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Abstract

The output of individual neurons is dependent on both synaptic and intrinsic membrane properties. While it is clear that the
response of an individual neuron can be facilitated or inhibited based on the summation of its constituent synaptic inputs, it
is not clear whether subthreshold activity, (e.g. synaptic ‘‘noise’’- fluctuations that do not change the mean membrane
potential) also serve a function in the control of neuronal output. Here we studied this by making whole-cell patch-clamp
recordings from 29 mouse thalamocortical relay (TC) neurons. For each neuron we measured neuronal gain in response to
either injection of current noise, or activation of the metabotropic glutamate receptor-mediated cortical feedback network
(synaptic noise). As expected, injection of current noise via the recording pipette induces shifts in neuronal gain that are
dependent on the amplitude of current noise, such that larger shifts in gain are observed in response to larger amplitude
noise injections. Importantly we show that shifts in neuronal gain are also dependent on the intrinsic sensitivity of the
neuron tested, such that the gain of intrinsically sensitive neurons is attenuated divisively in response to current noise, while
the gain of insensitive neurons is facilitated multiplicatively by injection of current noise- effectively normalizing the output
of the dLGN as a whole. In contrast, when the cortical feedback network was activated, only multiplicative gain changes
were observed. These network activation-dependent changes were associated with reductions in the slow after-
hyperpolarization (sAHP), and were mediated at least in part, by T-type calcium channels. Together, this suggests that TC
neurons have the machinery necessary to compute multiple output solutions to a given set of stimuli depending on the
current level of network stimulation.
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Introduction

Individual thalamocortical relay (TC) neurons can mediate non-

linear signal transformations, which may be important for both the

gating and information processing functions of the thalamus. For

example, the expression of low-voltage activated T-type Ca2+

channels [1,2,3], important in the generation of brain rhythms

[4,5,6], confers two distinct response modes on TC neurons

[7,8,9]. The mode of firing – ‘burst’ or ‘tonic’ – depends upon the

recent membrane potential history [9,10], which can be modu-

lated by synaptic inputs [11,12]. In particular, the sign of retinal

(feedforward) inputs onto TC neurons determines which mode of

firing is recruited to signal specific features of a visual scene

[13,14,15,16]. These studies show that individual TC neurons

have the cellular machinery necessary to provide adaptive

computations over their inputs.

The lateral geniculate nucleus (LGN), the primary relay of

retinal signals to the visual cortex, has proved to be a useful model

system for studying thalamic function [17]. Anatomical studies

demonstrate that TC neurons receive a wide range of inputs from

cortical, subcortical, and peripheral sensory structures [18,19,20].

Many of these have addressed the peculiar advantages of the

‘burst’ firing mode [21,22], but during normal processing it is the

tonic-firing mode that predominates, providing over 90% of

spikes. Here we asked whether the output of TC neurons during

both discharge patterns were affected by specific network

activation states. Specifically, we investigated the mechanisms by

which TC neurons adjust their sensitivity (firing threshold and

gain) to simulated network activity (via injected current noise) and

physiologically relevant activity (via the metabotropic glutamate

receptor-mediated corticothalamic feedback pathway- which

accounts for 30% of inputs to these neurons [23]). Studies in rat

somatosensory cortex and guinea pig thalamus have shown that

increasing the amount of current noise reduces the gain of neurons

[24,25], while studies in somatosensory cortex [26] have shown

that different types of neurons may respond differently to noise. By

conducting patch-clamp recordings from mouse dLGN TC

neurons, we show that simulated network activity (current-noise)

and physiological activity (excitatory corticothalamic feedback)

increase gain on average. In addition, simulated network activity

also reduced gain in a minority of neurons, suggesting that the

prevailing level of network activation may perform a normalisation

operation, tending to set the sensitivity of neurons at an optimal

value.
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Methods

Ethics Statement
All procedures were approved by the Animal Care and Ethics

Committee of the University of Sydney (protocol number K22/6-

2009/3/5042).

Animals and Tissue Preparation
All experiments were performed on juvenile (22–60 days) male

C57BL/6 mice [27]. All chemicals were obtained from Sigma

Aldrich (Castle Hill, Australia) unless otherwise specified. Mice

were deeply anaesthetized with an intraperitoneal injection of

Ketamine (1 mg/kg; Parnell, Alexandria, Australia) and decapi-

tated. The parietal and occipital bones were removed to expose

the dorsal region of the brain. During this procedure the brain was

constantly bathed in ice-cold sucrose-based artificial cerebrospinal

fluid (sACSF) that contained (in mM): 236 sucrose, 26 NaHCO3,

11 glucose, 3 KCl, 1.25 NaH2PO4, 2 MgCl2, 2.5 CaCl2. This

solution was continually gassed with Carbogen (95% O2, 5% CO2)

to achieve a final pH of 7.2–7.3 [27,28]. To isolate the dLGN, two

cuts were made in the coronal plane; one approximately 1 mm

rostral and the other approximately 4 mm caudal to bregma. This

block of tissue was removed from the skull and secured caudal face

down to the stage of a vibrating microtome (DSK Microslicer

DTK-1000, Kyoto, Japan) using cyanoacrylate glue (Selleys,

Padstow, Australia). This setup was transferred to a cutting

chamber filled with ice-cold, continually oxygenized sACSF.

Coronal slices (250 mm thick) were cut, and those containing the

LGN (3–4 slices [29]) were transferred to an incubation chamber

containing ACSF (120 mM NaCl substituted for sucrose), at room

temperature (21uC) and allowed to equilibrate for 1.5 hrs prior to

recording.

Electrophysiology
After incubation slices were transferred to a small glass-bottom

recording chamber and secured by a weighted nylon net. The

chamber was continually perfused (5–6 bath volumes/min) with

oxygenized ACSF at 32 6 1uC. Slices were viewed using a fixed-

stage microscope (Olympus BX-51WI, Tokyo, Japan) at low

power (10x) to identify the dLGN. Thalamic neurons were visually

identified using near infra-red differential interference contrast

optics and a high power (40x) water-immersion lens. Micropipettes

were pulled from thin-walled borosilicate glass tubing (1.5 mm

OD, Warner Instruments, Hamden, Connecticut) using a

micropipette puller (Narishige, Tokyo, Japan). Pipettes were filled

with a potassium-based internal electrode solution containing (in

mM): 70 potassium gluconate, 70 KCl, 2 NaCl, 10 HEPES, 4

EGTA, 4 Mg2-ATP, 0.3 Na3-GTP. The pH was adjusted using

KOH to give a final pH of 7.3 and an osmolarity of 290 mOsmol

[27,30]. Lucifer yellow (0.5 mg/mL, Invitrogen, Eugene, Oregon)

was included in the internal solution to allow for post-recording

morphological analysis of individual neurons and mapping of

recording sites. Recording pipettes (final resistance of 4–7 MV)

were positioned in the recording chamber using a motorised

micromanipulator (Sutter, Nuslock City, Germany). Voltage data

was corrected for a measured junction potential of -6 mV, and fast

and slow capacitance was uncompensated. Targeted recordings

were made throughout the anatomical extent of the dLGN to

sample from the largest possible cell population (Figure 1).

Whole-cell current clamp recordings were made using a

Multiclamp 700B amplifier (Molecular Devices, Sunnyvale,

California, USA). Records were sampled at 10 kHz using an

ITC-18 digitiser (Instrutech, California). Data acquisition was

performed on an Intel-based Apple Macintosh iMac computer

using Axograph X v1.3 acquisition software (Axograph Scientific,

Sydney, Australia). Analysis was carried out using software

packages within Axograph X or Igor Pro 6.01 (Wavemetrics,

Lake Oswego, OR, USA). Recordings were made from cells with

resting membrane potentials between -60 and -75 mV and input

resistances greater than 40 MV, a criterion satisfied by all but 4 of

33 cells targeted. During whole-cell current clamp recordings, the

following drugs were added to the ACSF as required: 250 mM

NiSO4 (Ni2+, T-type Ca2+ channel blocker), 100 nM tetrodotoxin

(TTX), 250 mM 1-aminocyclopentane-trans-1,3-dicarboxylic acid

(trans-ACPD; mGluR1a agonist, Tocris Bioscience, Brisbane,

Australia).

Immunocytochemistry
Slices from which successful recordings were made were fixed in

4% paraformaldehyde for 24 h post-recording. Slices were then

washed in 0.1 M phosphate-buffered saline (PBS) for 1 h, pre-

incubated in a solution of 5% bovine serum albumin (BSA) and

0.5% Triton x100 in 0.1 M PBS for 1 h, and incubated in a

primary antibody solution containing 1% BSA, 0.5% Triton x100,

0.1% sodium azide and rabbit anti-Lucifer yellow IgG (2 mg/uL,

Invitrogen, Mulgrave, Australia) in 0.1 M PBS for 5 days. Slices

were then washed in PBS overnight and incubated in a secondary

antibody solution containing 1% BSA, 0.25% Triton x100, 0.1%

sodium azide and goat-anti rabbit IgG conjugated with Alexa594

Figure 1. Schematic of the mouse dorsal lateral geniculate
nucleus (dLGN) and representative noise stimuli. A. The dLGN is
shown in relation the hippocampus (CA3 and CA1), ventral lateral
geniculate nucleus (vLGN), lateral posterior nucleus (LP), posterior
nucleus (PO), and the medial portion of the posterior nucleus (VPM) in a
coronal plane (2.06 mm caudal to Bregma, left hemisphere). Inset
shows the map of recording sites within the dLGN. Note that cells were
recorded throughout the dorsoventral, and mediolateral extent of the
LGN (Plates 45–51 in Paxinos and Watson, 2008. On the bottom right is
a photo of a representative TC neuron. B. The response of a cell to a
noisy current stimulus with a mean current of 0 pA. The value s12.5 for
current noise of different standard deviations (n) was calculated as the
standard deviation of the recorded membrane potential. The noise
levels presented throughout are the average of the standard deviation
(caused by this stimulus for each n) across all cells tested.
doi:10.1371/journal.pone.0057961.g001
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(2 mg/uL, Invitrogen) in 0.1 M PBS overnight. Slices were then

washed in PBS and mounted onto glass slides using Citifluor anti-

fadent mounting media (Proscitech, Kirwan, Australia) and a

plastic coverslip. Labelled cells were imaged using a Zeiss Axiovert

microscope (Oberkochen, Germany) equipped with a 40x oil-

immersion lens and a 585 nm emission filter.

Current stimuli
‘Noisy’ current steps were 1 second in duration and generated at

the rate at which data was acquired (10 kHz). The magnitude of

the current at each time point was randomly drawn from a

Gaussian distribution (zero-mean) to create a sample of ‘white’

noise, which was subsequently low-pass filtered at 2 kHz. The

amplitude of this sample was scaled so that the standard deviation

was 6.25, 12.5, 25 or 50 pA. The noise was injected alone, or was

added to a step function of the same duration, the amplitude of

which ranged from 100 pA to 200 pA (10 pA increments).

Responses were obtained to each of the 4 noise amplitudes, at each

of the step amplitudes. To represent the injected noise in a relevant

way the noise level (sn, where n is the standard deviation of the

injected current) that we show is the standard deviation of the

membrane potential during injection of the noise stimulus alone.

Data Analysis
Passive membrane properties, including impedance and capac-

itance, were measured before and after the quantitative measure-

ments described here, and were derived from the response to

10 ms, 5 mV pulse delivered in voltage-clamp mode from a

holding potential of 270 mV. Data were rejected if these

parameters changed by more than 20% during the course of an

experiment.

Discharge Properties. Resting membrane potential was

calculated as the average potential during the 500 ms preceding

each stimulus. Only spikes with amplitudes that exceeded a

threshold value of 0 mV (overshooting spikes) were included for

analysis. The stimulus-afterhyperpolarisation (sAHP) was defined

as the difference between the minimum membrane potential after

stimulus offset and the resting membrane potential. Pairs of spikes

with inter-spike time intervals (i.s.i’s) of , 5 ms were classified as

‘burst spikes’, while the remainder were classified as ‘tonic spikes’.

Spike frequency was calculated by counting the number of spikes

occurring over the 1-second depolarizing current step. Frequency

was then plotted against the magnitude of injected current (f-I plot)

from the responses to a set current steps (20 pA increments, 0 to

400 pA) to calculate two measures of sensitivity: 1) threshold,

defined as the minimum input strength necessary to evoke

discharge tonic discharge . 3 Hz, and 2) gain, calculated as the

slope of the linear regression for responses above threshold. To

ensure that measures of sensitivity were not masked by the size of

the recorded cell, threshold and gain estimates were normalised by

multiplying each parameter by the inverse of the recorded

impedance of each cell.

Quantifying influence of simulated inputs. The variance

in membrane potential was used to assess the impact of trans-

ACPD in activating synaptic inputs on TC cells. The noise level

(sn) was defined as the standard deviation of the membrane

potential in response to a noise stimulus delivered in the absence of

an increase in mean current. For control estimates, the variance

was calculated over a 30 second window before the application of

the trans-ACPD, and for drug-induced values during a 30 second

window 5 minutes after the beginning of drug application.

Statistical analysis. Student’s t-tests were used for compar-

isons between variables under control and drug application, or in

the presence of noise. When analysing the distributions of

threshold and gain we used a Kolomogorov-Smirnov test for

normality. Significance was set at p , 0.05. All errors are

presented as the standard error of the mean (SEM) unless

otherwise stated.

Results

Whole-cell current clamp recordings were obtained from 29

identified dLGN neurons from 15 animals, as part of a larger set of

experiments. Visual criteria, including large soma size and degree

of dendritic arborization, were used to target putative thalamo-

cortical (TC) relay neurons. Electrophysiological criteria, including

the presence of low-threshold action potentials and a depolarising

sag in response to hyperpolarising pulses [31], provided the TC

classification. One neuron produced action potentials at a very low

rate (,5 Hz) throughout the experiment and was excluded from

analysis. The population of TC cells had the following passive

membrane properties (mean 6 SD): average resting membrane

potential = -67 6 4 mV, and input resistance = 84 6 5 MV. No

cells produced action potentials spontaneously from resting

membrane potential. Subsequent reconstruction of the recorded

neurons was enabled by addition of lucifer-yellow to the recording

pipette (Figure 1). The morphology of all the neurons included

here was consistent with the known morphology of TC cells [32].

Burst and tonic firing occurs from resting potential
At resting membrane potential all TC cells were silent. In

response to a current pulse delivered from rest, TC cells produced

action potentials in a stereotypical pattern. Figure 2A shows the

typical response of a TC cell to a 1 s current pulse of 200 pA. At

the beginning of the current step the cell responded with a burst of

high frequency spikes (range: 2–7 spikes/burst, mode: 3 spikes/

burst, n = 28). The magnitude of this burst was independent of

injected current; a current pulse sufficient to bring about a LTS

led to a burst of spikes that was stable for each neuron. This burst

of firing was followed by tonic firing in 24 of the 28 cells, which

persisted throughout the current step, and followed the burst by a

short latency (65.0 6 18 ms, n = 24). Unlike the initial burst

response, the frequency of discharge in the tonic period increased

with current amplitude (max: 117 Hz), but never approached the

rate during burst firing (by definition .200 Hz).

The distinction between the burst and tonic firing modes is

made clear by constructing a histogram of the interspike intervals

(ISI’s) for every pair of spikes recorded during presentation of a set

of 20 current steps (from 0 to 400 pA; Fig. 2B). The distribution

segregated into two distinct groups; one containing all pairs of

spikes with ISI # 5 ms (black bars, Fig. 2B), the other containing

pairs with ISI . 5 ms (white bars, Fig. 2B). All pairs of spikes with

ISI # 5 ms occurred within the ‘burst’ at the onset of each step,

and all pairs of spikes during the tonic period showed ISI . 5 ms,

regardless of the input current amplitude. This is consistent with

the presence of two distinct firing modes in TC cells that occupy

exclusive temporal domains when stimulated from resting

membrane potential.

Variability in the sensitivity of TC cells
To analyse changes in the sensitivity of TC cells, we first needed

to establish the baseline measures of gain and threshold in the

absence of external influences. In the following we restrict our

analysis to the tonic component of TC cell spiking activity. We do

this because burst spiking provides no graded input-output

relationship from which to infer sensitivity, and because the tonic

mode represents a more dynamic component of the TC cell firing

output. Figure 3A shows the spike frequency vs. current (f-I)

Gain Control in the Lateral Geniculate Nucleus
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relationship in response to current steps for a typical TC cell. In

this and all cells, tonic discharge rates rose rapidly and relatively

linearly following a threshold, before saturating at a discharge rate

of near 100 Hz. The average tonic firing threshold (211 6 15 pA,

n = 24) was 53% larger than the threshold for burst firing (143 6

16 pA, n = 24). We define the tonic threshold as the first current

value capable of driving tonic discharge above 3 Hz, and

calculated the gain as the slope of a linear fit to the straightest

portion of the f-I plot. To allow comparison between cells, the

estimated gain and threshold was normalised against input

resistance (see Methods). Figure 3B plots these normalised values

for the sample of TC cells. Gain was well described by a normal

distribution (0.290 6 0.02 Hz/pA, n = 24, Fig. 3B; p , 0.01,

one-sample Kolmogorov-Smirnov test), while thresholds appeared

uniformly distributed. The input sensitivity of TC cells is therefore

heterogeneous.

Impact of current noise on input sensitivity
The output of individual cells is the eventual product of

transformations imposed by synaptic inputs on intrinsic membrane

properties. As a simple substitute for network activity, we asked

how adding noise to the current pulse, simulating the addition of a

background synaptic barrage, altered the gain of TC cells. Figure

4A shows the f-I relationship for a single TC cell in response to

different levels of current noise. In this example, gain increased

with increasing levels of noise (0.05 Hz/pA at s0 = 0.05 mV,

0.39 Hz/pA at highest noise level, s50 = 1.57 mV, Fig. 4A inset)

and threshold decreased (s0: 170 pA, s50: 140 pA). Across our

sample of cells the addition of noise increased gain from 0.27 6

0.04 Hz/pA at s0 = 0.53 6 0.05 mV, to 0.41 6 0.02 Hz/pA at

Figure 2. Burst and tonic spikes occur within exclusive
temporal domains. A. The stereotypical response of a TC cell to a
1s, 200 pA depolarising current pulse delivered from resting membrane
potential (-65 mV). The onset of the response (first 150 ms, inset) is
characterised by a high frequency burst of spikes (246 Hz, arrow)
followed by a shift to tonic firing. B . Interspike interval (i.s.i.) histogram
(1 ms bin width) from a single TC cell in the response to a set of 20
current steps from 0 to 400 pA. Note the clear segregation either side of
the 5 ms interval. Adjacent spikes with intervals shorter than 5 ms were
classified as ‘‘burst’’ spikes, while those greater than 5 ms were
classified as ‘‘tonic’’ spikes. Intervals greater than 50 ms (4 out of 693 in
this example) were excluded from the plot for clarity.
doi:10.1371/journal.pone.0057961.g002

Figure 3. TC cells display a wide range of gains and thresholds.
A. Firing rate as a function of input current amplitude (f-I relationship)
for a typical TC cell. A straight line was fitted from the first point above
tonic firing threshold to the last recorded response; the slope of this fit
was a measure of gain. The gain and threshold of this neuron were
0.432 Hz/pA and 180 pA respectively. Shown to the right are
representative traces recorded in response to 200, 300 and 400 pA
(square, diamond, and circle respectively) current pulses. B. Firing
threshold plotted as a function of gain. Both measures were normalised
against the input resistance of each cell to minimize error associated
with cell soma area. The average of each measure (and their respective
SEMs) is indicated by the empty circle. A histogram of normalised gain
(above) demonstrates that gains are normally distributed.
doi:10.1371/journal.pone.0057961.g003
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s50 = 1.57 6 0.09 mV (n = 18, p , 0.01, Fig. 4B). The increase

in gain is consistent with a multiplicative transformation of

neuronal output. Meanwhile, threshold decreased on average,

from 160 6 8.6 pA at s0, to 122 6 5.2 pA at s50 (n = 18, p ,

0.001, Fig. 4C). This represents a leftward shift of the f-I curve (see

Fig. 4A), and unlike the change in gain is consistent with an

additive process [33].

Noise normalises gain
Although the addition of noise on average increased the gain of

TC cells, in 5 of 18 cells tested the gain significantly decreased (for

this sample, s0: 0.50 6 0.05 Hz/pA, s50: 0.44 6 0.03 Hz/pA; n

= 5, p = 0.02). Figure 5A plots gain as a function of noise

amplitude for those cells where gain increased (solid circles) and

those where it decreased (open circles). The impact of the noise

depends on the initial gain of the cell, so that those with high gain

in the absence of noise are attenuated by noise and vice versa. To

further characterise this, we plotted histograms for the distribution

of gains under both control and noisy conditions (Figure 5B).

Under noisy conditions, the range of gains was 34% smaller than

under control conditions (noise: 0.20–0.55 Hz/pA, control: 0.0–

0.68 Hz/pA), suggesting a narrowing of the distribution. The

standard deviation (SD) of the distribution in the presence of noise

was correspondingly reduced by 52% when compared to

measurements obtained without noise (noise: 0.08 Hz/pA, con-

trol: 0.19 Hz/pA; Fig. 5C). These changes indicate that noise

decreases the variability in sensitivity between cells. This noise-

induced reduction in variability was also evident in the thresholds:

the range decreased by 30% (noise: 70 pA, control: 100 pA), and

the SD of the distribution decreased by 39% (noise: 22 pA,

control: 36 pA). No other recorded parameters distinguished cells

with high and low gain.

Postsynaptic current noise can induce gain changes
Excitatory corticothalamic synapses, mediated by postsynaptic

mGluR1a glutamate receptors [11], account for about 30% of the

total synaptic input onto TC cells in dLGN [20,34]. These

corticothalamic synapses may act as a potent source of synaptic

noise, and thereby modulate the input sensitivity of TC cells. To

test this hypothesis, we bath-applied the mGluR1a agonist trans-

ACPD [35]. In 7 cells tested, bath-application of trans-ACPD

significantly depolarised the membrane (trans-ACPD: -62.9 6 4.5

mV; control: -66.8 6 4.6 mV; n = 7, p , 0.005), increased the

standard deviation of the membrane potential (trans-ACPD: 1.6 6

0.34 mV; control: 0.72 6 0.21 mV; n = 7, p , 0.01; Figures 6A

& B). The SD of the membrane potential during trans-ACPD

Figure 4. Noise induces both additive and multiplicative gain
changes. A. Shows for a typical TC cell the f-I relationships plotted at
different levels of current noise (sn, where s is the standard deviation
of the membrane potential in response to a ‘noisy’ current pulse with a
mean current of 0 pA, and n represents the standard deviation of the
injected current noise). In this example, the highest level of noise
significantly increased the gain (0.05 to 0.39 Hz/pA; multiplicative gain
change, indicated by an increase in the slope) and decreased the
threshold (160 to 140 pA; additive gain change, indicated by a shift to
the left) of this cell in comparison to control conditions. B. Gains
averaged across the sample population plotted against noise level. On
average, increasing levels of noise increased the gain of TC cells. Data
points were well fit by an inverse exponential function, indicating that
increases in gain saturate at high noise levels. C. Increasing levels of
noise reduced the threshold of TC cells. As in B, this reduction saturated
at high noise levels (between 1.0 and 1.5).
doi:10.1371/journal.pone.0057961.g004

Figure 5. Noise normalises gain changes. A. Gain changes were
not uniform within the recorded population, as noise reduced gain in
cells with initially high gains (n = 5, open circles), and increased gain in
those with low initial gains (n = 13, closed circles). B. Histograms of
gains across the sample population (n = 18) under control conditions
(dashed line) and for the highest level of noise (s50, solid line). Note the
sharper distribution of gains under noisy conditions. C. The standard
deviation of the average of gains across the population, plotted against
the corresponding noise level. The standard deviation is reduced by
52% at high noise levels. Data were fit with an inverse exponential
function.
doi:10.1371/journal.pone.0057961.g005
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application approximated that produced by the highest level of

current noise (1.57 mV). To determine whether pharmacologically

induced synaptic activity would induce gain changes similar to

those seen with noisy current stimuli, we delivered noiseless

current pulses to 3 cells during the application of trans-ACPD.

Gain significantly increased in each of these cells (trans-ACPD:

0.39 6 0.12 Hz/pA; control: 0.25 6 0.13 Hz/pA; n = 3, p =

0.03, Fig. 6C), while threshold tended to decrease (trans-ACPD:

187 6 87 pA; control: 293 6 59 pA; n = 3, p = 0.11), along with

the input resistance (trans-ACPD: 27 MV; control: 53 MV; n =

3, p = 0.11). Unlike the case with simulated current noise, trans-

ACPD always produced an increase in gain in the recorded cell,

regardless of the initial gain.

Synaptic noise, but not current noise, changes sAHP
Previous work on somatosensory pyramidal cells has shown that

blockade of currents that mediate the stimulus afterhyperpolarisa-

tion (sAHP, see inset Figure 6D) lead to a decrease in input

sensitivity [26]. This suggests that in the normal state these

currents contribute significantly to the capacity of neurons to

sustain high input sensitivity. However, the increase in input

sensitivity seen during bath-application of trans-ACPD was

correlated with a decrease in sAHP amplitude. Application of

trans-ACPD reduced the sAHP produced by noiseless current

steps (trans-ACPD: 5.8 mV; control: 12 mV; n = 3; p = 0.02),

while current noise did not lead to a change in the sAHP,

regardless of the noise amplitude (s0: 6.8 mV; s50: 6.7 mV; n =

18; p = 0.39; Figure 6D). Given that high gains were sustained in

the absence of a significant sAHP current contribution, these

results suggest that this component may be sufficient, but not

necessary for the expression of high input sensitivity in all neurons.

T-type channel blockade induces gain changes
Evidently, changing the spectrum of currents active during the

cell’s response can induce significant gain changes. To see which

components may be necessary for such changes, we used Ni2+ to

block T-type Ca2+ channel mediated currents. In all 4 cells tested,

bath application of 250 mM Ni2+ significantly increased gain (Ni2+:

0.50 6 0.08 Hz/pA, control: 0.25 6 0.05 Hz/pA, p = 0.01;

Figure 7A) and decreased threshold (Ni2+: 150 6 25 pA, control:

245 6 41 pA; p = 0.03). Interestingly, application of Ni2+ also

reduced the sAHP produced by noiseless current steps (Ni2+: 3.1

mV; control: 6.9 mV; n = 4, p = 0.03; Figure 7B). Membrane

potential (Ni2+: -69.8 mV; control: -67.9 mV; n = 4, p = 0.07)

and input resistance (Ni2+: 81 MV; control: 102 MV; n = 4, p =

0.1) did not change significantly with the application of nickel.

These results suggest that T-type channels may serve to dampen

sensitivity in TC neurons not only by increasing the threshold

from which tonic action potentials can be fired (the additive

component), but also by limiting firing frequency at much higher

membrane potentials.

Discussion

Our experiments demonstrate that TC neurons display a range

of sensitivities (based on threshold and gain measurements), which

are significantly modified by the injection of current noise. This

modification is dependent upon the intrinsic sensitivity of each

neuron, such that those with high gain in the absence of noise are

attenuated by noise and vice versa, suggesting that noise

normalises the gain of TC neurons to an optimal value. Changes

in intrinsic sensitivity are also induced by pharmacological agents

that either activate specific modulatory postsynaptic receptors

(trans-ACPD) or block active currents (Ni2+), further suggesting

that the normalisation of gains may reflect the prevailing level of

synaptic input onto neurons and adjust their sensitivity accord-

ingly.

In our experiments, the introduction of small amounts of

current noise caused significant changes in gain that were

dependent upon the initial intrinsic neuronal sensitivities (e.g.

gain was reduced in high sensitivity cells). We chose to restrict the

maximum injected current noise, by setting a level of membrane

potential fluctuation similar to the level induced by the bath-

application of the metabotropic glutamate receptor agonist trans-

ACPD. As such, our results reliably reproduce values of

membrane potential fluctuation that are physiologically relevant.

Figure 6. Increased synaptic noise induces multiplicative gain
changes. A and B. Bath-application of 250 mM trans-ACPD increased
the standard deviation of the membrane potential in TC cells. Note the
large increase in activity centred around baseline (dashed line, -67 mV)
in A. The increase in SD is comparable to the highest level of current
noise (1.57 vs 1.6 ). C. For each individual cell (n = 3) bath application
of trans-ACPD increased gain in comparison to control. The increase in
gain was paralleled by a reduction in the amplitude of the sAHP (D;
main panel and inset).
doi:10.1371/journal.pone.0057961.g006

Figure 7. T-type Ca2+ channel block induces additive and
multiplicative gain changes. A. Graph plotting the increase in gain
during bath-application of 250 mM Ni2+ for each recorded cell. B. As in
A., with sAHP plotted for each cell.
doi:10.1371/journal.pone.0057961.g007
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Despite this, our results are in contrast to the findings of Chance et

al. (2002) and Wolfart et al. (2005), whose studies demonstrate only

divisive changes (reductions) in gain following the injection of

current noise into rat somatosensory cortical and guinea pig

thalamic neurons respectively. However, more recent work by

Higgs et al. (2006) has demonstrated that current noise increases

gain in pyramidal neurons, but decreases gain in fast-spiking

interneurons. Taken together, these studies suggest that noise may

alter neuronal sensitivity in a neuron-specific manner, and our

own results are concordant with this hypothesis. Further, the

bidirectional changes in gain in response to sub-threshold noise

may be specific to cells that exist in bi-stable states. Therefore, gain

changes observed in the response of different types of neuron may

reflect specific firing characteristics. For example, type B vestibular

cells [36], spinal motoneurons [37] and olfactory bulb mitral cells

[38] have been shown to exist in bistable states and may also show

normalization of gain functions. In addition other cells that display

non-classical, non-linear firing response characteristics (eg. cere-

bellar Purkinje neurons, intrinsically bursting neocortical neurons)

may also utilize this type of operation when scaling their output.

Previous work on pyramidal cells in mouse somatosensory

cortex [26] has shown that input sensitivity is partly governed by

the sAHP. Specifically, addition of the 5-HT2 agonist a-methyl-5-

HT to block sAHP currents lead to an increase in the additive

component and a decrease in the multiplicative component,

suggesting that in the normal state these currents contribute

significantly to the capacity of neurons to sustain high input

sensitivity. In contrast, our results show that, at least in TC

neurons, a reduction of sAHP current amplitude is correlated with

increasing sensitivity, implying that there may be other currents

that help modulate sensitivity in these cells. For example, the

potassium currents mediated by Kv3 channels [39] and/or the

slow conductance (SK) calcium-dependent potassium channels,

which have been suggested to link functionally with T-type

calcium channels in muscle cells and neurons [40,41,42]. These

results suggest that there may be a significant redundancy in the

mechanisms that govern this process. This is not surprising,

considering the heterogeneity of ion channel profiles displayed

across neurons. However, from our experiments it is not possible

to determine whether this changing current contributes to the

mechanism that maintains high input sensitivities, or whether it

represents an epiphenomenon.

Impact of pharmacological stimuli on sensitivity
Pharmacological experiments have the advantage over current

injections of being able to mimic in vivo situations more accurately.

Our experiments show that the sensitivity of TC cells can be

modified by selective pharmacological stimulation or blockade of

ion channels and/or receptors. Previous experiments have

demonstrated that excitatory postsynaptic inputs mediated by

metabotropic glutamate receptors (mGluR1a) may selectively

enhance neuronal sensitivity to particular visual inputs

[12,43,44,45]. Our results are consistent with this finding, showing

that background excitatory receptor activation can increase the

input sensitivity of TC neurons (see figures 4 and 6). In addition,

our experiments showed that pharmacological blockade of T-type

calcium channels with nickel causes a significant decrease in T-

type currents. While nickel is a widely used blocker for T-type

channels it is not generally considered the most selective agent for

this purpose, indeed nickel has also been shown to block L-type

calcium channels at higher doses [46]. Novel, reversible T-type

channel antagonists (3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-

pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide, also

known as TTA-P2) with much greater efficacy than nickel have

recently been identified [47] and may provide more specific

information regarding the role of T-type channels in controlling

neuronal sensitivity. It is unlikely however, that the pattern of

sensitivity changes reported here will differ significantly using an

alternative antagonist. While our results demonstrate that TC

neuron sensitivity is modified by trans-ACPD and nickel, we

presume that other compounds and their associated targets also

contribute. For example in the mouse vestibular nucleus glycine

receptor mutations result in chronic alterations in type B vestibular

nucleus neuron sensitivity [27]. As such we expect that inhibitory

inputs (most likely GABAergic) may also contribute to TC neuron

sensitivity [43,44].

Functional role of sensitivity normalization
Since TC cells fire in burst and tonic mode, the normalization

function of current noise may operate to maintain this bi-stability.

There are two possible roles this operation may have, each

working on different timescales. 1) A normalisation operation may

set the mean response range for cells in particular sensory

situations, which may play an important role in synchronising

outputs of groups of cells. 2) It may play a protective role by

preventing neuronal excitotoxicity and network over-excitation. In

the former, TC cells receiving convergent inputs from the

periphery (e.g. the retina) are able to adjust their output to the

prevailing level of stimulation on the millisecond timescale. For

example, in the case of strong retinal stimulation the neuronal

sensitivity of the dLGN is reduced to preserve the contrast

sensitivity of the visual pathway- in much the same way as contrast

adaptation in M-pathway retinal ganglion cells [48]. In the latter,

neurons chronically deprived of inhibitory control can reduce the

expression of voltage sensitive channels and thus avoid the

damaging effects of over-excitation (E.g. calcium excitotoxicity).

For example, mouse MVN neurons chronically deprived of

glycinergic inhibition display significantly reduced gain in response

to current injection in vitro [27]. Regardless of the timescale, it

seems reasonable to conclude that the output of individual neurons

is ultimately the result of short and long-term adaptations to

network activation levels.
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