

Real Time Sub-Pixel Space-Time Stereo on the
GPU

Jean–Daniel Nahmias

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London
September 14, 2009

2

3

Table of Contents

Table of Contents ... 3	

List of Figures .. 7	

List of Tables ... 13	

Abstract .. 17	

Acknowledgments .. 19	

Chapter 1 .. 21	

Introduction .. 21	

1.1 Problem Statement ... 23	

1.2 Scope .. 24	

1.3 Outline of Thesis .. 25	

1.4 Summary of Contributions ... 26	

1.5 Publications .. 26	

Chapter 2 .. 27	

Literature Review ... 27	

2.1 3D Computer Vision .. 27	

2.2 Stereo Formulation ... 31	

2.3 Structured Light Surface Capturing ... 53	

2.4 Tele-Immersion .. 57	

2.5 Conclusion of Literature Review ... 61	

Chapter 3 .. 63	

Dynamic Programming and Structured Light .. 63	

3.1 Experimental Setup and Sample Acquisition .. 66	

3.2 Simulation of Capturing System .. 67	

3.3 Implementation .. 68	

4

3.4 Experiments ... 75	

3.5 Qualitative Results ... 77	

3.6 Conclusion ... 83	

Chapter 4 .. 85	

Space-Time Stereo ... 85	

4.1 Space-Time Stereo as a Non-Linear Optimization Problem 87	

4.2 Space-Time Stereo Implementation ... 92	

4.3 Space-Time Stereo Non-Linear Optimization Experiments 92	

4.4 Space-Time Stereo Non-Linear Optimization Results .. 93	

4.5 Conclusions .. 112	

Chapter 5 .. 113	

Space Time Stereo on the GPU ... 113	

5.1 GPGPU OpenGL Framework .. 115	

5.2 Space Time Stereo GPU Formulation .. 118	

5.3 Shader Implementation Specifics .. 122	

5.4 Experiments ... 131	

5.5 Results .. 133	

5.6 Conclusion ... 139	

Chapter 6 .. 141	

Scalability and Optimization .. 141	

6.1 Dynamic Programming Hybrid CPU-GPU ... 141	

6.2 Further Optimizations .. 148	

6.3 Scalability Framework ... 159	

6.4 Overview of System Parameters .. 162	

6.5 Experiments ... 164	

6.6 Results .. 165	

6.7 Conclusion ... 179	

5

Chapter 7 .. 181	

Conclusion ... 181	

7.1 Future work .. 183	

Appendix A .. 185	

Bibliography .. 205	

6

7

List of Figures

Figure 2.1 Taken from [90] illustrating Dynamic Shape Acquisition Taxonomy 28	

Figure 2.2 Epipolar Constraint .. 32	

Figure 2.3 Allowed Dynamic Programming Moves ... 38	

Figure 2.4 Taken from Criminisi et al. showing the 13 possible moves of the algorithm

[19] with each plane representing the Cl, Cr and Cm cumulative cost matrices 41	

Figure 2.5 Representing a the 9 steps involved for the forward additive algorithm taken

from [5] ... 45	

Figure 2.6 Taken from [91] depicting the space time window for static fronto-parallel,

static oblique, and time varying oblique surfaces ... 47	

Figure 2.7 Screen shots taken from [91] showing the results of the above algorithm .. 49	

Figure 2.8 Taken from [91] illustrating the difference between the local (left images)

space-time algorithm and global (right images) ... 50	

Figure 2.9 Taken from Wang et al.[85] illustrating their stereo results 52	

Figure 2.10 Taken from [26] illustrating the distortion created from surfaces on

structured light patterns ... 53	

Figure 2.11 Example of Gray code pattern taken from [26] ... 54	

Figure 2.12 Example taken from Furukawa and Kawasaki [23] depicting reconstruction

from coded structure light ... 55	

Figure 2.13 Taken from [26] shows relationship between phase difference and surface

depth .. 57	

Figure 2.14 Taken from Zhang and Huang [93] ... 57	

Figure 2.15 Results achieved from system described in [56] ... 59	

Figure 2.16 Block diagram taken from [45] outlining step 1 ... 60	

Figure 2.17 From [45] showing angles between Cameras and the desired synthesised

view ... 60	

Figure 3.1 Illustration of capturing system ... 65	

Figure 3.2 Synthetic scene rendered from left camera using a Gray code and noise

pattern. .. 68	

Figure 3.3 Real images acquired from left camera with and without Gray code pattern 68	

8

Figure 3.4 Real images acquired from right camera with and without Gray code pattern

 ... 68	

Figure 3.5 Calibration image samples .. 69	

Figure 3.6 Image rectification ... 71	

Figure 3.7 Top row captured images, bottom row rectified images 72	

Figure 3.8 Illustrates the initial Gray code (a) that was subsequently shuffled in the

space to domain to produce the stripe pattern (b) used in the structure light

reconstructions .. 72	

Figure 3.9 Left column 8 noise patterns, right column 8 shuffled stripe patterns 74	

Figure 3.10 Ratio of pixels with error below threshold indicated in columns 78	

Figure 3.11 Left true disparity of synthetic head, Right result of Criminisi et al.[19]

algorithm using cross correlation cost function over 3x5x8 space time window with

noise pattern (synthetic data) .. 80	

Figure 3.12 Delaunay Triangulation of true and computed disparities from Figure 3.12

(synthetic data) .. 80	

Figure 3.13 Comparison of Birchfield et al.and Criminisi et al.[19] algorithms (synthetic

data) ... 80	

Figure 3.16 Non Smooth Delaunay triangulation (real data) .. 81	

Figure 3.17 Sample of eight real captured images of a head using the striped pattern

(real data) .. 82	

Figure 3.18 Delaunay triangulation based on Criminisi et al. [19] algorithm with SSD

cost function on images from Figure 3.19 using a space time window using striped

pattern (real data) .. 82	

Figure 4.1 Illustration of the effects of surface gradients on the support region 86	

Figure 4.2 Representation of: (a) symmetrical warp, (b) quasi-static warp equation (4.7)

& (c) dynamic warp equation (4.6) taken from Zhang et al.[91] 89	

Figure 4.3 Graph illustrating convergence with x-axis representing number of iterations

while the y-axis represents residuals ... 95	

Figure 4.4 3D Reconstruction of the mouth area using disparity map produced with

Levenberg-Marquardt optimization after 5 iterations using 5x5x8 support region. 96	

Figure 4.5 Illustrating the difference between the Criminisi et al.[19] space-time

algorithm (left) versus the Gauss-Newton optimized disparity map (right) 97	

9

Figure 4.6 Gauss-Newton non-linear optimization using shuffled Gray code light pattern

and space-time warp function on various window sizes after 5 iterations 98	

Figure 4.7 Gauss-Newton on various window sizes after 5 iterations 99	

Figure 4.8 Gauss-Newton reconstruction using 11x5x8 window after 1,3,5 and 10

iterations .. 100	

Figure 4.9 Comparison between reconstruction using non-slanted (left) and slanted

(right) windows after 3 iterations using a window size of 7x5x8 101	

Figure 4.10 Frames taken from sample data set illustrating motion of the mouth as the

subject is seen to be talking .. 102	

Figure 4.11 A comparison between reconstruction based on every frame (left) and every

third frame (right) without warp in the time domain. ... 103	

Figure 4.12 Reconstruction with the wholes representing pixels forming close to

singular hessians ... 105	

Figure 4.13 Reconstruction left (with all pixels regularized), centre (with only close to

singular regularized), right no regularization all using 11x5x8 window 106	

Figure 4.14 Reconstruction using 160x120 (left), 320x240 (centre), 640x480 (right)

disparity maps for initialization of the non-linear optimization 107	

Figure 4.15 Close up of Figure 4.11 ... 108	

Figure 4.16 Reconstruction using 7x7x8 (left), 11x11x8 (centre), 21x21x8 (right)

Windows on scene illuminated with low pass filtered noise patterns 109	

Figure 5.1 Illustrating the performance evolution of two brands of GPUs versus the Intel

Pentium 4 CPU ... 113	

Figure 5.2 GeForce 8800GTX architectural diagram ... 114	

Figure 5.3 Reduction operation performed on a GPU .. 117	

Figure 5.4 UML Class Diagram of GP GPU OpenGL Framework 117	

Figure 5.5 Diagram illustrating fragment shaders and data streams 122	

Figure 5.6 Graph showing scalability of each fragment shader with respect to windows

sizes ... 134	

Figure 5.7 Timings for solver using varying number of iterations the x-axis represents

the number of pixels contained in the support window and is scaled appropriately 136	

Figure 5.8 Timings for GPU solver after 1-6 iterations for windows (3x3x8 Left, 6x3x8

Right) .. 136	

10

Figure 5.9 Timings for GPU solver after 1-6 iterations for windows (9x3x8 Left,

12x3x8 Right) ... 137	

Figure 5.10 Timings for GPU solver after 1-6 iterations for windows (9x6x8 Left,

12x6x8 Right) ... 137	

Figure 5.11 Timings for GPU solver after 1-6 iterations for windows (9x9x8 Left,

12x9x8 Right) ... 137	

Figure 5.12 Timings for GPU solver after 1-6 iterations for windows (12x12x8) 138	

Figure 5.13 Reconstructions using (left 12x12x8 3iterations. right 12x9x8 4 iterations)

 ... 138	

Figure 5.14 Reconstruction using (9x9x8 5 iterations) ... 138	

Figure 6.1 Overview of the hybrid CPU/GPU implementation 143	

Figure 6.2 GPU DSI Matrix Computations .. 144	

Figure 6.3 Computational Time of GPU/CPU for various disparity ranges for 640x480

5x7x8 window running on single GPU and single Core ... 147	

Figure 6.4 Shared Memory Access without Bank-Conflicts .. 152	

Figure 6.5 Shared Memory Access with Bank-Conflicts ... 153	

Figure 6.6 Naive SSD Kernel on 3x3 Window ... 154	

Figure 6.7 Optimized SSD kernel computation .. 155	

Figure 6.8 Scaling between naive SSD and optimised SSD kernel the x-axis represents

the number of pixel in the space domain while the y-axis represents the computational

time ... 156	

Figure 6.9 CPU computational time scalability with regard to maximum disparity 156	

Figure 6.10 High-Level Scalability Framework ... 160	

Figure 6.11 Scalable framework with System Parameters ... 160	

Figure 6.12 Window scalability at 640x480 ... 170	

Figure 6.13 Window scalability at 640x240 Lower Half ... 170	

Figure 6.14 Window scalability at 640x120 band across image 171	

Figure 6.15 Window scalability at 320x240 ... 171	

Figure 6.16 Window scalability at 160x120 ... 171	

Figure 6.17 DP initialization time at different resolutions for various maximum disparity

values .. 173	

Figure 6.18 Non-linear optimization at different resolutions using 3x3x8 window 173	

Figure 6.19 Non-linear optimization at different resolutions using 5x3x8 window 174	

11

Figure 6.20 Non-linear optimization at different resolutions using 5x5x8 window 174	

Figure 6.21 Non-linear optimization at different resolutions using 7x5x8 window 174	

Figure 6.22 Non-linear optimization at different resolutions using 11x7x8 window ... 175	

Figure 6.23 Non-linear optimization at different resolutions using 2 iterations 175	

Figure 6.24 Time for DP at varying resolutions for different maximum disparity values

 ... 176	

Figure 6.25 3D plot of computational against maximum disparity and image resolution

 ... 176	

Figure 6.26 Time for non-linear optimization using increasing number of iterations for

differing window sizes .. 177	

12

13

List of Tables

Table 2.1 Computational Cost of the Forward additive Lucas and Kanade [51] 46	

Table 3.1 RMS of errors between all algorithm’s disparity values and true disparities . 78	

Table 4.1 Profile Matlab Gauss-Newton High level where total time represents the time

spent in the function and all its subroutines while self-time represent the total time

minus the subroutine calls. .. 110	

Table 4.2 Profile of SeitzSSDJ function ... 110	

Table 4.3 CG Newton-Raphson .. 111	

Table 4.4 Precondition Conjugate Gradient .. 111	

Table 5.1 Time taken in seconds for each shader described in Section 5.4 using different

size windows ... 134	

Table 5.2 Timings in seconds for complete GPU solver with varying window sizes as

well as varying number of iterations. .. 135	

Table 5.3 Same Timings as Table 5.2 expressed in frames/second 136	

Table 6.1 Benchmarks for hybrid CPU/GPU Dynamic Programming Implementation

 ... 146	

Table 6.2 Timings for memory transfer across the PCIx16 bus in seconds for different

sized cost matrices .. 149	

Table 6.3 Computational Time of kernels used for the CUDA cost matrix calculation

with the added latency of extra kernel calls .. 151	

Table 6.4 Computational Time of kernels used for the CUDA cost matrix calculation

without the added latency of extra kernel calls ... 151	

Table 6.5 Timings naive SSD versus optimized ... 155	

Table 6.6 Timing of CPU one core multi-layer DP optimization 157	

Table 6.7 Timings of multi-scale DP optimizations versus single scale and

computational savings ... 158	

Table 6.8 System parameters quality versus speed ... 161	

Table 6.9 Timings for total reconstruction 4 cores with DP up to half-scale 161	

Table 6.10 Timings for total reconstruction 4 cores with DP up to quarter-scale 162	

Table 6.11 1 DP Initialization on sub-sampled images using single maximum disparity

value .. 166	

14

Table 6.12 DP Initialization on images using per-pixel maximum disparity values 167	

Table 6.13 Non-Linear Optimization GPU Full Resolution ... 168	

Table 6.14 Non-Linear Optimization GPU Full Resolution lower half 169	

Table 6.15 Timing for non-linear optimization complete image versus segmented image

 ... 177	

Table 6.16 Timing for DP initialization complete image versus segmented image 178	

Table A.1 DP Initialization on lower half of sub-sampled images using single maximum

disparity value ... 185	

Table A.2 DP Initialization on upper half of sub-sampled images using single maximum

disparity value ... 186	

Table A.3 DP Initialization on a band of pixels across centre of sub-sampled images

using single maximum disparity value ... 187	

Table A.4 DP Initialization on lower half of images using per-pixel maximum disparity

values .. 188	

Table A.5 DP Initialization on upper half of images using per-pixel maximum disparity

values .. 189	

Table A.6 DP Initialization on a band of pixels across centre of images using per-pixel

maximum disparity values .. 190	

Table A.7 DP Initialization on sub-sampled images using per-pixel maximum disparity

values .. 191	

Table A.8 DP Initialization on lower half of sub-sampled images using per-pixel

maximum disparity values .. 192	

Table A.9 DP Initialization on upper half of sub-sampled images using per-pixel

maximum disparity values .. 193	

Table A.10 DP Initialization on a band of pixels across centre of sub-sampled images

using per-pixel maximum disparity values ... 194	

Table A.11 Non-Linear Optimization GPU Full Resolution upper half 195	

Table A.12 Non-Linear Optimization GPU Full Resolution band of pixels across centre

 ... 196	

Table A.13 Non-Linear Optimization GPU Half Resolution 197	

Table A.14 Non-Linear Optimization GPU Half Resolution Lower Half 198	

Table A.15 Non-Linear Optimization GPU Half Resolution Upper Half 199	

15

Table A.16 Non-Linear Optimization GPU Half Resolution Band of Pixels across centre

 ... 200	

Table A.17 Non-Linear Optimization GPU Quarter Resolution 201	

Table A.18 Non-Linear Optimization GPU Quarter Resolution Lower Half 202	

Table A.19 Non-Linear Optimization GPU Quarter Resolution Upper Half 203	

Table A.20 Non-Linear Optimization GPU Quarter Resolution Band of Pixels across

centre ... 204	

16

17

Abstract
Recent advances in virtual reality, 3d computer generated graphics and computer vision

are making the goal of producing a compelling interactive 3d face to face

communication system more tractable. The problem with producing such a system is

reconstructing the 3d geometry of the users in real-time.

There are many ways of tackling this problem however many of them require

prior knowledge (i.e model fitting methods). These add unnecessary constraints and

limit the usability of the system to reconstructing known entities. Other high quality

methods using laser triangulation require too many samples and therefore cannot handle

dynamic and deformable shapes such as the human face. A more suited approach is to

use stereo based algorithm that function using two of more views and augmenting their

capabilities using structured light.

The work presented in this thesis will examine and evaluate various stereo vision

algorithms and hybrids with the goal of producing accurate 3d representations of human

faces in real time. Various dynamic programming algorithms will be presented and

hybrid variations. These will be extended into the space-time domain and the impact of

using different structured light patterns with various algorithms and cost functions will

be examined.

Most real-time correspondence algorithms are limited to producing pixel value

disparities; these can be augmented into producing sub-pixel disparities by smoothing

functions. Applying such smoothing functions tends to remove detail. Another approach

is to use non-linear optimization on a spatial-temporal warp function. These algorithms

tend to be very computationally expensive and therefore not feasible for real time

applications. With recent development of GPUs (Graphics Processing Units) driven by

the consumer demand for complex real time 3d graphics, these cards are capable of

processing large amounts of data in parallel. This makes them very amenable to solving

large linear algebra problems. .

The result being a tuneable stereo reconstruction framework that has been

reformulated into streaming problems in order to be processed on the GPU to produce

real time sub-pixel depth maps of human faces that can be triangulated to produce

accurate 3d models.

18

19

Acknowledgments
I would like to thank my supervisor Prof Anthony Steed for his guidance and extreme

patience as well as giving me the freedom to explore and research the work presented in

this thesis.

I would also like to thank the members EPSRC funded Interdisciplinary

Research Collaboration (IRC) project EQUATOR for their support and funding.

A special mention goes out to Simon Evans who helped and advised me in the

development of the circuit board responsible for synchronizing the stereo cameras to a

projector.

 Dr Bernard Buxton for his feedback and advice along the way

 All of this would not have been possible without the support of my parents, who

encouraged and motivated me in times of need. I would like to dedicate this work to my

father.

20

21

 Chapter 1

Introduction

The main goal of virtual reality research is to immerse human beings in a perception of

a digitally created reality. This is achieved by presenting the user with alternative

sensory information using a variety of technologies. As virtual reality has evolved and

its technologies become more mainstream (e.g. through special FX, video games,

simulation and training) one of the main pursuits is to make these alternative

perceptions or virtual environments more believable.

As adult human beings we seem to have expectations concerning the way in

which the world around us functions. In virtual environments users project these

expectations into their new digital world. When these expectations are broken the users

become all too aware of the artificial environment they are experiencing. With this

awareness the sensation of actually being in the environment, disappears. In the search

to make virtual environments more believable, and to make the user feel more immersed

the tendency has been to focus on realism. As these technologies mature and virtual

reality becomes more realistic, a new application known as tele-immersion [28] has

emerged. Tele-immersion is a form of tele-communication between users in virtual

reality or mixed reality environments. Similar to video conferencing, the main objective

of tele-presence is for face to face communication that can take place in a shared virtual

world.

The greatest difficulty facing the development of a tele-immersive system is

accurately capturing the user’s behaviour in 3D. More importantly with regard to face to

face communication, one needs to capture the user’s facial animations as well as

appearances. Capturing 3D facial animation data for the application of tele-immersion

has the added constraint of the system having to run in real-time for it to be useable.

Recreating the physical reality in virtual environments has the advantage of

adding realism and facilitating communication. This can be achieved in various ways

22

using a variety of instruments. Since what one is interested in is the visual properties of

the world, the instrument of choice seems to be video cameras which are relatively

cheap and can capture a large volume of data quickly. However video cameras only

capture 2D data and virtual environments work with 3D data. One could take the 2D

video and project it onto a plane, but one would lose most of the advantage of realism

due to a loss of parallax. Fortunately it is possible to perform a 3D reconstruction for a

sequence of images in certain heavily constrained environments, this falls into the

research field of 3D computer vision or photogrammetry [42]. This thesis will focus on

a constrained situation, where the intention is to sample close range dynamically

deformable objects in real-time. Although the immediate goal is to focus on human

beings, and more specifically their faces, care has been taken not to make many

assumptions about the scene and its reconstructed objects. Not making any assumptions

makes the system more flexible, and therefore enables it to potentially reconstruct the

entire human body and or various other objects presented to it.

The interests of the research presented in this text lie in reconstructing and more

specifically in 3D reconstruction of a scene with the target application being face to face

communication. This can be achieved, using a variety of techniques that are covered in

greater depth in the literature review. Some of these techniques have limitations such as

only functioning offline. The common approach is to reconstruct the geometry of the

head in a neutral pose and then apply motion capture techniques in order to track the

facial animations. In these circumstances one refers to visual realism as a measure of

how well the geometry matches the head and one refers to behavioural realism as a

measure of how well the animation is portrayed. The work presented here will not focus

on these model fitting approaches as they lack the flexibility to reconstruct more than

just the human head.

Building on research in stereo vision, this report proposes to borrow research

into 3D reconstruction from the field of computer vision and improve the visual

appearance and performance of the results by leveraging the capabilities of modern

graphics processing units (GPUs). Using GPUs enables one to run certain types of

algorithms that would normally only be reserved to offline reconstruction in the context

of real-time applications. These offline algorithms given less computational constraints

tend to be optimized in the pursuit of visual quality as opposed to computational

performance. The work presented here will demonstrate that GPUs have opened up the

23

possibility of using certain types of algorithms previously reserved to offline use in the

context of real-time applications. It therefore hopes to blur the distinction between

behavioural realism and visual realism by performing the 3D reconstruction in real-time

and thereby implicitly modelling the behavioural elements.

1.1 Problem Statement

In the pursuit of presenting users with a more believable and realistic environment for

both virtual reality and augmented reality, the intention is to build and develop a system

capable of capturing the dynamic shape of other users, using off the shelf components

such as digital cameras and projectors. The initial target application was to reproduce

photorealistic avatars heads for virtual environments and tele-immersive

communication. The system should provide visual realism as well as behavioural

realism. Traditionally emphasis [9] has been on visual realism which involves spending

more computation time offline, building highly accurate visual models of human faces

or heads, and then dedicating a fraction of these resources on behavioural realism in the

form of motion capture. The emphasis in this body of work is on capturing the

geometric properties of the human face in real-time and thereby implicitly capturing

behavioural animation thereby negating the need to perform motion capture. The aim is

wish to capture the dynamically deformable nature of the human face, more specifically

its deforming geometry. Although the initial target application is tele-immersion for

face to face communication, it was felt that by explicitly not relying on a model-based

approach often found in facial capturing systems, that the overall system would be more

flexible and would be employed to capture more general purpose objects.

This thesis proposes ways of using digital cameras to sample the geometric

properties of physical objects, such as humans, and examine the compromises between

accuracy and realism as well as computational time. By using two or more cameras one

can obtain the depth of each overlapping pixels. These depth images can either be

triangulated to obtain a 3D mesh, or used in image-based rendering algorithms in order

to obtain images from different viewpoints, thereby creating the illusion of 3D, which in

turn creates a more realistic representation. The contributions of this thesis focus on

retrieving this depth information from a stereo camera setup using structured light for

24

the potential use of 3D reconstruction or image-based re-rendering from differing

viewpoints. With these goals the following research questions were posed.

 Can a real-time sub-pixel scalable stereo reconstruction system be developed?

 What are the potential benefits of using structured light?

 What are the benefits of extending the support region into the time domain?

What is the optimum cost function for performance and quality?

 What benefits can be achieved by a parallel system and can it leverage GPUs?

What compromises have to be made between computational performance and

visual quality?

Can the correspondence problem be solved with alternative techniques that use

less computational resources?

Precedence will be given to the performance of the 3D geometry acquisition

system (i.e. whether it can it run in real-time) in order for it to be used in real-time

applications such as tele-immersion. The quality of the results are of course important

but the priority lies with real-time or interactive applications. Although the initial target

application is face to face communication, the assumption of using a prior generic face

model that would then be subsequently deformed to fit to the video data was avoided.

Another goal was to keep the system as flexible as possible so that it could be utilized in

order to capture other deformable dynamic objects and could easily be extended to the

acquisition of the full human body, as well as various other applications.

1.2 Scope

Performing 3D reconstructions of heads was carried out by building and developing a

real-time geometry acquisition system using off the shelf equipment. The only hardware

that was developed was a simple circuit for synchronising the cameras and projector.

Excellent performance gains could have been achieved with custom hardware design,

which could have been prototyped using modern day field programmable gate arrays.

However, this would have required significant development time and is beyond the

scope of this thesis. Hardware acceleration was leveraged by using modern day GPUs

that have not only been evolving faster than CPUs but have been designed to be fully

25

programmable with the use of vertex and pixel shaders. This has created a recent trend

known as GPGPU, general purpose GPU. Recently GPUs have been used to solve a

variety of problems outside the realm of 3D graphics. They have been used to solve

PDEs [70], option pricing, vision, medical imaging [66] and in a variety of other

applications.

1.3 Outline of Thesis

This thesis is structured in the following manner. A comprehensive literature review of

methods for acquiring 3D shape information using various types of sensors, as well as a

more detailed description of stereo methods will be covered in Chapter 2. Chapter 3 will

describe a capture rig developed using stereo cameras and a projector. It will also

describe experiments using dynamic programming algorithms with different cost

functions and structured light patterns. The impact of different cost functions and light

patterns as well as the extension of these algorithms into the time domain, will be

discussed and analysed in terms of qualitative and computational cost. Chapter 4 will

examine how the data captured in the previous chapter can be improved upon using

non-linear optimization methods. The convergence of different solvers will be

examined. All these solvers will require an initialization produced by the previous

chapter’s dynamic programming algorithms. The impact of this initialization will also

be examined in Chapter 4 as well as quality of the newly produced sub-pixel disparity

maps and some of the potential weakness of these methods and how they can be

overcome using regularization. Chapter 5 will focus on how these algorithms can

leverage graphic processing units by being parallelised and made to run in real-time.

Chapter 6 will bring together all the work carried out in the previous chapters and

present a scalable frame work for solving the stereo correspondence problem. This

framework will be able to scale with resolution increase and performance increase either

to produce superior results or reduce the acquisition time depending on the target

applications. The conclusion drawn from this body of work as well as future directions

for extending this research, will be discussed in Chapter 7.

26

1.4 Summary of Contributions

This thesis presents a wide range of techniques to solve the stereo correspondence

problem. The following contributions were made.

• Analysis of modern dynamic programming algorithms and their ability to solve

the correspondence problem under various structured light patterns using a

variety of different cost functions as well as extending their support region into

the time domain.

• Analysis of non-linear optimization methods for solving the space time stereo

problem.

• Development of a multi scale, non-linear optimization algorithm for solving the

sub-pixel stereo correspondence problem in real-time using graphics processing

units.

• Development of a scalable frame work for acquiring 3D deformable objects

depth in real-time.

`

1.5 Publications

Nahmias, J.D., Steed, A., Buxton, B.

Evaluation of Modern Dynamic Programming Algorithms for realtime Active Stereo

Systems, 13th International Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision'2005, WSCG 2005, University of West Bohemia,

Campus Bory, Plzen-Bory, Czech Republic, January 31 - February 4, 2005, 113-116

Nahmias, J.D., Steed, A., Buxton, B.

Analysis of Cost Functions and Structured Light Patterns for Modern Dynamic

Programming Stereo Algorithms, IEE International Conference on Visual Information

Engineering 2005, University of Glasgow, Scotland, April 4 - 6, 2005

27

 Chapter 2

Literature Review
This section of the thesis will focus on exploring the research space in which this work

belongs. Figure 2.1 illustrates a taxonomy from [90] which is used to distinguish the

various approaches to solving the acquisition of dynamic shapes. This chapter will focus

on the space that is highlighted as it represents the use of digital cameras as sensors.

This satisfies the criteria of using off the shelf equipment. As the research space is more

in line with the 3D computer vision field, an alternative taxonomy is presented in

Section 2.1. 3D computer vision is a very active field of research that has produced

very extensive and promising results over the years. To fully cover the whole field in

any useful depth is beyond the scope of this thesis.

Following the taxonomy presented in Section 2.1, a more in depth look at one

specific area of 3D vision, namely stereo vision will be examined in greater depth.

Section 2.2 will demonstrate that the stereo problem can be reformulated into a 1D

correspondence problem. Section 2.3 will present a taxonomy for solving this 1D

correspondence problem, while Section 2.4 will focus on some of the more modern

techniques presenting the ones that achieve good computational performance with

others performing better in terms of visual accuracy.

2.1 3D Computer Vision

3D computer vision is based on extracting 3D information from a dataset consisting of

images acquired from digital cameras. It is a specialization of the general field of

machine vision also known as computer vision. This area of research is very broad and

diverse. Example applications include and are not limited to robotics, augmented reality,

virtual reality, mixed reality, computer games, military, architectural and production

line inspection, to name a few. Many diverse areas of research have tackled these

28

problems, and producing a comprehensive review of all the literature in these fields

would be challenging to say the least. This section of the report will therefore firstly

present a taxonomy of 3D vision research, followed by a study of stereo capturing

systems, structured light capturing, modern advances in their implementations on GPUs

as well as tele-immersive systems. For an introduction and overview of the field of 3D

computer vision please refer to [22], [42], [82], [32].

2.1.1 Taxonomy

3D computer vision techniques that infer shape or structure can be categorised in

various ways. The following are key distinctions employed in the subject matter

literature.

Figure 2.1 Taken from [90] illustrating Dynamic Shape Acquisition Taxonomy

Active versus Passive

All image based modelling techniques can fall into one of two groups, active and

passive. Active techniques change the environment in some way (i.e. illuminate the

environment) while passive techniques capture the environment without changing it.

Active techniques are usually more accurate but expensive and not always viable.

Passive techniques on the other hand are cheap and viable but at the cost of accuracy.

Nevertheless active systems greatly improve correlation algorithms.

29

Autonomous versus Semi-Autonomous

Again all the following techniques can fall into one of these two groups. Autonomous

systems require no user interaction, while semi-autonomous systems require varying

degrees of user interaction. This field has been researched with different goals in mind.

One example is robotics researchers who have pursued this area with robot navigation

and exploration as their aim, and have therefore focused on trying to produce

autonomous systems of very high accuracy. By contrast 3D graphics and special effects

communities have prioritised aesthetically pleasing results at the cost of needing user

interaction in order to rapidly produce compelling virtual environments.

Shape from Single View

These are techniques that rely solely on one image for their input. Because these

techniques require such little input data they usually necessitate user interaction. One

possible technique is presented by [18] and makes use of the following assumptions: 3

orthogonal sets of parallel lines, 4 known points on ground plane, 1 height in the scene.

An alternative technique for single view that also scales to multiple views is presented

by [20] and used in the Façade application (Section 2.4.2). Another interesting approach

is presented in [61], where users specify lines that are then extruded into planes. These

planes are subsequently used to create a coarse depth-map that is then manually refined.

This multi-layered depth-map is then used to reconstruct geometry. For review of

commercially available products please refer to [80].

 The proposal in this report focuses more on reconstruction of avatar heads in a

controlled environment. With the advances that have been made in digital cameras and

computational power why not take advantage of using multiple images?

Shape from Stereo

Once a point in 3D space has been projected onto an image plane it loses its depth

information. This point can lie anywhere along the ray passing through the centre of

projection and the pixel the point was projected onto. However one can recover the

depth information of that pixel if it is projected onto the image plane of another camera

by using triangulation. Shape from stereo can be decomposed into two problems. The

first problem is correspondence, given a pixel in image A representing the projection of

30

a 3D point, where is the projection of that point in image B? This can be reduced to a 1d

search by using the epipolar constraint. The second problem is one of triangulation.

Please refer to [72] and [74] for good surveys on stereo. Section 2.4.3 of this report will

present a more detailed look at stereo along with some of the more recent work

produced by Li Zhang et al.in Space-time Stereo [91]. Stereo vision has been

extensively researched and has produced excellent results in certain constrained

environments; it has therefore been used in avatar head reconstruction algorithms.

Section 2.5 of this report will review some techniques employed for tele-immersion in

the context of avatar reconstruction that rely on stereo algorithms. Lastly good

candidates for real-time applications will be presented.

Shape from n-View

This refers to obtaining the 3D reconstruction from multiple images taken from different

viewpoints. There are many algorithms that rely on different visual cues that can be

used to achieve this task. In [54] an algorithm is presented that computes visual hulls

from a set of images by extracting the silhouette of the object being reconstructed. Other

interesting algorithms include Space Carving [47] and Voxel Colouring [73]. Zisserman

[3] introduces a novel algorithm that uses edge features extracted from multiple images

to calculate half planes and reconstruct geometry. Although these algorithms can

produce good results in certain situations, they also pose greater constraints on the

environment. Work using some of these space carving type algorithms for head

reconstruction has been carried out by [89]. However, the results seem less compelling

than stereo alternatives.

Structure from Motion

By using multiple images taken from a single camera over time, and finding

corresponding features over the set of images Kruppa [44] proved that if 5 features

could be detected from 2 images, the rotation and translation of the camera between the

images and the 3D location of the 5 features could be determined up to an arbitrary

scale. Ullman [83] and Longuet-Higgins [48] were early pioneers of this work. These

algorithms rely on finding features such as corners [31], SIFT [50], or SURF [6] and

their correlation across multiple frames using [59] in order to solve the system. More

recently the theoretical foundations of these works are used to track camera motion in

31

commercially available software such as Boujou [1] and PFTrack [81]. These

algorithms produce very good results for camera tracking but because they are based on

features, the 3D information inferred by the techniques is very sparse and lacking in

detail as opposed to dense stereo techniques that provide depth for each pixel. These

algorithms are also very computationally expensive making them much less suitable for

real-time applications.

Shape from Shading

These algorithms use surface properties and lighting models to determine the surface

normals. One simple algorithm developed by [35] demonstrates this very simply as

follows. If one were to take a picture of two objects with the same surface properties

(e.g. the same surface material) under the same lighting conditions, using a perfect

sphere and arbitrary second object, one can easily determine the surface normals of the

second object. This is achieved, firstly by generating normal values for each projected

pixel of the sphere (this is done simply by registering 3D sphere with the picture), after

which the normal values of the arbitrary second object are determined simply by

looking up each pixel value against a matching pixel value of the projected sphere and

assigning its corresponding normal value. This is a very simple example; many more

algorithms have been developed that usually rely on extracting the BRDF of materials

see [42]. Shape from shading algorithms tend to work well on synthesized pictures but

seem to fail with real data. Failure can be caused by specular highlights, image noise or

ambiguities (given a single light source and viewing direction many different geometric

shapes can be rendered to produce the same image). For a more detailed overview of

shape from shading please refer to [67].

2.2 Stereo Formulation

As mentioned previously, an image pixel’s 3D location can lie anywhere along the ray

passing from the centre of projection through that point. If one has another image taken

from a different point of view containing the projection of the same point, one can infer

the 3D location of that point through triangulation. Triangulation describes the

intersection of the ray passing through the centre of projection and the pixel of the first

image with its equivalent in the second image. However in practice these rays will never

32

intersect due to sampling and correspondence errors. The stereo problem can therefore

be broken down into two sub-problems, the first being one of correspondence and the

second being triangulation. One possible way of solving triangulation is to find the

vector representing the shortest distance between the two rays and choosing its mid-

point. The stereo problem can be solved for two cases; the calibrated (where the

camera’s intrinsic parameters are known) and un-calibrated. The un-calibrated case

allows the determination of a pixel’s depth relative to an arbitrary scale value. The most

difficult problem facing stereo vision is the one of correspondence. Pixels represent a

quantized sampling of light, they do not represent actual points in the scene, and

therefore one pixel can contain a region producing a modulated value of the edge

transition while this same edge could lie at a pixel boundary in the other image and

therefore produce two different pixel values in the second image. This highlights just

one potential problem, another is occlusion; some pixels in one image are simply

occluded in the other. The correspondence problem can also be extremely hard to solve

for images of bland textureless and featureless scenes.

Figure 2.2 Epipolar Constraint

This type of scene as well can be tackled by using an active system. An active system

will project light onto the environment and by carefully choosing the type of projected

pattern, it is possible to significantly increase the algorithm’s ability to find

corresponding matches between images. To make the correspondence problem more

manageable many algorithms use constraints. One such constraint which enables the

correspondence problem to be reduced from a 2D to a 1D search is the epipolar

constraint.

33

2.2.1 Epipolar Constraint

Given a point P projected on the left image plane as Pl with centre of projection Ol, the

projection on the right image plane Pr with centre of projection Or will lie on the

epipolar line r. The epipolar plane is defined by the points P, Or, and Ol. One can

therefore calculate the essential matrix E that maps the point Pl onto the epipolar line r.

This matrix can be calculated as follows.

The transformation from the left coordinate frame to the right coordinate frame

is a translation followed by a rotation. Therefore

()
() () ()llrrlr

lr

OPPOPPOOT
whereTPRP

−=−=−=

−=

,,

2.1

The equation of the epipolar plane is then:

()
()

ll

l
T

r
T

l
T

l

PSPT
PTPR

PTTP

.
0

0

=×

=×

=×−

2.2

Where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

=

0
0

0

xy

xz

yz

TT
TT
TT

S

2.3

Given

l

l
T
r

l
T
r

l
T
r

PEr
PEP
PEP
SRE
PEP

⋅=

∴=⋅⋅

∴=⋅⋅

⋅=

=⋅⋅

0

0

0

2.4

However r is in normalized image plane coordinates. In order to achieve a similar

mapping in pixel coordinates one has to calculate the fundamental matrix F as follows:

34

1−⋅⋅= l
T
r MEMF

2.5

Where Mr and Ml are the matrices representing the right and left cameras intrinsic

parameters.

Once the stereo system has been calibrated (i.e. F found) the correspondence search can

be reduced to 1D. One can go one step further and rectify both images so that the actual

scan-lines of the images are matched with the epipolar lines. For further details please

refer to [42],[82],[22].

2.2.2 Correspondence Algorithms and Taxonomy

The problem of stereo correspondence has been widely studied and is still a very active

area of research. In [72] a taxonomy and evaluation of twenty dense two frame stereo

algorithms are presented. Most stereo algorithms produce disparity values (i.e.

differences between corresponding points along the epipolar line) that, are inversely

proportional to the depth values. This definition can be generalized for multiple

viewpoints but we will focus on the simple case of two viewpoints. This section will

focus on algorithms that produce a dense disparity map, which are the algorithms that

calculate disparity values for each input pixel. These algorithms work by selecting a

cost function for correspondence, which is then minimized. They function by

performing all or a subset of the following procedures.

• Cost Computation

• Cost Aggregation (Support Region)

• Disparity Computation / Optimization

• Disparity Refinement

These algorithms fall into one of the following two categories; local or global. Local

algorithms minimize the cost function independently over a window while global

algorithms make explicit assumptions such as a smoothness constraint and then solve an

optimization problem over a scan-line or complete image.

Cost Computation

35

Cost computation is the method used to calculate the error of a particular disparity

value. This represents the error of matching a pixel in the left image with a pixel in the

right image, alternatively if a support region is used, the error of matching a window of

pixels in the left image against another window in the right image. This region can also

be extended into the time domain and used as a support region that spans multiple

images. Example cost functions can be AD (Absolute Difference), SD (Square

Difference), SSD (Sum of Squared Difference), and normalized cross correlation, see

[72] for further examples of cost functions used in correspondence algorithms. Global

algorithms tend to use an error function that combines the cost functions with another

term. This term usually adds constraints such as occlusions (e.g. dynamic programming

where a fixed penalty is associated with an occlusion) and or smoothness.

Cost Aggregation

Stereo algorithms usually aggregate cost, such as sum or average over a support region.

These support regions usually span the spatial domain however, more recently better

results have been obtained by using support regions that also span the temporal domain.

Examples of such algorithms will be presented in Chapter 3. The problem with using

square support regions (e.g. 5x5 window of pixels) is that they make the assumption that

the surface is fronto-parallel. Although this maybe the case in certain circumstances in

reality it is rarely so. To compensate, these algorithms usually use large support regions

that tend to average the surface out and produce blurred disparity maps lacking any fine

detail. To overcome this limitation, some global algorithms also tend to optimize a warp

function for the support region. As one shall see in Chapter 4 this can produce

substantially superior results.

Disparity Computation / Optimization

With locally optimizing algorithms finding the disparity is trivial, the correlation with

the lowest cost is selected. These algorithms tend to focus on the cost function and

aggregation steps. These Winner Take All type algorithms, although computationally

inexpensive also tend to perform badly. While with global algorithms offers a disparity

function E(d) that minimizes the energy is solved.

36

()

∑

∑

+−++−=

=

+=

yx
smooth

yx
data

smoothdata

yxdyxdyxdyxddE

yxdyxCdE
dEdEdE

,

,

))1,(),(()),1(),(()(

),(,,)(
)()()(

ρρ

λ

2.6

Edata(d) is the data term measuring how well the disparity function matches the input

image pair, using the cost function C. Esmooth(d) is the smoothness constraint making the

minimization computationally tractable and is often restricted to neighbouring pixel as

shown in the above example. p is some monotonically increasing function of disparity.

In order to solve the above optimization, one can use a variety of different algorithms

including simulated annealing [64], graph cuts [43] [78], dynamic programming [8]

[77], Lucas and Kanade (i.e. Gauss-Newton) [51], cooperative [96], max flow [11].

With computational performance of modern day PCs the focus of research in this field

has focused on global type algorithms which produce superior results. However DP

(Dynamic Programming) has the distinct advantage that it can find a solution for

independent scan-lines in polynomial time and is therefore a candidate for real-time

applications. An overview of DP algorithms as well Lucas and Kanade [51] and some

modern variations will be presented in Chapter 3, 4 and 5.

Disparity Refinement

Most disparity computation algorithms, with the exception of some of the global

optimization variants, tend to produce disparity maps with outliers and other types of

artefacts. Disparity refinement is a final post-processing stage aimed at correcting some

artefacts or smoothing the results. One example of this is the Birchfield et al.[8]

algorithm, which has a final post processing stage that uses a region growing type

algorithm to try and eliminate certain disparity outliers. One could also apply parabola

fitting to the disparity values in order to approximate a higher sampling rate and

estimate sub-pixel disparity values. This could be incorporated into the smoothness term

of a global optimization algorithm.

The following section will describe some stereo correspondence algorithms,

namely dynamic programming and its more recent variation developed by Criminsi et

al.[19] as well the Lucas and Kanade [51] algorithm that has substantially evolved over

37

the years. Li Zhang et al.[91] work on space-time stereo will be discussed and finally I

will present some of the work carried out by [56], with regard to stereo for the practical

application of tele-immersion.

2.2.3 DP Stereo Formulation

This section will cover the standard DP stereo formulation [42] as well as the variations

due to Birchfield et al.[8] and Criminisi et al.[19].

2.2.3.1 Traditional DP Stereo

Given a pair of rectified images)(xIl and)(yIr representing the left and right images at

the xth and yth pixels respectively for a given scan-line, it can be shown from [7] that the

depth of a given pixel is inversely proportional to its disparity)(yx − . The problem is

therefore one of correspondence. Using the uniqueness and monotonic ordering

constraint, DP algorithms will solve the disparity by minimizing a cumulative cost

function C(l, r) defined as follows:

⎪
⎩

⎪
⎨

⎧

+−

+−−

+−

=

OccCostrlC
rlMrlC

OccCostrlC
rlC

)1,(
),()1,1(

),1(
min),(

2.7

.

Here, OccCost is a parameter of the system and defines a penalty for occlusions and

M(l,r) is a cost function that defines the dissimilarity between two pixels l and r of the

left and right scanline respectively. It is quite common for M(l,r) to be the sum of

squared difference (SSD) defined as:

∑ −= 2))()((),(yIxIyxM rl

2.8

.

The recurrence in C(l, r) defines the possible moves in the forward pass of the DP

algorithm, namely: one horizontal occluded move, one diagonal matched move, and one

38

vertical occluded move. After initialisation of the cost matrix the DP algorithm iterates

through each cell within the constraint network calculating C(l, r) and storing a

backwards link to the previous cell containing the minimum cost. Once the cost matrix

has been calculated, the second stage of the algorithm is a backwards pass that follows

all the stored links to produce the minimum cost path and therefore the disparity for that

scan-line. This is repeated for each scan-line in the pair of images and a disparity map is

produced. Figure 2.3 illustrates the possible moves of the DP algorithm.

Figure 2.3 Allowed Dynamic Programming Moves

2.2.3.2 Birchfield DP Algorithm

The Birchfield et al. [8] algorithm differs from the traditional DP algorithm in a few key

ways. Firstly, the cumulative cost function and the dissimilarity measure are defined as

follows:

MatchR

OccCostrlC
rlMrlC

OccCostrlC
rlC +

⎪
⎩

⎪
⎨

⎧

+−

+−−

+−

=

)1,(
),()1,1(

),1(
min),(

2.9

 where:

() () (){ }

()() ()()
() ()() () ()()1

2
1,1

2
1

,,max,,,min

,,0max,

maxmin

minmax

++=−+=

==

−−=

+−

+−+−

iRiRRiRiRR

iRRRiRRR

iLiLii

yIyIIyIyII

yIIIIyIIII
xIIIxIyxM

2.10

39

Again, OccCost and MatchR are parameters of the system that define an occlusion cost

and match reward respectively. The dissimilarity function M(x,y) measures how well the

intensity at x fits the linearly interpolated region around y.

Another change is the addition of a constraint that intensity variation accompanies

depth discontinuities. An intensity variation is defined as any set of three pixels whose

min and max levels vary more than four grey scale values. This threshold is very low

and is intended to prevent the algorithm from making poor choices in regions of the

image that do not contain much information. It also specifies on which side the depth

discontinuity must lie with respect to the intensity variation and also requires occlusions

to be accompanied by the intensity variation on the appropriate side. This is illustrated

nicely in [8].

The cost matrix is also computed in a different manner. Instead of iterating

through each cell and computing the minimal cumulative cost of reaching a particular

cell, the algorithm computes the cumulative cost of reaching the neighbouring cells

through the particular cell currently being evaluated. If this is lower than the

neighbouring cell’s current cost, that neighbouring cell is updated. Intuitively this can

be thought of as looking forwards instead of backwards while evaluating the cumulative

cost matrix. The computational cost is equivalent to that of the traditional DP algorithm

[42]. However, it permits the algorithm to prune the cost matrix and further reduce the

number of cells that need to be evaluated. This can speed up the running time quite

considerably; instead of taking)(2ΔnO , where n is the number of pixels of the left and

right scan-line and Δ is the maximum disparity, the computational cost approximates

)log(ΔΔnO . Readers are referred to [8] for a comprehensive explanation of the pruning

technique.

Once the cost matrix has been calculated, the initial estimates of the disparities are

further refined by post processing steps. Firstly outliers are removed. Outliers are

disparity values that are surrounded by different disparity values in agreement with each

other. Then, the disparities are classified into three types; slightly reliable, moderately

reliable and highly reliable, based on how many continuous disparities are in agreement

along the y-axis. Moderately and highly reliable disparities are then propagated along

the y-axis until they reach a slightly reliable disparity with a lower disparity value or a

position that represents an intensity variation in the Left image. Moderately reliable

disparities differ from highly reliable disparities in that they will not override their

40

neighbours if the disparity variation is just one. This helps overcome some of the

artefacts usually present in DP algorithms that cause separate scan-lines of disparities to

be out of alignment. This process is then repeated in a second pass along the x-axis. In

Section 4 I will show that these post-processing steps can cause serious problems when

used in conjunction with structured light.

2.2.3.3 Criminisi DP Algorithm

In Criminisi et al. [19] a new DP algorithm is proposed with the motivation of creating a

depth map in order to be used in conjunction with an image based rendering technique

that morphs two images to create a new image from a different viewpoint. I evaluate

this algorithm from the point of view of 3D reconstruction. The algorithm uses a three-

plane graph, a left occluded plane L, a matched plane M and a right occluded plane R

(see Figure 2.4). This model allows a total of thirteen moves in the DP and has the

advantage of allowing a much finer grain control of penalty costs.

),(),,(),,(rlCrlCrlC RML for each plane L, M and R respectively:

()
()
()⎩

⎨
⎧

+−

+−
=

β

α

1,
1,

min,
rlC
rlC

rlC
M

L
L

2.11

()
()
()⎩

⎨
⎧

+−

+−
=

β

α

rlC
rlC

rlC
M

R
R ,1

,1
min,

2.12

() ()

()
()
()
()
()
()
()
()
()⎪

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

+−−

+−−

−−

+−

+−

−

+−

+−

−

+=

β

β

β

β

β

β

1,1
1,1
1,1

1,
1,
1,
,1
,1
,1

min,,

rlC
rlC
rlC

rlC
rlC
rlC
rlC
rlC
rlC

rlMrlC

R

L

M

R

L

M

R

L

M

M

2.13

41

Here, α is the cost of moving within an occluded plane and β the cost of making a

transition between planes. M(l,r) is a windowed normalized cross-correlation:

() ()() 2/,1, rlMrlM ʹ′−=

2.14

Where

()
()()

() ()∑∑
∑

−−

−−
=ʹ′

22
,

RRLL

RRLL

IIII

IIII
rlM

2.15

In [6] the dissimilarity matrices are stacked across all the scan-lines and Gaussian

smoothed with a kernel orthogonal to both left and right scan-lines.

Figure 2.4 Taken from Criminisi et al. showing the 13 possible moves of the algorithm [19] with each

plane representing the Cl, Cr and Cm cumulative cost matrices

2.2.4 Lucas and Kanade Stereo Algorithm

The Lucas and Kanade [51] algorithm originally developed for stereo correspondence is

basically an image alignment algorithm. The goal of the algorithm is to align a template

T(x) to an image I(x) where x is a column vector (y,x,t) representing pixel coordinates.

The template T(x) can be a sub-region of the left image (5x5 window) while I(x) can

represent the right image or vice versa. Let W(x:p) denote the parameterized set of

allowed warps, where p = (p1, p2 ….pn) is a vector of parameters. The warp W(x:p)

maps the pixels x in the coordinate frame of the template T into the sub-pixel location in

the coordinate frame of the image I. An example warp could be a simple translation in

the x, y axis defined as follows:

42

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+
=

2

1:
py
px

pxW

2.16

For example this warp could be used to determine optical flow. However generally if

one were to track a larger patch moving in 3D a more general affine warp would be a

better choice.

()
() ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+++⋅

+⋅+⋅+
=

1
1

1
1

1
):(

642

531

642

531 y
x

ppp
ppp

ppyp
pypxp

pxW

2.17

Equation 2.17 defines an affine warp with 6 parameters ()Tppppppp 654321 ,,,,,= . In

the original implementation of the algorithm described in [51] a simple translation was

used, and given an input stereo pair of rectified images one could just use a translation

in the x axis. However, this would be based on the assumption that the surfaces are

fronto-parallel, a much more suitable warp for the application of stereo will be defined

in the next section and extended for a 3D support region. The algorithm can also be

extended to support an arbitrary complex set of affine warps.

The goal of the algorithm is to minimize the sum of the squared error between

the template T and the image I warped back onto the coordinate frame of the template.

()() ()[]∑ −
x

xTpxWI 2:

2.18

Equation 2.18 is minimized with respect to the parameter p of the warp over all pixels in

the template support region. To produce a dense disparity map this would be done per

pixel. The Lucas and Kanade [51] algorithm assumes an initial estimate of the

parameters p and solves iteratively for increments pΔ i.e. the following expression is

minimized:

43

()() ()[]2:∑ −Δ+ xTppxWI

2.19

With respect to pΔ , and the parameters are updated:

ppp Δ+←

2.20

These two steps are performed iteratively until p converges, pΔ is computed using

equation 2.25.

2.2.4.1 Derivation of the Lucas and Kanade Algorithm

Equation 2.19 is minimized using a non-linear Gauss-Newton gradient descent non-

linear optimization algorithm. This is achieved by linearizing Equation 2.19 using a first

order Taylor series approximation on ()()ppxWI Δ+: to give:

()() ()∑ ⎥
⎦

⎤
⎢
⎣

⎡
−Δ

∂

∂
∇+

2

: xTp
p
WIpxWI

2.21

Where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂

∂
=∇

y
I

x
II , is the gradient of the image I evaluated at W(x:p).

p
W
∂

∂
 is the

Jacobian of the warp, if ()Ty pxWpx):(),:(W p):W(x x= then:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

=
∂

∂

n

yyy

n

xxx

p
W

p
W

p
W

p
W

p
W

p
W

p
W





21

21

2.22

For example the affine warp in Equation 2.18 has the Jacobian:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∂

∂
1000
0100

yx
yx

p
W

2.23

44

The partial derivative of Equation 2.21 with respect to pΔ is:

()() ()∑ ⎥
⎦

⎤
⎢
⎣

⎡
−Δ

∂

∂
∇+⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
∇

x

T

xTp
p
WIpxWI

p
WI :

2.24

Setting Equation 2.24 to zero gives us the closed form solution to Equation 2.21 as:

() ()()[]∑ −⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
∇=Δ −

x

T

pxWIxT
p
WIHp :1

2.25

Where H is the Gauss-Newton approximation to the Hessian matrix:

∑ ⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
∇⎥

⎦

⎤
⎢
⎣

⎡

∂

∂
∇=

x

T

p
WI

p
WIH

2.26

A summary of the Lucas and Kanade algorithm is as follows:

 Iterate:

1. Warp I with W(x:p) to compute I(W(x:p))

2. Compute the error image T(x) – I(W(x:p))

3. Warp the gradient I∇ with W(x:p)

4. Evaluate the Jacobian
p
W
∂

∂
 at (x:p)

5. Compute steepest decent images
p
WI
∂

∂
∇

6. Compute the Hessian matrix using Equation 2.26

7. Compute () ()()[]∑ −⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
∇

x

T

pxWIxT
p
WI :

8. Compute pΔ using Equation (10)

9. Update the parameters ppp Δ+←

 Until ε≤Δp

45

This summarises the Lucas and Kanade algorithm as presented in [51]. However, it has

been generalised for any warp, where the original formulation was specific to a simple

translation along the x-axis. For simple warps such as translations and affine the

Jacobian can be constant. However, in general all 9 steps have to be repeated for each

iteration because the parameters p change from iteration to iteration. In [5] a general

framework for the Lucas and Kanade algorithm [51] as well as all the variations that

have been developed over the last 20 years, is presented. This algorithm is referred to as

the forward additive. Figure 2.5 is a graphical representation of the algorithm taken

from [5].

Figure 2.5 Representing a the 9 steps involved for the forward additive algorithm taken from [5]

46

2.2.4.2 Computational Cost

This section will briefly discuss the computational cost of the forward additive Lucas

and Kanade algorithm [51] Table 2.1 illustrates the computational cost given n is the

number of warp parameters and N is the number of pixels in the template.

Table 2.1 Computational Cost of the Forward additive Lucas and Kanade [51]

Table 2.1 shows the total computational cost, as well as the cost of each step. As one

can see step 6 is the most expensive. This table represents the cost of matching one

template to an image. However for the purposes of stereo reconstruction the aim is to

produce a dense disparity map for each pixel in the images. This could be achieved by

creating a template for each pixel in the left image. The template would define the

support region this could be a 5x5 pixel window. In the simple case of using a square

window on a pair of rectified images only one warp parameter would be necessary i.e. a

translation along the x-axis. However, given a pair of images of 640x480 pixels in

resolution and given that this cost arises per iteration and that one would typically

require at least 5 iterations (see Section 4) for the algorithm to produce acceptable

results, this algorithm becomes quickly prohibitively expensive.

 The following section will describe work carried out by Li Zhang et al.[91] that

takes this algorithm and extends it into the space-time domain used in conjunction with

structured light to produce very promising results.

2.2.5 Space-time Stereo

In [91] a novel stereo framework is presented, and is implemented using a combination

of Dynamic Programming as well the Lucas and Kanade [51] algorithm. This section of

the report will describe the work carried out in [91]. The framework is designed for

local based stereo algorithms using a spatial-temporal window. The framework assumes

for input two time varying video streams Ileft & Iright that have been rectified with the

help of camera calibration. In order to perform 3D reconstruction one needs to estimate

the disparity function d(x,y,t) for each pixel (x,y) at time t. Traditional stereo algorithms

achieve this by minimizing the following cost function.

47

∑
∈

−=
0),(

00000000)),),,,((),,,((),,((
Wyx

rl tytyxdxItyxIetyxdE

2.27

Where e is a dissimilarity measure and usually defined as follows (i.e. SSD).
2)(),(babae −=

2.28

However due to radiometric differences between cameras Li Zhang et al.[91] used the

following metric:
2)(),(bosabae −+⋅=

2.29

Where s is a scale and o is an offset value dependent on the support region size.

When the above dissimilarity measure is applied to the above cost function, the cost

function is referred to SSD. In order to incorporate temporal variation, one can use the

following cost function.

∑ ∑
∈ ∈

−=
0 0),(

00)),,(),,,(()(
Tt Wyx

rl tydxItyxIedE

2.30

This cost function reduces ambiguity by simultaneously matching in multiple frames.

One distinct advantage is that the spatial window can be shrunk while at the same time

extending the temporal window.

Figure 2.6 Taken from [91] depicting the space time window for static fronto-parallel, static oblique, and

time varying oblique surfaces

48

The previously mentioned dissimilarity measure assumes constant disparity across the

spatial window (i.e. static fronto-parallel surfaces). One can use a dissimilarity measure

that better approximates oblique static surfaces as follows.

)()(),,(),,(000000 yydxxddtyxdtyxd yx −⋅+−⋅+≡≈


2.31

Where 0xd and 0yd are the partial derivatives of the disparity function with respect to

the spatial coordinates x and y, at),,(000 tyx . This results in the following SSSD cost

function to be minimized.

∑ ∑
∈ ∈

−=
0 0),(

0000)),,(),,,((),,(
Tt Wyx

rlyx tydxItyxIedddE


2.32

This will stretch and shear the window as shown in Figure 2.6 (b).

The above dissimilarity measure assumes oblique static surfaces. However one

can devise another dissimilarity measure that will skew the window temporally as

shown in Figure 2.6 (c). This measure will use a first order linear approximation of

disparity variation across the temporal coordinates as well the spatial coordinates and is

presented in Equation 2.33. This will have the benefit of better modelling moving object

across the temporal domain.

)()()(),,(),,(00000000 ttdyydxxddtyxdtyxd tyx −⋅+−⋅+−⋅+≡≈


2.33

Where 0td is the partial derivative of the disparity with respect to time at),,(000 tyx .

This can form the following cost function.

∑ ∑
∈ ∈

−=
0 0),(

00000)),,(),,,((),,,(
Tt Wyx

rltyx tydxItyxIeddddE


2.34

49

When the above cost function is used with a camera of high frame rate, thereby

minimizing the errors induced by linear approximations to motion, the results are very

encouraging, as shown in Figure 2.8.

Figure 2.7 Screen shots taken from [91] showing the results of the above algorithm

Li Zhang et al.[91] solved Equation 2.34 by firstly using a simple DP algorithm that was

extended into the temporal domain. This was simply done by using a 3D support region

across multiple frames from the left and right camera. The results of this were then used

as an initial estimate for the following stage, which used the previously mentioned

forward additive Lucas and Kanade [51] algorithm. The forward additive Lucas and

Kanade [51] algorithm was extended into the time domain and the warp was modified to

coincide with the one specified in Equation 2.34. To derive this extension it is easier to

revert back to the original Gauss-Newton optimization algorithm as follows:

Given m functions f1 ….. fm of n parameters p1….. pn one wants to minimize the sum:

() ()()
2

1
∑
=

=
m

i
i pfpS

2.35

Where p stands for the vector (p1…pn)

The Gauss-Newton converges by starting off with an initial guess for p then iteratively

updating it with following recurrence relation:

() ()() () ()kk
f

Tk
f

k
f

kk pfpJpJpJpp
1

1
−

+ −=

2.36

Where f = (f1…fm) and Jf(p) denotes the Jacobian of f with respect to p

50

To apply this algorithm to space-time stereo as demonstrated in [91] f would be replaced

by Equation 2.32 the vector p = (d, dx, dy, dz) and the J would be the Jacobian of f with

respect to p. Further details of this implementation will be discussed in Chapter 4 of this

report. This local algorithm produces very good results, however, there are certain

banding artefacts as shown in Figure 2.8. These are produced by the fact that the

parameters dx, dy and dz are not constrained by the disparity gradient with respect to the

relevant axis.

Figure 2.8 Taken from [91] illustrating the difference between the local (left images) space-time

algorithm and global (right images)

To overcome this banding artefact Li Zhang et al.[92] reformulated the error function to

be global, as follows:

{ }() ()∑=Γ
tyx

tyx ddddEtyxd
,,

,,,,,(

2.37

51

Subject to the following constraints:

() ()()

() () ()()

() () ()()1,,1,,
2
1,,

,1,,1,
2
1,,

,,1,,1
2
1),,(

−=+=

−−+=

−−+=

tyxdtyxdtyxd

tyxdtyxdtyxd

tyxdtyxdtyxd

t

y

x

2.38

This is solved as follows:

The optimal updates tyx DDDD δδδδ ,,, are given by

b

D
D
D
D

H

t

y

x −=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

δ

δ

δ

δ

2.39

Where H is the Gauss-Newton approximation to the Hessian, -b is the gradient and D is

the concatenation of d(x,y,t) for every x,y, t into a column vector and similarly so for

tyx DDD ,, . The linear constraints specified in Equation 2.38 are specified by matrix

multiplications as follows:

DGD xx = DGD yy = DGD tt =

2.40

Where tyx GGG ,, are the sparse matrix encoding of the finite difference operator.

Substituting Equation 2.38 into Equation 2.39 produces the following:

b

G
G
G
I

D

G
G
G
I

H

G
G
G
I T

t

y

x

t

y

x

T

t

y

x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

δ

2.41

52

Equation 2.41 is then solved iteratively using the conjugate gradient [75] method. This

algorithm is very powerful and produces excellent results that can almost rival laser

scanning, while maintaining the benefit of being able to sample deformable objects. The

drawback of this algorithm is the intensive computational burden it places on today’s

available hardware.

2.2.6 Stereo Reconstruction on GPUs

This thesis will demonstrate how powerful GPUs can be in the context of stereo

reconstruction. For this reason it was important to summarise some of the advances

made in the field with regards to solving the reconstruction problem on GPUs. Gong

and Yang [27], Wang et al.[85], Moslah et al.[55] and Sin et al.[77] all use dynamic

programming to some extent to solve the correspondence problem. All these instances

use a hybrid-approach where the cost function is implemented on the GPU while the

optimization step is performed on the CPU. Gong and Yang [27] however, implemented

two versions, one that solely runs on the GPU while the other uses both CPU and GPU,

they found that even though their hybrid approach suffered from the severe limitations

of the AGP bus, they achieve superior performance using it. Other examples of

reconstructions performed on GPUs include Chang et al.[14] which uses a multi view

approach combined with graph cuts to reconstruct surfels, as well as Yang et al.[87] and

Zach et al.[88].

Figure 2.9 Taken from Wang et al.[85] illustrating their stereo results

53

2.3 Structured Light Surface Capturing

Another method of acquiring the 3D structure of surfaces is with the use of structured

light. This method illuminates its environment and therefore falls in the category of

active systems. By projecting a pattern of light onto a surface it becomes distorted.

Measuring this distortion enables these systems to infer the geometric properties of the

underlying surface as illustrated in Figure 2.10. A projector can be conceptually

interpreted as the inverse of a camera. Cameras function by taking a ray of light and

projecting it into a pixel, whereas projectors to do the opposite of projecting a pixel into

a ray of light. This fact enables a projector to be modelled with the same parameters as

a camera. By doing so, some of the same fundamental concepts behind stereo

photogrammetry presented in the previous section can be applied, and one can infer the

depth of imaged pixels. Where stereo systems use two cameras, structured light systems

replace the second camera with a projector. The section will briefly describe two types

of structured light systems, the first being systems based on coded structured light while

the second will focus on systems that use phase shifting, it is also worth noting that

these two methods can also be combined to create hybrid systems.

Figure 2.10 Taken from [26] illustrating the distortion created from surfaces on structured light patterns

The projected patterns used by such systems all have a specific structure so that a set of

pixels is easily distinguished by means of a local coding strategy. Therefore locating

such points in the captured image solves the correspondence problem. These systems

trade the ease of solving the correspondence problem inherently difficult in stereo

systems against the added difficulty of calibration, as well as requiring the use of

54

multiple patterns. Such calibration techniques are proposed by Chen and Kak [15],

Zhang and Huang [94] and Park et al.[65].

2.3.1 Coded Structure Light

Coded structured light systems function by projecting a series of patterns that allow a

set of pixels to be easily identified by means of local coding strategy. The 3D shape is

then calculated from the decoded pixels by means of triangulation. The most commonly

used patterns contain stripes as they are easily distinguished. The key to designing a

good system lies in using a coding strategy that enables accurate localisation of these

stripes. The patterns can be combined over time and projected onto a surface

sequentially creating a unique code word for each imaged pixel, therefore making the

localisation trivial. One example of such a pattern presented by Inokuchi et al.[37] uses

a binary Gray code. These Gray codes are resilient to errors since only one bit changes

at a time however using Gray codes requires log2(n) patterns to localise n points. This

can be a substantial number if a high special resolution is required, and doing so makes

the system only useful for capturing static scenes. More recent studies of binary codes

have been published by Rocchini et al.[69], Skocaj and Leonardis [79] and Furukawa

and Kawasaki [23].

Figure 2.11 Example of Gray code pattern taken from [26]

Using a binary code requires a large number of images. By taking advantage of the grey

scale resolution of projectors, Horn and Kiryati [36] present a method for grey level

code selection by combining Gray code and intensity ratio techniques. Alternatives for

55

using coded light while reducing the number of patterns, is to use colour information

(Wang et al.[84], Caspi et al.[13]). Hall-Holt and Rusinkiewicz [30] use space and

temporal coherence. They define a binary coded pattern capable of being used to

capture moving scenes. A complete survey of coded structured light techniques is

published by Salvi et al.[71].

Figure 2.12 Example taken from Furukawa and Kawasaki [23] depicting reconstruction from coded

structure light

2.3.2 Phase Shifting

Phase shifting methods work by projecting periodic patterns onto the surface. The

surface geometry will warp and distort these patterns. One well known method relies on

56

projecting three sinusoidal patterns. The intensity of each pixel (x,y) of the three

patterns are described as:

𝐼! 𝑥,𝑦 = 𝐼! 𝑥,𝑦 + 𝐼!"# 𝑥,𝑦 cos 𝜙 𝑥,𝑦 − θ ,
2.42

Where I1 (x,y), I2 (x,y) and I3 (x,y) are the intensities of each fringe pattern, I0 (x,y) is the

DC component (i.e. background), Imod (x,y) is the modulation signal amplitude, ϕ (x,y) is

the phase, θ is the constant phase shift angle.

Phase unwrapping is the process that converts the wrapped phase to the absolute

phase. The phase information ϕ (x,y) can be retrieved (i.e., unwrapped) from the

intensities in the three fringe patterns:

𝜙! = tan!! 3
𝐼! 𝑥,𝑦 − 𝐼! 𝑥,𝑦

2𝐼! 𝑥,𝑦 − 𝐼! 𝑥,𝑦 − 𝐼! 𝑥,𝑦

2.43

The discontinuity of the arc tangent function at 2π can be removed by adding or

subtracting multiples of 2π on the ϕ’ (x,y):

𝜙 𝑥,𝑦 = 𝜙! 𝑥,𝑦 + 2𝜋𝑘
2.44

Where k is an integer representing projection period. The 3D (x,y,z) coordinates are

calculated based on the difference between measured phase 𝜙 𝑥,𝑦 and the phase value

from a reference plane.

𝑍 =
𝐿 − 𝑍
𝐵 𝑑

2.45

57

Figure 2.13 Taken from [26] shows relationship between phase difference and surface depth

Zhang and Huang [93] used a variation of this technique to produce a real time face

scanner with quite compelling results, as show in Figure 2.14. The advantage of phase

shift methods are that they are fast and require fewer structured patterns than the coded

methods to produce accurate results. The down side of these methods is that they

assume a continuous surface, and do not handle great changes in depth due to phase

wrapping, they also perform badly on surfaces that have a steep gradient.

Figure 2.14 Taken from Zhang and Huang [93]

2.4 Tele-Immersion

With advances in networking, virtual reality and computer vision, researchers are

looking into new innovative ways of increasing social presence in tele-immersive

environments. Tele-immersion seen as the natural evolution to video conferencing, is

based on displaying stereo displays of remote participant users in a shared virtual space.

The eventual ideal goal is to make the physical presence of individuals irrelevant by

58

creating a space that is part virtual part physical that all the users can interact in with

incredible fidelity.

Excellent work has been carried out by various institutions, notably by the

University of North Carolina and the University of Pennsylvania, with their

collaborative work on “The Office of The Future project” [28]. Other notable efforts

include [46]. They point out the various limitations of tele-conferencing systems, where

users lack perception of depth, as well as offer limitations such as eye gaze. In tele-

conferencing systems users are rarely looking directly at each other. This is due to the

fact that the cameras are often offset with regard to the display. This problem can be

overcome with the use of a half-silvered mirror, which is a screen made out of glass that

has the property of reflecting as well as transmitting light. These screens can be

arranged in such a way that allows the camera to be placed directly behind the centre of

projection, thereby creating the appearance of direct eye contact between the users.

There are still further limitations to consider, one of them being motion parallax. Users

of these systems do not experience motion parallax (i.e. when a user moves their heads

they do not see the other user from a different point of view). One possible solution is to

build a 3D model of the users from video feeds as well as track their head movements in

order to correctly display different viewpoints.

Most real-time 3D capturing systems used for tele-immersion fall into three

categories (1) silhouette base methods [29] [4], (2) voxel based methods [33], and (3)

dense stereo reconstruction methods [40] [41].

In [56] a tele-immersive system is described. This system uses 7 digital firewire

cameras. These cameras are used to create different combinations of trifocal stereo pairs

that are used to perform dense depth estimations. However, the computational burden

placed on such a system is great, and therefore certain constraints were imposed on the

choice of stereo algorithm, as well as error metric used for the correlations. As

suggested in [56], using optical flow to further constrain the problem and improve

performance of their algorithms. Please refer to Section 2.4.3 for an overview of stereo

algorithms.

59

Figure 2.15 Results achieved from system described in [56]

2.4.1 Hybrid Stereo-Image Based Rendering

3D reconstruction can be very expensive and as a result, in [45] Kurashima et al.opted

for taking a hybrid approach inspired by image based rendering techniques. The

approach mentioned can be broken down into two main steps. In the first step they find

a sparse proxy geometry of the user, which is then combined in the second step with

view dependent texturing.

Step 1 Build proxy geometry

Initially the foreground object is segmented from the background, the best plane that fits

the foreground is then found. This is achieved by finding the approximate silhouette of

the foreground object. Having calibrated and rectified a stereo pair, the left most

foreground pixel in the left image is matched to the left most foreground pixel in the

right image. This action is performed for the right most foreground pixel as well, and is

repeated for each scan-line. This produces an approximation to the silhouette. Problems

do occur however with foreground boundaries that are almost parallel to the epipolar

lines, to remove outliers a plane is fitted using a least squares method, then the mean

60

and standard deviation of the distances to the plane are found. Any points whose

distance to the plane is greater than 3σ are removed, and the plane is refit.

Figure 2.16 Block diagram taken from [45] outlining step 1

This is performed until convergence, or until a pre-determined number of iterations

have been performed. This process is then followed by a feature tracker such as the

KLT [7] on the foreground, constrained by the epipolar geometry. These features are

then used to find the offsets from the fitted plane. The result is then triangulated,

producing a very approximate geometry used in the view dependent texturing stage.

Figure 2.17 From [45] showing angles between Cameras and the desired synthesised view

Step 2 View dependent texture map

In this stage the proxy geometry is texture mapped by all the images from each camera.

Each vertex in the proxy geometry is assigned a weight for each camera. This weight is

61

then used to blend pixels from different cameras into the resulting texture. The weights

are calculated as follows.

The angle iθ between the camera iC and the desired view D is calculated. The

computation of the blending weight iw is given by the following equations.

∑
−

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅

−
=

1

0

2

2

2
exp

N

j j

i
i

i
i

w
w

w

w






σ
θ

2.46

Where σ is a constant value for the limit maximum angle, if the angle exceeds this value

it is assigned a weight of zero.

2.5 Conclusion of Literature Review

As the literature review has demonstrated using stereo cameras with structured light is a

very powerful tool for producing 3D models. However, there still seems to be a wide

gap between algorithms that can be performed in real-time and offline algorithms, when

it comes to output quality. The advantages stereo algorithms have over purely structured

light systems, are as follows: They can handle greater depth variations, they tend to

produce superior results with oblique surfaces, they can be made to work with or

without structured light, they solve the correspondence at every frame even when using

a space time window and therefore can potentially capture at higher frame rates. All of

these advantages are a compelling reason to use the stereo approach. However these

advantages come at the cost of having to solve a more difficult correspondence problem.

The real-time solutions of the past tend to produce less compelling results when

compared to the much more computationally expensive iterative methods.

The motivation behind the research carried out in this report is to try and bridge

this gap. What are the compromises currently being made with regards to real-time

stereo systems, and are they the correct ones? Are there alternative compromises

possible to achieve the goals of real-time stereo in the context of tele-immersion?

62

63

 Chapter 3

Dynamic Programming and Structured Light
The objective of this chapter is to determine the suitability of various dynamic

programming algorithms for stereo reconstruction with the target application of tele-

immersion. These types of algorithms were chosen because of their computational

performance, the fact that they treat scan-lines individually and therefore can potentially

be made to run in parallel with relative ease, and finally because they also contain

mechanisms to handle occlusions. Bearing in mind these motivations the following

questions were posed:

• Are these algorithms suitable for active stereo?

• What is the impact of different structured light patterns on these algorithms?

• Are there any benefits in using a space-time support region for the dissimilarity

functions?

• Which algorithm performs best in the following scenarios: with and without

structured light, with and without a space-time window?

• What is the most suitable cost function for different algorithms and patterns?

• Given that these algorithms implicitly assume fronto-parallel surfaces, how do

they perform when reconstructing a head shape which violates these

assumptions?

This chapter will describe the contributions made with regard to extending, developing

and analysing stereo systems benefiting from structured light while using a variety of

different DP algorithms reviewed in Section 2. The reasoning behind choosing DP

algorithms was that they are relatively computationally cheap, and have proven to be

applicable to real-time systems. They also contain some mechanism for handling

occlusions and because they optimize each individual scan-line separately, they can be

64

easily adapted to run on parallel architectures. However, this comes at a cost of

introducing certain inconsistencies and creating stripping artefacts due to the fact they

optimize each scan-line individually. This has led to the further development of two

pass dynamic programming algorithms [62] that introduce inter scan-line consistency

constraints in an attempt to eliminate these artefacts. By using structured light it will be

shown that these stripping artefacts are no longer an issue.

However, these algorithms have other limitations. One of these is the

assumption of the monoticity constraint as described in Chapter 2. It will be shown for

the purpose of reconstructing a human head or generally convex objects, that this is not

a concern. Dynamic programming algorithms also have the advantage over the winner-

take-all type (WTA) and scan-line optimization (SLO) algorithms by having a

mechanism that deals with occlusions. Another one of their limitations is caused by

their use of symmetric rectangular support regions or windows when computing the cost

function. This implies fronto-parallel surfaces and is indeed violated when

reconstructing objects such as the human head.

These DP algorithms were initially developed and tested on passive scenes, not

artificially illuminated ones, using structured light. It was therefore necessary to

evaluate these algorithms in the context of a capturing system using structured light and

that motivated the contributions made in this chapter. The main purpose was to discover

the implication of using structured light with the following dynamic programming

algorithms Criminisi et al.[19], Birchefield et al.[8] and traditional DP, which are all

described in Chapter 2.

In order to evaluate and determine the suitability of these algorithms I pose the

following questions:

How well are these algorithms suited to solving the stereo correspondence

problem?

Does using structured light improve their performance?

What are the implications of choosing different cost functions with regard to

different illumination patterns?

Can these algorithms be improved by extending the support region of their cost

function into the time domain?

Are these algorithms suitable for real-time reconstruction of the human face?

65

To answer these questions this section is broken down into the following sub-

sections.

Figure 3.1 Illustration of capturing system

Section 3.1 will describe a capturing system consisting of two stereo cameras and

projector capable of projecting various structured light patterns. The light patterns used

were temporally varying and it was therefore essential to synchronize the cameras to the

projector. This synchronisation was achieved with a circuit using an Amtel AVR

microprocessor [2] development board. In order to evaluate these various algorithms

and their extensions into the space-time domain as well as various other modifications

described, a true disparity map would be necessary for comparison. Due to the

difficulties in obtaining such a map, a simulation was developed whose details will be

given in Section 3.2. The practical implications of using structured light as well as the

implementation details of the various algorithms are described in Section 3.3. The

experiments carried out will be reviewed in Section 3.4 as well as their results in

Section 3.5. The conclusions will then be summarised in the final section of this

chapter. In essence this chapter will explain and discuss the contributions carried out in

[57] and [58].

66

3.1 Experimental Setup and Sample Acquisition

In order to acquire image samples two Balser A602fc cameras were used. These

cameras were chosen because they are capable of very high capture speeds (100fps)

while their resolution is adequate (640x480). They also use IEEE 1384 interfaces which

tends to be more reliable than USB and are capable of high bandwidth (400 mb/s).

These cameras also possess the feature of being able to be triggered via their own

propriety interface. The structured light patterns were projected using a BenQ DLP

projector capable of running at 800x600 @ 60Hz. Ideally one would use infra-red light

as it is not perceivable to the human eye and is less obtrusive. One should note that the

DLP projector works using a CMOS IC consisting of an array of micro reflective

mirrors that can be switched electronically from the projector circuitry. This array

represents each pixel and reflects a light source through the projector lens. The intensity

of each pixel is determined by the amount of time the micro mirror is reflecting light,

while the pixel colour is produced by a rotating disc containing three filters, one for

each red green and blue colour component. This disc is placed in between the projectors

light source and the array of micro mirrors/ By synchronizing this rotating disc with the

switching of the mirror array, the projector is able to project pixels of varying intensity

and colour spectrums. This design makes it convenient to modify a DLP projector by

replacing the light source with one capable of emitting infrared light and switching the

colour filters with filters that only allow infra-red light to pass (such as a piece of

exposed film). The outcome would be a fully functional infra-red projector capable of

projecting different infra-red light patterns of varying intensity as demonstrated in [17]

and [90]. For the purpose of evaluating and extending the algorithm to solve the stereo

correspondence problem, as presented in this and following sections, it was deemed

unnecessary to make such modifications.

To appropriately use dynamically changing structured light patterns with two

cameras for stereo reconstruction, the cameras were synchronized with each other, and

in order for the cameras to capture one unique structured light pattern they were

synchronised to the projector. The synchronization was achieved with custom

electronics specifically developed for this purpose. A circuit was developed that would

take as input the VGA horizontal sync signal as well as the two camera trigger ready

signals. These were regulated to match the specification of the AVR microprocessor and

fed into the AVR input channels. Then a relatively simple program was run on the AVR

67

that checks the horizontal synch and make sure the cameras were ready to be triggered

and if so would send an output trigger to both cameras.

This setup enabled the acquisition of stereo pair images that both contained the

same structured light pattern and therefore eliminated the horizontal synch mismatch

artefacts produced when the cameras were not synchronised. This is crucial if using a

structured light pattern that is changing rapidly. Another option would be to synchronize

the cameras in software. However, this has many limitations, and in order to produce

results with the lowest possible latency, rendering the hardware options are being the

only practical one.

3.2 Simulation of Capturing System

The previously described capturing system was also simulated in order to produce

synthetic data with a known true disparity that could then be used to evaluate the

algorithms and their respective performance. This simulation was done in Autodesk 3D

Studio Max [34]. A scene was created containing a 3D head with the same structured

light pattern applied as a projective texture. The scene was then rendered from the two

different viewpoints representing the left and right cameras, a number of times with and

without a variety of different structured light patterns. A calibration object was also

rendered in the synthetic setup, which allowed the use of the same calibration toolkit

with the simulated images, than that used with the real sample images. From the

synthetic images it was possible to render the exact depth map for each camera view.

This precise synthetic depth map was then used for comparisons with the ones produced

by the different algorithms.

The synthetic data is only an approximation of the capturing system, as the real

system contains acquisition noise and lens distortion that was not simulated. This data

did prove useful in providing a benchmark for the various dynamic programming

algorithms. The following figures illustrate some of the samples obtained with the real

synchronised cameras as well as simulated synthetic images. Figure 3.2 illustrates some

of the synthetic images produced. However as shall be described in Section 3.5, these

images do not simulate the level of noise commonly found with real images and

therefore they are not perfect for evaluating these algorithms.

68

Figure 3.2 Synthetic scene rendered from left camera using a Gray code and noise pattern.

Figure 3.3 Real images acquired from left camera with and without Gray code pattern

Figure 3.4 Real images acquired from right camera with and without Gray code pattern

3.3 Implementation

This section will cover the implementations of the stated techniques as well as the

variations that had to be made in order for the algorithms to work with structured light

and be extended into the time domain. A possible framework for space-time stereo

using structured light described in [91] motivated the extension of the implemented

algorithms into the space-time domain. However the space-time support windows were

69

not sheared and skewed. The results of these various implementations will be presented

in Section 3.5.

Figure 3.5 Calibration image samples

3.3.1 Camera Calibration

Section 2.2 demonstrated that the stereo correspondence problem can be reduced to a

1D search problem using the epipolar constraint. This was achieved by firstly

calibrating the stereo cameras. This calibration process only needs to be completed

once, as long as the position of the cameras stay fixed relative to each other. The

outcome is to discover the camera’s intrinsic and extrinsic parameters. In the case of a

simple pinhole camera this transformation from 3D world coordinates to 2D image

space coordinates can be described by Equation 3.1 as follows

𝑠∙𝑚 = 𝐾 𝑅 𝑡 𝑀

3.1

Where a 2D image point is denoted by 𝑚 = 𝑢, 𝑣, 1 !. A 3D world point is denoted by

𝑀 = 𝑋,𝑌,𝑍, 1 !, s is an arbitrary scaling value while (R, t) is a rotation and translation

70

from world coordinates to camera coordinates and usually referred as the extrinsic

parameters. The matrix K defined in Equation 3.2 and refers to the camera’s intrinsic

parameters that define focal length, centre of projection and skew.

𝐾 =
∝ 𝑐 𝑢!
0 𝛽 𝑣!
0 0 1

3.2

Solving the parameters from Equations 3.1 and 3.2 was achieved by solving an over

determined linear system formed by a known set of corresponding point in the 3D world

coordinates and the 2D image space. This was achieved by imaging a calibration object,

in this instance, the commonly used chequered board pattern was used as illustrated in

Figure 3.5.

The Equation 3.1 is transformed into the linear system (Equation 3.3) by

Equation 3.2 and can be solved using SVD.

𝐴 ∙ 𝑥 = 𝑏

3.3

Where 𝑥 represents the vector of parameters.

This method will usually perform poorly, while at the same time care must be

taken to normalize the data (i.e. the coordinates of feature points). Alternative methods

that tend to produce superior results often rely on non-linear optimization methods

while also augmenting the camera model to support forms of radial distortion. These

methods usually start off by solving a linear system and use these results as an

initialisation step for more robust maximum likelihood solvers usually based on the

Levenberg Marquardt method. For the experiments presented throughout this thesis a

Matlab toolkit developed by Bouguet et al.[10] which was loosely based on an

algorithm created by Zhang et al. [91] was employed, which uses such non-linear

optimization techniques.

71

Figure 3.6 Image rectification

Multiple images of the calibration objects positioned at different orientations were taken

from both cameras. The resulting two sets of images (Figure 3.5) were then used for

calibration, which was performed in two stages, the first being calculating the camera’s

intrinsic parameters or projection matrix, then followed by computing the extrinsic

parameter defined as rotation and translation transformation relating the coordinate

frame of one camera to the other.

Once the cameras are calibrated and their parameters are known, two rectifying

homographies can be computed. Each homography is a projective transformation that

warps the image of each respective camera so that each scanline of the image becomes

parallel to the epipolar lines of the stereo rig. This is equivalent to re-projecting the

images of both cameras onto the same plane with the added constraint of each set of

scan-lines from both cameras being matched to each other. This reduces the

correspondence problem to a 1D search problem (i.e. each pixel in one cameras frame

of reference will have its corresponding pixel in the other camera’s frame on the same

scan-line given no occlusions). The geometric interpretation of these two

transformations is illustrated in Figure 3.6 and can be represented by a 3x3

transformation matrix. There are many solutions to the rectifying homographies. Ideally

one would find a solution that also minimizes the amount of image distortion in both

cameras. One such technique is presented by Zhang et al.[95]. Another simpler and also

effective technique is presented by Trucco et al.in [24]. For the purpose of the

experiments presented in this thesis the Bouguet et al.[10] Matlab toolkit was also used

72

to compute the rectifying transformations that could then be trivially applied as a

projective texture. The difference between the captured and rectified images of both

cameras is illustrated in Figure 3.7.

Figure 3.7 Top row captured images, bottom row rectified images

Figure 3.8 Illustrates the initial Gray code (a) that was subsequently shuffled in the space to domain to

produce the stripe pattern (b) used in the structure light reconstructions

73

3.3.2 Structured Light

The creation of the structured light patterns was achieved with two sets of patterns

containing eight frames each. The first set was generated as described in [91] using a

16bit reflected Gray code [16] that was subsequently shuffled to produce high frequency

change in both the spatial and temporal domains as represented in Figure 3.8. This

produced eight frames containing stripes four pixels wide that were then smoothed with

a Gaussian filter. The properties of this pattern are that it has high frequency changes in

both the temporal and space domain and therefore maximizes the entropy across the

space time support region. This helps reduce ambiguity when solving the

correspondence problem. These properties were also achieved with a second set of

patterns, by approximating white noise using an out of tune TV (approximation of white

noise) signal followed by a low pass filter. These patterns were pre-computed offline

and then stored as OpenGL [76] textures and applied to a textured quad.

These patterns were subsequently projected using an Infocus DLP projector at a

resolution of 800x600 and cycled at the camera capture rate. The projector could have

been driven by the second VGA output of the capturing machine. A superior alternative

was to use a secondary computer to drive the projector, thereby conserving the

computational resources of the data acquisition and reconstruction machine. The

projected patterns are illustrated in Figure 3.9.

74

Figure 3.9 Left column 8 noise patterns, right column 8 shuffled stripe patterns

3.3.3 Dynamic Programming CPU

Initially, three core DP algorithms along with their extensions into the time domain and

the use of different sets of cost functions were evaluated for their qualitative results.

This did not require optimal performance in terms of computational speed and therefore

un-optimized CPU implementations were used. A naïve DP algorithm described in

Chapter 2 was implemented. The OpenCV [12] implementation was used for the

Birchfield et al. [8] DP algorithm and modified to support various cost functions and

extended into the time domain. After experimentation with the OpenCV implementation

it was found that the structured light patterns broke some of the assumptions made in

the post-processing steps of Birchfield et al. [8] described in Section 2.3. The striped

structured light pattern removes intensity variations along the y-axis and therefore one

of the stopping criteria for the region growing of the disparities along the y-axis is

violated. These post processing steps were subsequently removed.

The Criminisi et al. [19] DP algorithm was implemented from scratch without

using Gaussian smoothing of the dissimilarity matrix. The equivalent can be achieved in

image space by blurring the images with a Gaussian kernel or defocusing the lenses of

the cameras slightly. Support for SSD dissimilarity measure and normalized cross

correlation over spatial and temporal windows was added to both the Birchfield et al.[8]

and Criminisi et al.[19] implementations. The implementation of these algorithms was

75

not optimised, and a lot of redundant calculations were performed in order to conserve

memory. Thus the performance was not real-time in some cases.

It should be noted that all the algorithms presented in this paper can be made to

run in real-time on high-end workstations with the use of optimisation techniques, in

combination with the SIMD instruction set. One such technique that is presented in

Section 6.1 is to leverage the power of GPUs and multi core processors to create a

hybrid implementation. This allows the cost function part of the computations to be

performed on one or more GPUs while the multiple threads each running on its own

processor core to compute the optimization part. Further optimizations to the Criminisi

et al.[19] algorithm were explored and are presented in Section 6.2.

These algorithms were selected because of their relatively low computational

complexity when compared to other stereo algorithms and the focus was to determine

their suitability for use with structured light and real-time applications. Finally, the best

disparity map created by the Criminisi et al.algorithm using stripe pattern with the SSD

cost function, was used to create 3D surface using two different triangulation

algorithms. Figure 3.12 shows a surface reconstructed from the true disparity values of

the synthetic data. Figure 3.18 was created using Delaunay et al.[21] triangulation taken

from the depth map created using the Criminisi et al.[19] algorithm on the real images

dataset.

3.4 Experiments

Given that the dynamic programming algorithms described in Section 2.3, and further

developed in this chapter were not originally designed with structured light in mind, it

was therefore necessary to evaluate their performance with the capturing system

described in Section 3.1 and its simulation in Section 3.2 using the patterns described in

Section 3.3.2. It was also necessary to determine if these patterns improved results and

whether there was a correlation between the patterns used and the dissimilarity measure

or cost function. Although the original designers of these dynamic programming

algorithms chose a particular cost function, would alternatives be more suitable, and

what impact would extending these functions across into the time domain have on the

76

results? These algorithms were also designed with real-time applications as a goal,

however, extending them into the time domain would alter their computational burden.

The naïve DP algorithm described in Section 2.2 behaved so poorly that it was

quickly dismissed and detailed experiments were carried out as described below only on

the Criminisi et al.[19] and Birchfield et al.[8] algorithms. A polystyrene head was used

for the experiments on real images shown in Figure 3.15 as well as images of a real face

as shown in Figure 3.3. The synthetic images were created using 3D Studio Max as

shown in Figure 3.2. Both algorithms were tested on real and synthetic images using

both the stripe and noise patterns for structured light. The following summarizes the

various cost functions tested with each algorithm.

The Birchfield et al. [8] algorithm was tested using the following cost functions:

• Birchfield Cost Space Domain

• Birchfield Cost Extended into Space-Time Domain

• SSD Space Domain

• SSD Space-Time Domain

• Cross Correlation Space Domain

• Cross Correlation Space-Time Domain

The Criminisi et al. [19] algorithm was tested using the following cost functions:

• SSD Space Domain

• SSD Space-Time Domain

• Cross Correlation Space Domain

• Cross Correlation Space-Time Domain

The results for real images were evaluated qualitatively by examining the disparity

maps. The results for the synthetic images were evaluated by calculating the RMS (root

mean square) error (measured in disparity values) between calculated disparities and

true disparities, as well as the percentage of incorrectly (within error threshold)

matching pixels against the true disparity values. These qualitative results will be

examined and summarised in the following Section 3.5.

77

3.5 Qualitative Results

Table 3.1 shows the RMS between the synthetic images and the true disparity. Figure

3.13 shows the true disparity map for comparison. In all cases the Criminisi et al.[19]

algorithm produces superior disparity values containing fewer errors.

Figure 3.12 shows a graph representing the ratio of pixels whose error is below a

certain threshold. Again the results indicate that the algorithm of Criminisi et al.[19]

produces more precise disparity estimates. One can also conclude that the choice of

algorithm has a greater impact than the choice of cost function or structured light

pattern. In most cases using structured light improves these algorithms. Extending the

support region into the space-time domain can further enhance these results. Choosing

the appropriate cost function is quite strongly dependent on the structured light pattern

used in conjunction with the system. When using the stripe pattern the cross correlation

cost function is not ideal. Much better results are obtained using a low pass filtered

noise pattern in conjunction with cross correlation. However, these results are limited to

synthetic scenes. Figure 3.13 shows the 3D reconstruction results based on the synthetic

images using Criminisi et al. [19] algorithm while Figure 3.17 demonstrates the

performance on real-images. Using these disparity maps, 3D models are produced as

shown in Figures 3.15, 3.16, 3.18.

78

Algorithm Cost Function Light Window RMS

BirchCrossNoise3x7x16 24.411

BirchCrossNoise3x7 24.3297

BirchCrossNolight3x7 25.9128

BirchCrossStripe3x7x8 25.3448

BirchCrossStripe3x7 25.2588

BirchCrossStripeNoise3x7x16 25.918

BirchInterpNoise8 32.5587

BirchInterpNoise 32.5394

BirchInterpNolight 25.9111

BirchInterpStripe8 26.8512

BirchInterpStripe 28.2637

BirchSSDNoise3x7x8 23.5116

BirchSSDNoise3x7 24.3733

BirchSSDNolight3x7 23.4193

BirchSSDStripe3x7x8 22.8373

BirchSSDStripe3x7 25.4086

BirchSSDStripeNoise3x7x16 23.7173

CrimCrossNoise3x7x8 12.5939

CrimCrossNoise5x7 14.6616

CrimCrossNoiseStripe3x7x8 12.8042

CrimCrossNolight5x7 12.8788

CrimCrossSSDTest3x7x8 11.6188

CrimCrossStripe3x7x8 12.5563

CrimCrossStripe5x7 18.3184

CrimSSDNoise3x7x8 11.6739

CrimSSDNoise3x7 12.2769

CrimSSDNoiseStripe3x7x16 12.3845

CrimSSDNolight3x7 13.207

CrimSSDStripe3x7x8 11.4531

CrimSSDStripe3x7 11.4322

Table 3.1 RMS of errors between all algorithm’s disparity values and true disparities

0

0.2

0.4

0.6

0.8

1

1.2

Error 1 Error 2 Error 5 Error
10

Error
15

Error
30

Error
50

Error
100

BirchCrossNoise3x7x16

BirchCrossStripe3x7x8

BirchSSDNoise3x7x8

BirchSSDStripe3x7x8

CrimCrossNoise3x7x8

CrimCrossStripe3x7x8

CrimSSDNoise3x7x8

CrimSSDStripe3x7x8

Figure 3.10 Ratio of pixels with error below threshold indicated in columns

79

Figure 3.12 represents a 3D surface created using the disparity estimates from the

Criminisi et al. [19] algorithm with the cross correlation cost function applied to a

support region of 3 by 7 by 8 pixels run on synthetic images containing a projected noise

pattern. This can be compared to the equivalent created using the true disparity values.

Figures 3.15, 3.16 and 3.18 show analogous results for real images.

80

Figure 3.11 Left true disparity of synthetic head, Right result of Criminisi et al.[19] algorithm using cross

correlation cost function over 3x5x8 space time window with noise pattern (synthetic data)

Figure 3.12 Delaunay Triangulation of true and computed disparities from Figure 3.12 (synthetic data)

Figure 3.13 Comparison of Birchfield et al.and Criminisi et al.[19] algorithms (synthetic data)

81

Figure 3.16 Non Smooth Delaunay triangulation (real data)

Figure 3.14 Sample of real captured images of polystyrene

head with stripe and noise (real data)

Figure 3.15 Smooth Delaunay triangulation based on

Criminisi et al..algorithm with a space-time window

on images from Figure 3.16 (real data)

82

Figure 3.17 Sample of eight real captured images of a head using the striped pattern (real data)

Figure 3.18 Delaunay triangulation based on Criminisi et al. [19] algorithm with SSD cost function on

images from Figure 3.19 using a space time window using striped pattern (real data)

83

3.6 Conclusion

This chapter has shown that structured light can be a powerful tool for the improvement

of the DP algorithms described in Section 2. The results show that the algorithm of

Criminisi et al. [19] was superior for our test sets. We also find that when using the

cross correlation cost function superior results are obtained with the structured light

pattern generated from noise. In [58] it was found that generally the SSD cost function

with the striped structured light performs better than the cross correlation cost function

with the simulated input. However, these results were taken from synthetic images and

cannot serve as an accurate measure of real world performance. After further

experimentation with real images it became more apparent that the cross correlation cost

function is more robust against noise. It has also been shown that using structured light

eliminates some of the commonly associated stripping artefacts usually common to DP

based algorithms.

Some of the benefits in using temporal information when evaluating

dissimilarities between pixels have been highlighted. It has also be demonstrated that

the superior dynamic programming algorithm developed by Criminisi et al.[19] and

subsequently extended into the time domain in this section can be made to run in real-

time using a hybrid CPU/GPU scalable implementation that is both parallel across

CPUs and GPUs in Section 6.2.

One apparent limitation of structured light techniques is that they make it

difficult to capture texture information. However, DLP projectors could be modified to

project infrared light as suggested in Section 3.1. This would potentially allow a system

to combine cameras with different filters and also capture texturing information, thereby

eliminating the apparent limitation of using structured light. Another serious limitation

is the fact that the disparities are calculated on a discreet level (i.e. disparities are

measured in pixel values). Although this may be adequate for some applications, if one

is using them to reconstruct 3D geometry this can be very limiting, as the range of

values is very small and they produce 3D models that look somewhat blocky (see Figure

3.20).

The blocky artefacts can of course be removed by using a smoothing function

such as parabola fitting however this results in a smooth mesh that is somewhat lacking

in detail. One way of improving these DP algorithms is to use deformable support

regions thereby eliminating the assumption of front-to-parallel surfaces. To achieve this,

84

the DP algorithms would have to become multi-pass and their computational

complexity would increase substantially. Much better alternatives that combine the

benefit of warped support regions with sub-pixel disparity estimates will be discussed in

Chapter 4.

85

 Chapter 4

Space-Time Stereo
The previous chapter demonstrated how dynamic programming can solve the stereo

correspondence problem using structured light to produce pixel level disparity maps

accurately in real-time. Although this per pixel map can further be refined by fitting a

polynomial surface to the data, or more commonly by fitting some parabolic function,

the results lack high frequency details. One alternative approach is to formulate the

correspondence problem as a least squares non-linear optimization problem. This

formulation was first proposed by Lucas and Kanade [51]. Their initial formulation

targeted the stereo correspondence problem and optimized one parameter per pixel,

namely the disparity along the epipolar lines or in the case of rectified images, a simple

translation across the x axis of the stereo pair images. This method was then

subsequently adapted to solve the optical flow problem by extending it to optimize the

parameters of an affine warp. For a more detailed explanation of this extension readers

are referred to Chapter 2 as well as [5]. Most of these developments target the optical

flow and structure from motion problem as opposed to the stereo correspondence.

Although the latter problem could be view as a subset of the former problems, there are

certain subtle differences. The calibrated stereo correspondence problem contains

certain constraints that make solving the pixel correspondence using a generic affine

warp somewhat redundant. The general affine warp contains a translation in both x and

y axes in image space. As shown from Section 3.3 by rectifying the stereo images it is

no longer necessary to solve the disparity in the y axis. Another redundant affine warp

parameter is the rotation, this would not improve the solution. However, introducing

scaling and shearing properties to the support region would improve the solution. As

opposed to having a symmetrical support region as originally proposed by Lucas and

Kanade [51], which assumes forward facing parallel surfaces, scaling the support region

along the x-axis would take into account the gradient of surface along the x axis and

86

shearing the support region somewhat compensates for the gradient along the y axis.

This is visualised in Figure 4.1.

Figure 4.1 Illustration of the effects of surface gradients on the support region

These properties along with the idea of using temporal information led to the

development of an algorithm first proposed by Zhang et al.[91] which forms the basis of

the work presented in this chapter.

The motivation behind this chapter was to look at the effect of various non-

linear optimization algorithms in the context of space-time stereo. The focus was to

examine which algorithms converged more quickly and to find the trade-off between the

number of iterations necessary for convergence and cost per iteration.

Section 4.1 describes the correspondence problem formulated as a local non-

linear optimization problem using the space time warp function as described in Section

2.3 as opposed to just optimizing the parameters of affine warp as is usually the case.

This section demonstrates how different solvers such as conjugate gradients,

Levenberg-Marquardt and some of their variations can be used. Non-linear

optimization is a very broad field of research. However, the purpose of this work is to

primarily focus on the algorithms that find local minima, as they can be initialized with

the results obtained from the previously described modified three plane DP algorithms

presented in Chapter 3 as opposed to the more traditional DP algorithm used by Zhang

87

et al[91]. Other differences between the work carried out in this section in comparison

to the work presented in [91] also include running these algorithms on a dataset

containing not only the striped structured light patterns but also the noise patterns

presented in Section 3.3.2, modifying the solvers to use a scaled initialization and

therefore turning these methods into multi-scale methods, and adding a simple

Tikhonov [86] regularization term and therefore removing certain artefacts, without

incurring the computational cost of the Levenberg-Marquardt method. The various

implementation details of these methods are presented and discussed in Section 4.3.

Section 4.4 describes the experiments that were conducted. This is then followed by the

results (Section 4.5) and the conclusions that can be drawn from them, in Section 4.6.

4.1 Space-Time Stereo as a Non-Linear Optimization Problem

This section demonstrates how the space-time stereo algorithm [91] is solved using an

extended (into the time domain) version of the Lucas and Kanade [51] algorithm (i.e.

Gauss-Newton) for the specified warp function proposed by Zhang et al.[91] using a

variety of solvers such as conjugate gradients.

The Gauss-Newton method seeks to optimize a parameter vector p by

minimizing the sum of the squared error r, which are all functions of p defined as

follows:

()∑=
i

i prpE 2)(

4.1

Its starts with an initial value 0p and iteratively minimizes E by updating

kkk ppp δ+= −1 pδ is computed firstly by taking the first order Taylor series

approximation to E:

88

() ()

() () () ()

() () () () () () ()

() pHppgcppE

pp
p
r

p
p
r

ppp
p
r

prprppE

pp
p
r

prppE

pprppE

TT
k

i

T
k

i
k

iTT
k

i
kikik

i

T
k

i
kik

i
kik

δδδδ

δδδδ

δδ

δδ

++=+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂

∂
+

∂

∂
+=+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+≈+

+=+

−

−−−−−−

−−−

−−

∑

∑

∑

2

2

1

1111
2

11

2

111

1
2

1

4.2

where:

()

() ()

() ()∑

∑

∑

−−

−−

−

∂

∂

∂

∂
=

∂

∂
=

=

T
k

i
k

i

i
kik

i

i
ki

p
p
r

p
p
r

H

prp
p
r

g

prc

11

11

2
1

4.3

To minimize E the optimal update is:

gHp 1−−=δ

4.4

In the context of space-time stereo algorithm presented by Zhang et al.[91] the cost

functions becomes:

E(p)= 𝐼! 𝑥,𝑦, 𝑡 − 𝐼! 𝑥 + 𝑑,𝑦, 𝑡
2

x,yt

4.5

Where

𝑑 = 𝑑 + 𝑑! 𝑥 − 𝑥! + 𝑑! 𝑦 − 𝑦! + 𝑑!(𝑡 − 𝑡!)

4.6

In the case of dynamic scenes or for quasi static scenes where

𝑑 = 𝑑 + 𝑑! 𝑥 − 𝑥! + 𝑑! 𝑦 − 𝑦!

4.7

The optimization parameters p become 𝑑,𝑑! ,𝑑! ,𝑑! and these represent the disparities

and their gradient in the x, y, and t axes. The terms x, y, t represent the coordinates of

89

the support region (or window) and 𝑥!,𝑦!, 𝑡! represent the centre of that region. By

minimizing Equation 4.5 the space-time stereo framework presented by Zhang et al.[91]

is effectively also minimizing a warped support region extended into the time domain.

The warp of the support region contains a translation, scaling, skew in the x-axis as well

as a shearing in the time domain represented by the first, second, third and fourth terms

of Equation 4.6. This can also be visualized in Figure 4.2.

Figure 4.2 Representation of: (a) symmetrical warp, (b) quasi-static warp equation (4.7) & (c) dynamic

warp equation (4.6) taken from Zhang et al.[91]

The cost function used for a pixel at (x,y,t) using a support region centred around

000 ,, tyx , can be rewritten in the following notation

() () []
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

−
−−= ii

i

i

i
tyxiriiili ty

tt
yy
xx

ddddxItyxIpr ,,

1

,,,,,

0

0

0

4.8

With partial derivatives as:

r

i

i

ii I
x

tt
yy
xx

p
r

∂

∂

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

−
=

∂

∂

0

0

0

1

4.9

90

Solving this problem using the standard Gauss-Newton method is achieved by

initializing the parameter d with the results from dynamic programming algorithm while

setting the other parameters to zero. In Zhang et al.[91] a simple DP algorithm was

used. However, in the results presented in Section 4.5 the modified Criminsi et al.[19]

algorithm presented in Section 3 was used. This is followed by computing the Jacobian

matrix using Equation 4.9. The Jacobian is then multiplied with its transpose to produce

the Gauss-Newton approximation to the Hessian. The Jacobian is also multiplied with r

to produce the gradient vector. The resulting linear problem represented by Equation 4.4

can then be solved using a variety of linear solvers such LU decomposition. However,

since the Hessian is symmetrical it is more efficient to use Cholesky decomposition in

this particular case, the solution of which produces the optimal update in the following

iteration until convergence or some predetermined error threshold is reached.

One alternative approach to the Gauss-Newton algorithm is to replace:

() rJpJJ
gpH

TT −=

−=

δ

δ

4.10

With a damped version

() rJpIJJ TT −=+ δλ

4.11

The (non-negative) damping factor λ is adjusted in every iteration. If the reduction of

the sum of r is rapid a small value for λ is used therefore bringing the solution closer to

the Gauss-Newton. If an iteration gives insufficient reduction of the residual λ is

increased, bringing the solution closer to the steepest descent direction. This algorithm

is referred to as the Levenberg-Marquardt algorithm [49].

Yet another alternative to solving Equation 4.4 is to use the iterative conjugate-gradient

[75] algorithm as opposed to explicitly inverting the Hessian matrix. Suppose one

wishes to minimize a function f which is roughly approximated as a quadratic form:

91

xAxxgcxf ⋅⋅+⋅−≈
2
1)(

4.12

Starting with an arbitrary initial vector 𝑔! and letting ℎ! = 𝑔!, the conjugate gradient

method constructs two sequences of vectors from the recurrence:

iiii hAgg ⋅−=+ λ1 iiii hgh ς+= ++ 11

4.13

The vectors satisfy the orthogonality and conjugacy conditions:

0=⋅ ji gg 0=⋅⋅ ji hAh 0=⋅ ji hg ij <

4.14

The scalars iλ and iς are given by:

ii

ii
i hAh

hg
⋅⋅

⋅
=λ

ii

ii
i gg

gg
⋅

⋅
= ++ 11ς

4.15

Given the Hessian matrix A one can solve the system by iteratively applying line

minimizations along the conjugate directions ℎ!. It is however possible to solve without

the need of the Hessian matrix A as follows.

()000 xfhg −∇==

4.16

Find α that minimizes)(iii hxf α+ ,

()
()

iiii

ii

iii
i

ii

ii
i

ii

iiii

hgh
gg
ggg

or
gg
gg

xfg
hxx

111

11
1

11
1

11

1

0,max

+++

++
+

++
+

++

+

+=
⎭
⎬
⎫

⎩
⎨
⎧

⋅

⋅−
=

⋅

⋅
=

−∇=

+=

ς

ςς

α

4.17

92

The choice of 1+iς is between the Fletcher-Reeves and the Polak-Ribier variation of the

algorithm. The line minimization can be performed with various algorithms such as

Newton-Raphson, Secant, Bracketing or equivalents.

4.2 Space-Time Stereo Implementation

The sample acquisitions were performed using the same setup described in Section 3.2.

The various optimization algorithms were implemented in Matlab. The Conjugate-

Gradient algorithms were implemented using both the successive Newton-Raphson line

minimisations as described [68] along with the algorithm described in Section 4.1 using

Gauss-Newton approximation to the Hessian. The Gauss-Newton algorithm that

explicitly inverts the Hessian matrix was also implemented. The same cost function

(Equation 4.5) described in Section 4.1 was minimized with these algorithms and also

minimized using the Matlab optimization toolbox [53].

All these implementations used a support region of 5x5x8 pixels unless specified

otherwise. The vectors of parameters 𝑝 = 𝑑,𝑑! ,𝑑! ,𝑑! were initialized using the results

from the Criminisi et al.[19] algorithm that was modified to support a space-time

support region with the normalized SSD cost function. The structured light patterns

used were both the shuffled Gray code and noise pattern presented in Section 3.3.

Certain Matlab operators are very well optimized. This library is outperformed by

commercially available libraries such as the Intel Maths Kernel library [38]. However,

other Matlab operators and built in functions perform very poorly. One such example is

the bilinear interpolation function. This function’s performance was so poor that an

alternative was implemented.

4.3 Space-Time Stereo Non-Linear Optimization Experiments

The motivation behind the experiment described in this section was to find the best

performing algorithm in the frame work of space-time stereo, as a non-linear

optimization formulation. This formulation used the warp function and shuffled Gray

code specified by Zhang et al.[91], as well the noise structured light pattern.

Performance was measured in terms of the rate of convergence and the qualitative

results of each non-linear optimization algorithm. It was also necessary to determine

93

whether or not the advantages in quality attained by this formulation warrant the added

computational burdens. The following is a list of criteria that the experiments conducted

in this section were designed to answer.

• The rate of convergence of the various non-linear optimization algorithm

described in Section 4.1

• The qualitative impact of using different support region or window sizes

• The qualitative impact of terminating the non-linear optimization before

convergence

• The qualitative impact of using the noise structured light pattern as

opposed to the stripes suggested by Zhang et al.[91]

• The qualitative impact of using a lower resolution disparity map to

initialise the non-linear optimization step and therefore potentially speedi

up the algorithm

• The qualitative impact of Tikhonov regularization.

• Determining the relative computational cost of the various subroutines in

each optimization algorithm.

All the data used in following experiments was captured using the capturing setup

described in Section 3.1. The same cameras were used along with the same structured

lights patterns. This was followed by calculating the per-pixel disparities using the

modified Criminisi et al.[19] algorithm presented in Section 3.3.4. This included

extending the support region into the time domain and using the normalized SSD cost

function. Once the disparity maps were computed using the previously described DP

algorithm, they were subsequently used as initializations for the non-linear solvers.

4.4 Space-Time Stereo Non-Linear Optimization Results

Having devised a list of criteria, the following experiments were conducted, the results

of which will be presented and discussed in Section 4.4. The various implementations

discussed in Section 4.2 used to solve Equation 4.5 as well as the non-linear

optimization toolbox in Matlab were tested for convergence against the same dataset.

The results of which are presented in Section 4.4.1. The Preconditioned Conjugate

94

Gradient, Levenberg Marquardt and Gauss-Newton optimizations algorithms from the

Matlab toolbox were all used, as well as a re-implementation of the Gauss-Newton.

Each of these algorithms were run with the analytical and finite difference

approximation to the Jacobian, presented in Equation 4.9. With the motivation of

potentially reducing aliasing artefacts and improving computation speed, these

experiments were then followed by experiments that changed the size of the support

region as well as the number of iterations performed (see Section 4.4.2). Section 4.4.3

will demonstrate the advantage of using a warped support region. Subsequently with the

goal of further reducing artefacts without incurring the computational burden of the

Levenberg-Marquardt algorithm, the simpler Tikohnov regularization was tested in

Section 4.4.4, as well as the impact of extreme motion with a window that was not

warped in the time domain. With the further motivation of getting these non-linear

optimization algorithms running in real-time, Section 4.4.5 will determine the impact of

using a lower resolution disparity map for initialization. Having performed all the

experiments up to this point using the same structured light patterns presented by Zhang

et al.[91] it was also necessary to establish the effects of using the noise structured light

patterns presented in Section 3.2, the results of which are discussed in Section 4.4.6.

Although all the experiments conducted in this section were implemented in Matlab and

do not come close to running in real-time for a multitude of different reasons it was still

beneficial to profile the Matlab implementations in order to determine computational

bottlenecks and gain more insight into the potential gains acquired by reformulating

them as streaming algorithms that could leverage the performance of GPUs. Section

4.4.7 will demonstrate how some of these algorithms are appropriate for implementation

on a GPU.

4.4.1 Convergence

To establish the rate of convergence of each algorithm, the disparity and respective

gradient values along particular scan-lines were optimized, while taking the average of

the residuals during the iterations. The results are illustrated in Figure 4.3. In all cases,

using the analytical partial derivatives based on Equation 4.9, produced better results

and quicker convergence then their finite difference approximation. Both the Gauss-

Newton and Levenberg-Marquardt produced very similar results. They converged on

95

average within 4-6 iterations. Depending on the particular pixels being optimized one or

the other would converge more quickly. The conjugate-gradient algorithms would

converge far more slowly, on average more than 10 iterations were required for

convergence. The Newton-Raphson line optimization seemed to perform the best with

conjugate-gradient. Unfortunately this is a very costly line minimization. Figure 4.4

illustrates a close up of a 3D reconstruction based on the Levenberg-Marquardt

optimized disparity map. Figure 4.5 compares the difference between a 3D

reconstruction based on the Gauss-Newton optimization of space-time stereo, and

therefore shows the added details acquired by the sub-pixel disparities versus the

previously mentioned Criminsi et al.[19] space-time stereo used as initialization.

Figure 4.3 Graph illustrating convergence with x-axis representing number of iterations while the y-axis

represents residuals

0

2000

4000

6000

8000

10000

12000

1 3 5 7 9 11 13 15

Gauss-Newton Matlab

LM

PCG

Gauss-Newton
Implementation
CG Newton-Rapshon

96

Figure 4.4 3D Reconstruction of the mouth area using disparity map produced with Levenberg-Marquardt

optimization after 5 iterations using 5x5x8 support region.

Using an adaptive support region defined by the warp function in Equation 4.5 produces

much smoother disparity maps without the compromise of losing high frequency detail.

Using the analytical solution for the Jacobian not only improves performance and

convergence rate, but also has the advantage that part of its calculation (i.e. rI∇) can be

pre-computed for each frame and remains constant for each disparity computation.

Another observation is that the first couple of iterations contribute significantly to the

result. This implies that a potential compromise between quality and the number of

iterations that might be performed can be achieved.

97

Figure 4.5 Illustrating the difference between the Criminisi et al.[19] space-time algorithm (left) versus

the Gauss-Newton optimized disparity map (right)

In summary the Gauss-Newton algorithm performed suitably and produced results

comparable to the Levenberg-Marquardt and Conjugate-Gradient. Not only did it

converge more quickly than Conjugate-Gradient, but it also displayed the benefit of not

having to compute the regularization or dampening term associated with the Levenberg-

Marquardt method, that involves a further line optimization step, therefore increasing

the computational time per iteration significantly.

4.4.2 Parameters (Window Sizes and Iterations)

Having determined the advantages of the Gauss-Newton optimization method, the

following results examine the impact of the support region size as well as potentially

stopping the optimization before convergence. These parameters have significant

implications in both terms of the quality of the output disparity maps and the

computation time required. Although the previous section demonstrates that

convergence using the Gauss-Newton algorithm is usually reached after five iterations,

one can significantly speed up computation by terminating with fewer iterations. The

support region size has more subtle effect on the results, by increasing the support

regions, the accuracy of the correlation matching is increased (i.e. the number of

incorrect disparities and noise is reduced). However, this comes at the cost of high

frequency details that are removed along with the noise. This is a common trade-off in

correlation based algorithms, but using space-time support region somewhat alleviates

this trade-off. By extending the support region into the time domain one can maintain

98

the same number of pixels in support region while reducing the size the space domain

(i.e. a 5x6x8 window contains the same number of pixels as a 15x16 window). This is

effectively trading resolution in the space domain against resolution in the time domain.

Figure 4.6 Gauss-Newton non-linear optimization using shuffled Gray code light pattern and space-time

warp function on various window sizes after 5 iterations

Figure 4.6 depicts six reconstructions all using different support region sizes, solved

using the Gauss-Newton non-linear optimization on the identical dataset containing

images of a face illuminated by the shuffled Gray code described in Chapter 3. This

figure clearly shows that using different window or support region sizes can have a

significant impact on the results of the Gauss-Newton optimization. Another

observation determined from Figure 4.6 is that increasing the window size along the x-

axis improves the results more significantly than increasing the window size in the y-

axis. This is shown by the first two reconstructions in Figure 4.6 which both contain

support regions with the same number of pixels (3x7x8 and 7x3x8). However, the

reconstruction with the window of 7x3x8 produces results with significantly less noise.

99

Figure 4.7 Gauss-Newton on various window sizes after 5 iterations

The noisy artefacts are caused by the fact that the illumination patterns contain far

greater frequency changes in the x-axis as opposed to the y-axis and thus increasing the

support region along the x-axis is effectively adding a lot more entropy to the solver.

This also demonstrates that this solver is also sensitive to high frequency changes in the

images and requires the appropriate considerations with regard to window sizes

depending on the illumination pattern. Figure 4.6 also illustrates that increasing the

window sizes further along the x-axis further improves results while still maintaining

high frequency details in the reconstruction. This is due to the fact that the support

region is adaptive. However, this statement only remains valid up to a certain point.

Once the support regions become too large, the reconstruction results start to

deteriorate, as can be seen from Figure 4.7.

100

Having examined the effect of the window sizes on the results, it was also

necessary to determine the impact of performing fewer iterations. The previous section

demonstrated that convergence of the Gauss-Newton optimization would occur after

five to six iterations for most disparity values. After six iterations the residual error

tended to oscillate, with a few outlier pixels that would diverge. The convergence is

itself non-linear and tends to be exponential (Figure 4.3). For each iteration the residuals

of the cost function are reduced less than during the previous iteration, which creates a

trade-off between the number of iterations performed and the quality of the results. By

potentially stopping the algorithm sooner one can significantly increase the

computational speed and also potentially reduce artefacts created by pixels that create

ill-conditioned systems within the solution.

Figure 4.8 Gauss-Newton reconstruction using 11x5x8 window after 1,3,5 and 10 iterations

Figure 4.8 illustrates the reconstruction results performed using a window of 11x5x8

pixels after 1,3,5 and 10 iterations respectively. It demonstrates the diminishing returns

of performing more iterations. After three iterations the results are close to optimal,

reaching convergence at five iterations, while performing ten iterations actually has a

negative impact as certain errors and artefacts are actually accentuated. This also

demonstrates that not all disparity values converge after five iterations and the values

that do not converge tend to produce aliasing artefacts. These non-convergent values

tend to be created by occlusions. This highlights one inherent weakness of the non-

linear optimization part of this algorithm, which is that is does not deal with occlusions.

One thing that all the results presented in this section have in common is the

presence of errors. Some of these errors are produced by pixels that are converging to

incorrect values, and all these results contain the banding artefacts mentioned by Zhang

et al.[91] that were subsequently removed using a global optimization scheme with a

disparity gradient constraint. The parameters (window sizes and iterations) examined in

101

this subsection can reduce the significances of these the errors but do not entirely

eliminate them.

4.4.3 Slanted versus Non-Slanted Window and Extreme Motion

To demonstrate the advantages of using a warped support region, a comparison of two

reconstructions was made. Figure 4.9 clearly demonstrates the advantages in terms of

quality afforded by using a slanted window for the reconstruction. Although the

reconstruction using the slanted window still contains some banding artefacts, they are

significantly less pronounced than the reconstruction that only optimizes translations

along a rectangular support region.

Figure 4.9 Comparison between reconstruction using non-slanted (left) and slanted (right) windows after

3 iterations using a window size of 7x5x8

102

It is worth noting that all the reconstruction performed in this thesis have used samples

from an image sequence that contained motion (i.e. a subject talking) as seen in Figure

4.10. This motion would be typical in a face to face communication scenario. In order

for this implementation to be achieved in real-time as demonstrated in Chapter 5 & 6, it

was necessary to drop the time domain warp parameter. Doing so has little impact when

performing the reconstruction on our sample data set. This is illustrated in Figure 4.10,

which does not contain extreme motions and was sampled at 60 frames per second.

However, if a reconstruction is performed for every third frame and therefore simulating

the effect of speeding up the motion by a factor of three, one will notice degradation of

the results as shown in Figure 4.11.

Figure 4.10 Frames taken from sample data set illustrating motion of the mouth as the subject is seen to

be talking

103

Figure 4.11 A comparison between reconstruction based on every frame (left) and every third frame

(right) without warp in the time domain.

4.4.4 Regularization and Artefacts

Having experimented with various window sizes and number of iterations it was

necessary to try and determine the cause of some of the resulting artefacts. As described

in the initial section of this chapter, each disparity value for each pixel is obtained by

solving a system of equations containing four parameters, the disparities and their

gradients with respect to the x,y, and time axis. However, these parameters are solved as

independent parameters whereas they are not in reality. The over-parameterization

produces the very noticeable banding artefacts. This was pointed out in a follow up

paper by Zhang et al.[91], in which some of the banding artefacts previously described

were eliminated by reformulating the optimization problem as a global optimization,

and therefore allowing the disparity gradients constraint by a finite difference operator.

Although this approach is elegant it requires constructing a large sparse matrix and

solving it using a conjugate gradient method. This not only reduces the speed at which

the system will converge but add significant memory and computational burdens

making it non feasible for real-time applications at the time this work was carried out.

The motivation behind the results presented in this section was firstly to determine

which disparity values are part of ill-conditioned systems and then to determine whether

the results could be improved upon by using a simple Tikonov regularisation on those

particular values to improve the results.

The standard method normally used to determine the conditioning of a system of

linear equations is to perform SVD or Eigen decomposition and examine the ratio of the

104

highest and lowest singular values. For this application, the decomposition would be

performed on the Gauss-Newton approximation to the Hessian in Equation 4.10.

However performing the decomposition for every Hessian of every pixel at runtime

would be impractical for real-time applications. Given that the Hessian in Equation 4.10

is symmetric by definition, the Equation 4.10 can be solved using Cholesky

decomposition, which itself contains a mechanism for detecting singular matrices (see

numerical recipes [68]). Figure 4.12 illustrates the results of a reconstruction that was

altered to zero out all the disparity values that form a Hessian that are close to being

singular. These pixels are depicted in Figure 4.12 by being the same colour as the

background. One interesting observation is that not all occluded pixels form ill-

conditioned systems, one is also surprised by the number of zeroed disparity values that

tend to be in part of the image that can be considered good (i.e. fronto-parallel and

visible by both stereo cameras). One potential method of dealing with these pixels

would be to remove them from the solver and then, having solved the other pixels in a

further pass, use some quadratic fitting function to obtain sub-pixels values for these

particular disparity values.

105

Figure 4.12 Reconstruction with the wholes representing pixels forming close to singular hessians

One alternative is to regularize the data, by replacing Equation 4.10 with the following.

() rJpIJJ TT −=+ δλ

4.18

Although this is the same as the Levenberg-Marquardt there is a subtle difference. In the

Levenberg-Marquardt algorithm the dampening parameter is adjusted for each iteration

and therefore requires a line-search further increasing the computational complexity.

With this proposed method the dampening parameter is fixed and can be determined

offline. The method therefore only requires a few additions to the Hessian matrix,

making it very cheap to perform. This can be either applied across the whole dataset or

to only the values representing ill-conditioned systems. The effect this has is to slow

106

down convergence and therefore proves to be un-advantageous for the application

across all values. This is illustrated in Figure 4.13.

Figure 4.13 Reconstruction left (with all pixels regularized), centre (with only close to singular

regularized), right no regularization all using 11x5x8 window

Unfortunately as Figure 4.13 illustrates using Tikonov regularization across all pixels

produces little benefits as it severely slows down the convergence. Furthermore,

performing this regularization solely on the pixels containing close to singular Hessian

matrices yields little benefit due to the fact that the pixels detected by the Cholesky

solver as being close to singular tend not to correspond to the pixels producing the most

artefacts. The artefacts tend to be caused by a variety of factors, the primary ones being

occlusions, specular reflections and the fact that the light pattern is distorted when

projected onto near oblique surfaces. Fortunately the Criminisi et al.[19] stereo

algorithm presented in Section 3.3 contains a built in mechanism for detecting

occlusions. This information could potentially be carried over, to instruct the non-linear

optimization solver to, not solve occluded pixels and instead carry out a quadratic fitting

for those particular problematic disparity pixels. The impact of occluded pixels could

also further be reduced by reducing the baseline line of the stereo cameras. This

however, would also reduce the precision of the depth information. In further attempts

to reduce artefacts the same reconstructions were also performed on Gaussian blurred

versions of the input images. This however had a negative impact on the results and was

quickly dismissed.

107

4.4.5 Multi-Scale

Although the Zhang et al.[91] space-time non-linear optimization algorithm presented in

this section was not originally intended for real-time application, it is quite suitable for

implementation on massively parallel architectures. This is due to the fact that each

pixel is treated as an independent set of simultaneous equations across an adaptive

support region, and therefore each disparity is treated independently. This makes the

algorithm ideal for implementation on some type of streaming computing architecture

such as the latest versions of GPUs. The computational performance is therefore of

great significance. One easy method of increasing this performance is to initialize the

data using lower resolution disparity maps. This would enable the initialization step of

the algorithm to be run on a much lower resolution dataset, thereby dramatically reduce

its computational cost. All the results presented in the previous sub-sections used the

same resolution integer based disparity maps to initialize the non-linear space-time

solver. It is therefore important to determine the impact of using lower resolution

initialization disparity maps that would then be appropriately scaled. Figure 4.14

illustrates three reconstructions all initialized using different resolution disparity maps.

It is worth noting that linear interpolation was performed while up-scaling the lower

resolution initialization maps.

Figure 4.14 Reconstruction using 160x120 (left), 320x240 (centre), 640x480 (right) disparity maps for

initialization of the non-linear optimization

The reconstruction performed using sub sampled half resolution disparity map has the

effect of removing certain artefacts while introducing new ones, making it similar in

quality to that of the reconstruction initialized by a full resolution disparity map. The

reconstruction performed using the lowest sub sampled disparity map introduces

108

artefacts near depth discontinuities, however the final results are good and close to the

non-scaled reconstruction.

The results presented by Figure 4.14 demonstrate the small trade-off in terms of

quality produced when using a sub-sampled disparity map for initialization, and

therefore point to one avenue of speeding up the computational time required by vastly

reducing the computational burden of the initialization step.

Figure 4.15 Close up of Figure 4.11

4.4.6 Structured Light

The previous sub-sections all contain reconstructions performed with images

illuminated with the shuffled Gray code patterns discussed in Section 3.2. In an attempt

to further reduce the banding artefacts present in these reconstructions, the algorithm

was run on a dataset of images illuminated with the low-pass filtered noise patterns

presented in Section 3.2. Although the banding is created by the fact that the space time

warp parameters are optimized as independent variables when in actual fact they are

not, the analytical approximation to the Jacobian matrix uses the image gradients, that

appear to be correlated to the high frequency changes of the striped illumination pattern.

It was felt that using a different structured light pattern could potentially reduce these

artefacts without the need for reformulating this problem as a very computationally

costly global optimization problem.

Figure 4.16 depicts the results of using the noise structured light pattern. They

still exhibit the banding artefacts, and are far inferior results with the striped pattern.

Using the noise structure light pattern required increasing the window size considerably

in both the x and y axis to obtain similar results to the reconstruction performed using

the striped code pattern. Whereas while using the striped pattern one could get away

109

with a relatively small window size in the y-axis of 3 to 5 pixels, this was not the case

on with the noise light pattern which required the window size to be of similar

dimensions in both axes to obtain adequate results. This implies a performance penalty

in terms of computational time for using the noise patterns as well as a reduction in the

output quality.

Figure 4.16 Reconstruction using 7x7x8 (left), 11x11x8 (centre), 21x21x8 (right) Windows on scene

illuminated with low pass filtered noise patterns

4.4.7 Algorithm Profiling

The following Table 4.1 is a breakdown of the time spent in different functions called

by the re-implemented Gauss-Newton non-linear optimizer, for one iteration for one

disparity value. As can be clearly seen from this table the major bottleneck is the

gradient function which calculates the image gradient used for the partial derivatives of

the Jacobian. This however only needs to be calculated once per frame. 3.344s but is

still very slow. Another testament that Matlab built in function are not always

implemented with performance in mind. The other major bottleneck is the SeitzSSDJ

function. This is the function that calculates the error term as well as the Jacobian. Table

4.2 is a breakdown of the SeitzSSDJ function, which illustrates another big bottleneck,

namely the re-implementation of the bilinear interpolation function. This re-

implementation runs an order of magnitude faster than the equivalent built in function.

110

Table 4.1 Profile Matlab Gauss-Newton High level where total time represents the time spent in the

function and all its subroutines while self-time represent the total time minus the subroutine calls.

Table 4.2 Profile of SeitzSSDJ function

The profile shown in Table 4.2 also contains timing with regard to loading the various

images as well as other redundant operations. If these are removed the performance can

be increased to take less than 1.0s per iteration per disparity value. By deduction one

will notice that 0.031s is spent on the following operations JJ T ,)(xFJ t inverting the

Hessian JJ T updating the parameters and calculating the residuals for the convergence

analysis. Ideally the bottleneck should lie with both matrix multiplications and the

Hessian inversion. Table 4.3 contains a similar profile, but of the preconditioned

conjugate gradient algorithm and Table 4.4 contains the profile of the Newton-Raphson

conjugate gradient algorithm. Although both Tables 4.3 and 4.4 show the conjugate

gradient algorithms performing more slowly than the Gauss-Newton algorithm per

iteration, this can be explained by the fact that the main bottle neck is the cost

computation which in the case of both conjugate gradient methods is called more than

once. Should the cost computation bottle-neck be removed the conjugate gradient

method without the pre-conditioning step should be faster as it does not require the

111

matrix inversion step. This algorithm can also be sped up further by using a bracketing

line minimization algorithm as opposed to the Newton-Raphson line minimization.

Table 4.3 CG Newton-Raphson

Table 4.4 Precondition Conjugate Gradient

However, as demonstrated in Section 4.4.1 these performance advantages are

minimized by the fact that many more iterations are required for convergence. In the

case of the local space-time stereo algorithm where each disparity value is optimized

separately and therefore the Hessian matrix is small (4x4), the advantages usually

associated with the conjugate-gradient method are unwarranted. Further tests have

shown that the matrix inversion step that runs in O(𝑛!) time is performed in less than

0.001s in Matlab, which demonstrates the efficiency of Matlab at performing certain

calculations, combined with its inefficiency at performing others (e.g. bilinear

interpolation). This makes this platform less than ideal for profiling the performance of

algorithms. However, initially the concern was with the quality of the results and

convergence rates, as well as identifying some of the potential bottlenecks. This helped

to determine the suitability of the type of algorithm for implementation on GPUs.

112

4.5 Conclusions

This chapter presented various alternatives for space-time stereo algorithms. It has

illustrated the advantages of the non-linear optimization algorithm over the more

computationally efficient DP algorithms. The use of the Gauss-Newton algorithm for

solving this problem locally has been justified. Some of the weaknesses of this

algorithm have been examined as well as potential solutions. The impact of Tikonov

regularization was tested. Modifying the algorithm to use scaled sub-sampled disparity

maps for initialization was performed and shown to produce comparable results, and

therefore removing burden from the initialization steps. The use of a noise structure

light pattern was shown not to give any benefits unlike the results obtained from Section

3.2. Section 4.4.6 also highlighted some of the major bottlenecks, notably the bilinear

interpolation function. However there is hardware that is designed specifically to

perform these types of operations, namely GPUs. These are incredibly adept at

performing bilinear interpolation as well as sum operations and it will be shown in

Chapter 5 they can also be used for more general computations such as matrix

inversions using LU decomposition with partial pivoting. They have been successfully

employed to solve a number of general problems that resemble the stereo

correspondence problems. However there are limitations such as latency and the

constrained nature of the programming language. Chapter 5 will present ways to

overcome some of these limitations and leverage benefits of modern day GPUs in order

to shift the bottleneck from the cost computation to the actual Gauss-Newton

optimization step.

113

 Chapter 5

Space Time Stereo on the GPU
Having demonstrated the advantages obtained by performing a non-linear optimization

step in the previous chapter, the main objective of this chapter is to determine the

feasibility of getting the non-linear optimization step to run in real-time using GPUs.

Consumer demand over the last decade has pushed the graphics processor industry to

develop ever more computationally powerful and flexible GPUs. The development of

these processors has so far have exceeded Moore’s law prediction of doubling in

computational performance every 18 months, and over the last few years have

overtaken CPUs in terms of outright GFLOPS performance (Figure 5.1). Initially

developed to accelerate 3D graphics pipelines and handle vast amounts of geometry and

texture data, these GPUs have evolved by becoming fully programmable and now

support 32 bit floating point arithmetic. This has led to a recent trend of using these

processors for general computational tasks across the board of computer science.

Section 2.2 supports this by reviewing some recent applications in 3D computer vision

running on these new GPU platforms.

Figure 5.1 Illustrating the performance evolution of two brands of GPUs versus the Intel Pentium 4 CPU

114

GPUs are massive multi pipeline streaming architectures that take advantage of the

SIMD (Single Instruction Multiple Data) type approach similar to the one found in the

Intel CPUs. The GeForce 8800 GTX is quoted as having a theoretical maximum

performance of 334 Gflops and a memory bandwidth of 86 GB/s versus the Intel Core

i7 that can only manage 107 Gflops and has a memory bandwidth of just 26 GB/s. On

paper these figures indicate that GPUs have a significant computational performance

advantage over general purpose processor. To maximise the performance of GPUs

general purpose computation tends to be carried out using fragment shaders as opposed

to vertex shaders.

Figure 5.2 GeForce 8800GTX architectural diagram

This approach allows a much greater number of instructions to be performed in parallel.

It requires the data to be organised into textures which in turn restricts the way the data

is packed. These textures are then streamed and a shader program acts as a kernel

performing operations on the stream. The results are then rendered onto another texture

and the process can be repeated with a different kernel. This allows feedback, to a

limited degree. It is much preferred to write to memory sequentially, as cache misses on

115

random access incur a very significant performance penalty. Figure 5.2 illustrates the

architecture of the GeForce 8800, indicating the various stages of its pipeline.

The purpose of the work presented in this chapter was to implement the space-

time stereo algorithm developed by Li Zhang et al.[91] and which was examined in

Section 4 on GPU, or more specifically a GeForce 8800 GTX architecture. The aim is to

leverage some of the advantages of GPUs that lend themselves particularly well to

algorithms and can be made to run in parallel. With performance in mind, the work

presented in this chapter was created using the standard OpenGL [76] graphics library

with the OpengGL Shading Language (GLSL). All of the work presented in this section

was developed with the GeForce 8800 architecture in mind. A more detailed

examination of the various shaders and their implementations will then be presented

followed by an evaluation of their performance and qualitative results.

5.1 GPGPU OpenGL Framework

All of the work carried out in this section was implemented using OpenGL and GLSL.

Most general-purpose computations carried out on GPUs are done on the fragment

shaders as they tend to perform better in most situations, being able to handle a greater

number of parallel pipelines. The following will examine some of the analogies between

a CPU and GPU.

• Streams GPU Textures = CPU Arrays

The fundamental data structures used by fragment shaders on GPUs are textures.

Anywhere one would use arrays on a CPU architecture one would use textures

on the GPU. This also adds the further restriction imposed by the available

texture formats in OpenGL and maximum size and dimensionality.

• Kernels Fragments Shaders = CPU Inner Loops

As opposed to performing instructions on an array by looping through each

element as is done on CPUs, the instructions that would be executed inside the

loop tend to be implemented in a fragment shader and simultaneously applied to

all elements within the texture. The number of possible parallel instructions is

limited by the number of fragment shaders available to a particular GPU.

116

• Render to Texture = Feedback

In order to write the output to another array or texture that can subsequently be

used as an input for another kernel one must render the output into a texture.

This allows feedback into the next step of the given algorithm. With the recent

advance in GPU, multiple render targets are now available allowing up to four

textures to be rendered simultaneously.

• Geometry Rasterization = Computation Invocation

In order to invoke a computational kernel on a texture one must typically render

a simple geometric primitive such as a quadrilateral polygon onto the screen

with the appropriate textures and fragment shaders bound.

• Texture Coordinates = Computational Domain

Generally a kernel takes multiple input streams and generates one output stream.

However the computational domain may have a different dimension to the input

stream. GPUs provide an easy mechanism to deal with this in the form of texture

coordinates. Texture coordinates are specified at each vertex. When the

geometric primitive is rendered these coordinates are linearly interpolated for

each fragment and passed as an input. One can view these as indices into an

array or texture.

• Vertex Coordinates = Computation Range

As the geometry is rasterized, fragments are generated and then processed by the

kernel. Typically this is done by rendering a quadrilateral onto the screen, the

vertex coordinates therefore directly control the output range of the fragment

shaders.

• Reductions

Parallel reductions can be performed very efficiently on GPUs. These can be

implemented using two buffers or textures, one is initially bound as an input

texture and renders a quadrilateral of the input onto the output texture with linear

interpolation enabled. At each pass the output range is divided by some fraction.

117

The buffers are then swapped and the process is repeated. This is illustrated in

Figure 5.3

For a more detailed overview of these analogies as well as various GPU architecture

specifics readers are referred to [66].

 With these analogies in mind a very simple OpenGL frame work was developed

and implemented. A standard GLUT application was used, to initialise OpenGL and all

the relevant extensions.

Figure 5.3 Reduction operation performed on a GPU

OpenGL was initialised with an orthographic projection and the relevant call-back

functions (i.e. keyboard handler, window resize, rendering loop, etc…) were specified.

A GPGPU class was developed, which would handle all the streams (i.e. textures). The

class would also compile and bind the relevant fragment shaders and bind all their

specific uniform variables. All of the general purpose computations were performed in

an update function and the results were be displayed in a draw function. For debugging

purposes the ability to dump all render targets in simple csv files that could then be

loaded into Matlab to verify results was also implemented.

+main(in argc : int, in argv : *char[]) : int
+idle() : void
+reshape(in width : int, in height : int) : void
+key(in key : unsigned char, in x : int, in y : int) : void
+init() : void

-NonLinGPU : GPGPU
Glut Application

-createFBO()
-createTextures()
-drawTexturedQuad()
-initShaders()
-dumpFBO()
+writeFBOtoCSV()
+update()
+display()

-m_fbo32 : FrameBufferObject
-m_fbo16

GPGPU

+bind()
+isValid() : bool
+disable()
+unAttach()
+attachTexture(in attachment, in texType, in texId : unsigned int, in mipLevel : int, in zSlice : int)
+attachRenderTarget()

-m_fboId : unsigned int
FrameBufferObjec

1
1

1

*

Figure 5.4 UML Class Diagram of GP GPU OpenGL Framework

118

The GPGPU class also generates fragments and invokes the kernel computations by

drawing a quadrilateral of the relevant size. Finally to perform the feedback mechanism

a frame buffer object class, also managed by the GPGPU class. More specifics of the

implementation will be covered in greater detail in Section 5.3. All the fragment shaders

were implemented in GLSL [52], an addition to the OpenGL 2 [63] specification.

5.2 Space Time Stereo GPU Formulation

We now give a high level description of how the space-time stereo algorithm is broken

down into various stages that are implemented as various kernels performed on different

streams of data. Chapter 4 described the various possible implementations of the space-

time stereo algorithm using different non-linear optimization algorithms. For the GPU

implementation Equation 5.1 was minimized using the Gauss-Newton algorithm

(Equation 5.3), implemented with various kernels on data streams.

Space-time stereo cost function with adaptive window warp function:

()∑∑ ∑ =−−=
∈ ∈ i

i
Tt Wyx

rltyx prtydxItyxIddddE 22

),(0 0

)),,(),,((),,,(


5.1

It is also worth noting that Equation 5.1 is used if one is optimizing a disparity maps for

the left to right images. If however, one wishes to optimize a disparity map from right to

left images Equation 5.1 can simply be transformed into:

()∑∑ ∑ =−+=
∈ ∈ i

i
Tt Wyx

rltyx prtyxItydxIddddE 22

),(0 0

)),,(),,((),,,(


5.2

)()()(),,(0000 ttdyydxxddtyxd yx −⋅+−⋅+−⋅+≡


5.3

Where the Gauss-Newton equation for parameter update id

119

() () () ()kk
E

Tk
E

k
E

kk dEdJdJdJdd ˆˆˆˆˆˆ
1

1
−

+ ⎟
⎠
⎞⎜

⎝
⎛−=

5.4

where J is the Jacobian of the cost function E which is minimised with respect to the

parameters d that include disparity and disparity gradients along the x, y, and t axis. For

the GPU implementation a window of size 5 by 5 by 8 was chosen, and these 4

parameters were optimized for each pixel. The solution was initialised with a disparity

map created by one of the dynamic program algorithm presented in Chapter 3 of this

thesis. The impact of choosing different DP algorithms on the solution will be discussed

in Section 5.4. Given a 5 by 5 by 8 window the Jacobian becomes a 200 by 4 matrix for

each pixel assuming that each value would be stored in a 32 bit float and the image

resolution would be 640 by 480 pixels the total memory foot print for the Jacobian

becomes (200 * 4 * 32 * 640 * 480) 937.5 MB which makes it impossible to store the

Jacobian explicitly on a GeForce 8800 GTX with 512 MB of RAM. One could

potentially use 16 bit floats, thereby halving the memory foot print and making it

possible to store the Jacobian explicitly on some more recent GPUs containing 512MB

of RAM. However, the computation of the Jacobian with the product of its transpose

(i.e. Gauss-Newton approximation to the Hessian) becomes a 4 by 4 matrix and can

therefore be explicitly stored on the GPU.

 Before giving an overview of the shader framework, it is worth noting how the

Jacobian is computed, as this will have an impact on certain design decisions. To

quickly reiterate, in Chapter 4, for this particular implementation the approximation to

the analytical solution was used as follows.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

≡

ttt

yyy

xxx

d
r

d
r

d
r

d
r

d
r

d
r

d
r

d
r

d
r

d
r

d
r

d
r

J

8,5,58,1,11,1,1

8,5,58,1,11,1,1

8,5,58,1,11,1,1

8,5,58,1,11,1,1









5.5

where

 () () () ()()()tyttdyydxxddxItyxI
dd

r
tyxrl ,,,, 000 −+−+−++−

∂

∂
≡

∂

∂

120

5.6

Using the chain rule and setting

() () ()000 ttdyydxxddxu tyx −+−+−++=

5.7

This is equivalent to the warp function in the Lucas and Kanade [51] derivation.

()() () () ()()000,, ttdyydxxddx
d

tyuI
ud

u
u
r

d
r

tyxr −+−+−++
∂

∂
∗−

∂

∂
≡

∂

∂
∗

∂

∂
≡

∂

∂

5.8

() () ()() 1000 =−+−+−++
∂
∂ ttdyydxxddx
d tyx

5.9

and

()()),,(,, tyuItyuI
u rr −∇≡−
∂

∂

5.10

Equation 5.8 represents the warped image gradient along the x axis. Therefore:

),,ˆ(tydxI
d
r

r +−∇≡
∂

∂

5.11

Similarly using the same derivation

)(),,ˆ(0xxtydxI
d
r

r
x

−∗+−∇≡
∂

∂

5.12

)(),,ˆ(0yytydxI
d
r

r
y

−∗+−∇≡
∂

∂

5.13

)(),,ˆ(0tttydxI
d
r

r
t

−∗+−∇≡
∂

∂

5.14

121

As the image gradient of the right images are used to calculate each component of the

Jacobian it is more efficient to perform this operation once and store the results in

textures that can then subsequently be reused during every iteration of the Gauss-

Newton solver.

The Space-Time Gauss-Newton non-linear optimization shader framework was

broken down into the following steps as illustrated by Figure 5.5:

1. Image Gradient Shader

This shader would compute the image gradient of the right images using

a simple finite difference operation along the x-axis. It would only be run

once per solution and not once per iteration.

2. Hessian Shader

This shader would compute the () ()kE
k

E dJdJ ˆˆ product from Equation

5.3 and store the result across four RBGA 32 bit floating point textures.

This enables the storage of a 4 by 4 Hessian matrix using the RBGA

values to store the rows and the multiple textures to store the columns. It

would firstly compute the Jacobian followed by the product.

3. Jacobian Cost Function Product

This shader would also perform the same computation of the Jacobian as

the previous shader, however it would also compute the cost function

specified by Equation 5.1 after doing so it calculates their product which

is equivalent to the gradient in the Gauss-Newton (Equation 5.3).

4. Cholesky Solver

Given the nature of the Hessian matrix (i.e. it is a positive semi-definite

symmetrical 4 by 4 matrix), the most efficient algorithm for solving

Equation 5.3 is Cholesky Decomposition which take advantage of the

symmetric nature of the Hessian matrix. This shader implements the

Cholesky Decomposition along with the parameter update.

122

Figure 5.5 Diagram illustrating fragment shaders and data streams

This shader framework constitutes the GPGPU implementation of the Gauss-Newton

optimization algorithm with regard to this particular space-time stereo problem and

specific warp function. Each of these shaders with the exception of the first gradient

shader are run for each iteration of the Gauss-Newton algorithm. The following Section

5.3 will describe the implementation specifics of each one of these shaders as well as

the data structure for their various input and output streams. It will be noted that some

of these shaders also require more than one rendering pass.

5.3 Shader Implementation Specifics

Having described the overall high level view of the space-time stereo algorithms on the

GPU, this section will delve into the specifics of each shader, their implementation the

data structures of their input and output streams and some of the limitations and design

decision made to try and improve performance.

5.3.1 Gradient Shader

The purpose of this shader is simply to compute the gradient of images along the x-axis.

Using a window of 8 pixels in the time domain, the gradient for 8 of the right images,

123

needs to be computed. Using the advantage of the multiple rendering targets available

on the GeForce 8800 one can compute the image gradient of four images at a time. The

shader shown in Listing 5.1 was developed in GLSL.

This shader has 4 inputs (i.e. 4 images and return 4 outputs). It not only

computes the image gradient along the x axis of the 4 input images but also copies them

into the output. In this particular example the images are grey scale, they are copied into

the R component of an RGB 16 float texture along with their gradient that is copied into

the G component of the output texture. The uniform variable offset is simply there as a

scalar that represents the size of a pixel in normalised texture coordinates. This is used

to sample the left and right pixels to compute the central differences.

Multiple Image Gradient Shader Listing 5.1
static const char *imgGradientSource = {

uniform sampler2D tex0,tex1,tex2,tex3;

uniform float offset;

void main(void)

{

 vec2 texCoord = gl_TexCoord[0].xy;

 vec4 a = texture2D(tex0, texCoord);

 vec4 b = texture2D(tex1, texCoord);

 vec4 c = texture2D(tex2, texCoord);

 vec4 d = texture2D(tex3, texCoord);

 vec4 aRight = texture2D(tex0, texCoord+vec2(+offset, 0.0));

 vec4 bRight = texture2D(tex1, texCoord+vec2(+offset, 0.0));

 vec4 cRight = texture2D(tex2, texCoord+vec2(+offset, 0.0));

 vec4 dRight = texture2D(tex3, texCoord+vec2(+offset, 0.0));

 vec4 aLeft = texture2D(tex0, texCoord+vec2(-offset, 0.0));

 vec4 bLeft = texture2D(tex1, texCoord+vec2(-offset, 0.0));

 vec4 cLeft = texture2D(tex2, texCoord+vec2(-offset, 0.0));

 vec4 dLeft = texture2D(tex3, texCoord+vec2(-offset, 0.0));

 gl_FragData[0].y = (aRight.x-aLeft.x)*0.5;

 gl_FragData[1].y = (bRight.x-bLeft.x)*0.5;

 gl_FragData[2].y = (cRight.x-cLeft.x)*0.5;

 gl_FragData[3].y = (dRight.x-dLeft.x)*0.5;

 gl_FragData[0].x = a.x;

 gl_FragData[1].x = b.x;

 gl_FragData[2].x = c.x;

 gl_FragData[3].x = d.x;

};

5.3.2 Hessian Shader

124

This shader functions by iteratively calculating the temporary Hessian at a certain point

in the space window across all time values simultaneously. Due to certain limitations of

GPUs that restrict the maximum number of instructions available to any particular

fragment shader, this shader was implemented using multiple passes. The Jacobian

maybe reorganised as follows.

() () ()

()() ()() ()()
()() ()() ()()
()() ()() ()()⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−∇−−−∇−−−∇−

−−∇−−−∇−−−∇−

−−∇−−−∇−−−∇−

−∇−−∇−−∇−

≡

−−−−

−−−−

−−−−

−−−−

077202077202000202

072020720200202

072020720200202

720272020202

,,,,,,
,,,,,,
,,,,,,
,,,,,,

tttydxItttydxItttydxI
yytydxIyytydxIyytydxI
xxtydxIxxtydxIxxtydxI

tydxItydxItydxI

J

rrr

rrr

rrr

rrr






5.15
TJJH ∗=

5.16

Let dJ be the first row of J and dxJ , dyJ , dtJ be the second, third and fourth, than H

becomes:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

••••

••••

••••

••••

=

dtdtdtdydtdxdtd

dtdydydydydxdyd

dtdxdydxdxdxdxd

dtddyddxddd

JJJJJJJJ
JJJJJJJJ
JJJJJJJJ
JJJJJJJJ

H

5.17

If one further breaks down the rows into vectors of 1 by 8, each representing the

components of Jacobian at a certain space window index, for all 8 frames in the time

domain, it becomes possible to compute the Hessian iteratively for each window index

by accumulating the sum of all the dot products. This becomes the basis of the

implementation of the Hessian shader listed below. The shader receives as input the

previously accumulated Hessians which for the first iteration are set to zero, along with

the image gradients and the previously estimated set of parameters used to calculate to

warp function. It firsts calculates the Jacobian components at the current space window

index across 4 time frames. It then proceeds to calculate the accumulated Hessian

estimation of the currently computed Jacobian parameters. This is then repeated for the

following 4 time frames at the same window index. Having done so, the current Hessian

125

estimation is then written out to the multiple render targets across the RBGA 32 bit float

components.

In order to create the feedback mechanism, two sets of Hessian textures are

created in OpenGL, as the GLSL specification does not allow writing to an input

texture. After each iteration these two sets of Hessian textures are swapped (i.e. the

previous input Hessian textures become the output stream and the previous output

Hessian textures the new input). This is known as ping-pong of textures in the GPGPU

community and is used as a feedback mechanism. In this particular instance it feeds

back into the same shader for each window index. Using a 5 by 5 by 8 space time

window results in performing 25 rendering passes to calculate the Hessian matrix. This

approach also has the added benefit of allowing the space window size to be

dynamically adapted across the solution or across subsequent solutions. This feature

could potentially be used to create elegant degradable solutions based on certain criteria

such as computational resources or performance constraints.

The following listing is of the Hessian shader. However, the space-time warp

function is not warped in the time domain for clarity.

Hessian Shader Listing 5.2
static const char *hessianSource = {

uniform sampler2D tex 0,tex1, tex2, tex3, tex4, tex5, tex6,

tex7,disparity,hess0,hess1,hess2,hess3;

uniform float offsetX, offsetY;

uniform float windowX, windowY;

void main(void)"

{"

vec2 texCoord = gl_TexCoord[0].xy;

vec2 warpedTexCoord = gl_TexCoord[0].xy;

vec4 d = texture2D(disparity, texCoord);

vec4 H1, H2, H3, H4;

H1 = texture2D(hess0, texCoord);

 H2 = texture2D(hess1, texCoord);

 H3 = texture2D(hess2, texCoord);

 H4 = texture2D(hess3, texCoord);

 float d0;

 float scaleX, scaleY;

 scaleX = windowX-3.0f;

 scaleY = windowY-3.0f;

 d0 = (d.x + d.y*(windowX-3) + d.z*(windowY-3));

 warpedTexCoord.x = texCoord.x + ((windowX-3)*offsetX) + d0*offsetX;

 warpedTexCoord.y = texCoord.y + ((windowY-3)*offsetY);"

 J1.x = texture2D(left0, warpedTexCoord).y;

126

 J1.y = texture2D(left1, warpedTexCoord).y;

 J1.z = texture2D(left2, warpedTexCoord).y;

 J1.w = texture2D(left3, warpedTexCoord).y;

 J2 = J1*scaleX;

 J3 = J1*scaleY;

 H1.x += dot(J1,J1);

 H1.y += dot(J1,J2);

 H1.z += dot(J1,J3);

 H2.x += dot(J2,J1);

 H2.y += dot(J2,J2);

 H2.z += dot(J2,J3);

 H3.x += dot(J3,J1);

 H3.y += dot(J3,J2);

 H3.z += dot(J3,J3);

 J1.x = texture2D(left4, warpedTexCoord).y;

 J1.y = texture2D(left5, warpedTexCoord).y;

 J1.z = texture2D(left6, warpedTexCoord).y;

 J1.w = texture2D(left7, warpedTexCoord).y;

 J2 = J1*scaleX;

 J3 = J1*scaleY;

 H1.x += dot(J1,J1);

 H1.y += dot(J1,J2);

 H1.z += dot(J1,J3);

 H2.x += dot(J2,J1);

 H2.y += dot(J2,J2);

 H2.z += dot(J2,J3);

 H3.x += dot(J3,J1);

 H3.y += dot(J3,J2);

 H3.z += dot(J3,J3);

 H4.w = 1.0f;

gl_FragData[0] = H1;

gl_FragData[1] = H2;

gl_FragData[2] = H3;

gl_FragData[3] = H4;

};

5.3.3 Jacobian Cost Function Product Shader

This shader uses a similar multi-pass rendering approach to the Hessian shader to

calculate the product of the Jacobian with the cost function. This product is also broken

down into a series of vector dot products performed at each space window index across

multiple time frames and iteratively accumulating the result into an RGBA 32 bit

texture. This time there is no need to use multiple render targets as the result is a series

of 4 component vectors for each pixel that can fit into the RGBA texture components.

The feedback is also performed using two ping-pong textures.

127

It is also worth mentioning that texture lookups in any shader have a certain

latency associated with them and therefore whenever possible they are worth reducing

to a minimum. The latency of fetching one RGBA texel is significantly lower than that

of fetching 4 texels from 4 separate textures, even if each texture only contains one

luminance component. It is therefore important to pack information into one texture, as

opposed to using multiple textures whenever possible. This combined with the fact that

the GeForce 8800 only contains a set number of texture units, makes it often critical to

pack textures. As a warped space time window of pixels in the left images with a

straight window of pixels in right images is being optimized or vice versa depending on

which disparity map is being optimised. It becomes not only possible but advantageous

to pack the 8 non-warped images into two RGBA textures. This also reduces the

textures fetches and the latency associated with them.

This shader makes use of packing the non-warped images into two textures. The

shader also uses the fact that the gradient shader already packed warped images with

their gradients used to compute the Jacobian. This shader then has as input 8 textures

containing the images to be warped in the R channel along with their gradients in the G

channel. It also has two textures containing the packed images that won’t be warped.

Another input is the current parameters being optimized that are contained in one

RGBA texture containing the disparities and their gradients. And finally the last input is

used as the accumulation buffer containing the previous estimate the Jacobian cost

function product, for a particular window index.

This shader proceeds as follows: firstly it computes the current estimate of the

Jacobian for a particular space window index for the first 4 frames. It then computes the

cost function for the same window index and the same 4 time frames. This is basically

the difference between the warped samples and the packed non-warped samples. The

product between the Jacobian and cost function vector is calculated using dot products.

This process is repeated for the following 4 frames in time and the results are

accumulated to the previous ones using subsequent rendering passes until each index in

the spatial window is covered. The following is the shader listing again assuming a

quasi-static scene therefore dt is assumed to be zero.

128

Jacobian Cost Function Product Shader Listing 5.3
static const char *JtFxSource = {

uniform sampler2D left0,left1,left2,left3,left4,left5,left6,left7, rightPack0,

rightPack1, disparity, previous;

uniform float offsetX, offsetY;

uniform float idxX, idxY;

void main(void)"

{

vec2 texCoord = gl_TexCoord[0].xy;

vec2 winCoord = gl_TexCoord[0].xy;

vec2 warpedTexCoord = gl_TexCoord[0].xy;

 vec4 d = texture2D(disparity, texCoord);

 vec4 JtFx, left, right, tmp, cost;

 JtFx = texture2D(previous, texCoord);

 vec4 J1 = vec4(0.0f, 0.0f, 0.0f, 0.0f);

 vec4 J2 = vec4(0.0f, 0.0f, 0.0f, 0.0f);

 vec4 J3 = vec4(0.0f, 0.0f, 0.0f, 0.0f);

 vec4 J4 = vec4(0.0f, 0.0f, 0.0f, 0.0f);

 float d0;

 float scaleX, scaleY;

 scaleX = idxX-3.0f;

 scaleY = idxY-3.0f;

 d0 = (d.x + d.y*(idxX-3) + d.z*(idxY-3));

 warpedTexCoord.x = texCoord.x + ((idxX-3)*offsetX) + d0*offsetX;

 warpedTexCoord.y = texCoord.y + ((idxY-3)*offsetY);

 winCoord.x = texCoord.x + ((idxX-3)*offsetX);

 winCoord.y = texCoord.y + ((idxY-3)*offsetY);

 tmp = texture2D(left0, warpedTexCoord);

 J1.x = tmp.y;

 left.x = tmp.x;

 tmp = texture2D(left1, warpedTexCoord);

 J1.y = tmp.y;

 left.y = tmp.x;

 tmp = texture2D(left2, warpedTexCoord);

 J1.z = tmp.y;

 left.z = tmp.x;

 tmp = texture2D(left3, warpedTexCoord);

 J1.w = tmp.y;

 left.w = tmp.x;

 J2 = J1*scaleX;

 J3 = J1*scaleY;

 right = texture2D(rightPack0, winCoord);

 cost = left - right;

 JtFx.x += dot(J1, cost);

 JtFx.y += dot(J2, cost);

 JtFx.z += dot(J3, cost);

 tmp = texture2D(left4, warpedTexCoord);

 J1.x = tmp.y;

 left.x = tmp.x;

 tmp = texture2D(left5, warpedTexCoord);

129

 J1.y = tmp.y;

 left.y = tmp.x;

 tmp = texture2D(left6, warpedTexCoord);

 J1.z = tmp.y;

 left.z = tmp.x;

 tmp = texture2D(left7, warpedTexCoord);

 J1.w = tmp.y;

 left.w = tmp.x;

 J2 = J1*scaleX;

 J3 = J1*scaleY;

 right = texture2D(rightPack1, winCoord);

 cost = left - right;

 JtFx.x += dot(J1, cost);

 JtFx.y += dot(J2, cost);

 JtFx.z += dot(J3, cost);

 gl_FragData[0] = JtFx;

};

5.3.4 Cholesky Decomposition Shader

Having computed the Hessian and gradient (Jacobian cost function product) the last

stage of the Gauss-Newton is to update the parameters by solving the set of linear

equations presented in Equation 5.3. There are a few different algorithms capable of

performing the task. These may include Gaussian elimination, LU decomposition, SVD,

etc… However, given the Hessian is a dense positive semi definite symmetrical matrix

the most efficient way to solve this set of linear equations is with the Cholesky

decomposition algorithm. Similar to LU decomposition the matrix is decomposed into

upper and lower matrices. However, with the Cholesky decomposition algorithm the

upper matrix is simply the lower matrix transposed, giving:

ALL T =⋅
5.18

2/11

1

2 ⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

−

=

i

k
ikiiii LaL

5.19

And

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

−

=

1

1

1 i

k
jkikij

ii
ji LLa

L
L

5.20

130

This algorithm performs a factor of 2 better than LU decomposition. Given that the

Hessian is only a 4 by 4 matrix in the case where using a space-time warp and in the

case of just using a space warp only a 3 by 3 matrix, the loops were directly unrolled

and implemented in a straight forward shader listed below. Readers are referred to [68]

for a more detailed derivation of the Cholesky decomposition algorithm, Jung and

O’Leary [39] have recently presented an implementation of the Cholesky decomposition

algorithm targeting a GPU implementation using a very different approach. Although

their implementation is more elegant and possibly superior in performance when

dealing with larger matrices, it is targeted at much larger problems solving one system

of equations as opposed to this implementation which targets solving lots of very

similar systems (i.e. a 4 by 4 system for each pixel). Our shader accepts as input the 4

textures containing the Hessian, a texture containing the current estimate of the

optimization parameters, and the texture containing the Jacobian cost function product.

The shader then solves the system and updates the optimizations parameters. These are

then piped back to the solver and the next iteration is started.

Cholesky Decomposition Shader Listing 5.4
static const char *choleskySource = {

uniform sampler2D hess0,hess1,hess2,hess3, JtFx, disparity;

uniform float offsetX, offsetY;

void main(void)

{"

 vec2 texCoord = gl_TexCoord[0].xy;

 vec4 disp = texture2D(disparity, texCoord);

 vec4 b = texture2D(JtFx, texCoord);

 vec4 x = vec4(0.0f,0.0f,0.0f,0.0f);

 vec4 y = vec4(0.0f,0.0f,0.0f,0.0f);

 mat4 a = mat4(texture2D(hess0, texCoord),texture2D(hess1,

texCoord),texture2D(hess2, texCoord),texture2D(hess3, texCoord));

 vec4 p = vec4(0.0f,0.0f,0.0f,0.0f);

 int i, j, k;

 float sum;

 p.x = sqrt(a[0][0]);

 sum = a[1][0];

 if (p.x != 0.0f){

 a[0][1] = sum / p.x;

 };

 sum = a[2][0];

 if (p.x != 0.0f){

 a[0][2] = sum / p.x;

131

 };

 sum = a[1][1];

 sum -= a[0][1]*a[0][1];

 p.y = sqrt(sum);

 sum = a[2][1];

 sum -= a[0][1]*a[0][2];

if (p.y != 0.0f){

 a[1][2]= sum / p.y;

 };

 sum = a[2][2];

 sum -= a[1][2]*a[1][2];

 sum -= a[0][2]*a[0][2];

 p.z = sqrt(sum);

 if (p.x != 0.0f){

 y.x = b.x / p.x;

 };

 if (p.y != 0.0f){

 y.y = (b.y - (a[0][1]*y.x)) / p.y;

 };

 if (p.z != 0.0f){

 y.z = (b.z - (a[0][2]*y.x) - (a[1][2]*y.y)) / p.z;

 };

 if (p.z != 0.0f){

 x.z = y.z / p.z;

 };

 if (p.y != 0.0f){

 x.y = (y.y - (a[1][2]*x.z)) / p.y;

 };

 if (p.x != 0.0f){

 x.x = (y.x - (a[0][1]*x.y) - (a[0][2]*x.z)) / p.x;

 };

 gl_FragData[0] = disp - x;

};

5.4 Experiments

The primary motivation for the GPU implementation of non-linear Gauss-Newton

optimization was one of performance. Firstly, the algorithm lends itself very well to

being parallelized as each pixel is optimized separately. Secondly this algorithm is not a

candidate for real-time implementation on current CPUs. Could this algorithm be made

to run in real-time by implementing it on a GPU platform? This section will describe a

set of experiments in order to determine the performance of this implementation under

varying conditions. Experiments to determine the performance of the full algorithm

were carried out as well as variations of the algorithm that were comprised of a few

132

trade-offs for performance gains, such a constraining the warp function to space

parameters, and terminating the Gauss-Newton optimization earlier as well as changing

the size of cost function support region.

 With these trade-offs being introduced, a second set of experiments were carried

out in order to determine the impact in terms of quality these trade-offs would

introduce. Other experiments were also carried out to determine the sensitivity of the

Gauss-Newton optimization to the initial estimate of the parameters that are determined

by DP or potentially other types of correlation based solvers. This section will be

divided into two main subsections one outlining all the performance based experiments

carried out while the other will present the qualitative based experiments. The results of

all these experiments will be presented in the following Section 5.5.

5.4.1 Performance Oriented Experiments

The purpose of the following experiments was to determine the performance of the

GPU non-linear optimization part of the space time stereo algorithm. In order to

determine how to improve the GPU based implementation of this space-time stereo

algorithm the bottlenecks had to be found. The performance in terms of computational

time and scalability with regard to the algorithms parameters were found. With these

goals each fragment shader was benchmarked individually with different valued

parameters as well as the entire optimization iteration. The following benchmarks were

performed on the standard rig used in all the previous experiments, namely a quad core

Pentium running at 2.6Ghz with a GeForce 8800GTX:

• Benchmarking each fragment shader with different support region window sizes

• Benchmarking each fragment shader on differing image resolutions

• Benchmarking the entire non-linear optimization iteration with different window

sizes

• Benchmarking the entire non-linear optimization iteration with differing

resolutions

• Benchmarking a differing number of optimization iterations steps.

133

The results of these experiments are presented in Section 5.5. These results demonstrate

the scalability of the GPU non-linear optimization step with regard to image resolution,

algorithm parameters and convergence. The image resolution scalability gives one a

good idea of the potential effects of using multiple GPUs. However, it does not take into

account the data transfer times required to move data across the PCI express bus to

multiple GPUs, which are relatively negligible compared to the algorithms overall

computational cost.

5.4.2 Qualitative Experiments

Having devised experiments to determine the computational cost of the GPU non-linear

optimization step as well as its scalability with regard to certain parameters, such as the

number of optimization steps as well as the support region size, it was then possible to

find the trade-offs between computational time versus reconstruction quality. Section

5.5 will present the quality of various reconstructions next to their computational

performance.

5.5 Results

Table 5.1 presents the timings performed for each fragment used by the GPU non-linear

optimization algorithm described in the previous section. This table allows us to chart

the scalability of each shader with respect to the window size or number of pixels

contained in the support region. It is also worth noting that although the timings for the

gradient and Cholesky shader vary when using different window sizes for the solver,

these were not due to the actual window sizes themselves. The computational cost of the

gradient shader does not vary according to window size. This shader should have a

fixed cost irrelevant of the support region size of the solver as it always used the two

pixel finite difference method for the computation. The timings difference for this

particular shader are less than 0.1 ms and are more likely due to drivers and clock speed

variations of the GPU controlled by the driver given different temperatures. These

effects also contribute to the Cholesky shader timing variations as this shader is always

applied to 3x3 or 4x4 matrix irrelevant of window size. However, there is also the added

effect that the Hessian matrix might be ill-conditioned and therefore produce NAN

floats or divide by zero conditions that would also slightly affect that particular shader’s

134

performance. As illustrated by Figure 5.1, one can clearly see that the scalability of the

Jacobian Cost Function, Gradient and Cholesky shaders with respect to support region

size is linear. As expected the Hessian shader as expected does not scale linearly and is

also the most computationally expensive shader. This is effectively a matrix product

which is known to run in O(𝑛!) time.

Resolution	
 Windows	

Size	

3x3x8	
 6x3x8	
 9x3x8	
 12x3x

8	

9x6x8	
 12x6x

8	

9x9x8	
 12x9x

8	

12x12x

8	

Num	
 Pixels	
 In	

Window	

	
 	
 72	
 144	
 216	
 288	
 432	
 576	
 648	
 864	
 1152	

640x480	
 Gradient	
 0.000
2	

0.000
18	

0.000
17	

0.000
2	

0.000
15	

0.000
18	

0.000
18	

0.000
15	

0.0002	

640x480	
 Hessian	
 0.001
86	

0.003
08	

0.004
23	

0.005
8	

0.008
26	

0.011
43	

0.012
42	

0.021
61	

0.0385	

640x480	
 JacobCost	
 0.000
73	

0.001
1	

0.001
56	

0.001
9	

0.002
66	

0.003
62	

0.003
99	

0.005
18	

0.0069	

640x480	
 Cholesky	
 0.000
25	

0.000
32	

0.000
26	

0.000
3	

0.000
29	

0.000
25	

0.000
34	

0.000
25	

0.0003	

Table 5.1 Time taken in seconds for each shader described in Section 5.4 using different size windows

Figure 5.6 Graph showing scalability of each fragment shader with respect to windows sizes

Table 5.1 summarizes the timings of the complete GPU solver for varying numbers of

iterations as well as window sizes. This table allows us to plot the relationship and

scalability of the complete solver with respect to window sizes as illustrated in Figure

5.6 as well as the scalability with regard to the number of iterations for each set of

window sizes as illustrated by Figures 5.8 to 5.12. Although Figure 5.6 clearly indicates

that the Hessian shader does not scale linearly with respect to window sizes, when

looking at the entire GPU solver timings expressed in Figure 5.7 for the same window

sizes with varying number of iteration the scaling of the solver is almost linear. Table

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

0.045	

0	
 500	
 1000	
 1500	

Gradient	

Hessian	

JacobCost	

Cholesky	

window	
 pixels	

seconds	

135

5.2 also demonstrates that the algorithm scales better with regard to window sizes than

with regard to number of iterations. This would indicate that if computational scalability

is a primary objective, one is better off running the algorithm using a larger support

window sizes than more iterations. Figures 5.8 to 5.12 all show the scalability of the

GPU solver for each window size with respect to the number of iterations. These are all

almost linear with the exception of the smallest window size of 3x3x8. The other

observation is that as the window size increases so does the approximation to linear

scalability.

Table 5.2 indicates that the computational time of the GPU solver after 3

iterations on a window size of 12x12x8 is similar to computational time after 4

iterations on a window of 12x9x8 and 5 iterations using a window size 9x9x8. There is

roughly a 6ms difference between these different parameters. This demonstrates that

within certain computational time constraints the algorithm could be run using very

different parameters and it is therefore necessary to fine tune the system to produce the

best possible qualitative results.

Resolution	
 Window	
 3x3x8	
 6x3x8	
 9x3x8	
 12x3x8	
 9x6x8	
 12x6x8	
 9x9x8	
 12x9x8	
 12x12x8	

	

Iterations	
 72	
 144	
 216	
 288	
 432	
 576	
 648	
 864	
 1152	

640x480	
 1	
 0.0124	
 0.0139	
 0.0176	
 0.019	
 0.0233	
 0.0276	
 0.0313	
 0.039	
 0.052	

640x480	
 2	
 0.0159	
 0.0223	
 0.0248	
 0.028	
 0.0437	
 0.0516	
 0.0615	
 0.0802	
 0.104	

640x480	
 3	
 0.0269	
 0.0323	
 0.036	
 0.042	
 0.0625	
 0.0821	
 0.0938	
 0.1202	
 0.155	

640x480	
 4	
 0.0309	
 0.0408	
 0.0446	
 0.059	
 0.0846	
 0.1115	
 0.1234	
 0.1598	
 0.211	

640x480	
 5	
 0.0369	
 0.0465	
 0.0537	
 0.073	
 0.108	
 0.135	
 0.1535	
 0.2014	
 0.262	

640x480	
 6	
 0.0402	
 0.0557	
 0.0694	
 0.086	
 0.1282	
 0.1659	
 0.1854	
 0.2369	
 0.316	

Table 5.2 Timings in seconds for complete GPU solver with varying window sizes as well as varying

number of iterations.

136

Figure 5.7 Timings for solver using varying number of iterations the x-axis represents the number of

pixels contained in the support window and is scaled appropriately

Resolutio
n	
 Window	

3x3x
8	

6x3x
8	

9x3x
8	

12x3x
8	

9x6x
8	

12x6x
8	

9x9x
8	

12x9x
8	

12x12x
8	

	
 	

Iteration
s	
 72	
 144	
 216	
 288	
 432	
 576	
 648	
 864	
 1152	

640x480	
 1	
 80.85	
 71.85	
 56.81	
 52.64	
 42.9	
 36.23	
 32	
 25.63	
 19.1938	

640x480	
 2	
 62.8	
 44.91	
 40.28	
 35.42	
 22.9	
 19.38	
 16.2	
 12.47	
 9.64906	

640x480	
 3	
 37.18	
 30.98	
 27.79	
 23.89	
 16	
 12.18	
 10.7	
 8.32	
 6.43571	

640x480	
 4	
 32.32	
 24.52	
 22.42	
 16.85	
 11.8	
 8.968	
 8.11	
 6.26	
 4.74975	

640x480	
 5	
 27.1	
 21.51	
 18.63	
 13.74	
 9.26	
 7.408	
 6.52	
 4.965	
 3.81340	

640x480	
 6	
 24.88	
 17.94	
 14.41	
 11.58	
 7.8	
 6.029	
 5.39	
 4.221	
 3.16852	

Table 5.3 Same Timings as Table 5.2 expressed in frames/second

Figure 5.8 Timings for GPU solver after 1-6 iterations for windows (3x3x8 Left, 6x3x8 Right)

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0	
 200	
 400	
 600	
 800	
 1000	
 1200	
 1400	

Itera:on	
 Scaling	

1	

2	

3	

4	

5	

6	

seconds	

pixels	

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

0.045	

1	
 2	
 3	
 4	
 5	
 6	

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

1	
 2	
 3	
 4	
 5	
 6	

137

Figure 5.9 Timings for GPU solver after 1-6 iterations for windows (9x3x8 Left, 12x3x8 Right)

Figure 5.10 Timings for GPU solver after 1-6 iterations for windows (9x6x8 Left, 12x6x8 Right)

Figure 5.11 Timings for GPU solver after 1-6 iterations for windows (9x9x8 Left, 12x9x8 Right)

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

1	
 2	
 3	
 4	
 5	
 6	

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0.09	

0.1	

1	
 2	
 3	
 4	
 5	
 6	

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

1	
 2	
 3	
 4	
 5	
 6	

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

0.18	

1	
 2	
 3	
 4	
 5	
 6	

0	

0.05	

0.1	

0.15	

0.2	

1	
 2	
 3	
 4	
 5	
 6	

0	

0.05	

0.1	

0.15	

0.2	

0.25	

1	
 2	
 3	
 4	
 5	
 6	

138

Figure 5.12 Timings for GPU solver after 1-6 iterations for windows (12x12x8)

Figure 5.13 Reconstructions using (left 12x12x8 3iterations. right 12x9x8 4 iterations)

Figure 5.14 Reconstruction using (9x9x8 5 iterations)

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

1	
 2	
 3	
 4	
 5	
 6	

139

Figure 5.2 demonstrates that choosing between window size and number of solver

iterations is not always straight forwards. The figure illustrates three reconstructions all

using various windows sizes as well as differing number of solver iterations. These

three particular sets of parameters were chosen because their computational time is very

similar (less than 6ms). Looking at these three images one deduces that using a 12x9x8

window and 4 iterations produce superior results than using 12x12x8 after 3 iterations

(i.e. there are fewer artefacts in the prior). However, when comparing the 12x9x8 with 4

iterations with the 9x9x8 with 5 iterations it is not as clear which of these two examples

produce superior results. The 9x9x8 reconstruction contains fewer artefacts around the

mouth region but the forehead contains more artefacts. The forehead artefacts are

caused by the fact that this GPU solver does not enforce a gradient disparity constraint.

This could be potentially eliminated at the cost of computational performance, and this

will be elaborated in Chapter 6.

5.6 Conclusion

This chapter has demonstrated how to reformulate the algorithm from Chapter 4 into a

streaming algorithm which lends itself particularly well to be implemented on modern

GPUs. We extended the work of [91] by initializing the algorithm using a modified

multilayer dynamic approach and a lower scale and solving the non-linear optimization

with a Cholesky solver. All of these are achieved on the GPU. It has also been

demonstrated to run in real-time given certain parameters. This chapter has also

demonstrated that the GPU implementation of the non-linear optimization algorithm

scales close to linearly with regard to the support region window sizes as well as the

number of solver iterations. Although this chapter addressed scalability with regard to

window sizes and solver iterations, it has not addressed scalability with regard to image

resolution and with regard to the overall system including the multi-scale dynamic

programming initialisation step. These issues will be tackled in following the following

chapter which will explore a scalable frame-work for the overall system. It will address

certain issues with regard to parameter tuning for maximum quality results given

varying computational time constraints.

140

141

 Chapter 6

Scalability and Optimization
Having examined the initialization and non-linear optimization steps in the previous

chapters, this chapter will discuss further optimization in the context of a scalable

framework for real-time applications. The performance of the DP algorithm

initialisation step although considered to be potentially interactive, fell short in terms of

real-time performance when compared to the more optimized non-linear step described

in Chapter 5. This chapter will show how to improve the computational efficiency of the

initialization step of the algorithm by implementing a hybrid CPU/GPU implementation

in Section 6.1, and how it can further be optimized to achieve real-time performance in

Section 6.2 This chapter will also demonstrate the full scalability of all the system

parameters in Section 6.3. and place them into the greater context of the scalable

framework. The quality performance trade-offs of the system parameters presented in

Section 6.4 will be determined by experiments described in Section 6.5, with the results

being discussed in Section 6.6.

6.1 Dynamic Programming Hybrid CPU-GPU

The design decision to implement a hybrid approach to solving the Criminisi et

al.algorithm was motivated by the fact that the inherent branching nature of dynamic

programming does not lend itself well to GPU architectures. This was demonstrated by

[27] in which the hybrid CPU-GPU implementation with the significant limitations of

an APG bus ran significantly faster than the GPU only implementation. This algorithm

was re-implemented to use the CPU and GPU in a hybrid fashion. The target platform

was a PC with an Nvidia 680i chipset containing an Intel QX6700 CPU with a GeForce

8800GTX GPU. The CPU is a quad core architecture containing four processor cores

that can be made to run in parallel using multiple threads. The GPU is an Nvidia

142

architecture using 128 unified shaders, making it ideal for processing large streams of

data. The Nvidia 680i chipset also contains 3 PCIx16 interfaces allowing up to three

GPUs. The reason not many hybrid CPU/GPU implementations of algorithm were

performed in the past was because of the AGP interface having a slow read back

performance. This interface was asymmetrical and was capable of writing data to the

GPU at a much faster transfer rate than reading data. This made reading back large

amounts of data from the GPU slow and created an undesirable performance bottle

neck. With the new introduction of PCIx16 this no longer becomes such an issue as it is

a symmetrical bus with data rates of 3GB/s using non-pageable memory transfers that

are optimized by the driver. These new hardware capabilities motivated the

development of this new hybrid implementation of the Criminisi et al.[19] algorithm.

The Criminisi et al.[19] algorithm can be broken down into two stages. The first

stage is the computation of the cost function to produce a dissimilarity matrix. The

second stage is the scan-line optimization performed using the three plane matrix as

described in Chapter 2 In this hybrid implementation the first stage in performed on the

GPU while the second on the CPU. The captured images are sent across the PCIx16 bus

to the GPU. The GPU then computes the cost function for each pixel and each disparity

value within a given range. The result is stored in the dissimilarity matrix (DSI matrix)

that is then copied back across the PCIx16 bus into system ram that can be accessed by

the CPU cores. To further optimize the computation of the DSI matrix on the GPU, this

computation is performed again, in two stages. The first stage is computing the cost

function in the space domain across two stereo images, with the result then being

cached on the GPU. The second stage takes the previously cached results and computes

the total cost across the temporal domain. This enables redundant computations to be

eliminated.

The high level overview of the hybrid system is illustrated in Figure 6.1. The

GPU implementation of the DSI matrix computation is further elaborated in Figure 6.2.

This illustrates the GPU implementation of the sum of squared difference cost

computation. This implementation was broken down using three computational kernels.

The first kernel labelled as the difference kernel in Figure 6.2 computes the difference

between each pixel in the left image with each pixel in the right image for every

possible disparity value in a given range, usually determined by the base line of the

stereo setup. The result producing a 3D data structure of dimensions image width by

143

image height by disparity range is then cached in the GPU memory along with the same

computation of x number of previous frames where x represents the window size in the

temporal domain.

Figure 6.1 Overview of the hybrid CPU/GPU implementation

The second kernel takes the cached results squares them and sums them across the

temporal domain. These results are then passed onto the final kernel that performs a

sum across the space domain depending on the window size specified to produce the

final DSI matrix that is then copied back across the PCIx16 bus into system RAM.

The only issue is the PCIx16 bandwidth of 3GB/s, given that the image

resolutions are 640x480 pixels and the typical disparity range is 150 pixels. Using 32bit

floats to store the DSI matrix produces a data rate of 176MB per frame. This would give

us a theoretical maximum frame rate of 17fps. This can be doubled just by using int16

144

instead of floats to store the DSI matrix. However, as Chapter 4 demonstrated that due

to the fact that the non-linear optimization can be initialized with a sub-sampled DP

solution in this way, was deemed unnecessary. This implementation can also be

improved by using multiple GPUs each on their own PCIx16 bus therefore dividing the

bandwidth requirements by the number of GPUs. As demonstrated in Chapter 4 and

Chapter 5, a new multi-scale non-linear optimization algorithm will be developed using

the optimized version of this implementation as an initialization step.

Figure 6.2 GPU DSI Matrix Computations

The initialization will then be performed at half resolution over half the disparity range

and will completely eliminate this bottleneck.

The GPU implementation of the cost computation was implemented using

CUDA [25] an API, and run time environment developed by Nvidia. This development

environment consists of a pseudo C compiler that generates its own machine byte code

that is then interpreted by a virtual machine residing inside the GPU’s graphics driver.

This was specifically developed to enable GPUs to be used for non-graphics related

tasks and exposes extra functionality such as memory scatter operations as well as

145

creating a higher level interface and development environment. The GPU

implementation was then validated against the CPU implementation and found to

produce identical results.

6.1.1 Performance for Real-Time Applications

Having determined that the Criminisi et al.[19] algorithm produced superior results with

fewer errors, it was necessary to answer the remaining question as to its suitability for

real-time applications. The initial CPU implementation, although sufficient to evaluate

the qualitative results, was not optimized and took a few seconds to calculate the

disparity maps. This motivated the hybrid implementation described in Section 6.1. This

implementation was benchmarked to determine its speed as well as the impact of

various parameters such as window size, maximum disparity threshold and image

resolutions. This enables a performance versus quality correlation to be determined, as

well as finding the various bottlenecks in order to further improve the algorithms and

refine them.

There are a number of parameters each affecting the computational performance

of this hybrid CPU-GPU implementation. The benchmarking is achieved by measuring

the time taken to perform each of the following tasks: computing the difference between

two images for each disparity within a range (this represents the difference kernel),

squaring and summing these results across the space and time domain (this represents

both SSD kernels), transferring the resulting DSI matrix across the PCIx16 bus and

finally, computing the dynamic programming optimization using the Criminisi et al.[19]

algorithm on the CPU. Image resolution, disparity range and window size all have an

impact on one or more of the previously mentioned sub-components of the algorithm.

The image resolution obviously has the greatest impact on performance, by halving the

resolution not only are there four times fewer pixels to process, but the disparity range is

also divided into two, further more reducing the computational burden, and bandwidth

requirements across the PCIx16 bus. Table 6.1 summarizes the time taken in each sub-

component with the various parameters. All the timing measurements were performed

on an Intel QX6700 clocked at 2.6 GHz with 2GB of ram clocked at 800 MHz and a

GeForce 8800GTX clocked at 600 MHz

146

Image Resolution Cores Disparity Range Window Size Diff Kernel SSD Kernels PCIx Transfer DP Optimization Fps

320x240 1 70 3x3x1 0.0103 0.0125 0.0125 0.171 4.8473

320x240 4 70 3x3x1 0.0104 0.025 0.0124 0.044 10.893

320x240 1 70 5x5x1 0.0104 0.0304 0.0123 0.167 4.5434

320x240 1 70 5x7x1 0.0104 0.0304 0.0123 0.167 4.5434

320x240 1 70 5x7x8 0.0104 0.185 0.0124 0.171 2.6399

320x240 4 70 5x7x8 0.0104 0.185 0.0123 0.042 4.0048

640x480 1 120 3x3x1 0.064 0.186 0.08 1.248 0.6337

640x480 4 120 3x3x1 0.064 0.185 0.08 0.32 1.5408

640x480 1 120 5x5x1 0.064 0.219 0.083 1.229 0.627

640x480 1 120 5x7x1 0.064 0.219 0.082 1.225 0.6289

640x480 1 120 5x7x8 0.064 1.338 0.081 1.215 0.3706

640x480 4 120 5x7x8 0.064 1.341 0.081 0.306 0.558

Table 6.1 Benchmarks for hybrid CPU/GPU Dynamic Programming Implementation

From Table 6.1 one can observe that the window size does not affect the performance of

the difference kernel, dynamic programming and PCI transfer times. It does however

have an impact on the SSD kernels. This is generally due to the fact that although GPUs

process large amounts of data simultaneously, there is a large latency penalty for

memory fetches, the impact of which can be reduced by having a large ratio of

computations per fetched data element. Section 6.2 will demonstrate how this can

further be reduced in CUDA [25] with the use of what is referred to as shared memory

(effectively a cache inside kernels). One can also observe from this table and Figure 6.3,

that the two major computational burdens lie with the dynamic programming

optimization performed on the CPU and the SSD computations performed on the GPU.

Figure 6.3 is a plot of the computational time of both SSD and DP computations relative

to the disparity ranges. One can observe a linear relationship between both the

computation time taken for both the GPU and CPU versus the disparity range up to 110.

Beyond this point the CPU computation times continue to increase in a linear fashion

while the GPU computation times stop increasing. This was a strong indication of a

hidden bottleneck in the SSD GPU implementation. This is caused by memory fetches.

As the number of computations increase beyond a certain point the GPU’s driver’s

internal scheduler manages to limit the impact of memory fetches and the computational

time of the SSD actually decreases. In this particular implementation the SSD

computation was performed explicitly in a CUDA [25] kernel. The implementation of

the SSD computation again was optimized further and is presented in the following

Section 6.2.

147

Figure 6.3 Computational Time of GPU/CPU for various disparity ranges for 640x480 5x7x8 window

running on single GPU and single Core

The transfer times across the PCIx16 bus were measured for 32bit floating point values.

These times can also be easily halved just by using int16. However once a multi-scale

approach is applied this is no longer necessary. Further optimizations are achieved with

the use of background removal achieved by using a threshold. Another form of

performance optimization would also be achieved by assuming a disparity gradient

constraint and limiting the disparity range for a given pixel based on the previous

frames value and depending on whether or not it was near a depth discontinuity. This

would limit the search space of the Criminisi et al.[19] algorithm on a per pixel basis

and given that most disparity values fall well beneath the greatest disparity range should

in theory speed up the DP optimization times considerably. This optimization was

implemented by using a multi-scale approach. The lower resolution solution was used to

constrain the maximum disparity values for each pixel. This achieved considerable

speed up and will be discussed further in Section 6.2.

All of these optimizations were explored further and used to achieve

considerable speed increases, making this algorithm very suitable for real-time

applications. They are discussed in greater detail in Section 6.2. As it stands this current

implementation scales quite nicely and can be trivially extended to support more CPU

cores and multiple GPUs.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	

	

	

GPU	
 SSD	
 	

CPU	

seconds	

max	
 	
 disparity	

	

148

6.2 Further Optimizations

The Criminisi et al.[19] dynamic programming algorithm modified to use a space-time

window as well as SSD cost function presented in previous Section 6.2 was slow

compared to the GPU non-linear optimization step presented in Chapter 5. The

optimizations presented in this chapter were motivated by the advantage of using the

Criminisi et al.[19] dynamic programming algorithm as well as the normalized SSD

cost function extended into the time domain when using striped structured light patterns.

Unfortunately dynamic programming type algorithms do not map particularly well to

being implemented on GPUs, as seen in [27]. Although they are easy to parallelize by

their nature, due to fact that each scan-line is solved independently of each other, while

solving a particular scan-line, there is a lot of interdependency within each scan-line

combined with heavy branching. In spite of the hybrid CPU/GPU implementation

proving beneficial and improving the computational time over the CPU only

implementation, there was still room for further optimizations and computational

performance gains. This section will discuss in more detail these optimizations and their

benefits. All performance timings presented in this section were taken on QX6700 Intel

CPU and a GeForce GT260 GPU, although the GPU differs from the 8800 GTX used in

the previous chapter, it shares a similar architecture but with the added benefit of an

increased memory bandwidth and more shader units.

6.2.1 GPU Read back Optimizations

Theoretically achieving the same bandwidth for reading and writing operations,

although in practice this is not truly accurate, the difference in bandwidth between

writing and reading across the bus is significantly reduced. The bandwidth

requirements for this application are still high, and can be computed as:

𝐵 =𝑊𝑖𝑑𝑡ℎ ∗ 𝐻𝑒𝑖𝑔ℎ𝑡 ∗𝑀𝑎𝑥𝐷 ∗ 𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝑙𝑜𝑎𝑡)
6.1

Where B is the read back bandwidth in bytes required per frame and MaxD is the

maximum disparity value. A real world example would be using half the image

resolution (320x240) for the dynamic programming with a maximum disparity value of

149

80 pixels, which would give a bandwidth requirement of 26.37 Mbytes per frame, with

a desired frame rate of 30 fps. For real-time applications or ideally 60fps to match the

video camera capture rate a bandwidth of 792MB/s or 1584MB/s respectively would be

required. The theoretical maximum bandwidth of PCI express 16 Version 2 is 8GB/s,

however, the CUDA runtime environment does not achieve this performance. It was

therefore necessary to determine the real world performance of these memory transfers.

The initial release of CUDA did not support page locked memory transfers that are

optimized by the GPU drivers. With later releases this feature was added, and by using

memory transfers from system memory that is paged locked, significant performance

increases were achieved.

Maximum	
 Disparity	
 Width	
 Height	
 50	
 60	
 70	
 80	
 90	
 Locked	

Bytes	
 Transferred	
 	
 	
 	
 	
 	
 15360000	
 18432000	
 21504000	
 24576000	
 27648000	
 	
 	

Transfer	
 Time	
 in	
 seconds	
 320	
 240	
 0.01380	
 0.01239	
 0.01406	
 0.01600	
 0.01775	
 No	

Transfer	
 Time	
 in	
 seconds	
 320	
 240	
 0.0054	
 0.00635	
 0.00728	
 0.00823	
 0.00902	
 Yes	

Bandwidth	
 Achieved	
 MB/s	
 320	
 240	
 1061.09	
 1418.16	
 1458.17	
 1464.38	
 1485.22	
 No	

Bandwidth	
 Achieved	
 MB/s	
 320	
 240	
 2712.67	
 2768.20	
 2816.62	
 2845.04	
 2920.27	
 Yes	

Maximum	
 Disparity	
 	
 	
 	
 	
 100	
 140	
 150	
 200	
 250	
 	
 	

Bytes	
 Transferred	
 	
 	
 	
 	
 	
 30720000	
 43008000	
 46080000	
 61440000	
 76800000	
 	
 	

Transfer	
 Time	
 in	
 seconds	
 320	
 240	
 0.01967	
 0.02717	
 0.02832	
 0.03822	
 0.04802	
 No	

Transfer	
 Time	
 in	
 seconds	
 320	
 240	
 0.01003	
 0.01344	
 0.014651	
 0.018362	
 0.023461	
 Yes	

Bandwidth	
 Achieved	
 MB/s	
 320	
 240	
 1489.41	
 1509.42	
 1551.248	
 1533.025	
 1525.148	
 No	

Bandwidth	
 Achieved	
 MB/s	
 320	
 240	
 2918.30	
 3051.53	
 2999.475	
 3191.033	
 3121.869	
 Yes	

Table 6.2 Timings for memory transfer across the PCIx16 bus in seconds for different sized cost matrices

Table 6.2 Illustrates the difference in bandwidth achieved in CUDA between using page

locked memory transfer versus non-page locked transfers. In each case the bandwidth is

doubled. This table also illustrates some differences in bandwidth when transferring

varying amounts of data. When transferring larger chunks of data the bandwidth

increases slightly up to a point and then starts to decrease once the data starts to exceed

60MB per frame mark. Finally, one also notices that the maximum bandwidth achieved

is just over 3GB/s a figure significantly lower than the theoretical maximum of the PCI

express 16 Version 2 specification of 8GB/s. This has certain implications that will be

discussed in the scalability framework.

150

6.2.2 CUDA Latency Overhead

The initial CUDA implementation of the cost matrix computation described in

Chapter 3 was sub-optimal. CUDA works by providing a high level programming

interface similar to C for GPGPU computations. However in its effort to make

development easy it is sometimes less obvious how to optimize the code in the best

possible way. CUDA organises the data into streams and then launching kernels that

process the data on the GPU. It is a massively parallel system, running blocks of threads

that are organised into a grid. Each thread executes the kernel over the data stream, and

inter thread communication is achieved with the use of shared memory. This shared

memory is shared across a particular block of threads. One of the biggest potential

bottle necks in CUDA applications is caused by the latency associated with accessing

the GPU system memory. This latency is very high and can be in the order of 600 clock

cycles. In order to hide this latency the system architecture schedules multiple blocks of

threads onto the same hardware shading processor during thread synchronisations calls.

Each shading processor has a limited number of registers and shared memory available,

this along with kernel and block size, determine the maximum number of blocks that

concurrently run on one multiprocessor (i.e. occupancy). To properly reduce the impact

of latency associated with global memory reads this occupancy should be a 100% of the

maximum supported for that particular GPU architecture. Reducing the number of

registers used by a kernel as well as increasing the number of thread blocks can improve

the occupancy and therefore offset the latency cost associated global memory access.

Using the latest CUDA profiling tools enabled the fine tuning of these various CUDA

parameters such as block size, grid size and register usage, to minimize latency

associated with global memory operations. Another major source of latency is

associated with launching a particular kernel on a grid of thread blocks. The initial

implementation would launch a separate kernel for each disparity values for both the

DSI and SSD kernels. This is effectively the equivalent of a for loop contained outside

the GPU. By placing this loop inside the kernels themselves extra computations used in

the kernels was massively offset by the gains in kernel execution latency. This small

change probably had the most impact in terms of GPU performance as demonstrated by

Table 6.3. and Table 6.4.
	
 	

151

Width	
 Height	
 winX	
 winY	
 winZ	
 MaxD	
 Diff	
 Kernel	
 SSD	
 Kernel	

320	
 240	
 3	
 7	
 1	
 50	
 0.00842	
 0.011751	

320	
 240	
 3	
 7	
 1	
 60	
 0.016857	
 0.013606	

320	
 240	
 3	
 7	
 1	
 70	
 0.011281	
 0.016009	

320	
 240	
 3	
 7	
 1	
 80	
 0.012621	
 0.018152	

320	
 240	
 3	
 7	
 1	
 90	
 0.015861	
 0.020643	

320	
 240	
 3	
 7	
 1	
 100	
 0.01649	
 0.022656	

320	
 240	
 3	
 7	
 1	
 110	
 0.018526	
 0.024946	

320	
 240	
 3	
 7	
 1	
 120	
 0.019156	
 0.027282	

320	
 240	
 3	
 7	
 1	
 150	
 0.024682	
 0.034117	

320	
 240	
 3	
 7	
 1	
 200	
 0.035264	
 0.04514	

320	
 240	
 3	
 7	
 1	
 250	
 0.039923	
 0.056489	

Table 6.3 Computational Time of kernels used for the CUDA cost matrix calculation with the added

latency of extra kernel calls

Width	
 Height	
 winX	
 winY	
 winZ	
 MaxD	

Diff	

Kernel	
 SSD	
 Kernel	

320	
 240	
 3	
 7	
 1	
 50	
 0.000544	
 0.003823	

320	
 240	
 3	
 7	
 1	
 60	
 0.000596	
 0.004384	

320	
 240	
 3	
 7	
 1	
 70	
 0.000641	
 0.004974	

320	
 240	
 3	
 7	
 1	
 80	
 0.00069	
 0.005498	

320	
 240	
 3	
 7	
 1	
 90	
 0.000728	
 0.005904	

320	
 240	
 3	
 7	
 1	
 100	
 0.000778	
 0.006739	

320	
 240	
 3	
 7	
 1	
 110	
 0.000822	
 0.007006	

320	
 240	
 3	
 7	
 1	
 120	
 0.001333	
 0.007813	

320	
 240	
 3	
 7	
 1	
 150	
 0.001003	
 0.008856	

320	
 240	
 3	
 7	
 1	
 200	
 0.001697	
 0.012881	

320	
 240	
 3	
 7	
 1	
 250	
 0.00192	
 0.016529	

Table 6.4 Computational Time of kernels used for the CUDA cost matrix calculation without the added

latency of extra kernel calls

Table 6.3 contains the timings of both the difference and SSD kernels with the added

overhead latency associated with launching a separate kernel for each of the different

disparity values. Table 6.4 contains the timings of the same kernels in Table 6.3.

However they contain an extra for loop allowing the removal of a separate execution for

each differing disparity value. One can clearly see large performance gains in the region

of one order of magnitude (20x speed increase on average), for the latter

implementation. This might not have necessarily been the case had this been

implemented in OpenGL, where although there is a cost associated with switching

152

fragment shaders in this particular case one is not switching shaders but would be

performing more rendering passes with a much less severe impact on the performance.

Having removed the latency associated with kernel executions, we can minimise

the latency associated with memory accessed by the kernel. The shared memory

addressing in the GPU architecture used here is broken down into what is referred to as

banks (see [60]). These 32bit banks are broken down into half warps with the number of

banks per warp determined by the architecture, in this case 16.

Figure 6.4 Shared Memory Access without Bank-Conflicts

Should sequential threads access the same bank of shared memory, a bank conflict

arises and the memory accesses are then serialized and not performed in parallel. In the

example of the difference kernel that computes the difference between images for a

given disparity value, each pixel is read as an 8bit grey scale unsigned char. The initial

implementation had each thread stored and accessed each image pixels in shared

memory as unsigned char sequentially, and therefore produced bank conflicts as groups

of four pixels were assigned to the same bank. This ended up causing the GPU to

serialize each of the shared memory accesses into four separate operations. These

serializations are easily removed by either using float arrays in shared memory, or by

re-implementing the kernel in such a way that each sequential thread accesses every

153

fourth byte in shared memory. Both the difference and SSD kernels were re-

implemented in such a way as to remove all unnecessary bank conflicts and therefore

optimize all shared memory operations.

Figure 6.5 Shared Memory Access with Bank-Conflicts

6.2.3 SSD Kernel Optimizations for better scalability

The final GPU optimization targeted the SSD kernel. The initial implementation

although optimized to remove all unnecessary bank conflicts and make use of shared

memory to minimise the impact of global memory access latency, still performed

unnecessary computations. The purpose of the kernel is to compute the sums across the

support region from the squared difference data computed by the diff kernel. The initial

implementation had each thread loop over each squared difference pixel in the support

region compute the sum. Although implemented simply and performing well for small

support regions this implementation does not scale well. In the case of a window of 3x3

each thread will perform 8 additions 5 of which will be recomputed by the neighbouring

thread, see Figure 6.6.

A more efficient way to compute the results is to separate the sum into two

sums. Firstly the columns are summed and then the result is then summed, therefore

each thread is now computing 4 additions. This can then further be made more efficient

154

so that when the next row is processed, instead of re-computing the entire column sum

again from scratch, one can use the previous column sum and subtract the first row and

add the next row. Although this would not yield any benefits when using a 3x3 window

size as the window size increases in height, the cost of computing the column sum

remains fixed at 2 additions once the first n rows of each block are computed where n is

equal to the window height.

Figure 6.6 Naive SSD Kernel on 3x3 Window

This method contains some added overheads that are more than offset by the

computational savings.

155

Figure 6.7 Optimized SSD kernel computation

Table 6.5 shows the computational time taken for both versions of the SSD kernel for

various window sizes. The optimized SSD kernel not only runs faster but as one can see

from Figure 6.8 that the computational time scales better (i.e. the computational cost of

the optimised SSD kernel is almost constant) relative to window size.

	
 	

Width	

pixels	

Height	

pixels	

WinX	

pixels	

WinY	

pixels	

WinZ	

pixels	

MaxD	

pixels	

Win	
 Size	

pixels	

SSD	

Time	
 in	

seconds	

Naïve	
 SSD	
 320	
 240	
 3	
 3	
 1	
 80	
 9	
 0.008091	

	
 	
 320	
 240	
 5	
 5	
 1	
 80	
 25	
 0.010821	

	
 	
 320	
 240	
 7	
 7	
 1	
 80	
 49	
 0.014375	

	
 	
 320	
 240	
 9	
 9	
 1	
 80	
 81	
 0.019907	

	
 	
 320	
 240	
 11	
 11	
 1	
 80	
 121	
 0.026195	

	
 	
 320	
 240	
 13	
 13	
 1	
 80	
 169	
 0.034381	

	
 	
 320	
 240	
 15	
 15	
 1	
 80	
 225	
 0.04321	

Optimized	
 SSD	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 320	
 240	
 3	
 3	
 1	
 80	
 9	
 0.007783	

	
 	
 320	
 240	
 5	
 5	
 1	
 80	
 25	
 0.007903	

	
 	
 320	
 240	
 7	
 7	
 1	
 80	
 49	
 0.007931	

	
 	
 320	
 240	
 9	
 9	
 1	
 80	
 81	
 0.008062	

	
 	
 320	
 240	
 11	
 11	
 1	
 80	
 121	
 0.007995	

	
 	
 320	
 240	
 13	
 13	
 1	
 80	
 169	
 0.008099	

	
 	
 320	
 240	
 15	
 15	
 1	
 80	
 225	
 0.008215	

Table 6.5 Timings naive SSD versus optimized

156

Figure 6.8 Scaling between naive SSD and optimised SSD kernel the x-axis represents the number of

pixel in the space domain while the y-axis represents the computational time

6.2.4 Load Balancing and Further CPU gains

Having optimized the GPU parts of the algorithm, the CPU part (i.e. the multi-layer DP

optimization) was then examined and optimized. Having re-implemented the SSD

kernel as described in the previous section of this chapter, and by caching the squared

dissimilarity matrix, the window size parameters almost have a fixed computational cost

with regard to the hybrid dynamic programming initialization.

Figure 6.9 CPU computational time scalability with regard to maximum disparity

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

0.045	

0.05	

0	
 50	
 100	
 150	
 200	
 250	

	
 	

SSD	
 Naïve	

SSD	
 OpVmised	

max	
 disparity	

Time	

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0	
 50	
 100	
 150	
 200	
 250	

Time	
 CPU	

Time	
 CPU	

max	
 disparity	
 	

Time	

157

The only parameters left that could impact the computational cost of this part of the

algorithm are the image resolution and the maximum disparity value. The maximum

disparity value is determined by the position of cameras and capture volume as well as

the image resolution, by down sampling the captured images one can effectively reduce

the maximum disparity value necessary to capture the depths of the imaged object (i.e.

reducing the image resolution from 640x480 to 320x240 implies reducing the maximum

disparity value by half from 140 pixels to 70 pixels). It is clear from Table 6.5 and

Figure 6.8 that although the DP Optimization computational time scales almost linearly

with regard to the maximum disparity value, this parameter has the greatest impact on

the overall performance. Reducing the maximum disparity value clearly improves the

system computational performance substantially. It also reduces the maximum image

resolution and depth range. One way to maintain some of the performance advantages

of a reduced maximum disparity value yet keep this value high, is to modify the DP

optimization algorithm to use per-pixel specified maximum disparity values. This

however, requires determining what these per-pixel maximum disparity values should

be in order to maintain results with the same quality. One potential cheap solution

would be to use the results of the previous frame plus some added threshold determined

by the maximum potential gradient.

Width	

pixels	

Height	

pixels	

WinX	
 	

pixels	

WinY	

pixels	

WinZ	

pixels	

MaxD	
 	

pixels	

Time	
 CPU	
 in	

seconds	

320	
 240	
 5	
 7	
 1	
 50	
 0.081578	

320	
 240	
 5	
 7	
 1	
 60	
 0.104211	

320	
 240	
 5	
 7	
 1	
 70	
 0.116923	

320	
 240	
 5	
 7	
 1	
 80	
 0.12216	

320	
 240	
 5	
 7	
 1	
 90	
 0.141939	

320	
 240	
 5	
 7	
 1	
 100	
 0.158527	

320	
 240	
 5	
 7	
 1	
 110	
 0.164631	

320	
 240	
 5	
 7	
 1	
 120	
 0.185802	

320	
 240	
 5	
 7	
 1	
 130	
 0.193432	

320	
 240	
 5	
 7	
 1	
 140	
 0.208493	

320	
 240	
 5	
 7	
 1	
 150	
 0.214784	

320	
 240	
 5	
 7	
 1	
 160	
 0.212478	

320	
 240	
 5	
 7	
 1	
 170	
 0.234778	

320	
 240	
 5	
 7	
 1	
 180	
 0.252913	

320	
 240	
 5	
 7	
 1	
 190	
 0.25043	

320	
 240	
 5	
 7	
 1	
 200	
 0.265732	

Table 6.6 Timing of CPU one core multi-layer DP optimization

158

Widt
h	

Heig
ht	

Win
X	

Win
Y	

Win
Z	

Max
D	

SubSampled	

Total	

Per-­‐Pixel	

MaxD	

Total	

Time	

Original	

Time	
 %	
 Saving	

320	
 240	
 5	
 7	
 1	
 60	
 0.023641	
 0.058532	
 0.08217	
 0.104211	
 21.14747	

320	
 240	
 5	
 7	
 1	
 80	
 0.028418	
 0.065111	
 0.09352	
 0.12216	
 23.43729	

320	
 240	
 5	
 7	
 1	
 100	
 0.033092	
 0.071979	
 0.10507	
 0.158527	
 33.72043	

320	
 240	
 5	
 7	
 1	
 120	
 0.039647	
 0.08065	
 0.12029	
 0.185802	
 35.25527	

320	
 240	
 5	
 7	
 1	
 140	
 0.042396	
 0.086537	
 0.12893	
 0.208493	
 38.15955	

320	
 240	
 5	
 7	
 1	
 160	
 0.046196	
 0.093227	
 0.13942	
 0.212478	
 34.38238	

320	
 240	
 5	
 7	
 1	
 180	
 0.050422	
 0.10415	
 0.15457	
 0.252913	
 38.88333	

320	
 240	
 5	
 7	
 1	
 200	
 0.05584	
 0.101596	
 0.15743	
 0.265732	
 40.75384	

Table 6.7 Timings of multi-scale DP optimizations versus single scale and computational savings

This however, would produce errors at depth discontinuities. One could potentially use

the detected discontinuities from the previous frame’s reconstruction along with

neighbouring pixels and reset their maximum disparity values to the highest maximum

disparity. The neighbouring pixels would account for motion. Although this could

potentially eliminate the errors, a much simpler solution is to use a multi-scale

approach. This approach is only worth using if the computational savings achieved by

using a per-pixel maximum disparity values offset the added cost of performing a sub-

sampled reconstruction. Table 6.7 displays the timings for the reconstruction with per-

pixel maximum disparity values as well as the cost of the sub-sampled reconstruction

used to compute them, with the final column indicating the computational savings

achieved. Table 6.7 clearly demonstrates the advantages in terms of speed, of using a

multi-scale approach where the sub-samples are used to compute a per-pixel maximum

disparity that is then used to speed up the higher resolution reconstruction.

 All these optimizations have significantly improved the computational

performance of the DP algorithm, and as the following section will demonstrate, have

enabled the creation of a system that can run at over 30 fps. Nevertheless what this

shows is how sensitive all GPU accelerated algorithms are to implementation. It was not

apparent at first that adding an extra for loop inside the CUDA shader and thereby

reducing the number of kernel calls would yield such speed increases. In order to get the

most out of GPUs one needs a thorough understanding of their architectures in order to

leverage the most out of them and make unintuitive design decisions.

159

6.3 Scalability Framework

Having developed a real-time sub-pixel stereo reconstruction algorithm that consists of

mixing and matching various different components with differing parameters, I present

a unified scalable framework. The goal of this framework is to create a flexible

mechanism for selecting different stereo algorithms dependent on varying constraints

such as quality, computational speed and computation resources. This framework allows

the tailoring of the reconstruction algorithm given various input image resolutions as

well as speed constraints under limited computational resources. Figure 6.10 illustrates

this framework. One can clearly see the division between the initialization and non-

linear optimization parts of the algorithm. Decoupling the dissimilarity cost

computation performed on the GPU from the dynamic programming scan-line

optimization makes it possible to replace this part of the algorithm with alternatives

such as a naive winner takes all algorithm which makes the framework more

generalizable when future algorithms are proposed.

Each component within this framework has a set of parameters that determine

the quality of the output as well as the computational performance (i.e. speed) of the

system. Table 6.8 is an overview of all the system parameters and their relationship

between speed versus quality. This table can also be visualized as a graph in Figure 6.9

The goal of the system I have presented is to achieve the best results within the

constraint of real-time applications. Chapter 3 demonstrated that when using structured

light superior results were achieved, using the normalized SSD cost function extended

into the time domain in combination with the three layer dynamic programming scan-

line optimization. In this application it is therefore more beneficial to use the SSD cost

function for both superior speed as well as results.

160

Figure 6.10 High-Level Scalability Framework

Figure 6.11 Scalable framework with System Parameters

161

 DP Parameters Optimization Parameters

High Quality Full Resolution MaxD 5+ Iterations Low Performance

3/4 Layer DP Normalized Cross

Correlation Cost Function

Disparity Gradient

Constraint

 Window 6x6x8 Optimize Colourmetric

Params between Cameras

 Window 3x6x8 Optimize d, dx, dy, dt

 Window 3x3x4 Optimize d, dx, dy

 SSD Cost Function

 Window 6x6x8 Window 6x6x8

 Window 3x6x8 Window 3x6x8

 Window 3x3x4 Window 3x3x4

Traditional DP

Low Quality Sub-Sampled MaxD 1-2 Iterations High Performance

Table 6.8 System parameters quality versus speed

However, the normalized cross-correlation cost function is still included in the

framework as in other circumstances, such as without the use of structured light it can

provide superior results at the cost of speed. It is also worth noting that the size of the

support region (i.e. window size) does not have to be the same for the initialization part

of the algorithm as for the non-linear optimization part. Although real-time

performance is achievable using most of the high quality settings for the parameters

with the current cameras and resolution, the given framework is important as it enables

a scalable system should higher resolution and more cameras be used. It also enables the

system to scale not only with image resolution but also with CPU and GPU

computational improvements. Table 6.9 demonstrates some of the performance

achievable using differing parameters represented in Figure 6.11.

Wid
th	

Heig
ht	

Win
X	
 	

Win
Y	

Win
Z	

Max
D	

Iteratio
ns	

DP	
 1/4	

Scale	
 	

DP	
 1/2	

Scale	

GPU	
 Non-­‐
Linear	

Total-­‐
Time	

Total	

Fps	

640	
 480	
 3	
 3	
 8	
 80	
 3	
 0.010911	
 0.046368	
 0.014627	
 0.07190	
 13.907	

640	
 480	
 5	
 3	
 8	
 80	
 3	
 0.010894	
 0.044446	
 0.01442	
 0.06976	
 14.334	

640	
 480	
 5	
 5	
 8	
 80	
 3	
 0.011217	
 0.045079	
 0.015958	
 0.07225	
 13.840	

640	
 480	
 7	
 5	
 8	
 80	
 3	
 0.011176	
 0.045518	
 0.016868	
 0.07356	
 13.593	

640	
 480	
 11	
 7	
 8	
 80	
 3	
 0.011501	
 0.044016	
 0.023168	
 0.07868	
 12.708	

Table 6.9 Timings for total reconstruction 4 cores with DP up to half-scale

162

Widt
h	

Heigh
t	

Win
X	
 	

Win
Y	

Win
Z	

Max
D	

Iteration
s	

DP	
 1/4	

Scale	
 	

GPU	
 Non-­‐
Linear	

Total-­‐
Time	

Total	

Fps	

640	
 480	
 3	
 3	
 8	
 80	
 3	
 0.010911	
 0.014627	
 0.025538	
 39.1573	

640	
 480	
 5	
 3	
 8	
 80	
 3	
 0.010894	
 0.01442	
 0.025314	
 39.5038	

640	
 480	
 5	
 5	
 8	
 80	
 3	
 0.011217	
 0.015958	
 0.027175	
 36.7985	

640	
 480	
 7	
 5	
 8	
 80	
 3	
 0.011176	
 0.016868	
 0.028044	
 35.6582	

640	
 480	
 11	
 7	
 8	
 80	
 3	
 0.011501	
 0.023168	
 0.034669	
 28.8442	

Table 6.10 Timings for total reconstruction 4 cores with DP up to quarter-scale

Table 6.9 is a summary of the total time taken to perform reconstructions with various

window sizes on 4 cores and using half the resolution to initialize the non-linear

optimization step. Table 6.10 is very similar, with the exception, that the non-linear

optimization step is initialized using a quarter of the resolution. For the non-linear

optimization step only the d, dx, and dy where optimized to achieve a higher

performance. It is also worth noting that for both these timings the load balancing on the

CPU was not perfect. This is because differing scan-lines take varying amounts of time

for the multi-layer DP to solve. This could potentially be improved by using dynamic

load balancing where each CPU core would be allocated a differing number of scan-

lines based on their previous computational time. In both these tables the window sizes

for the DP part of the algorithm were the same as for the non-linear optimization part.

However, this is not a forced constraint of the system and does not have to be the case.

Other observations that can be made from both these tables are that the window size has

a more significant impact on the non-linear optimization part of the algorithm than the

DP solver. This is because of the previously described SSD optimization almost

removes the impact of the window size with regard to the DP solver. This demonstrates

that the different parameters all affect the computational time of the system to varying

degrees, and it is therefore important, as one will see in the next section of the chapter,

to determine the scalability of these different parameters on the overall system. These

tables also demonstrate that the system can be made to run in real-time.

6.4 Overview of System Parameters

Having optimized both the hybrid CPU-GPU initialization and GPU non-linear

optimization parts of the stereo algorithm, it was necessary to determine the scalability

of all the system parameters with regard to overall system performance. This enables

one to determine the overall system scalability as well as potential trade-offs between

163

quality and computational speed. The overall system can be broken down into two parts,

the initialization which finds pixel level disparity values and the non-linear optimization

that gives us the high frequency sub-pixel detail. These two parts of the algorithm both

have a set of parameters that affect the quality of the output as well as the computational

speed of the algorithm. In previous chapters, the effects of certain parameters on very

specific parts of the algorithm were examined. This chapter will examine the effect of

every parameter on the overall system performance. With this information one can

determine which parameters affect the performance the least and then optimize those in

order to achieve the highest quality.

The following lists all the framework parameters:

• Initialization

o Algorithm DP, multi-Layer DP, WTA, etc...

o Maximum initialization resolution

o Maximum Disparity

o Window Size X,Y,Z

o Cost Function

• Non-linear Parameters

o Final Reconstruction Resolution

o Window Size X, Y, Z

o Number of optimization parameters per disparity (d, dx, dy, dt)

o Radiometric Calibration (scale, offset)

o Number of non-linear optimization iterations

With the constraint of real-time performance and quality trade-offs discussed in

previous chapters I have limited the scope of some of these parameters. This motivated

the optimization presented previously in the hybrid CPU-GPU implementation and

therefore limited the scope of parameters examined. All the timings presented in this

section will be taken from a single core implementation to remove all CPU load

balancing issues that could potentially skew the scalability results. The fact that the

squared difference images as well as SSD are cached, increasing the window size past

two frames into the temporal domain, does not affect the computational performance of

164

the hybrid CPU-GPU DP implementation. The non-linear optimization algorithm was

optimized to use eight temporal frames by packing them into two RGBA textures.

Again reducing the temporal window size will also have almost no impact on

performance, therefore all the following experiments will be using eight temporal

frames.

6.5 Experiments

Using the previously mentioned objectives the following experiments were carried out.

The non-linear optimization step was timed with the following parameters.

Non-Linear Optimization GPU
Image Size Window Size Number of Iterations
640x480 3x3 5x3 5x5 7x5 11x7 2-5
640x240 3x3 5x3 5x5 7x5 11x7 2-5
640x240 3x3 5x3 5x5 7x5 11x7 2-5
640x120 3x3 5x3 5x5 7x5 11x7 2-5
320x240 3x3 5x3 5x5 7x5 11x7 2-5
320x120 3x3 5x3 5x5 7x5 11x7 2-5
320x120 3x3 5x3 5x5 7x5 11x7 2-5
320x60 3x3 5x3 5x5 7x5 11x7 2-5
160x120 3x3 5x3 5x5 7x5 11x7 2-5
160x60 3x3 5x3 5x5 7x5 11x7 2-5
160x60 3x3 5x3 5x5 7x5 11x7 2-5
160x30 3x3 5x3 5x5 7x5 11x7 2-5

Certain image sizes are listed twice this is because the input images were divided into

two halves of equal resolution and the timings were performed on both halves

separately. This was done in order to compare each half with the other and gain and

insight into the computational burden of different parts of the input dataset.

Subsequently the initialization hybrid CPU-GPU step was timed with the following

parameters.

165

Hybrid CPU- GPU Initialization
Image

Size

Window Size Maximum Disparity
640x480 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160
640x240 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160
640x240 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160
640x120 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160
320x240 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160
320x120 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160
320x120 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160
320x60 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160
160x120 3x3 5x3 5x5 7x5 11x7 60 80 100 120 155
160x60 3x3 5x3 5x5 7x5 11x7 60 80 100 120 155
160x60 3x3 5x3 5x5 7x5 11x7 60 80 100 120 155
160x30 3x3 5x3 5x5 7x5 11x7 60 80 100 120 155

6.6 Results

This section will examine all the timing results taken from the experiments carried out.

Firstly, the timing results from the initialization multi-layer DP using various

combination and of all the parameters for differing resolutions. Secondly the results

from the non-linear optimizations step, again with all the different combinations of

parameters. All this data will be analysed and insight into the overall systems scalability

will be determined and discussed. For each set of experiments an example table is

shown in this section. For the full set of results readers are referred to Appendix A.

All the timings taken in Tables 6.10 through Table 6.13 are taken using the

hybrid CPU-GPU multi-layer DP solver but without using the per-pixel maximum

disparity optimization previously discussed in Section 6.2. The following tables show

the computational times using the per-pixel maximum disparity optimization. These

maximum disparity values were computed using the ¼ scale reconstruction and

therefore the Tables A.14 to A.21 timings includes the time taken for the ¼ scale

reconstruction. The Tables A.22 through A.33 will represent all the timings from the

non-linear optimization step.

166

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 	
 Max	
 Disparity	
 Total	
 Time	

160	
 120	
 3	
 3	
 8	
 60	
 0.033347	

160	
 120	
 3	
 3	
 8	
 80	
 0.037874	

160	
 120	
 3	
 3	
 8	
 100	
 0.045399	

160	
 120	
 3	
 3	
 8	
 120	
 0.054052	

160	
 120	
 3	
 3	
 8	
 160	
 0.058045	

160	
 120	
 5	
 3	
 8	
 60	
 0.03301	

160	
 120	
 5	
 3	
 8	
 80	
 0.037918	

160	
 120	
 5	
 3	
 8	
 100	
 0.045161	

160	
 120	
 5	
 3	
 8	
 120	
 0.05329	

160	
 120	
 5	
 3	
 8	
 160	
 0.056952	

160	
 120	
 5	
 5	
 8	
 60	
 0.032838	

160	
 120	
 5	
 5	
 8	
 80	
 0.038327	

160	
 120	
 5	
 5	
 8	
 100	
 0.045239	

160	
 120	
 5	
 5	
 8	
 120	
 0.053065	

160	
 120	
 5	
 5	
 8	
 160	
 0.057578	

160	
 120	
 7	
 5	
 8	
 60	
 0.032537	

160	
 120	
 7	
 5	
 8	
 80	
 0.037708	

160	
 120	
 7	
 5	
 8	
 100	
 0.044391	

160	
 120	
 7	
 5	
 8	
 120	
 0.052973	

160	
 120	
 7	
 5	
 8	
 160	
 0.056389	

160	
 120	
 11	
 7	
 8	
 60	
 0.032105	

160	
 120	
 11	
 7	
 8	
 80	
 0.037076	

160	
 120	
 11	
 7	
 8	
 100	
 0.043921	

160	
 120	
 11	
 7	
 8	
 120	
 0.052127	

160	
 120	
 11	
 7	
 8	
 160	
 0.055659	

Table 6.11 1 DP Initialization on sub-sampled images using single maximum disparity value

167

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Max	
 D	
 Total	
 	
 Total	
 With	
 1/4	
 Scale	

640	
 480	
 3	
 3	
 8	
 60	
 0.301388	
 0.354361	

640	
 480	
 3	
 3	
 8	
 80	
 0.383018	
 0.435991	

640	
 480	
 3	
 3	
 8	
 100	
 0.467609	
 0.520582	

640	
 480	
 3	
 3	
 8	
 120	
 0.589471	
 0.642444	

640	
 480	
 3	
 3	
 8	
 160	
 0.719986	
 0.772959	

640	
 480	
 5	
 3	
 8	
 60	
 0.297865	
 0.350838	

640	
 480	
 5	
 3	
 8	
 80	
 0.384081	
 0.437054	

640	
 480	
 5	
 3	
 8	
 100	
 0.437641	
 0.490614	

640	
 480	
 5	
 3	
 8	
 120	
 0.584831	
 0.637804	

640	
 480	
 5	
 3	
 8	
 160	
 0.712621	
 0.765594	

640	
 480	
 5	
 5	
 8	
 60	
 0.29948	
 0.352453	

640	
 480	
 5	
 5	
 8	
 80	
 0.366984	
 0.419957	

640	
 480	
 5	
 5	
 8	
 100	
 0.445689	
 0.498662	

640	
 480	
 5	
 5	
 8	
 120	
 0.583963	
 0.636936	

640	
 480	
 5	
 5	
 8	
 160	
 0.693221	
 0.746194	

640	
 480	
 7	
 5	
 8	
 60	
 0.303334	
 0.356307	

640	
 480	
 7	
 5	
 8	
 80	
 0.368601	
 0.421574	

640	
 480	
 7	
 5	
 8	
 100	
 0.458332	
 0.511305	

640	
 480	
 7	
 5	
 8	
 120	
 0.57774	
 0.630713	

640	
 480	
 7	
 5	
 8	
 160	
 0.689129	
 0.742102	

640	
 480	
 11	
 7	
 8	
 60	
 0.307562	
 0.360535	

640	
 480	
 11	
 7	
 8	
 80	
 0.36834	
 0.421313	

640	
 480	
 11	
 7	
 8	
 100	
 0.471021	
 0.523994	

640	
 480	
 11	
 7	
 8	
 120	
 0.578921	
 0.631894	

640	
 480	
 11	
 7	
 8	
 160	
 0.680127	
 0.7331	

Table 6.12 DP Initialization on images using per-pixel maximum disparity values

168

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 640	
 480	
 3	
 3	
 8	
 0.020767	

3	
 640	
 480	
 3	
 3	
 8	
 0.025827	

4	
 640	
 480	
 3	
 3	
 8	
 0.033568	

5	
 640	
 480	
 3	
 3	
 8	
 0.039342	

2	
 640	
 480	
 5	
 3	
 8	
 0.027037	

3	
 640	
 480	
 5	
 3	
 8	
 0.037799	

4	
 640	
 480	
 5	
 3	
 8	
 0.04699	

5	
 640	
 480	
 5	
 3	
 8	
 0.05731	

2	
 640	
 480	
 5	
 5	
 8	
 0.040821	

3	
 640	
 480	
 5	
 5	
 8	
 0.056569	

4	
 640	
 480	
 5	
 5	
 8	
 0.072151	

5	
 640	
 480	
 5	
 5	
 8	
 0.087587	

2	
 640	
 480	
 7	
 5	
 8	
 0.053771	

3	
 640	
 480	
 7	
 5	
 8	
 0.074791	

4	
 640	
 480	
 7	
 5	
 8	
 0.096117	

5	
 640	
 480	
 7	
 5	
 8	
 0.11701	

2	
 640	
 480	
 11	
 7	
 8	
 0.105941	

3	
 640	
 480	
 11	
 7	
 8	
 0.152719	

4	
 640	
 480	
 11	
 7	
 8	
 0.195734	

5	
 640	
 480	
 11	
 7	
 8	
 0.242755	

Table 6.13 Non-Linear Optimization GPU Full Resolution

169

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 640	
 240	
 3	
 3	
 8	
 0.01221	

3	
 640	
 240	
 3	
 3	
 8	
 0.01484	

4	
 640	
 240	
 3	
 3	
 8	
 0.019101	

5	
 640	
 240	
 3	
 3	
 8	
 0.021021	

2	
 640	
 240	
 5	
 3	
 8	
 0.015598	

3	
 640	
 240	
 5	
 3	
 8	
 0.021115	

4	
 640	
 240	
 5	
 3	
 8	
 0.026113	

2	
 640	
 240	
 5	
 5	
 8	
 0.022455	

3	
 640	
 240	
 5	
 5	
 8	
 0.03038	

4	
 640	
 240	
 5	
 5	
 8	
 0.038215	

5	
 640	
 240	
 5	
 5	
 8	
 0.046375	

2	
 640	
 240	
 7	
 5	
 8	
 0.028577	

3	
 640	
 240	
 7	
 5	
 8	
 0.040728	

4	
 640	
 240	
 7	
 5	
 8	
 0.050396	

5	
 640	
 240	
 7	
 5	
 8	
 0.063763	

2	
 640	
 240	
 11	
 7	
 8	
 0.056885	

3	
 640	
 240	
 11	
 7	
 8	
 0.081567	

4	
 640	
 240	
 11	
 7	
 8	
 0.10474	

5	
 640	
 240	
 11	
 7	
 8	
 0.130141	

Table 6.14 Non-Linear Optimization GPU Full Resolution lower half

The data contained in all these tables gives insight into all the scalability properties of

each parameter of the system.

6.6.1 Scalability with regard to Window Size

Earlier in this chapter when discussing the SSD kernel optimizations in the hybrid CPU-

GPU implementation, the window parameters in the space domain were shown to scale

at almost a constant rate. This proves to be true for all differing configurations of the

initialization step. Regardless of the resolution or maximum disparity values, increasing

the window size has a very small impact on the computational time of the initialization

step. This parameter is also the least expensive. The window size with regard to the

non-linear optimization step has a different scalability, its impact on performance is

more pronounced.

The following figures represent the computational time spent in the non-linear

optimization step relative to the number of pixels contained in the support window. The

170

x-axis represents the number of pixels and the y-axis represents time. The different

graphs represent the various resolutions. Within each graph each plot represents the

total non-linear optimization time for varying numbers of iterations.

Figure 6.12 Window scalability at 640x480

Figure 6.13 Window scalability at 640x240 Lower Half

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	

	
 	

2	
 IteraVons	

3	
 IteraVons	

4	
 IteraVons	

5	
 IteraVons	

seconds	

pixels	
 in	
 window	

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	

	
 	

2	
 IteraVons	

3	
 IteraVons	

4	
 IteraVons	

5	
 IteraVons	

seconds	

pixels	
 in	
 window	

171

Figure 6.14 Window scalability at 640x120 band across image

Figure 6.15 Window scalability at 320x240

Figure 6.16 Window scalability at 160x120

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	

	
 	

2	
 IteraVons	

3	
 IteraVons	

4	
 IteraVons	

5	
 IteraVons	

seconds	

pixels	
 in	
 window	

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	

	
 	

2	
 IteraVons	

3	
 IteraVons	

4	
 IteraVons	

5	
 IteraVons	

seconds	

pixels	
 in	
 window	

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	

	
 	

2	
 IteraVons	

3	
 IteraVons	

4	
 IteraVons	

5	
 IteraVons	

seconds	

pixels	
 in	
 window	

172

These figures demonstrate certain properties. Firstly, the computational time of the non-

linear optimization step scales linearly with regard to the number of pixels contained in

the support window. This holds true for all resolutions and differing numbers of

optimization iterations. Secondly, there is a correlation between the number of iterations

and window size scalability. With increasing iterations the window scalability, although

still linear, worsens, and this correlation is also linear.

6.6.2 Scalability with regard to Resolution

This section examines the scalability with regard to image resolution for both the

initialization step and the non-linear optimization. Figure 6.17 illustrates the time taken

for the initialization step for varying maximum disparity values. Since the previous

section demonstrated that the window size has little effect on the performance of the

initialization step, all the timings in Figure 6.17 were taken using 11x7x8 window sizes.

This figure demonstrates the following properties:

• Initialization does not scale linearly with regard to resolution

• The scaling differs between the number of image pixels and the image

width indicated by the dip in curves at 640x120 (for certain maximum

disparity values the computational time is less for 640x120 images than

it is for 320x240 images although they both contain the same number of

pixels)

• As the image resolution increases so does the impact of using greater

maximum disparity values

The non-linear optimization step scales in a similar fashion to the initialization step with

regard to image resolution. There are however some subtle differences. The GPU non-

linear optimization step has a maximum performance whereby reducing the input

resolution no longer reduces the computational time (i.e. the computational time for

320x60 is similar or identical to the computational time for 160x30 images). The scaling

characteristics (as illustrated by Figure 6.18 through Figure 6.23) are also very similar

when using differing window sizes and varying numbers of iterations. Again with a

slight amplification, with an increase in window size and number of iterations. Although

173

the non-linear optimization step scales in a similar fashion to the DP initialization step,

once the input resolution exceeds a certain threshold, it is worth noting, that the

computational speed of the non-linear solver is almost an order of magnitude faster than

the DP initialization.

Figure 6.17 DP initialization time at different resolutions for various maximum disparity values

Figure 6.18 Non-linear optimization at different resolutions using 3x3x8 window

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

DP	
 Scalability	

60	

80	

100	

120	

160	

seconds	

resoluVon	

0	

0.01	

0.02	

0.03	

0.04	

0.05	

Non-­‐Linear	
 Op:miz:on	
 Scalability	

2	

3	

4	

5	

seconds	

resoluVon	

174

Figure 6.19 Non-linear optimization at different resolutions using 5x3x8 window

Figure 6.20 Non-linear optimization at different resolutions using 5x5x8 window

Figure 6.21 Non-linear optimization at different resolutions using 7x5x8 window

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

Non-­‐Linear	
 Op:miza:on	
 Scalabilty	

2	

3	

4	

5	

seconds	

resoluVon	

0	

0.02	

0.04	

0.06	

0.08	

0.1	

Non-­‐Linear	
 Op:miza:on	
 Scalability	

2	

3	

4	

5	

seconds	

resoluVon	

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

Non-­‐Linear	
 Op:miza:on	
 Scalability	

2	

3	

4	

5	

seconds	

resoluVon	

175

Figure 6.22 Non-linear optimization at different resolutions using 11x7x8 window

Figure 6.23 Non-linear optimization at different resolutions using 2 iterations

6.6.3 Scalability with regard to maximum disparity

The following Figure 6.24 illustrates the computational time of the initialization step for

a range of maximum disparity values on three image sets of different resolutions. This

figure shows there is a correlation between the scalability of the maximum disparity

values and the image resolution. The resolutions of the images affect the scaling relative

to the maximum disparity parameter, as the image resolution increases so does the

gradient of this parameter. Although the scaling worsens it does still however remain

close to linear.

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

Non-­‐Linear	
 Op:miza:on	
 Scalability	

2	

3	

4	

5	

seconds	

resoluVon	

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

Non-­‐Linear	
 Op:miza:on	
 Scalability	

3x3	

5x3	

5x5	

7x5	

11x7	

seconds	

resoluVon	

176

Figure 6.24 Time for DP at varying resolutions for different maximum disparity values

Figure 6.25 3D plot of computational against maximum disparity and image resolution

6.6.4 Scalability with regard to non-linear optimization iterations

The final parameter of the stereo reconstruction system presented in this chapter is the

number of non-linear optimization iterations. Figure 6.26 illustrates the scaling of this

parameter. It is clear that it scales in a linear fashion and its gradient is relative to

window size.

0	

0.2	

0.4	

0.6	

0.8	

0	
 50	
 100	
 150	
 200	

Ti
m
e	

Maximum	
 Disparity	

MaxD	
 Scalability	

640x480	

320x240	

160x120	

60	

80	

100	

120	

160	

0	

0.2	

0.4	

0.6	

0.8	

640x480	

320x240	

160x120	

0.6-­‐0.8	

0.4-­‐0.6	

0.2-­‐0.4	

0-­‐0.2	

177

Figure 6.26 Time for non-linear optimization using increasing number of iterations for differing window

sizes
Iterations	
 Width	
 Height	
 Win

X	

Win

Y	

Win

Z	

Total	
 Lower	

Half	

Upper	

Half	

Upper+Lo
wer	

OverHea
d	

2	
 640	
 480	
 3	
 3	
 8	
 0.0207	
 0.01221	
 0.012888	
 0.025098	
 0.004331	

3	
 640	
 480	
 3	
 3	
 8	
 0.0258	
 0.01484	
 0.014895	
 0.029735	
 0.003908	

4	
 640	
 480	
 3	
 3	
 8	
 0.0335	
 0.01910	
 0.01867	
 0.037771	
 0.004203	

5	
 640	
 480	
 3	
 3	
 8	
 0.0393	
 0.02102	
 0.021763	
 0.042784	
 0.003442	

2	
 640	
 480	
 5	
 3	
 8	
 0.0270	
 0.01559	
 0.01605	
 0.031648	
 0.004611	

3	
 640	
 480	
 5	
 3	
 8	
 0.0378	
 0.02111	
 0.021394	
 0.042509	
 0.00471	

4	
 640	
 480	
 5	
 3	
 8	
 0.0469	
 0.02611	
 0.026233	
 0.052346	
 0.005356	

2	
 640	
 480	
 5	
 5	
 8	
 0.0408	
 0.02245	
 0.021682	
 0.044137	
 0.003316	

3	
 640	
 480	
 5	
 5	
 8	
 0.0565	
 0.03038	
 0.031489	
 0.061869	
 0.0053	

4	
 640	
 480	
 5	
 5	
 8	
 0.0721	
 0.03821	
 0.03888	
 0.077095	
 0.004944	

5	
 640	
 480	
 5	
 5	
 8	
 0.0875	
 0.04637	
 0.048038	
 0.094413	
 0.006826	

2	
 640	
 480	
 7	
 5	
 8	
 0.0537	
 0.02857	
 0.02969	
 0.058267	
 0.004496	

3	
 640	
 480	
 7	
 5	
 8	
 0.0747	
 0.04072	
 0.041534	
 0.082262	
 0.007471	

4	
 640	
 480	
 7	
 5	
 8	
 0.0961	
 0.05039	
 0.051617	
 0.102013	
 0.005896	

5	
 640	
 480	
 7	
 5	
 8	
 0.1170	
 0.06376	
 0.064171	
 0.127934	
 0.010924	

2	
 640	
 480	
 11	
 7	
 8	
 0.1059	
 0.05688	
 0.057607	
 0.114492	
 0.008551	

3	
 640	
 480	
 11	
 7	
 8	
 0.1527	
 0.08156	
 0.082319	
 0.163886	
 0.011167	

4	
 640	
 480	
 11	
 7	
 8	
 0.1957	
 0.10474	
 0.107273	
 0.212013	
 0.016279	

5	
 640	
 480	
 11	
 7	
 8	
 0.2427	
 0.13014	
 0.134223	
 0.264364	
 0.021609	

Table 6.15 Timing for non-linear optimization complete image versus segmented image

6.6.5 Computational Load and Balancing

Having examined the impact of every parameter for this stereo reconstruction system on

computational performance it would be advantageous to determine the potential gains to

be achieved with regard to future hardware developments or increased computational

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

2	
 3	
 4	
 5	

Ti
m
e	

Number	
 of	
 Itera:ons	

3x3	

5x3	

5x5	

7x5	

11x7	

178

resources. By determining the computational load across the scan-lines it is possible to

extrapolate potential speed increases gained with multiple GPU or more CPU cores.

Width	
 Height	
 WinX	
 WinY	
 WinZ	

Max	

D	
 Total	
 	

Total	

Image	
 Lower	
 Upper	
 Overhead	

640	
 480	
 3	
 3	
 8	
 60	
 0.30139	
 0.354361	
 0.18407	
 0.17542	
 0.005121	

640	
 480	
 3	
 3	
 8	
 80	
 0.38302	
 0.435991	
 0.20068	
 0.22139	
 -­‐0.013921	

640	
 480	
 3	
 3	
 8	
 100	
 0.46761	
 0.520582	
 0.23808	
 0.26513	
 -­‐0.017375	

640	
 480	
 3	
 3	
 8	
 120	
 0.58947	
 0.642444	
 0.30462	
 0.32041	
 -­‐0.017418	

640	
 480	
 3	
 3	
 8	
 160	
 0.71999	
 0.772959	
 0.36904	
 0.38607	
 -­‐0.017848	

640	
 480	
 5	
 3	
 8	
 60	
 0.29787	
 0.350838	
 0.16338	
 0.17524	
 -­‐0.012224	

640	
 480	
 5	
 3	
 8	
 80	
 0.38408	
 0.437054	
 0.20209	
 0.22241	
 -­‐0.012551	

640	
 480	
 5	
 3	
 8	
 100	
 0.43764	
 0.490614	
 0.22532	
 0.24963	
 -­‐0.01566	

640	
 480	
 5	
 3	
 8	
 120	
 0.58483	
 0.637804	
 0.30724	
 0.31832	
 -­‐0.012245	

640	
 480	
 5	
 3	
 8	
 160	
 0.71262	
 0.765594	
 0.36363	
 0.38199	
 -­‐0.019977	

640	
 480	
 5	
 5	
 8	
 60	
 0.29948	
 0.352453	
 0.16261	
 0.17728	
 -­‐0.012563	

640	
 480	
 5	
 5	
 8	
 80	
 0.36698	
 0.419957	
 0.19347	
 0.21194	
 -­‐0.014546	

640	
 480	
 5	
 5	
 8	
 100	
 0.44569	
 0.498662	
 0.22722	
 0.25491	
 -­‐0.016533	

640	
 480	
 5	
 5	
 8	
 120	
 0.58396	
 0.636936	
 0.30223	
 0.3178	
 -­‐0.016912	

640	
 480	
 5	
 5	
 8	
 160	
 0.69322	
 0.746194	
 0.35379	
 0.37519	
 -­‐0.017216	

640	
 480	
 7	
 5	
 8	
 60	
 0.30333	
 0.356307	
 0.16399	
 0.17788	
 -­‐0.014431	

640	
 480	
 7	
 5	
 8	
 80	
 0.3686	
 0.421574	
 0.19296	
 0.21319	
 -­‐0.01543	

640	
 480	
 7	
 5	
 8	
 100	
 0.45833	
 0.511305	
 0.2385	
 0.25848	
 -­‐0.014323	

640	
 480	
 7	
 5	
 8	
 120	
 0.57774	
 0.630713	
 0.30035	
 0.31671	
 -­‐0.013654	

640	
 480	
 7	
 5	
 8	
 160	
 0.68913	
 0.742102	
 0.3727	
 0.36897	
 -­‐0.000437	

640	
 480	
 11	
 7	
 8	
 60	
 0.30756	
 0.360535	
 0.16646	
 0.18193	
 -­‐0.012147	

640	
 480	
 11	
 7	
 8	
 80	
 0.36834	
 0.421313	
 0.19484	
 0.21201	
 -­‐0.01446	

640	
 480	
 11	
 7	
 8	
 100	
 0.47102	
 0.523994	
 0.23798	
 0.26951	
 -­‐0.0165	

640	
 480	
 11	
 7	
 8	
 120	
 0.57892	
 0.631894	
 0.30335	
 0.31485	
 -­‐0.013696	

640	
 480	
 11	
 7	
 8	
 160	
 0.68013	
 0.7331	
 0.35228	
 0.36456	
 -­‐0.016262	

Table 6.16 Timing for DP initialization complete image versus segmented image

With regard to the non-linear optimization step I have already demonstrated that

subdividing the input images yield little benefits at lower resolutions. However, at

resolutions of 640x480 and above this is not the case. Table 6.15 shows the non-linear

optimization timings for the complete images in the Total column as well as the timing

for the lower half and upper half. When adding the time taken for each half together,

one notices that this total is greater than the total reconstruction time for entire set of

images. This indicates that should two GPUs be used for the non-linear optimization

step, one would not get the theoretical maximum speed increase of 2x, no matter how

well the system was load balanced. However, this difference shown in the Overhead

179

column is relatively negligible compared to the total computational time, indicating a

potentially substantial performance increase obtained by using two GPUs.

Using the same analysis on the DP initialization as shown by Table 6.16

produces different results. In this particular case treating the image as two halves

produces superior results, which indicates that further potential optimizations are

possible for DP initialization implementation, possibly due to memory allocation

overheads or cache misses. This part of the algorithm would gain performance from

using more CPU cores.

6.7 Conclusion

This chapter has demonstrated how to further optimize the stereo system developed for

this thesis. It has also presented a scalable framework for a hybrid CPU-GPU sub-pixel

stereo reconstruction algorithm and has shown how the reconstruction system fits into

this framework. An in depth analysis of the full system scalability has been carried out.

From this, I conclude the parameters having the greatest to least impact on performance

are listed as follows

• Initialization Resolution

• Maximum Disparity

• Final Reconstruction Resolution

• Non-Linear Optimization Window Size

• Number of non-linear optimization iterations

• Initialization Window Size

From this list one can determine which parameters should be tuned first to achieve the

highest computational performance. Almost all parameters scale linearly and I have

demonstrated the potential computational increase from using multiple GPU and more

CPU cores. Finally, this gives us a clear indication of future potential speed increase

with more hardware.

180

181

 Chapter 7

Conclusion
The goal of the research presented in this thesis was to examine real-time 3D

reconstruction in the context of tele-immersion. This body of work focused on stereo

techniques but with the added constraints of making no assumptions with regard the

underlying shapes being reconstructed and producing a cheap system using off the shelf

components. It is clear throughout this dissertation that the quality of 3D reconstructions

relies primarily on the quality of the disparity maps produced by the stereo solvers. The

scope of the research was therefore narrowed down to examining the stereo

correspondence problem, in the context of real-time implementations that run on

parallel architectures with an emphasis on scalability.

 The main goal of this research was to build a real-time stereo sub-pixel stereo

correspondence solver that would scale well on massively parallel architectures such as

those found in GPUs. This has been achieved and is clearly demonstrated in the

previous chapter. Not only did the final system run in real-time but its performance was

clearly demonstrated to scale across multiple processors and new architectures.

Although the design of this system is a few years old, the fact that it scales to modern

GPU architectures, is a testament to how well suited, the system is for these types of

architectures. The lessons learnt and contributions presented in this thesis fall into the

following categories:

• The initialization step (dynamic programming)

• Non-linear optimization (Gauss-Newton)

• Parallelization and scalability framework on GPUs

Chapter 3 examined the suitability and performance of various dynamic

programming algorithms for solving the correspondence problem using structured light.

These algorithms were not designed to be used with structured light and a space-time

182

support region. It was therefore necessary to determine their suitability in this context.

This chapter clearly demonstrated that although using structured light and extending the

support region into the time domain improve the correspondence results, the choice of

dynamic programming algorithm has a far greater impact on the quality of the results.

This chapter also demonstrated that the advantages of using structured light can only be

obtained by tailoring the cost function appropriately to the structured light patterns. This

was all achieved in context of a parallel implementation suitable for GPUs.

Chapter 4 demonstrated how to further increase the reconstruction detail with

non-linear optimization methods. The advantages and disadvantages of various solvers

were examined as well as a potential way of reducing certain artefacts with the use of

simple Tikonov regularisation. The correlation between the conditioning of all the non-

linear systems solved and some of the reconstruction artefacts, were also examined.

This chapter has also shown that by using these non-linear methods one can get away

with a highly sub-sampled initialization and therefore improve computational

efficiency, while using a warped space-time window.

These iterative non-linear methods usually reserved for computationally

expensive off-line reconstruction were shown to run in real-time on GPUs by using a

multi-scale approach with a tailored Cholesky solver. As shown in Chapter 5, very

computationally expensive algorithms that rely on linear algebra operators are well

suited to highly parallel GPU architectures.

All the knowledge gained from the previous chapters was then used to create a

framework and scalable system that achieves sub-pixel disparity reconstruction in real-

time. Chapter 6 addressed certain performance issues with the initial GPU

implementation to achieve greater speed, while the scalability of the system as a whole

was analysed and profiled, in order to fine tune it to target platforms. Certain parameters

were almost completely decoupled from the performance. The remaining parameters

were then classified in terms of their performance implications. The result is a scalable

system that can be tailored with respect to performance for real-time applications given

limited computational resources as well as future hardware advances.

It is worth noting that although GPUs are very powerful computational

resources, and can be leveraged to make certain types of offline algorithms run in real-

time, they require significant investment in terms of development time and fine tuning.

This situation is slowly changing with the advent of more powerful development and

183

analysis tools. This work has demonstrated that designing systems with parallelism can

have many advantages, and be made to run a lot faster on GPUs. However, this is not a

magic bullet to solve all problems.

7.1 Future work

The research carried out and presented here was narrowed down to focus on the

correspondence problem in the context of tele-immersion. For this system to be

transformed into a fully functional tele-immersive system further tasks need to be

undertaken. In order to achieve this goal, one would need to extract texturing

information. This could be achieved by capturing an extra frame that is not illuminated

by structured light, or transforming the projector to project infra-red light and the

camera setup to have some cameras capturing infra-red light while others would capture

the texturing information. Once texturing information was acquired it would have to be

registered with the disparity map and a compelling 3D representation of the scene

would have to be rendered in real-time. This could either be done by using the disparity

map and textures in an image based rendering system, or by performing a full geometric

reconstruction with textures and shading. All of this heavy data load would also have to

be communicated with another instance of this system, and would most probably

require some form of compression. Each of these tasks represent a significant

investment in time and provide opportunities to further forward the current state of the

art.

With regard to the correspondence problem, further avenues of research would

include looking at improving the quality of the non-linear optimization step. The work

carried out by [90], minimized certain banding artefacts by applying a gradient

constraint on all the optimization parameters. Although the method used was to

reformulate the problem as a global optimization problem that was then solved using

conjugate gradients. This approach could not be taken at the time and be made to run in

real-time. However with the recent advances in GPU hardware this assumption is no

longer valid and worth investigating, as well as potential alternatives that could be

derived using a quasi-local optimization across neighbouring pixels. One could optimize

sets of five or seven neighbouring pixels with applied constraints, an approach which

could lead to superior results, and potentially a superior quality speed trade-off. Chapter

184

6 also indicated the further potential for yet further speed increases. The implementation

could be optimized further for performance, although the trade-off between the

development time needed versus the potential gains might not warrant it.

185

Appendix A

The following are all the tables representing the timing results for the experiments

carried out in Chapter 6.

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 	
 Max	
 Disparity	
 Total	
 Time	

160	
 60	
 3	
 3	
 8	
 60	
 0.019318	

160	
 60	
 3	
 3	
 8	
 80	
 0.021846	

160	
 60	
 3	
 3	
 8	
 100	
 0.025842	

160	
 60	
 3	
 3	
 8	
 120	
 0.030126	

160	
 60	
 3	
 3	
 8	
 155	
 0.03293	

160	
 60	
 5	
 3	
 8	
 60	
 0.019314	

160	
 60	
 5	
 3	
 8	
 80	
 0.021745	

160	
 60	
 5	
 3	
 8	
 100	
 0.02584	

160	
 60	
 5	
 3	
 8	
 120	
 0.030002	

160	
 60	
 5	
 3	
 8	
 155	
 0.032984	

160	
 60	
 5	
 5	
 8	
 60	
 0.018921	

160	
 60	
 5	
 5	
 8	
 80	
 0.021754	

160	
 60	
 5	
 5	
 8	
 100	
 0.025866	

160	
 60	
 5	
 5	
 8	
 120	
 0.029991	

160	
 60	
 5	
 5	
 8	
 155	
 0.032919	

160	
 60	
 7	
 5	
 8	
 60	
 0.018929	

160	
 60	
 7	
 5	
 8	
 80	
 0.021838	

160	
 60	
 7	
 5	
 8	
 100	
 0.025689	

160	
 60	
 7	
 5	
 8	
 120	
 0.029961	

160	
 60	
 7	
 5	
 8	
 155	
 0.03316	

160	
 60	
 11	
 7	
 8	
 60	
 0.018587	

160	
 60	
 11	
 7	
 8	
 80	
 0.021887	

160	
 60	
 11	
 7	
 8	
 100	
 0.026349	

160	
 60	
 11	
 7	
 8	
 120	
 0.030167	

160	
 60	
 11	
 7	
 8	
 155	
 0.032621	

Table A.1 DP Initialization on lower half of sub-sampled images using single maximum disparity value

186

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 	
 Max	
 Disparity	
 Total	
 Time	

160	
 60	
 3	
 3	
 8	
 60	
 0.019519	

160	
 60	
 3	
 3	
 8	
 80	
 0.022231	

160	
 60	
 3	
 3	
 8	
 100	
 0.026306	

160	
 60	
 3	
 3	
 8	
 120	
 0.030257	

160	
 60	
 3	
 3	
 8	
 155	
 0.033528	

160	
 60	
 5	
 3	
 8	
 60	
 0.019334	

160	
 60	
 5	
 3	
 8	
 80	
 0.021915	

160	
 60	
 5	
 3	
 8	
 100	
 0.025877	

160	
 60	
 5	
 3	
 8	
 120	
 0.030435	

160	
 60	
 5	
 3	
 8	
 155	
 0.033245	

160	
 60	
 5	
 5	
 8	
 60	
 0.018956	

160	
 60	
 5	
 5	
 8	
 80	
 0.022216	

160	
 60	
 5	
 5	
 8	
 100	
 0.025848	

160	
 60	
 5	
 5	
 8	
 120	
 0.030268	

160	
 60	
 5	
 5	
 8	
 155	
 0.03299	

160	
 60	
 7	
 5	
 8	
 60	
 0.018996	

160	
 60	
 7	
 5	
 8	
 80	
 0.022014	

160	
 60	
 7	
 5	
 8	
 100	
 0.026246	

160	
 60	
 7	
 5	
 8	
 120	
 0.029933	

160	
 60	
 7	
 5	
 8	
 155	
 0.033287	

160	
 60	
 11	
 7	
 8	
 60	
 0.018737	

160	
 60	
 11	
 7	
 8	
 80	
 0.021733	

160	
 60	
 11	
 7	
 8	
 100	
 0.025665	

160	
 60	
 11	
 7	
 8	
 120	
 0.030276	

160	
 60	
 11	
 7	
 8	
 155	
 0.032779	

Table A.2 DP Initialization on upper half of sub-sampled images using single maximum disparity value

187

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 	
 Max	
 Disparity	
 Total	
 Time	

160	
 30	
 3	
 3	
 8	
 60	
 0.012911	

160	
 30	
 3	
 3	
 8	
 80	
 0.014835	

160	
 30	
 3	
 3	
 8	
 100	
 0.017373	

160	
 30	
 3	
 3	
 8	
 120	
 0.02058	

160	
 30	
 3	
 3	
 8	
 155	
 0.02245	

160	
 30	
 5	
 3	
 8	
 60	
 0.013179	

160	
 30	
 5	
 3	
 8	
 80	
 0.014895	

160	
 30	
 5	
 3	
 8	
 100	
 0.017538	

160	
 30	
 5	
 3	
 8	
 120	
 0.020184	

160	
 30	
 5	
 3	
 8	
 155	
 0.022689	

160	
 30	
 5	
 5	
 8	
 60	
 0.012726	

160	
 30	
 5	
 5	
 8	
 80	
 0.014875	

160	
 30	
 5	
 5	
 8	
 100	
 0.01737	

160	
 30	
 5	
 5	
 8	
 120	
 0.020119	

160	
 30	
 5	
 5	
 8	
 155	
 0.022634	

160	
 30	
 7	
 5	
 8	
 60	
 0.012839	

160	
 30	
 7	
 5	
 8	
 80	
 0.014878	

160	
 30	
 7	
 5	
 8	
 100	
 0.017481	

160	
 30	
 7	
 5	
 8	
 120	
 0.020329	

160	
 30	
 7	
 5	
 8	
 166	
 0.023754	

160	
 30	
 7	
 5	
 8	
 155	
 0.02298	

160	
 30	
 11	
 7	
 8	
 60	
 0.012849	

160	
 30	
 11	
 7	
 8	
 80	
 0.014991	

160	
 30	
 11	
 7	
 8	
 100	
 0.017717	

160	
 30	
 11	
 7	
 8	
 120	
 0.020508	

160	
 30	
 11	
 7	
 8	
 155	
 0.023263	

Table A.3 DP Initialization on a band of pixels across centre of sub-sampled images using single

maximum disparity value

188

	

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Max	
 D	
 Total	
 	
 Total	
 With	
 1/4	
 Scale	

640	
 240	
 3	
 3	
 8	
 60	
 0.165479	
 0.184066	

640	
 240	
 3	
 3	
 8	
 80	
 0.182095	
 0.200682	

640	
 240	
 3	
 3	
 8	
 100	
 0.219489	
 0.238076	

640	
 240	
 3	
 3	
 8	
 120	
 0.286028	
 0.304615	

640	
 240	
 3	
 3	
 8	
 160	
 0.350452	
 0.369039	

640	
 240	
 5	
 3	
 8	
 60	
 0.144789	
 0.163376	

640	
 240	
 5	
 3	
 8	
 80	
 0.183502	
 0.202089	

640	
 240	
 5	
 3	
 8	
 100	
 0.206733	
 0.22532	

640	
 240	
 5	
 3	
 8	
 120	
 0.288652	
 0.307239	

640	
 240	
 5	
 3	
 8	
 160	
 0.345039	
 0.363626	

640	
 240	
 5	
 5	
 8	
 60	
 0.144024	
 0.162611	

640	
 240	
 5	
 5	
 8	
 80	
 0.174883	
 0.19347	

640	
 240	
 5	
 5	
 8	
 100	
 0.208629	
 0.227216	

640	
 240	
 5	
 5	
 8	
 120	
 0.283642	
 0.302229	

640	
 240	
 5	
 5	
 8	
 160	
 0.335201	
 0.353788	

640	
 240	
 7	
 5	
 8	
 60	
 0.145407	
 0.163994	

640	
 240	
 7	
 5	
 8	
 80	
 0.174369	
 0.192956	

640	
 240	
 7	
 5	
 8	
 100	
 0.219911	
 0.238498	

640	
 240	
 7	
 5	
 8	
 120	
 0.281762	
 0.300349	

640	
 240	
 7	
 5	
 8	
 160	
 0.354112	
 0.372699	

640	
 240	
 11	
 7	
 8	
 60	
 0.14787	
 0.166457	

640	
 240	
 11	
 7	
 8	
 80	
 0.176252	
 0.194839	

640	
 240	
 11	
 7	
 8	
 100	
 0.219396	
 0.237983	

640	
 240	
 11	
 7	
 8	
 120	
 0.284766	
 0.303353	

640	
 240	
 11	
 7	
 8	
 160	
 0.333696	
 0.352283	

Table A.4 DP Initialization on lower half of images using per-pixel maximum disparity values

189

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Max	
 D	
 Total	
 	
 Total	
 With	
 1/4	
 Scale	

640	
 240	
 3	
 3	
 8	
 60	
 0.156679	
 0.175416	

640	
 240	
 3	
 3	
 8	
 80	
 0.202651	
 0.221388	

640	
 240	
 3	
 3	
 8	
 100	
 0.246394	
 0.265131	

640	
 240	
 3	
 3	
 8	
 120	
 0.301674	
 0.320411	

640	
 240	
 3	
 3	
 8	
 160	
 0.367335	
 0.386072	

640	
 240	
 5	
 3	
 8	
 60	
 0.156501	
 0.175238	

640	
 240	
 5	
 3	
 8	
 80	
 0.203677	
 0.222414	

640	
 240	
 5	
 3	
 8	
 100	
 0.230897	
 0.249634	

640	
 240	
 5	
 3	
 8	
 120	
 0.299583	
 0.31832	

640	
 240	
 5	
 3	
 8	
 160	
 0.363254	
 0.381991	

640	
 240	
 5	
 5	
 8	
 60	
 0.158542	
 0.177279	

640	
 240	
 5	
 5	
 8	
 80	
 0.193204	
 0.211941	

640	
 240	
 5	
 5	
 8	
 100	
 0.236176	
 0.254913	

640	
 240	
 5	
 5	
 8	
 120	
 0.299058	
 0.317795	

640	
 240	
 5	
 5	
 8	
 160	
 0.356453	
 0.37519	

640	
 240	
 7	
 5	
 8	
 60	
 0.159145	
 0.177882	

640	
 240	
 7	
 5	
 8	
 80	
 0.194451	
 0.213188	

640	
 240	
 7	
 5	
 8	
 100	
 0.239747	
 0.258484	

640	
 240	
 7	
 5	
 8	
 120	
 0.297973	
 0.31671	

640	
 240	
 7	
 5	
 8	
 160	
 0.350229	
 0.368966	

640	
 240	
 11	
 7	
 8	
 60	
 0.163194	
 0.181931	

640	
 240	
 11	
 7	
 8	
 80	
 0.193277	
 0.212014	

640	
 240	
 11	
 7	
 8	
 100	
 0.250774	
 0.269511	

640	
 240	
 11	
 7	
 8	
 120	
 0.296108	
 0.314845	

640	
 240	
 11	
 7	
 8	
 160	
 0.345818	
 0.364555	

Table A.5 DP Initialization on upper half of images using per-pixel maximum disparity values

190

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Max	
 D	
 Total	
 	
 Total	
 With	
 1/4	
 Scale	

640	
 120	
 3	
 3	
 8	
 60	
 0.088528	
 0.101377	

640	
 120	
 3	
 3	
 8	
 80	
 0.109155	
 0.122004	

640	
 120	
 3	
 3	
 8	
 100	
 0.131645	
 0.144494	

640	
 120	
 3	
 3	
 8	
 120	
 0.166528	
 0.179377	

640	
 120	
 3	
 3	
 8	
 160	
 0.203177	
 0.216026	

640	
 120	
 5	
 3	
 8	
 60	
 0.083047	
 0.095896	

640	
 120	
 5	
 3	
 8	
 80	
 0.109776	
 0.122625	

640	
 120	
 5	
 3	
 8	
 100	
 0.127208	
 0.140057	

640	
 120	
 5	
 3	
 8	
 120	
 0.168532	
 0.181381	

640	
 120	
 5	
 3	
 8	
 160	
 0.203596	
 0.216445	

640	
 120	
 5	
 5	
 8	
 60	
 0.083789	
 0.096638	

640	
 120	
 5	
 5	
 8	
 80	
 0.103828	
 0.116677	

640	
 120	
 5	
 5	
 8	
 100	
 0.126737	
 0.139586	

640	
 120	
 5	
 5	
 8	
 120	
 0.166786	
 0.179635	

640	
 120	
 5	
 5	
 8	
 160	
 0.197508	
 0.210357	

640	
 120	
 7	
 5	
 8	
 60	
 0.082141	
 0.09499	

640	
 120	
 7	
 5	
 8	
 80	
 0.105938	
 0.118787	

640	
 120	
 7	
 5	
 8	
 100	
 0.133873	
 0.146722	

640	
 120	
 7	
 5	
 8	
 120	
 0.164237	
 0.177086	

640	
 120	
 7	
 5	
 8	
 160	
 0.196255	
 0.209104	

640	
 120	
 11	
 7	
 8	
 60	
 0.082655	
 0.095504	

640	
 120	
 11	
 7	
 8	
 80	
 0.10593	
 0.118779	

640	
 120	
 11	
 7	
 8	
 100	
 0.131294	
 0.144143	

640	
 120	
 11	
 7	
 8	
 120	
 0.160459	
 0.173308	

640	
 120	
 11	
 7	
 8	
 160	
 0.192882	
 0.205731	

Table A.6 DP Initialization on a band of pixels across centre of images using per-pixel maximum

disparity values

191

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Max	
 D	
 Total	
 	
 Total	
 With	
 1/4	
 Scale	

320	
 240	
 3	
 3	
 8	
 60	
 0.07745	
 0.109555	

320	
 240	
 3	
 3	
 8	
 80	
 0.088801	
 0.120906	

320	
 240	
 3	
 3	
 8	
 100	
 0.102876	
 0.134981	

320	
 240	
 3	
 3	
 8	
 120	
 0.119842	
 0.151947	

320	
 240	
 3	
 3	
 8	
 160	
 0.141475	
 0.17358	

320	
 240	
 5	
 3	
 8	
 60	
 0.077406	
 0.109511	

320	
 240	
 5	
 3	
 8	
 80	
 0.08878	
 0.120885	

320	
 240	
 5	
 3	
 8	
 100	
 0.09976	
 0.131865	

320	
 240	
 5	
 3	
 8	
 120	
 0.119502	
 0.151607	

320	
 240	
 5	
 3	
 8	
 160	
 0.140301	
 0.172406	

320	
 240	
 5	
 5	
 8	
 60	
 0.075176	
 0.107281	

320	
 240	
 5	
 5	
 8	
 80	
 0.083864	
 0.115969	

320	
 240	
 5	
 5	
 8	
 100	
 0.100662	
 0.132767	

320	
 240	
 5	
 5	
 8	
 120	
 0.117055	
 0.14916	

320	
 240	
 5	
 5	
 8	
 160	
 0.136603	
 0.168708	

320	
 240	
 7	
 5	
 8	
 60	
 0.076013	
 0.108118	

320	
 240	
 7	
 5	
 8	
 80	
 0.082892	
 0.114997	

320	
 240	
 7	
 5	
 8	
 100	
 0.100741	
 0.132846	

320	
 240	
 7	
 5	
 8	
 120	
 0.117993	
 0.150098	

320	
 240	
 7	
 5	
 8	
 160	
 0.134012	
 0.166117	

320	
 240	
 11	
 7	
 8	
 60	
 0.075266	
 0.107371	

320	
 240	
 11	
 7	
 8	
 80	
 0.083043	
 0.115148	

320	
 240	
 11	
 7	
 8	
 100	
 0.099513	
 0.131618	

320	
 240	
 11	
 7	
 8	
 120	
 0.11451	
 0.146615	

320	
 240	
 11	
 7	
 8	
 160	
 0.130876	
 0.162981	

Table A.7 DP Initialization on sub-sampled images using per-pixel maximum disparity values

192

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Max	
 D	
 Total	
 	
 Total	
 With	
 1/4	
 Scale	

320	
 120	
 3	
 3	
 8	
 60	
 0.039794	
 0.058381	

320	
 120	
 3	
 3	
 8	
 80	
 0.044995	
 0.063582	

320	
 120	
 3	
 3	
 8	
 100	
 0.051792	
 0.070379	

320	
 120	
 3	
 3	
 8	
 110	
 0.053251	
 0.071838	

320	
 120	
 3	
 3	
 8	
 120	
 0.060543	
 0.07913	

320	
 120	
 3	
 3	
 8	
 160	
 0.069888	
 0.088475	

320	
 120	
 5	
 3	
 8	
 60	
 0.039338	
 0.057925	

320	
 120	
 5	
 3	
 8	
 80	
 0.044969	
 0.063556	

320	
 120	
 5	
 3	
 8	
 100	
 0.050439	
 0.069026	

320	
 120	
 5	
 3	
 8	
 120	
 0.058762	
 0.077349	

320	
 120	
 5	
 3	
 8	
 160	
 0.069343	
 0.08793	

320	
 120	
 5	
 5	
 8	
 60	
 0.038711	
 0.057298	

320	
 120	
 5	
 5	
 8	
 80	
 0.042888	
 0.061475	

320	
 120	
 5	
 5	
 8	
 100	
 0.050752	
 0.069339	

320	
 120	
 5	
 5	
 8	
 120	
 0.059247	
 0.077834	

320	
 120	
 5	
 5	
 8	
 160	
 0.068639	
 0.087226	

320	
 120	
 7	
 5	
 8	
 60	
 0.038959	
 0.057546	

320	
 120	
 7	
 5	
 8	
 80	
 0.044382	
 0.062969	

320	
 120	
 7	
 5	
 8	
 100	
 0.051379	
 0.069966	

320	
 120	
 7	
 5	
 8	
 120	
 0.061025	
 0.079612	

320	
 120	
 7	
 5	
 8	
 160	
 0.068321	
 0.086908	

320	
 120	
 11	
 7	
 8	
 60	
 0.039244	
 0.057831	

320	
 120	
 11	
 7	
 8	
 80	
 0.043297	
 0.061884	

320	
 120	
 11	
 7	
 8	
 100	
 0.050982	
 0.069569	

320	
 120	
 11	
 7	
 8	
 120	
 0.060151	
 0.078738	

320	
 120	
 11	
 7	
 8	
 160	
 0.067954	
 0.086541	

Table A.8 DP Initialization on lower half of sub-sampled images using per-pixel maximum disparity

values

193

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Max	
 D	
 Total	
 	
 Total	
 With	
 1/4	
 Scale	

320	
 120	
 3	
 3	
 8	
 60	
 0.041515	
 0.060252	

320	
 120	
 3	
 3	
 8	
 80	
 0.046302	
 0.065039	

320	
 120	
 3	
 3	
 8	
 100	
 0.053421	
 0.072158	

320	
 120	
 3	
 3	
 8	
 120	
 0.062382	
 0.081119	

320	
 120	
 3	
 3	
 8	
 160	
 0.072029	
 0.090766	

320	
 120	
 5	
 3	
 8	
 60	
 0.041588	
 0.060325	

320	
 120	
 5	
 3	
 8	
 80	
 0.046695	
 0.065432	

320	
 120	
 5	
 3	
 8	
 100	
 0.052341	
 0.071078	

320	
 120	
 5	
 3	
 8	
 120	
 0.060411	
 0.079148	

320	
 120	
 5	
 3	
 8	
 160	
 0.071587	
 0.090324	

320	
 120	
 5	
 5	
 8	
 60	
 0.041189	
 0.059926	

320	
 120	
 5	
 5	
 8	
 80	
 0.045012	
 0.063749	

320	
 120	
 5	
 5	
 8	
 100	
 0.053265	
 0.072002	

320	
 120	
 5	
 5	
 8	
 120	
 0.061244	
 0.079981	

320	
 120	
 5	
 5	
 8	
 160	
 0.070257	
 0.088994	

320	
 120	
 7	
 5	
 8	
 60	
 0.040888	
 0.059625	

320	
 120	
 7	
 5	
 8	
 80	
 0.045495	
 0.064232	

320	
 120	
 7	
 5	
 8	
 100	
 0.053429	
 0.072166	

320	
 120	
 7	
 5	
 8	
 120	
 0.062711	
 0.081448	

320	
 120	
 7	
 5	
 8	
 160	
 0.069546	
 0.088283	

320	
 120	
 11	
 7	
 8	
 60	
 0.0409	
 0.059637	

320	
 120	
 11	
 7	
 8	
 80	
 0.045129	
 0.063866	

320	
 120	
 11	
 7	
 8	
 100	
 0.052574	
 0.071311	

320	
 120	
 11	
 7	
 8	
 120	
 0.061402	
 0.080139	

320	
 120	
 11	
 7	
 8	
 160	
 0.069733	
 0.08847	

Table A.9 DP Initialization on upper half of sub-sampled images using per-pixel maximum disparity

values

194

Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Max	
 D	
 Total	
 	
 Total	
 With	
 1/4	
 Scale	

320	
 60	
 3	
 3	
 8	
 60	
 0.025223	
 0.038072	

320	
 60	
 3	
 3	
 8	
 80	
 0.028588	
 0.041437	

320	
 60	
 3	
 3	
 8	
 100	
 0.032359	
 0.045208	

320	
 60	
 3	
 3	
 8	
 120	
 0.037231	
 0.05008	

320	
 60	
 3	
 3	
 8	
 160	
 0.042479	
 0.055328	

320	
 60	
 5	
 3	
 8	
 60	
 0.025022	
 0.037871	

320	
 60	
 5	
 3	
 8	
 80	
 0.028817	
 0.041666	

320	
 60	
 5	
 3	
 8	
 100	
 0.03184	
 0.044689	

320	
 60	
 5	
 3	
 8	
 120	
 0.036838	
 0.049687	

320	
 60	
 5	
 3	
 8	
 160	
 0.042434	
 0.055283	

320	
 60	
 5	
 5	
 8	
 60	
 0.024718	
 0.037567	

320	
 60	
 5	
 5	
 8	
 80	
 0.027549	
 0.040398	

320	
 60	
 5	
 5	
 8	
 100	
 0.032065	
 0.044914	

320	
 60	
 5	
 5	
 8	
 120	
 0.036162	
 0.049011	

320	
 60	
 5	
 5	
 8	
 160	
 0.040751	
 0.0536	

320	
 60	
 7	
 5	
 8	
 60	
 0.024916	
 0.037765	

320	
 60	
 7	
 5	
 8	
 80	
 0.027205	
 0.040054	

320	
 60	
 7	
 5	
 8	
 100	
 0.032552	
 0.045401	

320	
 60	
 7	
 5	
 8	
 120	
 0.03676	
 0.049609	

320	
 60	
 7	
 5	
 8	
 160	
 0.041249	
 0.054098	

320	
 60	
 11	
 7	
 8	
 60	
 0.025096	
 0.037945	

320	
 60	
 11	
 7	
 8	
 80	
 0.027169	
 0.040018	

320	
 60	
 11	
 7	
 8	
 100	
 0.031624	
 0.044473	

320	
 60	
 11	
 7	
 8	
 120	
 0.036194	
 0.049043	

320	
 60	
 11	
 7	
 8	
 160	
 0.040899	
 0.053748	

Table A.10 DP Initialization on a band of pixels across centre of sub-sampled images using per-pixel

maximum disparity values

195

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 640	
 240	
 3	
 3	
 8	
 0.012888	

3	
 640	
 240	
 3	
 3	
 8	
 0.014895	

4	
 640	
 240	
 3	
 3	
 8	
 0.01867	

5	
 640	
 240	
 3	
 3	
 8	
 0.021763	

2	
 640	
 240	
 5	
 3	
 8	
 0.01605	

3	
 640	
 240	
 5	
 3	
 8	
 0.021394	

4	
 640	
 240	
 5	
 3	
 8	
 0.026233	

5	
 640	
 240	
 5	
 3	
 8	
 0.031395	

2	
 640	
 240	
 5	
 5	
 8	
 0.021682	

3	
 640	
 240	
 5	
 5	
 8	
 0.031489	

4	
 640	
 240	
 5	
 5	
 8	
 0.03888	

5	
 640	
 240	
 5	
 5	
 8	
 0.048038	

2	
 640	
 240	
 7	
 5	
 8	
 0.02969	

3	
 640	
 240	
 7	
 5	
 8	
 0.041534	

4	
 640	
 240	
 7	
 5	
 8	
 0.051617	

5	
 640	
 240	
 7	
 5	
 8	
 0.064171	

2	
 640	
 240	
 11	
 7	
 8	
 0.057607	

3	
 640	
 240	
 11	
 7	
 8	
 0.082319	

4	
 640	
 240	
 11	
 7	
 8	
 0.107273	

5	
 640	
 240	
 11	
 7	
 8	
 0.134223	

Table A.11 Non-Linear Optimization GPU Full Resolution upper half

196

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 640	
 120	
 3	
 3	
 8	
 0.007224	

3	
 640	
 120	
 3	
 3	
 8	
 0.009396	

4	
 640	
 120	
 3	
 3	
 8	
 0.010624	

5	
 640	
 120	
 3	
 3	
 8	
 0.013031	

2	
 640	
 120	
 5	
 3	
 8	
 0.009185	

3	
 640	
 120	
 5	
 3	
 8	
 0.012491	

4	
 640	
 120	
 5	
 3	
 8	
 0.014988	

5	
 640	
 120	
 5	
 3	
 8	
 0.017917	

2	
 640	
 120	
 5	
 5	
 8	
 0.012637	

3	
 640	
 120	
 5	
 5	
 8	
 0.01746	

4	
 640	
 120	
 5	
 5	
 8	
 0.021851	

5	
 640	
 120	
 5	
 5	
 8	
 0.026076	

2	
 640	
 120	
 7	
 5	
 8	
 0.016958	

3	
 640	
 120	
 7	
 5	
 8	
 0.022562	

4	
 640	
 120	
 7	
 5	
 8	
 0.027577	

5	
 640	
 120	
 7	
 5	
 8	
 0.034599	

2	
 640	
 120	
 11	
 7	
 8	
 0.031533	

3	
 640	
 120	
 11	
 7	
 8	
 0.043383	

4	
 640	
 120	
 11	
 7	
 8	
 0.055518	

5	
 640	
 120	
 11	
 7	
 8	
 0.068754	

Table A.12 Non-Linear Optimization GPU Full Resolution band of pixels across centre

197

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 320	
 240	
 3	
 3	
 8	
 0.006222	

3	
 320	
 240	
 3	
 3	
 8	
 0.009119	

4	
 320	
 240	
 3	
 3	
 8	
 0.010453	

5	
 320	
 240	
 3	
 3	
 8	
 0.012873	

2	
 320	
 240	
 5	
 3	
 8	
 0.008448	

3	
 320	
 240	
 5	
 3	
 8	
 0.012672	

4	
 320	
 240	
 5	
 3	
 8	
 0.014858	

5	
 320	
 240	
 5	
 3	
 8	
 0.017909	

2	
 320	
 240	
 5	
 5	
 8	
 0.012817	

3	
 320	
 240	
 5	
 5	
 8	
 0.017166	

4	
 320	
 240	
 5	
 5	
 8	
 0.021009	

5	
 320	
 240	
 5	
 5	
 8	
 0.025942	

2	
 320	
 240	
 7	
 5	
 8	
 0.015584	

3	
 320	
 240	
 7	
 5	
 8	
 0.02285	

4	
 320	
 240	
 7	
 5	
 8	
 0.027692	

5	
 320	
 240	
 7	
 5	
 8	
 0.033684	

2	
 320	
 240	
 11	
 7	
 8	
 0.030931	

3	
 320	
 240	
 11	
 7	
 8	
 0.043415	

4	
 320	
 240	
 11	
 7	
 8	
 0.055854	

5	
 320	
 240	
 11	
 7	
 8	
 0.068816	

Table A.13 Non-Linear Optimization GPU Half Resolution

198

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 320	
 120	
 3	
 3	
 8	
 0.004655	

3	
 320	
 120	
 3	
 3	
 8	
 0.005688	

4	
 320	
 120	
 3	
 3	
 8	
 0.007181	

5	
 320	
 120	
 3	
 3	
 8	
 0.008169	

2	
 320	
 120	
 5	
 3	
 8	
 0.005585	

3	
 320	
 120	
 5	
 3	
 8	
 0.007336	

4	
 320	
 120	
 5	
 3	
 8	
 0.009345	

5	
 320	
 120	
 5	
 3	
 8	
 0.011709	

2	
 320	
 120	
 5	
 5	
 8	
 0.008179	

3	
 320	
 120	
 5	
 5	
 8	
 0.010784	

4	
 320	
 120	
 5	
 5	
 8	
 0.013186	

5	
 320	
 120	
 5	
 5	
 8	
 0.015827	

2	
 320	
 120	
 7	
 5	
 8	
 0.009807	

3	
 320	
 120	
 7	
 5	
 8	
 0.013388	

4	
 320	
 120	
 7	
 5	
 8	
 0.016531	

5	
 320	
 120	
 7	
 5	
 8	
 0.02004	

2	
 320	
 120	
 11	
 7	
 8	
 0.017377	

3	
 320	
 120	
 11	
 7	
 8	
 0.025303	

4	
 320	
 120	
 11	
 7	
 8	
 0.031435	

5	
 320	
 120	
 11	
 7	
 8	
 0.038482	

Table A.14 Non-Linear Optimization GPU Half Resolution Lower Half

199

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 320	
 120	
 3	
 3	
 8	
 0.005291	

3	
 320	
 120	
 3	
 3	
 8	
 0.005797	

4	
 320	
 120	
 3	
 3	
 8	
 0.007321	

5	
 320	
 120	
 3	
 3	
 8	
 0.008346	

2	
 320	
 120	
 5	
 3	
 8	
 0.005699	

3	
 320	
 120	
 5	
 3	
 8	
 0.007872	

4	
 320	
 120	
 5	
 3	
 8	
 0.009463	

5	
 320	
 120	
 5	
 3	
 8	
 0.011045	

2	
 320	
 120	
 5	
 5	
 8	
 0.007847	

3	
 320	
 120	
 5	
 5	
 8	
 0.010424	

4	
 320	
 120	
 5	
 5	
 8	
 0.013622	

5	
 320	
 120	
 5	
 5	
 8	
 0.016032	

2	
 320	
 120	
 7	
 5	
 8	
 0.009916	

3	
 320	
 120	
 7	
 5	
 8	
 0.013339	

5	
 320	
 120	
 7	
 5	
 8	
 0.02036	

2	
 320	
 120	
 11	
 7	
 8	
 0.018388	

3	
 320	
 120	
 11	
 7	
 8	
 0.026093	

4	
 320	
 120	
 11	
 7	
 8	
 0.032076	

5	
 320	
 120	
 11	
 7	
 8	
 0.039708	

Table A.15 Non-Linear Optimization GPU Half Resolution Upper Half

200

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 320	
 60	
 3	
 3	
 8	
 0.003641	

3	
 320	
 60	
 3	
 3	
 8	
 0.004503	

4	
 320	
 60	
 3	
 3	
 8	
 0.00595	

5	
 320	
 60	
 3	
 3	
 8	
 0.007158	

2	
 320	
 60	
 5	
 3	
 8	
 0.004631	

3	
 320	
 60	
 5	
 3	
 8	
 0.006028	

4	
 320	
 60	
 5	
 3	
 8	
 0.008386	

5	
 320	
 60	
 5	
 3	
 8	
 0.009724	

2	
 320	
 60	
 5	
 5	
 8	
 0.006984	

3	
 320	
 60	
 5	
 5	
 8	
 0.009393	

4	
 320	
 60	
 5	
 5	
 8	
 0.011973	

5	
 320	
 60	
 5	
 5	
 8	
 0.013988	

2	
 320	
 60	
 7	
 5	
 8	
 0.008572	

3	
 320	
 60	
 7	
 5	
 8	
 0.011809	

4	
 320	
 60	
 7	
 5	
 8	
 0.015428	

5	
 320	
 60	
 7	
 5	
 8	
 0.018227	

2	
 320	
 60	
 11	
 7	
 8	
 0.015604	

3	
 320	
 60	
 11	
 7	
 8	
 0.02325	

4	
 320	
 60	
 11	
 7	
 8	
 0.028326	

5	
 320	
 60	
 11	
 7	
 8	
 0.038265	

Table A.16 Non-Linear Optimization GPU Half Resolution Band of Pixels across centre

201

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 160	
 120	
 3	
 3	
 8	
 0.003559	

3	
 160	
 120	
 3	
 3	
 8	
 0.00514	

4	
 160	
 120	
 3	
 3	
 8	
 0.006056	

5	
 160	
 120	
 3	
 3	
 8	
 0.007	

2	
 160	
 120	
 5	
 3	
 8	
 0.004653	

3	
 160	
 120	
 5	
 3	
 8	
 0.006306	

4	
 160	
 120	
 5	
 3	
 8	
 0.00865	

5	
 160	
 120	
 5	
 3	
 8	
 0.00942	

2	
 160	
 120	
 5	
 5	
 8	
 0.006485	

3	
 160	
 120	
 5	
 5	
 8	
 0.008835	

4	
 160	
 120	
 5	
 5	
 8	
 0.011618	

5	
 160	
 120	
 5	
 5	
 8	
 0.01466	

2	
 160	
 120	
 7	
 5	
 8	
 0.008267	

3	
 160	
 120	
 7	
 5	
 8	
 0.012209	

4	
 160	
 120	
 7	
 5	
 8	
 0.014238	

5	
 160	
 120	
 7	
 5	
 8	
 0.016974	

2	
 160	
 120	
 11	
 7	
 8	
 0.01616	

3	
 160	
 120	
 11	
 7	
 8	
 0.02327	

4	
 160	
 120	
 11	
 7	
 8	
 0.029266	

5	
 160	
 120	
 11	
 7	
 8	
 0.035637	

Table A.17 Non-Linear Optimization GPU Quarter Resolution

202

	

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 160	
 60	
 3	
 3	
 8	
 0.002989	

3	
 160	
 60	
 3	
 3	
 8	
 0.004615	

4	
 160	
 60	
 3	
 3	
 8	
 0.005012	

5	
 160	
 60	
 3	
 3	
 8	
 0.00642	

2	
 160	
 60	
 5	
 3	
 8	
 0.004557	

3	
 160	
 60	
 5	
 3	
 8	
 0.005815	

4	
 160	
 60	
 5	
 3	
 8	
 0.00778	

5	
 160	
 60	
 5	
 3	
 8	
 0.009357	

2	
 160	
 60	
 5	
 5	
 8	
 0.005649	

3	
 160	
 60	
 5	
 5	
 8	
 0.00883	

4	
 160	
 60	
 5	
 5	
 8	
 0.010816	

5	
 160	
 60	
 5	
 5	
 8	
 0.013571	

2	
 160	
 60	
 7	
 5	
 8	
 0.008017	

3	
 160	
 60	
 7	
 5	
 8	
 0.010675	

4	
 160	
 60	
 7	
 5	
 8	
 0.0145	

5	
 160	
 60	
 7	
 5	
 8	
 0.019734	

2	
 160	
 60	
 11	
 7	
 8	
 0.01526	

3	
 160	
 60	
 11	
 7	
 8	
 0.022661	

4	
 160	
 60	
 11	
 7	
 8	
 0.029733	

5	
 160	
 60	
 11	
 7	
 8	
 0.036434	

Table A.18 Non-Linear Optimization GPU Quarter Resolution Lower Half

203

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 160	
 60	
 3	
 3	
 8	
 0.003404	

3	
 160	
 60	
 3	
 3	
 8	
 0.003984	

4	
 160	
 60	
 3	
 3	
 8	
 0.00561	

5	
 160	
 60	
 3	
 3	
 8	
 0.006172	

2	
 160	
 60	
 5	
 3	
 8	
 0.004195	

3	
 160	
 60	
 5	
 3	
 8	
 0.005931	

4	
 160	
 60	
 5	
 3	
 8	
 0.007641	

5	
 160	
 60	
 5	
 3	
 8	
 0.009607	

2	
 160	
 60	
 5	
 5	
 8	
 0.006146	

3	
 160	
 60	
 5	
 5	
 8	
 0.008837	

4	
 160	
 60	
 5	
 5	
 8	
 0.010298	

5	
 160	
 60	
 5	
 5	
 8	
 0.01361	

2	
 160	
 60	
 7	
 5	
 8	
 0.007813	

3	
 160	
 60	
 7	
 5	
 8	
 0.011388	

4	
 160	
 60	
 7	
 5	
 8	
 0.015079	

5	
 160	
 60	
 7	
 5	
 8	
 0.017085	

2	
 160	
 60	
 11	
 7	
 8	
 0.013919	

3	
 160	
 60	
 11	
 7	
 8	
 0.022546	

4	
 160	
 60	
 11	
 7	
 8	
 0.029243	

5	
 160	
 60	
 11	
 7	
 8	
 0.033452	

Table A.19 Non-Linear Optimization GPU Quarter Resolution Upper Half

204

Iterations	
 Width	
 Height	
 WinX	
 WinY	
 WinZ	
 Total	

2	
 160	
 30	
 3	
 3	

	
 	
 3	
 160	
 30	
 3	
 3	

	
 	
 4	
 160	
 30	
 3	
 3	

	
 	
 5	
 160	
 30	
 3	
 3	

	
 	
 2	
 160	
 30	
 5	
 3	

	
 	
 3	
 160	
 30	
 5	
 3	

	
 	
 4	
 160	
 30	
 5	
 3	

	
 	
 5	
 160	
 30	
 5	
 3	

	
 	
 2	
 160	
 30	
 5	
 5	

	
 	
 3	
 160	
 30	
 5	
 5	

	
 	
 4	
 160	
 30	
 5	
 5	

	
 	
 5	
 160	
 30	
 5	
 5	

	
 	
 2	
 160	
 30	
 7	
 5	

	
 	
 3	
 160	
 30	
 7	
 5	

	
 	
 4	
 160	
 30	
 7	
 5	

	
 	
 5	
 160	
 30	
 7	
 5	

	
 	
 2	
 160	
 30	
 11	
 7	

	
 	
 3	
 160	
 30	
 11	
 7	

	
 	
 4	
 160	
 30	
 11	
 7	

	
 	
 5	
 160	
 30	
 11	
 7	

	
 	
 Table A.20 Non-Linear Optimization GPU Quarter Resolution Band of Pixels across centre

205

Bibliography
[1] 2D3. Boujou. http://www.2d3.com/.

[2] AMTEL. Avr stk500 development board. http://www.atmel.com/dyn/Products/-

tools_card.asp?tool_id=2735.

[3] BAILLARD, C., AND ZISSERMAN, A. A plane-sweep strategy for the 3d reconstruction of buildings

from multiple images. In ISPRS Journal of Photogrammetry and Remote Sensing (2000), pp. 56–62.

[4] BAKER, H. H., BHATTI, N. T., TANGUAY, D., SOBEL, I., GELB, D., GOSS, M. E., MACCORMICK, J.,

YUASA, K., CULBERTSON, W. B., AND MALZBENDER, T. Computation and performance issues in

coliseum: an immersive videoconferencing system. In ACM Multimedia’03 (2003), pp. 470–479.

[5] BAKER, S., GROSS, R., AND MATTHEWS, I. Lucas-kanade 20 years on: A unifying framework:

Part 4. International Journal of Computer Vision 56 (2004), 221–255.

[6] BAY, H., ESS, A., TUYTELAARS, T., AND VAN GOOL, L. Speeded-up robust features (surf).

Computer Vision and Image Understanding (CVIU) 110, 3 (June 2008), 346–359.

[7] BIRCHFIELD, S. Derivation of kanade-lucas-tomasi tracking equation. Unpublished:

http://www.ces.clemson.edu/ stb/klt/birchfield-klt-derivation.pdf.

[8] BIRCHFIELD, S., AND TOMASI, C. Depth discontinuities by pixel-to-pixel stereo. International

Journal of Computer Vision 35 (1996), 1073–1080.

[9] BORSHUKOV, G., PIPONI, D., LARSEN, O., LEWIS, J. P., AND TEMPELAAR-LIETZ, C. Universal

capture - image-based facial animation for "the matrix reloaded". In SIGGRAPH ’05: ACM SIGGRAPH

2005 Courses (New York, NY, USA, 2005), ACM.

[10] BOUGUET, J.-Y. Camera calibration toolbox for matlab.

[11] BOYKOV, Y., VEKSLER, O., AND ZABIH, R. A new algorithm for energy minimization with

discontinuities. In International Workshop on Energy Minimization Methods in Computer Vision and

Pattern Recognition 1 (1999), 26–29.

[12] BRADSKI, G., AND KAEHLER, A. Learning OpenCV: Computer Vision with the OpenCV Library,

1st ed. O’Reilly Media, Inc., October 2008.

[13] CASPI, D., KIRYATI, N., AND SHAMIR, J. Range imaging with adaptive color structured light.

Pattern Analysis and Machine Intelligence, IEEE Transactions on 20, 5 (may 1998), 470 –480.

[14] CHANG, J. Y., PARK, H., PARK, I. K., LEE, K. M., AND LEE, S. U. Gpu-friendly multi-view stereo

reconstruction using surfel representation and graph cuts. Comput. Vis. Image Underst. 115 (May 2011),

620–634.

[15] CHEN, C. H., AND KAK, A. C. Modelling and calibration of a structured light scanner for 3d robot

vision. In IEEE Conference on Robotics and Automation (1987), pp. 807–815.

[16] CONDER, M. Explicit definition of the binary reflected gray codes. Discrete Mathematics 195, 1-

3 (1999), 245 – 249.

[17] COTTING, D., NAEF, M., GROSS, M., AND FUCHS, H. Embedding imperceptible patterns into

projected images for simultaneous acquisition and display. In Third IEEE and ACM International

Symposium on Mixed and Augmented Reality (ISMAR 2004) (2-5 Nov. 2004), pp. 100–109.

206

[18] CRIMINISI, A., REID, I. D., AND ZISSERMAN, A. Single view metrology. In ICCV (1999), pp. 434–

441.

[19] CRIMINISI, A., SHOTTON, J., BLAKE, A., AND TORR, P. Gaze manipulation for one-to-one

teleconferencing. In Proceedings. Ninth IEEE International Conference on Computer Vision (2003),

vol. 1, pp. 191–198.

[20] DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. Modeling and rendering architecture from

photographs: a hybrid geometry- and image-based approach. In Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques (New York, NY, USA, 1996), SIGGRAPH

’96, ACM, pp. 11–20.

[21] EPPSTEIN, D. The farthest point delaunay triangulation minimizes angles. Computational

Geometry Theory & Applications 1, 3 (March 1992), 143–148.

[22] FORSYTH, D. A., AND PONCE, J. Computer Vision: A Modern Approach, us ed ed. Prentice Hall,

August 2002.

[23] FURUKAWA, R., AND KAWASAKI, H. Dense 3d reconstruction with an uncalibrated stereo system

using coded structured light. In Proceedings of the 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05) - Workshops - Volume 03 (Washington, DC, USA,

2005), IEEE Computer Society, pp. 107–.

[24] FUSIELLO, A., TRUCCO, E., AND VERRI, A. A compact algorithm for rectification of stereo pairs.

Machine Vision and Applications 12, 1 (2000), 16–22.

[25] GARLAND, M., LE GRAND, S., NICKOLLS, J., ANDERSON, J., HARDWICK, J., MORTON, S.,

PHILLIPS, E., ZHANG, Y., AND VOLKOV, V. Parallel computing experiences with cuda. Micro, IEEE 28, 4

(july-aug. 2008), 13 –27.

[26] GENG, J. Structured-light 3d surface imaging: a tutorial. Adv. Opt. Photon. 3, 2 (Jun 2011), 128–

160.

[27] GONG, M., AND YANG, Y.-H. Near real-time reliable stereo matching using programmable

graphics hardware. In Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition

CVPR 2005 (2005), vol. 1, pp. 924–931.

[28] GRAPHICS, O. C., SADAGIC, A., TOWLES, H., HOLDEN, L., DANIILIDIS, K., AND ZELEZNIK, B.

Tele-immersion portal: Towards an ultimate synthesis. In of Computer Graphics and Computer Vision

Systems, Proceedings of 4th Annual International Workshop on Presence (2001).

[29] GROSS, M., WÜRMLIN, S., NAEF, M., LAMBORAY, E., SPAGNO, C., KUNZ, A., KOLLER-MEIER, E.,

SVOBODA, T., GOOL, L. V., LANG, S., STREHLKE, K., MOERE, A. V., OLIVER, ZÜRICH, E., AND STAADT, O.

blue-c: A spatially immersive display and 3d video portal for telepresence. In ACM Transactions on

Graphics (2003), pp. 819–827.

[30] HALL-HOLT, O., AND RUSINKIEWICZ, S. Stripe boundary codes for real-time structured-light

range scanning of moving objects. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE

International Conference on (2001), vol. 2, pp. 359 –366 vol.2.

[31] HARRIS, C., AND STEPHENS, M. A combined corner and edge detection. In Proceedings of The

Fourth Alvey Vision Conference (1988), pp. 147–151.

207

[32] HARTLEY, R., AND ZISSERMAN, A. Multiple View Geometry in Computer Vision. Cambridge

University Press, March 2004.

[33] HASENFRATZ, J.-M., LAPIERRE, M., AND SILLION, F. A real-time system for full body interaction

with virtual worlds. Eurographics Symposium on Virtual Environments 1 (2004), 147–156.

[34] HELD, W., ABADI, A. K., AND WENDT, V. 3ds max 7. bhv, Bonn, 2005.

[35] HERTZMANN, A., AND SEITZ, S. M. Shape and materials by example: A photometric stereo

approach. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1 (2003),

533.

[36] HORN, E., AND KIRYATI, N. Toward optimal structured light patterns. Image and Vision

Computing 17, 2 (1999), 87 – 97.

[37] INOKUCHI, S., SATO, K., AND MATSUDA, F. Range imaging system for 3-d object recognition. In

International Conference on Pattern Recognition (1984).

[38] INTEL COORPERATION. Documents intel math kernel library release 7.0.1 doc, 2004.

[39] JUNG, J. H., AND O’LEARY, D. P. Cholesky decomposition and linear programming on a gpu. In

Workshop on Edge Computing Using New Commodity Architectures (EDGE) (Chapel Hill, North

Carolina, May 2006).

[40] JUNG, S.-H., AND BAJCSY, R. A framework for constructing real-time immersive environments

for training physical activities. Journal of Multimedia 1, 7 (2006), 9–17.

[41] KANADE, T., RANDER, P., VEDULA, S., AND SAITO, H. Virtualized reality: Digitizing a 3d time-

varying event as is and in real time. In Mixed Reality, Merging Real and Virtual Worlds, H. T.

Yuichi Ohta, Ed. Springer-Verlag, 1999, pp. 41–57.

[42] KLETTE, R., SCHHLUNS, K., AND KOSCHAN, A. Computer Vision Three Dimensional Data from

Images. Springer, 1998.

[43] KOLMOGOROV, V., AND ZABIH, R. Computing visual correspondence with occlusions via graph

cuts. In International Conference on Computer Vision (2001), pp. 508–515.

[44] KRUPPA, E. Zur ermittlung eines objektes aus zwei perspektiven mit innerer orientierung. Other

Journal (1913), 1939–1948.

[45] KURASHIMA, C. S., YANG, R., AND LASTRA, A. Combining approximate geometry with view-

dependent texture mapping - a hybrid approach to 3d video teleconferencing. In in Proc. SIBGRAPI

(2002), pp. 112–119.

[46] KURILLO, G., VASUDEVAN, R., LOBATON, E., AND BAJCSY, R. A framework for collaborative

real-time 3d teleimmersion in a geographically distributed environment. In Tenth IEEE International

Symposium on Multimedia (ISM2008) (dec. 2008), pp. 111 –118.

[47] KUTULAKOS, K. N., AND SEITZ, S. M. A theory of shape by space carving. International Journal

of Computer Vision 38 (2000), 307–314.

[48] LONGUET HIGGINS, H., AND PRAZDNY, K. The interpretation of a moving retinal image.

Proceedings of the Royal Society of London. Series B, Biological Sciences B-208 (1980), 385–397.

[49] LOURAKIS, M. I. A. A brief description of the levenberg-marquardt algorithm implemented by

levmar. foundation for research and technology, 2005.

208

[50] LOWE, D. Object recognition from local scale-invariant features. In International Conference on

Computer Vision (1999), pp. 1150–1157.

[51] LUCAS, B., AND KANADE, T. An iterative image registration technique with an application to

stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI

’81) (April 1981), pp. 674–679.

[52] MARROQUIM, R., AND MAXIMO, A. Introduction to gpu programming with glsl. Tutorials of the

Brazilian Symposium on Computer Graphics and Image Processing 1 (2009), 3–16.

[53] MATHWORKS. Matlab optimization toolbox user’s guide. http://www.mathworks.co.uk/access/-

helpdesk/help/pdf_doc/optim/optim_tb.pdf.

[54] MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S. J., AND MCMILLAN, L. Image-based

visual hulls. In SIGGRAPH’00 (2000), pp. 369–374.

[55] MOSLAH, O., VALLES-SUCH, A., GUITTENY, V., COUVET, S., AND PHILIPP-FOLIGUET, S.

Accelerated multi-view stereo using parallel processing capababilities of the gpus. In 3DTV Conference

(Postdam, DE, 2009).

[56] MULLIGAN, J., AND DANIILIDIS, K. Real time trinocular stereo for tele-immersion. In Image

Processing, 2001. Proceedings. 2001 International Conference on (2001), vol. 3, pp. 959 –962 vol.3.

[57] NAHMIAS, J.-D., STEED, A., AND BUXTON, B. Evaluation of modern dynamic programming

algorithms for realtime active stereo systems. In WSCG (Short Papers) (2005), pp. 113–116.

[58] NAHMIAS, J.D., S. A. B. B. Analysis of cost functions and structured light patterns for modern

dynamic programming stereo algorithms. In IEE International Conference on Visual Information

Engineering 05 (April 2005).

[59] NISTER, D. Preemptive ransac for live structure and motion estimation. In Proc. Ninth IEEE Int

Computer Vision Conf (2003), pp. 199–206.

[60] NVIDIA CORPORATION. NVIDIA CUDA Compute Unified Device Architecture Programming

Guide. NVIDIA Corporation, 2007.

[61] OH, B. M., CHEN, M., DORSEY, J., DURAND, F., MAX, O., JULIE, C., AND DURAND, D. F. Image-

based modeling and photo editing. In Proceedings of ACM SIGGRAPH’01. ACM (2001).

[62] OHTA, Y., AND KANADE, T. Stereo by two-level dynamic programming. In Proceedings of the

9th international joint conference on Artificial intelligence - Volume 2 (San Francisco, CA, USA, 1985),

Morgan Kaufmann Publishers Inc., pp. 1120–1126.

[63] OPENGL, SHREINER, D., WOO, M., NEIDER, J., AND DAVIS, T. OpenGL(R) Programming Guide :

The Official Guide to Learning OpenGL(R), Version 2 (5th Edition). Addison-Wesley Professional,

August 2005.

[64] OUALI, M. H., LANGE, H., AND LAURGEAU, C. I. An energy minimization approach to dense

stereovision. In Proc. Conf. Int Image Processing (1996), vol. 1, pp. 841–845.

[65] PARK, S.-Y., PARK, G.-G., AND ZHANG, L. An easy camera-projector calibration technique for

structured light 3-d reconstruction. The Kips Transactions:partb 17B (2010), 215–226.

[66] PHARR, M., AND FERNANDO, R. GPU Gems 2: Programming Techniques for High-Performance

Graphics and General-Purpose Computation. Addison-Wesley Professional, March 2005.

209

[67] PING-SING, R. Z., ZHANG, R., SING TSAI, P., CRYER, J. E., AND SHAH, M. Shape from shading: A

survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (1999), 690–706.

[68] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P. Numerical Recipes

in C "The Art of Scientific Computing" Second Edition. Cambridge University Press, 1992.

[69] ROCCHINI, C., CIGNONI, P., MONTANI, C., PINGI, P., AND SCOPIGNO, R. A low cost 3d scanner

based on structured light. Computer Graphics Forum 20 (2001), 299–308.

[70] SALOM, P., MEGRET, R., DONIAS, M., AND BERTHOUMIEU, Y. Dynamic picking system for 3d

seismic data: Design and evaluation. Int. J. Hum.-Comput. Stud. 67, 7 (2009), 551–560.

[71] SALVI, J., PAGÈS, J., AND BATLLE, J. Pattern codification strategies in structured light systems.

PATTERN RECOGNITION 37 (2004), 827–849.

[72] SCHARSTEIN, D., AND SZELISKI, R. A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms. International Journal of Computer Vision 47 (2001), 7–42.

[73] SEITZ, S., AND DYER, C. Photorealistic scene reconstruction by voxel coloring. In IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (17-19 June 1997), pp. 1067–

1073.

[74] SEITZ, S. M., CURLESS, B., DIEBEL, J., SCHARSTEIN, D., AND SZELISKI, R. A comparison and

evaluation of multi-view stereo reconstruction algorithms. In Proceedings of the 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (Washington, DC, USA, 2006), vol. 1,

IEEE Computer Society, pp. 519–528.

[75] SHEWCHUK, J. R. An introduction to the conjugate gradient method without the agonizing pain.

Tech. rep., Carnegie Mellon University, August 1994.

[76] SHREINER, D., AND BOARD, O. A. R. OpenGL reference manual : the official reference document

to OpenGL, version 1.4. Addison-Wesley, 2004.

[77] SIN, C.-H., CHENG, C.-M., LAI, S.-H., AND YANG, S.-Y. Geodesic tree-based dynamic

programming for fast stereo reconstruction. In 2009 IEEE 12th International Conference on Computer

Vision Workshops (ICCV Workshops) (sep. 2009), pp. 801 –807.

[78] SINHA, S., MORDOHAI, P., AND POLLEFEYS, M. Multi-view stereo via graph cuts on the dual of an

adaptive tetrahedral mesh. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on

(oct. 2007), pp. 1 –8.

[79] SKOCAJ, D., AND LEONARDIS, A. Range image acquisition of objects with non-uniform albedo

using structured light range sensor. In Pattern Recognition, 2000. Proceedings. 15th International

Conference on (2000), vol. 1, pp. 778 –781 vol.1.

[80] STREILEIN, A., AND VAN DEN HEUVEL, F. A. Potential and limitation for the 3d documentation of

cultural heritage from a single image. In Proceedings XVII CIPA Symposium (1999).

[81] THE PIXEL FARM. Pftrack. www.thepixelfarm.com.

[82] TRUCCO, AND VERRI, A. Introductory Techniques for 3-D Computer Vision. Prentice Hall,

March 1998.

[83] ULLMAN, S. Computational studies in the interpretation of structure and motion: Summary and

extension. In Human and Machine Vision (1983), Academic Press.

210

[84] WANG, G. Implementation and experimental study on fast object modeling based on multiple

structured stripes. Optics and Lasers in Engineering 42 (2004), 627–638.

[85] WANG, L., LIAO, M., GONG, M., YANG, R., AND NISTER, D. High-quality real-time stereo using

adaptive cost aggregation and dynamic programming. In 3D Data Processing, Visualization, and

Transmission, Third International Symposium on (june 2006), pp. 798 –805.

[86] WILLOUGHBY, R. A. Solutions of ill-posed problems (a. n. tikhonov and v. y. arsenin). SIAM

Review 21, 2 (1979), 266–267.

[87] YANG, R., WELCH, G., AND BISHOP, G. Real-time consensus-based scene reconstruction using

commodity graphics hardware. In Proceedings of the 10th Pacific Conference on Computer Graphics and

Applications (Washington, DC, USA, 2002), PG ’02, IEEE Computer Society, pp. 225–.

[88] ZACH, C., KLAUS, A., REITINGER, B., AND KARNER, K. Optimized stereo reconstruction using 3d

graphics hardware. In In Workshop of Vision, Modelling, and Visualization (VMV 2003 (2003), pp. 119–

126.

[89] ZENG, G., PARIS, S., LHUILLIER, M., AND QUAN, L. Study of volumetric methods for face

reconstruction. In Proceedings of IEEE Intelligent Automation Conference (2003).

[90] ZHANG, L. Spacetime stereo and its applications. PhD thesis, Washington University, Seattle,

WA, USA, 2005. Chair-Seitz, Steven M.

[91] ZHANG, L., CURLESS, B., AND SEITZ, S. Spacetime stereo: shape recovery for dynamic scenes. In

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (18-20 June 2003),

vol. 2, pp. II–367–74vol.2.

[92] ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M. Spacetime faces: High-resolution

capture for modeling and animation. In ACM Annual Conference on Computer Graphics (August 2004),

pp. 548–558.

[93] ZHANG, S., AND HUANG, P. High-resolution, real-time 3d shape acquisition. In Computer Vision

and Pattern Recognition Workshop, 2004. CVPRW ’04. Conference on (june 2004), p. 28.

[94] ZHANG, S., AND HUANG, P. S. Novel method for structured light system calibration. Optical

Engineering 45 (2006).

[95] ZHANG, Z., AND ZHANG, Z. A flexible new technique for camera calibration. IEEE Transactions

on Pattern Analysis and Machine Intelligence 22 (1998), 1330–1334.

[96] ZITNICK, C. L., AND KANADE, T. A cooperative algorithm for stereo matching and occlusion

detection. IEEE Trans. Pattern Anal. Mach. Intell. 22, 7 (2000), 675–684.

