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Abstract 
Recent advances in virtual reality, 3d computer generated graphics and computer vision 

are making the goal of producing a compelling interactive 3d face to face 

communication system more tractable. The problem with producing such a system is 

reconstructing the 3d geometry of the users in real-time. 

There are many ways of tackling this problem however many of them require 

prior knowledge (i.e model fitting methods). These add unnecessary constraints and 

limit the usability of the system to reconstructing known entities. Other high quality 

methods using laser triangulation require too many samples and therefore cannot handle 

dynamic and deformable shapes such as the human face. A more suited approach is to 

use stereo based algorithm that function using two of more views and augmenting their 

capabilities using structured light.  

The work presented in this thesis will examine and evaluate various stereo vision 

algorithms and hybrids with the goal of producing accurate 3d representations of human 

faces in real time. Various dynamic programming algorithms will be presented and 

hybrid variations. These will be extended into the space-time domain and the impact of 

using different structured light patterns with various algorithms and cost functions will 

be examined. 

Most real-time correspondence algorithms are limited to producing pixel value 

disparities; these can be augmented into producing sub-pixel disparities by smoothing 

functions. Applying such smoothing functions tends to remove detail. Another approach 

is to use non-linear optimization on a spatial-temporal warp function. These algorithms 

tend to be very computationally expensive and therefore not feasible for real time 

applications. With recent development of GPUs (Graphics Processing Units) driven by 

the consumer demand for complex real time 3d graphics, these cards are capable of 

processing large amounts of data in parallel. This makes them very amenable to solving 

large linear algebra problems. . 

The result being a tuneable stereo reconstruction framework that has been 

reformulated into streaming problems in order to be processed on the GPU to produce 

real time sub-pixel depth maps of human faces that can be triangulated to produce 

accurate 3d models. 
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  Chapter 1

 

 

 

 

Introduction 

The main goal of virtual reality research is to immerse human beings in a perception of 

a digitally created reality. This is achieved by presenting the user with alternative 

sensory information using a variety of technologies. As virtual reality has evolved and 

its technologies become more mainstream (e.g. through special FX, video games, 

simulation and training) one of the main pursuits is to make these alternative 

perceptions or virtual environments more believable.  

As adult human beings we seem to have expectations concerning the way in 

which the world around us functions. In virtual environments users project these 

expectations into their new digital world. When these expectations are broken the users 

become all too aware of the artificial environment they are experiencing. With this 

awareness the sensation of actually being in the environment, disappears. In the search 

to make virtual environments more believable, and to make the user feel more immersed 

the tendency has been to focus on realism. As these technologies mature and virtual 

reality becomes more realistic, a new application known as tele-immersion [28] has 

emerged. Tele-immersion is a form of tele-communication between users in virtual 

reality or mixed reality environments. Similar to video conferencing, the main objective 

of tele-presence is for face to face communication that can take place in a shared virtual 

world.  

The greatest difficulty facing the development of a tele-immersive system is 

accurately capturing the user’s behaviour in 3D. More importantly with regard to face to 

face communication, one needs to capture the user’s facial animations as well as 

appearances. Capturing 3D facial animation data for the application of tele-immersion 

has the added constraint of the system having to run in real-time for it to be useable.  

Recreating the physical reality in virtual environments has the advantage of 

adding realism and facilitating communication. This can be achieved in various ways 
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using a variety of instruments. Since what one is interested in is the visual properties of 

the world, the instrument of choice seems to be video cameras which are relatively 

cheap and can capture a large volume of data quickly. However video cameras only 

capture 2D data and virtual environments work with 3D data. One could take the 2D 

video and project it onto a plane, but one would lose most of the advantage of realism 

due to a loss of parallax. Fortunately it is possible to perform a 3D reconstruction for a 

sequence of images in certain heavily constrained environments, this falls into the 

research field of 3D computer vision or photogrammetry [42]. This thesis will focus on 

a constrained situation, where the intention is to sample close range dynamically 

deformable objects in real-time. Although the immediate goal is to focus on human 

beings, and more specifically their faces, care has been taken not to make many 

assumptions about the scene and its reconstructed objects. Not making any assumptions 

makes the system more flexible, and therefore enables it to potentially reconstruct the 

entire human body and or various other objects presented to it.  

The interests of the research presented in this text lie in reconstructing and more 

specifically in 3D reconstruction of a scene with the target application being face to face 

communication. This can be achieved, using a variety of techniques that are covered in 

greater depth in the literature review. Some of these techniques have limitations such as 

only functioning offline. The common approach is to reconstruct the geometry of the 

head in a neutral pose and then apply motion capture techniques in order to track the 

facial animations. In these circumstances one refers to visual realism as a measure of 

how well the geometry matches the head and one refers to behavioural realism as a 

measure of how well the animation is portrayed. The work presented here will not focus 

on these model fitting approaches as they lack the flexibility to reconstruct more than 

just the human head. 

Building on research in stereo vision, this report proposes to borrow research 

into 3D reconstruction from the field of computer vision and improve the visual 

appearance and performance of the results by leveraging the capabilities of modern 

graphics processing units (GPUs). Using GPUs enables one to run certain types of 

algorithms that would normally only be reserved to offline reconstruction in the context 

of real-time applications. These offline algorithms given less computational constraints 

tend to be optimized in the pursuit of visual quality as opposed to computational 

performance. The work presented here will demonstrate that GPUs have opened up the 
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possibility of using certain types of algorithms previously reserved to offline use in the 

context of real-time applications. It therefore hopes to blur the distinction between 

behavioural realism and visual realism by performing the 3D reconstruction in real-time 

and thereby implicitly modelling the behavioural elements. 

 

1.1 Problem Statement 

In the pursuit of presenting users with a more believable and realistic environment for 

both virtual reality and augmented reality, the intention is to build and develop a system 

capable of capturing the dynamic shape of other users, using off the shelf components 

such as digital cameras and projectors. The initial target application was to reproduce 

photorealistic avatars heads for virtual environments and tele-immersive 

communication. The system should provide visual realism as well as behavioural 

realism. Traditionally emphasis [9] has been on visual realism which involves spending 

more computation time offline, building highly accurate visual models of human faces 

or heads, and then dedicating a fraction of these resources on behavioural realism in the 

form of motion capture. The emphasis in this body of work is on capturing the 

geometric properties of the human face in real-time and thereby implicitly capturing 

behavioural animation thereby negating the need to perform motion capture. The aim is 

wish to capture the dynamically deformable nature of the human face, more specifically 

its deforming geometry. Although the initial target application is tele-immersion for 

face to face communication, it was felt that by explicitly not relying on a model-based 

approach often found in facial capturing systems, that the overall system would be more 

flexible and would be employed to capture more general purpose objects. 

This thesis proposes ways of using digital cameras to sample the geometric 

properties of physical objects, such as humans, and examine the compromises between 

accuracy and realism as well as computational time. By using two or more cameras one 

can obtain the depth of each overlapping pixels. These depth images can either be 

triangulated to obtain a 3D mesh, or used in image-based rendering algorithms in order 

to obtain images from different viewpoints, thereby creating the illusion of 3D, which in 

turn creates a more realistic representation. The contributions of this thesis focus on 

retrieving this depth information from a stereo camera setup using structured light for 
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the potential use of 3D reconstruction or image-based re-rendering from differing 

viewpoints. With these goals the following research questions were posed.  

 

 Can a real-time sub-pixel scalable stereo reconstruction system be developed? 

 What are the potential benefits of using structured light? 

 What are the benefits of extending the support region into the time domain? 

What is the optimum cost function for performance and quality? 

 What benefits can be achieved by a parallel system and can it leverage GPUs? 

What compromises have to be made between computational performance and 

visual quality? 

Can the correspondence problem be solved with alternative techniques that use 

less computational resources? 

 

Precedence will be given to the performance of the 3D geometry acquisition 

system (i.e. whether it can it run in real-time) in order for it to be used in real-time 

applications such as tele-immersion. The quality of the results are of course important 

but the priority lies with real-time or interactive applications. Although the initial target 

application is face to face communication, the assumption of using a prior generic face 

model that would then be subsequently deformed to fit to the video data was avoided. 

Another goal was to keep the system as flexible as possible so that it could be utilized in 

order to capture other deformable dynamic objects and could easily be extended to the 

acquisition of the full human body, as well as various other applications. 

 

1.2 Scope 

Performing 3D reconstructions of heads was carried out by building and developing a 

real-time geometry acquisition system using off the shelf equipment. The only hardware 

that was developed was a simple circuit for synchronising the cameras and projector. 

Excellent performance gains could have been achieved with custom hardware design, 

which could have been prototyped using modern day field programmable gate arrays. 

However, this would have required significant development time and is beyond the 

scope of this thesis. Hardware acceleration was leveraged by using modern day GPUs 

that have not only been evolving faster than CPUs but have been designed to be fully 
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programmable with the use of vertex and pixel shaders. This has created a recent trend 

known as GPGPU, general purpose GPU. Recently GPUs have been used to solve a 

variety of problems outside the realm of 3D graphics. They have been used to solve 

PDEs [70], option pricing, vision, medical imaging [66] and in a variety of other 

applications.  

 

1.3 Outline of Thesis 

This thesis is structured in the following manner. A comprehensive literature review of 

methods for acquiring 3D shape information using various types of sensors, as well as a 

more detailed description of stereo methods will be covered in Chapter 2. Chapter 3 will 

describe a capture rig developed using stereo cameras and a projector. It will also 

describe experiments using dynamic programming algorithms with different cost 

functions and structured light patterns. The impact of different cost functions and light 

patterns as well as the extension of these algorithms into the time domain, will be 

discussed and analysed in terms of qualitative and computational cost. Chapter 4 will 

examine how the data captured in the previous chapter can be improved upon using 

non-linear optimization methods. The convergence of different solvers will be 

examined. All these solvers will require an initialization produced by the previous 

chapter’s dynamic programming algorithms. The impact of this initialization will also 

be examined in Chapter 4 as well as quality of the newly produced sub-pixel disparity 

maps and some of the potential weakness of these methods and how they can be 

overcome using regularization. Chapter 5 will focus on how these algorithms can 

leverage graphic processing units by being parallelised and made to run in real-time. 

Chapter 6 will bring together all the work carried out in the previous chapters and 

present a scalable frame work for solving the stereo correspondence problem. This 

framework will be able to scale with resolution increase and performance increase either 

to produce superior results or reduce the acquisition time depending on the target 

applications. The conclusion drawn from this body of work as well as future directions 

for extending this research, will be discussed in Chapter 7. 
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1.4 Summary of Contributions 

This thesis presents a wide range of techniques to solve the stereo correspondence 

problem. The following contributions were made. 

 

• Analysis of modern dynamic programming algorithms and their ability to solve 

the correspondence problem under various structured light patterns using a 

variety of different cost functions as well as extending their support region into 

the time domain. 

• Analysis of non-linear optimization methods for solving the space time stereo 

problem. 

• Development of a multi scale, non-linear optimization algorithm for solving the 

sub-pixel stereo correspondence problem in real-time using graphics processing 

units. 

• Development of a scalable frame work for acquiring 3D deformable objects 

depth in real-time. 

` 
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  Chapter 2

 

 

 

 

Literature Review 
This section of the thesis will focus on exploring the research space in which this work 

belongs. Figure 2.1 illustrates a taxonomy from [90] which is used to distinguish the 

various approaches to solving the acquisition of dynamic shapes. This chapter will focus 

on the space that is highlighted as it represents the use of digital cameras as sensors. 

This satisfies the criteria of using off the shelf equipment. As the research space is more 

in line with the 3D computer vision field, an alternative taxonomy is presented in 

Section 2.1.  3D computer vision is a very active field of research that has produced 

very extensive and promising results over the years. To fully cover the whole field in 

any useful depth is beyond the scope of this thesis.  

Following the taxonomy presented in Section 2.1, a more in depth look at one 

specific area of 3D vision, namely stereo vision will be examined in greater depth. 

Section 2.2 will demonstrate that the stereo problem can be reformulated into a 1D 

correspondence problem. Section 2.3 will present a taxonomy for solving this 1D 

correspondence problem, while Section 2.4 will focus on some of the more modern 

techniques presenting the ones that achieve good computational performance with 

others performing better in terms of visual accuracy. 

 

2.1 3D Computer Vision  

3D computer vision is based on extracting 3D information from a dataset consisting of 

images acquired from digital cameras. It is a specialization of the general field of 

machine vision also known as computer vision. This area of research is very broad and 

diverse. Example applications include and are not limited to robotics, augmented reality, 

virtual reality, mixed reality, computer games, military, architectural and production 

line inspection, to name a few. Many diverse areas of research have tackled these 
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problems, and producing a comprehensive review of all the literature in these fields 

would be challenging to say the least. This section of the report will therefore firstly 

present a taxonomy of 3D vision research, followed by a study of stereo capturing 

systems, structured light capturing, modern advances in their implementations on GPUs 

as well as tele-immersive systems. For an introduction and overview of the field of 3D 

computer vision please refer to [22], [42], [82], [32].  

2.1.1 Taxonomy 

3D computer vision techniques that infer shape or structure can be categorised in 

various ways. The following are key distinctions employed in the subject matter 

literature.  

  

 

 
Figure 2.1 Taken from [90] illustrating Dynamic Shape Acquisition Taxonomy 

 

 

Active versus Passive 

All image based modelling techniques can fall into one of two groups, active and 

passive. Active techniques change the environment in some way (i.e. illuminate the 

environment) while passive techniques capture the environment without changing it. 

Active techniques are usually more accurate but expensive and not always viable. 

Passive techniques on the other hand are cheap and viable but at the cost of accuracy. 

Nevertheless active systems greatly improve correlation algorithms. 
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Autonomous versus Semi-Autonomous 

Again all the following techniques can fall into one of these two groups. Autonomous 

systems require no user interaction, while semi-autonomous systems require varying 

degrees of user interaction. This field has been researched with different goals in mind. 

One example is robotics researchers who have pursued this area with robot navigation 

and exploration as their aim, and have therefore focused on trying to produce 

autonomous systems of very high accuracy. By contrast 3D graphics and special effects 

communities have prioritised aesthetically pleasing results at the cost of needing user 

interaction in order to rapidly produce compelling virtual environments.  

  

Shape from Single View  

These are techniques that rely solely on one image for their input. Because these 

techniques require such little input data they usually necessitate user interaction.  One 

possible technique is presented by [18] and makes use of the following assumptions: 3 

orthogonal sets of parallel lines, 4 known points on ground plane, 1 height in the scene. 

An alternative technique for single view that also scales to multiple views is presented 

by [20] and used in the Façade application (Section 2.4.2). Another interesting approach 

is presented in [61], where users specify lines that are then extruded into planes. These 

planes are subsequently used to create a coarse depth-map that is then manually refined. 

This multi-layered depth-map is then used to reconstruct geometry. For review of 

commercially available products please refer to [80]. 

 The proposal in this report focuses more on reconstruction of avatar heads in a 

controlled environment. With the advances that have been made in digital cameras and 

computational power why not take advantage of using multiple images? 

 

Shape from Stereo 

Once a point in 3D space has been projected onto an image plane it loses its depth 

information. This point can lie anywhere along the ray passing through the centre of 

projection and the pixel the point was projected onto. However one can recover the 

depth information of that pixel if it is projected onto the image plane of another camera 

by using triangulation. Shape from stereo can be decomposed into two problems. The 

first problem is correspondence, given a pixel in image A representing the projection of 



 

 

30 

a 3D point, where is the projection of that point in image B? This can be reduced to a 1d 

search by using the epipolar constraint. The second problem is one of triangulation. 

Please refer to [72] and [74] for good surveys on stereo. Section 2.4.3 of this report will 

present a more detailed look at stereo along with some of the more recent work 

produced by Li Zhang et al.in Space-time Stereo [91]. Stereo vision has been 

extensively researched and has produced excellent results in certain constrained 

environments; it has therefore been used in avatar head reconstruction algorithms. 

Section 2.5 of this report will review some techniques employed for tele-immersion in 

the context of avatar reconstruction that rely on stereo algorithms. Lastly good 

candidates for real-time applications will be presented. 

 

Shape from n-View 

This refers to obtaining the 3D reconstruction from multiple images taken from different 

viewpoints. There are many algorithms that rely on different visual cues that can be 

used to achieve this task. In [54] an algorithm is presented that computes visual hulls 

from a set of images by extracting the silhouette of the object being reconstructed. Other 

interesting algorithms include Space Carving [47] and Voxel Colouring [73]. Zisserman 

[3] introduces a novel algorithm that uses edge features extracted from multiple images 

to calculate half planes and reconstruct geometry. Although these algorithms can 

produce good results in certain situations, they also pose greater constraints on the 

environment. Work using some of these space carving type algorithms for head 

reconstruction has been carried out by [89]. However, the results seem less compelling 

than stereo alternatives.  

 

Structure from Motion 

By using multiple images taken from a single camera over time, and finding 

corresponding features over the set of images Kruppa [44] proved that if 5 features 

could be detected from 2 images, the rotation and translation of the camera between the 

images and the 3D location of the 5 features could be determined up to an arbitrary 

scale. Ullman [83] and Longuet-Higgins [48] were early pioneers of this work. These 

algorithms rely on finding features such as corners [31], SIFT [50], or SURF [6] and 

their correlation across multiple frames using [59] in order to solve the system. More 

recently the theoretical foundations of these works are used to track camera motion in 
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commercially available software such as Boujou [1] and PFTrack [81]. These 

algorithms produce very good results for camera tracking but because they are based on 

features, the 3D information inferred by the techniques is very sparse and lacking in 

detail as opposed to dense stereo techniques that provide depth for each pixel. These 

algorithms are also very computationally expensive making them much less suitable for 

real-time applications.   

 

Shape from Shading 

These algorithms use surface properties and lighting models to determine the surface 

normals. One simple algorithm developed by [35] demonstrates this very simply as 

follows. If one were to take a picture of two objects with the same surface properties 

(e.g. the same surface material) under the same lighting conditions, using a perfect 

sphere and arbitrary second object, one can easily determine the surface normals of the 

second object. This is achieved, firstly by generating normal values for each projected 

pixel of the sphere (this is done simply by registering 3D sphere with the picture), after 

which the normal values of the arbitrary second object are determined simply by 

looking up each pixel value against a matching pixel value of the projected sphere and 

assigning its corresponding normal value. This is a very simple example; many more 

algorithms have been developed that usually rely on extracting the BRDF of materials 

see [42]. Shape from shading algorithms tend to work well on synthesized pictures but 

seem to fail with real data. Failure can be caused by specular highlights, image noise or 

ambiguities (given a single light source and viewing direction many different geometric 

shapes can be rendered to produce the same image). For a more detailed overview of 

shape from shading please refer to [67].  

 

2.2 Stereo Formulation 

As mentioned previously, an image pixel’s 3D location can lie anywhere along the ray 

passing from the centre of projection through that point. If one has another image taken 

from a different point of view containing the projection of the same point, one can infer 

the 3D location of that point through triangulation. Triangulation describes the 

intersection of the ray passing through the centre of projection and the pixel of the first 

image with its equivalent in the second image. However in practice these rays will never 
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intersect due to sampling and correspondence errors. The stereo problem can therefore 

be broken down into two sub-problems, the first being one of correspondence and the 

second being triangulation. One possible way of solving triangulation is to find the 

vector representing the shortest distance between the two rays and choosing its mid-

point. The stereo problem can be solved for two cases; the calibrated (where the 

camera’s intrinsic parameters are known) and un-calibrated. The un-calibrated case 

allows the determination of a pixel’s depth relative to an arbitrary scale value. The most 

difficult problem facing stereo vision is the one of correspondence. Pixels represent a 

quantized sampling of light, they do not represent actual points in the scene, and 

therefore one pixel can contain a region producing a modulated value of the edge 

transition while this same edge could lie at a pixel boundary in the other image and 

therefore produce two different pixel values in the second image. This highlights just 

one potential problem, another is occlusion; some pixels in one image are simply 

occluded in the other. The correspondence problem can also be extremely hard to solve 

for images of bland textureless and featureless scenes.  

 
Figure 2.2 Epipolar Constraint 

 

This type of scene as well can be tackled by using an active system. An active system 

will project light onto the environment and by carefully choosing the type of projected 

pattern, it is possible to significantly increase the algorithm’s ability to find 

corresponding matches between images. To make the correspondence problem more 

manageable many algorithms use constraints. One such constraint which enables the 

correspondence problem to be reduced from a 2D to a 1D search is the epipolar 

constraint. 
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2.2.1 Epipolar Constraint 

Given a point P projected on the left image plane as Pl with centre of projection Ol, the 

projection on the right image plane Pr with centre of projection Or will lie on the 

epipolar line r. The epipolar plane is defined by the points P, Or, and Ol. One can 

therefore calculate the essential matrix E that maps the point Pl onto the epipolar line r. 

This matrix can be calculated as follows. 

The transformation from the left coordinate frame to the right coordinate frame 

is a translation followed by a rotation. Therefore 
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The equation of the epipolar plane is then: 
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However r is in normalized image plane coordinates. In order to achieve a similar 

mapping in pixel coordinates one has to calculate the fundamental matrix F as follows: 
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Where Mr and Ml are the matrices representing the right and left cameras intrinsic 

parameters. 

 

Once the stereo system has been calibrated (i.e. F found) the correspondence search can 

be reduced to 1D. One can go one step further and rectify both images so that the actual 

scan-lines of the images are matched with the epipolar lines. For further details please 

refer to [42],[82],[22]. 

  

2.2.2 Correspondence Algorithms and Taxonomy 

The problem of stereo correspondence has been widely studied and is still a very active 

area of research. In [72] a taxonomy and evaluation of twenty dense two frame stereo 

algorithms are presented. Most stereo algorithms produce disparity values (i.e. 

differences between corresponding points along the epipolar line) that, are inversely 

proportional to the depth values. This definition can be generalized for multiple 

viewpoints but we will focus on the simple case of two viewpoints. This section will 

focus on algorithms that produce a dense disparity map, which are the algorithms that 

calculate disparity values for each input pixel. These algorithms work by selecting a 

cost function for correspondence, which is then minimized. They function by 

performing all or a subset of the following procedures. 

• Cost Computation  

• Cost Aggregation (Support Region) 

• Disparity Computation / Optimization 

• Disparity Refinement  

These algorithms fall into one of the following two categories; local or global. Local 

algorithms minimize the cost function independently over a window while global 

algorithms make explicit assumptions such as a smoothness constraint and then solve an 

optimization problem over a scan-line or complete image.  

 

Cost Computation 
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Cost computation is the method used to calculate the error of a particular disparity 

value. This represents the error of matching a pixel in the left image with a pixel in the 

right image, alternatively if a support region is used, the error of matching a window of 

pixels in the left image against another window in the right image. This region can also 

be extended into the time domain and used as a support region that spans multiple 

images. Example cost functions can be AD (Absolute Difference), SD (Square 

Difference), SSD (Sum of Squared Difference), and normalized cross correlation, see 

[72] for further examples of cost functions used in correspondence algorithms. Global 

algorithms tend to use an error function that combines the cost functions with another 

term. This term usually adds constraints such as occlusions (e.g. dynamic programming 

where a fixed penalty is associated with an occlusion) and or smoothness. 

 

Cost Aggregation 

Stereo algorithms usually aggregate cost, such as sum or average over a support region. 

These support regions usually span the spatial domain however, more recently better 

results have been obtained by using support regions that also span the temporal domain. 

Examples of such algorithms will be presented in Chapter 3. The problem with using 

square support regions (e.g. 5x5 window of pixels) is that they make the assumption that 

the surface is fronto-parallel. Although this maybe the case in certain circumstances in 

reality it is rarely so. To compensate, these algorithms usually use large support regions 

that tend to average the surface out and produce blurred disparity maps lacking any fine 

detail. To overcome this limitation, some global algorithms also tend to optimize a warp 

function for the support region. As one shall see in Chapter 4 this can produce 

substantially superior results. 

 

Disparity Computation / Optimization 

With locally optimizing algorithms finding the disparity is trivial, the correlation with 

the lowest cost is selected. These algorithms tend to focus on the cost function and 

aggregation steps.  These Winner Take All type algorithms, although computationally 

inexpensive also tend to perform badly. While with global algorithms offers a disparity 

function E(d) that minimizes the energy is solved. 
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Edata(d) is the data term measuring how well the disparity function matches the input 

image pair, using the cost function C. Esmooth(d) is the smoothness constraint making the 

minimization computationally tractable and is often restricted to neighbouring pixel as 

shown in the above example. p is some monotonically increasing function of disparity. 

In order to solve the above optimization, one can use a variety of different algorithms 

including simulated annealing [64], graph cuts [43] [78], dynamic programming [8] 

[77], Lucas and Kanade (i.e. Gauss-Newton) [51], cooperative [96], max flow [11]. 

With computational performance of modern day PCs the focus of research in this field 

has focused on global type algorithms which produce superior results. However DP 

(Dynamic Programming) has the distinct advantage that it can find a solution for 

independent scan-lines in polynomial time and is therefore a candidate for real-time 

applications.  An overview of DP algorithms as well Lucas and Kanade [51] and some 

modern variations will be presented in Chapter 3, 4 and 5. 

 

Disparity Refinement  

Most disparity computation algorithms, with the exception of some of the global 

optimization variants, tend to produce disparity maps with outliers and other types of 

artefacts. Disparity refinement is a final post-processing stage aimed at correcting some 

artefacts or smoothing the results. One example of this is the Birchfield et al.[8] 

algorithm, which has a final post processing stage that uses a region growing type 

algorithm to try and eliminate certain disparity outliers. One could also apply parabola 

fitting to the disparity values in order to approximate a higher sampling rate and 

estimate sub-pixel disparity values. This could be incorporated into the smoothness term 

of a global optimization algorithm.  

The following section will describe some stereo correspondence algorithms, 

namely dynamic programming and its more recent variation developed by Criminsi et 

al.[19] as well the Lucas and Kanade [51] algorithm that has substantially evolved over 
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the years. Li Zhang et al.[91] work on space-time stereo will be discussed and finally I 

will present some of the work carried out by [56], with regard to stereo for the practical 

application of tele-immersion.  

 

2.2.3 DP Stereo Formulation 

This section will cover the standard DP stereo formulation [42] as well as the variations 

due to Birchfield et al.[8] and Criminisi et al.[19]. 

 

2.2.3.1 Traditional DP Stereo 

Given a pair of rectified images )(xIl  and )(yIr representing the left and right images at 

the xth and yth pixels respectively for a given scan-line, it can be shown from [7] that the 

depth of a given pixel is inversely proportional to its disparity )( yx − . The problem is 

therefore one of correspondence. Using the uniqueness and monotonic ordering 

constraint, DP algorithms will solve the disparity by minimizing a cumulative cost 

function C(l, r) defined as follows: 
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.   

Here, OccCost is a parameter of the system and defines a penalty for occlusions and 

M(l,r) is a cost function that defines the dissimilarity between two pixels l and r of the 

left and right scanline respectively. It is quite common for M(l,r) to be the sum of 

squared difference (SSD) defined as:  
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. 

The recurrence in C(l, r) defines the possible moves in the forward pass of the DP 

algorithm, namely: one horizontal occluded move, one diagonal matched move, and one 
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vertical occluded move. After initialisation of the cost matrix the DP algorithm iterates 

through each cell within the constraint network calculating C(l, r) and storing a 

backwards link to the previous cell containing the minimum cost. Once the cost matrix 

has been calculated, the second stage of the algorithm is a backwards pass that follows 

all the stored links to produce the minimum cost path and therefore the disparity for that 

scan-line. This is repeated for each scan-line in the pair of images and a disparity map is 

produced. Figure 2.3 illustrates the possible moves of the DP algorithm. 

 

Figure 2.3 Allowed Dynamic Programming Moves 

2.2.3.2 Birchfield DP Algorithm 

The Birchfield et al. [8] algorithm differs from the traditional DP algorithm in a few key 

ways. Firstly, the cumulative cost function and the dissimilarity measure are defined as 

follows: 
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Again, OccCost and MatchR are parameters of the system that define an occlusion cost 

and match reward respectively. The dissimilarity function M(x,y) measures how well the 

intensity at x fits the linearly interpolated region around y.  

Another change is the addition of a constraint that intensity variation accompanies 

depth discontinuities. An intensity variation is defined as any set of three pixels whose 

min and max levels vary more than four grey scale values. This threshold is very low 

and is intended to prevent the algorithm from making poor choices in regions of the 

image that do not contain much information. It also specifies on which side the depth 

discontinuity must lie with respect to the intensity variation and also requires occlusions 

to be accompanied by the intensity variation on the appropriate side. This is illustrated 

nicely in [8].  

The cost matrix is also computed in a different manner. Instead of iterating 

through each cell and computing the minimal cumulative cost of reaching a particular 

cell, the algorithm computes the cumulative cost of reaching the neighbouring cells 

through the particular cell currently being evaluated. If this is lower than the 

neighbouring cell’s current cost, that neighbouring cell is updated. Intuitively this can 

be thought of as looking forwards instead of backwards while evaluating the cumulative 

cost matrix. The computational cost is equivalent to that of the traditional DP algorithm 

[42]. However, it permits the algorithm to prune the cost matrix and further reduce the 

number of cells that need to be evaluated. This can speed up the running time quite 

considerably; instead of taking )( 2ΔnO , where n is the number of pixels of the left and 

right scan-line and Δ is the maximum disparity, the computational cost approximates

)log( ΔΔnO . Readers are referred to [8] for a comprehensive explanation of the pruning 

technique.  

Once the cost matrix has been calculated, the initial estimates of the disparities are 

further refined by post processing steps. Firstly outliers are removed. Outliers are 

disparity values that are surrounded by different disparity values in agreement with each 

other. Then, the disparities are classified into three types; slightly reliable, moderately 

reliable and highly reliable, based on how many continuous disparities are in agreement 

along the y-axis. Moderately and highly reliable disparities are then propagated along 

the y-axis until they reach a slightly reliable disparity with a lower disparity value or a 

position that represents an intensity variation in the Left image. Moderately reliable 

disparities differ from highly reliable disparities in that they will not override their 
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neighbours if the disparity variation is just one. This helps overcome some of the 

artefacts usually present in DP algorithms that cause separate scan-lines of disparities to 

be out of alignment. This process is then repeated in a second pass along the x-axis. In 

Section 4 I will show that these post-processing steps can cause serious problems when 

used in conjunction with structured light. 

2.2.3.3 Criminisi DP Algorithm 

In Criminisi et al. [19] a new DP algorithm is proposed with the motivation of creating a 

depth map in order to be used in conjunction with an image based rendering technique 

that morphs two images to create a new image from a different viewpoint. I evaluate 

this algorithm from the point of view of 3D reconstruction. The algorithm uses a three-

plane graph, a left occluded plane L, a matched plane M and a right occluded plane R 

(see Figure 2.4). This model allows a total of thirteen moves in the DP and has the 

advantage of allowing a much finer grain control of penalty costs. 

 

),(),,(),,( rlCrlCrlC RML for each plane L, M and R respectively: 
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Here, α  is the cost of moving within an occluded plane and β  the cost of making a 

transition between planes. M(l,r) is a windowed normalized cross-correlation:  
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In [6] the dissimilarity matrices are stacked across all the scan-lines and Gaussian 

smoothed with a kernel orthogonal to both left and right scan-lines. 

 

 
Figure 2.4 Taken from Criminisi et al. showing the 13 possible moves of the algorithm [19] with each 

plane representing the Cl, Cr and Cm cumulative cost matrices 

 

2.2.4 Lucas and Kanade Stereo Algorithm 

The Lucas and Kanade [51] algorithm originally developed for stereo correspondence is 

basically an image alignment algorithm. The goal of the algorithm is to align a template 

T(x) to an image I(x) where x is a column vector (y,x,t) representing pixel coordinates.  

The template T(x) can be a sub-region of the left image (5x5 window) while I(x) can 

represent the right image or vice versa. Let W(x:p) denote the parameterized set of 

allowed warps, where p = ( p1, p2 ….pn) is a vector of parameters. The warp W(x:p) 

maps the pixels x in the coordinate frame of the template T into the sub-pixel location in 

the coordinate frame of the image I. An example warp could be a simple translation in 

the x, y axis defined as follows: 
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For example this warp could be used to determine optical flow. However generally if 

one were to track a larger patch moving in 3D a more general affine warp would be a 

better choice.  
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Equation 2.17 defines an affine warp with 6 parameters ( )Tppppppp 654321 ,,,,,= . In 

the original implementation of the algorithm described in [51] a simple translation was 

used, and given an input stereo pair of rectified images one could just use a translation 

in the x axis. However, this would be based on the assumption that the surfaces are 

fronto-parallel, a much more suitable warp for the application of stereo will be defined 

in the next section and extended for a 3D support region. The algorithm can also be 

extended to support an arbitrary complex set of affine warps. 

The goal of the algorithm is to minimize the sum of the squared error between 

the template T and the image I warped back onto the coordinate frame of the template.  

 

( )( ) ( )[ ]∑ −
x

xTpxWI 2:  

2.18 

Equation 2.18 is minimized with respect to the parameter p of the warp over all pixels in 

the template support region. To produce a dense disparity map this would be done per 

pixel. The Lucas and Kanade [51] algorithm assumes an initial estimate of the 

parameters p and solves iteratively for increments pΔ  i.e. the following expression is 

minimized: 
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( )( ) ( )[ ]2:∑ −Δ+ xTppxWI  

2.19 

With respect to pΔ , and the parameters are updated: 

 

ppp Δ+←  

2.20 

 

These two steps are performed iteratively until p converges, pΔ  is computed using 

equation 2.25. 

 

2.2.4.1 Derivation of the Lucas and Kanade Algorithm 

Equation 2.19 is minimized using a non-linear Gauss-Newton gradient descent non-

linear optimization algorithm. This is achieved by linearizing Equation 2.19 using a first 

order Taylor series approximation on ( )( )ppxWI Δ+:  to give: 
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For example the affine warp in Equation 2.18 has the Jacobian: 
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The partial derivative of Equation 2.21 with respect to pΔ  is: 
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Setting Equation 2.24 to zero gives us the closed form solution to Equation 2.21 as: 
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Where H is the Gauss-Newton approximation to the Hessian matrix: 
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A summary of the Lucas and Kanade algorithm is as follows: 

 Iterate: 

1. Warp I with W(x:p) to compute I(W(x:p)) 

2. Compute the error image T(x) – I(W(x:p)) 

3. Warp the gradient I∇  with W(x:p) 

4. Evaluate the Jacobian 
p
W
∂

∂
 at (x:p) 

5. Compute steepest decent images 
p
WI
∂

∂
∇  

6. Compute the Hessian matrix using Equation 2.26 

7. Compute ( ) ( )( )[ ]∑ −⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
∇

x

T

pxWIxT
p
WI :  

8. Compute pΔ  using Equation (10) 

9. Update the parameters ppp Δ+←  

 Until ε≤Δp  
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This summarises the Lucas and Kanade algorithm as presented in [51]. However, it has 

been generalised for any warp, where the original formulation was specific to a simple 

translation along the x-axis. For simple warps such as translations and affine the 

Jacobian can be constant. However, in general all 9 steps have to be repeated for each 

iteration because the parameters p change from iteration to iteration. In [5] a general 

framework for the Lucas and Kanade algorithm [51] as well as all the variations that 

have been developed over the last 20 years, is presented. This algorithm is referred to as 

the forward additive.  Figure 2.5 is a graphical representation of the algorithm taken 

from [5]. 

 

 
Figure 2.5 Representing a the 9 steps involved for the forward additive algorithm taken from [5] 
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2.2.4.2 Computational Cost 

This section will briefly discuss the computational cost of the forward additive Lucas 

and Kanade algorithm [51] Table 2.1 illustrates the computational cost given n is the 

number of warp parameters and N is the number of pixels in the template.  

 

 
Table 2.1 Computational Cost of the Forward additive Lucas and Kanade [51] 

 
Table 2.1 shows the total computational cost, as well as the cost of each step. As one 

can see step 6 is the most expensive. This table represents the cost of matching one 

template to an image. However for the purposes of stereo reconstruction the aim is to 

produce a dense disparity map for each pixel in the images. This could be achieved by 

creating a template for each pixel in the left image. The template would define the 

support region this could be a 5x5 pixel window. In the simple case of using a square 

window on a pair of rectified images only one warp parameter would be necessary i.e. a 

translation along the x-axis. However, given a pair of images of 640x480 pixels in 

resolution and given that this cost arises per iteration and that one would typically 

require at least 5 iterations (see Section 4) for the algorithm to produce acceptable 

results, this algorithm becomes quickly prohibitively expensive.  

 The following section will describe work carried out by Li Zhang et al.[91] that 

takes this algorithm and extends it into the space-time domain used in conjunction with 

structured light to produce very promising results. 

2.2.5 Space-time Stereo 

In [91] a novel stereo framework is presented, and is implemented using a combination 

of Dynamic Programming as well the Lucas and Kanade [51] algorithm. This section of 

the report will describe the work carried out in [91]. The framework is designed for 

local based stereo algorithms using a spatial-temporal window. The framework assumes 

for input two time varying video streams Ileft & Iright that have been rectified with the 

help of camera calibration. In order to perform 3D reconstruction one needs to estimate 

the disparity function d(x,y,t) for each pixel (x,y) at time t. Traditional stereo algorithms 

achieve this by minimizing the following cost function. 
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Where e is a dissimilarity measure and usually defined as follows (i.e. SSD). 
2)(),( babae −=  

2.28 

However due to radiometric differences between cameras Li Zhang et al.[91] used the 

following metric: 
2)(),( bosabae −+⋅=  

2.29 

Where s is a scale and o is an offset value dependent on the support region size. 

 

When the above dissimilarity measure is applied to the above cost function, the cost 

function is referred to SSD. In order to incorporate temporal variation, one can use the 

following cost function. 
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This cost function reduces ambiguity by simultaneously matching in multiple frames. 

One distinct advantage is that the spatial window can be shrunk while at the same time 

extending the temporal window. 

 
Figure 2.6 Taken from [91] depicting the space time window for static fronto-parallel, static oblique, and 

time varying oblique surfaces 
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The previously mentioned dissimilarity measure assumes constant disparity across the 

spatial window (i.e. static fronto-parallel surfaces). One can use a dissimilarity measure 

that better approximates oblique static surfaces as follows. 

 

)()(),,(),,( 000000 yydxxddtyxdtyxd yx −⋅+−⋅+≡≈

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Where 0xd  and 0yd  are the partial derivatives of the disparity function with respect to 

the spatial coordinates x and y, at ),,( 000 tyx . This results in the following SSSD cost 

function to be minimized. 
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This will stretch and shear the window as shown in Figure 2.6 (b). 

The above dissimilarity measure assumes oblique static surfaces. However one 

can devise another dissimilarity measure that will skew the window temporally as 

shown in Figure 2.6 (c). This measure will use a first order linear approximation of 

disparity variation across the temporal coordinates as well the spatial coordinates and is 

presented in Equation 2.33. This will have the benefit of better modelling moving object 

across the temporal domain. 

 

)()()(),,(),,( 00000000 ttdyydxxddtyxdtyxd tyx −⋅+−⋅+−⋅+≡≈


 

2.33 

Where 0td  is the partial derivative of the disparity with respect to time at ),,( 000 tyx . 

This can form the following cost function. 
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When the above cost function is used with a camera of high frame rate, thereby 

minimizing the errors induced by linear approximations to motion, the results are very 

encouraging, as shown in Figure 2.8.  

 
Figure 2.7 Screen shots taken from  [91]  showing the results of the above algorithm 

 

Li Zhang et al.[91] solved Equation 2.34 by firstly using a simple DP algorithm that was 

extended into the temporal domain. This was simply done by using a 3D support region 

across multiple frames from the left and right camera. The results of this were then used 

as an initial estimate for the following stage, which used the previously mentioned 

forward additive Lucas and Kanade [51] algorithm. The forward additive Lucas and 

Kanade [51] algorithm was extended into the time domain and the warp was modified to 

coincide with the one specified in Equation 2.34. To derive this extension it is easier to 

revert back to the original Gauss-Newton optimization algorithm as follows: 

Given m functions f1 ….. fm of n parameters p1….. pn one wants to minimize the sum: 
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Where p stands for the vector (p1…pn) 

The Gauss-Newton converges by starting off with an initial guess for p then iteratively 

updating it with following recurrence relation: 
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Where f = (f1…fm) and Jf(p) denotes the Jacobian of f with respect to p  
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To apply this algorithm to space-time stereo as demonstrated in [91] f would be replaced 

by Equation 2.32 the vector p = (d, dx, dy, dz) and the J would be the Jacobian of f with 

respect to p. Further details of this implementation will be discussed in Chapter 4 of this 

report. This local algorithm produces very good results, however, there are certain 

banding artefacts as shown in Figure 2.8. These are produced by the fact that the 

parameters dx, dy and dz are not constrained by the disparity gradient with respect to the 

relevant axis. 

 
Figure 2.8 Taken from [91] illustrating the difference between the local (left images) space-time 

algorithm and global (right images) 

 

To overcome this banding artefact Li Zhang et al.[92] reformulated the error function to 

be global, as follows: 
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Subject to the following constraints: 
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This is solved as follows: 

The optimal updates tyx DDDD δδδδ ,,, are given by  
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Where H is the Gauss-Newton approximation to the Hessian, -b is the gradient and D is 

the concatenation of d(x,y,t) for every x,y, t into a column vector and similarly so for 

tyx DDD ,, . The linear constraints specified in Equation 2.38 are specified by matrix 

multiplications as follows: 

DGD xx =  DGD yy =  DGD tt =  

2.40 

Where tyx GGG ,,  are the sparse matrix encoding of the finite difference operator. 

Substituting Equation 2.38 into Equation 2.39 produces the following: 
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Equation 2.41 is then solved iteratively using the conjugate gradient [75] method. This 

algorithm is very powerful and produces excellent results that can almost rival laser 

scanning, while maintaining the benefit of being able to sample deformable objects. The 

drawback of this algorithm is the intensive computational burden it places on today’s 

available hardware. 

 

2.2.6 Stereo Reconstruction on GPUs 

This thesis will demonstrate how powerful GPUs can be in the context of stereo 

reconstruction. For this reason it was important to summarise some of the advances 

made in the field with regards to solving the reconstruction problem on GPUs. Gong 

and Yang [27], Wang et al.[85], Moslah et al.[55] and Sin et al.[77] all use dynamic 

programming to some extent to solve the correspondence problem. All these instances 

use a hybrid-approach where the cost function is implemented on the GPU while the 

optimization step is performed on the CPU. Gong and Yang [27] however, implemented 

two versions, one that solely runs on the GPU while the other uses both CPU and GPU, 

they found that even though their hybrid approach suffered from the severe limitations 

of the AGP bus, they achieve superior performance using it. Other examples of 

reconstructions performed on GPUs include Chang et al.[14] which uses a multi view 

approach combined with graph cuts to reconstruct surfels, as well as Yang et al.[87] and 

Zach et al.[88]. 

 

 
Figure 2.9 Taken from Wang et al.[85] illustrating their stereo results 
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2.3 Structured Light Surface Capturing 

Another method of acquiring the 3D structure of surfaces is with the use of structured 

light. This method illuminates its environment and therefore falls in the category of 

active systems. By projecting a pattern of light onto a surface it becomes distorted. 

Measuring this distortion enables these systems to infer the geometric properties of the 

underlying surface as illustrated in Figure 2.10. A projector can be conceptually 

interpreted as the inverse of a camera. Cameras function by taking a ray of light and 

projecting it into a pixel, whereas projectors to do the opposite of projecting a pixel into 

a ray of light.  This fact enables a projector to be modelled with the same parameters as 

a camera. By doing so, some of the same fundamental concepts behind stereo 

photogrammetry presented in the previous section can be applied, and one can infer the 

depth of imaged pixels. Where stereo systems use two cameras, structured light systems 

replace the second camera with a projector. The section will briefly describe two types 

of structured light systems, the first being systems based on coded structured light while 

the second will focus on systems that use phase shifting, it is also worth noting that 

these two methods can also be combined to create hybrid systems.    

 

 
Figure 2.10 Taken from [26] illustrating the distortion created from surfaces on structured light patterns 

 

The projected patterns used by such systems all have a specific structure so that a set of 

pixels is easily distinguished by means of a local coding strategy. Therefore locating 

such points in the captured image solves the correspondence problem. These systems 

trade the ease of solving the correspondence problem inherently difficult in stereo 

systems against the added difficulty of calibration, as well as requiring the use of 
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multiple patterns. Such calibration techniques are proposed by Chen and Kak [15], 

Zhang and Huang [94] and Park et al.[65]. 

2.3.1 Coded Structure Light 

Coded structured light systems function by projecting a series of patterns that allow a 

set of pixels to be easily identified by means of local coding strategy. The 3D shape is 

then calculated from the decoded pixels by means of triangulation. The most commonly 

used patterns contain stripes as they are easily distinguished. The key to designing a 

good system lies in using a coding strategy that enables accurate localisation of these 

stripes. The patterns can be combined over time and projected onto a surface 

sequentially creating a unique code word for each imaged pixel, therefore making the 

localisation trivial. One example of such a pattern presented by Inokuchi et al.[37] uses 

a binary Gray code. These Gray codes are resilient to errors since only one bit changes 

at a time however using Gray codes requires log2(n) patterns to localise n points. This 

can be a substantial number if a high special resolution is required, and doing so makes 

the system only useful for capturing static scenes. More recent studies of binary codes 

have been published by Rocchini et al.[69], Skocaj and Leonardis [79] and Furukawa 

and Kawasaki [23]. 

 

 
Figure 2.11 Example of Gray code pattern taken from [26] 

Using a binary code requires a large number of images. By taking advantage of the grey 

scale resolution of projectors, Horn and Kiryati [36] present a method for grey level 

code selection by combining Gray code and intensity ratio techniques. Alternatives for 
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using coded light while reducing the number of patterns, is to use colour information 

(Wang et al.[84], Caspi et al.[13]). Hall-Holt and Rusinkiewicz [30] use space and 

temporal coherence. They define a binary coded pattern capable of being used to 

capture moving scenes. A complete survey of coded structured light techniques is 

published by Salvi et al.[71].  

 

 
Figure 2.12 Example taken from Furukawa and Kawasaki [23] depicting reconstruction from coded 

structure light 

2.3.2 Phase Shifting 

Phase shifting methods work by projecting periodic patterns onto the surface. The 

surface geometry will warp and distort these patterns. One well known method relies on 
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projecting three sinusoidal patterns. The intensity of each pixel (x,y) of the three 

patterns are described as: 

 

𝐼! 𝑥,𝑦 = 𝐼! 𝑥,𝑦 + 𝐼!"# 𝑥,𝑦 cos 𝜙 𝑥,𝑦 − θ , 
2.42 

 

Where I1 (x,y), I2 (x,y) and I3 (x,y) are the intensities of each fringe pattern, I0 (x,y) is the 

DC component (i.e. background), Imod (x,y) is the modulation signal amplitude, ϕ (x,y) is 

the phase, θ is the constant phase shift angle. 

Phase unwrapping is the process that converts the wrapped phase to the absolute 

phase. The phase information ϕ (x,y) can be retrieved (i.e., unwrapped) from the 

intensities in the three fringe patterns: 

 

𝜙! = tan!! 3
𝐼! 𝑥,𝑦 − 𝐼! 𝑥,𝑦

2𝐼! 𝑥,𝑦 − 𝐼! 𝑥,𝑦 − 𝐼! 𝑥,𝑦
 

2.43 

 

The discontinuity of the arc tangent function at 2π can be removed by adding or 

subtracting multiples of 2π on the ϕ’ (x,y): 

 

𝜙 𝑥,𝑦 = 𝜙! 𝑥,𝑦 + 2𝜋𝑘 
2.44 

 

Where k is an integer representing projection period. The 3D (x,y,z) coordinates are 

calculated based on the difference between measured phase 𝜙 𝑥,𝑦  and the phase value 

from a reference plane.    

𝑍 =
𝐿 − 𝑍
𝐵 𝑑 

2.45 
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Figure 2.13 Taken from [26] shows relationship between phase difference and surface depth 

 

Zhang and Huang [93] used a variation of this technique to produce a real time face 

scanner with quite compelling results, as show in Figure 2.14. The advantage of phase 

shift methods are that they are fast and require fewer structured patterns than the coded 

methods to produce accurate results. The down side of these methods is that they 

assume a continuous surface, and do not handle great changes in depth due to phase 

wrapping, they also perform badly on surfaces that have a steep gradient. 

 

 
Figure 2.14 Taken from Zhang and Huang [93] 

 

2.4 Tele-Immersion 

With advances in networking, virtual reality and computer vision, researchers are 

looking into new innovative ways of increasing social presence in tele-immersive 

environments. Tele-immersion seen as the natural evolution to video conferencing, is 

based on displaying stereo displays of remote participant users in a shared virtual space. 

The eventual ideal goal is to make the physical presence of individuals irrelevant by 
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creating a space that is part virtual part physical that all the users can interact in with 

incredible fidelity.  

Excellent work has been carried out by various institutions, notably by the 

University of North Carolina and the University of Pennsylvania, with their 

collaborative work on “The Office of The Future project” [28]. Other notable efforts 

include [46]. They point out the various limitations of tele-conferencing systems, where 

users lack perception of depth, as well as offer limitations such as eye gaze. In tele-

conferencing systems users are rarely looking directly at each other. This is due to the 

fact that the cameras are often offset with regard to the display. This problem can be 

overcome with the use of a half-silvered mirror, which is a screen made out of glass that 

has the property of reflecting as well as transmitting light. These screens can be 

arranged in such a way that allows the camera to be placed directly behind the centre of 

projection, thereby creating the appearance of direct eye contact between the users. 

There are still further limitations to consider, one of them being motion parallax. Users 

of these systems do not experience motion parallax (i.e. when a user moves their heads 

they do not see the other user from a different point of view). One possible solution is to 

build a 3D model of the users from video feeds as well as track their head movements in 

order to correctly display different viewpoints.  

Most real-time 3D capturing systems used for tele-immersion fall into three 

categories (1) silhouette base methods [29] [4], (2) voxel based methods [33], and (3) 

dense stereo reconstruction methods [40] [41]. 

In [56] a tele-immersive system is described. This system uses 7 digital firewire 

cameras. These cameras are used to create different combinations of trifocal stereo pairs 

that are used to perform dense depth estimations. However, the computational burden 

placed on such a system is great, and therefore certain constraints were imposed on the 

choice of stereo algorithm, as well as error metric used for the correlations. As 

suggested in [56], using optical flow to further constrain the problem and improve 

performance of their algorithms. Please refer to Section 2.4.3 for an overview of stereo 

algorithms. 
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Figure 2.15 Results achieved from system described in [56] 

2.4.1 Hybrid Stereo-Image Based Rendering 

3D reconstruction can be very expensive and as a result, in [45] Kurashima et al.opted 

for taking a hybrid approach inspired by image based rendering techniques. The 

approach mentioned can be broken down into two main steps. In the first step they find 

a sparse proxy geometry of the user, which is then combined in the second step with 

view dependent texturing.  

 

Step 1 Build proxy geometry 

Initially the foreground object is segmented from the background, the best plane that fits 

the foreground is then found. This is achieved by finding the approximate silhouette of 

the foreground object. Having calibrated and rectified a stereo pair, the left most 

foreground pixel in the left image is matched to the left most foreground pixel in the 

right image. This action is performed for the right most foreground pixel as well, and is 

repeated for each scan-line. This produces an approximation to the silhouette. Problems 

do occur however with foreground boundaries that are almost parallel to the epipolar 

lines, to remove outliers a plane is fitted using a least squares method, then the mean 
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and standard deviation of the distances to the plane are found. Any points whose 

distance to the plane is greater than 3σ are removed, and the plane is refit.  

 

 
Figure 2.16 Block diagram taken from [45] outlining step 1 

 

This is performed until convergence, or until a pre-determined number of iterations 

have been performed. This process is then followed by a feature tracker such as the 

KLT [7] on the foreground, constrained by the epipolar geometry. These features are 

then used to find the offsets from the fitted plane. The result is then triangulated, 

producing a very approximate geometry used in the view dependent texturing stage. 

 
Figure 2.17 From [45] showing angles between Cameras and the desired synthesised view 

 

Step 2 View dependent texture map 

In this stage the proxy geometry is texture mapped by all the images from each camera. 

Each vertex in the proxy geometry is assigned a weight for each camera. This weight is 
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then used to blend pixels from different cameras into the resulting texture. The weights 

are calculated as follows. 

 

The angle iθ  between the camera iC and the desired view D is calculated. The 

computation of the blending weight iw  is given by the following equations. 
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2.46 

Where σ is a constant value for the limit maximum angle, if the angle exceeds this value 

it is assigned a weight of zero. 

 

2.5 Conclusion of Literature Review 

As the literature review has demonstrated using stereo cameras with structured light is a 

very powerful tool for producing 3D models. However, there still seems to be a wide 

gap between algorithms that can be performed in real-time and offline algorithms, when 

it comes to output quality. The advantages stereo algorithms have over purely structured 

light systems, are as follows: They can handle greater depth variations, they tend to 

produce superior results with oblique surfaces, they can be made to work with or 

without structured light, they solve the correspondence at every frame even when using 

a space time window and therefore can potentially capture at higher frame rates. All of 

these advantages are a compelling reason to use the stereo approach. However these 

advantages come at the cost of having to solve a more difficult correspondence problem. 

The real-time solutions of the past tend to produce less compelling results when 

compared to the much more computationally expensive iterative methods. 

The motivation behind the research carried out in this report is to try and bridge 

this gap. What are the compromises currently being made with regards to real-time 

stereo systems, and are they the correct ones? Are there alternative compromises 

possible to achieve the goals of real-time stereo in the context of  tele-immersion? 
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  Chapter 3

 

 

 

 

Dynamic Programming and Structured Light 
The objective of this chapter is to determine the suitability of various dynamic 

programming algorithms for stereo reconstruction with the target application of tele-

immersion. These types of algorithms were chosen because of their computational 

performance, the fact that they treat scan-lines individually and therefore can potentially 

be made to run in parallel with relative ease, and finally because they also contain 

mechanisms to handle occlusions.  Bearing in mind these motivations the following 

questions were posed: 

 

• Are these algorithms suitable for active stereo? 

• What is the impact of different structured light patterns on these algorithms? 

• Are there any benefits in using a space-time support region for the dissimilarity 

functions? 

• Which algorithm performs best in the following scenarios: with and without 

structured light, with and without a space-time window? 

• What is the most suitable cost function for different algorithms and patterns? 

• Given that these algorithms implicitly assume fronto-parallel surfaces, how do 

they perform when reconstructing a head shape which violates these 

assumptions? 

 

This chapter will describe the contributions made with regard to extending, developing 

and analysing stereo systems benefiting from structured light while using a variety of 

different DP algorithms reviewed in Section 2. The reasoning behind choosing DP 

algorithms was that they are relatively computationally cheap, and have proven to be 

applicable to real-time systems. They also contain some mechanism for handling 

occlusions and because they optimize each individual scan-line separately, they can be 
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easily adapted to run on parallel architectures.  However, this comes at a cost of 

introducing certain inconsistencies and creating stripping artefacts due to the fact they 

optimize each scan-line individually. This has led to the further development of two 

pass dynamic programming algorithms [62] that introduce inter scan-line consistency 

constraints in an attempt to eliminate these artefacts. By using structured light it will be 

shown that these stripping artefacts are no longer an issue.  

However, these algorithms have other limitations. One of these is the 

assumption of the monoticity constraint as described in Chapter 2. It will be shown for 

the purpose of reconstructing a human head or generally convex objects, that this is not 

a concern. Dynamic programming algorithms also have the advantage over the winner-

take-all type (WTA) and scan-line optimization (SLO) algorithms by having a 

mechanism that deals with occlusions. Another one of their limitations is caused by 

their use of symmetric rectangular support regions or windows when computing the cost 

function. This implies fronto-parallel surfaces and is indeed violated when 

reconstructing objects such as the human head.  

These DP algorithms were initially developed and tested on passive scenes, not 

artificially illuminated ones, using structured light. It was therefore necessary to 

evaluate these algorithms in the context of a capturing system using structured light and 

that motivated the contributions made in this chapter. The main purpose was to discover 

the implication of using structured light with the following dynamic programming 

algorithms Criminisi et al.[19], Birchefield et al.[8] and traditional DP, which are all 

described in Chapter 2. 

In order to evaluate and determine the suitability of these algorithms I pose the 

following questions:  

How well are these algorithms suited to solving the stereo correspondence 

problem?  

Does using structured light improve their performance?  

What are the implications of choosing different cost functions with regard to 

different illumination patterns?  

Can these algorithms be improved by extending the support region of their cost 

function into the time domain? 

Are these algorithms suitable for real-time reconstruction of the human face?  
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To answer these questions this section is broken down into the following sub-

sections. 

 
Figure 3.1 Illustration of capturing system 

 

Section 3.1 will describe a capturing system consisting of two stereo cameras and 

projector capable of projecting various structured light patterns. The light patterns used 

were temporally varying and it was therefore essential to synchronize the cameras to the 

projector. This synchronisation was achieved with a circuit using an Amtel AVR 

microprocessor [2] development board. In order to evaluate these various algorithms 

and their extensions into the space-time domain as well as various other modifications 

described, a true disparity map would be necessary for comparison. Due to the 

difficulties in obtaining such a map, a simulation was developed whose details will be 

given in Section 3.2. The practical implications of using structured light as well as the 

implementation details of the various algorithms are described in Section 3.3. The 

experiments carried out will be reviewed in Section 3.4 as well as their results in 

Section 3.5. The conclusions will then be summarised in the final section of this 

chapter. In essence this chapter will explain and discuss the contributions carried out in 

[57] and [58]. 
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3.1 Experimental Setup and Sample Acquisition  

In order to acquire image samples two Balser A602fc cameras were used. These 

cameras were chosen because they are capable of very high capture speeds (100fps) 

while their resolution is adequate (640x480). They also use IEEE 1384 interfaces which 

tends to be more reliable than USB and are capable of high bandwidth (400 mb/s). 

These cameras also possess the feature of being able to be triggered via their own 

propriety interface. The structured light patterns were projected using a BenQ DLP 

projector capable of running at 800x600 @ 60Hz. Ideally one would use infra-red light 

as it is not perceivable to the human eye and is less obtrusive. One should note that the 

DLP projector works using a CMOS IC consisting of an array of micro reflective 

mirrors that can be switched electronically from the projector circuitry. This array 

represents each pixel and reflects a light source through the projector lens. The intensity 

of each pixel is determined by the amount of time the micro mirror is reflecting light, 

while the pixel colour is produced by a rotating disc containing three filters, one for 

each red green and blue colour component. This disc is placed in between the projectors 

light source and the array of micro mirrors/ By synchronizing this rotating disc with the 

switching of the mirror array, the projector is able to project pixels of varying intensity 

and colour spectrums. This design makes it convenient to modify a DLP projector by 

replacing the light source with one capable of emitting infrared light and switching the 

colour filters with filters that only allow infra-red light to pass (such as a piece of 

exposed film). The outcome would be a fully functional infra-red projector capable of 

projecting different infra-red light patterns of varying intensity as demonstrated in [17] 

and [90]. For the purpose of evaluating and extending the algorithm to solve the stereo 

correspondence problem, as presented in this and following sections, it was deemed 

unnecessary to make such modifications. 

To appropriately use dynamically changing structured light patterns with two 

cameras for stereo reconstruction, the cameras were synchronized with each other, and 

in order for the cameras to capture one unique structured light pattern they were 

synchronised to the projector. The synchronization was achieved with custom 

electronics specifically developed for this purpose. A circuit was developed that would 

take as input the VGA horizontal sync signal as well as the two camera trigger ready 

signals. These were regulated to match the specification of the AVR microprocessor and 

fed into the AVR input channels. Then a relatively simple program was run on the AVR 
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that checks the horizontal synch and make sure the cameras were ready to be triggered 

and if so would send an output trigger to both cameras.   

This setup enabled the acquisition of stereo pair images that both contained the 

same structured light pattern and therefore eliminated the horizontal synch mismatch 

artefacts produced when the cameras were not synchronised. This is crucial if using a 

structured light pattern that is changing rapidly. Another option would be to synchronize 

the cameras in software. However, this has many limitations, and in order to produce 

results with the lowest possible latency, rendering the hardware options are being the 

only practical one. 

 

3.2 Simulation of Capturing System 

The previously described capturing system was also simulated in order to produce 

synthetic data with a known true disparity that could then be used to evaluate the 

algorithms and their respective performance. This simulation was done in Autodesk 3D 

Studio Max [34]. A scene was created containing a 3D head with the same structured 

light pattern applied as a projective texture. The scene was then rendered from the two 

different viewpoints representing the left and right cameras, a number of times with and 

without a variety of different structured light patterns. A calibration object was also 

rendered in the synthetic setup, which allowed the use of the same calibration toolkit 

with the simulated images, than that used with the real sample images. From the 

synthetic images it was possible to render the exact depth map for each camera view. 

This precise synthetic depth map was then used for comparisons with the ones produced 

by the different algorithms.  

The synthetic data is only an approximation of the capturing system, as the real 

system contains acquisition noise and lens distortion that was not simulated. This data 

did prove useful in providing a benchmark for the various dynamic programming 

algorithms. The following figures illustrate some of the samples obtained with the real 

synchronised cameras as well as simulated synthetic images. Figure 3.2 illustrates some 

of the synthetic images produced. However as shall be described in Section 3.5, these 

images do not simulate the level of noise commonly found with real images and 

therefore they are not perfect for evaluating these algorithms. 
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Figure 3.2 Synthetic scene rendered from left camera using a Gray code and noise pattern. 

 

 
Figure 3.3 Real images acquired from left camera with and without Gray code pattern 

 

 
Figure 3.4 Real images acquired from right camera with and without Gray code pattern 

3.3 Implementation 

This section will cover the implementations of the stated techniques as well as the 

variations that had to be made in order for the algorithms to work with structured light 

and be extended into the time domain. A possible framework for space-time stereo 

using structured light described in [91] motivated the extension of the implemented 

algorithms into the space-time domain. However the space-time support windows were 
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not sheared and skewed. The results of these various implementations will be presented 

in Section 3.5. 

 

 

Figure 3.5 Calibration image samples 

3.3.1 Camera Calibration 

Section 2.2 demonstrated that the stereo correspondence problem can be reduced to a 

1D search problem using the epipolar constraint. This was achieved by firstly 

calibrating the stereo cameras.  This calibration process only needs to be completed 

once, as long as the position of the cameras stay fixed relative to each other. The 

outcome is to discover the camera’s intrinsic and extrinsic parameters. In the case of a 

simple pinhole camera this transformation from 3D world coordinates to 2D image 

space coordinates can be described by Equation 3.1 as follows 

𝑠∙𝑚 = 𝐾 𝑅  𝑡 𝑀 

3.1 

  

Where a 2D image point is denoted by 𝑚 = 𝑢, 𝑣, 1 !. A 3D world point is denoted by 

𝑀 = 𝑋,𝑌,𝑍, 1 !, s is an arbitrary scaling value while (R, t) is a rotation and translation 
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from world coordinates to camera coordinates and usually referred as the extrinsic 

parameters. The matrix K defined in Equation 3.2 and refers to the camera’s intrinsic 

parameters that define focal length, centre of projection and skew. 

𝐾 =
∝ 𝑐 𝑢!
0 𝛽 𝑣!
0 0 1

 

3.2 

  

Solving the parameters from Equations 3.1 and 3.2 was achieved by solving an over 

determined linear system formed by a known set of corresponding point in the 3D world 

coordinates and the 2D image space. This was achieved by imaging a calibration object, 

in this instance, the commonly used chequered board pattern was used as illustrated in 

Figure 3.5. 

The Equation 3.1 is transformed into the linear system (Equation 3.3) by 

Equation 3.2 and can be solved using SVD. 

𝐴 ∙ 𝑥 = 𝑏 

3.3 

 

Where 𝑥 represents the vector of parameters.  

This method will usually perform poorly, while at the same time care must be 

taken to normalize the data (i.e. the coordinates of feature points). Alternative methods 

that tend to produce superior results often rely on non-linear optimization methods 

while also augmenting the camera model to support forms of radial distortion. These 

methods usually start off by solving a linear system and use these results as an 

initialisation step for more robust maximum likelihood solvers usually based on the 

Levenberg Marquardt method. For the experiments presented throughout this thesis a 

Matlab toolkit developed by Bouguet et al.[10] which was loosely based on an 

algorithm created by Zhang et al. [91] was employed, which uses such non-linear 

optimization techniques.  
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Figure 3.6 Image rectification 

 

Multiple images of the calibration objects positioned at different orientations were taken 

from both cameras. The resulting two sets of images (Figure 3.5) were then used for 

calibration, which was performed in two stages, the first being calculating the camera’s 

intrinsic parameters or projection matrix, then followed by computing the extrinsic 

parameter defined as rotation and translation transformation relating the coordinate 

frame of one camera to the other.  

Once the cameras are calibrated and their parameters are known, two rectifying 

homographies can be computed. Each homography is a projective transformation that 

warps the image of each respective camera so that each scanline of the image becomes 

parallel to the epipolar lines of the stereo rig. This is equivalent to re-projecting the 

images of both cameras onto the same plane with the added constraint of each set of 

scan-lines from both cameras being matched to each other. This reduces the 

correspondence problem to a 1D search problem (i.e. each pixel in one cameras frame 

of reference will have its corresponding pixel in the other camera’s frame on the same 

scan-line given no occlusions). The geometric interpretation of these two 

transformations is illustrated in Figure 3.6 and can be represented by a 3x3 

transformation matrix. There are many solutions to the rectifying homographies. Ideally 

one would find a solution that also minimizes the amount of image distortion in both 

cameras.  One such technique is presented by Zhang et al.[95]. Another simpler and also 

effective technique is presented by Trucco et al.in [24]. For the purpose of the 

experiments presented in this thesis the Bouguet et al.[10] Matlab toolkit was also used 
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to compute the rectifying transformations that could then be trivially applied as a 

projective texture. The difference between the captured and rectified images of both 

cameras is illustrated in Figure 3.7. 

 

Figure 3.7 Top row captured images, bottom row rectified images 

 

 

Figure 3.8 Illustrates the initial Gray code (a) that was subsequently shuffled in the space to domain to 

produce the stripe pattern (b) used in the structure light reconstructions 
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3.3.2 Structured Light 

The creation of the structured light patterns was achieved with two sets of patterns 

containing eight frames each. The first set was generated as described in [91] using a 

16bit reflected Gray code [16] that was subsequently shuffled to produce high frequency 

change in both the spatial and temporal domains as represented in Figure 3.8. This 

produced eight frames containing stripes four pixels wide that were then smoothed with 

a Gaussian filter. The properties of this pattern are that it has high frequency changes in 

both the temporal and space domain and therefore maximizes the entropy across the 

space time support region. This helps reduce ambiguity when solving the 

correspondence problem. These properties were also achieved with a second set of 

patterns, by approximating white noise using an out of tune TV (approximation of white 

noise) signal followed by a low pass filter. These patterns were pre-computed offline 

and then stored as OpenGL [76] textures and applied to a textured quad.  

These patterns were subsequently projected using an Infocus DLP projector at a 

resolution of 800x600 and cycled at the camera capture rate. The projector could have 

been driven by the second VGA output of the capturing machine. A superior alternative 

was to use a secondary computer to drive the projector, thereby conserving the 

computational resources of the data acquisition and reconstruction machine. The 

projected patterns are illustrated in Figure 3.9. 
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Figure 3.9 Left column 8 noise patterns, right column 8 shuffled stripe patterns 

 

3.3.3 Dynamic Programming CPU 

Initially, three core DP algorithms along with their extensions into the time domain and 

the use of different sets of cost functions were evaluated for their qualitative results. 

This did not require optimal performance in terms of computational speed and therefore 

un-optimized CPU implementations were used. A naïve DP algorithm described in 

Chapter 2 was implemented. The OpenCV [12] implementation was used for the 

Birchfield et al. [8] DP algorithm and modified to support various cost functions and 

extended into the time domain. After experimentation with the OpenCV implementation 

it was found that the structured light patterns broke some of the assumptions made in 

the post-processing steps of Birchfield et al. [8] described in Section 2.3. The striped 

structured light pattern removes intensity variations along the y-axis and therefore one 

of the stopping criteria for the region growing of the disparities along the y-axis is 

violated. These post processing steps were subsequently removed. 

The Criminisi et al. [19] DP algorithm was implemented from scratch without 

using Gaussian smoothing of the dissimilarity matrix. The equivalent can be achieved in 

image space by blurring the images with a Gaussian kernel or defocusing the lenses of 

the cameras slightly. Support for SSD dissimilarity measure and normalized cross 

correlation over spatial and temporal windows was added to both the Birchfield et al.[8] 

and Criminisi et al.[19] implementations. The implementation of these algorithms was 
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not optimised, and a lot of redundant calculations were performed in order to conserve 

memory. Thus the performance was not real-time in some cases.  

It should be noted that all the algorithms presented in this paper can be made to 

run in real-time on high-end workstations with the use of optimisation techniques, in 

combination with the SIMD instruction set. One such technique that is presented in 

Section 6.1 is to leverage the power of GPUs and multi core processors to create a 

hybrid implementation. This allows the cost function part of the computations to be 

performed on one or more GPUs while the multiple threads each running on its own 

processor core to compute the optimization part. Further optimizations to the Criminisi 

et al.[19] algorithm were explored and are presented in Section 6.2.  

These algorithms were selected because of their relatively low computational 

complexity when compared to other stereo algorithms and the focus was to determine 

their suitability for use with structured light and real-time applications. Finally, the best 

disparity map created by the Criminisi et al.algorithm using stripe pattern with the SSD 

cost function, was used to create 3D surface using two different triangulation 

algorithms.  Figure 3.12 shows a surface reconstructed from the true disparity values of 

the synthetic data. Figure 3.18 was created using Delaunay et al.[21] triangulation taken 

from the depth map created using the Criminisi et al.[19]  algorithm on the real images 

dataset.  

 

3.4 Experiments 

Given that the dynamic programming algorithms described in Section 2.3, and further 

developed in this chapter were not originally designed with structured light in mind, it 

was therefore necessary to evaluate their performance with the capturing system 

described in Section 3.1 and its simulation in Section 3.2 using the patterns described in 

Section 3.3.2. It was also necessary to determine if these patterns improved results and 

whether there was a correlation between the patterns used and the dissimilarity measure 

or cost function. Although the original designers of these dynamic programming 

algorithms chose a particular cost function, would alternatives be more suitable, and 

what impact would extending these functions across into the time domain have on the 
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results? These algorithms were also designed with real-time applications as a goal, 

however, extending them into the time domain would alter their computational burden.  

The naïve DP algorithm described in Section 2.2 behaved so poorly that it was 

quickly dismissed and detailed experiments were carried out as described below only on 

the Criminisi et al.[19] and Birchfield et al.[8] algorithms. A polystyrene head was used 

for the experiments on real images shown in Figure 3.15 as well as images of a real face 

as shown in Figure 3.3.  The synthetic images were created using 3D Studio Max as 

shown in Figure 3.2. Both algorithms were tested on real and synthetic images using 

both the stripe and noise patterns for structured light. The following summarizes the 

various cost functions tested with each algorithm. 

 

The Birchfield et al. [8] algorithm was tested using the following cost functions:  

• Birchfield Cost Space Domain 

• Birchfield Cost Extended into Space-Time Domain 

• SSD Space Domain 

• SSD Space-Time Domain 

• Cross Correlation Space Domain 

• Cross Correlation Space-Time Domain 

The Criminisi et al. [19] algorithm was tested using the following cost functions: 

• SSD Space Domain 

• SSD Space-Time Domain 

• Cross Correlation Space Domain 

• Cross Correlation Space-Time Domain 

 

The results for real images were evaluated qualitatively by examining the disparity 

maps. The results for the synthetic images were evaluated by calculating the RMS (root 

mean square) error (measured in disparity values) between calculated disparities and 

true disparities, as well as the percentage of incorrectly (within error threshold) 

matching pixels against the true disparity values. These qualitative results will be 

examined and summarised in the following Section 3.5. 
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3.5 Qualitative Results 

Table 3.1 shows the RMS between the synthetic images and the true disparity. Figure 

3.13 shows the true disparity map for comparison. In all cases the Criminisi et al.[19] 

algorithm produces superior disparity values containing fewer errors.  

Figure 3.12 shows a graph representing the ratio of pixels whose error is below a 

certain threshold. Again the results indicate that the algorithm of Criminisi et al.[19] 

produces more precise disparity estimates. One can also conclude that the choice of 

algorithm has a greater impact than the choice of cost function or structured light 

pattern. In most cases using structured light improves these algorithms. Extending the 

support region into the space-time domain can further enhance these results. Choosing 

the appropriate cost function is quite strongly dependent on the structured light pattern 

used in conjunction with the system. When using the stripe pattern the cross correlation 

cost function is not ideal. Much better results are obtained using a low pass filtered 

noise pattern in conjunction with cross correlation. However, these results are limited to 

synthetic scenes. Figure 3.13 shows the 3D reconstruction results based on the synthetic 

images using Criminisi et al. [19] algorithm while Figure 3.17 demonstrates the 

performance on real-images. Using these disparity maps, 3D models are produced as 

shown in Figures 3.15, 3.16, 3.18. 
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Algorithm Cost Function Light Window RMS 

BirchCrossNoise3x7x16 24.411 

BirchCrossNoise3x7 24.3297 

BirchCrossNolight3x7 25.9128 

BirchCrossStripe3x7x8 25.3448 

BirchCrossStripe3x7 25.2588 

BirchCrossStripeNoise3x7x16 25.918 

BirchInterpNoise8 32.5587 

BirchInterpNoise 32.5394 

BirchInterpNolight 25.9111 

BirchInterpStripe8 26.8512 

BirchInterpStripe 28.2637 

BirchSSDNoise3x7x8 23.5116 

BirchSSDNoise3x7 24.3733 

BirchSSDNolight3x7 23.4193 

BirchSSDStripe3x7x8 22.8373 

BirchSSDStripe3x7 25.4086 

BirchSSDStripeNoise3x7x16 23.7173 

CrimCrossNoise3x7x8 12.5939 

CrimCrossNoise5x7 14.6616 

CrimCrossNoiseStripe3x7x8 12.8042 

CrimCrossNolight5x7 12.8788 

CrimCrossSSDTest3x7x8 11.6188 

CrimCrossStripe3x7x8 12.5563 

CrimCrossStripe5x7 18.3184 

CrimSSDNoise3x7x8 11.6739 

CrimSSDNoise3x7 12.2769 

CrimSSDNoiseStripe3x7x16 12.3845 

CrimSSDNolight3x7 13.207 

CrimSSDStripe3x7x8 11.4531 

CrimSSDStripe3x7 11.4322 

Table 3.1 RMS of errors between all algorithm’s disparity values and true disparities 
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Figure 3.10 Ratio of pixels with error below threshold indicated in columns 
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Figure 3.12 represents a 3D surface created using the disparity estimates from the 

Criminisi et al. [19] algorithm with the cross correlation cost function applied to a 

support region of 3 by 7 by 8 pixels run on synthetic images containing a projected noise 

pattern. This can be compared to the equivalent created using the true disparity values. 

Figures 3.15, 3.16 and 3.18 show analogous results for real images. 
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Figure 3.11 Left true disparity of synthetic head, Right result of Criminisi et al.[19] algorithm using cross 

correlation cost function over 3x5x8 space time window with noise pattern (synthetic data) 

 

 
Figure 3.12 Delaunay Triangulation of true and computed disparities from Figure 3.12 (synthetic data) 

 

 
Figure 3.13 Comparison of Birchfield et al.and Criminisi et al.[19] algorithms (synthetic data) 
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Figure 3.16 Non Smooth Delaunay triangulation (real data) 

Figure 3.14 Sample of real captured images of polystyrene 

head with stripe and noise (real data) 

Figure 3.15 Smooth Delaunay triangulation based on 

Criminisi et al..algorithm with a space-time window 

on images from Figure 3.16 (real data) 
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Figure 3.17 Sample of eight real captured images of a head using the striped pattern (real data) 

 

 
Figure 3.18 Delaunay triangulation based on Criminisi et al. [19] algorithm with SSD cost function on 

images from Figure 3.19 using a space time window using striped pattern (real data)  
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3.6 Conclusion 

This chapter has shown that structured light can be a powerful tool for the improvement 

of the DP algorithms described in Section 2. The results show that the algorithm of 

Criminisi et al. [19] was superior for our test sets. We also find that when using the 

cross correlation cost function superior results are obtained with the structured light 

pattern generated from noise. In [58] it was found that generally the SSD cost function 

with the striped structured light performs better than the cross correlation cost function 

with the simulated input. However, these results were taken from synthetic images and 

cannot serve as an accurate measure of real world performance. After further 

experimentation with real images it became more apparent that the cross correlation cost 

function is more robust against noise. It has also been shown that using structured light 

eliminates some of the commonly associated stripping artefacts usually common to DP 

based algorithms. 

Some of the benefits in using temporal information when evaluating 

dissimilarities between pixels have been highlighted.  It has also be demonstrated that 

the superior dynamic programming algorithm developed by Criminisi et al.[19] and 

subsequently extended into the time domain in this section can be made to run in real-

time using a hybrid CPU/GPU scalable implementation that is both parallel across 

CPUs and GPUs in Section 6.2.  

One apparent limitation of structured light techniques is that they make it 

difficult to capture texture information. However, DLP projectors could be modified to 

project infrared light as suggested in Section 3.1. This would potentially allow a system 

to combine cameras with different filters and also capture texturing information, thereby 

eliminating the apparent limitation of using structured light. Another serious limitation 

is the fact that the disparities are calculated on a discreet level (i.e. disparities are 

measured in pixel values).  Although this may be adequate for some applications, if one 

is using them to reconstruct 3D geometry this can be very limiting, as the range of 

values is very small and they produce 3D models that look somewhat blocky (see Figure 

3.20).  

The blocky artefacts can of course be removed by using a smoothing function 

such as parabola fitting however this results in a smooth mesh that is somewhat lacking 

in detail. One way of improving these DP algorithms is to use deformable support 

regions thereby eliminating the assumption of front-to-parallel surfaces. To achieve this, 



 

 

84 

the DP algorithms would have to become multi-pass and their computational 

complexity would increase substantially. Much better alternatives that combine the 

benefit of warped support regions with sub-pixel disparity estimates will be discussed in 

Chapter 4. 
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  Chapter 4

 

 

 

 

Space-Time Stereo 
The previous chapter demonstrated how dynamic programming can solve the stereo 

correspondence problem using structured light to produce pixel level disparity maps 

accurately in real-time. Although this per pixel map can further be refined by fitting a 

polynomial surface to the data, or more commonly by fitting some parabolic function, 

the results lack high frequency details. One alternative approach is to formulate the 

correspondence problem as a least squares non-linear optimization problem. This 

formulation was first proposed by Lucas and Kanade [51]. Their initial formulation 

targeted the stereo correspondence problem and optimized one parameter per pixel, 

namely the disparity along the epipolar lines or in the case of rectified images, a simple 

translation across the x axis of the stereo pair images. This method was then 

subsequently adapted to solve the optical flow problem by extending it to optimize the 

parameters of an affine warp. For a more detailed explanation of this extension readers 

are referred to Chapter 2 as well as [5]. Most of these developments target the optical 

flow and structure from motion problem as opposed to the stereo correspondence. 

Although the latter problem could be view as a subset of the former problems, there are 

certain subtle differences. The calibrated stereo correspondence problem contains 

certain constraints that make solving the pixel correspondence using a generic affine 

warp somewhat redundant. The general affine warp contains a translation in both x and 

y axes in image space. As shown from Section 3.3 by rectifying the stereo images it is 

no longer necessary to solve the disparity in the y axis. Another redundant affine warp 

parameter is the rotation, this would not improve the solution. However, introducing 

scaling and shearing properties to the support region would improve the solution. As 

opposed to having a symmetrical support region as originally proposed by Lucas and 

Kanade [51], which assumes forward facing parallel surfaces, scaling the support region 

along the x-axis would take into account the gradient of surface along the x axis and 
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shearing the support region somewhat compensates for the gradient along the y axis. 

This is visualised in Figure 4.1. 

 

 
Figure 4.1 Illustration of the effects of surface gradients on the support region 

 

These properties along with the idea of using temporal information led to the 

development of an algorithm first proposed by Zhang et al.[91] which forms the basis of 

the work presented in this chapter.   

The motivation behind this chapter was to look at the effect of various non-

linear optimization algorithms in the context of space-time stereo. The focus was to 

examine which algorithms converged more quickly and to find the trade-off between the 

number of iterations necessary for convergence and cost per iteration.  

Section 4.1 describes the correspondence problem formulated as a local non-

linear optimization problem using the space time warp function as described in Section 

2.3 as opposed to just optimizing the parameters of affine warp as is usually the case. 

This section demonstrates how different solvers such as conjugate gradients, 

Levenberg-Marquardt and some of their variations can be used.  Non-linear 

optimization is a very broad field of research. However, the purpose of this work is to 

primarily focus on the algorithms that find local minima, as they can be initialized with 

the results obtained from the previously described modified three plane DP algorithms 

presented in Chapter 3 as opposed to the more traditional DP algorithm used by Zhang 
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et al[91]. Other differences between the work carried out in this section in comparison 

to the work presented in  [91] also include running these algorithms on a dataset 

containing not only the striped structured light patterns but also the noise patterns 

presented in Section 3.3.2, modifying the solvers to use a scaled initialization and 

therefore turning these methods into multi-scale methods, and adding a simple 

Tikhonov [86] regularization term and therefore removing certain artefacts, without 

incurring the computational cost of the Levenberg-Marquardt method. The various 

implementation details of these methods are presented and discussed in Section 4.3. 

Section 4.4 describes the experiments that were conducted. This is then followed by the 

results (Section 4.5) and the conclusions that can be drawn from them, in Section 4.6.   

 

4.1 Space-Time Stereo as a Non-Linear Optimization Problem 

This section demonstrates how the space-time stereo algorithm [91] is solved using an 

extended (into the time domain) version of the Lucas and Kanade [51] algorithm (i.e. 

Gauss-Newton) for the specified warp function proposed by Zhang et al.[91] using a 

variety of solvers such as conjugate gradients. 

The Gauss-Newton method seeks to optimize a parameter vector p by 

minimizing the sum of the squared error r, which are all functions of p defined as 

follows: 

 

( )∑=
i

i prpE 2)(  

4.1 

Its starts with an initial value 0p  and iteratively minimizes E by updating 

kkk ppp δ+= −1  pδ  is computed firstly by taking the first order Taylor series 

approximation to E: 
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To minimize E the optimal update is: 

 

gHp 1−−=δ  

4.4 

In the context of space-time stereo algorithm presented by Zhang et al.[91] the cost 

functions becomes: 

E(p)= 𝐼! 𝑥,𝑦, 𝑡 − 𝐼! 𝑥 + 𝑑,𝑦, 𝑡
2

x,yt

 

4.5 

Where  

𝑑 = 𝑑 +   𝑑! 𝑥 − 𝑥! + 𝑑! 𝑦 − 𝑦! + 𝑑!(𝑡 − 𝑡!) 

4.6 

In the case of dynamic scenes or for quasi static scenes where 

 

𝑑 = 𝑑 +   𝑑! 𝑥 − 𝑥! + 𝑑! 𝑦 − 𝑦!  

4.7 

The optimization parameters p become 𝑑,𝑑! ,𝑑! ,𝑑! and these represent the disparities 

and their gradient in the x, y, and t axes. The terms x, y, t represent the coordinates of 
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the support region (or window) and 𝑥!,𝑦!, 𝑡! represent the centre of that region. By 

minimizing Equation 4.5 the space-time stereo framework presented by Zhang et al.[91] 

is effectively also minimizing a warped support region extended into the time domain. 

The warp of the support region contains a translation, scaling, skew in the x-axis as well 

as a shearing in the time domain represented by the first, second, third and fourth terms 

of Equation 4.6. This can also be visualized in Figure 4.2. 

 

 
Figure 4.2 Representation of: (a) symmetrical warp, (b) quasi-static warp equation (4.7) & (c) dynamic 

warp equation (4.6) taken from Zhang et al.[91] 

 

The cost function used for a pixel at (x,y,t) using a support region centred around 

000 ,, tyx , can be rewritten in the following notation 
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With partial derivatives as:
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Solving this problem using the standard Gauss-Newton method is achieved by 

initializing the parameter d with the results from dynamic programming algorithm while 

setting the other parameters to zero. In Zhang et al.[91] a simple DP algorithm was 

used. However, in the results presented in Section 4.5 the modified Criminsi et al.[19] 

algorithm presented in Section 3 was used. This is followed by computing the Jacobian 

matrix using Equation 4.9. The Jacobian is then multiplied with its transpose to produce 

the Gauss-Newton approximation to the Hessian. The Jacobian is also multiplied with r 

to produce the gradient vector. The resulting linear problem represented by Equation 4.4 

can then be solved using a variety of linear solvers such LU decomposition. However, 

since the Hessian is symmetrical it is more efficient to use Cholesky decomposition in 

this particular case, the solution of which produces the optimal update in the following 

iteration until convergence or some predetermined error threshold is reached. 

 

One alternative approach to the Gauss-Newton algorithm is to replace: 

( ) rJpJJ
gpH

TT −=

−=

δ

δ
 

4.10 

With a damped version 

( ) rJpIJJ TT −=+ δλ  

4.11 

 

The (non-negative) damping factor λ  is adjusted in every iteration. If the reduction of 

the sum of r is rapid a small value for λ is used therefore bringing the solution closer to 

the Gauss-Newton. If  an iteration gives insufficient reduction of the residual λ  is 

increased, bringing the solution closer to the steepest descent direction. This algorithm 

is referred to as the Levenberg-Marquardt algorithm [49]. 

 

Yet another alternative to solving Equation 4.4 is to use the iterative conjugate-gradient 

[75] algorithm as opposed to explicitly inverting the Hessian matrix. Suppose one 

wishes to minimize a function f which is roughly approximated as a quadratic form: 
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Starting with an arbitrary initial vector 𝑔! and letting ℎ! = 𝑔!, the conjugate gradient 

method constructs two sequences of vectors from the recurrence: 

 

iiii hAgg ⋅−=+ λ1  iiii hgh ς+= ++ 11  

4.13 

The vectors satisfy the orthogonality and conjugacy conditions: 
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The scalars iλ  and iς are given by: 
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Given the Hessian matrix A one can solve the system by iteratively applying line 

minimizations along the conjugate directions ℎ!. It is however possible to solve without 

the need of the Hessian matrix A as follows. 
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The choice of 1+iς  is between the Fletcher-Reeves and the Polak-Ribier variation of the 

algorithm. The line minimization can be performed with various algorithms such as 

Newton-Raphson, Secant, Bracketing or equivalents. 

 

4.2 Space-Time Stereo Implementation 

The sample acquisitions were performed using the same setup described in Section 3.2. 

The various optimization algorithms were implemented in Matlab. The Conjugate-

Gradient algorithms were implemented using both the successive Newton-Raphson line 

minimisations as described [68] along with the algorithm described in Section 4.1 using 

Gauss-Newton approximation to the Hessian. The Gauss-Newton algorithm that 

explicitly inverts the Hessian matrix was also implemented. The same cost function 

(Equation 4.5) described in Section 4.1 was minimized with these algorithms and also 

minimized using the Matlab optimization toolbox [53].  

All these implementations used a support region of 5x5x8 pixels unless specified 

otherwise. The vectors of parameters 𝑝 = 𝑑,𝑑! ,𝑑! ,𝑑! were initialized using the results 

from the Criminisi et al.[19] algorithm that was modified to support a space-time 

support region with the normalized SSD cost function. The structured light patterns 

used were both the shuffled Gray code and noise pattern presented in Section 3.3. 

Certain Matlab operators are very well optimized. This library is outperformed by 

commercially available libraries such as the Intel Maths Kernel library [38]. However, 

other Matlab operators and built in functions perform very poorly. One such example is 

the bilinear interpolation function. This function’s performance was so poor that an 

alternative was implemented.  

 

4.3 Space-Time Stereo Non-Linear Optimization Experiments 

The motivation behind the experiment described in this section was to find the best 

performing algorithm in the frame work of space-time stereo, as a non-linear 

optimization formulation. This formulation used the warp function and shuffled Gray 

code specified by Zhang et al.[91], as well the noise structured light pattern. 

Performance was measured in terms of the rate of convergence and the qualitative 

results of each non-linear optimization algorithm. It was also necessary to determine 
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whether or not the advantages in quality attained by this formulation warrant the added 

computational burdens. The following is a list of criteria that the experiments conducted 

in this section were designed to answer. 

 

• The rate of convergence of the various non-linear optimization algorithm 

described in Section 4.1  

• The qualitative impact of using different support region or window sizes 

• The qualitative impact of terminating the non-linear optimization before 

convergence 

• The qualitative impact of using the noise structured light pattern as 

opposed to the stripes suggested by Zhang et al.[91] 

• The qualitative impact of using a lower resolution disparity map to 

initialise the non-linear optimization step and therefore potentially speedi 

up the algorithm 

• The qualitative impact of Tikhonov regularization. 

• Determining the relative computational cost of the various subroutines in 

each optimization algorithm. 

 

All the data used in following experiments was captured using the capturing setup 

described in Section 3.1. The same cameras were used along with the same structured 

lights patterns. This was followed by calculating the per-pixel disparities using the 

modified Criminisi et al.[19] algorithm presented in Section 3.3.4. This included 

extending the support region into the time domain and using the normalized SSD cost 

function. Once the disparity maps were computed using the previously described DP 

algorithm, they were subsequently used as initializations for the non-linear solvers. 

 

4.4 Space-Time Stereo Non-Linear Optimization Results 

Having devised a list of criteria, the following experiments were conducted, the results 

of which will be presented and discussed in Section 4.4. The various implementations 

discussed in Section 4.2 used to solve Equation 4.5 as well as the non-linear 

optimization toolbox in Matlab were tested for convergence against the same dataset. 

The results of which are presented in Section 4.4.1. The Preconditioned Conjugate 
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Gradient, Levenberg Marquardt and Gauss-Newton optimizations algorithms from the 

Matlab toolbox were all used, as well as a re-implementation of the Gauss-Newton. 

Each of these algorithms were run with the analytical and finite difference 

approximation to the Jacobian, presented in Equation 4.9. With the motivation of 

potentially reducing aliasing artefacts and improving computation speed, these 

experiments were then followed by experiments that changed the size of the support 

region as well as the number of iterations performed (see Section 4.4.2). Section 4.4.3 

will demonstrate the advantage of using a warped support region. Subsequently with the 

goal of further reducing artefacts without incurring the computational burden of the 

Levenberg-Marquardt algorithm, the simpler Tikohnov regularization was tested in 

Section 4.4.4, as well as the impact of extreme motion with a window that was not 

warped in the time domain. With the further motivation of getting these non-linear 

optimization algorithms running in real-time, Section 4.4.5 will determine the impact of 

using a lower resolution disparity map for initialization. Having performed all the 

experiments up to this point using the same structured light patterns presented by Zhang 

et al.[91] it was also necessary to establish the effects of using the noise structured light 

patterns presented in Section 3.2, the results of which are discussed in Section 4.4.6. 

Although all the experiments conducted in this section were implemented in Matlab and 

do not come close to running in real-time for a multitude of different reasons it was still 

beneficial to profile the Matlab implementations in order to determine computational 

bottlenecks and gain more insight into the potential gains acquired by reformulating 

them as streaming algorithms that could leverage the performance of GPUs. Section 

4.4.7 will demonstrate how some of these algorithms are appropriate for implementation 

on a GPU.  

 

4.4.1 Convergence 

To establish the rate of convergence of each algorithm, the disparity and respective 

gradient values along particular scan-lines were optimized, while taking the average of 

the residuals during the iterations. The results are illustrated in Figure 4.3. In all cases, 

using the analytical partial derivatives based on Equation 4.9, produced better results 

and quicker convergence then their finite difference approximation. Both the Gauss-

Newton and Levenberg-Marquardt produced very similar results. They converged on 
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average within 4-6 iterations. Depending on the particular pixels being optimized one or 

the other would converge more quickly. The conjugate-gradient algorithms would 

converge far more slowly, on average more than 10 iterations were required for 

convergence. The Newton-Raphson line optimization seemed to perform the best with 

conjugate-gradient. Unfortunately this is a very costly line minimization. Figure 4.4 

illustrates a close up of a 3D reconstruction based on the Levenberg-Marquardt 

optimized disparity map. Figure 4.5 compares the difference between a 3D 

reconstruction based on the Gauss-Newton optimization of space-time stereo, and 

therefore shows the added details acquired by the sub-pixel disparities versus the 

previously mentioned Criminsi et al.[19] space-time stereo used as initialization. 

  

 
Figure 4.3 Graph illustrating convergence with x-axis representing number of iterations while the y-axis 

represents residuals 
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Figure 4.4 3D Reconstruction of the mouth area using disparity map produced with Levenberg-Marquardt 

optimization after 5 iterations using 5x5x8 support region. 
 

Using an adaptive support region defined by the warp function in Equation 4.5 produces 

much smoother disparity maps without the compromise of losing high frequency detail. 

Using the analytical solution for the Jacobian not only improves performance and 

convergence rate, but also has the advantage that part of its calculation (i.e. rI∇ ) can be 

pre-computed for each frame and remains constant for each disparity computation. 

Another observation is that the first couple of iterations contribute significantly to the 

result. This implies that a potential compromise between quality and the number of 

iterations that might be performed can be achieved. 
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Figure 4.5 Illustrating the difference between the Criminisi et al.[19] space-time algorithm (left) versus 

the Gauss-Newton optimized disparity map (right) 
 
In summary the Gauss-Newton algorithm performed suitably and produced results 

comparable to the Levenberg-Marquardt and Conjugate-Gradient. Not only did it 

converge more quickly than Conjugate-Gradient, but it also displayed the benefit of not 

having to compute the regularization or dampening term associated with the Levenberg-

Marquardt method, that involves a further line optimization step, therefore increasing 

the computational time per iteration significantly. 

 

4.4.2 Parameters (Window Sizes and Iterations) 

Having determined the advantages of the Gauss-Newton optimization method, the 

following results examine the impact of the support region size as well as potentially 

stopping the optimization before convergence. These parameters have significant 

implications in both terms of the quality of the output disparity maps and the 

computation time required. Although the previous section demonstrates that 

convergence using the Gauss-Newton algorithm is usually reached after five iterations, 

one can significantly speed up computation by terminating with fewer iterations. The 

support region size has more subtle effect on the results, by increasing the support 

regions, the accuracy of the correlation matching is increased (i.e. the number of 

incorrect disparities and noise is reduced). However, this comes at the cost of high 

frequency details that are removed along with the noise. This is a common trade-off in 

correlation based algorithms, but using space-time support region somewhat alleviates 

this trade-off. By extending the support region into the time domain one can maintain 
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the same number of pixels in support region while reducing the size the space domain 

(i.e. a 5x6x8 window contains the same number of pixels as a 15x16 window). This is 

effectively trading resolution in the space domain against resolution in the time domain.  

 

 
Figure 4.6 Gauss-Newton non-linear optimization using shuffled Gray code light pattern and space-time 

warp function on various window sizes after 5 iterations 

 

Figure 4.6 depicts six reconstructions all using different support region sizes, solved 

using the Gauss-Newton non-linear optimization on the identical dataset containing 

images of a face illuminated by the shuffled Gray code described in Chapter 3. This 

figure clearly shows that using different window or support region sizes can have a 

significant impact on the results of the Gauss-Newton optimization. Another 

observation determined from Figure 4.6 is that increasing the window size along the x-

axis improves the results more significantly than increasing the window size in the y-

axis. This is shown by the first two reconstructions in Figure 4.6 which both contain 

support regions with the same number of pixels (3x7x8 and 7x3x8). However, the 

reconstruction with the window of 7x3x8 produces results with significantly less noise.  
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Figure 4.7 Gauss-Newton on various window sizes after 5 iterations 

 

The noisy artefacts are caused by the fact that the illumination patterns contain far 

greater frequency changes in the x-axis as opposed to the y-axis and thus increasing the 

support region along the x-axis is effectively adding a lot more entropy to the solver. 

This also demonstrates that this solver is also sensitive to high frequency changes in the 

images and requires the appropriate considerations with regard to window sizes 

depending on the illumination pattern. Figure 4.6 also illustrates that increasing the 

window sizes further along the x-axis further improves results while still maintaining 

high frequency details in the reconstruction. This is due to the fact that the support 

region is adaptive. However, this statement only remains valid up to a certain point. 

Once the support regions become too large, the reconstruction results start to 

deteriorate, as can be seen from Figure 4.7. 
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Having examined the effect of the window sizes on the results, it was also 

necessary to determine the impact of performing fewer iterations. The previous section 

demonstrated that convergence of the Gauss-Newton optimization would occur after 

five to six iterations for most disparity values. After six iterations the residual error 

tended to oscillate, with a few outlier pixels that would diverge. The convergence is 

itself non-linear and tends to be exponential (Figure 4.3). For each iteration the residuals 

of the cost function are reduced less than during the previous iteration, which creates a 

trade-off between the number of iterations performed and the quality of the results. By 

potentially stopping the algorithm sooner one can significantly increase the 

computational speed and also potentially reduce artefacts created by pixels that create 

ill-conditioned systems within the solution. 

 

 
Figure 4.8 Gauss-Newton reconstruction using 11x5x8 window after 1,3,5 and 10 iterations 

 

Figure 4.8 illustrates the reconstruction results performed using a window of 11x5x8 

pixels after 1,3,5 and 10 iterations respectively. It demonstrates the diminishing returns 

of performing more iterations. After three iterations the results are close to optimal, 

reaching convergence at five iterations, while performing ten iterations actually has a 

negative impact as certain errors and artefacts are actually accentuated. This also 

demonstrates that not all disparity values converge after five iterations and the values 

that do not converge tend to produce aliasing artefacts. These non-convergent values 

tend to be created by occlusions. This highlights one inherent weakness of the non-

linear optimization part of this algorithm, which is that is does not deal with occlusions.  

One thing that all the results presented in this section have in common is the 

presence of errors. Some of these errors are produced by pixels that are converging to 

incorrect values, and all these results contain the banding artefacts mentioned by Zhang 

et al.[91] that were subsequently removed using a global optimization scheme with a 

disparity gradient constraint. The parameters (window sizes and iterations) examined in 
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this subsection can reduce the significances of these the errors but do not entirely 

eliminate them.  

4.4.3 Slanted versus Non-Slanted Window and Extreme Motion 

To demonstrate the advantages of using a warped support region, a comparison of two 

reconstructions was made. Figure 4.9 clearly demonstrates the advantages in terms of 

quality afforded by using a slanted window for the reconstruction. Although the 

reconstruction using the slanted window still contains some banding artefacts, they are 

significantly less pronounced than the reconstruction that only optimizes translations 

along a rectangular support region. 

 

 
Figure 4.9 Comparison between reconstruction using non-slanted (left) and slanted (right) windows after 

3 iterations using a window size of 7x5x8 
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It is worth noting that all the reconstruction performed in this thesis have used samples 

from an image sequence that contained motion (i.e. a subject talking) as seen in Figure 

4.10. This motion would be typical in a face to face communication scenario. In order 

for this implementation to be achieved in real-time as demonstrated in Chapter 5 & 6, it 

was necessary to drop the time domain warp parameter. Doing so has little impact when 

performing the reconstruction on our sample data set. This is illustrated in Figure 4.10, 

which does not contain extreme motions and was sampled at 60 frames per second. 

However, if a reconstruction is performed for every third frame and therefore simulating 

the effect of speeding up the motion by a factor of three, one will notice degradation of 

the results as shown in Figure 4.11. 

  

 
Figure 4.10 Frames taken from sample data set illustrating motion of the mouth as the subject is seen to 

be talking 
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Figure 4.11 A comparison between reconstruction based on every frame (left) and every third frame 

(right) without warp in the time domain. 

4.4.4 Regularization and Artefacts  

Having experimented with various window sizes and number of iterations it was 

necessary to try and determine the cause of some of the resulting artefacts. As described 

in the initial section of this chapter, each disparity value for each pixel is obtained by 

solving a system of equations containing four parameters, the disparities and their 

gradients with respect to the x,y, and time axis. However, these parameters are solved as 

independent parameters whereas they are not in reality. The over-parameterization 

produces the very noticeable banding artefacts. This was pointed out in a follow up 

paper by Zhang et al.[91], in which some of the banding artefacts previously described 

were eliminated by reformulating the optimization problem as a global optimization, 

and therefore allowing the disparity gradients constraint by a finite difference operator. 

Although this approach is elegant it requires constructing a large sparse matrix and 

solving it using a conjugate gradient method. This not only reduces the speed at which 

the system will converge but add significant memory and computational burdens 

making it non feasible for real-time applications at the time this work was carried out. 

The motivation behind the results presented in this section was firstly to determine 

which disparity values are part of ill-conditioned systems and then to determine whether 

the results could be improved upon by using a simple Tikonov regularisation on those 

particular values to improve the results.  

The standard method normally used to determine the conditioning of a system of 

linear equations is to perform SVD or Eigen decomposition and examine the ratio of the 
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highest and lowest singular values. For this application, the decomposition would be 

performed on the Gauss-Newton approximation to the Hessian in Equation 4.10. 

However performing the decomposition for every Hessian of every pixel at runtime 

would be impractical for real-time applications. Given that the Hessian in Equation 4.10 

is symmetric by definition, the Equation 4.10 can be solved using Cholesky 

decomposition, which itself contains a mechanism for detecting singular matrices (see 

numerical recipes [68]). Figure 4.12 illustrates the results of a reconstruction that was 

altered to zero out all the disparity values that form a Hessian that are close to being 

singular. These pixels are depicted in Figure 4.12 by being the same colour as the 

background. One interesting observation is that not all occluded pixels form ill-

conditioned systems, one is also surprised by the number of zeroed disparity values that 

tend to be in part of the image that can be considered good (i.e. fronto-parallel and 

visible by both stereo cameras). One potential method of dealing with these pixels 

would be to remove them from the solver and then, having solved the other pixels in a 

further pass, use some quadratic fitting function to obtain sub-pixels values for these 

particular disparity values. 
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Figure 4.12 Reconstruction with the wholes representing pixels forming close to singular hessians 

 

One alternative is to regularize the data, by replacing Equation 4.10 with the following. 

( ) rJpIJJ TT −=+ δλ  

4.18 

Although this is the same as the Levenberg-Marquardt there is a subtle difference. In the 

Levenberg-Marquardt algorithm the dampening parameter is adjusted for each iteration 

and therefore requires a line-search further increasing the computational complexity. 

With this proposed method the dampening parameter is fixed and can be determined 

offline. The method therefore only requires a few additions to the Hessian matrix, 

making it very cheap to perform. This can be either applied across the whole dataset or 

to only the values representing ill-conditioned systems. The effect this has is to slow 
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down convergence and therefore proves to be un-advantageous for the application 

across all values. This is illustrated in Figure 4.13. 

 

 
Figure 4.13 Reconstruction left (with all pixels regularized), centre (with only close to singular 

regularized), right no regularization all using 11x5x8 window 

 

Unfortunately as Figure 4.13 illustrates using Tikonov regularization across all pixels 

produces little benefits as it severely slows down the convergence. Furthermore, 

performing this regularization solely on the pixels containing close to singular Hessian 

matrices yields little benefit due to the fact that the pixels detected by the Cholesky 

solver as being close to singular tend not to correspond to the pixels producing the most 

artefacts. The artefacts tend to be caused by a variety of factors, the primary ones being 

occlusions, specular reflections and the fact that the light pattern is distorted when 

projected onto near oblique surfaces. Fortunately the Criminisi et al.[19] stereo 

algorithm presented in Section 3.3 contains a built in mechanism for detecting 

occlusions. This information could potentially be carried over, to instruct the non-linear 

optimization solver to, not solve occluded pixels and instead carry out a quadratic fitting 

for those particular problematic disparity pixels. The impact of occluded pixels could 

also further be reduced by reducing the baseline line of the stereo cameras. This 

however, would also reduce the precision of the depth information. In further attempts 

to reduce artefacts the same reconstructions were also performed on Gaussian blurred 

versions of the input images. This however had a negative impact on the results and was 

quickly dismissed.  
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4.4.5 Multi-Scale 

Although the Zhang et al.[91] space-time non-linear optimization algorithm presented in 

this section was not originally intended for real-time application, it is quite suitable for 

implementation on massively parallel architectures. This is due to the fact that each 

pixel is treated as an independent set of simultaneous equations across an adaptive 

support region, and therefore each disparity is treated independently. This makes the 

algorithm ideal for implementation on some type of streaming computing architecture 

such as the latest versions of GPUs. The computational performance is therefore of 

great significance. One easy method of increasing this performance is to initialize the 

data using lower resolution disparity maps. This would enable the initialization step of 

the algorithm to be run on a much lower resolution dataset, thereby dramatically reduce 

its computational cost. All the results presented in the previous sub-sections used the 

same resolution integer based disparity maps to initialize the non-linear space-time 

solver. It is therefore important to determine the impact of using lower resolution 

initialization disparity maps that would then be appropriately scaled. Figure 4.14 

illustrates three reconstructions all initialized using different resolution disparity maps. 

It is worth noting that linear interpolation was performed while up-scaling the lower 

resolution initialization maps. 

 

 
Figure 4.14 Reconstruction using 160x120 (left), 320x240 (centre), 640x480 (right) disparity maps for 

initialization of the non-linear optimization  

 

The reconstruction performed using sub sampled half resolution disparity map has the 

effect of removing certain artefacts while introducing new ones, making it similar in 

quality to that of the reconstruction initialized by a full resolution disparity map. The 

reconstruction performed using the lowest sub sampled disparity map introduces  
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artefacts near depth discontinuities, however the final results are good and close to the 

non-scaled reconstruction.   

The results presented by Figure 4.14 demonstrate the small trade-off in terms of 

quality produced when using a sub-sampled disparity map for initialization, and 

therefore point to one avenue of speeding up the computational time required by vastly 

reducing the computational burden of the initialization step. 

 

 
Figure 4.15 Close up of Figure 4.11 

 

4.4.6 Structured Light 

The previous sub-sections all contain reconstructions performed with images 

illuminated with the shuffled Gray code patterns discussed in Section 3.2. In an attempt 

to further reduce the banding artefacts present in these reconstructions, the algorithm 

was run on a dataset of images illuminated with the low-pass filtered noise patterns 

presented in Section 3.2. Although the banding is created by the fact that the space time 

warp parameters are optimized as independent variables when in actual fact they are 

not, the analytical approximation to the Jacobian matrix uses the image gradients, that 

appear to be correlated to the high frequency changes of the striped illumination pattern. 

It was felt that using a different structured light pattern could potentially reduce these 

artefacts without the need for reformulating this problem as a very computationally 

costly global optimization problem. 

Figure 4.16 depicts the results of using the noise structured light pattern. They 

still exhibit the banding artefacts, and are far inferior results with the striped pattern. 

Using the noise structure light pattern required increasing the window size considerably 

in both the x and y axis to obtain similar results to the reconstruction performed using 

the striped code pattern. Whereas while using the striped pattern one could get away 
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with a relatively small window size in the y-axis of 3 to 5 pixels, this was not the case 

on with the noise light pattern which required the window size to be of similar 

dimensions in both axes to obtain adequate results. This implies a performance penalty 

in terms of computational time for using the noise patterns as well as a reduction in the 

output quality. 

 

 
Figure 4.16 Reconstruction using 7x7x8 (left), 11x11x8 (centre), 21x21x8 (right) Windows on scene 

illuminated with low pass filtered noise patterns 

4.4.7 Algorithm Profiling  

The following Table 4.1 is a breakdown of the time spent in different functions called 

by the re-implemented Gauss-Newton non-linear optimizer, for one iteration for one 

disparity value. As can be clearly seen from this table the major bottleneck is the 

gradient function which calculates the image gradient used for the partial derivatives of 

the Jacobian. This however only needs to be calculated once per frame. 3.344s but is 

still very slow. Another testament that Matlab built in function are not always 

implemented with performance in mind. The other major bottleneck is the SeitzSSDJ 

function. This is the function that calculates the error term as well as the Jacobian. Table 

4.2 is a breakdown of the SeitzSSDJ function, which illustrates another big bottleneck, 

namely the re-implementation of the bilinear interpolation function. This re-

implementation runs an order of magnitude faster than the equivalent built in function. 
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Table 4.1 Profile Matlab Gauss-Newton High level where total time represents the time spent in the 

function and all its subroutines while self-time represent the total time minus the subroutine calls. 

 

 
Table 4.2 Profile of SeitzSSDJ function 

 

The profile shown in Table 4.2 also contains timing with regard to loading the various 

images as well as other redundant operations. If these are removed the performance can 

be increased to take less than 1.0s per iteration per disparity value. By deduction one 

will notice that 0.031s is spent on the following operations JJ T , )(xFJ t  inverting the 

Hessian JJ T  updating the parameters and calculating the residuals for the convergence 

analysis. Ideally the bottleneck should lie with both matrix multiplications and the 

Hessian inversion. Table 4.3 contains a similar profile, but of the preconditioned 

conjugate gradient algorithm and Table 4.4 contains the profile of the Newton-Raphson 

conjugate gradient algorithm. Although both Tables 4.3 and 4.4 show the conjugate 

gradient algorithms performing more slowly than the Gauss-Newton algorithm per 

iteration, this can be explained by the fact that the main bottle neck is the cost 

computation which in the case of both conjugate gradient methods is called more than 

once. Should the cost computation bottle-neck be removed the conjugate gradient 

method without the pre-conditioning step should be faster as it does not require the 
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matrix inversion step. This algorithm can also be sped up further by using a bracketing 

line minimization algorithm as opposed to the Newton-Raphson line minimization.  

 

 
Table 4.3 CG Newton-Raphson 

 
Table 4.4 Precondition Conjugate Gradient 

 

However, as demonstrated in Section 4.4.1 these performance advantages are 

minimized by the fact that many more iterations are required for convergence. In the 

case of the local space-time stereo algorithm where each disparity value is optimized 

separately and therefore the Hessian matrix is small (4x4), the advantages usually 

associated with the conjugate-gradient method are unwarranted. Further tests have 

shown that the matrix inversion step that runs in O(𝑛!) time is performed in less than 

0.001s in Matlab, which demonstrates the efficiency of Matlab at performing certain 

calculations, combined with its inefficiency at performing others (e.g. bilinear 

interpolation). This makes this platform less than ideal for profiling the performance of 

algorithms. However, initially the concern was with the quality of the results and 

convergence rates, as well as identifying some of the potential bottlenecks. This helped 

to determine the suitability of the type of algorithm for implementation on GPUs. 
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4.5 Conclusions 

This chapter presented various alternatives for space-time stereo algorithms. It has 

illustrated the advantages of the non-linear optimization algorithm over the more 

computationally efficient DP algorithms. The use of the Gauss-Newton algorithm for 

solving this problem locally has been justified. Some of the weaknesses of this 

algorithm have been examined as well as potential solutions. The impact of Tikonov 

regularization was tested. Modifying the algorithm to use scaled sub-sampled disparity 

maps for initialization was performed and shown to produce comparable results, and 

therefore removing burden from the initialization steps. The use of a noise structure 

light pattern was shown not to give any benefits unlike the results obtained from Section 

3.2.  Section 4.4.6 also highlighted some of the major bottlenecks, notably the bilinear 

interpolation function. However there is hardware that is designed specifically to 

perform these types of operations, namely GPUs. These are incredibly adept at 

performing bilinear interpolation as well as sum operations and it will be shown in 

Chapter 5 they can also be used for more general computations such as matrix 

inversions using LU decomposition with partial pivoting. They have been successfully 

employed to solve a number of general problems that resemble the stereo 

correspondence problems. However there are limitations such as latency and the 

constrained nature of the programming language. Chapter 5 will present ways to 

overcome some of these limitations and leverage benefits of modern day GPUs in order 

to shift the bottleneck from the cost computation to the actual Gauss-Newton 

optimization step. 

 

 

 

 

 

 

 

 

 

 

 



113 

 

  Chapter 5

 

 

 

 

Space Time Stereo on the GPU 
Having demonstrated the advantages obtained by performing a non-linear optimization 

step in the previous chapter, the main objective of this chapter is to determine the 

feasibility of getting the non-linear optimization step to run in real-time using GPUs. 

Consumer demand over the last decade has pushed the graphics processor industry to 

develop ever more computationally powerful and flexible GPUs. The development of 

these processors has so far have exceeded Moore’s law prediction  of doubling in 

computational performance every 18 months, and over the last few years have 

overtaken CPUs in terms of outright GFLOPS performance (Figure 5.1). Initially 

developed to accelerate 3D graphics pipelines and handle vast amounts of geometry and 

texture data, these GPUs have evolved by becoming fully programmable and now 

support 32 bit floating point arithmetic. This has led to a recent trend of using these 

processors for general computational tasks across the board of computer science. 

Section 2.2 supports this by reviewing some recent applications in 3D computer vision 

running on these new GPU platforms.  

 

 
Figure 5.1 Illustrating the performance evolution of two brands of GPUs versus the Intel Pentium 4 CPU 
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GPUs are massive multi pipeline streaming architectures that take advantage of the 

SIMD (Single Instruction Multiple Data) type approach similar to the one found in the 

Intel CPUs. The GeForce 8800 GTX is quoted as having a theoretical maximum 

performance of 334 Gflops and a memory bandwidth of 86 GB/s versus the Intel Core 

i7 that can only manage 107 Gflops and has a memory bandwidth of just 26 GB/s. On 

paper these figures indicate that GPUs have a significant computational performance 

advantage over general purpose processor. To maximise the performance of GPUs 

general purpose computation tends to be carried out using fragment shaders as opposed 

to vertex shaders.  

 
Figure 5.2 GeForce 8800GTX architectural diagram 

 

This approach allows a much greater number of instructions to be performed in parallel. 

It requires the data to be organised into textures which in turn restricts the way the data 

is packed. These textures are then streamed and a shader program acts as a kernel 

performing operations on the stream. The results are then rendered onto another texture 

and the process can be repeated with a different kernel. This allows feedback, to a 

limited degree. It is much preferred to write to memory sequentially, as cache misses on 
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random access incur a very significant performance penalty. Figure 5.2 illustrates the 

architecture of the GeForce 8800, indicating the various stages of its pipeline.   

The purpose of the work presented in this chapter was to implement the space-

time stereo algorithm developed by Li Zhang et al.[91] and which was examined in 

Section 4 on GPU, or more specifically a GeForce 8800 GTX architecture. The aim is to 

leverage some of the advantages of GPUs that lend themselves particularly well to 

algorithms and can be made to run in parallel. With performance in mind, the work 

presented in this chapter was created using the standard OpenGL [76] graphics library 

with the OpengGL Shading Language (GLSL). All of the work presented in this section 

was developed with the GeForce 8800 architecture in mind. A more detailed 

examination of the various shaders and their implementations will then be presented 

followed by an evaluation of their performance and qualitative results.  

 

5.1 GPGPU OpenGL Framework 

All of the work carried out in this section was implemented using OpenGL and GLSL. 

Most general-purpose computations carried out on GPUs are done on the fragment 

shaders as they tend to perform better in most situations, being able to handle a greater 

number of parallel pipelines. The following will examine some of the analogies between 

a CPU and GPU.  

 

• Streams GPU Textures = CPU Arrays 

The fundamental data structures used by fragment shaders on GPUs are textures. 

Anywhere one would use arrays on a CPU architecture one would use textures 

on the GPU. This also adds the further restriction imposed by the available 

texture formats in OpenGL and maximum size and dimensionality.  

 

• Kernels Fragments Shaders = CPU Inner Loops 

As opposed to performing instructions on an array by looping through each 

element as is done on CPUs, the instructions that would be executed inside the 

loop tend to be implemented in a fragment shader and simultaneously applied to 

all elements within the texture. The number of possible parallel instructions is 

limited by the number of fragment shaders available to a particular GPU.  
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• Render to Texture = Feedback 

In order to write the output to another array or texture that can subsequently be 

used as an input for another kernel one must render the output into a texture. 

This allows feedback into the next step of the given algorithm. With the recent 

advance in GPU, multiple render targets are now available allowing up to four 

textures to be rendered simultaneously.   

 

• Geometry Rasterization = Computation Invocation 

In order to invoke a computational kernel on a texture one must typically render 

a simple geometric primitive such as a quadrilateral polygon onto the screen 

with the appropriate textures and fragment shaders bound. 

 

• Texture Coordinates = Computational Domain 

Generally a kernel takes multiple input streams and generates one output stream. 

However the computational domain may have a different dimension to the input 

stream. GPUs provide an easy mechanism to deal with this in the form of texture 

coordinates. Texture coordinates are specified at each vertex. When the 

geometric primitive is rendered these coordinates are linearly interpolated for 

each fragment and passed as an input. One can view these as indices into an 

array or texture. 

 

• Vertex Coordinates = Computation Range 

As the geometry is rasterized, fragments are generated and then processed by the 

kernel. Typically this is done by rendering a quadrilateral onto the screen,  the 

vertex coordinates therefore directly control the output range of the fragment 

shaders.  

 

• Reductions 

Parallel reductions can be performed very efficiently on GPUs. These can be 

implemented using two buffers or textures, one is initially bound as an input 

texture and renders a quadrilateral of the input onto the output texture with linear 

interpolation enabled. At each pass the output range is divided by some fraction. 
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The buffers are then swapped and the process is repeated. This is illustrated in 

Figure 5.3 

For a more detailed overview of these analogies as well as various GPU architecture 

specifics readers are referred to [66].  

 With these analogies in mind a very simple OpenGL frame work was developed 

and implemented. A standard GLUT application was used, to initialise OpenGL and all 

the relevant extensions.  

 

 
Figure 5.3 Reduction operation performed on a GPU 

 

OpenGL was initialised with an orthographic projection and the relevant call-back 

functions (i.e. keyboard handler, window resize, rendering loop, etc…) were specified. 

A GPGPU class was developed, which would handle all the streams (i.e. textures). The 

class would also compile and bind the relevant fragment shaders and bind all their 

specific uniform variables. All of the general purpose computations were performed in 

an update function and the results were be displayed in a draw function. For debugging 

purposes the ability to dump all render targets in simple csv files that could then be 

loaded into Matlab to verify results was also implemented.  

 

+main(in argc : int, in argv : *char[]) : int
+idle() : void
+reshape(in width : int, in height : int) : void
+key(in key : unsigned char, in x : int, in y : int) : void
+init() : void

-NonLinGPU : GPGPU
Glut Application

-createFBO()
-createTextures()
-drawTexturedQuad()
-initShaders()
-dumpFBO()
+writeFBOtoCSV()
+update()
+display()

-m_fbo32 : FrameBufferObject
-m_fbo16

GPGPU

+bind()
+isValid() : bool
+disable()
+unAttach()
+attachTexture(in attachment, in texType, in texId : unsigned int, in mipLevel : int, in zSlice : int)
+attachRenderTarget()

-m_fboId : unsigned int
FrameBufferObjec

1
1

1

*

 
Figure 5.4 UML Class Diagram of GP GPU OpenGL Framework 
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The GPGPU class also generates fragments and invokes the kernel computations by 

drawing a quadrilateral of the relevant size. Finally to perform the feedback mechanism 

a frame buffer object class, also managed by the GPGPU class. More specifics of the 

implementation will be covered in greater detail in Section 5.3. All the fragment shaders 

were implemented in GLSL [52], an addition to the OpenGL 2 [63] specification.  

 

5.2 Space Time Stereo GPU Formulation 

We now give a high level description of how the space-time stereo algorithm is broken 

down into various stages that are implemented as various kernels performed on different 

streams of data. Chapter 4 described the various possible implementations of the space-

time stereo algorithm using different non-linear optimization algorithms. For the GPU 

implementation Equation 5.1 was minimized using the Gauss-Newton algorithm 

(Equation 5.3), implemented with various kernels on data streams.  

 

Space-time stereo cost function with adaptive window warp function: 
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5.1 

It is also worth noting that Equation 5.1 is used if one is optimizing a disparity maps for 

the left to right images. If however, one wishes to optimize a disparity map from right to 

left images Equation 5.1 can simply be transformed into: 
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Where the Gauss-Newton equation for parameter update id 
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where J is the Jacobian of the cost function E which is minimised with respect to the 

parameters d that include disparity and disparity gradients along the x, y, and t axis. For 

the GPU implementation a window of size 5 by 5 by 8 was chosen, and these 4 

parameters were optimized for each pixel. The solution was initialised with a disparity 

map created by one of the dynamic program algorithm presented in Chapter 3 of this 

thesis. The impact of choosing different DP algorithms on the solution will be discussed 

in Section 5.4. Given a 5 by 5 by 8 window the Jacobian becomes a 200 by 4 matrix for 

each pixel assuming that each value would be stored in a 32 bit float and the image 

resolution would be 640 by 480 pixels the total memory foot print for the Jacobian 

becomes (200 * 4 * 32 * 640 * 480) 937.5 MB which makes it impossible to store the 

Jacobian explicitly on a GeForce 8800 GTX with 512 MB of RAM. One could 

potentially use 16 bit floats, thereby halving the memory foot print and making it 

possible to store the Jacobian explicitly on some more recent GPUs containing 512MB 

of RAM. However, the computation of the Jacobian with the product of its transpose 

(i.e. Gauss-Newton approximation to the Hessian) becomes a 4 by 4 matrix and can 

therefore be explicitly stored on the GPU.  

 Before giving an overview of the shader framework, it is worth noting how the 

Jacobian is computed, as this will have an impact on certain design decisions. To 

quickly reiterate, in Chapter 4, for this particular implementation the approximation to 

the analytical solution was used as follows. 
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5.6 

 

Using the chain rule and setting  
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This is equivalent to the warp function in the Lucas and Kanade [51] derivation. 
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Equation 5.8 represents the warped image gradient along the x axis. Therefore:  
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Similarly using the same derivation  
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As the image gradient of the right images are used to calculate each component of the 

Jacobian it is more efficient to perform this operation once and store the results in 

textures that can then subsequently be reused during every iteration of the Gauss-

Newton solver. 

The Space-Time Gauss-Newton non-linear optimization shader framework was 

broken down into the following steps as illustrated by Figure 5.5: 

 

1. Image Gradient Shader 

This shader would compute the image gradient of the right images using 

a simple finite difference operation along the x-axis. It would only be run 

once per solution and not once per iteration. 

 

2. Hessian Shader 

This shader would compute the ( ) ( )kE
k

E dJdJ ˆˆ  product from Equation 

5.3 and store the result across four RBGA 32 bit floating point textures. 

This enables the storage of a 4 by 4 Hessian matrix using the RBGA 

values to store the rows and the multiple textures to store the columns. It 

would firstly compute the Jacobian followed by the product. 

 

3. Jacobian Cost Function Product 

This shader would also perform the same computation of the Jacobian as 

the previous shader, however it would also compute the cost function 

specified by Equation 5.1 after doing so it calculates their product which 

is equivalent to the gradient in the Gauss-Newton (Equation 5.3). 

 

4. Cholesky Solver 

Given the nature of the Hessian matrix (i.e. it is a positive semi-definite 

symmetrical 4 by 4 matrix), the most efficient algorithm for solving 

Equation 5.3 is Cholesky Decomposition which take advantage of the 

symmetric nature of the Hessian matrix. This shader implements the 

Cholesky Decomposition along with the parameter update. 
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Figure 5.5 Diagram illustrating fragment shaders and data streams 

 

This shader framework constitutes the GPGPU implementation of the Gauss-Newton 

optimization algorithm with regard to this particular space-time stereo problem and 

specific warp function. Each of these shaders with the exception of the first gradient 

shader are run for each iteration of the Gauss-Newton algorithm. The following Section 

5.3 will describe the implementation specifics of each one of these shaders as well as 

the data structure for their various input and output streams. It will be noted that some 

of these shaders also require more than one rendering pass. 

 

5.3 Shader Implementation Specifics 

Having described the overall high level view of the space-time stereo algorithms on the 

GPU, this section will delve into the specifics of each shader, their implementation the 

data structures of their input and output streams and some of the limitations and design 

decision made to try and improve performance. 

 

5.3.1 Gradient Shader 

The purpose of this shader is simply to compute the gradient of images along the x-axis. 

Using a window of 8 pixels in the time domain, the gradient for 8 of the right images, 
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needs to be computed. Using the advantage of the multiple rendering targets available 

on the GeForce 8800 one can compute the image gradient of four images at a time. The 

shader shown in Listing 5.1 was developed in GLSL. 

This shader has 4 inputs (i.e. 4 images and return 4 outputs). It not only 

computes the image gradient along the x axis of the 4 input images but also copies them 

into the output. In this particular example the images are grey scale, they are copied into 

the R component of an RGB 16 float texture along with their gradient that is copied into 

the G component of the output texture. The uniform variable offset is simply there as a 

scalar that represents the size of a pixel in normalised texture coordinates. This is used 

to sample the left and right pixels to compute the central differences. 

 

Multiple Image Gradient Shader Listing 5.1 
static const char *imgGradientSource = { 

uniform sampler2D tex0,tex1,tex2,tex3; 

uniform float offset; 

void main(void) 

{ 

   vec2 texCoord = gl_TexCoord[0].xy; 

   vec4 a  = texture2D(tex0, texCoord); 

   vec4 b  = texture2D(tex1, texCoord); 

   vec4 c  = texture2D(tex2, texCoord); 

   vec4 d  = texture2D(tex3, texCoord); 

    

   vec4 aRight  = texture2D(tex0, texCoord+vec2(+offset, 0.0  )); 

   vec4 bRight  = texture2D(tex1, texCoord+vec2(+offset, 0.0  )); 

   vec4 cRight  = texture2D(tex2, texCoord+vec2(+offset, 0.0  )); 

   vec4 dRight  = texture2D(tex3, texCoord+vec2(+offset, 0.0  )); 

   vec4 aLeft   = texture2D(tex0, texCoord+vec2(-offset, 0.0  )); 

   vec4 bLeft   = texture2D(tex1, texCoord+vec2(-offset, 0.0  )); 

   vec4 cLeft   = texture2D(tex2, texCoord+vec2(-offset, 0.0  )); 

   vec4 dLeft   = texture2D(tex3, texCoord+vec2(-offset, 0.0  )); 

    

   gl_FragData[0].y = (aRight.x-aLeft.x)*0.5; 

   gl_FragData[1].y = (bRight.x-bLeft.x)*0.5; 

   gl_FragData[2].y = (cRight.x-cLeft.x)*0.5; 

   gl_FragData[3].y = (dRight.x-dLeft.x)*0.5; 

   gl_FragData[0].x = a.x; 

   gl_FragData[1].x = b.x; 

   gl_FragData[2].x = c.x; 

   gl_FragData[3].x = d.x; 

}; 

 

5.3.2 Hessian Shader 
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This shader functions by iteratively calculating the temporary Hessian at a certain point 

in the space window across all time values simultaneously. Due to certain limitations of 

GPUs that restrict the maximum number of instructions available to any particular 

fragment shader, this shader was implemented using multiple passes. The Jacobian 

maybe reorganised as follows. 
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Let dJ  be the first row of J  and dxJ , dyJ , dtJ  be the second, third and fourth, than H 

becomes: 
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If one further breaks down the rows into vectors of 1 by 8, each representing the 

components of Jacobian at a certain space window index, for all 8 frames in the time 

domain, it becomes possible to compute the Hessian iteratively for each window index 

by accumulating the sum of all the dot products. This becomes the basis of the 

implementation of the Hessian shader listed below. The shader receives as input the 

previously accumulated Hessians which for the first iteration are set to zero, along with 

the image gradients and the previously estimated set of parameters used to calculate to 

warp function. It firsts calculates the Jacobian components at the current space window 

index across 4 time frames. It then proceeds to calculate the accumulated Hessian 

estimation of the currently computed Jacobian parameters. This is then repeated for the 

following 4 time frames at the same window index. Having done so, the current Hessian 
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estimation is then written out to the multiple render targets across the RBGA 32 bit float 

components.  

In order to create the feedback mechanism, two sets of Hessian textures are 

created in OpenGL, as the GLSL specification does not allow writing to an input 

texture. After each iteration these two sets of Hessian textures are swapped (i.e. the 

previous input Hessian textures become the output stream and the previous output 

Hessian textures the new input). This is known as ping-pong of textures in the GPGPU 

community and is used as a feedback mechanism. In this particular instance it feeds 

back into the same shader for each window index. Using a 5 by 5 by 8 space time 

window results in performing 25 rendering passes to calculate the Hessian matrix. This 

approach also has the added benefit of allowing the space window size to be 

dynamically adapted across the solution or across subsequent solutions. This feature 

could potentially be used to create elegant degradable solutions based on certain criteria 

such as computational resources or performance constraints. 

The following listing is of the Hessian shader. However, the space-time warp 

function is not warped in the time domain for clarity.  

 

Hessian Shader Listing 5.2 
static const char *hessianSource = { 

uniform sampler2D tex 0,tex1, tex2, tex3, tex4, tex5, tex6, 

tex7,disparity,hess0,hess1,hess2,hess3; 

uniform float offsetX, offsetY; 

uniform float windowX, windowY;  

void main(void)" 

{" 

vec2 texCoord = gl_TexCoord[0].xy; 

vec2 warpedTexCoord = gl_TexCoord[0].xy; 

vec4 d = texture2D(disparity, texCoord); 

vec4 H1, H2, H3, H4; 

H1 = texture2D(hess0, texCoord); 

 H2 = texture2D(hess1, texCoord); 

 H3 = texture2D(hess2, texCoord); 

 H4 = texture2D(hess3, texCoord); 

 float d0; 

 float scaleX, scaleY; 

 scaleX = windowX-3.0f; 

 scaleY = windowY-3.0f; 

 d0 = (d.x + d.y*(windowX-3) + d.z*(windowY-3)); 

 warpedTexCoord.x = texCoord.x + ((windowX-3)*offsetX) + d0*offsetX; 

 warpedTexCoord.y = texCoord.y + ((windowY-3)*offsetY);" 

 J1.x = texture2D( left0, warpedTexCoord).y; 



 

 

126 

 J1.y = texture2D( left1, warpedTexCoord).y; 

 J1.z = texture2D( left2, warpedTexCoord).y; 

 J1.w = texture2D( left3, warpedTexCoord).y; 

 J2 = J1*scaleX; 

 J3 = J1*scaleY; 

 H1.x += dot(J1,J1); 

 H1.y += dot(J1,J2); 

 H1.z += dot(J1,J3); 

 H2.x += dot(J2,J1); 

 H2.y += dot(J2,J2); 

 H2.z += dot(J2,J3); 

 H3.x += dot(J3,J1); 

 H3.y += dot(J3,J2); 

 H3.z += dot(J3,J3); 

 J1.x = texture2D( left4, warpedTexCoord).y; 

 J1.y = texture2D( left5, warpedTexCoord).y; 

 J1.z = texture2D( left6, warpedTexCoord).y; 

 J1.w = texture2D( left7, warpedTexCoord).y; 

 J2 = J1*scaleX; 

 J3 = J1*scaleY; 

 H1.x += dot(J1,J1); 

 H1.y += dot(J1,J2); 

 H1.z += dot(J1,J3); 

 H2.x += dot(J2,J1); 

 H2.y += dot(J2,J2); 

 H2.z += dot(J2,J3); 

 H3.x += dot(J3,J1); 

 H3.y += dot(J3,J2); 

 H3.z += dot(J3,J3); 

 H4.w = 1.0f; 

gl_FragData[0] = H1; 

gl_FragData[1] = H2; 

gl_FragData[2] = H3; 

gl_FragData[3] = H4; 

};  

 

5.3.3 Jacobian Cost Function Product Shader 

This shader uses a similar multi-pass rendering approach to the Hessian shader to 

calculate the product of the Jacobian with the cost function. This product is also broken 

down into a series of vector dot products performed at each space window index across 

multiple time frames and iteratively accumulating the result into an RGBA 32 bit 

texture. This time there is no need to use multiple render targets as the result is a series 

of 4 component vectors for each pixel that can fit into the RGBA texture components. 

The feedback is also performed using two ping-pong textures.  
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It is also worth mentioning that texture lookups in any shader have a certain 

latency associated with them and therefore whenever possible they are worth reducing 

to a minimum. The latency of fetching one RGBA texel is significantly lower than that 

of fetching 4 texels from 4 separate textures, even if each texture only contains one 

luminance component. It is therefore important to pack information into one texture, as 

opposed to using multiple textures whenever possible. This combined with the fact that 

the GeForce 8800 only contains a set number of texture units, makes it often critical to 

pack textures. As a warped space time window of pixels in the left images with a 

straight window of pixels in right images is being optimized or vice versa depending on 

which disparity map is being optimised. It becomes not only possible but advantageous 

to pack the 8 non-warped images into two RGBA textures. This also reduces the 

textures fetches and the latency associated with them.  

This shader makes use of packing the non-warped images into two textures. The 

shader also uses the fact that the gradient shader already packed warped images with 

their gradients used to compute the Jacobian. This shader then has as input 8 textures 

containing the images to be warped in the R channel along with their gradients in the G 

channel. It also has two textures containing the packed images that won’t be warped. 

Another input is the current parameters being optimized that are contained in one 

RGBA texture containing the disparities and their gradients. And finally the last input is 

used as the accumulation buffer containing the previous estimate the Jacobian cost 

function product, for a particular window index. 

This shader proceeds as follows: firstly it computes the current estimate of the 

Jacobian for a particular space window index for the first 4 frames. It then computes the 

cost function for the same window index and the same 4 time frames. This is basically 

the difference between the warped samples and the packed non-warped samples. The 

product between the Jacobian and cost function vector is calculated using dot products. 

This process is repeated for the following 4 frames in time and the results are 

accumulated to the previous ones using subsequent rendering passes until each index in 

the spatial window is covered. The following is the shader listing again assuming a 

quasi-static scene therefore dt is assumed to be zero. 
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Jacobian Cost Function Product Shader Listing 5.3 
static const char *JtFxSource = { 

uniform sampler2D left0,left1,left2,left3,left4,left5,left6,left7, rightPack0, 

rightPack1, disparity, previous; 

uniform float offsetX, offsetY; 

uniform float idxX, idxY; 

void main(void)" 

{ 

vec2 texCoord = gl_TexCoord[0].xy; 

vec2 winCoord = gl_TexCoord[0].xy; 

vec2 warpedTexCoord = gl_TexCoord[0].xy; 

 vec4 d = texture2D(disparity, texCoord); 

 vec4 JtFx, left, right, tmp, cost; 

 JtFx = texture2D(previous, texCoord); 

 vec4 J1 = vec4(0.0f, 0.0f, 0.0f, 0.0f); 

 vec4 J2 = vec4(0.0f, 0.0f, 0.0f, 0.0f); 

 vec4 J3 = vec4(0.0f, 0.0f, 0.0f, 0.0f); 

 vec4 J4 = vec4(0.0f, 0.0f, 0.0f, 0.0f); 

 float d0; 

 float scaleX, scaleY; 

 scaleX = idxX-3.0f; 

 scaleY = idxY-3.0f; 

 d0 = (d.x + d.y*(idxX-3) + d.z*(idxY-3)); 

 warpedTexCoord.x = texCoord.x + ((idxX-3)*offsetX) + d0*offsetX; 

 warpedTexCoord.y = texCoord.y + ((idxY-3)*offsetY); 

 winCoord.x = texCoord.x + ((idxX-3)*offsetX); 

 winCoord.y = texCoord.y + ((idxY-3)*offsetY); 

 tmp  = texture2D( left0, warpedTexCoord); 

 J1.x = tmp.y; 

 left.x = tmp.x; 

 tmp  = texture2D( left1, warpedTexCoord); 

 J1.y = tmp.y; 

 left.y = tmp.x; 

 tmp  = texture2D( left2, warpedTexCoord); 

 J1.z = tmp.y; 

 left.z = tmp.x; 

 tmp  = texture2D( left3, warpedTexCoord); 

 J1.w = tmp.y; 

 left.w = tmp.x; 

 J2 = J1*scaleX; 

 J3 = J1*scaleY; 

 right = texture2D(rightPack0, winCoord); 

 cost = left - right; 

 JtFx.x += dot(J1, cost); 

 JtFx.y += dot(J2, cost); 

 JtFx.z += dot(J3, cost); 

 tmp  = texture2D( left4, warpedTexCoord); 

 J1.x = tmp.y; 

 left.x = tmp.x; 

 tmp  = texture2D( left5, warpedTexCoord); 
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 J1.y = tmp.y; 

 left.y = tmp.x; 

 tmp  = texture2D( left6, warpedTexCoord); 

 J1.z = tmp.y; 

 left.z = tmp.x; 

 tmp  = texture2D( left7, warpedTexCoord); 

 J1.w = tmp.y; 

 left.w = tmp.x; 

 J2 = J1*scaleX; 

 J3 = J1*scaleY; 

 right = texture2D(rightPack1, winCoord); 

 cost = left - right; 

 JtFx.x += dot(J1, cost); 

 JtFx.y += dot(J2, cost); 

 JtFx.z += dot(J3, cost); 

   gl_FragData[0] = JtFx; 

};  

 

5.3.4 Cholesky Decomposition Shader 

Having computed the Hessian and gradient (Jacobian cost function product) the last 

stage of the Gauss-Newton is to update the parameters by solving the set of linear 

equations presented in Equation 5.3. There are a few different algorithms capable of 

performing the task. These may include Gaussian elimination, LU decomposition, SVD, 

etc… However, given the Hessian is a dense positive semi definite symmetrical matrix 

the most efficient way to solve this set of linear equations is with the Cholesky 

decomposition algorithm. Similar to LU decomposition the matrix is decomposed into 

upper and lower matrices. However, with the Cholesky decomposition algorithm the 

upper matrix is simply the lower matrix transposed, giving: 
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This algorithm performs a factor of 2 better than LU decomposition. Given that the 

Hessian is only a 4 by 4 matrix in the case where using a space-time warp and in the 

case of just using a space warp only a 3 by 3 matrix, the loops were directly unrolled 

and implemented in a straight forward shader listed below. Readers are referred to [68] 

for a more detailed derivation of the Cholesky decomposition algorithm, Jung and 

O’Leary [39] have recently presented an implementation of the Cholesky decomposition 

algorithm targeting a GPU implementation using a very different approach. Although 

their implementation is more elegant and possibly superior in performance when 

dealing with larger matrices, it is targeted at much larger problems solving one system 

of equations as opposed to this implementation which targets solving lots of very 

similar systems (i.e. a 4 by 4 system for each pixel). Our shader accepts as input the 4 

textures containing the Hessian, a texture containing the current estimate of the 

optimization parameters, and the texture containing the Jacobian cost function product. 

The shader then solves the system and updates the optimizations parameters. These are 

then piped back to the solver and the next iteration is started. 

 

Cholesky Decomposition Shader Listing 5.4 
static const char *choleskySource = { 

uniform sampler2D hess0,hess1,hess2,hess3, JtFx, disparity; 

uniform float offsetX, offsetY; 

void main(void) 

{" 

   vec2 texCoord = gl_TexCoord[0].xy; 

 vec4 disp = texture2D(disparity, texCoord); 

 vec4 b = texture2D(JtFx, texCoord); 

 vec4 x = vec4(0.0f,0.0f,0.0f,0.0f); 

 vec4 y = vec4(0.0f,0.0f,0.0f,0.0f); 

 mat4 a = mat4(texture2D(hess0, texCoord),texture2D(hess1, 

texCoord),texture2D(hess2, texCoord),texture2D(hess3, texCoord)); 

 vec4 p = vec4(0.0f,0.0f,0.0f,0.0f); 

 int i, j, k; 

 float sum; 

 p.x = sqrt(a[0][0]); 

 sum = a[1][0]; 

 if ( p.x != 0.0f ){ 

 a[0][1] = sum / p.x; 

 }; 

 sum = a[2][0]; 

 if ( p.x != 0.0f ){ 

 a[0][2] = sum / p.x; 
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 }; 

 sum = a[1][1]; 

 sum -= a[0][1]*a[0][1]; 

 p.y = sqrt(sum); 

 sum = a[2][1]; 

 sum -= a[0][1]*a[0][2]; 

if ( p.y != 0.0f ){ 

 a[1][2]= sum / p.y; 

 }; 

 sum = a[2][2]; 

 sum -= a[1][2]*a[1][2]; 

 sum -= a[0][2]*a[0][2]; 

 p.z = sqrt(sum); 

 if ( p.x != 0.0f ){ 

 y.x = b.x / p.x; 

 }; 

 if ( p.y != 0.0f ){ 

 y.y = (b.y - (a[0][1]*y.x)) / p.y; 

 }; 

 if ( p.z != 0.0f ){ 

 y.z = (b.z - (a[0][2]*y.x) - (a[1][2]*y.y)) / p.z; 

 }; 

 if ( p.z != 0.0f ){ 

 x.z = y.z / p.z; 

 }; 

 if ( p.y != 0.0f ){ 

 x.y = (y.y - (a[1][2]*x.z)) / p.y; 

 }; 

 if ( p.x != 0.0f ){ 

 x.x = (y.x - (a[0][1]*x.y) - (a[0][2]*x.z)) / p.x; 

 }; 

   gl_FragData[0] = disp - x; 

}; 

 

5.4 Experiments 

The primary motivation for the GPU implementation of non-linear Gauss-Newton 

optimization was one of performance. Firstly, the algorithm lends itself very well to 

being parallelized as each pixel is optimized separately. Secondly this algorithm is not a 

candidate for real-time implementation on current CPUs. Could this algorithm be made 

to run in real-time by implementing it on a GPU platform? This section will describe a 

set of experiments in order to determine the performance of this implementation under 

varying conditions. Experiments to determine the performance of the full algorithm 

were carried out as well as variations of the algorithm that were comprised of a few 
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trade-offs for performance gains, such a constraining the warp function to space 

parameters, and terminating the Gauss-Newton optimization earlier as well as changing 

the size of cost function support region.   

 With these trade-offs being introduced, a second set of experiments were carried 

out in order to determine the impact in terms of quality these trade-offs would 

introduce. Other experiments were also carried out to determine the sensitivity of the 

Gauss-Newton optimization to the initial estimate of the parameters that are determined 

by DP or potentially other types of correlation based solvers. This section will be 

divided into two main subsections one outlining all the performance based experiments 

carried out while the other will present the qualitative based experiments. The results of 

all these experiments will be presented in the following Section 5.5. 

 

5.4.1 Performance Oriented Experiments 

The purpose of the following experiments was to determine the performance of the 

GPU non-linear optimization part of the space time stereo algorithm. In order to 

determine how to improve the GPU based implementation of this space-time stereo 

algorithm the bottlenecks had to be found. The performance in terms of computational 

time and scalability with regard to the algorithms parameters were found. With these 

goals each fragment shader was benchmarked individually with different valued 

parameters as well as the entire optimization iteration. The following benchmarks were 

performed on the standard rig used in all the previous experiments, namely a quad core 

Pentium running at 2.6Ghz with a GeForce 8800GTX: 

 

• Benchmarking each fragment shader with different support region window sizes 

• Benchmarking each fragment shader on differing image resolutions 

• Benchmarking the entire non-linear optimization iteration with different window 

sizes 

• Benchmarking the entire non-linear optimization iteration with differing 

resolutions 

• Benchmarking a differing number of optimization iterations steps. 
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The results of these experiments are presented in Section 5.5. These results demonstrate 

the scalability of the GPU non-linear optimization step with regard to image resolution, 

algorithm parameters and convergence. The image resolution scalability gives one a 

good idea of the potential effects of using multiple GPUs. However, it does not take into 

account the data transfer times required to move data across the PCI express bus to 

multiple GPUs, which are relatively negligible compared to the algorithms overall 

computational cost. 

5.4.2 Qualitative Experiments 

Having devised experiments to determine the computational cost of the GPU non-linear 

optimization step as well as its scalability with regard to certain parameters, such as the 

number of optimization steps as well as the support region size, it was then possible to 

find the trade-offs between computational time versus reconstruction quality. Section 

5.5 will present the quality of various reconstructions next to their computational 

performance.  

 

5.5 Results  

Table 5.1 presents the timings performed for each fragment used by the GPU non-linear 

optimization algorithm described in the previous section. This table allows us to chart 

the scalability of each shader with respect to the window size or number of pixels 

contained in the support region. It is also worth noting that although the timings for the 

gradient and Cholesky shader vary when using different window sizes for the solver, 

these were not due to the actual window sizes themselves. The computational cost of the 

gradient shader does not vary according to window size. This shader should have a 

fixed cost irrelevant of the support region size of the solver as it always used the two 

pixel finite difference method for the computation. The timings difference for this 

particular shader are less than 0.1 ms and are more likely due to drivers and clock speed 

variations of the GPU controlled by the driver given different temperatures. These 

effects also contribute to the Cholesky shader timing variations as this shader is always 

applied to 3x3 or 4x4 matrix irrelevant of window size. However, there is also the added 

effect that the Hessian matrix might be ill-conditioned and therefore produce NAN 

floats or divide by zero conditions that would also slightly affect that particular shader’s 
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performance. As illustrated by Figure 5.1, one can clearly see that the scalability of the 

Jacobian Cost Function, Gradient and Cholesky shaders with respect to support region 

size is linear. As expected the Hessian shader as expected does not scale linearly and is 

also the most computationally expensive shader. This is effectively a matrix product 

which is known to run in O(𝑛!) time.  

 
Resolution	
   Windows	
  

Size	
  
3x3x8	
   6x3x8	
   9x3x8	
   12x3x

8	
  
9x6x8	
   12x6x

8	
  
9x9x8	
   12x9x

8	
  
12x12x

8	
  
Num	
  Pixels	
  In	
  

Window	
  
	
  	
   72	
   144	
   216	
   288	
   432	
   576	
   648	
   864	
   1152	
  

640x480	
   Gradient	
   0.000
2	
  

0.000
18	
  

0.000
17	
  

0.000
2	
  

0.000
15	
  

0.000
18	
  

0.000
18	
  

0.000
15	
  

0.0002	
  

640x480	
   Hessian	
   0.001
86	
  

0.003
08	
  

0.004
23	
  

0.005
8	
  

0.008
26	
  

0.011
43	
  

0.012
42	
  

0.021
61	
  

0.0385	
  

640x480	
   JacobCost	
   0.000
73	
  

0.001
1	
  

0.001
56	
  

0.001
9	
  

0.002
66	
  

0.003
62	
  

0.003
99	
  

0.005
18	
  

0.0069	
  

640x480	
   Cholesky	
   0.000
25	
  

0.000
32	
  

0.000
26	
  

0.000
3	
  

0.000
29	
  

0.000
25	
  

0.000
34	
  

0.000
25	
  

0.0003	
  

Table 5.1 Time taken in seconds for each shader described in Section 5.4 using different size windows 

 

 
Figure 5.6 Graph showing scalability of each fragment shader with respect to windows sizes 

 

Table 5.1 summarizes the timings of the complete GPU solver for varying numbers of 

iterations as well as window sizes. This table allows us to plot the relationship and 

scalability of the complete solver with respect to window sizes as illustrated in Figure 
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looking at the entire GPU solver timings expressed in Figure 5.7 for the same window 

sizes with varying number of iteration the scaling of the solver is almost linear. Table 

0	
  
0.005	
  
0.01	
  

0.015	
  
0.02	
  
0.025	
  
0.03	
  
0.035	
  
0.04	
  
0.045	
  

0	
   500	
   1000	
   1500	
  

Gradient	
  

Hessian	
  

JacobCost	
  

Cholesky	
  

window	
  pixels	
  

seconds	
  



135 

 

5.2 also demonstrates that the algorithm scales better with regard to window sizes than 

with regard to number of iterations. This would indicate that if computational scalability 

is a primary objective, one is better off running the algorithm using a larger support 

window sizes than more iterations. Figures 5.8 to 5.12 all show the scalability of the 

GPU solver for each window size with respect to the number of iterations. These are all 

almost linear with the exception of the smallest window size of 3x3x8. The other 

observation is that as the window size increases so does the approximation to linear 

scalability.  

Table 5.2 indicates that the computational time of the GPU solver after 3 

iterations on a window size of 12x12x8 is similar to computational time after 4 

iterations on a window of 12x9x8 and 5 iterations using a window size 9x9x8. There is 

roughly a 6ms difference between these different parameters. This demonstrates that 

within certain computational time constraints the algorithm could be run using very 

different parameters and it is therefore necessary to fine tune the system to produce the 

best possible qualitative results. 

 
Resolution	
   Window	
   3x3x8	
   6x3x8	
   9x3x8	
   12x3x8	
   9x6x8	
   12x6x8	
   9x9x8	
   12x9x8	
   12x12x8	
  

	
  

Iterations	
   72	
   144	
   216	
   288	
   432	
   576	
   648	
   864	
   1152	
  

640x480	
   1	
   0.0124	
   0.0139	
   0.0176	
   0.019	
   0.0233	
   0.0276	
   0.0313	
   0.039	
   0.052	
  

640x480	
   2	
   0.0159	
   0.0223	
   0.0248	
   0.028	
   0.0437	
   0.0516	
   0.0615	
   0.0802	
   0.104	
  

640x480	
   3	
   0.0269	
   0.0323	
   0.036	
   0.042	
   0.0625	
   0.0821	
   0.0938	
   0.1202	
   0.155	
  

640x480	
   4	
   0.0309	
   0.0408	
   0.0446	
   0.059	
   0.0846	
   0.1115	
   0.1234	
   0.1598	
   0.211	
  

640x480	
   5	
   0.0369	
   0.0465	
   0.0537	
   0.073	
   0.108	
   0.135	
   0.1535	
   0.2014	
   0.262	
  

640x480	
   6	
   0.0402	
   0.0557	
   0.0694	
   0.086	
   0.1282	
   0.1659	
   0.1854	
   0.2369	
   0.316	
  

Table 5.2 Timings in seconds for complete GPU solver with varying window sizes as well as varying 

number of iterations. 
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Figure 5.7 Timings for solver using varying number of iterations the x-axis represents the number of 

pixels contained in the support window and is scaled appropriately 

 
Resolutio
n	
   Window	
  

3x3x
8	
  

6x3x
8	
  

9x3x
8	
  

12x3x
8	
  

9x6x
8	
  

12x6x
8	
  

9x9x
8	
  

12x9x
8	
  

12x12x
8	
  

	
  	
  
Iteration
s	
   72	
   144	
   216	
   288	
   432	
   576	
   648	
   864	
   1152	
  

640x480	
   1	
   80.85	
   71.85	
   56.81	
   52.64	
   42.9	
   36.23	
   32	
   25.63	
   19.1938	
  
640x480	
   2	
   62.8	
   44.91	
   40.28	
   35.42	
   22.9	
   19.38	
   16.2	
   12.47	
   9.64906	
  

640x480	
   3	
   37.18	
   30.98	
   27.79	
   23.89	
   16	
   12.18	
   10.7	
   8.32	
   6.43571	
  
640x480	
   4	
   32.32	
   24.52	
   22.42	
   16.85	
   11.8	
   8.968	
   8.11	
   6.26	
   4.74975	
  

640x480	
   5	
   27.1	
   21.51	
   18.63	
   13.74	
   9.26	
   7.408	
   6.52	
   4.965	
   3.81340	
  
640x480	
   6	
   24.88	
   17.94	
   14.41	
   11.58	
   7.8	
   6.029	
   5.39	
   4.221	
   3.16852	
  

Table 5.3 Same Timings as Table 5.2 expressed in frames/second 

 

 
Figure 5.8 Timings for GPU solver after 1-6 iterations for windows (3x3x8 Left, 6x3x8 Right) 
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Figure 5.9 Timings for GPU solver after 1-6 iterations for windows (9x3x8 Left, 12x3x8 Right) 

 

 
Figure 5.10 Timings for GPU solver after 1-6 iterations for windows (9x6x8 Left, 12x6x8 Right) 

 

 
Figure 5.11 Timings for GPU solver after 1-6 iterations for windows (9x9x8 Left, 12x9x8 Right) 
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Figure 5.12 Timings for GPU solver after 1-6 iterations for windows (12x12x8) 

 

 
Figure 5.13 Reconstructions using (left 12x12x8 3iterations. right 12x9x8 4 iterations) 

 

 
Figure 5.14 Reconstruction using (9x9x8 5 iterations) 
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Figure 5.2 demonstrates that choosing between window size and number of solver 

iterations is not always straight forwards. The figure illustrates three reconstructions all 

using various windows sizes as well as differing number of solver iterations. These 

three particular sets of parameters were chosen because their computational time is very 

similar (less than 6ms). Looking at these three images one deduces that using a 12x9x8 

window and 4 iterations produce superior results than using 12x12x8 after 3 iterations 

(i.e. there are fewer artefacts in the prior). However, when comparing the 12x9x8 with 4 

iterations with the 9x9x8 with 5 iterations it is not as clear which of these two examples 

produce superior results. The 9x9x8 reconstruction contains fewer artefacts around the 

mouth region but the forehead contains more artefacts. The forehead artefacts are 

caused by the fact that this GPU solver does not enforce a gradient disparity constraint. 

This could be potentially eliminated at the cost of computational performance, and this 

will be elaborated in Chapter 6. 

 

5.6 Conclusion  

This chapter has demonstrated how to reformulate the algorithm from Chapter 4 into a 

streaming algorithm which lends itself particularly well to be implemented on modern 

GPUs. We extended the work of [91] by initializing the algorithm using a modified 

multilayer dynamic approach and a lower scale and solving the non-linear optimization 

with a Cholesky solver. All of these are achieved on the GPU. It has also been 

demonstrated to run in real-time given certain parameters. This chapter has also 

demonstrated that the GPU implementation of the non-linear optimization algorithm 

scales close to linearly with regard to the support region window sizes as well as the 

number of solver iterations. Although this chapter addressed scalability with regard to 

window sizes and solver iterations, it has not addressed scalability with regard to image 

resolution and with regard to the overall system including the multi-scale dynamic 

programming initialisation step. These issues will be tackled in following the following 

chapter which will explore a scalable frame-work for the overall system. It will address 

certain issues with regard to parameter tuning for maximum quality results given 

varying computational time constraints. 
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  Chapter 6

 

 

 

 

Scalability and Optimization  
Having examined the initialization and non-linear optimization steps in the previous 

chapters, this chapter will discuss further optimization in the context of a scalable 

framework for real-time applications. The performance of the DP algorithm 

initialisation step although considered to be potentially interactive, fell short in terms of 

real-time performance when compared to the more optimized non-linear step described 

in Chapter 5. This chapter will show how to improve the computational efficiency of the 

initialization step of the algorithm by implementing a hybrid CPU/GPU implementation 

in Section 6.1, and how it can further be optimized to achieve real-time performance in 

Section 6.2  This chapter will also demonstrate the full scalability of  all the system 

parameters in Section 6.3. and place them into the greater context of the scalable 

framework. The quality performance trade-offs of the system parameters presented in 

Section 6.4 will be determined by experiments described in Section 6.5, with the results 

being discussed in Section 6.6.  

 

6.1 Dynamic Programming Hybrid CPU-GPU 

The design decision to implement a hybrid approach to solving the Criminisi et 

al.algorithm was motivated by the fact that the inherent branching nature of dynamic 

programming does not lend itself well to GPU architectures. This was demonstrated by 

[27] in which the hybrid CPU-GPU implementation with the significant limitations of 

an APG bus ran significantly faster than the GPU only implementation. This algorithm 

was re-implemented to use the CPU and GPU in a hybrid fashion. The target platform 

was a PC with an Nvidia 680i chipset containing an Intel QX6700 CPU with a GeForce 

8800GTX GPU. The CPU is a quad core architecture containing four processor cores 

that can be made to run in parallel using multiple threads. The GPU is an Nvidia 
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architecture using 128 unified shaders, making it ideal for processing large streams of 

data. The Nvidia 680i chipset also contains 3 PCIx16 interfaces allowing up to three 

GPUs. The reason not many hybrid CPU/GPU implementations of algorithm were 

performed in the past was because of the AGP interface having a slow read back 

performance. This interface was asymmetrical and was capable of writing data to the 

GPU at a much faster transfer rate than reading data. This made reading back large 

amounts of data from the GPU slow and created an undesirable performance bottle 

neck. With the new introduction of PCIx16 this no longer becomes such an issue as it is 

a symmetrical bus with data rates of 3GB/s using non-pageable memory transfers that 

are optimized by the driver. These new hardware capabilities motivated the 

development of this new hybrid implementation of the Criminisi et al.[19] algorithm.  

The Criminisi et al.[19] algorithm can be broken down into two stages. The first 

stage is the computation of the cost function to produce a dissimilarity matrix. The 

second stage is the scan-line optimization performed using the three plane matrix as 

described in Chapter 2 In this hybrid implementation the first stage in performed on the 

GPU while the second on the CPU. The captured images are sent across the PCIx16 bus 

to the GPU. The GPU then computes the cost function for each pixel and each disparity 

value within a given range. The result is stored in the dissimilarity matrix (DSI matrix) 

that is then copied back across the PCIx16 bus into system ram that can be accessed by 

the CPU cores. To further optimize the computation of the DSI matrix on the GPU, this 

computation is performed again, in two stages. The first stage is computing the cost 

function in the space domain across two stereo images, with the result then being 

cached on the GPU. The second stage takes the previously cached results and computes 

the total cost across the temporal domain. This enables redundant computations to be 

eliminated.  

The high level overview of the hybrid system is illustrated in Figure 6.1. The 

GPU implementation of the DSI matrix computation is further elaborated in Figure 6.2. 

This illustrates the GPU implementation of the sum of squared difference cost 

computation. This implementation was broken down using three computational kernels. 

The first kernel labelled as the difference kernel in Figure 6.2 computes the difference 

between each pixel in the left image with each pixel in the right image for every 

possible disparity value in a given range, usually determined by the base line of the 

stereo setup. The result producing a 3D data structure of dimensions image width by 
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image height by disparity range is then cached in the GPU memory along with the same 

computation of x number of previous frames where x represents the window size in the 

temporal domain. 

 

 
Figure 6.1 Overview of the hybrid CPU/GPU implementation 

 

The second kernel takes the cached results squares them and sums them across the 

temporal domain. These results are then passed onto the final kernel that performs a 

sum across the space domain depending on the window size specified to produce the 

final DSI matrix that is then copied back across the PCIx16 bus into system RAM. 

The only issue is the PCIx16 bandwidth of 3GB/s, given that the image 

resolutions are 640x480 pixels and the typical disparity range is 150 pixels. Using 32bit 

floats to store the DSI matrix produces a data rate of 176MB per frame. This would give 

us a theoretical maximum frame rate of 17fps. This can be doubled just by using int16 
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instead of floats to store the DSI matrix. However, as Chapter 4 demonstrated that due 

to the fact that the non-linear optimization can be initialized with a sub-sampled DP 

solution in this way, was deemed unnecessary. This implementation can also be 

improved by using multiple GPUs each on their own PCIx16 bus therefore dividing the 

bandwidth requirements by the number of GPUs. As demonstrated in Chapter 4 and 

Chapter 5, a new multi-scale non-linear optimization algorithm will be developed using 

the optimized version of this implementation as an initialization step.  

 

 
Figure 6.2 GPU DSI Matrix Computations 

 

The initialization will then be performed at half resolution over half the disparity range 

and will completely eliminate this bottleneck. 

The GPU implementation of the cost computation was implemented using 

CUDA [25] an API, and run time environment developed by Nvidia. This development 

environment consists of a pseudo C compiler that generates its own machine byte code 

that is then interpreted by a virtual machine residing inside the GPU’s graphics driver. 

This was specifically developed to enable GPUs to be used for non-graphics related 

tasks and exposes extra functionality such as memory scatter operations as well as 
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creating a higher level interface and development environment. The GPU 

implementation was then validated against the CPU implementation and found to 

produce identical results. 

 

6.1.1 Performance for Real-Time Applications 

Having determined that the Criminisi et al.[19] algorithm produced superior results with 

fewer errors, it was necessary to answer the remaining question as to its suitability for 

real-time applications. The initial CPU implementation, although sufficient to evaluate 

the qualitative results, was not optimized and took a few seconds to calculate the 

disparity maps. This motivated the hybrid implementation described in Section 6.1. This 

implementation was benchmarked to determine its speed as well as the impact of 

various parameters such as window size, maximum disparity threshold and image 

resolutions. This enables a performance versus quality correlation to be determined, as 

well as finding the various bottlenecks in order to further improve the algorithms and 

refine them. 

There are a number of parameters each affecting the computational performance 

of this hybrid CPU-GPU implementation. The benchmarking is achieved by measuring 

the time taken to perform each of the following tasks: computing the difference between 

two images for each disparity within a range (this represents the difference kernel), 

squaring and summing these results across the space and time domain (this represents 

both SSD kernels), transferring the resulting DSI matrix across the PCIx16 bus and 

finally, computing the dynamic programming optimization using the Criminisi et al.[19] 

algorithm on the CPU. Image resolution, disparity range and window size all have an 

impact on one or more of the previously mentioned sub-components of the algorithm. 

The image resolution obviously has the greatest impact on performance, by halving the 

resolution not only are there four times fewer pixels to process, but the disparity range is 

also divided into two, further more reducing the computational burden, and bandwidth 

requirements across the PCIx16 bus. Table 6.1 summarizes the time taken in each sub-

component with the various parameters. All the timing measurements were performed 

on an Intel QX6700 clocked at 2.6 GHz with 2GB of ram clocked at 800 MHz and a 

GeForce 8800GTX clocked at 600 MHz 
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Image Resolution Cores Disparity Range Window Size Diff Kernel SSD Kernels PCIx Transfer DP Optimization Fps

320x240 1 70 3x3x1 0.0103 0.0125 0.0125 0.171 4.8473

320x240 4 70 3x3x1 0.0104 0.025 0.0124 0.044 10.893

320x240 1 70 5x5x1 0.0104 0.0304 0.0123 0.167 4.5434

320x240 1 70 5x7x1 0.0104 0.0304 0.0123 0.167 4.5434

320x240 1 70 5x7x8 0.0104 0.185 0.0124 0.171 2.6399

320x240 4 70 5x7x8 0.0104 0.185 0.0123 0.042 4.0048

640x480 1 120 3x3x1 0.064 0.186 0.08 1.248 0.6337

640x480 4 120 3x3x1 0.064 0.185 0.08 0.32 1.5408

640x480 1 120 5x5x1 0.064 0.219 0.083 1.229 0.627

640x480 1 120 5x7x1 0.064 0.219 0.082 1.225 0.6289

640x480 1 120 5x7x8 0.064 1.338 0.081 1.215 0.3706

640x480 4 120 5x7x8 0.064 1.341 0.081 0.306 0.558

Table 6.1 Benchmarks for hybrid CPU/GPU Dynamic Programming Implementation 
 

From Table 6.1 one can observe that the window size does not affect the performance of 

the difference kernel, dynamic programming and PCI transfer times. It does however 

have an impact on the SSD kernels. This is generally due to the fact that although GPUs 

process large amounts of data simultaneously, there is a large latency penalty for 

memory fetches, the impact of which can be reduced by having a large ratio of 

computations per fetched data element. Section 6.2 will demonstrate how this can 

further be reduced in CUDA [25] with the use of what is referred to as shared memory 

(effectively a cache inside kernels). One can also observe from this table and Figure 6.3, 

that the two major computational burdens lie with the dynamic programming 

optimization performed on the CPU and the SSD computations performed on the GPU. 

Figure 6.3 is a plot of the computational time of both SSD and DP computations relative 

to the disparity ranges. One can observe a linear relationship between both the 

computation time taken for both the GPU and CPU versus the disparity range up to 110. 

Beyond this point the CPU computation times continue to increase in a linear fashion 

while the GPU computation times stop increasing. This was a strong indication of a 

hidden bottleneck in the SSD GPU implementation. This is caused by memory fetches. 

As the number of computations increase beyond a certain point the GPU’s driver’s 

internal scheduler manages to limit the impact of memory fetches and the computational 

time of the SSD actually decreases. In this particular implementation the SSD 

computation was performed explicitly in a CUDA [25] kernel. The implementation of 

the SSD computation again was optimized further and is presented in the following 

Section 6.2.   
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Figure 6.3 Computational Time of  GPU/CPU for various disparity ranges for 640x480 5x7x8 window 

running on single GPU and single Core 

 

The transfer times across the PCIx16 bus were measured for 32bit floating point values. 

These times can also be easily halved just by using int16. However once a multi-scale 

approach is applied this is no longer necessary. Further optimizations are achieved with 

the use of background removal achieved by using a threshold. Another form of 

performance optimization would also be achieved by assuming a disparity gradient 

constraint and limiting the disparity range for a given pixel based on the previous 

frames value and depending on whether or not it was near a depth discontinuity. This 

would limit the search space of the Criminisi et al.[19] algorithm on a per pixel basis 

and given that most disparity values fall well beneath the greatest disparity range should 

in theory speed up the DP optimization times considerably. This optimization was 

implemented by using a multi-scale approach. The lower resolution solution was used to 

constrain the maximum disparity values for each pixel. This achieved considerable 

speed up and will be discussed further in Section 6.2. 

All of these optimizations were explored further and used to achieve 

considerable speed increases, making this algorithm very suitable for real-time 

applications. They are discussed in greater detail in Section 6.2. As it stands this current 

implementation scales quite nicely and can be trivially extended to support more CPU 

cores and multiple GPUs. 
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6.2 Further Optimizations 

The Criminisi et al.[19] dynamic programming algorithm modified to use a space-time 

window as well as SSD cost function presented in previous Section 6.2 was slow 

compared to the GPU non-linear optimization step presented in Chapter 5. The 

optimizations presented in this chapter were motivated by the advantage of using the 

Criminisi et al.[19] dynamic programming algorithm as well as the normalized SSD 

cost function extended into the time domain when using striped structured light patterns. 

Unfortunately dynamic programming type algorithms do not map particularly well to 

being implemented on GPUs, as seen in [27]. Although they are easy to parallelize by 

their nature, due to fact that each scan-line is solved independently of each other, while 

solving a particular scan-line, there is a lot of interdependency within each scan-line 

combined with heavy branching. In spite of the hybrid CPU/GPU implementation 

proving beneficial and improving the computational time over the CPU only 

implementation, there was still room for further optimizations and computational 

performance gains. This section will discuss in more detail these optimizations and their 

benefits. All performance timings presented in this section were taken on QX6700 Intel 

CPU and a GeForce GT260 GPU, although the GPU differs from the 8800 GTX used in 

the previous chapter, it shares a similar architecture but with the added benefit of an 

increased memory bandwidth and more shader units. 

 

6.2.1 GPU Read back Optimizations 

Theoretically achieving the same bandwidth for reading and writing operations, 

although in practice this is not truly accurate, the difference in bandwidth between 

writing and reading across the bus is significantly reduced.  The bandwidth 

requirements for this application are still high, and can be computed as: 

 

𝐵 =𝑊𝑖𝑑𝑡ℎ ∗ 𝐻𝑒𝑖𝑔ℎ𝑡 ∗𝑀𝑎𝑥𝐷 ∗ 𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝑙𝑜𝑎𝑡) 
6.1 

 

Where B is the read back bandwidth in bytes required per frame and MaxD is the 

maximum disparity value. A real world example would be using half the image 

resolution (320x240) for the dynamic programming with a maximum disparity value of 
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80 pixels, which would give a bandwidth requirement of 26.37 Mbytes per frame, with 

a desired frame rate of 30 fps. For real-time applications or ideally 60fps to match the 

video camera capture rate a bandwidth of 792MB/s or 1584MB/s respectively would be 

required. The theoretical maximum bandwidth of PCI express 16 Version 2 is 8GB/s, 

however, the CUDA runtime environment does not achieve this performance. It was 

therefore necessary to determine the real world performance of these memory transfers. 

The initial release of CUDA did not support page locked memory transfers that are 

optimized by the GPU drivers. With later releases this feature was added, and by using 

memory transfers from system memory that is paged locked, significant performance 

increases were achieved. 

 

Maximum	
  Disparity	
   Width	
   Height	
   50	
   60	
   70	
   80	
   90	
   Locked	
  

Bytes	
  Transferred	
  	
   	
  	
   	
  	
   15360000	
   18432000	
   21504000	
   24576000	
   27648000	
   	
  	
  

Transfer	
  Time	
  in	
  seconds	
   320	
   240	
   0.01380	
   0.01239	
   0.01406	
   0.01600	
   0.01775	
   No	
  

Transfer	
  Time	
  in	
  seconds	
   320	
   240	
   0.0054	
   0.00635	
   0.00728	
   0.00823	
   0.00902	
   Yes	
  

Bandwidth	
  Achieved	
  MB/s	
   320	
   240	
   1061.09	
   1418.16	
   1458.17	
   1464.38	
   1485.22	
   No	
  

Bandwidth	
  Achieved	
  MB/s	
   320	
   240	
   2712.67	
   2768.20	
   2816.62	
   2845.04	
   2920.27	
   Yes	
  

Maximum	
  Disparity	
   	
  	
   	
  	
   100	
   140	
   150	
   200	
   250	
   	
  	
  

Bytes	
  Transferred	
  	
   	
  	
   	
  	
   30720000	
   43008000	
   46080000	
   61440000	
   76800000	
   	
  	
  

Transfer	
  Time	
  in	
  seconds	
   320	
   240	
   0.01967	
   0.02717	
   0.02832	
   0.03822	
   0.04802	
   No	
  

Transfer	
  Time	
  in	
  seconds	
   320	
   240	
   0.01003	
   0.01344	
   0.014651	
   0.018362	
   0.023461	
   Yes	
  

Bandwidth	
  Achieved	
  MB/s	
   320	
   240	
   1489.41	
   1509.42	
   1551.248	
   1533.025	
   1525.148	
   No	
  

Bandwidth	
  Achieved	
  MB/s	
   320	
   240	
   2918.30	
   3051.53	
   2999.475	
   3191.033	
   3121.869	
   Yes	
  
Table 6.2 Timings for memory transfer across the PCIx16 bus in seconds for different sized cost matrices 

 

Table 6.2 Illustrates the difference in bandwidth achieved in CUDA between using page 

locked memory transfer versus non-page locked transfers. In each case the bandwidth is 

doubled. This table also illustrates some differences in bandwidth when transferring 

varying amounts of data. When transferring larger chunks of data the bandwidth 

increases slightly up to a point and then starts to decrease once the data starts to exceed 

60MB per frame mark. Finally, one also notices that the maximum bandwidth achieved 

is just over 3GB/s a figure significantly lower than the theoretical maximum of the PCI 

express 16 Version 2 specification of 8GB/s. This has certain implications that will be 

discussed in the scalability framework. 
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6.2.2 CUDA Latency Overhead 

The initial CUDA implementation of the cost matrix computation described in 

Chapter 3 was sub-optimal. CUDA works by providing a high level programming 

interface similar to C for GPGPU computations. However in its effort to make 

development easy it is sometimes less obvious how to optimize the code in the best 

possible way. CUDA organises the data into streams and then launching kernels that 

process the data on the GPU. It is a massively parallel system, running blocks of threads 

that are organised into a grid. Each thread executes the kernel over the data stream, and 

inter thread communication is achieved with the use of shared memory. This shared 

memory is shared across a particular block of threads. One of the biggest potential 

bottle necks in CUDA applications is caused by the latency associated with accessing 

the GPU system memory. This latency is very high and can be in the order of 600 clock 

cycles. In order to hide this latency the system architecture schedules multiple blocks of 

threads onto the same hardware shading processor during thread synchronisations calls. 

Each shading processor has a limited number of registers and shared memory available, 

this along with kernel and block size, determine the maximum number of blocks that 

concurrently run on one multiprocessor (i.e. occupancy). To properly reduce the impact 

of latency associated with global memory reads this occupancy should be a 100% of the 

maximum supported for that particular GPU architecture. Reducing the number of 

registers used by a kernel as well as increasing the number of thread blocks can improve 

the occupancy and therefore offset the latency cost associated global memory access. 

Using the latest CUDA profiling tools enabled the fine tuning of these various CUDA 

parameters such as block size, grid size and register usage, to minimize latency 

associated with global memory operations. Another major source of latency is 

associated with launching a particular kernel on a grid of thread blocks. The initial 

implementation would launch a separate kernel for each disparity values for both the 

DSI and SSD kernels. This is effectively the equivalent of a for loop contained outside 

the GPU. By placing this loop inside the kernels themselves extra computations used in 

the kernels was massively offset by the gains in kernel execution latency. This small 

change probably had the most impact in terms of GPU performance as demonstrated by 

Table 6.3. and Table 6.4. 
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Width	
   Height	
   winX	
   winY	
   winZ	
   MaxD	
   Diff	
  Kernel	
   SSD	
  Kernel	
  

320	
   240	
   3	
   7	
   1	
   50	
   0.00842	
   0.011751	
  
320	
   240	
   3	
   7	
   1	
   60	
   0.016857	
   0.013606	
  

320	
   240	
   3	
   7	
   1	
   70	
   0.011281	
   0.016009	
  

320	
   240	
   3	
   7	
   1	
   80	
   0.012621	
   0.018152	
  
320	
   240	
   3	
   7	
   1	
   90	
   0.015861	
   0.020643	
  

320	
   240	
   3	
   7	
   1	
   100	
   0.01649	
   0.022656	
  
320	
   240	
   3	
   7	
   1	
   110	
   0.018526	
   0.024946	
  

320	
   240	
   3	
   7	
   1	
   120	
   0.019156	
   0.027282	
  
320	
   240	
   3	
   7	
   1	
   150	
   0.024682	
   0.034117	
  

320	
   240	
   3	
   7	
   1	
   200	
   0.035264	
   0.04514	
  

320	
   240	
   3	
   7	
   1	
   250	
   0.039923	
   0.056489	
  
Table 6.3 Computational Time of kernels used for the CUDA cost matrix calculation with the added 

latency of extra kernel calls 

 

Width	
   Height	
   winX	
   winY	
   winZ	
   MaxD	
  
Diff	
  

Kernel	
   SSD	
  Kernel	
  

320	
   240	
   3	
   7	
   1	
   50	
   0.000544	
   0.003823	
  

320	
   240	
   3	
   7	
   1	
   60	
   0.000596	
   0.004384	
  
320	
   240	
   3	
   7	
   1	
   70	
   0.000641	
   0.004974	
  

320	
   240	
   3	
   7	
   1	
   80	
   0.00069	
   0.005498	
  
320	
   240	
   3	
   7	
   1	
   90	
   0.000728	
   0.005904	
  

320	
   240	
   3	
   7	
   1	
   100	
   0.000778	
   0.006739	
  

320	
   240	
   3	
   7	
   1	
   110	
   0.000822	
   0.007006	
  
320	
   240	
   3	
   7	
   1	
   120	
   0.001333	
   0.007813	
  

320	
   240	
   3	
   7	
   1	
   150	
   0.001003	
   0.008856	
  
320	
   240	
   3	
   7	
   1	
   200	
   0.001697	
   0.012881	
  

320	
   240	
   3	
   7	
   1	
   250	
   0.00192	
   0.016529	
  
Table 6.4 Computational Time of kernels used for the CUDA cost matrix calculation without the added 

latency of extra kernel calls 

 

Table 6.3 contains the timings of both the difference and SSD kernels with the added 

overhead latency associated with launching a separate kernel for each of the different 

disparity values. Table 6.4 contains the timings of the same kernels in Table 6.3. 

However they contain an extra for loop allowing the removal of a separate execution for 

each differing disparity value. One can clearly see large performance gains in the region 

of one order of magnitude (20x speed increase on average), for the latter 

implementation. This might not have necessarily been the case had this been 

implemented in OpenGL, where although there is a cost associated with switching 
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fragment shaders in this particular case one is not switching shaders but would be 

performing more rendering passes with a much less severe impact on the performance. 

Having removed the latency associated with kernel executions, we can minimise 

the latency associated with memory accessed by the kernel. The shared memory 

addressing in the GPU architecture used here is broken down into what is referred to as 

banks (see [60]). These 32bit banks are broken down into half warps with the number of 

banks per warp determined by the architecture, in this case 16.   

 

 
Figure 6.4 Shared Memory Access without Bank-Conflicts 

 

Should sequential threads access the same bank of shared memory, a bank conflict 

arises and the memory accesses are then serialized and not performed in parallel. In the 

example of the difference kernel that computes the difference between images for a 

given disparity value, each pixel is read as an 8bit grey scale unsigned char. The initial 

implementation had each thread stored and accessed each image pixels in shared 

memory as unsigned char sequentially, and therefore produced bank conflicts as groups 

of four pixels were assigned to the same bank. This ended up causing the GPU to 

serialize each of the shared memory accesses into four separate operations. These 

serializations are easily removed by either using float arrays in shared memory, or by 

re-implementing the kernel in such a way that each sequential thread accesses every 
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fourth byte in shared memory. Both the difference and SSD kernels were re-

implemented in such a way as to remove all unnecessary bank conflicts and therefore 

optimize all shared memory operations.  

 
Figure 6.5 Shared Memory Access with Bank-Conflicts 

 

6.2.3 SSD Kernel Optimizations for better scalability 

The final GPU optimization targeted the SSD kernel. The initial implementation 

although optimized to remove all unnecessary bank conflicts and make use of shared 

memory to minimise the impact of global memory access latency, still performed 

unnecessary computations. The purpose of the kernel is to compute the sums across the 

support region from the squared difference data computed by the diff kernel. The initial 

implementation had each thread loop over each squared difference pixel in the support 

region compute the sum. Although implemented simply and performing well for small 

support regions this implementation does not scale well. In the case of a window of 3x3 

each thread will perform 8 additions 5 of which will be recomputed by the neighbouring 

thread, see Figure 6.6.  

A more efficient way to compute the results is to separate the sum into two 

sums. Firstly the columns are summed and then the result is then summed, therefore 

each thread is now computing 4 additions. This can then further be made more efficient 
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so that when the next row is processed, instead of re-computing the entire column sum 

again from scratch, one can use the previous column sum and subtract the first row and 

add the next row. Although this would not yield any benefits when using a 3x3 window 

size as the window size increases in height, the cost of computing the column sum 

remains fixed at 2 additions once the first n rows of each block are computed where n is 

equal to the window height.  

 

 
Figure 6.6 Naive SSD Kernel on 3x3 Window 

 

This method contains some added overheads that are more than offset by the 

computational savings.  
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Figure 6.7 Optimized SSD kernel computation 

 

Table 6.5 shows the computational time taken for both versions of the SSD kernel for 

various window sizes. The optimized SSD kernel not only runs faster but as one can see 

from Figure 6.8 that the computational time scales better (i.e. the computational cost of 

the optimised SSD kernel is almost constant) relative to window size. 

 

	
  	
  
Width	
  
pixels	
  

Height	
  
pixels	
  

WinX	
  
pixels	
  

WinY	
  
pixels	
  

WinZ	
  
pixels	
  

MaxD	
  
pixels	
  

Win	
  Size	
  
pixels	
  

SSD	
  
Time	
  in	
  
seconds	
  

Naïve	
  SSD	
   320	
   240	
   3	
   3	
   1	
   80	
   9	
   0.008091	
  
	
  	
   320	
   240	
   5	
   5	
   1	
   80	
   25	
   0.010821	
  

	
  	
   320	
   240	
   7	
   7	
   1	
   80	
   49	
   0.014375	
  
	
  	
   320	
   240	
   9	
   9	
   1	
   80	
   81	
   0.019907	
  

	
  	
   320	
   240	
   11	
   11	
   1	
   80	
   121	
   0.026195	
  

	
  	
   320	
   240	
   13	
   13	
   1	
   80	
   169	
   0.034381	
  
	
  	
   320	
   240	
   15	
   15	
   1	
   80	
   225	
   0.04321	
  

Optimized	
  SSD	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
	
  	
   320	
   240	
   3	
   3	
   1	
   80	
   9	
   0.007783	
  

	
  	
   320	
   240	
   5	
   5	
   1	
   80	
   25	
   0.007903	
  

	
  	
   320	
   240	
   7	
   7	
   1	
   80	
   49	
   0.007931	
  
	
  	
   320	
   240	
   9	
   9	
   1	
   80	
   81	
   0.008062	
  

	
  	
   320	
   240	
   11	
   11	
   1	
   80	
   121	
   0.007995	
  
	
  	
   320	
   240	
   13	
   13	
   1	
   80	
   169	
   0.008099	
  

	
  	
   320	
   240	
   15	
   15	
   1	
   80	
   225	
   0.008215	
  
 

Table 6.5 Timings naive SSD versus optimized 
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Figure 6.8 Scaling between naive SSD and optimised SSD kernel the x-axis represents the number of 

pixel in the space domain while the y-axis represents the computational time 

 

6.2.4 Load Balancing and Further CPU gains 

Having optimized the GPU parts of the algorithm, the CPU part (i.e. the multi-layer DP 

optimization) was then examined and optimized. Having re-implemented the SSD 

kernel as described in the previous section of this chapter, and by caching the squared 

dissimilarity matrix, the window size parameters almost have a fixed computational cost 

with regard to the hybrid dynamic programming initialization.  

 

 
Figure 6.9 CPU computational time scalability with regard to maximum disparity 

0	
  
0.005	
  
0.01	
  
0.015	
  
0.02	
  
0.025	
  
0.03	
  
0.035	
  
0.04	
  
0.045	
  
0.05	
  

0	
   50	
   100	
   150	
   200	
   250	
  

	
  	
  

SSD	
  Naïve	
  

SSD	
  OpVmised	
  

max	
  disparity	
  

Time	
  

0	
  

0.05	
  

0.1	
  

0.15	
  

0.2	
  

0.25	
  

0.3	
  

0	
   50	
   100	
   150	
   200	
   250	
  

Time	
  CPU	
  

Time	
  CPU	
  

max	
  disparity	
  	
  

Time	
  



157 

 

The only parameters left that could impact the computational cost of this part of the 

algorithm are the image resolution and the maximum disparity value. The maximum 

disparity value is determined by the position of cameras and capture volume as well as 

the image resolution, by down sampling the captured images one can effectively reduce 

the maximum disparity value necessary to capture the depths of the imaged object (i.e. 

reducing the image resolution from 640x480 to 320x240 implies reducing the maximum 

disparity value by half from 140 pixels to 70 pixels). It is clear from Table 6.5 and 

Figure 6.8 that although the DP Optimization computational time scales almost linearly 

with regard to the maximum disparity value, this parameter has the greatest impact on 

the overall performance. Reducing the maximum disparity value clearly improves the 

system computational performance substantially. It also reduces the maximum image 

resolution and depth range. One way to maintain some of the performance advantages 

of a reduced maximum disparity value yet keep this value high, is to modify the DP 

optimization algorithm to use per-pixel specified maximum disparity values. This 

however, requires determining what these per-pixel maximum disparity values should 

be in order to maintain results with the same quality. One potential cheap solution 

would be to use the results of the previous frame plus some added threshold determined 

by the maximum potential gradient.  

 
Width	
  
pixels	
  

Height	
  
pixels	
  

WinX	
  	
  
pixels	
  

WinY	
  
pixels	
  

WinZ	
  
pixels	
  

MaxD	
  	
  
pixels	
  

Time	
  CPU	
  in	
  
seconds	
  

320	
   240	
   5	
   7	
   1	
   50	
   0.081578	
  
320	
   240	
   5	
   7	
   1	
   60	
   0.104211	
  

320	
   240	
   5	
   7	
   1	
   70	
   0.116923	
  
320	
   240	
   5	
   7	
   1	
   80	
   0.12216	
  

320	
   240	
   5	
   7	
   1	
   90	
   0.141939	
  

320	
   240	
   5	
   7	
   1	
   100	
   0.158527	
  
320	
   240	
   5	
   7	
   1	
   110	
   0.164631	
  

320	
   240	
   5	
   7	
   1	
   120	
   0.185802	
  
320	
   240	
   5	
   7	
   1	
   130	
   0.193432	
  

320	
   240	
   5	
   7	
   1	
   140	
   0.208493	
  
320	
   240	
   5	
   7	
   1	
   150	
   0.214784	
  

320	
   240	
   5	
   7	
   1	
   160	
   0.212478	
  

320	
   240	
   5	
   7	
   1	
   170	
   0.234778	
  
320	
   240	
   5	
   7	
   1	
   180	
   0.252913	
  

320	
   240	
   5	
   7	
   1	
   190	
   0.25043	
  
320	
   240	
   5	
   7	
   1	
   200	
   0.265732	
  
Table 6.6 Timing of CPU one core multi-layer DP optimization 
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Widt
h	
  

Heig
ht	
  

Win
X	
  

Win
Y	
  

Win
Z	
  

Max
D	
  

SubSampled	
  
Total	
  

Per-­‐Pixel	
  
MaxD	
  

Total	
  
Time	
  

Original	
  
Time	
   %	
  Saving	
  

320	
   240	
   5	
   7	
   1	
   60	
   0.023641	
   0.058532	
   0.08217	
   0.104211	
   21.14747	
  

320	
   240	
   5	
   7	
   1	
   80	
   0.028418	
   0.065111	
   0.09352	
   0.12216	
   23.43729	
  

320	
   240	
   5	
   7	
   1	
   100	
   0.033092	
   0.071979	
   0.10507	
   0.158527	
   33.72043	
  

320	
   240	
   5	
   7	
   1	
   120	
   0.039647	
   0.08065	
   0.12029	
   0.185802	
   35.25527	
  

320	
   240	
   5	
   7	
   1	
   140	
   0.042396	
   0.086537	
   0.12893	
   0.208493	
   38.15955	
  

320	
   240	
   5	
   7	
   1	
   160	
   0.046196	
   0.093227	
   0.13942	
   0.212478	
   34.38238	
  

320	
   240	
   5	
   7	
   1	
   180	
   0.050422	
   0.10415	
   0.15457	
   0.252913	
   38.88333	
  

320	
   240	
   5	
   7	
   1	
   200	
   0.05584	
   0.101596	
   0.15743	
   0.265732	
   40.75384	
  
Table 6.7 Timings of multi-scale DP optimizations versus single scale and computational savings 

 

This however, would produce errors at depth discontinuities. One could potentially use 

the detected discontinuities from the previous frame’s reconstruction along with 

neighbouring pixels and reset their maximum disparity values to the highest maximum 

disparity. The neighbouring pixels would account for motion. Although this could 

potentially eliminate the errors, a much simpler solution is to use a multi-scale 

approach. This approach is only worth using if the computational savings achieved by 

using a per-pixel maximum disparity values offset the added cost of performing a sub-

sampled reconstruction. Table 6.7 displays the timings for the reconstruction with per-

pixel maximum disparity values as well as the cost of the sub-sampled reconstruction 

used to compute them, with the final column indicating the computational savings 

achieved. Table 6.7 clearly demonstrates the advantages in terms of speed, of using a 

multi-scale approach where the sub-samples are used to compute a per-pixel maximum 

disparity that is then used to speed up the higher resolution reconstruction. 

 All these optimizations have significantly improved the computational 

performance of the DP algorithm, and as the following section will demonstrate, have 

enabled the creation of a system that can run at over 30 fps. Nevertheless what this 

shows is how sensitive all GPU accelerated algorithms are to implementation. It was not 

apparent at first that adding an extra for loop inside the CUDA shader and thereby 

reducing the number of kernel calls would yield such speed increases. In order to get the 

most out of GPUs one needs a thorough understanding of their architectures in order to 

leverage the most out of them and make unintuitive design decisions. 

 



159 

 

6.3 Scalability Framework 

Having developed a real-time sub-pixel stereo reconstruction algorithm that consists of 

mixing and matching various different components with differing parameters, I present 

a unified scalable framework. The goal of this framework is to create a flexible 

mechanism for selecting different stereo algorithms dependent on varying constraints 

such as quality, computational speed and computation resources. This framework allows 

the tailoring of the reconstruction algorithm given various input image resolutions as 

well as speed constraints under limited computational resources. Figure 6.10 illustrates 

this framework. One can clearly see the division between the initialization and non-

linear optimization parts of the algorithm. Decoupling the dissimilarity cost 

computation performed on the GPU from the dynamic programming scan-line 

optimization makes it possible to replace this part of the algorithm with alternatives 

such as a naive winner takes all algorithm which makes the framework more 

generalizable when future algorithms are proposed. 

Each component within this framework has a set of parameters that determine 

the quality of the output as well as the computational performance (i.e. speed) of the 

system. Table 6.8 is an overview of all the system parameters and their relationship 

between speed versus quality. This table can also be visualized as a graph in Figure 6.9 

The goal of the system I have presented is to achieve the best results within the 

constraint of real-time applications. Chapter 3 demonstrated that when using structured 

light superior results were achieved, using the normalized SSD cost function extended 

into the time domain in combination with the three layer dynamic programming scan-

line optimization.  In this application it is therefore more beneficial to use the SSD cost 

function for both superior speed as well as results. 
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Figure 6.10 High-Level Scalability Framework 

 

 
Figure 6.11 Scalable framework with System Parameters 
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 DP Parameters Optimization Parameters  

High Quality Full Resolution MaxD 5+ Iterations Low Performance 

3/4 Layer DP Normalized Cross 

Correlation Cost Function 

Disparity Gradient 

Constraint 

 

 Window 6x6x8 Optimize Colourmetric 

Params between Cameras 

 

 Window 3x6x8 Optimize d, dx, dy, dt  

 Window 3x3x4 Optimize d, dx, dy  

 SSD Cost Function   

 Window 6x6x8 Window 6x6x8  

 Window 3x6x8 Window 3x6x8  

 Window 3x3x4 Window 3x3x4  

Traditional DP    

Low Quality Sub-Sampled MaxD 1-2 Iterations High Performance 

Table 6.8 System parameters quality versus speed 

 

However, the normalized cross-correlation cost function is still included in the 

framework as in other circumstances, such as without the use of structured light it can 

provide superior results at the cost of speed. It is also worth noting that the size of the 

support region (i.e. window size) does not have to be the same for the initialization part 

of the algorithm as for the non-linear optimization part.  Although real-time 

performance is achievable using most of the high quality settings for the parameters 

with the current cameras and resolution, the given framework is important as it enables 

a scalable system should higher resolution and more cameras be used. It also enables the 

system to scale not only with image resolution but also with CPU and GPU 

computational improvements. Table 6.9 demonstrates some of the performance 

achievable using differing parameters represented in Figure 6.11. 

 
Wid
th	
  

Heig
ht	
  

Win
X	
  	
  

Win
Y	
  

Win
Z	
  

Max
D	
  

Iteratio
ns	
  

DP	
  1/4	
  
Scale	
  	
  

DP	
  1/2	
  
Scale	
  

GPU	
  Non-­‐
Linear	
  

Total-­‐
Time	
  

Total	
  
Fps	
  

640	
   480	
   3	
   3	
   8	
   80	
   3	
   0.010911	
   0.046368	
   0.014627	
   0.07190	
   13.907	
  
640	
   480	
   5	
   3	
   8	
   80	
   3	
   0.010894	
   0.044446	
   0.01442	
   0.06976	
   14.334	
  
640	
   480	
   5	
   5	
   8	
   80	
   3	
   0.011217	
   0.045079	
   0.015958	
   0.07225	
   13.840	
  
640	
   480	
   7	
   5	
   8	
   80	
   3	
   0.011176	
   0.045518	
   0.016868	
   0.07356	
   13.593	
  
640	
   480	
   11	
   7	
   8	
   80	
   3	
   0.011501	
   0.044016	
   0.023168	
   0.07868	
   12.708	
  

Table 6.9 Timings for total reconstruction 4 cores with DP up to half-scale 
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Widt
h	
  

Heigh
t	
  

Win
X	
  	
  

Win
Y	
  

Win
Z	
  

Max
D	
  

Iteration
s	
  

DP	
  1/4	
  
Scale	
  	
  

GPU	
  Non-­‐
Linear	
  

Total-­‐
Time	
  

Total	
  
Fps	
  

640	
   480	
   3	
   3	
   8	
   80	
   3	
   0.010911	
   0.014627	
   0.025538	
   39.1573	
  

640	
   480	
   5	
   3	
   8	
   80	
   3	
   0.010894	
   0.01442	
   0.025314	
   39.5038	
  

640	
   480	
   5	
   5	
   8	
   80	
   3	
   0.011217	
   0.015958	
   0.027175	
   36.7985	
  

640	
   480	
   7	
   5	
   8	
   80	
   3	
   0.011176	
   0.016868	
   0.028044	
   35.6582	
  

640	
   480	
   11	
   7	
   8	
   80	
   3	
   0.011501	
   0.023168	
   0.034669	
   28.8442	
  

Table 6.10 Timings for total reconstruction 4 cores with DP up to quarter-scale 

 

Table 6.9 is a summary of the total time taken to perform reconstructions with various 

window sizes on 4 cores and using half the resolution to initialize the non-linear 

optimization step. Table 6.10 is very similar, with the exception, that the non-linear 

optimization step is initialized using a quarter of the resolution. For the non-linear 

optimization step only the d, dx, and dy where optimized to achieve a higher 

performance. It is also worth noting that for both these timings the load balancing on the 

CPU was not perfect. This is because differing scan-lines take varying amounts of time 

for the multi-layer DP to solve. This could potentially be improved by using dynamic 

load balancing where each CPU core would be allocated a differing number of scan-

lines based on their previous computational time. In both these tables the window sizes 

for the DP part of the algorithm were the same as for the non-linear optimization part. 

However, this is not a forced constraint of the system and does not have to be the case. 

Other observations that can be made from both these tables are that the window size has 

a more significant impact on the non-linear optimization part of the algorithm than the 

DP solver. This is because of the previously described SSD optimization almost 

removes the impact of the window size with regard to the DP solver. This demonstrates 

that the different parameters all affect the computational time of the system to varying 

degrees, and it is therefore important, as one will see in the next section of the chapter, 

to determine the scalability of these different parameters on the overall system. These 

tables also demonstrate that the system can be made to run in real-time. 

 

6.4 Overview of System Parameters 

Having optimized both the hybrid CPU-GPU initialization and GPU non-linear 

optimization parts of the stereo algorithm, it was necessary to determine the scalability 

of all the system parameters with regard to overall system performance. This enables 

one to determine the overall system scalability as well as potential trade-offs between 
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quality and computational speed. The overall system can be broken down into two parts, 

the initialization which finds pixel level disparity values and the non-linear optimization 

that gives us the high frequency sub-pixel detail. These two parts of the algorithm both 

have a set of parameters that affect the quality of the output as well as the computational 

speed of the algorithm. In previous chapters, the effects of certain parameters on very 

specific parts of the algorithm were examined. This chapter will examine the effect of 

every parameter on the overall system performance. With this information one can 

determine which parameters affect the performance the least and then optimize those in 

order to achieve the highest quality.  

 

The following lists all the framework parameters: 

 

• Initialization 

o Algorithm DP, multi-Layer DP, WTA, etc... 

o Maximum initialization resolution  

o Maximum Disparity 

o Window Size X,Y,Z 

o Cost Function 

• Non-linear Parameters 

o Final Reconstruction Resolution 

o Window Size X, Y, Z 

o Number of optimization parameters per disparity (d, dx, dy, dt) 

o Radiometric Calibration (scale, offset) 

o Number of non-linear optimization iterations 

  

With the constraint of real-time performance and quality trade-offs discussed in 

previous chapters I have limited the scope of some of these parameters. This motivated 

the optimization presented previously in the hybrid CPU-GPU implementation and 

therefore limited the scope of parameters examined. All the timings presented in this 

section will be taken from a single core implementation to remove all CPU load 

balancing issues that could potentially skew the scalability results. The fact that the 

squared difference images as well as SSD are cached, increasing the window size past 

two frames into the temporal domain, does not affect the computational performance of 
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the hybrid CPU-GPU DP implementation.  The non-linear optimization algorithm was 

optimized to use eight temporal frames by packing them into two RGBA textures. 

Again reducing the temporal window size will also have almost no impact on 

performance, therefore all the following experiments will be using eight temporal 

frames.  

6.5 Experiments 

Using the previously mentioned objectives the following experiments were carried out. 

The non-linear optimization step was timed with the following parameters. 

 

Non-Linear Optimization GPU 
Image Size Window Size    Number of Iterations 
640x480 3x3 5x3 5x5 7x5 11x7 2-5 
640x240 3x3 5x3 5x5 7x5 11x7 2-5 
640x240 3x3 5x3 5x5 7x5 11x7 2-5 
640x120 3x3 5x3 5x5 7x5 11x7 2-5 
320x240 3x3 5x3 5x5 7x5 11x7 2-5 
320x120 3x3 5x3 5x5 7x5 11x7 2-5 
320x120 3x3 5x3 5x5 7x5 11x7 2-5 
320x60 3x3 5x3 5x5 7x5 11x7 2-5 
160x120 3x3 5x3 5x5 7x5 11x7 2-5 
160x60 3x3 5x3 5x5 7x5 11x7 2-5 
160x60 3x3 5x3 5x5 7x5 11x7 2-5 
160x30 3x3 5x3 5x5 7x5 11x7 2-5 

 

Certain image sizes are listed twice this is because the input images were divided into 

two halves of equal resolution and the timings were performed on both halves 

separately. This was done in order to compare each half with the other and gain and 

insight into the computational burden of different parts of the input dataset.  

Subsequently the initialization hybrid CPU-GPU step was timed with the following 

parameters.  
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Hybrid CPU- GPU Initialization 
Image 

Size 

Window Size     Maximum Disparity   
640x480 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160 
640x240 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160 
640x240 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160 
640x120 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160 
320x240 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160 
320x120 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160 
320x120 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160 
320x60 3x3 5x3 5x5 7x5 11x7 60 80 100 120 160 
160x120 3x3 5x3 5x5 7x5 11x7 60 80 100 120 155 
160x60 3x3 5x3 5x5 7x5 11x7 60 80 100 120 155 
160x60 3x3 5x3 5x5 7x5 11x7 60 80 100 120 155 
160x30 3x3 5x3 5x5 7x5 11x7 60 80 100 120 155 

  

6.6 Results 

This section will examine all the timing results taken from the experiments carried out. 

Firstly, the timing results from the initialization multi-layer DP using various 

combination and of all the parameters for differing resolutions. Secondly the results 

from the non-linear optimizations step, again with all the different combinations of 

parameters. All this data will be analysed and insight into the overall systems scalability 

will be determined and discussed. For each set of experiments an example table is 

shown in this section. For the full set of results readers are referred to Appendix A. 

All the timings taken in Tables 6.10 through Table 6.13 are taken using the 

hybrid CPU-GPU multi-layer DP solver but without using the per-pixel maximum 

disparity optimization previously discussed in Section 6.2. The following tables show 

the computational times using the per-pixel maximum disparity optimization. These 

maximum disparity values were computed using the ¼ scale reconstruction and 

therefore the Tables A.14 to A.21 timings includes the time taken for the ¼ scale 

reconstruction. The Tables A.22 through A.33 will represent all the timings from the 

non-linear optimization step. 
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Width	
   Height	
   WinX	
   WinY	
   WinZ	
  	
   Max	
  Disparity	
   Total	
  Time	
  

160	
   120	
   3	
   3	
   8	
   60	
   0.033347	
  

160	
   120	
   3	
   3	
   8	
   80	
   0.037874	
  

160	
   120	
   3	
   3	
   8	
   100	
   0.045399	
  

160	
   120	
   3	
   3	
   8	
   120	
   0.054052	
  

160	
   120	
   3	
   3	
   8	
   160	
   0.058045	
  

160	
   120	
   5	
   3	
   8	
   60	
   0.03301	
  

160	
   120	
   5	
   3	
   8	
   80	
   0.037918	
  

160	
   120	
   5	
   3	
   8	
   100	
   0.045161	
  

160	
   120	
   5	
   3	
   8	
   120	
   0.05329	
  

160	
   120	
   5	
   3	
   8	
   160	
   0.056952	
  

160	
   120	
   5	
   5	
   8	
   60	
   0.032838	
  

160	
   120	
   5	
   5	
   8	
   80	
   0.038327	
  

160	
   120	
   5	
   5	
   8	
   100	
   0.045239	
  

160	
   120	
   5	
   5	
   8	
   120	
   0.053065	
  

160	
   120	
   5	
   5	
   8	
   160	
   0.057578	
  

160	
   120	
   7	
   5	
   8	
   60	
   0.032537	
  

160	
   120	
   7	
   5	
   8	
   80	
   0.037708	
  

160	
   120	
   7	
   5	
   8	
   100	
   0.044391	
  

160	
   120	
   7	
   5	
   8	
   120	
   0.052973	
  

160	
   120	
   7	
   5	
   8	
   160	
   0.056389	
  

160	
   120	
   11	
   7	
   8	
   60	
   0.032105	
  

160	
   120	
   11	
   7	
   8	
   80	
   0.037076	
  

160	
   120	
   11	
   7	
   8	
   100	
   0.043921	
  

160	
   120	
   11	
   7	
   8	
   120	
   0.052127	
  

160	
   120	
   11	
   7	
   8	
   160	
   0.055659	
  

Table 6.11 1 DP Initialization on sub-sampled images using single maximum disparity value 
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Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Max	
  D	
   Total	
  	
   Total	
  With	
  1/4	
  Scale	
  

640	
   480	
   3	
   3	
   8	
   60	
   0.301388	
   0.354361	
  

640	
   480	
   3	
   3	
   8	
   80	
   0.383018	
   0.435991	
  

640	
   480	
   3	
   3	
   8	
   100	
   0.467609	
   0.520582	
  

640	
   480	
   3	
   3	
   8	
   120	
   0.589471	
   0.642444	
  

640	
   480	
   3	
   3	
   8	
   160	
   0.719986	
   0.772959	
  

640	
   480	
   5	
   3	
   8	
   60	
   0.297865	
   0.350838	
  

640	
   480	
   5	
   3	
   8	
   80	
   0.384081	
   0.437054	
  

640	
   480	
   5	
   3	
   8	
   100	
   0.437641	
   0.490614	
  

640	
   480	
   5	
   3	
   8	
   120	
   0.584831	
   0.637804	
  

640	
   480	
   5	
   3	
   8	
   160	
   0.712621	
   0.765594	
  

640	
   480	
   5	
   5	
   8	
   60	
   0.29948	
   0.352453	
  

640	
   480	
   5	
   5	
   8	
   80	
   0.366984	
   0.419957	
  

640	
   480	
   5	
   5	
   8	
   100	
   0.445689	
   0.498662	
  

640	
   480	
   5	
   5	
   8	
   120	
   0.583963	
   0.636936	
  

640	
   480	
   5	
   5	
   8	
   160	
   0.693221	
   0.746194	
  

640	
   480	
   7	
   5	
   8	
   60	
   0.303334	
   0.356307	
  

640	
   480	
   7	
   5	
   8	
   80	
   0.368601	
   0.421574	
  

640	
   480	
   7	
   5	
   8	
   100	
   0.458332	
   0.511305	
  

640	
   480	
   7	
   5	
   8	
   120	
   0.57774	
   0.630713	
  

640	
   480	
   7	
   5	
   8	
   160	
   0.689129	
   0.742102	
  

640	
   480	
   11	
   7	
   8	
   60	
   0.307562	
   0.360535	
  

640	
   480	
   11	
   7	
   8	
   80	
   0.36834	
   0.421313	
  

640	
   480	
   11	
   7	
   8	
   100	
   0.471021	
   0.523994	
  

640	
   480	
   11	
   7	
   8	
   120	
   0.578921	
   0.631894	
  

640	
   480	
   11	
   7	
   8	
   160	
   0.680127	
   0.7331	
  

Table 6.12 DP Initialization on images using per-pixel maximum disparity values 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   640	
   480	
   3	
   3	
   8	
   0.020767	
  

3	
   640	
   480	
   3	
   3	
   8	
   0.025827	
  

4	
   640	
   480	
   3	
   3	
   8	
   0.033568	
  

5	
   640	
   480	
   3	
   3	
   8	
   0.039342	
  

2	
   640	
   480	
   5	
   3	
   8	
   0.027037	
  

3	
   640	
   480	
   5	
   3	
   8	
   0.037799	
  

4	
   640	
   480	
   5	
   3	
   8	
   0.04699	
  

5	
   640	
   480	
   5	
   3	
   8	
   0.05731	
  

2	
   640	
   480	
   5	
   5	
   8	
   0.040821	
  

3	
   640	
   480	
   5	
   5	
   8	
   0.056569	
  

4	
   640	
   480	
   5	
   5	
   8	
   0.072151	
  

5	
   640	
   480	
   5	
   5	
   8	
   0.087587	
  

2	
   640	
   480	
   7	
   5	
   8	
   0.053771	
  

3	
   640	
   480	
   7	
   5	
   8	
   0.074791	
  

4	
   640	
   480	
   7	
   5	
   8	
   0.096117	
  

5	
   640	
   480	
   7	
   5	
   8	
   0.11701	
  

2	
   640	
   480	
   11	
   7	
   8	
   0.105941	
  

3	
   640	
   480	
   11	
   7	
   8	
   0.152719	
  

4	
   640	
   480	
   11	
   7	
   8	
   0.195734	
  

5	
   640	
   480	
   11	
   7	
   8	
   0.242755	
  

Table 6.13 Non-Linear Optimization GPU Full Resolution 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   640	
   240	
   3	
   3	
   8	
   0.01221	
  

3	
   640	
   240	
   3	
   3	
   8	
   0.01484	
  

4	
   640	
   240	
   3	
   3	
   8	
   0.019101	
  

5	
   640	
   240	
   3	
   3	
   8	
   0.021021	
  

2	
   640	
   240	
   5	
   3	
   8	
   0.015598	
  

3	
   640	
   240	
   5	
   3	
   8	
   0.021115	
  

4	
   640	
   240	
   5	
   3	
   8	
   0.026113	
  

2	
   640	
   240	
   5	
   5	
   8	
   0.022455	
  

3	
   640	
   240	
   5	
   5	
   8	
   0.03038	
  

4	
   640	
   240	
   5	
   5	
   8	
   0.038215	
  

5	
   640	
   240	
   5	
   5	
   8	
   0.046375	
  

2	
   640	
   240	
   7	
   5	
   8	
   0.028577	
  

3	
   640	
   240	
   7	
   5	
   8	
   0.040728	
  

4	
   640	
   240	
   7	
   5	
   8	
   0.050396	
  

5	
   640	
   240	
   7	
   5	
   8	
   0.063763	
  

2	
   640	
   240	
   11	
   7	
   8	
   0.056885	
  

3	
   640	
   240	
   11	
   7	
   8	
   0.081567	
  

4	
   640	
   240	
   11	
   7	
   8	
   0.10474	
  

5	
   640	
   240	
   11	
   7	
   8	
   0.130141	
  

Table 6.14 Non-Linear Optimization GPU Full Resolution lower half 

 

The data contained in all these tables gives insight into all the scalability properties of 

each parameter of the system. 

 

6.6.1 Scalability with regard to Window Size 

Earlier in this chapter when discussing the SSD kernel optimizations in the hybrid CPU-

GPU implementation, the window parameters in the space domain were shown to scale 

at almost a constant rate. This proves to be true for all differing configurations of the 

initialization step. Regardless of the resolution or maximum disparity values, increasing 

the window size has a very small impact on the computational time of the initialization 

step. This parameter is also the least expensive. The window size with regard to the 

non-linear optimization step has a different scalability, its impact on performance is 

more pronounced.  

The following figures represent the computational time spent in the non-linear 

optimization step relative to the number of pixels contained in the support window. The 
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x-axis represents the number of pixels and the y-axis represents time. The different 

graphs represent the various resolutions. Within each graph each plot represents the 

total non-linear optimization time for varying numbers of iterations. 

 

 
Figure 6.12 Window scalability at 640x480 

 

 
Figure 6.13 Window scalability at 640x240 Lower Half 
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Figure 6.14 Window scalability at 640x120 band across image 

 

 
Figure 6.15 Window scalability at 320x240 

 

 
Figure 6.16 Window scalability at 160x120 
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These figures demonstrate certain properties. Firstly, the computational time of the non-

linear optimization step scales linearly with regard to the number of pixels contained in 

the support window. This holds true for all resolutions and differing numbers of 

optimization iterations. Secondly, there is a correlation between the number of iterations 

and window size scalability. With increasing iterations the window scalability, although 

still linear, worsens, and this correlation is also linear. 

 

6.6.2 Scalability with regard to Resolution 

This section examines the scalability with regard to image resolution for both the 

initialization step and the non-linear optimization. Figure 6.17 illustrates the time taken 

for the initialization step for varying maximum disparity values. Since the previous 

section demonstrated that the window size has little effect on the performance of the 

initialization step, all the timings in Figure 6.17 were taken using 11x7x8 window sizes. 

This figure demonstrates the following properties:  

 

• Initialization does not scale linearly with regard to resolution 

• The scaling differs between the number of image pixels and the image 

width indicated by the dip in curves at 640x120 (for certain maximum 

disparity values the computational time is less for 640x120 images than 

it is for 320x240 images although they both contain the same number of 

pixels) 

• As the image resolution increases so does the impact of using greater 

maximum disparity values 

 

The non-linear optimization step scales in a similar fashion to the initialization step with 

regard to image resolution. There are however some subtle differences. The GPU non-

linear optimization step has a maximum performance whereby reducing the input 

resolution no longer reduces the computational time (i.e. the computational time for 

320x60 is similar or identical to the computational time for 160x30 images). The scaling 

characteristics (as illustrated by Figure 6.18 through Figure 6.23) are also very similar 

when using differing window sizes and varying numbers of iterations. Again with a 

slight amplification, with an increase in window size and number of iterations. Although 
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the non-linear optimization step scales in a similar fashion to the DP initialization step, 

once the input resolution exceeds a certain threshold, it is worth noting, that the 

computational speed of the non-linear solver is almost an order of magnitude faster than 

the DP initialization.  

 

 
Figure 6.17 DP initialization time at different resolutions for various maximum disparity values 

 

 
Figure 6.18 Non-linear optimization at different resolutions using 3x3x8 window 
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Figure 6.19 Non-linear optimization at different resolutions using 5x3x8 window 

 

 
Figure 6.20 Non-linear optimization at different resolutions using 5x5x8 window 

 

 
Figure 6.21 Non-linear optimization at different resolutions using 7x5x8 window 
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Figure 6.22 Non-linear optimization at different resolutions using 11x7x8 window 

 

 
Figure 6.23 Non-linear optimization at different resolutions using 2 iterations 
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Figure 6.24 Time for DP at varying resolutions for different maximum disparity values 

 

 
Figure 6.25 3D plot of computational against maximum disparity and image resolution 
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Figure 6.26 Time for non-linear optimization using increasing number of iterations for differing window 

sizes 
Iterations	
   Width	
   Height	
   Win

X	
  
Win

Y	
  
Win

Z	
  
Total	
   Lower	
  

Half	
  
Upper	
  
Half	
  

Upper+Lo
wer	
  

OverHea
d	
  

2	
   640	
   480	
   3	
   3	
   8	
   0.0207	
   0.01221	
   0.012888	
   0.025098	
   0.004331	
  

3	
   640	
   480	
   3	
   3	
   8	
   0.0258	
   0.01484	
   0.014895	
   0.029735	
   0.003908	
  

4	
   640	
   480	
   3	
   3	
   8	
   0.0335	
   0.01910	
   0.01867	
   0.037771	
   0.004203	
  

5	
   640	
   480	
   3	
   3	
   8	
   0.0393	
   0.02102	
   0.021763	
   0.042784	
   0.003442	
  

2	
   640	
   480	
   5	
   3	
   8	
   0.0270	
   0.01559	
   0.01605	
   0.031648	
   0.004611	
  

3	
   640	
   480	
   5	
   3	
   8	
   0.0378	
   0.02111	
   0.021394	
   0.042509	
   0.00471	
  

4	
   640	
   480	
   5	
   3	
   8	
   0.0469	
   0.02611	
   0.026233	
   0.052346	
   0.005356	
  

2	
   640	
   480	
   5	
   5	
   8	
   0.0408	
   0.02245	
   0.021682	
   0.044137	
   0.003316	
  

3	
   640	
   480	
   5	
   5	
   8	
   0.0565	
   0.03038	
   0.031489	
   0.061869	
   0.0053	
  

4	
   640	
   480	
   5	
   5	
   8	
   0.0721	
   0.03821	
   0.03888	
   0.077095	
   0.004944	
  

5	
   640	
   480	
   5	
   5	
   8	
   0.0875	
   0.04637	
   0.048038	
   0.094413	
   0.006826	
  

2	
   640	
   480	
   7	
   5	
   8	
   0.0537	
   0.02857	
   0.02969	
   0.058267	
   0.004496	
  

3	
   640	
   480	
   7	
   5	
   8	
   0.0747	
   0.04072	
   0.041534	
   0.082262	
   0.007471	
  

4	
   640	
   480	
   7	
   5	
   8	
   0.0961	
   0.05039	
   0.051617	
   0.102013	
   0.005896	
  

5	
   640	
   480	
   7	
   5	
   8	
   0.1170	
   0.06376	
   0.064171	
   0.127934	
   0.010924	
  

2	
   640	
   480	
   11	
   7	
   8	
   0.1059	
   0.05688	
   0.057607	
   0.114492	
   0.008551	
  

3	
   640	
   480	
   11	
   7	
   8	
   0.1527	
   0.08156	
   0.082319	
   0.163886	
   0.011167	
  

4	
   640	
   480	
   11	
   7	
   8	
   0.1957	
   0.10474	
   0.107273	
   0.212013	
   0.016279	
  

5	
   640	
   480	
   11	
   7	
   8	
   0.2427	
   0.13014	
   0.134223	
   0.264364	
   0.021609	
  

Table 6.15 Timing for non-linear optimization complete image versus segmented image 

6.6.5 Computational Load and Balancing  

Having examined the impact of every parameter for this stereo reconstruction system on 

computational performance it would be advantageous to determine the potential gains to 

be achieved with regard to future hardware developments or increased computational 
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resources. By determining the computational load across the scan-lines it is possible to 

extrapolate potential speed increases gained with multiple GPU or more CPU cores.  

 

Width	
   Height	
   WinX	
   WinY	
   WinZ	
  
Max	
  
D	
   Total	
  	
  

Total	
  
Image	
   Lower	
   Upper	
   Overhead	
  

640	
   480	
   3	
   3	
   8	
   60	
   0.30139	
   0.354361	
   0.18407	
   0.17542	
   0.005121	
  

640	
   480	
   3	
   3	
   8	
   80	
   0.38302	
   0.435991	
   0.20068	
   0.22139	
   -­‐0.013921	
  

640	
   480	
   3	
   3	
   8	
   100	
   0.46761	
   0.520582	
   0.23808	
   0.26513	
   -­‐0.017375	
  

640	
   480	
   3	
   3	
   8	
   120	
   0.58947	
   0.642444	
   0.30462	
   0.32041	
   -­‐0.017418	
  

640	
   480	
   3	
   3	
   8	
   160	
   0.71999	
   0.772959	
   0.36904	
   0.38607	
   -­‐0.017848	
  

640	
   480	
   5	
   3	
   8	
   60	
   0.29787	
   0.350838	
   0.16338	
   0.17524	
   -­‐0.012224	
  

640	
   480	
   5	
   3	
   8	
   80	
   0.38408	
   0.437054	
   0.20209	
   0.22241	
   -­‐0.012551	
  

640	
   480	
   5	
   3	
   8	
   100	
   0.43764	
   0.490614	
   0.22532	
   0.24963	
   -­‐0.01566	
  

640	
   480	
   5	
   3	
   8	
   120	
   0.58483	
   0.637804	
   0.30724	
   0.31832	
   -­‐0.012245	
  

640	
   480	
   5	
   3	
   8	
   160	
   0.71262	
   0.765594	
   0.36363	
   0.38199	
   -­‐0.019977	
  

640	
   480	
   5	
   5	
   8	
   60	
   0.29948	
   0.352453	
   0.16261	
   0.17728	
   -­‐0.012563	
  

640	
   480	
   5	
   5	
   8	
   80	
   0.36698	
   0.419957	
   0.19347	
   0.21194	
   -­‐0.014546	
  

640	
   480	
   5	
   5	
   8	
   100	
   0.44569	
   0.498662	
   0.22722	
   0.25491	
   -­‐0.016533	
  

640	
   480	
   5	
   5	
   8	
   120	
   0.58396	
   0.636936	
   0.30223	
   0.3178	
   -­‐0.016912	
  

640	
   480	
   5	
   5	
   8	
   160	
   0.69322	
   0.746194	
   0.35379	
   0.37519	
   -­‐0.017216	
  

640	
   480	
   7	
   5	
   8	
   60	
   0.30333	
   0.356307	
   0.16399	
   0.17788	
   -­‐0.014431	
  

640	
   480	
   7	
   5	
   8	
   80	
   0.3686	
   0.421574	
   0.19296	
   0.21319	
   -­‐0.01543	
  

640	
   480	
   7	
   5	
   8	
   100	
   0.45833	
   0.511305	
   0.2385	
   0.25848	
   -­‐0.014323	
  

640	
   480	
   7	
   5	
   8	
   120	
   0.57774	
   0.630713	
   0.30035	
   0.31671	
   -­‐0.013654	
  

640	
   480	
   7	
   5	
   8	
   160	
   0.68913	
   0.742102	
   0.3727	
   0.36897	
   -­‐0.000437	
  

640	
   480	
   11	
   7	
   8	
   60	
   0.30756	
   0.360535	
   0.16646	
   0.18193	
   -­‐0.012147	
  

640	
   480	
   11	
   7	
   8	
   80	
   0.36834	
   0.421313	
   0.19484	
   0.21201	
   -­‐0.01446	
  

640	
   480	
   11	
   7	
   8	
   100	
   0.47102	
   0.523994	
   0.23798	
   0.26951	
   -­‐0.0165	
  

640	
   480	
   11	
   7	
   8	
   120	
   0.57892	
   0.631894	
   0.30335	
   0.31485	
   -­‐0.013696	
  

640	
   480	
   11	
   7	
   8	
   160	
   0.68013	
   0.7331	
   0.35228	
   0.36456	
   -­‐0.016262	
  
Table 6.16 Timing for DP initialization complete image versus segmented image 

 

With regard to the non-linear optimization step I have already demonstrated that 

subdividing the input images yield little benefits at lower resolutions. However, at 

resolutions of 640x480 and above this is not the case. Table 6.15 shows the non-linear 

optimization timings for the complete images in the Total column as well as the timing 

for the lower half and upper half. When adding the time taken for each half together, 

one notices that this total is greater than the total reconstruction time for entire set of 

images. This indicates that should two GPUs be used for the non-linear optimization 

step, one would not get the theoretical maximum speed increase of 2x, no matter how 

well the system was load balanced. However, this difference shown in the Overhead 
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column is relatively negligible compared to the total computational time, indicating a 

potentially substantial performance increase obtained by using two GPUs. 

Using the same analysis on the DP initialization as shown by Table 6.16 

produces different results. In this particular case treating the image as two halves 

produces superior results, which indicates that further potential optimizations are 

possible for DP initialization implementation, possibly due to memory allocation 

overheads or cache misses. This part of the algorithm would gain performance from 

using more CPU cores. 

 

6.7 Conclusion 

This chapter has demonstrated how to further optimize the stereo system developed for 

this thesis. It has also presented a scalable framework for a hybrid CPU-GPU sub-pixel 

stereo reconstruction algorithm and has shown how the reconstruction system fits into 

this framework. An in depth analysis of the full system scalability has been carried out. 

From this, I conclude the parameters having the greatest to least impact on performance 

are listed as follows 

 

• Initialization Resolution  

• Maximum Disparity 

• Final Reconstruction Resolution 

• Non-Linear Optimization Window Size 

• Number of non-linear optimization iterations 

• Initialization Window Size 

 

From this list one can determine which parameters should be tuned first to achieve the 

highest computational performance. Almost all parameters scale linearly and I have 

demonstrated the potential computational increase from using multiple GPU and more 

CPU cores. Finally, this gives us a clear indication of future potential speed increase 

with more hardware. 
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  Chapter 7

 

 

 

 

Conclusion 
The goal of the research presented in this thesis was to examine real-time 3D 

reconstruction in the context of tele-immersion. This body of work focused on stereo 

techniques but with the added constraints of making no assumptions with regard the 

underlying shapes being reconstructed and producing a cheap system using off the shelf 

components. It is clear throughout this dissertation that the quality of 3D reconstructions 

relies primarily on the quality of the disparity maps produced by the stereo solvers. The 

scope of the research was therefore narrowed down to examining the stereo 

correspondence problem, in the context of real-time implementations that run on 

parallel architectures with an emphasis on scalability.  

 The main goal of this research was to build a real-time stereo sub-pixel stereo 

correspondence solver that would scale well on massively parallel architectures such as 

those found in GPUs. This has been achieved and is clearly demonstrated in the 

previous chapter. Not only did the final system run in real-time but its performance was 

clearly demonstrated to scale across multiple processors and new architectures.  

Although the design of this system is a few years old, the fact that it scales to modern 

GPU architectures, is a testament to how well suited, the system is for these types of 

architectures. The lessons learnt and contributions presented in this thesis fall into the 

following categories:  

• The initialization step (dynamic programming) 

• Non-linear optimization (Gauss-Newton) 

• Parallelization and scalability framework on GPUs 

 

Chapter 3 examined the suitability and performance of various dynamic 

programming algorithms for solving the correspondence problem using structured light. 

These algorithms were not designed to be used with structured light and a space-time 
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support region. It was therefore necessary to determine their suitability in this context. 

This chapter clearly demonstrated that although using structured light and extending the 

support region into the time domain improve the correspondence results, the choice of 

dynamic programming algorithm has a far greater impact on the quality of the results. 

This chapter also demonstrated that the advantages of using structured light can only be 

obtained by tailoring the cost function appropriately to the structured light patterns. This 

was all achieved in context of a parallel implementation suitable for GPUs.  

Chapter 4 demonstrated how to further increase the reconstruction detail with 

non-linear optimization methods. The advantages and disadvantages of various solvers 

were examined as well as a potential way of reducing certain artefacts with the use of 

simple Tikonov regularisation. The correlation between the conditioning of all the non-

linear systems solved and some of the reconstruction artefacts, were also examined. 

This chapter has also shown that by using these non-linear methods one can get away 

with a highly sub-sampled initialization and therefore improve computational 

efficiency, while using a warped space-time window. 

These iterative non-linear methods usually reserved for computationally 

expensive off-line reconstruction were shown to run in real-time on GPUs by using a 

multi-scale approach with a tailored Cholesky solver. As shown in Chapter 5, very 

computationally expensive algorithms that rely on linear algebra operators are well 

suited to highly parallel GPU architectures.  

All the knowledge gained from the previous chapters was then used to create a 

framework and scalable system that achieves sub-pixel disparity reconstruction in real-

time. Chapter 6 addressed certain performance issues with the initial GPU 

implementation to achieve greater speed, while the scalability of the system as a whole 

was analysed and profiled, in order to fine tune it to target platforms. Certain parameters 

were almost completely decoupled from the performance. The remaining parameters 

were then classified in terms of their performance implications. The result is a scalable 

system that can be tailored with respect to performance for real-time applications given 

limited computational resources as well as future hardware advances.  

It is worth noting that although GPUs are very powerful computational 

resources, and can be leveraged to make certain types of offline algorithms run in real-

time, they require significant investment in terms of development time and fine tuning. 

This situation is slowly changing with the advent of more powerful development and 
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analysis tools. This work has demonstrated that designing systems with parallelism can 

have many advantages, and be made to run a lot faster on GPUs. However, this is not a 

magic bullet to solve all problems. 

 

7.1 Future work 

The research carried out and presented here was narrowed down to focus on the 

correspondence problem in the context of tele-immersion. For this system to be 

transformed into a fully functional tele-immersive system further tasks need to be 

undertaken. In order to achieve this goal, one would need to extract texturing 

information. This could be achieved by capturing an extra frame that is not illuminated 

by structured light, or transforming the projector to project infra-red light and the 

camera setup to have some cameras capturing infra-red light while others would capture 

the texturing information. Once texturing information was acquired it would have to be 

registered with the disparity map and a compelling 3D representation of the scene 

would have to be rendered in real-time. This could either be done by using the disparity 

map and textures in an image based rendering system, or by performing a full geometric 

reconstruction with textures and shading. All of this heavy data load would also have to 

be communicated with another instance of this system, and would most probably 

require some form of compression. Each of these tasks represent a significant 

investment in time and provide opportunities to further forward the current state of the 

art. 

With regard to the correspondence problem, further avenues of research would 

include looking at improving the quality of the non-linear optimization step. The work 

carried out by [90], minimized certain banding artefacts by applying a gradient 

constraint on all the optimization parameters. Although the method used was to 

reformulate the problem as a global optimization problem that was then solved using 

conjugate gradients. This approach could not be taken at the time and be made to run in 

real-time. However with the recent advances in GPU hardware this assumption is no 

longer valid and worth investigating, as well as potential alternatives that could be 

derived using a quasi-local optimization across neighbouring pixels. One could optimize 

sets of five or seven neighbouring pixels with applied constraints, an approach which 

could lead to superior results, and potentially a superior quality speed trade-off. Chapter 
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6 also indicated the further potential for yet further speed increases. The implementation 

could be optimized further for performance, although the trade-off between the 

development time needed versus the potential gains might not warrant it.  
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Appendix A 

The following are all the tables representing the timing results for the experiments 

carried out in Chapter 6. 

 
Width	
   Height	
   WinX	
   WinY	
   WinZ	
  	
   Max	
  Disparity	
   Total	
  Time	
  

160	
   60	
   3	
   3	
   8	
   60	
   0.019318	
  

160	
   60	
   3	
   3	
   8	
   80	
   0.021846	
  

160	
   60	
   3	
   3	
   8	
   100	
   0.025842	
  

160	
   60	
   3	
   3	
   8	
   120	
   0.030126	
  

160	
   60	
   3	
   3	
   8	
   155	
   0.03293	
  

160	
   60	
   5	
   3	
   8	
   60	
   0.019314	
  

160	
   60	
   5	
   3	
   8	
   80	
   0.021745	
  

160	
   60	
   5	
   3	
   8	
   100	
   0.02584	
  

160	
   60	
   5	
   3	
   8	
   120	
   0.030002	
  

160	
   60	
   5	
   3	
   8	
   155	
   0.032984	
  

160	
   60	
   5	
   5	
   8	
   60	
   0.018921	
  

160	
   60	
   5	
   5	
   8	
   80	
   0.021754	
  

160	
   60	
   5	
   5	
   8	
   100	
   0.025866	
  

160	
   60	
   5	
   5	
   8	
   120	
   0.029991	
  

160	
   60	
   5	
   5	
   8	
   155	
   0.032919	
  

160	
   60	
   7	
   5	
   8	
   60	
   0.018929	
  

160	
   60	
   7	
   5	
   8	
   80	
   0.021838	
  

160	
   60	
   7	
   5	
   8	
   100	
   0.025689	
  

160	
   60	
   7	
   5	
   8	
   120	
   0.029961	
  

160	
   60	
   7	
   5	
   8	
   155	
   0.03316	
  

160	
   60	
   11	
   7	
   8	
   60	
   0.018587	
  

160	
   60	
   11	
   7	
   8	
   80	
   0.021887	
  

160	
   60	
   11	
   7	
   8	
   100	
   0.026349	
  

160	
   60	
   11	
   7	
   8	
   120	
   0.030167	
  

160	
   60	
   11	
   7	
   8	
   155	
   0.032621	
  

Table A.1 DP Initialization on lower half of sub-sampled images using single maximum disparity value 
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Width	
   Height	
   WinX	
   WinY	
   WinZ	
  	
   Max	
  Disparity	
   Total	
  Time	
  

160	
   60	
   3	
   3	
   8	
   60	
   0.019519	
  

160	
   60	
   3	
   3	
   8	
   80	
   0.022231	
  

160	
   60	
   3	
   3	
   8	
   100	
   0.026306	
  

160	
   60	
   3	
   3	
   8	
   120	
   0.030257	
  

160	
   60	
   3	
   3	
   8	
   155	
   0.033528	
  

160	
   60	
   5	
   3	
   8	
   60	
   0.019334	
  

160	
   60	
   5	
   3	
   8	
   80	
   0.021915	
  

160	
   60	
   5	
   3	
   8	
   100	
   0.025877	
  

160	
   60	
   5	
   3	
   8	
   120	
   0.030435	
  

160	
   60	
   5	
   3	
   8	
   155	
   0.033245	
  

160	
   60	
   5	
   5	
   8	
   60	
   0.018956	
  

160	
   60	
   5	
   5	
   8	
   80	
   0.022216	
  

160	
   60	
   5	
   5	
   8	
   100	
   0.025848	
  

160	
   60	
   5	
   5	
   8	
   120	
   0.030268	
  

160	
   60	
   5	
   5	
   8	
   155	
   0.03299	
  

160	
   60	
   7	
   5	
   8	
   60	
   0.018996	
  

160	
   60	
   7	
   5	
   8	
   80	
   0.022014	
  

160	
   60	
   7	
   5	
   8	
   100	
   0.026246	
  

160	
   60	
   7	
   5	
   8	
   120	
   0.029933	
  

160	
   60	
   7	
   5	
   8	
   155	
   0.033287	
  

160	
   60	
   11	
   7	
   8	
   60	
   0.018737	
  

160	
   60	
   11	
   7	
   8	
   80	
   0.021733	
  

160	
   60	
   11	
   7	
   8	
   100	
   0.025665	
  

160	
   60	
   11	
   7	
   8	
   120	
   0.030276	
  

160	
   60	
   11	
   7	
   8	
   155	
   0.032779	
  

Table A.2 DP Initialization on upper half of sub-sampled images using single maximum disparity value 
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Width	
   Height	
   WinX	
   WinY	
   WinZ	
  	
   Max	
  Disparity	
   Total	
  Time	
  

160	
   30	
   3	
   3	
   8	
   60	
   0.012911	
  

160	
   30	
   3	
   3	
   8	
   80	
   0.014835	
  

160	
   30	
   3	
   3	
   8	
   100	
   0.017373	
  

160	
   30	
   3	
   3	
   8	
   120	
   0.02058	
  

160	
   30	
   3	
   3	
   8	
   155	
   0.02245	
  

160	
   30	
   5	
   3	
   8	
   60	
   0.013179	
  

160	
   30	
   5	
   3	
   8	
   80	
   0.014895	
  

160	
   30	
   5	
   3	
   8	
   100	
   0.017538	
  

160	
   30	
   5	
   3	
   8	
   120	
   0.020184	
  

160	
   30	
   5	
   3	
   8	
   155	
   0.022689	
  

160	
   30	
   5	
   5	
   8	
   60	
   0.012726	
  

160	
   30	
   5	
   5	
   8	
   80	
   0.014875	
  

160	
   30	
   5	
   5	
   8	
   100	
   0.01737	
  

160	
   30	
   5	
   5	
   8	
   120	
   0.020119	
  

160	
   30	
   5	
   5	
   8	
   155	
   0.022634	
  

160	
   30	
   7	
   5	
   8	
   60	
   0.012839	
  

160	
   30	
   7	
   5	
   8	
   80	
   0.014878	
  

160	
   30	
   7	
   5	
   8	
   100	
   0.017481	
  

160	
   30	
   7	
   5	
   8	
   120	
   0.020329	
  

160	
   30	
   7	
   5	
   8	
   166	
   0.023754	
  

160	
   30	
   7	
   5	
   8	
   155	
   0.02298	
  

160	
   30	
   11	
   7	
   8	
   60	
   0.012849	
  

160	
   30	
   11	
   7	
   8	
   80	
   0.014991	
  

160	
   30	
   11	
   7	
   8	
   100	
   0.017717	
  

160	
   30	
   11	
   7	
   8	
   120	
   0.020508	
  

160	
   30	
   11	
   7	
   8	
   155	
   0.023263	
  

Table A.3 DP Initialization on a band of pixels across centre of sub-sampled images using single 

maximum disparity value 
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Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Max	
  D	
   Total	
  	
   Total	
  With	
  1/4	
  Scale	
  

640	
   240	
   3	
   3	
   8	
   60	
   0.165479	
   0.184066	
  

640	
   240	
   3	
   3	
   8	
   80	
   0.182095	
   0.200682	
  

640	
   240	
   3	
   3	
   8	
   100	
   0.219489	
   0.238076	
  

640	
   240	
   3	
   3	
   8	
   120	
   0.286028	
   0.304615	
  

640	
   240	
   3	
   3	
   8	
   160	
   0.350452	
   0.369039	
  

640	
   240	
   5	
   3	
   8	
   60	
   0.144789	
   0.163376	
  

640	
   240	
   5	
   3	
   8	
   80	
   0.183502	
   0.202089	
  

640	
   240	
   5	
   3	
   8	
   100	
   0.206733	
   0.22532	
  

640	
   240	
   5	
   3	
   8	
   120	
   0.288652	
   0.307239	
  

640	
   240	
   5	
   3	
   8	
   160	
   0.345039	
   0.363626	
  

640	
   240	
   5	
   5	
   8	
   60	
   0.144024	
   0.162611	
  

640	
   240	
   5	
   5	
   8	
   80	
   0.174883	
   0.19347	
  

640	
   240	
   5	
   5	
   8	
   100	
   0.208629	
   0.227216	
  

640	
   240	
   5	
   5	
   8	
   120	
   0.283642	
   0.302229	
  

640	
   240	
   5	
   5	
   8	
   160	
   0.335201	
   0.353788	
  

640	
   240	
   7	
   5	
   8	
   60	
   0.145407	
   0.163994	
  

640	
   240	
   7	
   5	
   8	
   80	
   0.174369	
   0.192956	
  

640	
   240	
   7	
   5	
   8	
   100	
   0.219911	
   0.238498	
  

640	
   240	
   7	
   5	
   8	
   120	
   0.281762	
   0.300349	
  

640	
   240	
   7	
   5	
   8	
   160	
   0.354112	
   0.372699	
  

640	
   240	
   11	
   7	
   8	
   60	
   0.14787	
   0.166457	
  

640	
   240	
   11	
   7	
   8	
   80	
   0.176252	
   0.194839	
  

640	
   240	
   11	
   7	
   8	
   100	
   0.219396	
   0.237983	
  

640	
   240	
   11	
   7	
   8	
   120	
   0.284766	
   0.303353	
  

640	
   240	
   11	
   7	
   8	
   160	
   0.333696	
   0.352283	
  

Table A.4 DP Initialization on lower half of images using per-pixel maximum disparity values 
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Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Max	
  D	
   Total	
  	
   Total	
  With	
  1/4	
  Scale	
  

640	
   240	
   3	
   3	
   8	
   60	
   0.156679	
   0.175416	
  

640	
   240	
   3	
   3	
   8	
   80	
   0.202651	
   0.221388	
  

640	
   240	
   3	
   3	
   8	
   100	
   0.246394	
   0.265131	
  

640	
   240	
   3	
   3	
   8	
   120	
   0.301674	
   0.320411	
  

640	
   240	
   3	
   3	
   8	
   160	
   0.367335	
   0.386072	
  

640	
   240	
   5	
   3	
   8	
   60	
   0.156501	
   0.175238	
  

640	
   240	
   5	
   3	
   8	
   80	
   0.203677	
   0.222414	
  

640	
   240	
   5	
   3	
   8	
   100	
   0.230897	
   0.249634	
  

640	
   240	
   5	
   3	
   8	
   120	
   0.299583	
   0.31832	
  

640	
   240	
   5	
   3	
   8	
   160	
   0.363254	
   0.381991	
  

640	
   240	
   5	
   5	
   8	
   60	
   0.158542	
   0.177279	
  

640	
   240	
   5	
   5	
   8	
   80	
   0.193204	
   0.211941	
  

640	
   240	
   5	
   5	
   8	
   100	
   0.236176	
   0.254913	
  

640	
   240	
   5	
   5	
   8	
   120	
   0.299058	
   0.317795	
  

640	
   240	
   5	
   5	
   8	
   160	
   0.356453	
   0.37519	
  

640	
   240	
   7	
   5	
   8	
   60	
   0.159145	
   0.177882	
  

640	
   240	
   7	
   5	
   8	
   80	
   0.194451	
   0.213188	
  

640	
   240	
   7	
   5	
   8	
   100	
   0.239747	
   0.258484	
  

640	
   240	
   7	
   5	
   8	
   120	
   0.297973	
   0.31671	
  

640	
   240	
   7	
   5	
   8	
   160	
   0.350229	
   0.368966	
  

640	
   240	
   11	
   7	
   8	
   60	
   0.163194	
   0.181931	
  

640	
   240	
   11	
   7	
   8	
   80	
   0.193277	
   0.212014	
  

640	
   240	
   11	
   7	
   8	
   100	
   0.250774	
   0.269511	
  

640	
   240	
   11	
   7	
   8	
   120	
   0.296108	
   0.314845	
  

640	
   240	
   11	
   7	
   8	
   160	
   0.345818	
   0.364555	
  

Table A.5 DP Initialization on upper half of images using per-pixel maximum disparity values 
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Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Max	
  D	
   Total	
  	
   Total	
  With	
  1/4	
  Scale	
  

640	
   120	
   3	
   3	
   8	
   60	
   0.088528	
   0.101377	
  

640	
   120	
   3	
   3	
   8	
   80	
   0.109155	
   0.122004	
  

640	
   120	
   3	
   3	
   8	
   100	
   0.131645	
   0.144494	
  

640	
   120	
   3	
   3	
   8	
   120	
   0.166528	
   0.179377	
  

640	
   120	
   3	
   3	
   8	
   160	
   0.203177	
   0.216026	
  

640	
   120	
   5	
   3	
   8	
   60	
   0.083047	
   0.095896	
  

640	
   120	
   5	
   3	
   8	
   80	
   0.109776	
   0.122625	
  

640	
   120	
   5	
   3	
   8	
   100	
   0.127208	
   0.140057	
  

640	
   120	
   5	
   3	
   8	
   120	
   0.168532	
   0.181381	
  

640	
   120	
   5	
   3	
   8	
   160	
   0.203596	
   0.216445	
  

640	
   120	
   5	
   5	
   8	
   60	
   0.083789	
   0.096638	
  

640	
   120	
   5	
   5	
   8	
   80	
   0.103828	
   0.116677	
  

640	
   120	
   5	
   5	
   8	
   100	
   0.126737	
   0.139586	
  

640	
   120	
   5	
   5	
   8	
   120	
   0.166786	
   0.179635	
  

640	
   120	
   5	
   5	
   8	
   160	
   0.197508	
   0.210357	
  

640	
   120	
   7	
   5	
   8	
   60	
   0.082141	
   0.09499	
  

640	
   120	
   7	
   5	
   8	
   80	
   0.105938	
   0.118787	
  

640	
   120	
   7	
   5	
   8	
   100	
   0.133873	
   0.146722	
  

640	
   120	
   7	
   5	
   8	
   120	
   0.164237	
   0.177086	
  

640	
   120	
   7	
   5	
   8	
   160	
   0.196255	
   0.209104	
  

640	
   120	
   11	
   7	
   8	
   60	
   0.082655	
   0.095504	
  

640	
   120	
   11	
   7	
   8	
   80	
   0.10593	
   0.118779	
  

640	
   120	
   11	
   7	
   8	
   100	
   0.131294	
   0.144143	
  

640	
   120	
   11	
   7	
   8	
   120	
   0.160459	
   0.173308	
  

640	
   120	
   11	
   7	
   8	
   160	
   0.192882	
   0.205731	
  

Table A.6 DP Initialization on a band of pixels across centre of images using per-pixel maximum 

disparity values 
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Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Max	
  D	
   Total	
  	
   Total	
  With	
  1/4	
  Scale	
  

320	
   240	
   3	
   3	
   8	
   60	
   0.07745	
   0.109555	
  

320	
   240	
   3	
   3	
   8	
   80	
   0.088801	
   0.120906	
  

320	
   240	
   3	
   3	
   8	
   100	
   0.102876	
   0.134981	
  

320	
   240	
   3	
   3	
   8	
   120	
   0.119842	
   0.151947	
  

320	
   240	
   3	
   3	
   8	
   160	
   0.141475	
   0.17358	
  

320	
   240	
   5	
   3	
   8	
   60	
   0.077406	
   0.109511	
  

320	
   240	
   5	
   3	
   8	
   80	
   0.08878	
   0.120885	
  

320	
   240	
   5	
   3	
   8	
   100	
   0.09976	
   0.131865	
  

320	
   240	
   5	
   3	
   8	
   120	
   0.119502	
   0.151607	
  

320	
   240	
   5	
   3	
   8	
   160	
   0.140301	
   0.172406	
  

320	
   240	
   5	
   5	
   8	
   60	
   0.075176	
   0.107281	
  

320	
   240	
   5	
   5	
   8	
   80	
   0.083864	
   0.115969	
  

320	
   240	
   5	
   5	
   8	
   100	
   0.100662	
   0.132767	
  

320	
   240	
   5	
   5	
   8	
   120	
   0.117055	
   0.14916	
  

320	
   240	
   5	
   5	
   8	
   160	
   0.136603	
   0.168708	
  

320	
   240	
   7	
   5	
   8	
   60	
   0.076013	
   0.108118	
  

320	
   240	
   7	
   5	
   8	
   80	
   0.082892	
   0.114997	
  

320	
   240	
   7	
   5	
   8	
   100	
   0.100741	
   0.132846	
  

320	
   240	
   7	
   5	
   8	
   120	
   0.117993	
   0.150098	
  

320	
   240	
   7	
   5	
   8	
   160	
   0.134012	
   0.166117	
  

320	
   240	
   11	
   7	
   8	
   60	
   0.075266	
   0.107371	
  

320	
   240	
   11	
   7	
   8	
   80	
   0.083043	
   0.115148	
  

320	
   240	
   11	
   7	
   8	
   100	
   0.099513	
   0.131618	
  

320	
   240	
   11	
   7	
   8	
   120	
   0.11451	
   0.146615	
  

320	
   240	
   11	
   7	
   8	
   160	
   0.130876	
   0.162981	
  

Table A.7 DP Initialization on sub-sampled images using per-pixel maximum disparity values 
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Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Max	
  D	
   Total	
  	
   Total	
  With	
  1/4	
  Scale	
  

320	
   120	
   3	
   3	
   8	
   60	
   0.039794	
   0.058381	
  

320	
   120	
   3	
   3	
   8	
   80	
   0.044995	
   0.063582	
  

320	
   120	
   3	
   3	
   8	
   100	
   0.051792	
   0.070379	
  

320	
   120	
   3	
   3	
   8	
   110	
   0.053251	
   0.071838	
  

320	
   120	
   3	
   3	
   8	
   120	
   0.060543	
   0.07913	
  

320	
   120	
   3	
   3	
   8	
   160	
   0.069888	
   0.088475	
  

320	
   120	
   5	
   3	
   8	
   60	
   0.039338	
   0.057925	
  

320	
   120	
   5	
   3	
   8	
   80	
   0.044969	
   0.063556	
  

320	
   120	
   5	
   3	
   8	
   100	
   0.050439	
   0.069026	
  

320	
   120	
   5	
   3	
   8	
   120	
   0.058762	
   0.077349	
  

320	
   120	
   5	
   3	
   8	
   160	
   0.069343	
   0.08793	
  

320	
   120	
   5	
   5	
   8	
   60	
   0.038711	
   0.057298	
  

320	
   120	
   5	
   5	
   8	
   80	
   0.042888	
   0.061475	
  

320	
   120	
   5	
   5	
   8	
   100	
   0.050752	
   0.069339	
  

320	
   120	
   5	
   5	
   8	
   120	
   0.059247	
   0.077834	
  

320	
   120	
   5	
   5	
   8	
   160	
   0.068639	
   0.087226	
  

320	
   120	
   7	
   5	
   8	
   60	
   0.038959	
   0.057546	
  

320	
   120	
   7	
   5	
   8	
   80	
   0.044382	
   0.062969	
  

320	
   120	
   7	
   5	
   8	
   100	
   0.051379	
   0.069966	
  

320	
   120	
   7	
   5	
   8	
   120	
   0.061025	
   0.079612	
  

320	
   120	
   7	
   5	
   8	
   160	
   0.068321	
   0.086908	
  

320	
   120	
   11	
   7	
   8	
   60	
   0.039244	
   0.057831	
  

320	
   120	
   11	
   7	
   8	
   80	
   0.043297	
   0.061884	
  

320	
   120	
   11	
   7	
   8	
   100	
   0.050982	
   0.069569	
  

320	
   120	
   11	
   7	
   8	
   120	
   0.060151	
   0.078738	
  

320	
   120	
   11	
   7	
   8	
   160	
   0.067954	
   0.086541	
  

Table A.8 DP Initialization on lower half of sub-sampled images using per-pixel maximum disparity 

values 
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Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Max	
  D	
   Total	
  	
   Total	
  With	
  1/4	
  Scale	
  

320	
   120	
   3	
   3	
   8	
   60	
   0.041515	
   0.060252	
  

320	
   120	
   3	
   3	
   8	
   80	
   0.046302	
   0.065039	
  

320	
   120	
   3	
   3	
   8	
   100	
   0.053421	
   0.072158	
  

320	
   120	
   3	
   3	
   8	
   120	
   0.062382	
   0.081119	
  

320	
   120	
   3	
   3	
   8	
   160	
   0.072029	
   0.090766	
  

320	
   120	
   5	
   3	
   8	
   60	
   0.041588	
   0.060325	
  

320	
   120	
   5	
   3	
   8	
   80	
   0.046695	
   0.065432	
  

320	
   120	
   5	
   3	
   8	
   100	
   0.052341	
   0.071078	
  

320	
   120	
   5	
   3	
   8	
   120	
   0.060411	
   0.079148	
  

320	
   120	
   5	
   3	
   8	
   160	
   0.071587	
   0.090324	
  

320	
   120	
   5	
   5	
   8	
   60	
   0.041189	
   0.059926	
  

320	
   120	
   5	
   5	
   8	
   80	
   0.045012	
   0.063749	
  

320	
   120	
   5	
   5	
   8	
   100	
   0.053265	
   0.072002	
  

320	
   120	
   5	
   5	
   8	
   120	
   0.061244	
   0.079981	
  

320	
   120	
   5	
   5	
   8	
   160	
   0.070257	
   0.088994	
  

320	
   120	
   7	
   5	
   8	
   60	
   0.040888	
   0.059625	
  

320	
   120	
   7	
   5	
   8	
   80	
   0.045495	
   0.064232	
  

320	
   120	
   7	
   5	
   8	
   100	
   0.053429	
   0.072166	
  

320	
   120	
   7	
   5	
   8	
   120	
   0.062711	
   0.081448	
  

320	
   120	
   7	
   5	
   8	
   160	
   0.069546	
   0.088283	
  

320	
   120	
   11	
   7	
   8	
   60	
   0.0409	
   0.059637	
  

320	
   120	
   11	
   7	
   8	
   80	
   0.045129	
   0.063866	
  

320	
   120	
   11	
   7	
   8	
   100	
   0.052574	
   0.071311	
  

320	
   120	
   11	
   7	
   8	
   120	
   0.061402	
   0.080139	
  

320	
   120	
   11	
   7	
   8	
   160	
   0.069733	
   0.08847	
  

Table A.9 DP Initialization on upper half of sub-sampled images using per-pixel maximum disparity 

values 
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Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Max	
  D	
   Total	
  	
   Total	
  With	
  1/4	
  Scale	
  

320	
   60	
   3	
   3	
   8	
   60	
   0.025223	
   0.038072	
  

320	
   60	
   3	
   3	
   8	
   80	
   0.028588	
   0.041437	
  

320	
   60	
   3	
   3	
   8	
   100	
   0.032359	
   0.045208	
  

320	
   60	
   3	
   3	
   8	
   120	
   0.037231	
   0.05008	
  

320	
   60	
   3	
   3	
   8	
   160	
   0.042479	
   0.055328	
  

320	
   60	
   5	
   3	
   8	
   60	
   0.025022	
   0.037871	
  

320	
   60	
   5	
   3	
   8	
   80	
   0.028817	
   0.041666	
  

320	
   60	
   5	
   3	
   8	
   100	
   0.03184	
   0.044689	
  

320	
   60	
   5	
   3	
   8	
   120	
   0.036838	
   0.049687	
  

320	
   60	
   5	
   3	
   8	
   160	
   0.042434	
   0.055283	
  

320	
   60	
   5	
   5	
   8	
   60	
   0.024718	
   0.037567	
  

320	
   60	
   5	
   5	
   8	
   80	
   0.027549	
   0.040398	
  

320	
   60	
   5	
   5	
   8	
   100	
   0.032065	
   0.044914	
  

320	
   60	
   5	
   5	
   8	
   120	
   0.036162	
   0.049011	
  

320	
   60	
   5	
   5	
   8	
   160	
   0.040751	
   0.0536	
  

320	
   60	
   7	
   5	
   8	
   60	
   0.024916	
   0.037765	
  

320	
   60	
   7	
   5	
   8	
   80	
   0.027205	
   0.040054	
  

320	
   60	
   7	
   5	
   8	
   100	
   0.032552	
   0.045401	
  

320	
   60	
   7	
   5	
   8	
   120	
   0.03676	
   0.049609	
  

320	
   60	
   7	
   5	
   8	
   160	
   0.041249	
   0.054098	
  

320	
   60	
   11	
   7	
   8	
   60	
   0.025096	
   0.037945	
  

320	
   60	
   11	
   7	
   8	
   80	
   0.027169	
   0.040018	
  

320	
   60	
   11	
   7	
   8	
   100	
   0.031624	
   0.044473	
  

320	
   60	
   11	
   7	
   8	
   120	
   0.036194	
   0.049043	
  

320	
   60	
   11	
   7	
   8	
   160	
   0.040899	
   0.053748	
  

Table A.10 DP Initialization on a band of pixels across centre of sub-sampled images using per-pixel 

maximum disparity values 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   640	
   240	
   3	
   3	
   8	
   0.012888	
  

3	
   640	
   240	
   3	
   3	
   8	
   0.014895	
  

4	
   640	
   240	
   3	
   3	
   8	
   0.01867	
  

5	
   640	
   240	
   3	
   3	
   8	
   0.021763	
  

2	
   640	
   240	
   5	
   3	
   8	
   0.01605	
  

3	
   640	
   240	
   5	
   3	
   8	
   0.021394	
  

4	
   640	
   240	
   5	
   3	
   8	
   0.026233	
  

5	
   640	
   240	
   5	
   3	
   8	
   0.031395	
  

2	
   640	
   240	
   5	
   5	
   8	
   0.021682	
  

3	
   640	
   240	
   5	
   5	
   8	
   0.031489	
  

4	
   640	
   240	
   5	
   5	
   8	
   0.03888	
  

5	
   640	
   240	
   5	
   5	
   8	
   0.048038	
  

2	
   640	
   240	
   7	
   5	
   8	
   0.02969	
  

3	
   640	
   240	
   7	
   5	
   8	
   0.041534	
  

4	
   640	
   240	
   7	
   5	
   8	
   0.051617	
  

5	
   640	
   240	
   7	
   5	
   8	
   0.064171	
  

2	
   640	
   240	
   11	
   7	
   8	
   0.057607	
  

3	
   640	
   240	
   11	
   7	
   8	
   0.082319	
  

4	
   640	
   240	
   11	
   7	
   8	
   0.107273	
  

5	
   640	
   240	
   11	
   7	
   8	
   0.134223	
  

Table A.11 Non-Linear Optimization GPU Full Resolution upper half 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   640	
   120	
   3	
   3	
   8	
   0.007224	
  

3	
   640	
   120	
   3	
   3	
   8	
   0.009396	
  

4	
   640	
   120	
   3	
   3	
   8	
   0.010624	
  

5	
   640	
   120	
   3	
   3	
   8	
   0.013031	
  

2	
   640	
   120	
   5	
   3	
   8	
   0.009185	
  

3	
   640	
   120	
   5	
   3	
   8	
   0.012491	
  

4	
   640	
   120	
   5	
   3	
   8	
   0.014988	
  

5	
   640	
   120	
   5	
   3	
   8	
   0.017917	
  

2	
   640	
   120	
   5	
   5	
   8	
   0.012637	
  

3	
   640	
   120	
   5	
   5	
   8	
   0.01746	
  

4	
   640	
   120	
   5	
   5	
   8	
   0.021851	
  

5	
   640	
   120	
   5	
   5	
   8	
   0.026076	
  

2	
   640	
   120	
   7	
   5	
   8	
   0.016958	
  

3	
   640	
   120	
   7	
   5	
   8	
   0.022562	
  

4	
   640	
   120	
   7	
   5	
   8	
   0.027577	
  

5	
   640	
   120	
   7	
   5	
   8	
   0.034599	
  

2	
   640	
   120	
   11	
   7	
   8	
   0.031533	
  

3	
   640	
   120	
   11	
   7	
   8	
   0.043383	
  

4	
   640	
   120	
   11	
   7	
   8	
   0.055518	
  

5	
   640	
   120	
   11	
   7	
   8	
   0.068754	
  

Table A.12 Non-Linear Optimization GPU Full Resolution band of pixels across centre 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   320	
   240	
   3	
   3	
   8	
   0.006222	
  

3	
   320	
   240	
   3	
   3	
   8	
   0.009119	
  

4	
   320	
   240	
   3	
   3	
   8	
   0.010453	
  

5	
   320	
   240	
   3	
   3	
   8	
   0.012873	
  

2	
   320	
   240	
   5	
   3	
   8	
   0.008448	
  

3	
   320	
   240	
   5	
   3	
   8	
   0.012672	
  

4	
   320	
   240	
   5	
   3	
   8	
   0.014858	
  

5	
   320	
   240	
   5	
   3	
   8	
   0.017909	
  

2	
   320	
   240	
   5	
   5	
   8	
   0.012817	
  

3	
   320	
   240	
   5	
   5	
   8	
   0.017166	
  

4	
   320	
   240	
   5	
   5	
   8	
   0.021009	
  

5	
   320	
   240	
   5	
   5	
   8	
   0.025942	
  

2	
   320	
   240	
   7	
   5	
   8	
   0.015584	
  

3	
   320	
   240	
   7	
   5	
   8	
   0.02285	
  

4	
   320	
   240	
   7	
   5	
   8	
   0.027692	
  

5	
   320	
   240	
   7	
   5	
   8	
   0.033684	
  

2	
   320	
   240	
   11	
   7	
   8	
   0.030931	
  

3	
   320	
   240	
   11	
   7	
   8	
   0.043415	
  

4	
   320	
   240	
   11	
   7	
   8	
   0.055854	
  

5	
   320	
   240	
   11	
   7	
   8	
   0.068816	
  

Table A.13 Non-Linear Optimization GPU Half Resolution 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   320	
   120	
   3	
   3	
   8	
   0.004655	
  

3	
   320	
   120	
   3	
   3	
   8	
   0.005688	
  

4	
   320	
   120	
   3	
   3	
   8	
   0.007181	
  

5	
   320	
   120	
   3	
   3	
   8	
   0.008169	
  

2	
   320	
   120	
   5	
   3	
   8	
   0.005585	
  

3	
   320	
   120	
   5	
   3	
   8	
   0.007336	
  

4	
   320	
   120	
   5	
   3	
   8	
   0.009345	
  

5	
   320	
   120	
   5	
   3	
   8	
   0.011709	
  

2	
   320	
   120	
   5	
   5	
   8	
   0.008179	
  

3	
   320	
   120	
   5	
   5	
   8	
   0.010784	
  

4	
   320	
   120	
   5	
   5	
   8	
   0.013186	
  

5	
   320	
   120	
   5	
   5	
   8	
   0.015827	
  

2	
   320	
   120	
   7	
   5	
   8	
   0.009807	
  

3	
   320	
   120	
   7	
   5	
   8	
   0.013388	
  

4	
   320	
   120	
   7	
   5	
   8	
   0.016531	
  

5	
   320	
   120	
   7	
   5	
   8	
   0.02004	
  

2	
   320	
   120	
   11	
   7	
   8	
   0.017377	
  

3	
   320	
   120	
   11	
   7	
   8	
   0.025303	
  

4	
   320	
   120	
   11	
   7	
   8	
   0.031435	
  

5	
   320	
   120	
   11	
   7	
   8	
   0.038482	
  

Table A.14 Non-Linear Optimization GPU Half Resolution Lower Half 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   320	
   120	
   3	
   3	
   8	
   0.005291	
  

3	
   320	
   120	
   3	
   3	
   8	
   0.005797	
  

4	
   320	
   120	
   3	
   3	
   8	
   0.007321	
  

5	
   320	
   120	
   3	
   3	
   8	
   0.008346	
  

2	
   320	
   120	
   5	
   3	
   8	
   0.005699	
  

3	
   320	
   120	
   5	
   3	
   8	
   0.007872	
  

4	
   320	
   120	
   5	
   3	
   8	
   0.009463	
  

5	
   320	
   120	
   5	
   3	
   8	
   0.011045	
  

2	
   320	
   120	
   5	
   5	
   8	
   0.007847	
  

3	
   320	
   120	
   5	
   5	
   8	
   0.010424	
  

4	
   320	
   120	
   5	
   5	
   8	
   0.013622	
  

5	
   320	
   120	
   5	
   5	
   8	
   0.016032	
  

2	
   320	
   120	
   7	
   5	
   8	
   0.009916	
  

3	
   320	
   120	
   7	
   5	
   8	
   0.013339	
  

5	
   320	
   120	
   7	
   5	
   8	
   0.02036	
  

2	
   320	
   120	
   11	
   7	
   8	
   0.018388	
  

3	
   320	
   120	
   11	
   7	
   8	
   0.026093	
  

4	
   320	
   120	
   11	
   7	
   8	
   0.032076	
  

5	
   320	
   120	
   11	
   7	
   8	
   0.039708	
  

Table A.15 Non-Linear Optimization GPU Half Resolution Upper Half 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   320	
   60	
   3	
   3	
   8	
   0.003641	
  

3	
   320	
   60	
   3	
   3	
   8	
   0.004503	
  

4	
   320	
   60	
   3	
   3	
   8	
   0.00595	
  

5	
   320	
   60	
   3	
   3	
   8	
   0.007158	
  

2	
   320	
   60	
   5	
   3	
   8	
   0.004631	
  

3	
   320	
   60	
   5	
   3	
   8	
   0.006028	
  

4	
   320	
   60	
   5	
   3	
   8	
   0.008386	
  

5	
   320	
   60	
   5	
   3	
   8	
   0.009724	
  

2	
   320	
   60	
   5	
   5	
   8	
   0.006984	
  

3	
   320	
   60	
   5	
   5	
   8	
   0.009393	
  

4	
   320	
   60	
   5	
   5	
   8	
   0.011973	
  

5	
   320	
   60	
   5	
   5	
   8	
   0.013988	
  

2	
   320	
   60	
   7	
   5	
   8	
   0.008572	
  

3	
   320	
   60	
   7	
   5	
   8	
   0.011809	
  

4	
   320	
   60	
   7	
   5	
   8	
   0.015428	
  

5	
   320	
   60	
   7	
   5	
   8	
   0.018227	
  

2	
   320	
   60	
   11	
   7	
   8	
   0.015604	
  

3	
   320	
   60	
   11	
   7	
   8	
   0.02325	
  

4	
   320	
   60	
   11	
   7	
   8	
   0.028326	
  

5	
   320	
   60	
   11	
   7	
   8	
   0.038265	
  

Table A.16 Non-Linear Optimization GPU Half Resolution Band of Pixels across centre 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   160	
   120	
   3	
   3	
   8	
   0.003559	
  

3	
   160	
   120	
   3	
   3	
   8	
   0.00514	
  

4	
   160	
   120	
   3	
   3	
   8	
   0.006056	
  

5	
   160	
   120	
   3	
   3	
   8	
   0.007	
  

2	
   160	
   120	
   5	
   3	
   8	
   0.004653	
  

3	
   160	
   120	
   5	
   3	
   8	
   0.006306	
  

4	
   160	
   120	
   5	
   3	
   8	
   0.00865	
  

5	
   160	
   120	
   5	
   3	
   8	
   0.00942	
  

2	
   160	
   120	
   5	
   5	
   8	
   0.006485	
  

3	
   160	
   120	
   5	
   5	
   8	
   0.008835	
  

4	
   160	
   120	
   5	
   5	
   8	
   0.011618	
  

5	
   160	
   120	
   5	
   5	
   8	
   0.01466	
  

2	
   160	
   120	
   7	
   5	
   8	
   0.008267	
  

3	
   160	
   120	
   7	
   5	
   8	
   0.012209	
  

4	
   160	
   120	
   7	
   5	
   8	
   0.014238	
  

5	
   160	
   120	
   7	
   5	
   8	
   0.016974	
  

2	
   160	
   120	
   11	
   7	
   8	
   0.01616	
  

3	
   160	
   120	
   11	
   7	
   8	
   0.02327	
  

4	
   160	
   120	
   11	
   7	
   8	
   0.029266	
  

5	
   160	
   120	
   11	
   7	
   8	
   0.035637	
  

Table A.17 Non-Linear Optimization GPU Quarter Resolution 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   160	
   60	
   3	
   3	
   8	
   0.002989	
  

3	
   160	
   60	
   3	
   3	
   8	
   0.004615	
  

4	
   160	
   60	
   3	
   3	
   8	
   0.005012	
  

5	
   160	
   60	
   3	
   3	
   8	
   0.00642	
  

2	
   160	
   60	
   5	
   3	
   8	
   0.004557	
  

3	
   160	
   60	
   5	
   3	
   8	
   0.005815	
  

4	
   160	
   60	
   5	
   3	
   8	
   0.00778	
  

5	
   160	
   60	
   5	
   3	
   8	
   0.009357	
  

2	
   160	
   60	
   5	
   5	
   8	
   0.005649	
  

3	
   160	
   60	
   5	
   5	
   8	
   0.00883	
  

4	
   160	
   60	
   5	
   5	
   8	
   0.010816	
  

5	
   160	
   60	
   5	
   5	
   8	
   0.013571	
  

2	
   160	
   60	
   7	
   5	
   8	
   0.008017	
  

3	
   160	
   60	
   7	
   5	
   8	
   0.010675	
  

4	
   160	
   60	
   7	
   5	
   8	
   0.0145	
  

5	
   160	
   60	
   7	
   5	
   8	
   0.019734	
  

2	
   160	
   60	
   11	
   7	
   8	
   0.01526	
  

3	
   160	
   60	
   11	
   7	
   8	
   0.022661	
  

4	
   160	
   60	
   11	
   7	
   8	
   0.029733	
  

5	
   160	
   60	
   11	
   7	
   8	
   0.036434	
  

Table A.18 Non-Linear Optimization GPU Quarter Resolution Lower Half 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   160	
   60	
   3	
   3	
   8	
   0.003404	
  

3	
   160	
   60	
   3	
   3	
   8	
   0.003984	
  

4	
   160	
   60	
   3	
   3	
   8	
   0.00561	
  

5	
   160	
   60	
   3	
   3	
   8	
   0.006172	
  

2	
   160	
   60	
   5	
   3	
   8	
   0.004195	
  

3	
   160	
   60	
   5	
   3	
   8	
   0.005931	
  

4	
   160	
   60	
   5	
   3	
   8	
   0.007641	
  

5	
   160	
   60	
   5	
   3	
   8	
   0.009607	
  

2	
   160	
   60	
   5	
   5	
   8	
   0.006146	
  

3	
   160	
   60	
   5	
   5	
   8	
   0.008837	
  

4	
   160	
   60	
   5	
   5	
   8	
   0.010298	
  

5	
   160	
   60	
   5	
   5	
   8	
   0.01361	
  

2	
   160	
   60	
   7	
   5	
   8	
   0.007813	
  

3	
   160	
   60	
   7	
   5	
   8	
   0.011388	
  

4	
   160	
   60	
   7	
   5	
   8	
   0.015079	
  

5	
   160	
   60	
   7	
   5	
   8	
   0.017085	
  

2	
   160	
   60	
   11	
   7	
   8	
   0.013919	
  

3	
   160	
   60	
   11	
   7	
   8	
   0.022546	
  

4	
   160	
   60	
   11	
   7	
   8	
   0.029243	
  

5	
   160	
   60	
   11	
   7	
   8	
   0.033452	
  

Table A.19 Non-Linear Optimization GPU Quarter Resolution Upper Half 
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Iterations	
   Width	
   Height	
   WinX	
   WinY	
   WinZ	
   Total	
  

2	
   160	
   30	
   3	
   3	
  

	
   	
  3	
   160	
   30	
   3	
   3	
  

	
   	
  4	
   160	
   30	
   3	
   3	
  

	
   	
  5	
   160	
   30	
   3	
   3	
  

	
   	
  2	
   160	
   30	
   5	
   3	
  

	
   	
  3	
   160	
   30	
   5	
   3	
  

	
   	
  4	
   160	
   30	
   5	
   3	
  

	
   	
  5	
   160	
   30	
   5	
   3	
  

	
   	
  2	
   160	
   30	
   5	
   5	
  

	
   	
  3	
   160	
   30	
   5	
   5	
  

	
   	
  4	
   160	
   30	
   5	
   5	
  

	
   	
  5	
   160	
   30	
   5	
   5	
  

	
   	
  2	
   160	
   30	
   7	
   5	
  

	
   	
  3	
   160	
   30	
   7	
   5	
  

	
   	
  4	
   160	
   30	
   7	
   5	
  

	
   	
  5	
   160	
   30	
   7	
   5	
  

	
   	
  2	
   160	
   30	
   11	
   7	
  

	
   	
  3	
   160	
   30	
   11	
   7	
  

	
   	
  4	
   160	
   30	
   11	
   7	
  

	
   	
  5	
   160	
   30	
   11	
   7	
  

	
   	
  Table A.20 Non-Linear Optimization GPU Quarter Resolution Band of Pixels across centre 
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