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Abstract

The retinoblastoma susceptibility protein RB1 is a key regulator of cell proliferation and fate. RB1 operates through
nucleating the formation of multi-component protein complexes involved in the regulation of gene transcription,
chromatin structure and protein stability. Phosphorylation of RB1 by cyclin-dependent kinases leads to conformational
alterations and inactivates the capability of RB1 to bind partner protein. Using small angle X-ray scattering in combination
with single particle analysis of transmission electron microscope images of negative-stained material we present the first
three-dimensional reconstruction of non-phosphorylated RB1 revealing an extended architecture and deduce the domain
arrangement within the molecule. Phosphorylation results in an overt alteration of the molecular shape and dimensions,
consistent with the transition to a compact globular architecture. The work presented provides what is to our knowledge
the first description of the relative domain arrangement in active RB1 and predicts the molecular movement that leads to
RB1 inactivation following protein phosphorylation.
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Introduction

The retinoblastoma tumour susceptibility protein (RB1) plays

an important role in regulating cell cycle progression, cell

survival and differentiation [1,2]. Heritable mutations in the

RB1 encoding gene greatly increase the risk for development of

the paediatric eye tumour retinoblastoma and significantly

enhance the overall lifetime risk for the development of other

cancers [3,4,5]. RB1 is mutated or lost in other common

cancers, including small cell lung cancer and breast, and

inactivated through binding and destabilization by the human

papillomavirus (HPV) transforming protein E7 in the majority

of cervical cancers [6]. RB1 function is thought to be

compromised by mutation of the upstream regulatory network

in the majority of sporadic cancers [7,8].

RB1 operates through interaction with cellular proteins. More

than 110 different proteins have been shown to interact with RB1

[9], including several DNA binding transcription factors [9,10], as

well as proteins with multiple functions in chromatin modification

[2,9], and components of the ubiquitin ligase machinery [11]. RB1

in cells is found in multi-component protein assemblies and in vitro

is capable of supporting protein interactions through a minimum

of four independent surfaces suggestive of its functioning as

a scaffold involved in nucleating complex formation [2].

Phosphorylation of RB1 by members of the proline-directed

family of cyclin-dependent Serine (Ser) Threonine (Thr) protein

kinases inactivates the ability of RB1 to interact with partner

proteins [7,12], presumably instigating fragmentation of the RB1-

containing protein assemblies.

RB1 belongs to a family of proteins including the RB1

paralogues RB1L1/p107 and RB1L2/p130 that share overall

sequence conservation, including substantial sequence identity

within a centrally located pocket domain [13]. Through their

central pocket domain RB family proteins support the interaction

with proteins containing a LeuXCysXGlu (LXCXE) short linear

motif, found in viral transforming proteins including the HPV E7

protein but also cellular proteins [14], and the interaction with

proteins containing a GluXXXAspLeuPhe (EXXXDLF) motif,

found in the C-terminal transactivation region of E2 family

transcription factors (E2Fs) [15,16]. RB1 contains two further

regions known for their involvement in protein interactions, the N-

terminal domain, RB-N, which is related in architecture to RB-P

and features a protein interaction surface analogous to that

involved in LXCXE binding in the pocket [17], and the C-

terminal domain, RB-C, involved in associating with the dimer

surface resulting form association of the E2Fs with their partner

dimer proteins (DPs) [18].
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Although atomic resolution structures of the various RB1

functional domains have been determined (Figure 1C), how these

domains and their respective protein interaction surfaces are

arranged in the active molecule is not known. In the work

presented here we characterize an RB1 entity containing the RB-

N and RB-P domains using small angle X-ray scattering (SAXS)

combined with single particle analysis of transmission electron

microscope (TEM) images of negatively stained material. The

work allows the deduction of the domain arrangement in the

active unphosphorylated form and permits prediction of the

cause and mechanics of the conformational response leading to

functional inactivation by cyclin-dependent kinase phosphoryla-

tion.

Results

Characterization of RB1 Multi-domain Assemblies by
Small Angle X-ray Scattering

To characterize the domain arrangement within RB1 we

generated a series of derivatives of the human protein

(Figure 1A) which are illustrated in Figure 1B. The first (RB-

NP) is made up from the structured RB-N and RB-P domains

connected by the 18 amino acid linker (residues 356–374) that

joins these two domains. This was coupled through its N-

terminus to hexahistidine-tagged maltose binding protein (MBP)

using a tobacco etch virus (TEV) protease-cleavable linker. We

excluded the RB1-C region of RB1 from this and other

constructs since the RB1-C region was previously shown to be

unfolded in an empty/unliganded state [18]. We also generated

additional constructs in which two interstitial regions (residues

250–269 in RB-N and residues 579–643 in RB-P, which both

are absent in the atomic resolution structures of these respective

domains) had been removed (ddRB-NP). Finally, we generated

a version of ddRB-NP in which the MBP-tag linked to a TEV

protease sequence was fused to residue 772 of ddRB-NP (ddRB-

NP-MBP). For structural analysis we made use of the products

in which the fused MBP-tags were removed by TEV protease

treatment (RB-NP and ddRB-NP) as well as the products in

which they were retained (MBP-RB-NP, MBP-ddRB-NP and

ddRB-NP-MBP).

Multi-angle light scattering (MALS) measurements (Table S1

and Figure S1A) gave estimated molecular masses for each of these

preparations which were consistent with their respective predicted

molecular masses, indicating that they are predominantly mono-

meric. Furthermore, cross-linking (Figure S1B) performed using

ddRB-NP at high concentrations, as used in SAXS data collection,

revealed only minor tendencies for dimer formation. Accordingly,

structural measurements made in solution can be taken to

represent the monomeric state for each of these proteins.

The small angle scattering pattern and the distance distribution

function P(r) for ddRB-NP and its MBP-tagged derivatives are

presented in Figure 2A and B, with derived parameters presented

in supplementary Table S2. Plots of the Guinier-region for each

construct are shown in Figure S1C confirming linear data

distribution indicative that the sample is monodisperse. The

overtly skewed shape of the calculated distance distribution

(Figure 2B) indicates that all the preparations have elongated as

opposed to globular shape, including the untagged ddRB-NP.

Furthermore, these data indicate a considerable increase in

elongation for ddRB-NP-MBP (Dmax 1761 to 1861 nm) over

ddRB-NP (Dmax 1461 nm) (see Table S2), consistent with the

MBP-tag forming a C-terminal extension in this protein construct.

Only a modest increase in Dmax was observed for MBP-RB-NP

over ddRB-NP, indicating a potentially partly lateral positioning of

the N-terminal MBP-tag.

Use of the experimentally determined SAXS measurements to

compute a low resolution ab initio model in DAMMIN [19],

(Figure 2C), reveals an elongated shape for ddRB-NP, consistent

with an extended non-globular architecture of this domain

assembly. To compute the putative positions of the RB1 domains

within the experimentally determined shape, we used MONSA

[19] an extended version of DAMMIN capable for the multiphase

modelling. A tentative ab initio model in which the domains are

arranged sequentially is shown on Figure 2C: this model fitted the

experimental SAXS data with x= 0.8.

We also performed MONSA-based ab initio modelling for the

MBP-tagged preparations, yielding probabilistic models in line

with a lateral as opposed to a terminal location of MBP in MBP-

ddRb-NP (Figure 2D). Conversely, a tentative ab initio model

calculated by MONSA for ddRB-NP-MBP depicts MBP to

a terminally protruding position (Figure 2E).

To assess the impact of the linker deletions within RB-N and

RB-P (residues 250–269 in RB-N and 579–643 in RB-P) on the

structure of the RB protein, we performed SAXS using the

derivative preparation in which these regions were left in place

(RB-NP and MBP-RB-NP). MALS results for these preparations

are shown in Table S1 and Guinier region plot in Figure S1C,

indicating that these preparations also exist predominantly as

monomers in solution with essentially monodisperse distribution in

the samples subjected to SAXS measurements. Importantly,

comparison of scattering patterns or distance distribution functions

for RB-NP and MBP-RB-NP with scattering patterns or distance

distribution for ddRB-NP and MBP-ddRB-NP (Figure S2) did not

reveal any significant difference, with data distributions being the

same within experimental error. Hence deletion of these linkers

does not affect the shape of RB-NP as measured by SAXS and

therefore the conclusions and modelling derived from the linker-

deleted variants is most likely relevant to the full-length protein

assemblies.

To probe for inherent flexibility within ddRB-NP, which could

interfere with ab initio shape determination, we employed the

ensemble optimization method (EOM) which quantitatively

characterizes the conformational space of proteins in solution

from SAXS data [20]. EOM analysis revealed an Rg distribution

of the reconstructed ensemble for ddRB-NP that is essentially

narrower than the Rg distribution of the random pools, indicating

that the protein possesses limited flexibility, confined to an Rg

differential of 10 Å or less (Figure 2F). Docking the atomic

structures for RB-N and RB-P into the ab initio model of ddRB-NP

(Figure 2C) yields a rigid body model, which provided a fit to the

experimental data with discrepancy x = 1.02. In recently

published work [21] substantial conformational heterogeneity

was observed with an RB1 fragment preparations similar to ddRB-

NP suggesting a mixture of ‘‘closed’’ and ‘‘opened’’ forms. To

address directly the possibility of a mixture of ‘‘closed’’ and

‘‘opened’’ forms, the experimental data from ddRB-NP were fitted

by a linear combination of the rigid body model and of the

‘‘closed’’ conformation reported in [21]. This analysis, carried out

using OLIGOMER [22], did not improve the fit, the experimental

data yielding the volume fraction of the closed conformation being

equal to zero. Taken together, the EOM analysis and the good fit

between a single rigid body model and the experimental scattering

data, suggest a preferred and stabile extended "opened" confor-

mation of the RB-N and RB-P domains in ddRB-NP. We note,

however, presence of a small peak at higher Rg, which could

indicate some minor presence of species with significantly larger

dimensions.

Mechanism of RB1 Phosphoregulation
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Refinement of the Domain Arrangement of RB1 by Single
Particle Analysis of Electron Microscope Images

While the analysis and modelling of the SAXS data shows that

RB-NP adopts an elongated architecture, it provides only

approximate and tentative information on the relative orientations

of the RB and NP domains. To obtain a higher resolution

description of RB and more exact information on the domain

arrangement we performed electron microscopy and single

particle analysis on negatively stained material. For this purpose

we initially focused on the MBP-ddRB-NP protein as its increased

molecular mass compared to derivatives without MBP-tag makes it

more suitable for imaging by TEM and subsequent analysis.

Representative molecular images and ab intio class averages

derived from MBP-ddRB-NP are shown in Figure S3A and B.

The majority of such images are substantially elongated, consistent

with the molecular shape identified in the SAXS analysis

Figure 1. RB1 architecture and study design. A. Schematic of RB1 domain structure. RB1 NH2-terminal domain (RB-N, light blue), RB1 pocket-
domain (RB-P, raspberry), the position of the twin cyclin folds which form the core of each domain is indicated, RB1 C-terminal region (RB-C, yellow).
B. RB1 constructs used in this study indicating the range of amino-acids covered. In the MBP-RB-NP and MBP-ddRB-NP constructs maltose binding
protein (MBP, green) is coupled to the N-terminus of the RB construct, while in ddRB-NP-MBP it is coupled to the C-terminus. In the ddRB-NP, MBP-
ddRB-NP and ddRB-NP-MBP constructs two interstitial regions were deleted, corresponding to residues 250–269, the arginine-rich linker (R-linker) of
the RB-N domain, and residues 579–643, corresponding to the pocket linker connecting RB-P domain pocket lobes (P-linker). The positions of cyclin-
dependent kinase consensus sites in RB-NP are indicated, with sites retained in the ddRB-NP, MBP-ddRB-NP and ddRB-NP-MBP constructs bold and
starred. C. Atomic models of the RB-N and RB-P domains, shown in ribbon representations. RB-N left, RB-P right. Cyclin-fold helixes are coloured, RB-N
A-fold in cyan, RB-N B-fold in light blue, RB-P A-fold in dark salmon, RB-P B-fold in pink, other helixes and visible loops are shown as grey.
doi:10.1371/journal.pone.0058463.g001

Mechanism of RB1 Phosphoregulation
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(Figure 2D) projected normal to its long axis. The remaining less

markedly elongated molecular images are consistent with projec-

tions approximately in the direction of the long axis. Three-

dimensional analysis from a dataset of 5829 molecular images was

performed using the SAXS envelope for MBP-ddRB-NP low pass

filtered to 40 Å as an initial reference (Figure S4A(i)). The analysis,

documented in Figure S3C–E, resulted in a three-dimensional

reconstruction (Figure 3A, B) with an estimated resolution of

,27 Å which replicates the elongated appearance of the SAXS

envelope (Figure 2D) but is characterised by a substantially

increased level of detail. This level of detail in the EM map

allowed it to be confidently segmented into three components

using the Chimera segmentationwhich served as a basis for

domain assignment and rigid body docking of the RB and MBP

domains. A preferred fit optimised for correlation of the available

atomic resolution structures with the experimental model space,

with minimised distances between domain termini and their

adjoining residues, is shown in Figure 3C, F. This model features

a recessed, parallel (A-B:A-B) arrangement of RB-N and RB-P in

which their respective B-lobe cyclin wedges, known for in-

volvement in short motif interaction, lie within close vicinity

(Figure 4C). Ab initio protein structure prediction using Protein

Homology/analogy Recognition (PHYRE) vs2.0 [23] indepen-

dently identified a highly congruent positioning for RB-N and RB-

P suggesting a A-B:A-B lobe orientation as the most likely tertiary

structural arrangement based on sequence (Figure S5). An

alternative rigid body fit to the EM density map is formally

possible whereby RB-N and RB-P are arranged in an anti-parallel

(B-A:A-B) orientation (Figure S6A). However this model was

judged to be significantly less satisfactory because the adjoining

residue pairs of the individual domains are separated by

a considerable distance (Figure S6A).

Effect of Phosphorylation on Molecular Shape and
Envelope

RB1 is inactivated by phosphate modification on proline-

directed sites, with phosphorylation disabling the ability of RB1 to

sustain interaction with partner proteins [24,25,26,27,28], re-

viewed in [29]. Recently, an atomic resolution structure has been

obtained for the presumed inactive form of ddRB-NP carrying

phosphate modification on two residues (Thr356 and Thr373)

within the segment (residues 356–376) that joins RB-N to RB-P

[21]. In this study the arrangement of domains in phosphorylated

ddRB-NP results in a significantly less elongated structure

compared with the one we have deduced for corresponding

unphosphorylated ddRB-NP (Figure 3F). To further investigate

the effects of phosphorylation on the conformation in solution of

ddRB-NP we treated preparations of MBP-ddRB-NP with KSHV

encoded D-cyclin (Kcyclin)/CDK6 complex. Tandem mass

spectrometry (MS/MS) of the phosphorylated material indicated

ready modification of both Thr356 and Thr373 (Figure S7B, C).

Two other proline-directed sites (Ser230 and Ser780) present in

ddRB-NP were not modified, although peptides containing these

residues in their unmodified form were readily identified in the

MS/MS profile. Absence of phosphorylation on these sites most

likely is explained by the principle structural inaccessibility of S230

[17] and a requirement for additional substrate recognitions

sequences in RB-C for modification of Ser780 by cyclin/CDKs

[30]. MALS-based molecular size assessment indicates that like

unmodified MBP-ddRB-NP phosphate-modified MBP-ddRB-NP

also preferentially exists in a monomeric state in solution (Figure

S1B).

Analysis of Kcyclin/CDK6-modified MBP-ddRB-NP prepara-

tions by TEM revealed a visibly more compact shape both for raw

images (Figure S3F) and ab initio class averages (Figure S3G) with

a maximal length for the most elongated projections of 7 nm as

opposed to 12–14 nm observed with unphosphorylated MBP-

ddRB-NP. Three-dimensional analysis from a dataset of 2788

molecular images was performed using an initial reference 3D

map derived from the atomic model of phosphorylated ddRB-NP

(PDB code 4ELJ), [21], low pass filtered to 40 Å. The resulting 3D

reconstruction (Figure 3G, H) with an estimated resolution of 24 Å

shows considerably enhanced detail compared to the original

reference (Figure S4A iii). Segmentation of the 3D reconstruction

using the Chimera segmentation procedure indicated the presence

of five major domains. The MBP tag (green density in Figure 3J,

K) is readily identified by comparison with the reference structure

from which it is absent (Figure S4, compare iii and iv). The

proposed inactive model of ddRB-NP, (PDB code 4ELJ) [21]],

could be docked into the remaining density and accounted well for

the remaining four segmented domains which can be recognised as

the individual subdomains of RB-N and RB-P, coloured accord-

ingly in Figure 3J and K (RB-N in blue and RB-P in pink).

Comparing this docked structure with that deduced for the

unphosphorylated form (Figure 3C and F) there appears to be

a substantial conformational rearrangement such that active and

inactive RB have a distinct architecture and relative domain

arrangement.

Discussion

We used SAXS and single particle analysis of TEM images to

obtain structural models for an RB1 fragment containing the RB-

N and RB-P functional regions which together make up the folded

core of full length RB1. Our data reveal that in its unpho-

sphorylated form this RB1 fragment has an elongated architecture,

which upon phosphorylation of residues within the sequence

connecting RB-N and RB-P converts to a compact globular

conformation.

The EOM reconstruction performed using SAXS data for

unmodified RB-NP (Figure 2) is consistent with the majority of

molecular species adopting an elongated conformation with an Rg

significantly larger than that of the compact species of ddRB-NP

identified by [21] and suggests that unmodified RB-NP as analysed

here adopts a preferred and stably elongated conformation. Our

observations hence do not appear to support the suggestion that

unmodified RB-NP exists in an equilibrium between elongated

Figure 2. Characterisation of RB1 derivatives by small-angle X-ray scattering. A. Experimental and calculated scattering patterns of ddRB-
NP (1), MBP-ddRB-NP (2), ddRB-NP-MBP (3). Experimental SAXS data as black dots with black error bars. Lines (red) represent the fits from ab initio
models shown in C (ddRB-NP), D (MBP-ddRB-NP) and E (ddRB-NP-MBP). The logarithm of the scattering intensity is plotted as a function of
momentum transfer, s = 4psin(h/2)/l where h is the scattering angle and l is the wavelength of the X-rays (1.5 Å). B. Distance distribution functions
for ddRB-NP, MBP-ddRB-NP and ddRB-NP-MBP. C. Averaged ab initio models for ddRB-NP obtained using DAMMIN (grey semi-transparent spheres)
and MONSA (RB-N blue spheres, RB-P red spheres) superimposed. The models are shown in two different views rotated by 90u. D., E. Ab initio models
of MBP-ddRB-NP (D) and ddRB-NP-MBP (E) obtained by MONSA. MBP is shown as green, ddRB-NP as grey spheres. The models are viewed as in C. F.
Radius of gyration (Rg) distribution obtained by EOM for ddRB-NP. Distributions correspond to a random pool of 10.000 generated structures (blue)
and the EOM optimized ensemble (red).
doi:10.1371/journal.pone.0058463.g002
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Figure 3. Single particle analysis of electron microscope images of MBP-ddRB-NP. A.-F. 3D reconstruction of unmodified MBP-ddRB-NP.
A., B. Single particle reconstruction for unmodified MBP-ddRB-NP. Calculated density map of MBP-ddRB-NP, shown as surface representations in grey
related by a 90o rotation. C. 3D reconstruction in mesh representation oriented as in B with the docked structures of the RB-N and RB-P domains
(PDB codes 2QDJ and 3POM) shown as cartoons colour-coded as follows: RB-N domain lobe A -cyan, lobe B -light blue; RB-P domain lobe A -dark
salmon and lobe B – pink. D., E. Segmented densities shown as solid surface representation with overlaid surface representation of the unmodified
RB-NP 3D reconstruction in mesh. The density attributed to the MBP tag is shown in light green, that attributed to RB-N in light blue and to RB-P in
light pink. F. Docked structures of the RB-N and RB-P domains (PDB codes 2QDJ and 3POM) without density mesh, shown as cartoons and colour-
coded as in C. G.–L. 3D reconstruction of phosphorylated MBP-ddRB-NP. G., H. 3D reconstruction shown as a grey surface in two orthogonal views. I.
3D reconstruction in mesh representation oriented as in H with the docked structures of inactive RB-NP (PDB code 4ELJ) shown as cartoons colour-
coded as follows:-. RB-N domain lobe A -cyan, lobe B -light blue; RB-P domain lobe A -dark salmon and lobe B – pink. J., K. Segmented densities
shown as solid surface representation with overlaid surface representation of the 3D reconstruction in mesh. Same colour coding as in D and E. L.
Docked structures of inactive RB-NP (PDB code 4ELJ) without density mesh, shown as cartoons colour-coded as in I.
doi:10.1371/journal.pone.0058463.g003

Mechanism of RB1 Phosphoregulation
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and compact conformations, and that phosphorylation shifts this

equilibrium by stabilising the compact form [21].

Docking of the crystallographic structures of the RB-N and RB-

P domains into TEM derived reconstructions of unmodified RB-

NP permitted predictions as to the positioning of the domains and

their relative orientation. Rigid body fits indicate a recessed

lengthwise alignment of the domains with the various functional

surfaces involved in the docking of short peptide motifs clearly

accessible. In the preferred model the different functional surfaces

nestle together less then 20 Å apart from each other (Figure 4).

This arrangement is consistent with a model whereby interactions

involving these surfaces may be cooperative or functionally

coupled either to facilitate complex nucleation by bringing

individual components into close proximity, or, alternatively

combinatorial use of the different surfaces to select partner

proteins for interaction. The available biochemical observations

provide evidence that the latter mechanism has considerable

relevance to the interaction of RB1 with known partner proteins.

Thus multiple proteins interacting with the LXCXE binding

surface in RB-P also interact with RB-N [17,25,31,32,33,34]

whilst others including the HPV E7 transforming protein

simultaneously occupy the LXCXE and EXXXDLF docking

surfaces [35]. Combinatorial use of interaction surfaces may

increase accuracy in partner protein selection and combinatorial

use of interaction surfaces could aid the assembly of distinct non-

overlapping functional complexes.

An alternative model for the domain arrangement in un-

modified RB-NP, featuring an inverted position of RB-N with

respect to RB-P, (Figure S6) was found to match the re-

construction of the EM data reasonably well. However, this

interpretation was considered to be unlikely both because residues

connected by short linking sequences are separated by large

distances and because the observed interactions with partner

proteins described would no longer be explained by the grouping

of functional sites.

Comparison of the domain arrangements in the active un-

modified MBP-ddRB1-NP modelled using the crystal structures of

the unmodified individual domains (PDB codes 2QDJ and 3POM)

and the phosphate-modified RB-NP-domain assembly (PDB code

4ELJ) allows us to propose a mechanism by which the active

conformation is converted into the inactive conformation (see

Figure 4E). In the preferred fit for unphosphorylated MBP-ddRB-

NP, a segment containing residues 346–355 known to be helical in

unmodified RB-N (2QDJ.pdb) but disordered in inactive RB-NP

(4ELJ.pdb) is positioned in the RB-N:P interface between the A

cyclin folds of the respective domains (Figure 4A, C). Hence this

segment is suitably located to stabilise the alignment of these

domains when structured and similarly well placed to destabilize

this arrangement when structurally disordered as a consequence of

phosphorylation. Accordingly, an attractive proposal would be

that phosphorylation of Thr356 or Thr 373 in the RBN:P joining

linker which immediately follows on from the helical segment leads

to its unfolding and the consequential rearrangement of RB

domains into the inactive conformation (Figure 4).

Four clusters of residues ([RB-N K136, D139, T140, T142,

D145], [RB-P Q736, E737, K740, K729], [RB-N L161, K164,

L206-E209, L211-I213, F216, E282, E287, N290, N295] and

[RB-P Q736, E737, K740, K729]) participating in the N:P

interphase in inactive RB-NP [21], (Figure 4B) are predicted to be

surface accessible and some distance removed from each other in

our preferred model of the active conformation (Figure 4A).

Furthermore, the surface involved in docking LXCXE motif

interactors aligns with the evolutionarily homologous surface of

RB-N in unmodified RB-NP, but these same surfaces are disjoint,

facing opposing directions in inactive RB-NP [21]. Together these

observations support a quite detailed model for the regulation by

phosphorylation whereby domain rearrangement culminates in

generating the inactive conformation of RB1.

Materials and Methods

RB1 Constructs
Fragments of human RB1 cDNA (NM_000321) encoding

residues 40–787 (RB-NP and MBP-RB-NP) or residues 40–787

with deletions of residues 250–269 and 579–643 (ddRB-NP and

MBP-ddRB-NP) were cloned into a modified pET30 (Novagen),

pET30-MBP, containing a maltose binding protein (MBP)

followed by a TEV cleavage site and yielding an NH2-terminal

hexahistidine–MBP tag (obtained from Laurence Pearl, Sussex).

ddRB-NP was further cloned into pETM10-CMBP featuring an

N-terminal hexahistidine-tag and a C-terminal MBP-tag

(pETM10-CMBP). pETM10-CMBP was generated by inserting

an MBP fragment produced by PCR using pET30-MBP as

a template into the bacterial expression vector pETM10 (http://

www.embl.de/pepcore/pepcore_services/cloning/seq/pETM-

10_seq.html).

RB1 Fragments Expression and Purification
Proteins were expressed in the Escherichia coli strain Rosetta

(DE3) pLysS. Production was induced using 0.2 mM IPTG

(isopropyl b-D-thiogalactopyranoside) at 20uC overnight. Bacterial

cell pellets were resuspended in lysis buffer (20 mM Tris-Cl

pH 7.5, 500 mM NaCl, 5 mM b-mercaptoethanol) containing

EDTA-free protease inhibitor mix (Roche), lysozyme and DNase I

(Roche) and suspensions sonicated. Proteins were purified from the

soluble fraction by nickel-nitrilotriacetic acid affinity chromatog-

raphy and eluted with lysis buffer containing 400 mM imidazole.

Eluates were dialysed against buffer containing 200 mM NaCl,

20 mM Tris–HCl pH 7.5, 10 mM b-mercaptoethanol and 1 mM

EDTA. Proteins were further purified by amylose affinity

chromatography using a 5 ml MBP-Trap column (GE Health-

care), with elution into dialysis buffer containing 20 mM maltose,

followed by size-exclusion chromatography using a Superdex 200

16/60 column (GE Healthcare) pre-equilibrated with 20 mM

Tris-Cl pH 7.5, 200 mM NaCl and 10 mM b-mercaptoethanol.

MBP-tags were removed using TEV protease prior to size

exclusion chromatography where indicated. Samples were con-

centrated by using a VivaSpin20 concentrator MWCO 30.000

(Sartorius). The protein purity was examined by SDS–PAGE

electrophoresis. The same expression and purification procedure

was used for all constructs.

Enzymatic Modifications
Purified RB1 protein preparations were phosphorylated in

a reaction containing 10 mM MgCl2, 10 mM ATP, 100 mM

NaCl, 25 mM Tris-CL (pH 8.0), and 2% (volume per mass)

Kaposi’s Sarcoma-associated herpesvirus cyclin (K cyclin) activat-

ed Cdk6. K cyclin-activated Cdk6 were produced by recombinant

baculovirus infection of SF9 insect cells as described [36].

Reaction conditions were essentially as in [37], except that

reactions were performed at 4uC, for a total of 60 min.

Kinase-treated MBP-ddRB-NP was purified using amylase

affinity chromatography followed by size exclusion chromatogra-

phy. To confirm phosphorylation proteins were subjected to LC/

MS/MS analysis using a LTQ Velos Orbitrap mass spectrometer

(Thermo Fisher Scientific, Hemel Hempstead, UK) fitted with

a non-coated SilicaTip emitter (20 mm I.D., 10 mm tapered tip;

New Objectives, Woburn, MA, USA). MS/MS-based spectra
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Figure 4. Binding surfaces positioning in the active and inactive structure, and predicted molecular movement to yield inactive
RB1. A., B. Relative orientation of the functional surfaces in the model of active, nonphosphorylated (A) and inactive, phosphorylated (B) RB1.
Cartoon representation of Rb-NP with overlaid transparent surface with RB-N in light blue, RB-P in light-pink. The residues involved in docking LXCXE
are shown in yellow, those forming the FXXXV motif are shown in purple and those for EXXXDLFD in cyan. The residues 346–355 which form a helix
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were mined using Scaffold v3.0 (Proteome Software Inc., Portland,

OR).

SAXS Data Collection and Analysis
Synchrotron SAXS data were collected on the EMBL X33

camera on the storage ring DORIS III (Deutsches Elektronen-

Synchrotron (DESY), Hamburg, Germany) using either

a MAR345 IP detector and 4 frames with exposure time of 30

seconds or a Pilatus 1 M pixel detector and eight frames with

exposure time of 15-seconds. The sample-to-detector distance was

2.7 m, covering a range of momentum transfer

0.1 nm21,s,6 nm21 (s = 4psinh/l, where 2 h is the scattering

angle, and l = 0.15 nm is the X-ray wavelength). Comparison of

successive 15-second or 30-second frames revealed no evidence for

radiation damage. All samples were measured at a minimum of

two solute concentrations ranging from 1 mg/ml to 4 mg/ml at

4uC. The subtracted curves were scaled against the solute

concentrations and either merged (in the absence of concentration

dependence) or extrapolated to infinite dilution (in the presence of

concentration dependence) using PRIMUS [22]. The radius of

gyration Rg and forward scattering I(0), the maximum particle

dimension Dmax and the distance distribution function p(r) were

evaluated using the program GNOM [38]. Molecular masses of

solutes were estimated by calibration against reference solutions of

bovine serum albumin. The excluded particle volume Vp was

computed from the scattering data using Porod invariant [39].

Low resolution ab initio models were generated using DAMMIN

[19]. The results of 10 independent DAMMIN runs were analyzed

and averaged by SUPCOMB [40] and DAMAVER [41].

The position of MBP in the fusion protein was determined by ab

initio program MONSA [19], an extended version of DAMMIN.

In this approach, scattering patterns from ddRB-NP MBP-ddRB-

NP and ddRB-NP-MBP were simultaneously fitted by the

multiphase bead model depicting the ddRB-NP and MBP moieties

in these constructs.

EM Methods
Both MBP-ddRB-NP and phosphorylated MBP-ddRB-NP

samples were applied at a concentration of ,10 mg/ml to glow-

discharged quantifoil grids coated with a continuous thin carbon

layer and stained with 2% uranyl acetate. Images were collected

with a FEI Tecnai F20 electron microscope operating at 200 kV

on a Tietz 4 k64 k CCD detector at a nominal magnification of x

50,000 corresponding to a sampling rate of 3.47 Å/pixel. Single

molecular views were chosen manually using Boxer, part of

EMAN [42], resulting in an initial data set of 5829 particles for

MBP-ddRB-NP and 2788 for phosphorylated MBP-ddRB-NP.

Reference-free class averages were obtained on the datasets band

pass filtered between 150 and 30 Å using the procedure refine2d

from EMAN and compared with the refined class averages

obtained during the 3D analysis. Subsequent processing used

programs from Imagic [43] and SPIDER [44].

For the 3D analysis the datasets were band pass filtered between

150 and 20 Å. Initial reference models were generated from the

SAXS envelope of MBP-ddRB-NP and the crystal structure of

phosphorylated MBP-ddRB-NP (PDB code 4ELJ); [21]. Both

models were low-pass filtered to 40 Å and used to align the

respective experimental datasets. Angular assignment was per-

formed by projection matching in Imagic and the 3D reconstruc-

tions were calculated using a locally developed Fourier space

algorithm [45]. The refinement consisted of iterations of multi-

reference alignment in SPIDER, multivariate statistical analysis

and classification in Imagic. At each stage the agreement between

class and reprojection was assessed and a manual selection of

classes composed of a homogeneous population of single molecular

images was made in order to calculate a new 3D volume and its

forward projections used as references for the next cycle of

refinement. The final 3D map of MBP-ddRB-NP was obtained

from 2941 particles and that of phosphorylated MBP-ddRB-NP

from 2523. The maps were segmented using an automatic

procedure in Chimera [46].

Supporting Information

Figure S1 Characterisation of RB1-derivative prepara-
tions. A. Multi-angel light scattering (MALS) molar mass

distribution plot. Data were recorded in flow mode. RB

preparations are colour-coded as indicated. Horizontal lines

represented the molecular weight obtained as a function of the

elution volumes. B. ddRB-NP was cross-linked with BS3 and

analyzed by SDS-Polyacrylamide gel elecrtophoresis. Marker (lane

1), ddRB-NP (lane 2), ddRB-NP samples cross-linked with

25 mM, 5 mM, 0.5 mM and 0.05 mM Bis[sulfosuccinimidyl]

suberate (BS3), respectively (lanes 3–4), at a protein concentration

of 3 mg/ml. C. Guinier region plot for samples as indicated, at C1

concentration. For derived parameters refer to Table S2.

(TIFF)

Figure S2 SAXS results for ddRB-NP derivatives and
corresponding RB-NP derivatives. A. Experimental scatter-

ing patterns of (1) ddRB-NP shown as red triangles with black

error bars and RB-NP, shown as black squares with grey error

bars, and (2) MBP-ddRB-NP shown as red triangles with black

error bars and MBP-RB-NP shown as black squares with grey

error bars. Shown is the logarithm of the scattering intensity as

a function of momentum transfer s = 4psin(h/2)/l where h is the

scattering angle and l = 1.5 Å is the X-ray wavelength. B.
Distance distribution functions for constructs ddRB-NP, RB-NP,

MBP-ddRB-NP and MBP-RB-NP.

(TIFF)

Figure S3 Electron microscopy of MBP-ddRB-NP. A.–E.
unmodified MBP-ddRB-NP A. Electron micrograph of a nega-

tively stained MBP-ddRB-NP. Different views are identified with

black circles. B. Selection from the initial class averages obtained

by automated alignment and classification procedures. C.
Examples of single particles (i), their corresponding class average

(ii) and re- projections of the 3D reconstruction in their assigned

orientation (iii). D. Distribution of Euler angles. E. Resolution

assessment by Fourier shell correlation showing a resolution of

in unmodified RB-N but are disordered in inactive RB-NP are represented in dark grey [17,21], amino acid groups involved in RB-N:P interphase
interaction in the inactive conformation in red ([RB-N K136, D139, T140, T142, D145], [RB-P Q736, E737, K740, K729]) and orange [(RB-N L161, K164,
L206-E209, L211-I213, F216, E282, E287, N290, N295] [RB-P Q736, E737, K740, K729]). C., D. Cartoon representation of active, nonphosphorylated, (C)
and inactive, phosphorylated (D) RB1. RB-N B-fold is coloured in green and RB-P B-fold in purple (this different colour scheme has not been used
elsewhere in the paper and is only used here for clarity). The residues 346–355 which are structured in unmodified RB-N and unstructured in inactive
RB-NP are represented in dark grey. E. Predicted molecular movement yielding conformational RB1 inactivation. Note surfaces involved in binding
LXCXE motif proteins in RB-P (salmon/pink) and the homologous surface involved in FXXXV binding in RB-N (cyan/blue) are collinear in the active
(left) but not inactive form (right).
doi:10.1371/journal.pone.0058463.g004
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27 Å at 0.5 correlation. F.–J. phosphorylated MBP-ddRB-
NP F. Electron micrograph of a negatively stained phosphorylated

MBP-ddRB-NP. Different views are identified with black circles.

G. Selection from the initial class averages obtained by automated

alignment and classification procedures. H. Examples of single

particles (i), their corresponding class average (ii) and re-

projections of the 3D reconstruction in their assigned orientation

(iii). I. Distribution of Euler angles. J. Resolution assessment by

Fourier shell correlation showing a resolution of 24 Å at 0.5

correlation.

(TIFF)

Figure S4 Surface views of the initial and final 3D
models of MBP-ddRB-NP and phosphorylated MBP-
ddRB-NP. A. 3D reconstruction for unmodified MBP-ddRB-

NP (i, ii) and phophorylated MBP-ddRB-NP (ii, iv) (i) Surface view

of the 3D volume derived by converting a SAXS envelope of

MBP-ddRB-NP followed by low pass filtering to 40 Å. (ii) Surface

view of the 3D reconstruction of MBP-ddRB-NP obtained using

the forward projections of the model shown in (i) as reference for

initial alignment and projection matching. The obtained 3D map

is consistent with the model but exhibits more features than the

starting model (i). (iii) Surface view of the 3D volume derived by

low pass filtering the atomic model 4ELJ.pdb to 40 Å. (iv) Surface

view of the 3D reconstruction of phosphorylated MBP-ddRB-NP

obtained using the forward projections of the model shown in (iii)

as reference for initial alignment and projection matching. The 3D

reconstruction is more detailed compared with (iii) and density for

the MBP-tag (absent from the initial model) is visible. B. Three

orthogonal surface views of unmodified MBP-ddRB-NP C. Three

orthogonal surface views of phosphorylated MBP-ddRB-NP.

Maps in B) and C) were aligned manually in Chimera with

respect to their respective RB-N densities.

(TIFF)

Figure S5 PHYRE-based in silico model prediction for
RB-NP. A. PHYRE2 generated model for RB-NP, R-Linker

(residues 250–269) and P-linker (residues 579–643) are depicted in

black, the sequence joining RB-N and RB-P (residues 355–357) is

coloured in red, RB-N lobe A in cyan, lobe B in blue. RB-P lobe A

in dark salmon, RB-P lobe B in pink. The most likely model

obtained is shown, with residues (67%) modelled at .90%

accuracy. Modelling was performed prior to knowledge of 4ELJ.

B. Proposed domain orientation for unmodified RB1, based on

single particle EM, from Figure 3, displayed for comparison.

(TIFF)

Figure S6 Model alternative for domain arrangement.
A. Alternatively docked structures of RB-N and RB-P (2QDJ and

3POM) (i) superimposed on the 3D single particle reconstruction

from TEM images. The calculated density map is shown in mesh

representation in grey, RB-N lobe A in cyan, lobe B in light blue.

RB-P lobe A is shown in dark salmon, RB-P lobe B in pink, as for

Figure 3. The alternatively docked model requires assumptions

that linkers joining RB-N and RB-P (residue 356–374) and linking

RB-N to MBP adopt a maximally extended, unstructured

conformation (.2.5A/peptide bond). Surface distance estimations

between adjoining residues in individual domains are indicated,

residue positions are marked with blue-filled circles, * denotes

unoccupied density. The initial favoured model from Figure 3 with

distance estimation shown for comparison (ii). B. Positioning of

functional surfaces in alternative (i) and preferred (ii) model for

active RB-NP. Surface model superimposed with cartoon. RB-N

in light blue, RB-P in light-pink, residues involved in docking

LXCXE in yellow, FXXXV in purple, EXXXDLFD in cyan,

residues 346–355 which are structured in unmodified RB-N but

unstructured in inactive RB-NP in grey, amino acid groups

involved in the RB-N:P interphase in the inactive conformation in

red ([RB-N K136, D139, T140, T142, D145], [RB-P Q736,

E737, K740, K729]) and orange [(RB-N L161, K164, L206-

E209, L211-I213, F216, E282, E287, N290, N295] [RB-P Q736,

E737, K740, K729]). C. Simulation of molecular movement

required to generate the inactive conformation based on the

alternative model, necessitating rotation around a centrally located

axis within RB-N along with a 20 Å descend to align domains as in

the inactive conformation.

(TIF)

Figure S7 MS/MS characterisation of Kcyclin/cdk6
phosphorylated MBP-ddRB-NP. A. Documentation of se-

quence coverage. Yellow regions indicate peptide coverage.

Proline-directed consensus sites within RB1 (Ser230, Thr356,

Thr373 an Ser780) are boxed B., C. MS/MS collision spectra

identifying phosphorylation on RB1 residue T356 (B) and T373

(C). Recorded y and b ions and the related peptide sequence are

labelled, graphs depicting mass/charge versus intensity.

(TIFF)

Table S1 Theoretical and experimentally determined
molecular weights (MW) for proteins in solution based
on multi-angle light-scattering (MALS).

(DOC)

Table S2 SAXS-derived parameters for datasets used in
this study.

(DOC)
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