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Abstract

A two-step generalized method of moments estimation procedure can be made

robust to heteroskedasticity and autocorrelation in the data by using a nonpara-

metric estimator of the optimal weighting matrix. This paper addresses the issue

of choosing the corresponding smoothing parameter (or bandwidth) so that the re-

sulting point estimate is optimal in a certain sense. We derive an asymptotically

optimal bandwidth that minimizes a higher-order approximation to the asymptotic

mean-squared error of the estimator of interest. We show that the optimal band-

width is of the same order as the one minimizing the mean-squared error of the

nonparametric plugin estimator, but the constants of proportionality are signifi-

cantly different. Finally, we develop a data-driven bandwidth selection rule and

show, in a simulation experiment, that the particular bandwidth chosen may yield

significant second-order gains.
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1 Introduction

Since the seminal paper by Hansen (1982) the generalized method of moments (GMM)

has become a popular method for the estimation of partially specified models based on

moment conditions. In time series applications, two-step GMM estimators can be made

robust to heteroskedasticity and autocorrelation (HAC) by using a nonparametric plug-

in estimator of the optimal weighting matrix. The goal of this paper is to develop a

selection rule for the corresponding smoothing parameter of the nonparametric estimator

such that the resulting point estimator minimizes a suitably defined mean-squared error

(MSE) criterion.

Many instances of poor finite sample performance of GMM estimators have been

reported in the literature. See for example Hansen, Heaton, and Yaron (1996) and ref-

erences therein. As an attempt to improve the properties different extensions and new

estimators have been proposed, e.g. the empirical likelihood estimator introduced by

Owen (1988), Qin and Lawless (1994), the exponential tilting estimator of Kitamura and

Stutzer (1997) and Imbens, Spady, and Johnson (1998) and the continuous updating es-

timator by Hansen, Heaton, and Yaron (1996). Newey and Smith (2004) show that all

these estimators are members of a larger class of generalized empirical likelihood (GEL)

estimators. A different approach termed “fixed-b” asymptotics is based on deriving more

accurate approximations of estimators and test statistics based on an asymptotic sequence

in which the HAC smoothing parameter tends to infinity at the same rate as the sam-

ple size. See for example Kiefer and Vogelsang (2002a,b, 2005). Instead of treating the

smoothing parameter as proportional to the sample size, Sun and Phillips (2008) and Sun,

Phillips, and Jin (2008) develop a higher-order asymptotic theory based on which they

find the optimal rate at which the smoothing parameter (here a bandwidth) minimizes

the coverage probability error or length of confidence intervals.

Similar in spirit, the present paper derives the optimal growth rate of the bandwidth

to minimize an asymptotic mean-squared error (AMSE) criterion. We approximate the

MSE of the second-step GMM estimator by the MSE of the first few terms in a stochas-

tic expansion. Since the proposed semiparametric estimator is first-order equivalent to

ordinary GMM estimators in the iid case, the optimal bandwidth derived in this paper

will minimize it’s second-order effects on the estimator and lead to second-order efficiency

gains. In an unpublished dissertation, Jun (2007) independently develops a similar expan-

sion and arrives at the same MSE-optimal bandwidth as derived in this paper, however

under a slightly different set of assumptions.1

Other bandwidth choices for HAC-robust estimation have been suggested by Andrews
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(1991), Newey and West (1994) and Andrews and Monahan (1992), for example, and

are very popular in applied research. In this paper, we show that these are suboptimal

choices if MSE-optimal point estimation is of main interest. In finite samples, the existing

methods can select bandwidths that are significantly different from the MSE-optimal

bandwidth even though they share the same asymptotic order relative to the sample

size. The difference is due to the other methods minimizing the AMSE of the weighing

matrix estimator instead of minimizing the AMSE of the GMM estimator itself; they

guarantee accurate estimates of the optimal weighting matrix, but not necessarily of the

parameter of interest. For example, in a linear instrumental variable model, the MSE-

optimal bandwidth adapts to the amount of serial correlation in the regression errors,

the degree of over-identification and to the amount of variation in the instruments. On

the other hand, the existing bandwidth choices mentioned above, are independent of the

latter two determinants.

In the linear regression framework with potential autocorrelation and heteroskedastic-

ity, there are several papers (e.g. Robinson (1991), Xiao and Phillips (1998) and Tamaki

(2007)) that derive higher-order expansions of the MSE of semiparametric frequency do-

main estimators to determine an optimal bandwidth that minimizes higher-order terms

of such expansions. In the present paper, however, we allow for nonlinear models and

over-identification which significantly complicate the problem and require a different set

of tools to derive such expansions.

To approximate higher-order moments of the GMM estimator we develop a stochastic

expansion of the estimator similar to the approach in Nagar (1959). See Rothenberg

(1984) for an introduction to Nagar-type expansions and for further references. Several

other authors have analyzed higher-order properties of GMM and GEL estimators using

similar tools. Rilstone, Srivastava, and Ullah (1996) and Newey and Smith (2004) provide

expressions for the higher-order bias and variance of GMM and GEL estimators when the

data are iid. Anatolyev (2005) derives the higher-order bias in the presence of serial

correlation.

Finally, Goldstein and Messer (1992) present general conditions under which func-

tionals of nonparametric plug-in estimators achieve the optimal rate of convergence. De-

pending on the functional under-smoothing the plugin estimator relative to the smoothing

parameter used to optimally estimate the nonparametric quantity itself may be necessary.

The paper is organized as follows. The first section introduces the econometric setup,

derives a higher-order expansion of the two-step GMM estimator and the optimal band-

width that minimizes an approximate MSE based on that expansion. The third section

describes an approach to estimate the infeasible optimal bandwidths, followed by a simu-
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lation experiment that demonstrates the procedure’s performance in finite samples. The

paper concludes with an appendix containing all mathematical proofs.

Let vec(·) denote the column-by-column stacking operation and vech(·) the column-

by-column stacking operation of entries on and above the diagonal of a symmetric matrix.

By Km,n denote the mn × mn commutation matrix so that, for any m × n matrix M ,

Km,nvec(M) = vec(M ′). Let ⊗ be the Kronecker product and ∇rF (β), with r ∈ Z and

F (β) a matrix being r times differentiable in β, denote the matrix of r-th order partial

derivatives with respect to β, recursively defined as in Rilstone, Srivastava, and Ullah

(1996). ∇0F (β) := F (β). This notation for derivatives will sometimes be used to save

space and simplify notation. ‖ · ‖ denotes the Euclidean (matrix) norm, M ′ the transpose

of a matrix M , “with probability approaching one” is abbreviated “w.p.a. 1” and “with

probability one” by “w.p. 1”. The notation xT = Op(1) means that the sequence {xT}∞T=1

is uniformly tight.

2 Optimal Bandwidth

In this section, we introduce the basic framework, define an appropriate MSE criterion

and find the optimal bandwidth that minimizes it. The idea is to derive a higher-order

approximation of the second-step estimator and to the MSE from the moments of this

approximation. A higher-order analysis is required in this setup because first-order asymp-

totics do not depend on the smoothing parameter.

Consider estimation of a parameter β0 ∈ B from the moment equation Eg(Xt, β0) = 0

given a data sample {xt}Tt=1. If the dimension of the range of g is at least as large as

the dimension of the parameter β0, then a popular estimator of β0 is the two-step GMM

estimator defined as follows. First, estimate β0 by some
√
T -consistent estimator, say

β̃, that is then used to construct a consistent estimator Ω̂(β̃) of the long-run variance

Ω0 :=
∑∞

s=−∞ Γ(s), Γ(s) := E[g(Xt+s, β0)g(Xt, β0)
′]. In a second step, compute the

GMM estimator β̂ of β0 with weighting matrix Ω̂(β̃)−1, viz.

β̂ := arg min
β∈B

ĝ(β)′Ω̂T (β̃)−1ĝ(β), (2.1)

where ĝ(β) := T−1
∑T

t=1 g(xt, β). The second step improves the first-step estimator in

terms of efficiency. In fact, β̂ is optimal in the sense that it achieves the lowest asymptotic

variance among all estimators of the form β̂W := arg minβ∈B ĝ(β)′Wĝ(β) for some positive

definite weighting matrix W (see Hansen (1982)).

In the special case of an iid process {Xt}, Ω0 collapses to Ω0 = E[g(Xt, β0)g(Xt, β0)
′]

and can simply be estimated by its sample analog Ω̂T (β̃) := T−1
∑T

t=1 g(xt, β̃)g(xt, β̃)′.
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When the iid assumption is not justified, one can perform inference robust to autocor-

related and/or heteroskedastic Xt processes. Robustness here means that potential de-

pendence and heteroskedasticity are treated nonparametrically and one does not have to

be explicit about the data generating process of the Xt’s. To that end, one needs to

“smooth” the observations g(xt+s, β̃)g(xt, β̃)′ over s to ensure that Ω̂T (β̃) is consistent.

In this paper, we use a nonparametric kernel estimator of the form

Ω̂T (β̃) :=
1

T

T−1∑
s=1−T

min{T,T−s}∑
t=max{1,1−s}

k

(
s

ST

)
gt+s(β̃)gt(β̃)′

with gt(β) := g(xt, β) and k a kernel function. ST , with ST → ∞ as T → ∞, is a

so-called bandwidth parameter that governs the degree of smoothing. Andrews (1991)

derives a range of rates (in terms of T ) at which ST is allowed to diverge in order to

guarantee consistency of Ω̂T (β̃). These conditions, however, do not suggest rules for

choosing ST for a fixed sample size T . Small values of ST imply averaging over only

few observations which decreases the variability of the estimator Ω̂T (β̃), but increases

its bias. On the other hand, large bandwidths yield inclusion of more distant lags in

the above sum, thereby increasing the variance, but decreasing the bias of the estimator.

Below we show that the choice of ST affects the bias and variance of the second-step

estimator β̂ in a similar way. This trade-off can be used to derive decision rules on how

to pick ST in finite samples. For example, Andrews (1991) derives the optimal bandwidth

minimizing a truncated asymptotic mean-square error (AMSE) criterion that balances

bias and variance of Ω̂T (β̃), thereby guaranteeing “good” properties of the estimator of

the optimal weighting matrix. However, in the GMM estimation framework, the second-

step estimator β̂ is the quantity of interest and, thus, the bandwidth should be chosen so

as to take into account the bias and variance trade-off of β̂, rather than that of Ω̂T (β̃).

To that end the subsequent analysis develops a higher-order expansion of the MSE of the

second-step estimator and then minimize the leading terms with respect to the bandwidth.

Assumption 2.1. (a) The process {Xt}∞t=−∞ taking values in X ⊂ Rm is fourth-order

stationary and α-mixing with mixing coefficients α(j) satisfying
∑∞

j=1 j
2α(j)(ν−1)/ν <

∞ for some ν > 1. (b) {xt}Tt=1 is an observed sample of {Xt}∞t=−∞. (c) h(·, β) :=

(g(·, β)′, vec(∇g(·, β)−E∇g(·, β))′, vec(∇2g(·, β)−E∇2g(·, β))′)′ is a measurable function

for every β ∈ B. (d) supt≥1E[‖h(xt, β0)‖4ν ] < ∞. (e) supt≥1E‖g(xt, β0)‖2 < ∞. (f)

supt≥1E[supβ∈B ‖∇kg(xt, β)‖2] < ∞ for k = 1, 2, 3. (g) There is a first-step estimator β̃

satisfying β̃ − β0 = Op(T
−1/2).

As a slight abuse of notation, in the remainder, xt represents the random variable

Xt as well as the observation xt, but the distinction should be clear from the context.
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Furthermore, dropping β as an argument of a function means that the function is evaluated

at β0, e.g. Ω̂T := Ω̂T (β0) or gt := gt(β0). Let G0 := EG(xt), G(xt, β) := ∂gt(β)/∂β′,

Gt(β) := G(xt, β), and the sample counterpart GT (β) := T−1
∑T

t=1 ∂gt(β)/∂β′.

Following Parzen (1957), let q be the characteristic exponent that characterizes the

smoothness of the kernel k at zero: q := max{α ∈ [0,∞) : gα exists and 0 < |gα| < ∞}
with gα := limz→0

1−k(z)
|z|α . For example, for the Bartlett, Parzen and Tukey-Hanning kernel

the values of q are 1, 2 and 2, respectively.

Assumption 2.2. Let the kernel k satisfy the following conditions: (a) k : R → [−1, 1]

satisfies k(0) = 1, k(x) = k(−x) ∀x ∈ R,
∫∞
−∞ k

2(x)dx < ∞,
∫∞
−∞ |k(x)|dx < ∞,

k(·) is continuous at 0 and at all but a finite number of other points, and ST → ∞,

S2
T/T → 0, SqT/T → 0 for some q ∈ [0,∞) for which gq, ‖f (q)‖ ∈ [0,∞) where f (q) :=
1
2π

∑∞
j=−∞ |j|qΓ(j). (b)

∫∞
−∞ k̄(x)dx <∞ with

k̄(x) :=

{
supy≥x |k(y)|, x ≥ 0

supy≤x |k(y)|, x < 0
.

Assumptions 2.1 and 2.2(a) imply Assumptions A, B and C in Andrews (1991) applied

to {gt} and {Gt}, allowing us to use his consistency and rate of convergence results for

HAC estimators. The necessity of Assumption 2.2(b) is explained in Jansson (2002).

Assumption 2.3. (a) g : X × B → Rl, l ≥ p, and β0 ∈ int(B) is the unique solution

to Eg(xt, β0) = 0, B ⊂ Rp is compact. (b) rank(G0) = p. (c) For any x ∈ X , g(x, ·) is

twice continuously differentiable in a neighborhood N of β0. (d) There exists a function

d : X × X → R with
∑∞

s=−∞Ed(xt+s, xt) <∞ so that g satisfies the Lipschitz condition

‖∇(gt+s(β)gt(β)′)−∇(gt+s(β0)gt(β0)
′)‖ ≤ d(xt+s, xt) w.p. 1 for β ∈ N . (e) There exists a

function b : X → R with Eb(xt) <∞ such that ‖∇kg(x, β)−∇kg(x, β0)‖ ≤ b(x)‖β − β0‖
for k = 2, 3. (f) Ω0 is positive definite.

The following proposition is the first main result of the paper, presenting an expansion

of the second-step GMM estimator β̂ up to the lowest orders involving the bandwidth ST .

This approximation constitutes a crucial ingredient for the computation of the optimal

bandwidth.

Proposition 2.1. Under Assumptions 2.1–2.3, β̂ satisfies the stochastic expansion

β̂ = β0 + κ1,TT
−1/2 + κ2,TS

1/2
T T−1 + κ3,TS

−q
T T−1/2 + op(ηTT

−1/2) (2.2)
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with ηT := S
1/2
T T−1/2 + S−qT , κi,T = Op(1) for i = 1, 2, 3,

κ1,T := −H0FT

κ2,T := H0

√
T/ST

(
Ω̂T − ΩT

)
P0FT

κ3,T := H0S
q
T

(
ΩT − Ω0

)
P0FT

and FT (β) :=
√
T ĝ(β), FT := FT (β0), ΩT := EΩ̂T , Σ0 := (G′0Ω

−1
0 G0)

−1, H0 :=

Σ0G
′
0Ω
−1
0 and P0 := Ω−10 − Ω−10 G0H0.

Since the lowest-order term, −H0FTT
−1/2, does not depend on the bandwidth, the

expansion (2.2) illustrates the well-known fact that nonparametric estimation of the GMM

weighting matrix does not affect first-order asymptotics as long as that nonparametric

estimator is consistent. The other two terms in the expansion involve the bandwidth and

arise from the bias (SqT (ΩT −Ω0)) and variance (
√
T/ST (Ω̂T −ΩT )) of the nonparametric

estimator of the weighting matrix. In the iid case, these two components converge to

zero as T → ∞ whereas, in the presence of time series dependence, they converge to a

non-degenerate random variable. Therefore, in the iid case, the next higher-order term

after κ1,TT
−1/2 is of order T−1 (see Newey and Smith (2004)) which, here is part of the

remainder and plays no role in determining the optimal bandwidth derived below.

Anatolyev (2005) does not explicitly present a stochastic expansion such as (2.2), but

computes the higher-order bias BT of β̂ which turns out to be of order T−1, i.e. E[β̂−β0] =

BTT
−1 + o(T−1), and therefore does not depend on the bandwidth. Interestingly, one can

show that the two higher-order terms in (2.2) do not contribute to that bias (Jun (2007)).

In the class of GMM estimators defined by (2.1) and indexed by the bandwidth ST ,

we now characterize the most efficient one under quadratic loss. Specifically, we rank

estimators according to the MSE of the approximation ζT := β0+κ1,TT
−1/2+κ2,TS

1/2
T T−1+

κ3,TS
−q
T T−1/2.

Theorem 2.1. Suppose Assumptions 2.1–2.3 hold. Let W ∈ Rp×p be a weighting matrix.

Define the weighted MSE MSET := E[(ζT − β0)′W(ζT − β0)]. Then

MSET = ν1T
−1 + ν2STT

−2 + ν3S
−2q
T T−1 + o(η2TT

−1)

with

ν1 :=
∞∑

s=−∞

E [g′tH
′
0WH0gt+s]

ν2 := lim
T→∞

T

ST
E
[
F ′TP

′
0(Ω̂T − ΩT )H ′0WH0(Ω̂T − ΩT )P0FT

]
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− 2 lim
T→∞

T

ST
E
[
F ′TP

′
0(Ω̂T − ΩT )H ′0WH0FT

]
ν3 := lim

T→∞
S2q
T E

[
F ′TP

′
0(ΩT − Ω0)H

′
0WH0(ΩT − Ω0)P0FT

]
where all the limits exist, are finite and generally non-zero.

As explained above, the bias of the approximation ζT is zero so that the MSE expansion

(2.1) represents only the variance of ζT . Despite the lack of a bias component of ζT ,

the expansion displays the first-order tradeoff that is relevant for choosing a bandwidth:

ν2STT
−2 increases in ST and ν3S

−2q
T T−1 decreases in ST . The terms have the standard

order of squared bias and variance of HAC estimators as derived in Andrews (1991).

Under additional conditions, the moments of the approximation ζT correspond to the

moments of a formal Edgeworth expansion of the cdf of the second-step estimator β̂. The

(finite) moments of such an Edgeworth expansion approximate the distribution of β̂ up

to the specified order even when the corresponding moments of β̂ do not exist (Götze and

Hipp (1978), Rothenberg (1984), Magdalinos (1992)). In this sense, we can regard (2.1)

as an approximation of the MSE of β̂ when β̂ possesses second moments and as the MSE

of an approximate estimator that shares the same Edgeworth expansion up to a specified

order.

Remark 2.1. For linear instrumental variable models with iid variables and normal er-

rors, Kinal (1980) shows that β̂ has finite moments up to order l − p. Similar results

have been conjectured for GMM and generalized empirical likelihood estimators (e.g. Ku-

nitomo and Matsushita (2003), Guggenberger (2008)). Therefore, one should be careful

in interpreting the MSE approximation in cases when the degree of over-identification is

less than two. Other loss functions may then be more appropriate (see Zaman (1981), for

example).

Having established Theorem 2.1, the calculation of an MSE-optimal bandwidth, S∗T ,

becomes straightforward: for the second-order term to attain its fastest possible rate of

convergence, the terms of order STT
−2 and S−2qT T−1 have to be balanced which is the

case for S∗T = c∗(q)T 1/(1+2q) and some constant c∗(q). We refer to this bandwidth as the

MSE(β̂)-optimal bandwidth. The bandwidth minimizing the MSE of Ω̂T (β̃) as derived in

Andrews (1991) we call the MSE(Ω̂)-optimal bandwidth.

Corollary 2.1. Under the assumptions of Theorem 2.1 and if l > p, minimizing the

lowest order of MSET involving the bandwidth yields the optimal bandwidth growth rate

T 1/(1+2q). Moreover, S∗T = c∗(q)T 1/(1+2q) minimizes the higher-order AMSE defined as the
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limit of HMSET := T (1+4q)/(1+2q) {MSET − ν1T−1} with

c∗(q) :=

(
c0ν3
ν2

)1/(1+2q)

, c0 :=

{
2q, sign(ν2) = sign(ν3)

−1, sign(ν2) 6= sign(ν3)
. (2.3)

The expressions for ν2 and ν3 show that the optimal bandwidth growth rate is governed

by the convergence rate of the covariances between the moment functions and the HAC

estimator. The bias and variance of the HAC estimator itself only play an indirect role;

in particular, the AMSE of β̂ is not an increasing function of the AMSE of the HAC

estimator. In consequence, none of the existing procedures minimizing the AMSE of the

HAC estimator (Andrews (1991), Newey and West (1994) and Andrews and Monahan

(1992) among others) are optimal in the above sense.

The convergence rate of the MSE of β̂ is not affected by the bandwidth choice because

it is of order O(T−1), only the second-order terms of the MSE, converging at an optimal

rate of O(T−(1+4q)/(1+2q)), are. By choosing kernels of very high order q, this rate can be

made arbitrarily close to O(T−2). Nevertheless, kernels of order smaller than or equal to

2 are popular because, unlike kernels of higher order, they can produce positive definite

covariance matrix estimates.

Remark 2.2. Interestingly, the semiparametric estimator β̂ converges at rate T−1/2, but

the optimal bandwidth minimizing MSE(β̂) is of the same order as the optimal bandwidth

minimizing MSE(Ω̂). This result contrasts the findings in other semiparametric settings

such as those studied by Powell and Stoker (1996) and Goldstein and Messer (1992), for

example, in which under-smoothing the nonparametric plugin estimator leads to T−1/2-

convergence rates of smooth functionals of that nonparametric plugin estimator.

To gain more insight into which features of the data generating process determine the

value of the optimal bandwidth and to be able to directly estimate the quantities involved,

the following proposition derives more explicit expressions for the constants νi.

Proposition 2.2. Assume that {gt} follows a linear Gaussian process, viz.

gt =
∞∑
s=0

Ψset−s

for t = 1, . . . , T , et ∼ N(0,Σe) iid and Ψs satisfies
∑∞

s=0 s
4‖Ψs‖ < ∞. Define µi :=∫∞

−∞ k
i(x)dx for i = 1, 2 and Ω

(q)
0 := 2πf (q). Then

ν1 = tr(Ω0H
′
0WH0),

ν2 = (2µ1 + µ2)(l − p)tr(Σ0W),

ν3 = g2q tr
(

Ω
(q)
0 H ′0WH0Ω

(q)
0 P0

)
.
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2.1 Linear IV Model

In this sub-section, we specialize the expressions in Proposition 2.2 to a stylized instrumen-

tal variable model that allows us to analyze the difference between the MSE(β̂)-optimal

and the MSE(Ω̂)-optimal bandwidths and subsequently serves as the data generating

process for the Monte Carlo simulations. Let yt and wt be random variables satisfying

yt = β0wt + εt

and zt an l-dimensional random vector of instruments such that

wt = γι′zt + vt

where ι := (1, . . . , 1)′ ∈ Rl and γ ∈ R. Define xt = (yt, wt, z
′
t)
′ so that g(xt, β) =

(yt−βwt)zt. Further let {εt} and {vt} be AR(1) processes with autocorrelation coefficient

|ρ| ∈ (0, 1), viz. εt = ρεt−1 + ηt and vt = ρvt−1 + ut, where(
ηt

ut

)
∼ iid N

(
0,

(
1 σ12

σ12 1

))
, σ12 6= 0,

and zt ∼ iid N(0, σ2
z Il) independent of {(ηt, ut)}. Then, one can show that

c∗(1) =

(
4c0g

2
1ρ

2(1− ρ)2[σ4
z l − (1− ρ)4]

(2µ1 + µ2)(1 + ρ)2σ8
z l(l − 1)

)1/(1+2q)

,

c∗(2) =

(
4c0g

2
2ρ

2[σ4
z l − (1− ρ)4]

(2µ1 + µ2)σ8
z l(l − 1)

)1/(1+2q)

.

In this specific example, we can easily compare the MSE(β̂)-optimal with the MSE(Ω̂)-

optimal bandwidth derived in Andrews (1991), ST = (qg2q/µ2 α(q)T )1/(1+2q) with α(q) =

2vec(Ω
(q)
0 )′WAvec(Ω

(q)
0 )/tr (WA(Il2 +Kll) (Ω0 ⊗ Ω0)). ForWA = Il2 , the constants of pro-

portionality become α(1) = 8ρ2/[(1− ρ)2(1 + ρ)2(l+ 1)] and α(2) = 8ρ2/[(1− ρ)4(l+ 1)].

Notice that the MSE(β̂)-optimal bandwidth adapts to the persistence of the error

processes (ρ), to the degree of over identification (l−1) and to the amount of variation in

the instruments (σ2
z). On the contrary, the MSE(Ω̂)-optimal bandwidth depends only on

ρ and decreases with l. Therefore, we expect there to be scenarios in which the MSE(Ω̂)-

optimal bandwidth is clearly not MSE(β̂)-optimal and the two bandwidths may differ

significantly. The simulation evidence in Section 4 confirms these findings.

3 Data-driven Bandwidth Choice

The optimal bandwidth S∗T is infeasible because it depends on several unknown quantities.

In the case in which {gt} is a linear Gaussian process, we require knowledge of Ω0, Ω
(q)
0 , and
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G0. In this section, I describe a data-driven approach to select the optimal bandwidth by

estimating the required quantities based on parametric approximating models for {gt},
similarly as proposed in Andrews (1991). The idea is to first construct the first-step

estimator β̃, then fit a parsimonious auto-regressive (AR) model to {gt(β̃)}Tt=1 and, finally,

to substitute its parameter estimates into analytical formulae for Ω0 and Ω
(q)
0 assuming

that the AR is the true model. Together with the usual sample average estimator for G0,

these estimates, are then substituted into the expressions of ν2 and ν3 in Proposition 2.2

to yield estimates of the optimal bandwidths.

We focus on estimating a univariate AR(1) model for each component of {gt(β̃)},
although other approximating models like vector autoregressions or models with more

lags could be considered. Let ρ̂i and σ̂i be the estimated coefficient and the residual

variance of the i-th estimated AR(1) process. We can construct estimators of Ω0 and Ω
(q)
0

as Ω̂0 := diag(ω̂1, . . . , ω̂l) and Ω̂
(q)
0 := diag(ω̂

(q)
1 , . . . , ω̂

(q)
l ) with ω̂i := σ̂2

i /(1− ρ̂i)2, ω̂
(1)
i :=

2σ̂2
i ρ̂i/[(1 − ρ̂i)3(1 + ρ̂i)] and ω̂

(2)
i := 2σ̂2

i ρ̂i/[(1 − ρ̂i)4]. Then, estimate H0, Σ0 and P0 by

Ĥ0 := Σ̂0GT (β̃)′Ω̂−10 , Σ̂0 := (GT (β̃)′Ω̂−10 GT (β̃))−1 and P̂0 := Ω̂−10 − Ω̂−10 GT (β̃)Ĥ0. Finally,

substitute all these expressions into the formulae of Proposition 2.2 to get estimates ν̂2

and ν̂3 of ν2 and ν3, and the estimator of the optimal bandwidth,

ŜT :=

(
c0ν̂3
ν̂2

)1/(1+2q)

T 1/(1+2q).

The difference in performance one incurs by using ŜT instead of the infeasible band-

width minimizing the finite-sample MSE of β̂ has four sources: the error made by replacing

the MSE of β̂ by the MSE of the first terms in the higher-order expansion (ζT ), the er-

ror due to the large sample approximation of the MSE, the estimation error in Ω̂0 and

Ω̂
(q)
0 , and the error made by potential misspecification of the approximating parametric

model for {gt}. In practice, one hopes that these errors are small. As mentioned in the

discussion after Theorem 2.1, the first type of error vanishes with the sample size under

additional assumptions. The second and third type also disappear as T →∞. The fourth

type of error can typically be conjectured to be negligible because the MSE of β̂ tends to

be relatively flat around its minimum (as is the case in the Monte Carlo simulations, for

example), so that misspecification in the approximating model is not expected to have a

large impact on the properties of the resulting GMM estimator. Nevertheless, the applied

researcher should bear in mind that the plugin procedure is not “automatic” and some

thought has to go into selecting an appropriate approximating model and the potential

impact of the aforementioned types of errors has to be considered.

Remark 3.1. As in Andrews and Monahan (1992) one may want to consider pre-whitening
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the series {gt(β̃)}Tt=1 before fitting the AR process. The reported increases in accuracy of

test statistics in Andrews and Monahan (1992) and Newey and West (1994) are expected

to occur with the procedure presented here as well.

4 Simulations

In this section, we discuss a small simulation experiment that illustrates the theoretical

findings from the previous sections. We simulate the model from Section 2.1, denoted by

“AR(1)”, for different degrees of serial correlation (ρ ∈ {0.1, 0.5, 0.9}), weak and strong in-

struments (γ ∈ {0.1, 1}) and increasing number of instruments (l ∈ {2, 3, 4, 5, 10, 15, 20}).
We also consider a variant of the model in which the AR(1) error process is replaced by an

MA(1), i.e. εt = ρηt−1 + ηt and vt = ρut−1 +ut. The variance of the instruments is chosen

so as to balance signal and noise across different values of l and ρ: σ2
z = 1/((1 − ρ2)l2)

for the AR(1) and σ2
z = (1 + ρ2)/l2 for the MA(1). We simulate 1, 000 samples and, to

save space, present only results for sample size T = 128, σ12 = 0.5, β0 = 1 and the Parzen

kernel. Other parameter combinations yield similar results.

Table 1 reports four different bandwidths (“bw”) averaged over the simulation samples:

“optimal”, “Andrews”, “naive” and “sim”, referring to the MSE(β̂)-optimal, the MSE(Ω̂)-

optimal, the naive choice ST = T 1/(1+2q) and to the (infeasible) bandwidth that minimizes

the simulated MSE(β̂) over a grid of bandwidths, respectively. The table also shows

the bias, standard deviation (“SD”) and MSE of β̂. In almost all cases considered here,

the MSE(β̂)-optimal bandwidth is closer to the one minimizing the simulated MSE than

the MSE(Ω̂)-optimal bandwidth. The MSE(β̂)-optimal bandwidth tends to be around

20% or more smaller than the MSE(Ω̂)-optimal bandwidth one. The results, together

with unreported simulations at intermediate values of ρ, show that the MSE(β̂)-optimal

bandwidth leads to lower MSE values than the MSE(Ω̂)-optimal bandwidth, except when

|ρ| is close to one.

Tables 2 and 3 show the ratios of MSE (“MSE ratio”) and higher-order MSE (“HMSE

ratio”), as defined in Corollary 2.1, based on the MSE(β̂)-optimal bandwidth divided by

those based on the MSE(Ω̂)-optimal bandwidth. The number of instruments is fixed at l =

4, but other numbers yield quantitatively the same results. µ2/l denotes the standardized

concentration parameter measuring the strength of the instruments (Stock, Wright, and

Yogo (2002)). The MSE ratios demonstrate that the MSE(β̂)-optimal bandwidth yields

an HMSE up to 55% smaller than that of the MSE(Ω̂)-optimal bandwidth. The MSE is

smaller by up to 2%, again, except when |ρ| is close to one.

Unlike the MSE(Ω̂)-optimal bandwidth defined by Andrews (1991), the MSE(β̂)-
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optimal bandwidth is formally not defined for the case l = p in which the estimator

β̂ is independent of the weighting matrix. To study scenarios in which l/p is close to

this boundary, we conclude this section by considering a robustness check in which l/p

approaches one. Table 4 reports the same MSE and HMSE ratio as Tables 2 and 3, but

for a sequence l/p ∈ {5/1, 4/2, 3/2, 4/3, 5/4, 8/7, 10/9} that approaches one. ρ and γ are

fixed at values 0.5 and 1, but other values yield similar results. The MSE based on the

MSE(β̂)-optimal bandwidth stays close to or slightly smaller than the one based on the

MSE(Ω̂)-optimal bandwidth for all values of l/p. Similarly, the HMSE is significantly

smaller for the optimal bandwidth. In the case of the MA(1) model, the HMSE gains are

even around 40%.

5 Conclusion

This paper develops a selection procedure for the bandwidth of a HAC estimator of the

optimal GMM weighting matrix which minimizes the asymptotic MSE of the resulting

two-step GMM estimator. We show that it is of the same order as the bandwidth minimiz-

ing the MSE of the nonparametric plugin estimator, but the constants of proportionality

differ significantly. The simulation study suggests that the data-driven version of the se-

lection procedure works well in finite samples and significantly reduces the second-order

MSE of the GMM estimator.

Notes

1I thank Michael Jansson for making me aware of this work.
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A Proofs

Lemma A.1. Under Assumptions 2.1–2.2 and 2.3(a)–(c), β̂ − β0 = ψT−1/2 + op(T
−1/2)

with ψ = −G−10

√
T ĝ = Op(1).

Proof. We need to check the assumptions of Newey and McFadden (1994, Theorem 3.2)

with Ŵ replaced by Ω̂T (β̃). First of all, by Assumptions 2.1–2.2 and Andrews (1991,

Theorem 1(b)) Ω̂T (β̃)
p−→ Ω0. (i), (ii) and (v) hold by assumption. (iii) and (iv) hold by

Assumption 2.1 and White and Domowitz (1984, Theorem 2.3, 2.4). Q.E.D.
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Proof of Proposition 2.1. Step I: Expansion of the optimal weighting matrix. A Taylor

expansion of Ω̂T (β̃) around β0 yields

vec
(

Ω̂T (β̃)
)

= vec
(

Ω̂T

)
+∇Ω̂T (β̄)(β̃ − β0)

= vec(Ω0) + vec
(

Ω̂T − Ω0

)
+∇Ω0(β̃ − β0) +

(
∇Ω̂T −∇Ω0

)
(β̃ − β0)

+
(
∇Ω̂T (β̄)−∇Ω̂T

)
(β̃ − β0) (A.1)

where β̄ lies on the line segment joining β̃ and β0. By Assumptions 2.1–2.2 and Andrews

(1991, Proposition 1(a),(b)), Ω̂T − Ω0 = ω1,TS
1/2
T T−1/2 + ω2,TS

−q
T with ωi,T = Op(1),

i = 1, 2, and ∇Ω̂T −∇Ω0 = Op(ηT ). Next, we show that ∇Ω̂T (β̄)−∇Ω̂T = Op(‖β̃−β0‖).
To this end, let ḡt := gt(β̄). Notice that, by Assumption 2.1(g), β̃ ∈ N w.p.a. 1 and,

thus, β̄ ∈ N w.p.a. 1. From the Lipschitz condition, Assumption 2.3(d), we get

∥∥∥∇Ω̂T (β̄)−∇Ω̂T

∥∥∥ ≤ 1

T

T−1∑
s=1−T

min{T,T−s}∑
t=max{1,1−s}

∥∥∥∥k( s

ST

)
[∇ḡt+sḡ′t −∇gt+sg′t]

∥∥∥∥
≤ C

T

T−1∑
s=1−T

min{T,T−s}∑
t=max{1,1−s}

d(xt+s, xt) ‖β̃ − β0‖

= C

(
∞∑

s=−∞

Ed(xt+s, xt) + op(1)

)
‖β̃ − β0‖ (A.2)

which holds w.p.a. 1 and for some constant C. (A.1) together with (A.2) and the first-

order asymptotics in Assumption 2.1(g) then imply

Ω̂T (β̃) = Ω0 + ω1,TS
1/2
T T−1/2 + ω2,TS

−q
T +RT (A.3)

with RT = Op(ηTT
−1/2), ω1,T :=

√
T/ST (Ω̂T − ΩT ) = Op(1) and ω2,T := SqT (ΩT − Ω0) =

O(1).

Step II: Expansion of the second-step GMM estimator. Write the second-stage esti-

mator θ̂ := (β̂′, λ̂′)′ of θ0 := (β′0, 0)′ ∈ B × Λ, Λ := [0,∞)l, as the solution to(
GT (β̂)′λ̂

ĝ(β̂) + Ω̂T (β̃)λ̂

)
= 0. (A.4)

Further, define m̂(θ) := 1
T

∑T
t=1mt(θ) with

mt(θ) := −

(
G(xt, β)′λ

gt(β) + Ω0λ

)
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for some θ := (β′, λ′)′ ∈ B × Λ. Then use the expansion in (A.3) to rewrite (A.4) as

0 = m̂(θ̂)−

(
0

(ω1,TS
1/2
T T−1/2 + ω2,TS

−q
T +RT )′λ̂

)
. (A.5)

Next, consider λ̂ = −Ω̂T (β̃)−1ĝ(β̂). By Assumptions 2.1–2.2 and Andrews (1991, Propo-

sition 1(a),(b), Theorem 1(b)), Ω̂T (β̃) − Ω0 = Op(ηT ). Also, by an expansion of ĝ(β̂)

around β0, Lemma A.1, Assumption 2.1 and the CLT, ĝ(β̂) = (Il −G0H0)ĝ + op(T
−1/2),

and thus

λ̂ = − [Ω0 +Op(ηT )]−1
(
(Il −G0H0)FTT

−1/2 + op(T
−1/2)

)
= −P0FTT

−1/2 +Op(ηTT
−1/2) + op(T

−1/2). (A.6)

Consider the following expansion of m̂(θ̂) around θ0:

m̂(θ̂) = m̂(θ0) +∇m̂(θ0)(θ̂ − θ0) +
1

2
∇2m̂(θ̄)

[
(θ̂ − θ0)⊗ (θ̂ − θ0)

]
.

where θ̄ lies on the line segment joining θ̂ and θ0. By Assumptions 2.1(f) and 2.3(c)–(d),

∇2m̂(θ̄) is Op(1). Lemma A.1, Assumption 2.1 and the CLT for mixing sequences then

imply

m̂(θ̂) = m̂(θ0) +M1(θ̂ − θ0) +Op(T
−1). (A.7)

Substituting (A.6) and (A.7) into (A.5) and solving for θ̂ − θ0 yields

θ̂ − θ0 = −M−1
1 m̂(θ0)−M−1

1

(
0

(ω′1,TS
1/2
T T−1/2 + ω′2,TS

−q
T )P0FTT

−1/2

)
+Op(T

−1) +Op(η
2
TT
−1/2) + op(ηTT

−1/2)

where

M1 = −

(
0 G′0
G0 Ω0

)
, M−1

1 = −

(
−Σ0 H0

H ′0 P0

)
.

Therefore,
√
T (β̂ − β0) = −H0FT +H0ω

′
1,TP0FTS

1/2
T T−1/2 +H0ω

′
2,TP0FTS

−q
T + op(ηT ).

Since FT , ω1,T and ω2,T are Op(1), we also have that κi,T = Op(1) for i = 1, 2, 3. Q.E.D.

Proof of Theorem 2.1. We need to derive the order of E[κ′i,TWκj,T ], i, j ∈ {1, 2, 3}. Con-

sider the case i = j = 1:

E[κ′1,TWκ1,T ] = E[F ′TH
′
0WH0FT ] =

1

T

T∑
s,t=1

E[g′tH
′
0WH0gs]

=
T−1∑

s=−(T−1)

(
1− s

T

)
E[g′tH

′
0WH0gt−s]→

∞∑
s=−∞

E[g′tH
′
0WH0gt−s].
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The limiting sum can be shown to be finite using Assumption 2.1, the Hölder Inequality

and the mixing inequality of Hall and Heyde (1980, Corollary A.2). Similarly, we can

show that E[κ′2,TWκ2,T ] and E[κ′3,TWκ3,T ] are O(1), E[κ′1,TWκ2,T ] = O(S
1/2
T T−1/2), but

E[κ′1,TWκ3,T ] = o(ηT ) and E[κ′2,TWκ3,T ] = o(1). Q.E.D.

Proof of Proposition 2.2. From the proof of Theorem 2.1,

E[κ′1,TWκ1,T ]→
∞∑

s=−∞

E[g′tH
′
0WH0gt−s] = vec(Ω0)

′vec (H ′0WH0) .

By Andrews (1991, Proposition 1(b)) we have SqT (ΩT − Ω0)→ −gqΩ(q)
0 and thus

E[κ′3,TWκ3,T ] = E[F ′TP
′
0S

q
T (ΩT − Ω0)H

′
0WH0S

q
T (ΩT − Ω0)P0FT ]

→ g2q

∞∑
s=−∞

E
[
g′tP

′
0Ω

(q)
0 H ′0WH0Ω

(q)
0 P0gt−s

]
= g2qvec(Ω0)

′vec
(
P ′0Ω

(q)
0 H ′0WH0Ω

(q)
0 P0

)
= g2q tr

(
Ω

(q)
0 H ′0WH0Ω

(q)
0 P0

)
because, for conformable matrices A, B, tr(AB) = tr(BA), and P0G0H0 = 0. Next,

consider the terms

E
[
κ′1,TWκ2,T

]
= E

[
F ′TH

′
0WH0

√
T/ST (Ω̂T − ΩT )P0FT

]
= E

[
(FT ⊗ FT )′vec

(
H ′0WH0

√
T/ST (Ω̂T − ΩT )P0

)]
= E

[
(FT ⊗ FT )′ (P ′0 ⊗H ′0WH0) vec

(√
T/ST (Ω̂T − ΩT )

)]
= E

[(
FT ⊗ FT ⊗ vec

(√
T/ST (Ω̂T − ΩT )

))′]
vec (P ′0 ⊗H ′0WH0)

and, similarly,

E[κ′2,TWκ2,T ] = E
[
F ′TP

′
0

√
T/ST (Ω̂T − ΩT )H ′0WH0

√
T/ST (Ω̂T − ΩT )P0FT

]
=

T

ST
vec(P ′0 ⊗ P ′0)′E

[
FT ⊗ FT ⊗ (Ω̂T − ΩT )⊗ (Ω̂T − ΩT )

]
vec(H ′0WH0).

In order to find expressions for these two cross-products involving
√
T/ST (Ω̂T −ΩT ),

we make use of the BN-decomposition of the linear process {gt}, viz.

gt = Ψet + ẽt−1 − ẽt

where Ψ :=
∑

j≥0 Ψj, ẽt :=
∑

j≥0 Ψ̃jet−j and the tail sums Ψ̃j :=
∑

k≥j+1 Ψk. With this

representation of {gt} we can calculate limiting variances and covariances of gt based only
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on Ψet and disregard the transient part of the process, ẽt−1 − ẽt. Since et ∼ N(0,Σe),

third and fourth moments are zero. Therefore,

S
1/2
T T 3/2E

[
FT ⊗ FT ⊗ vec

(√
T/ST (Ω̂T − ΩT )

)]
= E

 T∑
s,t=1

gt ⊗ gs ⊗

 T−1∑
v=1−T

min{T,T−v}∑
u=max{1,1−v}

k

(
v

ST

)
vec (gu+vg

′
u − E[gu+vg

′
u])


= E

 T∑
t=1

Ψet ⊗Ψet ⊗

 T∑
u=1
u6=t

vec (ΨeuΨe
′
u − E[ΨeuΨe

′
u])


+ o(1)

+ E

 T∑
s,t=1

Ψet ⊗Ψes ⊗

 T−1∑
v=1−T
v 6=0

min{T,T−v}∑
u=max{1,1−v}

k

(
v

ST

)
vec (Ψeu+vΨe

′
u)




=
T∑

s,t=1

T−1∑
v=1−T
v 6=0

min{T,T−v}∑
u=max{1,1−v}

k

(
v

ST

)
E [Ψet ⊗Ψes ⊗Ψeu ⊗Ψeu+v] + o(1)

=
T∑

s,t=1

k

(
t− s
ST

)
E [Ψet ⊗Ψes ⊗Ψes ⊗Ψet]

+
T∑

s,t=1

k

(
t− s
ST

)
E [Ψet ⊗Ψes ⊗Ψet ⊗Ψes] + o(1)

One can show that E[Ψet⊗Ψes⊗Ψes⊗Ψet] = E[Ψet⊗Ψes⊗Ψet⊗Ψes] = vec(Ω0⊗Ω0)

when s 6= t and 0 otherwise. Noticing 1
STT

∑T
s,t=1 k((t− s)/ST )→ µ1, we then have√

T

ST
E
[
κ′1,TWκ2,T

]
→ 2µ1vec(Ω0 ⊗ Ω0)

′vec (P0 ⊗H ′0WH0)

= 2µ1tr((Ω0 ⊗ Ω0)(P0 ⊗H ′0WH0))

= 2µ1tr(Ω0P0 ⊗ Ω0H
′
0WH0)

= 2µ1tr(Il −G0H0)tr(Ω0Ω
−1
0 G0Σ0WΣ0G

′
0Ω
−1
0 )

= 2µ1(l − tr(H0G0))tr(Σ0WΣ0G
′
0Ω
−1
0 G0)

= 2µ1(l − p)tr(Σ0W)

which uses the fact that H0G0 = Ip. By a similar derivation, E[κ′2,TWκ2,T ] → µ2(l −
p)tr(Σ0W) so that ν2 = (2µ1 + µ2)(l − p)tr(Σ0W). Q.E.D.
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AR(1)

γ = 0.1 γ = 1

ρ optimal Andrews naive sim optimal Andrews naive sim

0.1 bw 1.978 2.530 2.639 2.278 2.177 2.532 2.639 0.000

bias 0.383 0.384 0.385 0.385 0.012 0.012 0.012 0.013

SD 0.534 0.535 0.534 0.534 0.092 0.093 0.093 0.092

MSE 55.217 55.406 55.473 55.417 1.113 1.118 1.116 1.105

0.5 bw 2.114 2.755 2.639 0.000 2.322 2.723 2.639 1.733

bias 0.393 0.395 0.394 0.392 0.012 0.012 0.012 0.013

SD 0.578 0.584 0.583 0.567 0.092 0.093 0.093 0.092

MSE 62.517 63.544 63.398 60.752 1.112 1.118 1.115 1.111

0.9 bw 2.297 3.048 2.639 2.278 2.567 3.090 2.639 5.000

bias 0.350 0.347 0.348 0.349 0.011 0.011 0.011 0.011

SD 0.793 0.794 0.795 0.794 0.085 0.085 0.085 0.084

MSE 96.049 95.977 96.304 96.136 0.942 0.933 0.944 0.924

MA(1)

γ = 0.1 γ = 1

ρ optimal Andrews naive sim optimal Andrews naive sim

0.1 bw 1.979 2.530 2.639 2.278 2.177 2.531 2.639 0.000

bias 0.383 0.384 0.385 0.385 0.012 0.012 0.012 0.013

SD 0.534 0.535 0.535 0.534 0.092 0.093 0.093 0.092

MSE 55.248 55.447 55.522 55.463 1.111 1.116 1.115 1.104

0.5 bw 2.063 2.666 2.639 2.278 2.267 2.654 2.639 1.733

bias 0.374 0.375 0.375 0.375 0.012 0.012 0.012 0.012

SD 0.561 0.561 0.562 0.562 0.093 0.093 0.093 0.092

MSE 58.152 58.235 58.347 58.345 1.116 1.119 1.118 1.112

0.9 bw 2.108 2.754 2.639 2.278 2.330 2.741 2.639 2.278

bias 0.367 0.367 0.367 0.367 0.011 0.011 0.011 0.011

SD 0.540 0.539 0.538 0.538 0.092 0.092 0.092 0.092

MSE 54.558 54.395 54.224 54.193 1.088 1.091 1.089 1.088

Table 1: Bandwidths (“bw”), bias, standard deviation (“SD”) and MSE of β̂ when computed based on

the MSE(Ω̂)-optimal (“optimal”), the MSE(Ω̂)-optimal (“Andrews”), ST = T 1/(1+2q) (“naive”) or the

simulated MSE-minimizing (“sim”) bandwidth.
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AR(1)

γ = 0.1 γ = 1

ρ l MSE ratio HMSE ratio µ2/l MSE ratio HMSE ratio µ2/l

0.1 2 0.996 0.590 0.724 0.999 0.898 64.697

3 1.004 0.872 0.482 1.000 0.938 43.507

4 0.997 0.891 0.373 0.996 0.944 32.729

5 1.000 0.900 0.282 0.996 0.938 25.933

10 0.997 0.901 0.149 0.990 0.930 13.092

15 0.996 0.905 0.103 0.993 0.925 8.771

20 0.999 0.905 0.092 0.986 0.912 6.515

0.5 2 1.008 0.454 0.732 0.999 0.901 65.719

3 0.997 0.656 0.470 0.997 0.936 43.961

4 0.984 0.919 0.375 0.995 0.941 33.321

5 1.001 0.890 0.271 0.995 0.928 26.226

10 0.992 0.889 0.149 0.990 0.908 13.206

15 0.995 0.883 0.104 1.001 0.897 8.888

20 1.002 0.883 0.091 1.012 0.887 6.602

0.9 2 0.988 0.748 0.777 1.004 0.895 75.421

3 1.035 0.684 0.569 1.005 0.929 51.464

4 1.001 0.993 0.394 1.009 0.926 38.605

5 1.007 0.873 0.298 1.006 0.911 30.451

10 1.008 0.863 0.157 1.016 0.876 15.011

15 1.014 0.853 0.122 1.068 0.858 10.263

20 1.015 0.846 0.097 1.102 0.853 7.636

Table 2: Ratios of MSE (“MSE ratio”) and higher-order MSE (“HMSE ratio”) based on the MSE(β̂)-

optimal bandwidth divided by those based on the MSE(Ω̂)-optimal bandwidth. µ2/l is the standardized

concentration parameter measuring the strength of the instruments.
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MA(1)

γ = 0.1 γ = 1

ρ l MSE ratio HMSE ratio µ2/l MSE ratio HMSE ratio µ2/l

0.1 2 0.989 0.410 0.724 0.999 0.898 64.699

3 1.005 0.867 0.482 1.000 0.938 43.508

4 0.996 0.895 0.373 0.996 0.944 32.726

5 1.000 0.899 0.282 0.996 0.939 25.935

10 0.997 0.902 0.150 0.990 0.931 13.090

15 0.996 0.905 0.103 0.993 0.925 8.770

20 0.999 0.905 0.092 0.987 0.912 6.513

0.5 2 0.987 0.965 0.767 0.998 0.906 65.368

3 1.009 0.922 0.468 0.998 0.938 43.610

4 0.999 0.908 0.375 0.997 0.941 33.020

5 0.999 0.904 0.270 0.998 0.932 26.071

10 0.992 0.892 0.151 0.985 0.915 13.107

15 0.998 0.895 0.100 0.996 0.909 8.813

20 1.001 0.892 0.091 1.003 0.896 6.538

0.9 2 0.982 0.984 0.788 0.998 0.909 65.827

3 1.001 0.894 0.451 0.996 0.936 43.661

4 1.003 0.879 0.368 0.997 0.939 33.214

5 1.003 0.889 0.260 0.997 0.928 26.170

10 0.992 0.886 0.150 0.989 0.908 13.126

15 1.001 0.886 0.100 0.999 0.899 8.848

20 1.000 0.885 0.089 1.010 0.888 6.558

Table 3: Ratios of MSE (“MSE ratio”) and higher-order MSE (“HMSE ratio”) based on the MSE(β̂)-

optimal bandwidth divided by those based on the MSE(Ω̂)-optimal bandwidth. µ2/l is the standardized

concentration parameter measuring the strength of the instruments.
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model l/p MSE ratio HMSE ratio

AR(1) 5 0.995 0.928

2 0.999 0.946

1.50 0.986 0.762

1.33 0.997 0.993

1.25 1.002 0.984

1.14 0.978 0.738

1.11 1.005 0.930

MA(1) 5 0.998 0.932

2 1.000 0.974

1.50 0.991 0.798

1.33 0.998 0.855

1.25 1.016 0.860

1.14 0.976 0.643

1.11 0.998 0.592

Table 4: Robustness check: ratios of MSE (“MSE ratio”) and higher-order MSE (“HMSE ratio”) based

on the MSE(β̂)-optimal bandwidth divided by those based on the MSE(Ω̂)-optimal bandwidth.
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