1 · (u

(2)
3 , . . . , u

(2)
d ),

• vi+2 = (u
(i+2)
3 , . . . , u

(i+2)
d−i ) for i = 1, . . . , d− 3.

This function is continuous and equivariant. Furthermore, if f0(u) = 0, then

ui has to be the i-th element of the canonical basis or its negative. Therefore

f0 has exactly 2d−1 zeros in SO(d). Note as well that the differential Df0

is non-degenerate in its zeros.

Let F : SO(d)× I → Rd−1×· · ·×R1 be the equivariant homotopy given

by F (u, t) = tf1(u) + (1− t)f0(u) that takes f0 to f1.

If we assume that F is generic enough, then the set F−1(0) consists of

paths and cycles. If f1 has no zeros, then all the paths of F−1(0) have their

endpoints at points of the form (u, 0) where u is a zero of f0. Therefore

there must be a path connecting two such points. This last statement is

impossible; for each t the zeros of F (u, t) come in sets of 2d−1, each being

an orbit of the group action.

Since f0 has 0 as a regular value, if F is not generic enough, then a small

perturbation F ′ of F can be found with the following properties:
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• F ′ is an homotopy between two maps f ′0 and f ′1, and 0 is a regular

value of F ′,

• f ′1 has no zeros.

• f ′0 has only one orbit of points that give 0.

Thus, we may reach a contradiction using F ′ instead of F .

4.4 Other proofs

Proof of Lemma 4.2. Set a parameter t ≥ 0, we proceed inductively. Let

`1 be an oriented halving line (i.e. a line that splits R2 into two parts of

equal µ-measure that has fixed right and left sides). Once that `i has been

constructed, let `i+1 be the oriented halving line such that the regions

Ai ={x ∈ R2 : x is right of `i+1 and left of `i}

Aq+i ={x ∈ R2 : x is left of `i+1 and right of `i}

have µ-measure p
2q+t, for i = 1, . . . , q (see left part of Fig. 4.3). If t = 0 then

the sum of the measures of these regions up to i = q is p, but the regions

may overlap and not cover almost every point of R2 at least p times. Let t

be the smallest real number such that almost every point of R2 is covered at

least p times. For this choice of t, the non-oriented lines determined by `1

and `q+1 are equal. In total there are q lines and the boundary of every Ai is

contained in the union of two of them. If ` ⊂ R2 is a line not parallel to any

`i, then it intersects each of the lines `1, . . . , `q once, at every intersection

` enters a new region. Since every point is covered p times, ` intersects

exactly p+ q elements of F . This implies that it avoids at least q− p, as we

wanted.
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`3

`4

`5

`6

`i
`i+1 Ai

Aq+i

Figure 4.3: Regions for Lemma 4.2 and Corollary 4.3.

Proof of Corollary 4.3. This is similar to the previous proof with p = 1

and q = k + 1, but this time we define the lines `i such that the regions

Ai ={x ∈ R2 : x is right of `i+1and left of `i} \
⋃
j<i

Aj

Aq+i ={x ∈ R2 : x is left of `i+1 and right of `i} \
⋃
j<i

Aq+j

have µ-measure 1
2k+2 . To see that it is possible to find such li, consider µ′

the measure µ restricted to R2\⋃j<i (Aj ∪Aq+j). Note that li−1 is a halving

line of µ′, so we need li to be a halving line of µ′ such that µ′(Ai) = 1
2k+2 .

This implies that µ′(Aq+i) = 1
2k+2 . Since µ and µ′ coincide in Ai and Aq+i,

we obtain the desired line.

We end up with something like the right side of Fig. 4.3. This is a

partition as, once again, `1 and `q+1 are equal as non-oriented lines. Since

R2 \⋃j<iAj consists of two convex components for all i, every Ai is convex.

The same argument as above gives that every line avoids at least k regions.

Proof of Theorem 4.4. Clearly Nd(k) ≥ d + k, as there is a hyperplane
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through any given d points. The function Nd also satisfies

Nd(k1 + k2) ≤ Nd(k1) +Nd(k2). (4.3)

To see this, partition Rd by a hyperplane H that divides its measure in

proportions Nd(k1) : Nd(k2). We can find a k1-equipartition of one side and

a k2-equipartition of the other side. We are left with Nd(k1) +Nd(k2) parts

of equal measure such that every hyperplane avoids k1 parts on one side of

H and k2 parts in the other side of H.

We also have the asymptotically stronger equation

Nd(k1Nd(k2) + k2Nd(k1)− k1k2) ≤ Nd(k1)Nd(k2). (4.4)

This can be shown by finding a k1-equipartition of Rd and further partition

each of its pieces by k2-equipartitions. We are left with Nd(k1)Nd(k2) parts

of equal measure such that every hyperplane intersects at most (Nd(k1) −

k1)(Nd(k2)− k2) of them.

Starting with Yao-Yao’s theorem and iterating (4.4), a sequence of par-

titions can be found such that in the i-th step we have 2di parts of equal

measure and every hyperplane intersects at most (2d − 1)i of them. There-

fore, a sequence ki can be found in which Nd(ki)/ki tends to 1. Then (4.3)

implies

lim
k→∞

Nd(k)

k
= 1.

Proof of Theorem 4.8. Take α, β with α + β ≤ 1
2 . Suppose that for

every arc segment A with µ1(A) = α we have that µ2(A⊥) > 2α. Let φ

be the rotation of S1 by an angle of π
2 and note that A⊥ = φ(A) ∪ φ−1(A).
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Since µ1 and µ2 are centrally symmetric then φ(A) = φ−1(A) and therefore

µ1(A) < µ2(φ(A)). Since this happens for every arc A with µ1-measure α,

µ1(S1) < µ2(S1), which is a contradiction. Therefore there exists an arc

segment A that satisfies µ2(A⊥) ≤ 2α. If B is any of the two components

of S1 \A⊥, then µ2(B) ≥ β. This proves one of the inclusions, Theorem 4.7

gives us the other.

Proof of Lemma 4.9. Let µ1 and µ2 be nice measures. Suppose that we

can find µF as above, then by Fubini’s Theorem

∫
F
µ2(A⊥)dµF =

∫
F

∫
Sd
χ(A⊥)dµ2dµF =

∫
Sd

∫
F
χ(Fb)dµFdµ2

=

∫
Sd
µF (Fb)dµ2 ≤ ρ,

where χ is the characteristic function of a set. Thus, we can find A0 such

that µ2(A⊥0 ) ≤ ρ. This means that there is a set B such that µ1(B) ≥ 1−ρ
2

and the sign of a · b is constant for all a ∈ A0 and b ∈ B.

Proof of Theorem 4.10. Given a hyperplane in Rd+1 that does not pass

through the origin, consider the radial projection Rd → Sd. Since the mea-

sure of every great circle in Sd has null µ-measure, this induces a probability

measure µ⊥ in Rd. Fix a family of Md(k, α) convex sets of measure α such

that every hyperplane (in Rd) avoids the interior of at least k of them. If we

bring this family back to Sd, we obtain a new family F of 2Md(k, α) convex

sets in Sd, each of measure α
2 . By choosing µF to be the uniform probability

measure on F and applying Lemma 4.9, we are done.

Proof of Theorem 4.13. Since µ1(Sd) = 1, there is a point x0 ∈ Sd such

that f(x0) ≥ 1. Let λ ≤ 1 and R = min(1−λ
∆ , π2 ). Recall that Cd(x, t) is

defined as the spherical cap of Sd with centre x and central angle t. From
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r

R− r
x0

Figure 4.4: The family for Theorem 4.13.

the fact that Lip(f) ≤ ∆ it follows that f ≥ λ on Cd(x0, R).

Set r ≤ R
4 , we consider the family F of caps Cd(x, r) with x in the

boundary of Cd(x0, R − r) as shown in Fig. 4.4. Each of these caps has

measure at least λhd(r).

Here we need some observations:

• Cd(x, r) is the intersection of Sd with a ball with centre x and radius

sin(r).

• ∂Cd(x0, R− r) is a (d− 1)-sphere with radius sin(R− r).

Let µF be the usual probability measure on ∂Cd(x0, R − r). From this we

can see that any hyperplane intersects a portion of F with size at most

1− 2hd−1

(
π

2
− 2 arcsin

(
sin(r)

sin(R− r)

))
.

We conclude the proof in the same way as Lemma 4.9.
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Chapter 5

Line transversals

This is joint work with J. Jerónimo-Castro and the results here can be found

in [21].

Let F be a family of convex bodies in Rd. We say that the family F has

property T if there exists a 1-dimensional line in Rd that intersects all the

members of F . Furthermore, if k ∈ N then F has property T (k) if every

subfamily of F with at most k members has property T .

In 1935, P. Vincensini [38] posed the problem of finding conditions on F

so that property T (k) would imply property T . The first result of this type

was due to Santaló [34] who showed the following.

Theorem (Santaló). If F is a family of parallelotopes in Rd with edges

parallel to the coordinate axes and F has property T (2d−1(2d− 1)), then F

has property T .

Afterwards, several variations of this problem emerged. We are inter-

ested in one posed by B. Grünbaum [17] in 1964:

Problem. Let K be a convex body in Rd and F = {x1 + K, . . . , xn + K}

be a family of translates of K with property T (k). Determine the smallest
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λ = λ(K, k) > 0 such that the family λF = {x1 + λK, . . . , xn + λK} has

property T .

There have been several results on this problem such as the following.

Theorem (Eckhoff [13]). Let D be a disk in R2, then λ(D, 3) ≤ 2.

Theorem (Heppes [19]). Let F be a family of disjoint translates of a disc

in R2 with property T (3), then 1.65F has property T .

Theorem (Jerónimo-Castro [20, 22] and Roldán-Pensado [22]). Let K ⊂ R2

be any convex body, then

λ(K, 4) ≤ 1 +
√

5

2
≈ 1.618.

If K is a disk then the equality holds.

By considering a family of five disks in R2 of appropriate size with centres

on the vertices of a regular pentagon, the inequality λ(D, 3) ≥ 1+
√

5
2 is

obtained (see Figure 5.1). J. Eckhoff conjectured that this is actually the

correct value for λ(D, 3) and, further more, that λ(D, 2k − 1) = λ(D, 2k)

for k ≥ 2. These two conjectures remain open problems.

Let K be a convex body in R2, the number µ = µ(K) is defined as

the smallest µ > 0 such that the following holds: If x1, x2, x3 and x4 form

the vertices of a parallelogram, and the family F = {x1 + K, . . . , x4 + K}

has property T (3), then the family µF has property T . For simple convex

bodies µ(K) is easy to compute, for example, µ(D) =
√

2 if D is a disk and

µ(S) = 2 if S is a square.

Theorem 5.1 (Jerónimo-Castro and Roldán-Pensado [22]). There exists
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Figure 5.1: Five equal circles with property T (4).

ε > 0 such that for every convex body K ⊂ R2,

4

3
+ ε ≤ λ(K, 3) ≤ max

{
2 +

√
1 + 4µ(K)

2
, ρ

}
,

where ρ ≈ 1.76 is the real root of the polynomial x3 − 2x2 − x+ 1.

Corollary 5.2. If D is a disk, then

1 +
√

5

2
≤ λ(D, 3) ≤ 1 +

√
1 + 4

√
2

2
≈ 1.79.

So far this is the best known bound towards Eckhoff’s conjecture.

5.1 The problem and the results

A variant of Grünbaum’s problem is obtained by replacing translates of K

with homothetic copies of K.

Problem. Let K be a convex body in Rd and let F = {x1 + t1K, . . . , xn +

tnK} be a family of homothets of K with property T (k). Determine the

smallest λh = λh(K, k) > 0 such that the family λhF = {x1+λht1K, . . . , xn+

λhtnK} has property T .
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There is very little done on this problem. In this chapter we focus on

finding bounds for λh(K, k) in the case when K is an euclidean ball. Here

we state the results and prove them in the next section.

Theorem 5.3. Let B be an euclidean ball in Rd, then

λh(B, d+ 1) ≤ 4.

This theorem is far from being optimal. The main idea used here is to fix

the smallest ball in F and shrink it to a point P while expanding the others

so that the T (d+1) property is preserved. Then we represent a subset of the

lines through P as Rd−1 and use Helly’s theorem to find a line transversal.

Using similar ideas we derive two more results in R2.

Theorem 5.4. If D ⊂ R2 is a disk, then

1 +
√

5

2
≤ λh(D, 4) ≤ 2

√
2.

The example that gives the lower bound here is the same as the one for

λ(D, 4) shown in Figure 5.1.

Unfortunately the proof argument for the upper bound of this theorem

does not work for d > 2. It can be shown in a similar manner that λh(D, 3) ≤

2
√

3, however, a more refined argument improves this.

Theorem 5.5. If D ⊂ R2 is a disk, then

√
3 ≤ λh(D, 3) ≤ ρ ≈ 2.875,

where ρ is the real root of the polynomial x3 − x2 − 4x− 4.

We conjecture that
√

3 is actually the correct value for λh(D, 3). It is

worth noting that if one of the circles in F has radius 0, then
√

3F always
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p

D1

D3

D2

Figure 5.2: Example for the lower bound of Theorem 5.5.

has a transversal line. This can be shown in a similar (but easier) way to

Theorem 5.5.

The example shown in Figure 5.2 gives the lower bound in Theorem 5.5.

The example consists of three discs and a point. The discs D1 and D2 have

radii equal to 1 and D3 has radius equal to 2, the dashed lines are common

tangents and the triangle in the middle is equilateral. The four circles p, D1,

D2 and D3 form a family with property T (3). In order to have a common

transversal for all of them it is necessary to multiply the radii of D1, D2 and

D3 by
√

3.

5.2 Proofs

Throughout this section we fix the family F = {B1, B2, . . . , Bn} of translates

of a Euclidean ball and set ri as the radius of Bi. Furthermore, we assume

that r1 ≤ r2 ≤ · · · ≤ rn and that no two balls in F are concentric.

If Bi and Bj are two distinct closed balls in Rd, we define the distance

between them as the smallest µ ≥ 0 such that (µBi)∩ (µBj) 6= ∅. Note that

this notion of distance does not define a metric space. It will be most useful

to us when B1 is a point (has radius 0). In this case we can identify Bi with
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Sd−1

αi

Ri

Figure 5.3: The set Ri.

a subset Ri of the sphere Sd−1, this is done by considering the set of unit

vectors v such that the line through B1 parallel to v intersects Bi.

If the point B1 is not contained in Bi then Ri is the union of two disjoint,

closed and opposite caps in Sd−1. We refer to the axis of revolution of Ri

simply as the axis of Ri. Let αi be the angle such that 2αi is the diameter

(measured over Sd−1) of each connected component of Ri (Figure 5.3 shows

the planar case). This angle and the distance µi between B1 and Bi are

related by µi sinαi = 1.

Notice that if B1 is a point, the family F has property T (k) only if every

k − 1 members of {R2, . . . , Rn} intersect. In particular we have that F has

property T if and only if R2 ∩ · · · ∩Rn 6= ∅.

In order to use the above, we shall need the following lemma which

establishes a useful reduction.

Lemma 5.6. For every Bi, let ti ≥ 1 be the smallest number such that the

distance between 0B1 and tiBi is the same as the distance between B1 and

Bi. If F has property T (k), the family G = {0B1, t2B2, . . . , tnBn} also has

property T (k) and for every i we have ti ≤ 2.

Proof. It is easy to see that ti = 1 + r1
ri

which implies that ti ≤ 2. Let G′

be a subfamily of G with k elements. If 0B1 6∈ G′ then clearly G′ has a line

transversal. If 0B1 ∈ G′ = {0B1, ti2Bi2 , . . . tikBik}, let ` be a line transversal
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to {B1, Bi2 , . . . Bik} and `′ be the line parallel to ` passing through 0B1.

Then the distance between `′ and the centre of Bi is at most ri + r1 = tiri,

therefore `′ is a line transversal to G′.

Proof of Theorem 5.3. First assume that r1 = 0. Let F1 ⊂ F be the set

of balls with distance greater than 2 from B1.

Fix an element Bj ∈ F1 and let H be a half-space with boundary hy-

perplane Γ passing through the origin and perpendicular to the axis of Rj .

Set R′j as the component of Rj in H. Note that for every Bi ∈ F1, αi ≤ π
6

and therefore the component R′i of Ri that intersects R′j is completely con-

tained in H. Since F1 has property T (d + 1), then every d members of

R = {R′i : Bi ∈ F1} have non-empty intersection. Now project each set

R′i ∈ R into another plane Γ′ parallel to Γ with centre of projection at the

origin. Let Si ⊂ Γ′ be the projection of R′i for every R′i ∈ R. By Helly’s

theorem in Rd−1, there exists a point x ∈ ⋂i Si. Hence, there is a line `

transversal to F1. If Bi 6∈ F1 then 2Bi contains B1, therefore the whole

family 2F intersects `.

The general case can be reduced to this one. Lemma 5.6 implies that

the family G = {0B1, 2B2, . . . , 2Bn} has property T (d+ 1). Then the family

2G = {0B1, 4B2, . . . , 4Bn} has a line transversal, that is, 4F has a line

transversal.

Proof of Theorem 5.4. For the upper bound we start almost exactly the

same as in the previous proof. First assume that r1 = 0 and let F1 ⊂ F be

the set of balls with distance greater than
√

2 from B1.

Consider two elements Bj , Bk of F1 such that Rj ∪ Rk is as large as

possible. Note that Rj ∪ Rk does not cover S1 because αi <
π
4 for every

Bi ∈ F1. Let R′j and R′k be components of Rj and Rk, respectively, such
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that R′j ∩ R′k 6= ∅. For every other Bi ∈ F1, let R′i = Ri ∩
(
R′j ∪R′k

)
. The

T (4) property implies that every 3 members of R = {R′i : Bi ∈ F1} have

a non-empty intersection. This, together with the maximality of R′j ∪ R′k,

implies that every R′i is a connected arc. We have that every two members

of R have non-empty intersection within the arc R′j ∪ R′k. Now we may

apply Helly’s theorem to obtain
⋂
R′i∈R

R′i 6= ∅. This implies that there is a

line transversal to F1 which passes through B1.

By the same argument as in the previous proof we find that the family
√

2F has a line transversal through B1 and conclude for the general case

that 2
√

2F has a line transversal.

Proof of Theorem 5.5. This is done by induction on the number of cir-

cles. If #F ≤ 3, the result is trivial. Assume that #F = n and that the

result is true for every family with less than n elements. The proof is divided

in two cases.

Case 1: Every Bi is at distance less than or equal to ρ from B1.

Consider a line ` closest to ρB1 and transversal to ρF \ {ρB1}. If ` does

not intersect ρB1, then there is an element ρBj ∈ ρF tangent to ` and not

on the side of ` that ρB1 is on, otherwise ` would not be closest to ρB1.

This is a contradiction because ρB1 intersects every element of ρF but `

separates ρB1 from ρBj .

Case 2: There exists Bj ∈ F with distance greater than ρ from B1.

Assume that Bj has largest distance from B1. Because of Lemma 5.6 we

can assume that r1 = 0 and prove instead that ρ
2F has property T . We may

further assume that the distance between any Bi and B1 is greater than ρ
2 ,

because otherwise ρ
2Bi contains B1.

Let t ≥ 1 and let R ⊂ S1 be a component of the region corresponding

to a ball B, if tB does not contain the point B1 then define bt(R) as the
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S1

tB

B

R

bt(R)

Figure 5.4: The arcs R and bt(R).

component of the region corresponding to the ball tB that contains R (see

Figure 5.4). Note that if R covers an angle 2θ < π, then bt(R) covers an

angle 2 arcsin(t sin(θ)).

Let R′j be a component of Rj and for each other i let R′i be a component

of Ri that intersects R′j . We shall show that every two elements of the family{
bρ/2(R′i) ∩R′j

}
i

intersect. Take Bk and Bl different from Bj , if R′k and R′l

intersect in Rj we are done. If not, then because of property T (3) we can

choose a semicircle H ⊂ S1 containing R′j that has its boundary contained

in Rk ∩Rl.

Set Qk = (R′k ∩H) \Rj and Ql = (R′l ∩H) \Rj , let 2αk and 2αl be

the angles covered by the arcs Qk and Ql, respectively. We now have some-

thing like Figure 5.5. It is enough to show that bρ/2(Qk) and bρ/2(Ql) in-

tersect in Rj . The set bρ/2(Qk) covers all of H or a region of H with size

arcsin
(ρ

2 sin(αk)
)

+ αk and the same holds for bρ/2(Ql). Therefore we must

show

arcsin
(ρ

2
sin(αk)

)
+ arcsin

(ρ
2

sin(αl)
)
≥ π − αk − αl.

The function α 7→ arcsin(t sin(α)) is convex for any t ≥ 1, so

arcsin
(ρ

2
sin(αk)

)
+ arcsin

(ρ
2

sin(αl)
)
≥ 2 arcsin

(
ρ

2
sin

(
αk + αl

2

))
.
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Rj

bt(Qk)

bt(Ql)

Qk

Ql

Figure 5.5: The arcs bt(Qk) and bt(Ql) intersecting in Rj

Let γ = αk+αl
2 , it is enough to prove that arcsin

(ρ
2 sin (γ)

)
≥ π

2 − γ, or

equivalently, that ρ
2 tan(γ) ≥ 1. Since the distance between B1 and Bj is

larger than ρ, then ρ sin(π2 − 2γ) < 1. This implies that γ ≥ 1
2 arccos(1

ρ), or

equivalently tan(γ) ≥
√
ρ2−1

(ρ+1) . This and the definition of ρ imply

ρ

2
tan(γ) ≥ ρ

√
ρ2 − 1

2(ρ+ 1)
≥ 1.

The result now follows after applying Helly’s theorem.
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Chapter 6

Longest lattice convex chains

This is joint work with I. Bárány and has been submitted to Computational

Geometry: Theory and Applications.

Given a convex body K ⊂ R2 and t > 0, let n be the largest possible

number of vertices a lattice polygon contained in tK can have. In [9], I.

Bárány and M. Prodromou study the number n and determine its asymp-

totic behaviour as t → ∞. In order to do this, they define m(T ) as the

maximum number of vertices that a convex lattice chain within a triangle

T can have (see [9] for precise definitions). The behaviour of m(tT ) is de-

scribed in terms of |T | as t→∞. We ask a similar question here, but remove

the factor t completely.

Define G as the set of triangles T in the plane with two specified vertices,

v0 and v1, belonging to Z2. Distinct points p0, p1, . . . , pn ∈ Z2 ∩ T form a

convex lattice chain in T (from v0 to v1) if p0 = v0, pn = v1 and the convex

hull of {p0, . . . , pn} has exactly n+1 vertices, namely p0, . . . , pn. The length

of this convex chain is n. Let `(T ) denote the largest n such that T contains

a convex lattice chain of length n (from v0 to v1). We are interested in the

maximal value of `(T ) when the area, |T |, of T is fixed. Here is our main
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result, which is made more precise in Theorem 6.3.

Theorem 6.1. There is t0 > 0 such that for all triangles T ∈ G with |T | > t0

1

8
(`(T )− 1)`(T )2 ≤ |T |,

and this estimate cannot be improved.

A few things are known about `(T ). Andrews [2] showed in 1963 that

the area of a convex lattice n-gon is at least cn3 for some constant c. This

result is in fact more general and applies in any dimension. It has been

proved in [31] and [10] that the value of c is at least 1/(8π2), implying in

our case that

|T | ≥ |conv{p0, p1, . . . , pn}| ≥
(n+ 1)3

8π2
.

Consequently

1

8π2
`(T )3 ≤ |T |.

Another bound on `(T ) comes when using the lattice-width W (T ) of T

(see Section 2.1 for definition). It is clear that at most bW (K) + 1c con-

secutive lattice lines orthogonal to the lattice-width direction of K intersect

K. As every lattice line contains at most two points from a convex lattice

chain, the bound

`(T ) ≤ 2W (T ) + 1

is immediate.

Just like |T | and W (T ), `(T ) is invariant under lattice preserving affine

transformations. Thus the use of the lattice width is very natural here. This

invariance is important and will be used later. For instance, we assume from

now on that one specified vertex of T , namely v0, coincides with the origin.

Here is another result from [9] concerning the typical behaviour of `(T ).
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Let T ∈ G (with v0 = (0, 0)) and assume that λ → ∞ in such a way that

λv1 ∈ Z2. Theorem 4.1 from [9] says that

lim
λ→∞

λ−2/3`(λT ) =
6

(2π)2/3
3
√
|T |.

This result can be strengthened.

Theorem 6.2. There are constants C,D > 0 such that if T ∈ G with

W (T ) > C|T |1/3, then

∣∣∣∣`(T )− 6

(2π)2/3
3
√
|T |
∣∣∣∣ ≤ D log

(
W (T )|T |−1/3

)
W (T )|T |−1/3

.

Note that for a typical “fat” triangle T , W (T ) is of order
√
|T |. For the

rest `(T ) is of order W (T ). The proof of Theorem 6.2 is almost identical

with that of Theorem 4.1 in [9] and is therefore omitted.

6.1 Reformulation

We can turn around the question by asking the following minimization prob-

lem, to be called Min(n):

minimize |T | subject to T ∈ G, `(T ) = n.

Let Tn (n ≥ 3) be the triangle with vertices

v0 = (0, 0), v1 =

(
1

2
n(n− 1), n

)
and v2 =

(
1

2
n(n− 1),

1

2
n

)
,

then |Tn| = 1
8(n− 1)n2. For a fixed n define

pk =

(
1

2
n(n− 1)− 1

2
(n− k)(n− k − 1), k

)
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for k = 0, . . . , n. It is easy to check that p0, . . . , pn is a convex lattice chain

of length n in Tn from v0 to v1.

Theorem 6.3. There exists n0 > 0 such that for all n > n0 the following

holds: If the triangle T ∈ G contains a convex lattice chain of length n, then

1

8
(n− 1)n2 ≤ |T |.

Equality holds here if and only if T is the image of Tn under a lattice pre-

serving affine transformation.

There are only two cases we know of where Tn is not the minimizer for

Min(n), namely:

• When n = 3. Let p0, p1, p2, p3 be equal to (0, 0), (1, 0), (2, 1), (2, 2)

respectively. Then |T | = 2 which is smaller by 1
4 than the expected

|T3| = 9
4 .

• When n = 5. Let p0, p1, p2, p3, p4 and p5 be equal to (0, 0) (1, 0), (3, 1),

(4, 2), (6, 5) and (7, 7) respectively, then |T | = 49
4 which is smaller than

|T5| = 25
2 , again by 1

4 .

The following sections of this chapter are devoted to proving Theorem

6.3.

6.2 Reduction

We assume from now on that the points p0, p1, . . . , pn lie in this order on

the perimeter of their convex hull. Let zi = pi− pi−1, i = 1, . . . , n, these are

the edge vectors of the convex lattice chain and determine the convex lattice

chain completely. For Tn this is just the vectors (0, 1), (1, 1), (2, 1), . . . , (n−

77



1, 1). By ordering the vectors zi by increasing slope, we can construct a

convex lattice chain having them as edge vectors and every convex lattice

chain defines the minimal area triangle T that contains it.

We consider the set Hn of triangles 4 satisfying the conditions

• the origin is a vertex of 4,

• |4 ∩ P2| = n,

• each side of 4 contains a point from P2,

• there is no smaller triangle 4′ ⊂ 4 that satisfies the above three.

Every 4 ∈ Hn gives rise to a convex lattice chain with n edges, and

every convex lattice chain defines the minimal area triangle that contains

it. This way every 4 ∈ Hn gives rise to a triangle T (4). For example, the

triangle 4n = conv{(0, 0), (0, 1), (n− 1, 1)} gives T (4) = Tn.

A useful reduction for Min(n) is given by the following lemma.

Lemma 6.4. There is 4 ∈ Hn with 4 ∩ P2 = {z1, . . . , zn} such that the

corresponding triangle T (4) is a minimizer for the problem Min(n).

Proof. Let T be a minimizer of Min(n) with vertices v0 = (0, 0), v1, v2 and

having z1, . . . , zn as the edge vectors of its longest lattice convex chain. All

the edge vectors z1, . . . , zn are in P2 as otherwise the area of T can be

decreased.

Let P be the parallelogram with vertices v0, v2, v1, v3 = v1 − v2 and

let u2 and u3 be points on the segments [(0, 0), v2] and [(0, 0), v3] so that

[u2, u3] is parallel with [v2, v3], the triangle 4 = conv{(0, 0), u2, u3} contains

z1, . . . , zn, and some edge vector is on the segment [u2, u3] (see Figure 6.1).

Let zk be the edge vector on [u2, u3] closest to u2 and assume that there

exists z ∈ 4 ∩ P2 \ {z1, . . . , zn}.
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v3

u3 u2

v2

v1

L

Figure 6.1: Lemma 6.4

If z 6∈ [u2, u3], we replace the edge vector zk for z. The resulting new

lattice convex chain can be fitted in a triangle having (0, 0) and (
∑
zi)−zk+z

as two of its vertices and two of its sides parallel to v2 and v3. The area

of this triangle is less than |T |, which contradicts our original assumption.

Therefore we can assume z ∈ [u2, u3].

If z is closer to u3 than zk then we replace zk for z, doing this does

not change |T |. By repeating this process several times if necessary, we

may assume that [zk, u3] ∩ P2 ⊂ {z1, . . . , zn}. Now we can choose ε, ε′ ≥ 0

small enough so that the new triangle 4̃ = conv{(0, 0), (1− ε)u2, (1 + ε′)u3}

satisfies 4∩ P2 = 4̃ ∩ P2 and [u2, u3] ∩ P2 = {zk}. The triangle 4̃ satisfies

the required conditions and T = T (4̃).

Consider now the following problem, to be called Red(n):

minimize |T (4)| subject to 4 ∈ Hn.

Theorem 6.5. For n > n0 the triangle 4n is a solution to Red(n). This

solution is unique apart from a lattice preserving affine transformation.

It suffices to prove this theorem only. The plan for the proof is given

next.
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(0, 0)

(c, b)

(e, a)

(0, 0) (c, b)

(e, a)

H

H

Case 1 Case 2

Figure 6.2: The triangle 4

6.3 Plan of proof

First we bring 4 ∈ Hn into standard position by a lattice preserving affine

transformation as follows. Set W (4) = w and choose a lattice preserving

affine transformation so that the lattice-width vector of 4 is (0, 1). Now w

also represents the ordinary width in direction (0, 1). Let (0, 0), (e, a), (c, b)

be the vertices of 4 (see figure 6.2). We can assume that 0 ≤ e ≤ a, |b| ≤ a

and ac − be = 2|4| > 0, by applying a suitable lattice preserving affine

transformation.

Let h be the length of the longest horizontal chord, H, of 4. Then

|4| = 1
2ch. We have to consider two separate cases.

Case 1. When b ≥ 0. Then W = a and (c, b) is an endpoint of H.

Case 2. When b < 0. Then W = a− b and (0, 0) is an endpoint of H.

It is not difficult to see that in both cases c/2 ≤ h ≤ c, so

cw

4
≤ |4| ≤ cw

2
. (6.1)

Now let

S = (Sx, Sy) =
∑

z∈4∩P2

z.

The area of T = T (4) can be determined in terms of 4 by

|T | = det((c, b), S) det(S, (e, a))

2 det((c, b), (e, a))
=

(cSy − bSx)(aSx − eSy)
4|4| . (6.2)
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It is well known that the density of P2 in Z2 is 6
π2 (e.g. Theorem 459 in

[18]). So in a typical triangle 4, we expect the number of primitive lattice

points in 4 to be close to 6
π2 |4| and their sum S to be close to 6

π2 |4|g,

where g is the centre of gravity of 4. If this is the case, it follows from (6.2)

that |T | is close to 4|4|3
π4 and |T |

n3 ≈ π2

54 >
1
8 .

In the first step of the proof we formalize this argument for triangles

with large lattice width. Namely, we show the existence of a finite w0 such

that for w > w0 the inequality |T |
n3 >

1
8 holds.

In the second step we assume that w ≤ w0, and show, by subtle though

lengthy and technical estimates, that |T |
n3 > 1

8 for w ≥ 250 if n, and then c

are large enough.

After this we are left with finitely many cases, roughly 2502 of them.

Here we suppose again that c is large enough. In each case the limit when

c → ∞ of T (4)/n3 can be exactly expressed as a rational function of the

parameters a, b. The third step of the proof is carried out by a computer

using Mathematica [39], and consists of careful checking of these cases. The

outcome is, again, that |T |
n3 > 1

8 , apart from three special cases that are

treated in the last step of the proof separately.

6.4 Large lattice width

Here we prove that 4 ∈ Hn does not solve Red(n) if the lattice width of 4

is large enough.

Lemma 6.6. There is w0 > 0 so that if 4 ∈ Hn and W (4) > w0 then

|T | = |T (4)| > 1
8n

3.

Proof. We assume that w = W (4) is large. For this section we use Vino-

gradov’s convenient f(c, w)� g(c, w) notation meaning, in our case, the ex-
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istence of constants D1, D2 > 0 such that f(c, w) ≤ D1g(c, w) for all c ≥ w ≥

D2. Here c ≥ w follows from W (4) = w. For instance
∑w

d=1
|µ(d)|
d � logw,

since
∑w

d=1
|µ(d)|
d < 1 + logw � logw.

We apply a commonly used method involving the Möbius function.

n =
∑

z∈T∩P2

1 =
∑

z∈4∩Z2

∑
d|z

µ(d) =
w∑
d=1

µ(d)#

(
Z2 ∩ 1

d
4
)
.

Here the term #
(
Z2 ∩ 1

d4
)

is approximately equal to
∣∣1
d4
∣∣ = 1

d2
|4|, so we

may write
∣∣Z2 ∩ 1

d4
∣∣ = 1

d2
|4|+ E(d) where E(d) is an error term. Then

n = |4|
w∑
d=1

µ(d)

d2
+

w∑
d=1

µ(d)E(d). (6.3)

The target is to estimate the error term E =
∑w

d=1 µ(d)E(d). To this

end, for every z ∈ Z2, define Qz to be the square of side length 1 with centre

z and sides parallel to the axes. We define the sets

Γ+
d =

{
z ∈ Z2 : z 6∈ 1

d
4 and Qz ∩

1

d
4 6= ∅

}
,

Γ−d =

{
z ∈ Z2 : z ∈ 1

d
4 and Qz \

1

d
4 6= ∅

}
.

Thus Γ+
d and Γ−d are the centres of the boundary squares Qz that intersect

the boundary of 1
d4.

Claim 6.7. |Γ+
d |+ |Γ−d | ≤ 2d cde+ 2dwd e+ 4� c+w

d .

Proof. The sides of the smallest axis parallel rectangle containing 1
d4 have

lengths c
d and w

d , which gives the bound on the number of boundary squares.

Define now A+
d to be the union over z ∈ Γ+

d of the sets Qz ∩ 1
d4 and
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A−d be the union over z ∈ Γ−d of the sets Qz \ 1
d4. Clearly |A+

d | ≤ #Γ+
d and

|A−d | ≤ #Γ−d .

Since we have #
(
Z2 ∩ 1

d4
)

=
∣∣1
d4
∣∣+ |A+

d | − |A−d |, it follows that

E(d) = |A+
d | − |A−d | and so |E(d)| =

∣∣|A+
d | − |A−d |

∣∣� c+ w

d
. (6.4)

Consequently

∣∣∣∣∣
w∑
d=1

µ(d)E(d)

∣∣∣∣∣� (c+ w) logw � c logw.

As cw � |4| � cw this implies that

∣∣∣∣∣n−
w∑
d=1

µ(d)

d2
|4|
∣∣∣∣∣� |4| logw

w
. (6.5)

Estimating the sum of the primitive vectors in 4 is similar, just a little

more involved. Let g = 1
3(e+ c, a+ b) be the centre of gravity of 4. Then

S =
∑

z∈4∩P2

z =
∑

z∈4∩Z2

∑
d|z

µ(d)z =
w∑
d=1

dµ(d)
∑
z∈ 1

d
4

z

=|4|
w∑
d=1

µ(d)

d2
g +

w∑
d=1

dµ(d) ~E(d), (6.6)

where ~E(d) = (Ex(d), Ey(d)) ∈ R2 represents the error here. Since

∫
1
d
4
zdz =

1

d2
|4|g,

we have, similarly as in Claim 6.7, that

|Ex(d)| ≤
∣∣∣∣∣
∫
A+
d

xdz −
∫
A−d

xdz

∣∣∣∣∣� c(c+ w)

d2
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and

|Ey(d)| ≤
∣∣∣∣∣
∫
A+
d

ydz −
∫
A−d

ydz

∣∣∣∣∣� w(c+ w)

d2
.

For simpler writing we define

σw =
w∑
d=1

µ(d)

d2
, Ex =

w∑
d=1

dµ(d)Ex(d), and Ey =
w∑
d=1

dµ(d)Ey(d).

Thus with notation S = (Sx, Sy) and g = (gx, gy), Sx = σw|4|gx + Ex and

Sy = σw|4|gy + Ey. Then

|Ex| =
∣∣∣∣∣
w∑
d=1

dµ(d)Ex(d)

∣∣∣∣∣� c2 logw

and

|Ey| =
∣∣∣∣∣
w∑
d=1

dµ(d)Ey(d)

∣∣∣∣∣� cw logw.

We use (6.2) to compute |T |. First

cSy − bSx =c(|4|σwgy + Ey)− b(|4|σwgx + Ex)

=|4|σw(cgy − bgx) + (cEy − bEx) = σw
2

3
|4|2 + (cEy − bEx),

and similarly

aSx − eSy =a(|4|σwgx + Ex)− e(|4|σwgy + Ey)

=|4|σw(agx − egy) + (aEx − eEy) = σw
2

3
|4|2 + (aEx − eEy),

where we used the fact that 2
3 |4| = cgy − bgx = agx − egy. So we have

|T | = |4|3
(

1

3
σw +

cEy − bEx
2|4|2

)(
1

3
σw +

aEx − eEy
2|4|2

)
. (6.7)

84



Here |cEy|, |aEx|, |bEx| � c2w logw and |eEy| � cw2 logw, thus

|cEy − bEx| � c2w logw and |aEx − eEy| � c2w logw.

Using (6.1) it follows that

∣∣∣∣|T | − σ2
w

9
|4|3

∣∣∣∣� |4|3( logw

w
+

log2w

w2

)
� |4|3 logw

w
.

This inequality, together with (6.5) finishes the proof quickly. For suitable

positive constants D1, D2, D3 we have

|T |
n3
≥

(
σ2
w
9 −D1

logw
w

)
|4|3(

σw +D2
logw
w

)3
|4|3

≥ 1

9σw
−D3

logw

w
.

Since σw tends to 6
π2 as w → ∞, the right hand here tends to π2

54 =

0.18277 · · · > 1
8 . This shows that |T |

n3 >
1
8 if w is large enough.

6.5 Auxiliary lemmas

We need some preparations for the case w ≤ w0. Recall that we keep the

parameters a, b, e fixed and wish to show that lim|T |/n3 > 1/8 as n → ∞,

or equivalently, as c→∞.

First we get rid of the parameter e, we simply change the triangle 4 by

replacing its vertex (e, a) by (0, a). It is clear that the change in #
(
4∩ P2

)
is at most w2, and the change in Sx, Sy respectively, is at most wc and w2

which is of smaller order than the corresponding error terms (as we shall

see). We keep the notation 4 for the new triangle.

We also have in both Case 1 (when b ≥ 0) and Case 2 (when b < 0) that

|4| = ac
2 , which will work better than (6.1).
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We show now that |b| ≥ 1. Since the edge vector z1 ∈ Z2 of the convex

lattice chain lies on the segment [(0, 0), (c, b)], |b| < 1 implies b = 0, and

then z1 = (1, 0) is the only possibility. Removing this vector from the

convex lattice chain can only decrease lim|T |/n3 and does not affect the

lattice width direction, as one can check easily. We assume further that

a− b ≥ 1. This is evident in Case 2, and if a− b < 1 in Case 1, then one can

change a and b a little so that a− b ≥ 1 while 4∩ P2 remains unchanged.

Recall that in Case 1 w = a and in Case 2 a < w = a − b ≤ 2a since

|b| ≤ a. So w and a are comparable, and in the next section it will be more

convenient to work with a instead of w.

We will need a simple bound on
∑a

1|µ(d)| and on
∑a

1
|µ(d)|
d .

Lemma 6.8. If a ≥ 44 then

a∑
d=1

|µ(d)| ≤ 2

3
a,

and if a ≥ 126 then
a∑
d=1

|µ(d)|
d
≤ 6

10
+

7

10
log a.

Proof. Let I be a set containing 36 consecutive positive integers and I ′ be

equal to I after removing the multiples of 4 and 9. Since µ(d) = 0 if d is

divisible by a square,

∑
d∈I
|µ(d)| ≤

∑
d∈I′

1 =
2

3
#I.

To prove the first inequality, it only remains to verify it for a ∈ [44, 80]. This

is easily done with help of a computer.

86



For the other inequality we first show that

∑
d∈I′

1

d
<

7

10

∑
d∈I

1

d

if all the elements of I are larger than 125. Note that this inequality is of

the form ∑
d∈I′′

1

d+m
<

7

10

36∑
d=0

1

d+m
,

where I ′′ ⊂ [0, 35] is some set of integers and m > 125. There are 36 different

possibilities for the set I ′′ depending on the value of m mod 36. For each

of these cases, the inequality reduces to showing that a polynomial on m of

degree at most 36 is positive for m > 125. After this the only thing left is

to verify the original inequality for a ∈ [126, 162]. Both can be confirmed

easily with the help of a computer.

6.6 Medium lattice width

Here we prove a strengthening of Lemma 6.6 for the case when W (4) is not

too small but at most w0. More precisely we show the following.

Lemma 6.9. There is n0 > 0 so that if 4 ∈ Hn, n > n0 and a > 250 then

|T | = |T (4)| > 1
8n

3.

Proof. By Lemma 6.6 we can assume w ≤ w0, and so c→∞ as n→∞. We

show that for some ε > 0, limc→∞
|T (4)|
n3 > 1

8 + ε when a > 250 and w ≤ w0.

Since here both |T (4)| and n3 are of order c3 we can ignore smaller order

terms during the computations.

We want to have sharper and explicit estimates instead of those in section

6.4. For simpler notation set 4̃ = 1
d4, let ã = a

d , b̃ = b
d , and c̃ = c

d .

We begin with Case 1, so a = w. We are going to estimate E(d) =
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Figure 6.3: A+
d and A−d near L and correction lines

|A+
d | − |A−d | again. The triangle 4̃ has a lower side L = [(0, 0), (c̃, b̃)] and

upper one U = [(0, ã), (c̃, b̃)]. We ignore the boundary cells on its vertical

side since they cause only a minimal (O(1)) error. Figure 6.3 shows that

A+
d ∪A−d near L (respectively U) consists of triangles, bounded by L (and U),

and horizontal segments (on the lines y = m+ 1
2 , m an integer) and vertical

segments of unit length (on the lines x = m + 1
2 , m an integer). These

triangle alternately belong to A+
d and A−d and two consecutive triangles

have almost the same area. We modify these triangles by moving the unit

segment containing their vertical side so that L (respectively U) halves the

new unit segment. We call this a correction. Each correction changes the

sum of the signed area of the two triangles it affects by at most 1
2 . After

the correction consecutive triangles have the same area so they cancel in

E(d) = |A+
d | − |A−d |.

Even more generally the following holds. Call a valid period any vertical

strip of width c̃

b̃
between the lines x = 0 and x = c̃. Then the sum of the

signed areas of the triangles in A+
d and A−d near L in a valid strip equals

zero.

Consequently the contribution of |A+
d |− |A−d | from triangles near L is at

most the area of one of the triangles, which is c̃

8b̃
if b̃ ≥ 1. There is no valid

period if b̃ < 1, and then the contribution of |A+
d | − |A−d | near L is at most

c̃
2 .
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Similarly, the contribution of |A+
d | − |A−d | near U is at most c̃

8(ã−b̃)
if

ã− b̃ ≥ 1 and c̃
2 if ã− b̃ < 1. Then, ignoring the correction terms,

|E| =
∣∣∣∣∣
a∑
1

µ(d)E(d)

∣∣∣∣∣ ≤
a∑
1

|µ(d)|
∣∣|A+

d | − |A−d |
∣∣

≤
b∑
1

c

8b
|µ(d)|+

a∑
b

c

2

|µ(d)|
d

+
a−b∑

1

c

8(a− b) |µ(d)|+
a∑
a−b

c

2

|µ(d)|
d

≤
[
c

8

(
1

b

b∑
1

|µ(d)|+ 1

a− b
a−b∑

1

|µ(d)|
)

+
c

2

(
a∑
b

|µ(d)|
d

+

a∑
a−b

|µ(d)|
d

)]
.

Here we can assume by symmetry that b ≤ a− b. The first term in the

square brackets is bounded using Lemma 6.8 by c
2(1 + 2

3). For the second

term we can use the method as in the proof of Lemma 6.8 as follows: Let

µ∗(d) = 0 if 4 or 9 divides d and µ∗(d) = 1 otherwise. Then

a∑
b

|µ(d)|
d

+
a∑
a−b

|µ(d)|
d
≤

a∑
b

µ∗(d)

d
+

a∑
a−b

µ∗(d)

d

≤
a∑

b−36m

µ∗(d)

d
+

a∑
a−b+36m

µ∗(d)

d
,

for every positive integer m such that b − 36m > 0. Choose m so that

1 ≤ b0 = b− 36m ≤ 36. Then

a∑
b

|µ(d)|
d

+

a∑
a−b

|µ(d)|
d
≤

a∑
b0

µ∗(d)

d
+

a∑
a−b0

µ∗(d)

d
(6.8)

≤
a∑
1

µ∗(d)

d
+

a∑
a−36

µ∗(d)

d
≤
(

6

10
+

7

10
log a

)
+

24

250− 36
.

Therefore we have the bound

|E| < c

2

(
2.3789 +

7

10
log a

)
.
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The same general method applies to Ey =
∑a

1 dµ(d)Ey(d) where Ey(d) =∫
A+
d
ydz −

∫
A−d

ydz. The integral on the corrections is ã
2 , small again. On a

valid period the contribution in absolute value of the integral near L is at

most c̃
6 and the contribution of the final part is at most c̃

4 if b̃ ≥ 1. The

same contribution near U is at most c̃
24 + c̃

8(ã−b̃)
(̃b + 1) if ã − b̃ ≥ 1, and is

1
2 c̃ã if ã − b̃ < 1. This way we obtain, ignoring correction terms and using

Lemma 6.8 again,

|Ey| =
∣∣∣∣∣
a∑
1

dµ(d)Ey(d)

∣∣∣∣∣ ≤ c

6

b∑
1

|µ(d)|+ c

4

a∑
b

|µ(d)|

+

(
c

24
+

bc

8(a− b)

) a−b∑
1

|µ(d)|+ c

8(a− b)
a−b∑

1

d|µ(d)|+ ca

2

a∑
a−b

|µ(d)|
d

<
c

2

(
a

3
+
a+ 2b

18
+
a− b

6
+ a

a∑
a−b

|µ(d)|
d

)
<
c

2

(
1.1556a+

7

10
a log a

)
.

In this last part we used b > 0 and Lemma 6.8.

The estimate for Ex is similar. The correction term is O(c) this time.

For the integral on the triangles near L on a given valid period we get the

bound c̃2

6b̃
if b̃ ≥ 1 and c̃2

6 if b̃ < 1. For those near U we have c̃2

6(ã−b̃)
if ã− b̃ ≥ 1

and c̃2

6 if ã− b̃ < 1. This gives, ignoring the correction terms again,

|Ex| ≤
c2

6b

b∑
1

|µ(d)|+ c2

6

a∑
b

|µ(d)|
d

+
c2

6(b− a)

a−b∑
1

|µ(d)|+ c2

6

a∑
a−b

|µ(d)|
d

≤c
2

2

[
2

9
+

1

3

a∑
b

|µ(d)|
d

+
2

9
+

1

3

a∑
a−b

|µ(d)|
d

]

<
c2

2

(
0.6819 +

7

30
log a

)
.

Here we used Lemma 6.8 and (6.8).

Recall that σa =
∑a

1
µ(d)
d2

. We use equation (6.7), which is simpler this
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time as e = 0:

|T | = |4|3
(

1

3
σa +

cEy − bEx
2|4|2

)(
1

3
σa +

aEx
2|4|2

)
. (6.9)

If a ≥ 250 then |σa− 6
π2 | <

∑∞
250

1
d2
< 0.004. Finally we use |cEy−bEx| ≤

|cEy|+ |bEx| to obtain

lim
n→∞

|T |
n3
≥

(
1
3σa −

1.8374+0.9334 log a
a

)(
1
3σa −

0.6819+0.2334 log a
a

)
(
σa + 2.3789+0.7 log a

a

)3 >
1

8
+ 10−5

when a ≥ 250. This finishes the proof of Case 1.

The proof in Case 2 is almost identical. There are some necessary

changes, but no new idea or method. This time b is negative, so w = a− b

and a ≥ −b ≥ 1. This means that in (6.3) for instance, d runs from 1 to a

instead of w and ã− b̃ is never smaller than 1. It is easy to see that in this

case we can obtain smaller bounds for E, Ey and Ex than in Case 1 and so

lim |T |
n2 >

1
8 + 10−5 when a ≥ 250.

6.7 Small lattice width

We have reduced the problem to a relatively small amount of cases. To deal

with all of them we use a computer. Once again we assume that e = 0.

Using the Euler totient function ϕ we are able to compute n and S, this is

done below.

We determine n in Case 1 the following way. Given an integer k ∈ [1, b],

the number of primitive points on the line y = k in 4 is ϕ(k) bc +O(k). The

same number for an integer k ∈ (b, a] is ϕ(k)
k

ca−ck
a−b + O(k). The O(k) terms
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are small, and so is their sum.

n =

a∑
k=bb+1c

ϕ(k)

k

(
ca− ck
a− b +O(k)

)
+

b∑
k=1

ϕ(k)

k

(c
b
k +O(k)

)
n

c
=

a

a− b
a∑
k=b

ϕ(k)

k
− 1

a− b
a∑
k=b

ϕ(k) +
1

b

b∑
k=1

ϕ(k) +O

(
1

c

)
,

The computation for Sx, Sy is similar:

(Sx, Sy) =

a∑
k=bb+1c

ϕ(k)

2k

(
ca− ck
a− b +O(k)

)(
ca− ck
a− b +O(k), 2k

)

+
b∑

k=1

ϕ(k)

2k

(c
b
k +O(k)

)(c
b
k +O(k), 2k

)
,

Sx
c2

=
a2

2(a− b)2

a∑
k=b

ϕ(k)

k
− a

(a− b)2

a∑
k=b

ϕ(k)

+
1

2(a− b)2

a∑
k=1

kϕ(k) +
1

2b2

b∑
k=1

kϕ(k) +O

(
1

c

)
,

Sy
c

=
a

a− b
a∑
k=b

ϕ(k)− 1

a− b
a∑
k=b

kϕ(k) +
1

b

b∑
k=1

kϕ(k) +O

(
1

c

)
.

The area of T is
( cbSy−Sx)Sx

2c/b = 1
2

(
Sy − b

cSx
)
Sx, so we want to bound

F1 =
(
Sy
c − bSxc2 )Sx

c2

2
(
n
c

)3
from below.

In Case 2 b is negative, but we change its sign and work with it. So

(c,−b) is a vertex of 4 and 1 ≤ b ≤ a. Doing a similar computation as in
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Case 1 we obtain

n

c
=

a

a+ b

a∑
k=1

ϕ(k)

k
− 1

a+ b

a∑
k=1

ϕ(k)

+
a

a+ b

b∑
k=1

ϕ(k)

k
−
(

1

b
− 1

a+ b

) b∑
k=1

ϕ(k) +O

(
1

c

)
,

Sx
c2

=
a2

2(a+ b)2

a∑
k=1

ϕ(k)

k
− a

(a+ b)2

a∑
k=1

ϕ(k)

+
1

2(a+ b)2

a∑
k=1

kϕ(k) +
a2

2(a+ b)2

b∑
k=1

ϕ(k)

k

+
a

(a+ b)2

b∑
k=1

ϕ(k) +

(
1

2(a+ b)2
− 1

2b2

) b∑
k=1

kϕ(k) +O

(
1

c

)
,

Sy
c

=
a

a+ b

a∑
k=1

ϕ(k)− 1

a+ b

a∑
k=1

kϕ(k)

− a

a+ b

b∑
k=1

ϕ(k) +

(
1

b
− 1

a+ b

) b∑
k=1

kϕ(k) +O

(
1

c

)
.

The area of T is
( cbSy+Sx)Sx

2c/b = 1
2

(
Sy + b

cSx
)
Sx, so we want to bound

F2 =

(
Sy
c + bSx

c2

)
Sx
c2

2
(
n
c

)3
from below.

As c→∞ we can ignore the terms O
(

1
c

)
and fix the values ā = bac and

b̄ = bbc. Then for i = 1, 2, Fi is a rational function of the variables a and

b. Not all pairs (a, b) of real numbers come from one of these triangles, but

we treat Fi as a function defined on all real numbers. The infimum of Fi in

the square (a, b) ∈ [ā, ā + 1] × [b̄, b̄ + 1] can be computed exactly using the

Mathematica function MinValue.

If the infimum of Fi is larger than 1
8 and the infimum of n

c is positive,

then it follows that Fi is larger than 1
8 for all a ∈ [ā, ā + 1], b ∈ [b̄, b̄ + 1]
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when c is large enough.

This was verified for all but three of the pairs (ā, b̄) determined by tri-

angles 4 in standard position with a ≤ 250 and 1 ≤ |b| ≤ a. The pairs

on which this could not be verified are (ā, b̄) = (1, 1), (2, 1) in Case 1 and

(ā, b̄) = (1, 1) in Case 2. We now deal with these last three pairs.

If (ā, b̄) = (1, 1) in Case 1, then 4∩ P2 consists of the vectors (k, 1) for

k = 0, . . . , n− 1. This is the only example for which |T |
n2(n−1)

= 1
8 .

If (ā, b̄) = (2, 1) in Case 1, let (k, 1) be the rightmost point on the line

y = 1 and let (l, 2) be the rightmost point on the line y = 2. Note that l

must be an odd integer and that 2k > l. Then,

|T |
n2(n− 1)

=
(2k(1 + k) + (1 + l)2)(2k2 − (1 + l)2 + k(6 + 4l))

4k(1 + 2k + l)(3 + 2k + l)2

and it can be verified with Mathematica that under these conditions this is

larger than 1
8 if n ≥ 6.

In Case 2, when (ā, b̄) = (1, 1), let (k, 1) be the rightmost lattice point

of 4 on the line y = 1 and let (m,−1) and (m+ l,−1) be the first and last

lattice points in 4 on the line y = −1. Then,

|T |
n3

=
(2 + k + k2 + l + l2 + 2(1 + k)m)(2 + k + k2 + l + l2 + 2(1 + l)m)

8(3 + k + l)3m

which can be verified, again with Mathematica, to be larger than 1
8 if n ≥ 9.
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[17] B. Grünbaum, Common secants for families of polyhedra, Arch. Math.

(Basel) 15 (1964), 76–80.

[18] G. H. Hardy and E. M. Wright, An introduction to the theory of num-

bers, Clarendon Press, Oxford, 1979.

96



[19] A. Heppes, New upper bound on the transversal width of T (3)-families

of discs, Discrete Comput. Geom. 34 (2005), no. 3, 463–474.

[20] J. Jerónimo Castro, Line transversals to translates of unit discs, Dis-

crete Comput. Geom. 37 (2007), no. 3, 409–417.

[21] J. Jerónimo-Castro and E. Roldán-Pensado, Line transversals to blown

up closed balls, Journal of Geometry 100 (2011), no. 1-2, 79–84.

[22] , Line transversals to translates of a convex body, Discrete Com-

put. Geom. 45 (2011), 329–339.

[23] R. Kannan and L. Lovász, Covering minima and lattice-point-free con-

vex bodies, The Annals of Mathematics 128 (1988), no. 3, 577–602.

[24] A. I. Khinchin, A quantitative formulation of Kronecker’s theory of

approximation, Izv. Akad. Nauk SSR, Ser. Mat. 12 (1948), 113–122.

[25] J. Lehec, On the Yao-Yao partition theorem, Archiv der Mathematik

92 (2009), 366–376.
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