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Large-amplitude coastal shelf waves
Andrew L. Stevvart,1 Paul J. Dellaur,2 and Edward R. Johnson®

Abstract. Coastal currents typically flow parallel to the continental shelf break, which
separates the shallow coastal waters from the open ocean. Decades of theoretical and nu-
merical studies have elucidated the dynamics over continental shelves, but laboratory ex-

periments have tended to focus either on topographic Rossby shelf waves or on narrow,
buoyant coastal currents. In this chapter we review these previous studies and describe
experiments in which large-amplitude shelf waves are generated by a broad, barotropic,
retrograde coastal current in the lee of a continental headland. We discuss an approx-
imate nonlinear wave theory for this configuration and evaluate the experiments quan-
titatively using numerical solutions of the shallow water-quasigeostrophic equations. A
consistent feature that emerges in our numerical solutions and experiments is that large-
amplitude shelf waves rapidly steepen and break. The characteristics of the wave break-
ing are poorly described by nonlinear wave theory, but are quantitatively well-captured

by our numerical modelling.

1. Shelf waves and coastal currents in the
laboratory

Coastal currents flowing along continental shelves are a
complex dynamical feature of the global ocean. Such cur-
rents separate the coastal waters from the open ocean, and
so control the transport of both dynamical and passive trac-
ers across and along the continental slope [Nittrouer and
Wright, 1994]. Some of the most climatically important cur-
rents in the world ocean flow partly or entirely as shelf cur-
rents, so understanding their behaviour represents an impor-
tant oceanographic and dynamical problem. For example,
the Antarctic Slope Front (ASF) [Thompson and Heywood,
2008] mediates transport of Continental Deep Water onto
the Antarctic continental shelf. This is responsible for pre-
serving biological primary production around the Antarctic
margins [Prézelin et al., 2004], and controls the melting rate
of ice shelves [Martinson et al., 2008]. The Agulhas current,
which flows over the continental shelf in the Mozambique
Channel [Bryden et al., 2005; Beal et al., 2006, 2011], fa-
cilitates mass and heat exchange between the Indian and
Atlantic oceans via thermocline water transported in Ag-
ulhas eddies [Gordon, 1985, 1986]. The Gulf Stream flows
along the coastal shelf of North America until it separates
at Cape Hatteras [Stommel, 1972; Johns and Watts, 1986;
Pickart, 1995]. This current is associated with large merid-
ional heat transport, and closes the upper branch of the
Atlantic Meridional Overturning Circulation [Minobe et al.,
2008].

The sharp increase in depth at the continental shelf break
exerts a strong constraint on the flow via conservation of
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potential vorticity (PV) [see Pedlosky, 1987; Vallis, 2006].
This motivates a description of the flow in terms of topo-
graphic Rossby waves. Longuet-Higgins [1968] first showed
that a continental shelf acts as a wave-guide, approximat-
ing the bathymetry as a discontinuity in depth. Shelf wave
theory was subsequently adapted to a wide range of bathy-
metric configurations and applied to regions of the real ocean
[Mysak, 1980b, a]. For example, Mysak et al. [1979] applied
linear wave theory applied to double-exponential approxi-
mations of coastal depth profiles in the Pacific ocean, whilst
Gill and Schumann [1979] attempted to predict the path
of Agulhas using an idealized representation of continental
slope and deep ocean in a two-layer model. Linear shelf
wave theory has since been extended to describe more real-
istic configurations such as continental shelves with along-
shore depth variations [Johnson, 1985; Johnson and Davey,
1990], curved coastlines [Kaoullas and Johnson, 2010; John-
son et al., 2012], and arbitrary isobath variations [Rodney
and Johnson, 2012; Kaoullas and Johnson, 2012].

Coastal currents complicate this Rossby wave description
of shelf dynamics, particularly when they flow over along-
shore variations in the bathymetry, and when they are driven
by a time-dependent inflow or wind stress [Allen, 1980;
Brink, 1991]. The development of numerical ocean models,
particularly those adapted to large variations in bathymetry
[e.g. Haidvogel et al., 2008], has advanced our understand-
ing of such situations considerably in recent decades. Yet
laboratory studies of coastal dynamics have tended to fo-
cus either on topographic Rossby wave propagation or on
coastal current evolution, so in this section we review sepa-
rate selections of previous studies along each line of investi-
gation. Both provide context for the experiments that serve
as the focus of this chapter, which describe the evolution of
a coastal current in terms of large-amplitude shelf waves.

1.1. Shelf waves

Ibbetson and Phillips [1967] performed some of the ear-
liest laboratory experiments relevant to Rossby shelf wave
dynamics. They constructed a rotating annulus between
radii of 72.4 cm and 102.0 cm, similar to that described
in §2. A background PV gradient was provided simply by
the curvature of the free surface, required to balance the
centrifugal force. Rossby waves were generated by the os-
cillatory rotation of a vertical paddle positioned across the
breadth of the channel, with periods between 20 and 100 sec-
onds. In an open annulus the damping rate of the resulting
Rossby waves was found to be of the same order of magni-
tude as the theoretical prediction (see §3.1). When a 60°
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arc of the annulus adjacent to the paddle was enclosed, the
waves intensified at the far boundary, equivalent to western
boundary intensification in the real ocean.

Caldwell et al. [1972] performed the first experiments that
directly represented the continental slope and deep ocean.
They constructed an annular channel in which the fluid
depth increased exponentially with radius over the inner
half of its width, and remained constant over the outer
half, following the theoretical approximation of Buchwald
and Adams [1968]. Rossby shelf waves were generated via
one or two radially-oscillating paddles, and visualized via
aluminium tracer particles and streak photography. The
measured dispersion relation for the waves was found to
agree closely with the linear theory of Buchwald and Adams
[1968]. Caldwell and Eide [1976] used a similar set-up to
study Rossby waves over a shelf whose depth increased lin-
early with radius, and Kelvin waves in a channel of uniform
depth. Both were found to agree well with theoretical pre-
dictions once the assumption of a non-divergent horizontal
velocity field was relaxed [Buchwald and Melville, 1977].

Colin de Verdiere [1979] examined Rossby wave-driven
mean flows in a rotating cylinder of radius 31 cm. The
curvature of the fluid’s free surface supplied a background
vorticity gradient, and an array of sources and sinks was
used to excite a travelling wave with azimuthal wavenum-
ber 12. The Rossby waves were found to generate a strong
mean flow along planetary vorticity contours, equivalent to
isobaths on a continental shelf. Sommeria et al. [1991] per-
formed similar experiments in an annular channel between
radii of 21.6 cm and 86.4 cm, with a depth that increased
linearly with radius. Forcing was again supplied by an inner
ring of sources and an outer ring of sinks, or wice versa, in
the floor of the channel. The resulting net radial transport
drove an azimuthal jet via the Coriolis force, whose direction
was dictated by the relative radii of the sources and sinks.
The jet supported unstable Rossby waves with azimuthal
wavenumbers ranging from 3 to 8.

Pierini et al. [2002] analysed Rossby normal modes over
a 2m-wide experimental slope connecting water depths of
30cm and 60 cm. The slope was confined by walls to a finite
length of 4.3m or 3.3 m, and the tank was rotated with pe-
riods ranging from 30s to 50s. A paddle was used to drive
deep fluid gradually and barotropically onto the slope, where
it excited Rossby normal modes between the walls confining
the slope. The phases of these modes agreed well with nu-
merical solutions of a barotropic shallow water model, but
their amplitudes exhibited some substantial discrepancies.

Most recently, Cohen et al. [2010] generated topographic
Rossby waves in an experimental slope configuration sim-
ilar to that of Caldwell et al. [1972]. They constructed
an annular channel between radii of 1m and 6.5m, with
a fluid whose depth was uniform in the innermost 1.5 m and
decreased linearly by 0.4m over the outermost 4m. Shelf
waves were excited by a radially-oscillating paddle of length
2m or 0.4m. The resulting wave velocities were measured
using particle imaging velocimetry. The dispersion relation
and radial velocity of the experimentally-generated waves
was found to agree closely with a theory derived from the
linearized barotropic shallow water equations. Cohen et al.
[2012] performed similar experiments in an annular chan-
nel between radii of 0.25m and 1m, with linear decrease in
the depth from the center to zero at the outer edge. To-
pographic waves were generated via three radially-aligned
paddles, and compared with linearized shallow water the-
ory. Approximating the continental boundary as a vertical
wall, rather than a vanishing ocean depth, was found to dis-
tort the frequencies in the wave dispersion relation, resulting
in disagreement with the experimental results.

1.2. Coastal currents

Even the simplest representation of a coastal current
flowing along a continental slope requires a more sophisti-
cated treatment in the laboratory than topographic Rossby
waves, and a much smaller body of analytical theory exists

to predict their behaviour. As a result, laboratory studies
of coastal currents followed two decades after the first ex-
periments with topographic Rossby waves. Whitehead and
Chapman [1986] performed the first such study, generating a
coastal current by attaching a rectilinear slope to the outside
of a cylindrical tank. A buoyant gravity current was released
at the outer edge of the tank, then propagated around the
edge of the tank and the along the slope. The gravity cur-
rent was found widen to reduce its speed by a factor of up
to 4 upon reaching the slope. If the current’s speed fell be-
low that of the first barotropic linear topographic wave then
it would radiate energy forward along the slope as a shelf
wave.

Cenedese and Linden [2002] advanced this approach by
constructing an annular channel between radii of 13 cm and
43 cm, with four axisymmetric topographic configurations:
a flat bottom, a step, a raised shelf with a slope, and a
raised step with a slope. Buoyant fluid was injected via an
axisymmetric source at the inner wall of the annulus, form-
ing a symmetric coastal current that was eventually subject
to baroclinic instability. Introducing a shelf produced in-
stabilities with slightly higher azimuthal wavenumbers, and
resulted in secondary instability after axisymmetry was re-
established.

Cenedese et al. [2005] constructed a coastal geometry
qualitatively similar to that discussed in §2, but in a rec-
tilinear channel. An experimental slope of width 4 cm and
height 6 cm separated a shelf from the deep ocean, each of
width 40cm. The channel was 84 cm long and bounded at
each end by vertical walls, one of which was used to steer a
baroclinic jet towards the slope. The experimental results
agreed qualitatively with the quasigeostrophic (QG) theory
of Carnevale et al. [1999]: the jet either split between the
tank edge and the slope, or retroflected away from the slope.

Folkard and Davies [2001] were the first to investigate
along-slope variations in the experimental topography, a
crucial element of the experiments discussed in §2. They
employed a rectangular channel with a linear slope that
was broken by a gap of varying length, filled with linearly-
stratified fluid. They then introduced a gravity current at
one end of the channel, hugging either the slope or the “con-
tinental” channel wall. Breaking the slope was found to slow
and destabilize the current, leading in some situations to the
formation of persistent eddies at the upstream end of the
gap. Wolfe and Cenedese [2006] employed a very similar ex-
perimental configuration, and observed the same behaviour
in buoyant coastal currents with a gap in the slope. They
also introduced slopes of various steepness in the gap, and
found that the current was stabilized whenever it width was
smaller than that of the slope.

Sutherland and Cenedese [2009] extended this approach
to a more realistically-shaped trough in the experimental
shelf. This configuration is conceptually opposite to the ex-
periments described in §2, which represent a headland pro-
jecting out from the continent. Their experimental set-up
closely resembled that of Whitehead and Chapman [1986]: a
buoyant coastal current was injected at one side of a cylin-
drical tank, and then flowed around its edge until it en-
countered a rectilinear slope of height 20cm and breadth
~ 30cm. The slope was interrupted for around 25cm by a
canyon of length ~ 30cm. The coastal current would sepa-
rate from the bathymetry to cross the canyon if the width
of the flow exceeded the radius of curvature of the isobaths,
in some cases forming a counter-rotating eddy in the canyon
itself.

1.3. Large-amplitude shelf waves

The theoretical and experimental studies of shelf waves
described above focus almost exclusively on linear dynamics,
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for which a developed body of literature exists [e.g. Mysak,
1980b]. Yet in experiments featuring coastal currents, the
evolution is characterized by strongly nonlinear features,
such as the generation of eddies and large-amplitude devia-
tions of the streamlines away from the isobaths [e.g. Suther-
land and Cenedese, 2009].

In fact a description of coastal currents in terms of nonlin-
ear Rossby shelf waves is possible, but requires that the shelf
break is approximated as a discontinuity in depth [Longuet-
Higgins, 1968], and that the wave is long and evolves slowly
in time. Under these assumptions Haynes et al. [1993] de-
rived a nonlinear wave equation, based on a solution of the
QG equations in the limit of long wavelength. Clarke and
Johnson [1999] and Johnson and Clarke [1999] extended this
solution to first order under an asymptotic expansion, and
thereby derived a dispersive correction to the wave equation.
Johnson and Clarke [2001] summarised the development and
application of this theory.

This chapter focuses on experiments that are amenable
to exactly this kind of theoretical description. We consider
a channel similar to that of Cenedese et al. [2005], with
a narrow slope separating much broader shallow and deep
regions representing the continental shelf and open ocean
respectively. This is illustrated schematically in Figure 1.
Our experiments elucidate the dynamics of a retrograde
coastal current flowing past a headland, where the conti-
nental wall of the channel protrudes out, narrowing the con-
tinental shelf. Examples of such a configuration in the real
ocean include the Agulhas current in the Mozambique Chan-
nel [Bryden et al., 2005; Beal et al., 2006, 2011], and the Gulf
Stream at Cape Hatteras [Stommel, 1972; Johns and Waits,
1986; Pickart, 1995].

In §2 we describe our experimental set-up and procedure,
and characterize the evolution of large-amplitude waves gen-
erated by retrograde flow past a headland . In §3 we briefly
review the QG equations that underlie our nonlinear wave
theory and numerical simulations. In §4 we adapt nonlinear
shelf wave theory [Johnson and Clarke, 2001] to the annu-
lar channel, and in §5 we describe our numerical scheme for
the QG equations. In §6 we compare the skill of our theory,
numerical solutions, and experiments in predicting the char-
acteristics of large-amplitude wave breaking. Finally, in §7
we summarise our findings and relate our results to previous
studies of topographic Rossby waves and coastal currents.

2. Experiments with large-amplitude shelf
waves

The purpose of our laboratory experiments is to capture
the key features of continental shelves that are separated
from the deep ocean by a relatively narrow slope. This con-
figuration permits topographic Rossby waves whose ampli-
tudes are large compared to the width of the slope; our goal
is to elucidate the nonlinear dynamics of these waves. In
this section we detail the set-up of our experiments, and
illustrate their behaviour via a reference experiment that
characterizes our results.

In the laboratory, creating a straight, extended coastline
with a flowing coastal current that is subject to a Corio-
lis force is logistically difficult. We therefore represent an
idealized coastal ocean using a channel around the circum-
ference of a rotating cylindrical tank, shown schematically
in Figure 1. A retrograde coastal current of uniform density
flows between rigid walls at r = R,, and r = R, represent-
ing the oceanward extent of the current and the continental
landmass respectively. The flow is confined beneath a rigid
lid at z = H, and above an ocean bed whose height ranges
from 0 at r = R, to Hs at r = R, via a narrow slope of
width W, at » = Ry,. This configuration also serves as the
basis of the QG theory described in §3-5.

We conducted all of our experiments in a cylindrical tank
of radius R. = 1.065m, shown in Figure 2. We constructed
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Figure 1. The idealized coastal ocean represented in
our laboratory experiments and QG theory.

an inner wall of radius R,, = 0.75 m using a Plexiglas sheet
weighted to the floor of the tank, leaving an annular chan-
nel of width L = 31.5cm. We built a flat shelf of width
10.75 cm and height Hs; = 5 cm around the outer edge of the
tank, and attached a uniform slope of width Wy = 2.5cm.
The radius of the slope center is therefore R, = 0.945m.
We painted the entire tank floor, shelf and slope to ensure
uniform bottom surface properties, as we found that bot-
tom friction was by far the dominant source of dissipation
in the experiments. The tank was filled with fresh water of
uniform temperature to a depth H = 20 cm prior to each
experiment.

This configuration differs from that of the real ocean in
several respects:

1. The curvature of the channel influences the propaga-
tion of waves due to the radial dependence of any azimuthal
volume element (see §4). We minimize this influence by us-
ing a channel whose width L is much smaller than the tank
radius R..

2. In solid-body rotation, the upper surface of the fluid
curves up toward the outer edge of the tank to balance the
centrifugal force, as shown in Figure 1. The variation of
the surface height across the channel is reaches 6.6 cm when
f = 3rads™!, exceeding the 5cm drop in depth across the
experimental slope. However, even in this case the experi-
mental slope is around ten times steeper than the free sur-
face, and thus remains the dominant source of relative vor-
ticity.

3. Real coastal currents are not bounded offshore by a
wall, but rather by the open ocean. However, the wall at
r = Ry, is necessary to prevent the current interacting with
itself across the tank, a situation that is more appropriate to
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(a) An illustrative photograph of the rotating tank, with elements of the experimental la-

beled, and (b) a photograph of our reference experiment from the overhead camera. We photographed
(a) before attaching the experimental slope in order to distinguish the shelf, and also before the base of

the tank was repainted for the experiments.

a lake or small sea [e.g. Johnson, 1987; Johnson and Kaoul-
las, 2011].

4. The depths of continental shelves in the real ocean
tend to be small compared to the full ocean depth. We
used a relatively deep experimental shelf because we found
that very shallow flows were damped too quickly by bottom
friction. Furthermore, a small shelf is amenable to analy-
sis using QG theory, for which a body of literature already
exists [see Johnson and Clarke, 2001]. These studies have
demonstrated that the vortical dynamics captured by QG
theory are most important for understanding shelf waves,
and that the mass constraints imposed by a shallow shelf are
secondary. The relevance of two-dimensional experimental
flows over topography to real geophysical flows is discussed
at length in Chapter 10 of this volume.

5. Our experiments omit variations in density, which are
dynamically important throughout the ocean. However,
the barotropic dynamics are still informative, and strongly
barotropic velocity profiles have been observed in the Agul-
has current [Bryden et al., 2005; Beal et al., 2006].

All of the results described below concern shelf waves gen-
erated in the lee of a continental headland that protrudes out
onto the continental shelf. In the laboratory we constructed
a bump by attaching a sheet of plexi-glass to the outer wall
of the tank, and then forcing its center out onto the shelf
by placing a wedge behind it. This apparatus is visible in
Figure 2. The outer wall of the channel is therefore given
by r = Rp(0). The bump in our annular channel, which
was held fixed in all of the experiments below, is accurately
described by

Ry = R. — Wy(0), Wi(0) = Wo sech? <%) ., (D
b

where Wyo = 8.3cm, 6, = 1.82rad and ©, = 0.18rad. At
the maximum extent of the protrusion, the width of the ex-
perimental shelf is reduced to 3.5cm. This shape has been
chosen to produce long waves with large amplitudes, which
may be expected to exhibit nonlinear behaviour without
breaking.

In each experiment, we rotate the tank at a constant rate
until the water within is brought to rest in the rotating
frame. We then inject a line of dye into the fluid surface
over the center of the slope, at the PV front. This dye line
serves as a passive tracer, intended to track the PV front as
it is advected around the channel. We track the evolution of

the dye line using an overhead camera that co-rotates with
the tank, producing images like those shown in Figure 3. We
generate a mean flow, representing along-shore transport by
a coastal current, by rapidly changing the Coriolis parame-
ter of the tank from f — Ay to f. This imparts a relative
vorticity of —Ay to all of the water in the tank, inducing an
azimuthal flow with sign opposite to that of As. For all of
the experiments described herein we use Ay > 0, yielding
a retrograde coastal current. We found that a retrograde
current would develop large-amplitude shelf waves in the lee
of the coastal protrusion, whereas a prograde current would
not. This phenomenon may be understood via the nonlin-
ear shelf wave theory described in §4. Clarke and Johnson
[1999] showed that waves with the smallest amplitudes have
the largest phase speeds unless the shelf line lies very close
to one of the channel walls. Thus, disturbances formed by
a prograde coastal current propagate rapidly downstream
as small-amplitude waves, preventing a large wave envelope
from forming on the continental shelf.

We have performed experiments over a range of tank ro-
tation rates f € {1,1.5,2,2.5,3} rads™*, and coastal current
speeds corresponding to Ay € {0.01,0.02,...,0.07} rads™ .
For the purpose of illustration, we define a reference ex-
periment with f = 1.5rads™! and Af = 0.03rads™! that
characterizes the evolution of the shelf waves generated by
our coastal current. Figure 3 shows images of the dye line
close to the coastal protrusion at several times in this ex-
periment. Between ¢ = 0s and ¢ = 17s, the coastal current
advects fluid past the protrusion, developing a long wave
with large amplitude. The rear portion of the wave then
steepens continually until ¢ = 29s, at which point the dye
is aligned radially. By ¢t = 45s the wave has over-steepened
and broken, and the position of the dye-line is a double-
valued function of azimuth. Thereafter, as the vorticity in
the over-steepened wave envelope is removed by bottom fric-
tion, it gradually unwinds in the mean flow, forming an un-
dulating wave train by ¢ = 66 s. Eventually both sides of this
wave train curl up on themselves, as shown at ¢ = 104s. In
the following sections we will interpret this behaviour using
an adaptation of nonlinear shelf wave theory to the annu-
lus, and using numerical simulations of the barotropic QG
shallow water equations.

3. Quasigeostrophic model equations
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Figure 3. Snapshots from our reference experiment at (a) t = 0s, (b) t = 17s, (c) t = 29s, (d) t = 455,
(e) t =665, and (f) t = 104s.

We model the flow in our annular channel using the shal-
low water—QG equations [Pedlosky, 1987; Vallis, 2006]. The
single-layer shallow water equations describe the evolution
of a homogeneous layer of fluid, under the assumption that
the flow is restricted to columnar motion and confined be-
neath a rigid lid at its upper surface. This assumption is
consistent with a small ratio of vertical to horizontal length-
scales, H/L < 1, and appropriate for motions much slower
than the surface gravity wave speed. The QG equations are
derived thereafter by posing an asymptotic expansion for a
small Rossby number, Ro = U/fL < 1 where U and L are
characteristic horizontal velocity and length scales respec-
tively. Variations of the bottom topography h/H are also
assumed to be O(Ro).

For the configuration shown in Figure 1 we define the hor-
izontal lengthscale as L = R. — R,, and the velocity scale as
U= 3|Af|Rn, s0o L=315cm and U ~ 1.4cms™". These
scales yield an aspect ratio of H/L ~ 0.6 and a Rossby
number of Ro = 0.03, whilst the variations of the bottom
topography are characterized by H,/H = 0.25. Whilst these
quantities are all smaller than 1, they are large enough to
call QG theory into question. In practice, however, the ro-
tation of the tank is sufficiently strong that the fluid adheres
closely to columnar motion, due to the Taylor-Proudman ef-
fect. Williams et al. [2010] showed that this theory provides
qualitatively accurate results for rapidly rotating flows that
are far outwith the formal QG regime.

3.1. Interior dynamics

Under the assumptions of shallow water QG theory, the
conservation of horizontal fluid momentum in our annular
channel may be expressed in the form,

%—Tg—l—qézxu—FV[H—F%\u\Q—\D]:—nu, (2)
where u = —V x ¥é, = ué, + véy is the depth-independent
horizontal velocity, and II is the pressure at the rigid lid
z = H. The PV is defined as

and we denote the height of the bottom topography as h(r),

0, r < Rp — 3 W,
w,-R
R R I L)
1, Ry + 3W, <,

as shown in Figure 1. Finally, U is the first-order transport
streamfunction

Hu,g — hu = -V x Ve, (5)

where uag is the (unknown) ageostrophic correction to the
velocity. Taking the curl of (2) yields a material conserva-
tion law for PV, as modified by friction proportional to k,

Dg 2
R S 3 (6)
Here D/Dt = §/0t 4+ u - V is the advective derivative and ¢
is the relative vorticity.

Motivated by our experimental observations, we have ne-
glected any viscous dissipation in (2) because bottom fric-
tion removes energy from the flow much more rapidly. The
action of bottom friction is represented by a linear drag with
the constant rate k set by QG theory [Pedlosky, 1987],

k= /A f/H. ()

The vertical viscositg/ A, is here simply the molecular vis-
cosity v = 1 x 107 °m?s™ . Ibbetson and Phillips [1967]
found that the damping of Rossby waves in a similarly-sized
annulus was accurately described by (7).

We have separately conducted experiments without the
bump in the outer wall, in which we release dye along a line
of constant azimuth and then reduced f from 1.5rads™" to
1.3rads™!. This bestows upon the fluid a uniform angular
velocity that may be expected to decay with an e-folding
time of £ 1. We estimate that, off the shelf, & is around 1.8
times smaller than the theoretical value (7), whilst on the
shelf it is around 1.5 times larger than (7). It is not clear
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why the variation in s should be so large; simply replacing
H by the actual depth H — h in (7) can not account for
this. Nonetheless, (7) is a reasonable approximation to the
bottom friction over the whole annulus. However, repeated
measurements are not available to provide an accurate pa-
rameterization of k, nor to explain the apparent discrepancy
in kK between deeper and shallower waters.

3.2. Initial conditions

As described in §2, we initiate our experiments by chang-
ing the tank’s Coriolis parameter from f — Ay to f. This
acceleration is relatively rapid, requiring only 1-2s, so for
the purposes of our model we treat it as an instantaneous
modification of the fluid velocity in the rotating frame be-
tween t = 0~ and ¢t = 0. This avoids reformulating the QG
equations for a frame rotating with variable velocity.

Relinquishing the QG approximation momentarily, we
note that at ¢t = 0~ the fluid is in solid-body rotation with
the tank, and so adheres exactly to columnar motion. The
absolute vertical vorticity (, of any fluid column is then
equal to that of the tank,

<a|t=07 = f - Af (8)

The acceleration of the tank modifies the absolute vorticity
of its walls and base, but leaves the absolute vorticity of the
fluid instantaneously unchanged. Formally, we require that

Calt=o+ = [ + Cl=o+ = Calt=0-» 9)
so our initial condition for the QG relative vorticity is

((r,0,07) = —As. (10)
That is, the fluid acquires a relative vorticity that is every-
where equal to the change in the Coriolis parameter. One
could follow a similar line of reasoning under the QG ap-
proximation, but the small-Rossby number approximation
of the PV (3) would introduce an O(Hs/H) error in (10).

Although (10) provides an initial condition for ¢, and
therefore for ¢, the initial streamfunction «(r,8,0%) is not
uniquely determined by (10) alone. To invert (6) for 1 at
t = 01 we require the streamfunction ¥o(0%) on r = Ry,
which corresponds to the along-channel transport. We ob-
tain 1o under the QG approximation by considering the
total kinetic energy of the fluid in an inertial frame,

E(t) = %//A {w® + (V +v)?} dA,

where V' is the azimuthal velocity due to the rotation of the
tank, and A denotes the area of the annulus. In our model,
only bottom friction can extract energy from the fluid, and
we assume that this may be neglected during the rapid ac-
celeration of the tank. We therefore require conservation of
total energy across t =0, i.e. E) = EY) where

EC) = ;//A (Lfr)? da,

E<+>:%//A{uu(%(HAf)rﬂ)?}dA (12b)

(11)

(12a)

Thus, 1¥o(0"7) must be chosen such that (12a) and (12b)
are equal. For example, in a regular annulus (W, = 0),
this yields o (01) = iAf (R% - Rﬁ,), which corresponds to
the intuitive result that the fluid acquires a uniform angu-
lar velocity opposite to the direction of the tank’s accelera-
tion. In general, E™) = E) must be solved numerically,
but the long-wavelength asymptotic analysis described in
84 provides a very accurate approximate solution for the
slowly-varying channel shown in Figure 2.

3.3. Boundary conditions

We apply no-flux boundary conditions at the inner and
outer walls of the channel, requiring that both be stream-
lines of ¥. Without loss of generality we choose

¥ (Ry,0,t) = vo(t),

so 1o corresponds to the counter-clockwise along-channel
transport. In a regular annulus (W, = 0) it is possible to
derive an analytical evolution equation for () that ex-
cludes contributions from the unknown lid pressure II. This
is not possible when W;, # 0, because the bump in the outer
wall may support an azimuthal pressure gradient that mod-
ifies the along-channel transport . Instead we determine
additional boundary conditions by considering the circula-
tions I'y, and I'. around the inner and outer walls of the tank
respectively [McWilliams, 1977]. It follows from (2) that

P (Rw,0,t) =0, (13)

iFC = —kl, . = jl{ u - dr, (14a)
di r=Ry

d

— Ty = —kTw, Tw= u - dr. (14b)
dt r=Rq,

In fact we only need to ensure that either (14a) or (14b) is
satisfied, because by Stokes’ theorem

d
rcfrw://Ach = o (Cc—Tw)=—r (T ~Tu).

(15)
The second equation in (15) follows from integrating (3)
over the annulus. Condition (14b) determines the evolution
of the outer wall streamfunction (). We outline separate
asymptotic and numerical strategies to solve this problem
in §4 and §5 respectively.

4. Nonlinear shelf wave theory

In interpreting the results of our laboratory experi-
ments, it is instructive to compare with the predictions
of the established nonlinear shelf wave theory, [Haynes
et al., 1993; Clarke and Johnson, 1999; Johnson and Clarke,
1999, 2001]. This theory approximates the experimen-
tal/continental slope as a step, equivalent to W; — 0 in
Figure 1, and describes the evolution of a fluid interface that
lies initially over the shelf line, corresponding to the dye line
in Figure 3. In this section we adapt this approach to an
annular channel, improving upon the derivations of Stew-
art [2010] and Stewart et al. [2011] to utilize the initial and
boundary conditions described in §3.2 and §3.3 respectively.

4.1. Quasigeostrophic dynamics over a step

In the limit of a vanishingly narrow slope (W5 — 0), the
height of the bottom topography in our annular channel be-
comes

h=H;H(r — Ryn), (16)

where H denotes the Heaviside step function. Neglecting
the influence of bottom friction, the PV ¢ is conserved ex-
actly on fluid columns, and the dynamics may be described
completely by the position of the interface that lies initially
above the shelf line. With a view to describing waves whose
length is much greater than their amplitude, we make the a
priori assumption that this interface remains a single valued
function of azimuth, and so may be denoted r = R(6,t). At
t =0, we have R(6,0) = Ry, by definition, and from (3) and
(10) the initial PV is

q(r,0,0) = —=Ay + QH(r — Rn), (17)
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where Q = fHs/H. Thereafter, material conservation of ¢
ensures that there is always a jump in PV at r = R,

q(r,0,t) = —Ay + QH(r — R). (18)
Using (3) and the definition of the relative vorticity (6), this
may be rearranged as a Poisson equation for the streamfunc-
tion,

V% =Q(—a+H(r—R)—H(r—Rn), (19
where we define @ = Ay/Q. Given the position of the in-
terface r = R, inverting (19) yields a complete description
of the flow in the annulus at any time ¢, subject to the
boundary equations described in §3.3. The evolution of the
interface position R(6,t) is determined by the requirement

that particles on the interface remain on the interface, i.e.
(D/Dt)(r — R) = 0. This condition may be rewritten as

10

R 00

OR

5= (R(6,1),0,t). (20)

4.2. Asymptotic solution

In general (19) is not analytically tractable, so instead we
obtain an asymptotic solution under the assumption of slow
variations in azimuth and time. We first nondimensionalize
(19) using the channel width L = R. — R, as a length scale
and Q7! as a time scale,

r=Lf, t=Q7 'l ¢=Qd, ¢=QL%. (21)
Here hats = denotes dimensionless variables. We then rescale
under the assumption that azimuthal variations are charac-
terized by 27w Ry, the length of the channel at the shelf line.
The parameter u = (L/2wRy)?, assumed to be asymptoti-
cally small, measures the ratio of radial to azimuthal length-
scales. We further assume that the flow evolves on a time
scale that is O(p~1/?) longer than Q~!, consistent with a
velocity scale of QL and a length scale of 2w Ry,. This moti-
vates rescaling 6 and ¢ as

0=p""?¢, t=p"’r (22)

Under this scaling, (19) and (20) become

%;+%+fﬁ2¢¢¢:H(T*R)*H(T*Rh)*a’ (232)

= apv(Ren.er),  (3n)
The asymptotic parameter p does not enter (23b), and only
multiplies the azimuthal derivative in (23a).

We proceed by posing an asymptotic expansion of the
streamfunction, 1 = @ + uh™ + ... We solve (23a) at
successive orders in p, subject to (13) in the form ¢ =
M =0onr = Ry, and 9@ = @éo)(t),zzv(l) = zﬁél)(t) on
r = Rp. For notational simplicity we present the solution in
dimensional variables, writing ¢ = w(()) + w(l) + ---. The
leading-order streamfunction is

v/Q = —ta(r’ — R}) + Fln(r/Ru)
+ 1(r* = R*H(r — R) — 1R’ In(r/R)H(r — R)
— 1(r®* = RiYH(r — Rp) + LR In(r/Ru)H(r — Ry), (24)

where

1

F = /)

{wé”/Q + (R} — RY)
+1(R® — Rj) + 1R’ In(Ry/R) — LR}, 1n(Rb/Rh)} . (25)

Substituting (24) and (25) into (20) yields a non-dispersive
nonlinear wave equation for R(6,t), analogous to that stud-
ied by Haynes et al. [1993]. Solutions of this equation rapidly
form shocks, so following Clarke and Johnson [1999] we con-
tinue the asymptotic solution to introduce dispersive terms,

P /Q = — L1 Fpe In*(r/Ruw) — LRy In*(r/RYH(r — R)
+ $(RRo)o In*(r/R)H(r — R) + GIn(r/Rw), (26)
where

1

G = In(Ry/Ru)

{ §9/Q + LFyeIn*(Ry/Ru)
+3R;In*(Ry/R) — S(RRo)o 1n3(Rb/R)} . (27)

Higher-order corrections may be obtained by continuing the
asymptotic solution, but the calculus becomes prohibitively
complicated. Substituting (24)—(27) into (20) yields the
nonlinear shelf wave equation,

OR _

=g deE - )+ PR

—3(R? = R})H(R — Ry) + 1R In(R/Rn)H(R — R»)

+v [f $Foo In*(R/Ruw) + GIH(R/Rw)] } - (28)

Here + is simply a switch for the dispersive terms due to
the first-order streamfunction (26). Setting v = 0 recovers
the leading-order nondispersive wave equation, whilst v =1
yields the full dispersive wave equation.

4.3. Azimuthal transport

The nonlinear shelf wave equation (28) is closed except for
the streamfunction ¢y = w(()o) + 1/15)1) on the outer boundary,
or equivalently the along-channel transport. We choose to
constrain the transport using (14b) because (14a) is compli-
cated by the bump in the outer wall. Under our asymptotic
expansion, the streamfunction must satisfy (14b) at every
order in p. In dimensionless variables, for the dissipation-
free case k = 0, this implies

27
Lpo_ g pg = [0

de 0 or R d9,

r=Rqy

(29)

for all n € {0,1,...}. Substituting (24) and (26) into (29)
yields evolution equations for 1/)80) and 1/)81) respectively. For
example, for n = 0 we obtain

™ 1n(Ry/R)
/O (it o) R0

/2” d6
o In(Ry/Rw)

We omit the corresponding expression for V) for the sake of
brevity. Equation (30) describes the tendency of net radial
vorticity fluxes to modify the along-channel transport. It is

dysg”
dt

=-Q (30)
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()

Figure 4. Solution of the nonlinear shelf wave equation (28) using parameters that correspond our
reference experiment shown in Figure 3. The thin solid lines show the positions of the inner and outer
walls of the annulus, whilst the dashed line indicates the width of the protrusion. The thick solid line
indicates the position of the PV front at (a) ¢ = 0s, (b) t = 17s, (¢) t = 29s, (d) t = 45s, (e) t = 665,

and (f) t = 104s.

a consequence of our channel’s finite length that the wave
equation (28) acquires contributions that are dependent on
the global behaviour of the solution, whereas that of Clarke
and Johnson [1999] in an infinite channel did not.

To complete the evolution of (t), we must also deter-
mine its initial condition following §3.2. Using R(6,0) = Rx,
equation (24) approximates the initial azimuthal velocity as

81/,(0)
or

(0)
iy WO 1A - BY)

o Z rTn(Fo/ o) 3D

To a consistent order of approximation, we must omit the
radial velocity (u?) term in (12b), so the initial energy of
the flow is

oy(®
0 ] (1 vam %

Thus we may determine w(()o)(()) by substituting (31) into
(32) and solving E(*) = E(=). For example, in a regular an-
nulus with Ry(68) = R., equation (31) gives the exact initial
streamfunction (¢¥(9];—¢ = ¥|1=0), and this procedure yields
¥0(0) = —1Af(R2 — R}). The corresponding azimuthal ve-
locity v|¢=0 = —%Afr has uniform angular velocity, which is
the expected response of the flow to a change in the tank’s
rotation rate.

t:O) : dA. (32

4.4. Parameterizing bottom friction

Our neglect of bottom friction in (28) causes its solutions
to diverge substantially from our experimental results. It
is not possible to introduce x exactly in our nonlinear wave
theory because the vorticity of each fluid column depends
sensitively on the times at which it has crossed the shelf
line [Stewart, 2010]. Instead, we employ a crude representa-
tion of bottom friction to provide a source of dissipation in
(28). We modify the PV equation (6) to an exact material

conservation law,

D Kkt st _
o (ge + >_0. (33)

This representation possesses identical conservation laws to
(6) and (2) for the total vorticity and total energy in the
annulus. In fact, its dynamics are identical to (6) away
from the shelf line, where vorticity simply decays exponen-
tially with rate x. Fluid columns crossing the shelf line
acquire a relative vorticity of constant magnitude |@Q| under
(6), whereas under (33) they acquire a relative vorticity of
magnitude |Q|e™"".

All of the results discussed in this section may be re-
derived using (33). The nonlinear shelf wave equation ac-
quires an additional factor of e™"* multiplying the right-
hand side of (28), whilst the azimuthal transport equation
(30) is unchanged. The latter may seem contradictory, as
the azimuthal transport must decay due to bottom friction.
This is because v is a streamfunction for the modified vor-
ticity Ce™, and so 1o differs from the true along-channel
transport by a factor of e™"

4.5. Comparison with experimental flows

In Figure 4 we plot snapshots of a solution to (28) us-
ing parameters that correspond to the reference experiment
shown in Figure 3. We solve (28) numerically by discretizing
R on an azimuthal grid of 400 equally-spaced points covering
0 € [0,27). We evaluate azimuthal derivatives spectrally via
the fast Fourier transform, and we integrate (28) forward in
time using third-order Adams-Bashforth time-stepping. We
employ an exponential Fourier filter [Hou and Li, 2007] to
damp the mild instability that arises at high wave numbers
due to aliasing error [Boyd, 2001].

Having assumed that the PV front remains a single-
valued function of 6, it is perhaps unsurprising that the
solution shown in Figure 4 is unable to capture the wave
breaking shown in Figure 3. A large-amplitude wave devel-
ops in the lee of the bump in the outer wall, but instead
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Figure 5. Solution at t = 8.7s of the nondispersive wave
equation, corresponding to v = 0 in (28), using parame-
ters appropriate to our reference experiment.

of breaking it develops a dispersive wave train that spreads
clockwise around the tank due to the strong retrograde mean
flow. Although the mean flow decelerates rapidly due to
bottom friction, the volume of water transported across the
shelf line continues to increase even at ¢ = 104 s, and the
wave envelope does not collapse as in Figure 3.

The wave breaking shown in Figure 3(c) is actually cap-
tured more accurately by the nondispersive wave equation,
corresponding to v = 0 in (28), even though this is formally
a less accurate approximation. Figure 5 shows the computed
solution to this equation on a grid of 7200 points in azimuth
at t = 8.7s, around which time the interface R(#,t) forms a
shock. This solution resembles the experimental wave shown
in Figure 3(c), but the wave breaking takes place much ear-
lier in the evolution of the PV front. This may be due to the
approximation of the slope as a step, which leads to a larger
mean relative vorticity within the theoretical wave envelope.

5. Numerical solution of the inviscid
quasigeostrophic equations

In this section we outline our algorithm for solving the QG
model equations numerically. This approach is motivated in
part by the apparent failure of the long-wave approximation
employed in §4 to describe the behaviour of our laboratory
experiments. Additionally, these numerical solutions allow
us to identify and explain deviations of the experimental re-
sults from QG theory, and thus extrapolate to the behaviour
of coastal currents in the real ocean.

To ensure stability, we modify the QG model equations
(6) to include a numerical viscosity term that smooths vor-
ticity gradients at the scale of the numerical grid,

% = —J(1,q) — k¢ + AV, (34a)
Vi =q— % (34b)

Here J is the two-dimensional Jacobian operator, ¢ and (
are related via (3), and A, measures the numerical viscos-
ity. We set A, = Qd? so that numerical diffusion becomes
comparable to advection at the scale of one grid box d over
a dynamical time scale of @~!. Thus A, is a purely numer-
ical contribution to (34a), because A,, — 0 as d — 0. The
numerical viscosity is not intended to represent the fluid’s
molecular viscosity, and (34a)—(34b) describe inviscid flow
with numerical diffusion that acts only on the interior vor-
ticity field. We therefore retain no-flux, rather than no-slip,
boundary conditions at the channel walls.

5.1. Wall-following coordinates

The protrusion (1) in the outer wall of our annulus means
that we cannot discretize the channel using a regularly-
spaced grid in r/6 coordinates without adaptation. We
therefore transform the QG equations (34a)—-(34b) into co-
ordinates that follow the walls of the annulus,

(T - Rw)(Rc - Rw)

= Rw + 5
P (Ro — Ru)

6=0. (35

Here p is simply a rescaled radial coordinate that satisfies
p=Ry,onr =R, and p = R. on r = Rp. Derivatives
with respect to r and 6 may be transformed to p, ¢ space by
writing ¢ = q(p(r,0), $(6)) and applying the chain rule,

Oq| _ (Be—Rw) 0q

or|, (Ry—Rw) 0p o (362)
0q Jq (p— Rw) dW 0Oq

= = = 4 B/ —=| . 36b
96|, = 96|, " (Ry— Ruw) do 0p|, (36b)

For example, the Jacobian operator in (34a) becomes

(= Re) (0000 0000) o
T(P, ¢) (Rb - Rw) 8,0 a¢ 8¢> 8p ’

where r(p, ¢) may be obtained by inverting (35). The Lapla-
cian operator V* is considerably more complicated and in-
cludes a second-order cross-derivative in p and ¢. We omit
this expression for brevity.

J(,q) =

5.2. Numerical integration

We discretize our dependent variables v, ( and g on a grid
of N, by Ny points with regular spacings A, and A, respec-
tively. We denote their positions as p,, for m = 1,..., N,
and ¢, forn =1,..., Ny, where py = Ry, and py, = Rc. We
denote variables stored at (pm, ¢n) as, for example, ¥m (1),
and for now we retain a continuous dependence on time
for notational convenience. We approximate the Jacobian
(37) using a second-order energy-conserving discretization
[Arakawa, 1966), equivalent to rewriting (37) as a flux form
and replacing derivatives with second-order central differ-
ences. We approximate the Laplacian operator in (34a) and
(34b) using straightforward second-order central differenc-
ing in p, ¢ coordinates.

Our numerical scheme is simplified by the fact that the
initial vorticity (10) is uniform. As the numerical viscos-
ity acts only in the interior, (34a) states that the vorticity
remains constant along the boundary, but decays exponen-
tially with time scale x~!. This serves as a boundary condi-
tion for the relative vorticity, which may be written in p, ¢
coordinates as
ddo

C(Rud1) = € (Re6,t) = Golt), T2 = —rbo.  (38)
with (o(0) = —Ay. To simplify the presentation of our nu-
merical scheme, we will assume for the moment that the
streamfunction o (t) on the outer wall is also a known func-
tion of time. We will explain how we evolve 9y in §5.3.

We evolve the PV ¢, , and streamfunction ¥y, » forward
in time as follows. Given g, at all gridpoints at any time ¢,
we first invert (34b) iteratively via successive over-relaxation

to determine ., , at all interior points, subject to

wl,n(t) =0, wNp,n(t) = wo(t%

We then compute the right-hand side of (34a) at all interior
grid points utilizing the vorticity boundary conditions

Cin(t) = Cnpn(t) = Col(t),

n:l,‘..,Nqb. (39)

n:1,...7N¢, (40)
to evaluate derivatives in the grid rows m = 2 and m =
N, — 1. This yields the time derivative of ¢ at all interior
grid points, which we use to step g¢m,(t) forward in time
using the third-order Adams—Bashforth scheme. We ensure
that the fixed time step A satisfies the advective CFL con-
dition throughout the integration.

For the purpose of comparison with our laboratory experi-
ments, we track the position of the PV front that lies initially
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Figure 6. Verification of our numerical scheme, described in §5, for the test case f = 1.5rads™!,
Ay = 0.02rads™*. We plot the pointwise > error in (a) the PV and (b) the streamfunction between
each solution and an “exact” solution obtained via Richardson extrapolation.

above the center of the slope. We accomplish this by advect-
ing M passive tracer particles at (p;, ¢;) fori =1,..., M us-
ing the computed streamfunction ., »(t). These particles
are initially spread evenly around the shelf line, so

(Rr — Rw)(Re — Ruw)
(Ro(4:(0)) — Ruw) ’

Thereafter, at any time ¢ the particle evolution is determined
by

211

¢:(0) = U

pi(0) = Ry + (41)

dp; -1 (Re —Rw) 0v,
dt ~ r(pi, d:) (Ro(d:) — Ru) 06 (pi, i t) (42)
de; 1 (Re — Rw) OO ”

dt r(pis pi) (Ro(¢i) — Ruw) aip(Pi,@,t).

At each time step, after inverting (34b) for v, we cal-
culate 9¢/0p and 9vY/0¢p on each grid point via second-
order central differencing. We then linearly interpolate these
derivatives to compute the right-hand sides of (42) and (43).
Finally, we integrate the particle positions forward in time
using third-order Adams—Bashforth time-stepping.

5.3. Azimuthal transport

The above outline of our numerical algorithm assumes
that the streamfunction o (t) on the outer wall of the an-
nulus is known. In fact, 1o must evolve in such a way that
either (14a) or (14b) is satisfied. We will focus on (14b)
because it is more straightforward to evaluate numerically.

Following Gresho [1991a, b], we note that the solution
of (34b) may be decomposed as

¥ =1p+nyL, (44)
where 7 is a constant to be determined and 1 p and 11, solve
Poisson’s and Laplace’s equations respectively,

Vip=¢(, VL =0. (45)
We choose ¥vp = 9 = 0 on p = R, to ensure that ¥
vanishes on the inner wall, and without loss of generality
set Yp = 0 and ¥, = YPro on p = R., where ¥r0 may be
any non-zero constant. Given (, this completely defines ¢ p

and ¢, and so if we can determine 7 then v and v follow
trivially from (44).

We determine 1 by requiring that ¢p and v satisfy
(14b). We define I'p and 'z as the circulations due to ¥p
and 17, around the inner wall of the annulus,

™ Ruw(Re — Ry) O

rt) = [ Dwllte” w0V, 46
= [T BRI B o)

for j € {P, L}. It follows from (44) that
Tp+nTL =T, (47)

where 'y, is determined at all times by (14b), and both I'p
and I', may be computed directly via (46). Thus (47) de-
fines 7, so the streamfunction on the outer wall is given by

Yo = pro L. (48)
L

In practice, we define 1o and compute 11, and I';, once at

the start of the numerical integration, and then at each time

step we compute ¥p, I'p and finally .

The exception to the above procedure is at ¢t = 0, when
the initial circulation I',,(0) is unknown. The initial trans-
port ¥(0) must then be chosen to ensure that (12a) and
(12b) are equal. We compute 10(0) approximately using the
asymptotic method described in §4.3, which defines ¥, (0)
everywhere via (34b). We then calculate I', (0) directly from
Gmon 0).

5.4. Convergence under grid refinement

We verify our numerical scheme by defining a test pa-
rameters f = 1.5rads™" and Ay = 0.02rads™ ", whose be-
haviour is qualitatively similar to that shown in Figure 7.
We compute solutions using these parameters over a range
of grid spacings A, increasing from 1.25 mm to 1cm by fac-
tors of v/2. In each case we integrate (34a) and (34b) up
to t = 180, the typical length of our laboratory experi-
ments. We choose Ay = A,/R. so that A, is the largest
absolute distance between any two adjacent grid cells. We
measure convergence towards an “exact” reference solution
obtained via Richardson extrapolation from the two small-
est grid spacings, which we denote as (9e)m,n and (ge)m,n-
We define the error between each of our computed solutions
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Figure 7. Evolution of the numerical solution of our QG model, described in §5, at (a) t = Os, (b)
t=17s, (c) t = 29s, (d) t = 45s, (e) t = 665, and (f) ¢ = 104s. The numerical parameters have been
chosen to match the reference experiment shown in Figure 3. In each snapshot we plot the the position
of the passively-advected line of tracer (thick black line), and the instantaneous streamlines with a sepa-
ration of 2cm?s™! (thin grey lines). The thin black lines show the positions of the inner and outer walls
of the annulus, whilst the dashed lines highlight the extent of the slope and the width of the protrusion.

and the “exact” solution at any time t using the discrete ¢2
norm

€q(t) = Z (gmn(t) — (qe)m,n(t))27 (49)

and similarly for e, ().

In Figure 6 we plot ¢4 and €y at four times over the course
of our numerical integration. Both ¢ and 1) exhibit convinc-
ing second-order convergence under grid refinement, owing
to the smooth velocity field prescribed by our experimental
conditions and the relatively short integration time. Our
convergence study motivates the choice A, = 2mm for the
purpose of comparison with our experimental results. The
numerical viscosity has an unduly strong influence on the so-
lution if the grid spacing is much larger than this (> 5mm)
and PV is poorly conserved in filaments that cross the slope.
It so happens that at A, = 2mm, our prescribed numerical
viscosity A, ~ 1 x 107%m?s™ ! is comparable to the molec-
ular viscosity of water in the experiments.

5.5. Comparison with experimental flows

Figure 7 characterizes the behaviour of solutions com-
puted via the procedure outlined above. We use rotation
parameters f = 1.5rads™' and A; = 0.03rads™!, as in
our reference experiment. The grid spacing of A, = 2mm
results in a numerical grid of N, = 159 by Ny = 3347
points. These parameters yield a numerical viscosity of
A, =1.5%x10"%m?s™! and a bottom friction & of approxi-
mately 6.1 x 1072s7. The experimental dye is represented
by M = 3600 tracer particles, visualized as a line in Figure 7.

The solution shown in Figure 7 is visibly similar to the
evolution of the experimental dye line in Figure 3. In partic-
ular, the progression in Figure 7 of the solution from a long,
smooth wave in panel (b) to a backward-breaking wave in
panel (c) is strikingly similar to the behaviour of the exper-
iment. However, the steepening of the wave, and in panel
(d) the formation of the wave train, appear to happen more
rapidly than they do in Figure 3. By eye, Figure 3(e) corre-
sponds better to Figure 7(d) than Figure 7(e), despite being

separated by 21 seconds. This may be due to imperfect con-
servation of PV on fluid columns crossing the experimental
slope, or our bottom friction coefficient k£ may simply be
too small. In Figure 7 the two sides of the wave train in
panel (e) do eventually curl up on themselves, as shown in
panel (f), and as observed in our reference experiment. In
86 we will quantify this comparison over a range of Coriolis
parameters and coastal current speeds.

A much larger volume of deep water is retained on the
shelf in Figure 7(f) than in Figure 3, associated with the
growth and persistence of the large-amplitude shelf wave.
The streamlines reveal that the growth of this wave leads
to constriction of the along-shelf flow. This drives water off
the shelf and across the slope far upstream of the protrusion,
resulting in acceleration of the incoming flow in the deeper
portion of the channel. In panels (d)—(f) the wave envelope
drives an exchange across the slope, drawing inflowing deep
water onto the shelf at the protrusion and then exporting it
further downstream. At ¢t = 104s all inflowing deep water
makes an excursion onto the shelf before continuing down-
stream. This is facilitated by patches of closed streamlines,
corresponding to barotropic vortices/eddies in the flow that
sustain the exchange of water across the slope.

6. Shelf wave breaking

The only consistent point of comparison between our nu-
merical and experimental results is the formation of a break-
ing lee wave behind the bump in the outer wall of the chan-
nel. The evolution therafter varies widely across our pa-
rameter space in f and Ay. When the coastal current is
weak and the background rotation strong, the breaking wave
rapidly rolls up into eddies, which are beginning to form in
Figures 3(f) and 7(f). A strong coastal current in the pres-
ence of weak background rotation will tend to inhibit wave
breaking, and lead to the formation of a wave train resem-
bling that in Figures 3(e) and 7(d). The wave breaking is
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therefore the most natural point of comparison between our
theory, numerical solutions, and experiments.

6.1. Breaking conditions

We obtain theoretical predictions of breaking wave prop-
erties using the nondispersive (7 = 0) form of the nonlinear
shelf wave equation (28). The dispersive form (v = 1) is
formally more accurate but inhibits shock formation, which
describes wave breaking in our theoretical framework. For
each parameter combination (f, Ay) we solve (28) on an az-
imuthal grid of N = 7200 points using the method described
in §4.5. We define the solution to have formed a shock, and
thus the wave to have broken, when the gradient of the in-
terface 7 = R(6,t) satisfies

1 0R

R0 (50)

max
6€[0,27)

‘ > Smax-

The gradient threshold Smax should be maximized to ensure
that interface has come as close as possible to a discontinu-
ity before (50) is satisfied. We use Smax = 20 because the
pseudo-spectral solution cannot reach much larger gradients
on a grid of size N = 7200 without becoming subject to
Gibbs’ phenomenon.

In our numerical solutions we track the positions
(ps(t), di(t)) for i = 1,..., M of tracer particles that lie ini-
tially over the center of the slope. We deem the waveform
comprised of these particles to have broken when any two
adjacent particles occupy the same azimuthal position, i.e.

@i(t) > pit1(t), forany i=1,..., M. (51)
The addition ¢ + 1 is taken modulo M because particle po-
sitions wrap around the annulus.

We identify wave breaking in our experimental results by
processing the images of the tank to extract the positions of
the dye line in each frame. Our focus on the initial develop-
ment and breaking of the wave permits the use of a simpli-
fied algorithm, because the dye-line may be described as a
single-valued function of azimuthal position. Each image is
first filtered to remove shades dissimilar to that of the dye
line. Then at each azimuthal position 8, forp=1,..., P, we
search radially to locate the midpoint of the dye line, which
we denote as R,. We thereby construct a series of points
along the dye line in each frame, (6, Rp(t)), similar to our
description of the interface R(0,t) in our nonlinear wave the-
ory. We omit azimuthal positions 6, obscured by the clamps
visible in Figure 2, and successive frames are compared to
remove erroneous measurements due to the dye dispenser.
We deem the wave to have broken by applying a condition
analogous to (50), but using the mean gradient over a small
range of 6 to eliminate noise that arises from the image fil-
tering. In practice the choice of Smax and the filtering must
be adjusted to each experiment due variations in the colour
of the dye line and the hues of the images.

6.2. Onset of wave breaking

The time at which the wave first breaks serves as a direct
quantitative comparison of our theoretical, numerical and
experimental results. It is also an indication of how effec-
tively PV is conserved as fluid crosses the shelf line, as waves
of the same length will tend to steepen more quickly if they
entrain a larger relative vorticity. In our theory, numeri-
cal solutions, and experiments, we define Tg as the smallest
t for which the corresponding wave breaking condition is
satisfied. In Figures 8(a), 9(a) and 10(a) we plot Ts over
our experimental ranges of f and Ay, as calculated from
our nonlinear wave theory, our numerical solutions, and our
experiments respectively.

The variation of Tg with f and Ay is qualitatively similar
in our nonlinear wave theory and QG numerical solutions:

a swift coastal current or strong rotation lead to the wave
breaking much more rapidly than a slow current or weak
rotation. However, solutions of the nonlinear wave equa-
tion break more than twice as quickly. This reflects the fact
that the continuous slope used in our numerical solutions
results in a finite-width PV front, whereas the theory de-
scribes a discontinuous front. The resulting wave envelops
a smaller net relative vorticity, particularly during its initial
formation, and therefore steepens less rapidly. The long-
wave approximation used to derive (28) also fails when the
gradient of the interface R(0,t) becomes O(1), and this may
exaggerate the rate at which the wave steepens and breaks.

Figure 10(a) shows that T is again qualitatively similar
in our experiments and numerical solutions. In Figure 11(a)
we plot the relative error in the numerically-computed
breaking times, ATp = TBuumerical/ T Bexperiment — 1. The
QG model tends to under-predict Tz relative to the labora-
tory experiments, typically by a factor of ~ 2/3. This indi-
cates that PV is imperfectly conserved in our experimental
channel, particularly given the similarities in the wavelength
at breaking (see §6.3). This may be due to stronger bottom
friction acting over the experimental shelf and slope, as dis-
cussed in §3.1.

6.3. Breaking wavelength

We now turn our attention to the length of the lee wave
at breaking. Apart from being a useful way to quantify the
closeness of our QG solutions and laboratory experiments,
the breaking wavelength determines the scale of the eddies
that form behind the protrusion. We define L as the dis-
tance along the shelfline between the azmiuthal position (6,
¢; or 6,) at which the wave has broken (fp), and the small-
est subsequent € > 0p at which the wave envelope lies below
the shelf line » = Ry. In Figures 8(b), 9(b) and 10(b) we
compare Lp between our nonlinear wave theory, numerical
solutions, and experiments. Here have converted Lp to dis-
tances in cm along the shelf line.

As with T in §6.2, we find that Lp has a qualitatively
similar dependence on f and Ay in our theory and nu-
merical solutions. A swift coastal current or weak back-
ground rotation yields a long wave at breaking, because wa-
ter is drawn further onto the shelf by the mean flow be-
fore the relative vorticity it acquires can steepen and break
the wave. Waves evolving under the nonlinear wave equa-
tion break at approximately half the length of the waves in
our numerical solutions, consistent with their shorter break-
ing time. The nonlinear wave theory predicts an unusually
large L for f = 3rads™ and Ay = 0.01rads™'. In this
corner of parameter space the wave speed given by (28) ex-
ceeds the mean flow speed at the protrusion, for sufficiently
small perturbations of the interface R about the shelf line
r = Ry,. This allows the wave envelope to propagate further
upstream, resulting in a larger wavelength at breaking.

The breaking wavelength shows good qualitative and
quantitative agreement between our numerical solutions and
laboratory experiments. In Figure 11(b) shows that the rel-
ative error in the numerically-computed breaking lengths,
ALp = LBnumerical/LBexperiment — 1, is consistently below
20%. This is surprising because the experimental waves take
longer to break, and so may be expected to be longer than
numerically-computed waves advected by the same mean
flow. This may be due to a canceling effect with the smaller
amplitudes of the experimental waves (see 6.4), which re-
sults in much shorter wavelengths due to the small aspect
of the wave envelope.

6.4. Amplitude at breaking
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Lastly, we analyse the amplitudes of the waves at the
point of breaking. This is directly relevant to the cross-
slope exchange of ocean waters, as it serves as a measure
of the volume transported onto the shelf due to advection
past the protrusion. We define the breaking amplitude Ap
as the largest radial extent of the wave envelope, measured
from r = Ry, between 0p and 0 + L. We plot Ap for our
theory, numerical solutions and experiments in Figures 8(c),
9(c) and 10(c) respectively.

In this case there is a contrast between the amplitudes
predicted by the nonlinear shelf wave theory and the nu-
merical solutions. In Figure 8(c), Ap is largest for swift
coastal currents (large Ay) and weak background rotation
(small f), and vice versa. Figure 9(c) exhibits a similar pat-
tern when the coastal current is weak, but for sufficiently
large Ay we find that Ap instead increases with f. This
reflects the action of two competing effects on the ampli-
tude of the wave envelope: stronger relative vorticity within
the wave envelope drives a stronger flow onto the shelf, but
also induces breaking more rapidly (see §6.2). The former
is poorly represented in our long-wave theory, which im-
plicitly assumes a small ratio of cross-slope to along-slope
transport. We have re-calculated Figue 8(c) using the full
dispersive wave equation (28), with a much smaller gradient
8max 10 (50), but this still fails to capture the pattern shown
in Figure 9(c).

The patterns of Ap in Figure 10(c) is qualitatively simi-
lar to Figure 9(c), albeit somewhat distorted because Ag
is particularly sensitive to artifacts in the filtered exper-
imental images. In Figure 11(c) we plot the relative er-
ror in the numerically-computed amplitudes at breaking,
AAp = ABnumerical/ ABexperiment — 1. The wave amplitude
is typically around 1-2 cm larger in our numerical solutions
than in our experiments. We attribute this to our assump-
tion of horizontally non-divergent flow under the QG ap-
proximation, which neglects depth changes in the mass con-
servation equation. Our numerical solutions therefore over-
estimate the volume of fluid drawn onto the shelf in the lee
of the protrusion in the outer wall.

7. Summary and discussion

The large-scale flow of coastal currents is dominated by
the interaction of the current with the strong topographic
PV gradient at the continental shelf break, which results
in complex behaviour even in a strongly barotropic fluid.
This has motivated previous experimental studies ranging
from generation of isolated topographic Rossby waves [Ibbet-
son and Phillips, 1967; Caldwell et al., 1972; Cohen et al.,
2010] to turbulent coastal currents [Cenedese et al., 2005;
Sutherland and Cenedese, 2009]. This chapter has focused
on the flow of a retrograde coastal current past a headland
that protrudes out onto the continental shelf. Examples of
such a configuration include the flow of the Agulhas cur-
rent through the Mozambique Channel [Bryden et al., 2005;
Beal et al., 2006, 2011], and Gulf Stream’s approach to Cape
Hatteras [Stommel, 1972; Johns and Watts, 1986; Pickart,
1995].

In §2 we introduced our laboratory experiments, whose
set-up is sketched in Figure 1 and illustrated in Figure 2.
We constructed an annular channel in a rotating tank with
a narrow slope leading to a raised shelf around the outer rim.
The shelf was constricted over an azimuthal length ~ ©; by
a protrusion in the outer wall, representing a continental
headland. We generated a retrograde azimuthal mean flow,
representing a coastal current, by changing the rate of the
tank’s rotation. This resulted in the formation of a large-
amplitude Rossby shelf wave in the lee of the protrusion,
which we visualised using a dye line that was positioned

initially along the centre of the PV front. Figure 3 charac-
terises the evolution of the flow, which develops a long, large-
amplitude shelf wave that breaks and overturns. Thereafter
the wave may unravel and form a wave train, as shown in
Figure 3(e), or may instead roll up into eddies.

To interpret the behaviour of our experimental shelf
waves, we introduced in §3 a QG shallow water model.
The model assumes non-divergent, geostrophically-balance
barotropic flow beneath a rigid lid and with negligible vari-
ations in depth. We applied no-flux boundary conditions
for the channel walls, and prescribed initial conditions that
conserve the absolute vorticity of each fluid column, and the
total kinetic energy, during the initial change in the tank’s
rate of rotation. Some discrepancy is to be expected between
this model and our experiments, in which the surface height
may vary across the channel and the shelf occupies a quarter
of the water depth. However, QG theory has been shown
to describe rapidly-rotating laboratory flows far outside the
formal range of validity [Williams et al., 2010], and retains
the vortical dynamics required to capture the evolution of
shelf waves [Johnson and Clarke, 2001].

In §4 we derived a nonlinear wave theory to provide an
intuitive description of the shelf wave evolution. Our theory
follows that of Haynes et al. [1993] and Clarke and Johnson
[1999] for a straight channel, approximating the slope as a
discontinuity in depth and posing an asymptotic expansion
in a small parameter that measures the ratio of the wave am-
plitude to the wavelength. The theory does not require the
wave amplitude to be small, however: making this additional
assumption yields a Korteweg—de Vries-like equation [John-
son and Clarke, 1999]. Our nonlinear wave equation (28)
improves upon the derivations of Stewart [2010] and Stewart
et al. [2011] via the addition of an evolution equation (30)
for the streamfunction on the outer wall. Figure 4 shows
that the evolution of the first-order nonlinear wave equa-
tion initially resembles our experimentally-generated waves,
but dispersion prevents these solutions from capturing the
wave breaking. By contrast, solutions of the non-dispersive
zeroth-order wave equation will always break, but thereafter
form a persistent shock that does not resemble the experi-
mental flows.

To resolve the disparity between our experiments and our
long-wave theory, in §5 we developed a numerical scheme
that solves the QG model equations in a wall-following co-
ordinate system. We advect an array of tracer particles that
delineates the wave envelope, mimicking the dye line in our
laboratory experiments. Figure 7 shows that the numerical
shelf wave is qualitatively similar to our laboratory experi-
ments, but the evolution occurs more rapidly. This may be
due to imperfect conservation of PV or stronger bottom fric-
tion in the rotating tank. The numerical solution shows that
regions of closed streamlines appear as the shelf wave curls
up, forming eddies that transport water across the slope.

In §6 we compared shelf waves formed in our long-wave
theory, numerical solutions, and laboratory experiments.
The clearest point of comparison between the three is initial
breaking of the wave; the evolution therafter varies widely,
impeding quantitative comparison. In our long-wave theory
a stronger coastal current (Ay) results in a larger PV flux
across the slope, leading to longer shelf waves with larger
amplitudes that break more rapidly. Stronger rotation f
produces a larger relative vorticity in the wave envelope,
resulting in shelf waves that break more rapidly at smaller
wavelengths and amplitudes. Our numerical and experimen-
tal results exhibit similar patterns of breaking time (7T5) and
wavelength at breaking (Lg), but the amplitude at break-
ing (Ap) may increase or decrease with f, depending on
the size of Ay. We attribute this to competing tendencies
for the wave to transport more water across the slope, but
also to break more rapidly, when the relative vorticity in the
wave envelope is larger. Figure 11 compares the properties
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of breaking in our numerical solutions and laboratory exper-
iments. Whilst Lp is consistently within around 20% error,
our QG model under-predict Ts and over-predict Apg, in
each case by a factor of 1/3 on average. This is again consis-
tent with imperfect conservation of PV or stronger bottom
friction in the rotating tank.

The large amplitude of our coastal shelf waves distin-
guishes our experiments from previous studies of topo-
graphic Rossby wave generation, and the development of
a nonlinear wave theory aids in interpreting our results (see
§4). Previous investigations of Rossby waves over continen-
tal slopes, such as those of Caldwell et al. [1972], Caldwell
and Eide [1976] and Cohen et al. [2010], have shown very
good agreement with the corresponding theoretical disper-
sion relations. Pterini et al. [2002] found that numerical
solutions of the barotropic shallow water equations closely
reproduced Rossby normal modes on an experimental slope
between two walls. Our QG numerical solutions accurately
describe the evolution of our experiments, as shown in §6.
This indicates that flow in the rotating tank adheres closely
to columnar motion, despite the formal requirements for the
shallow water-QG approximation being poorly satisfied [see
Williams et al., 2010].

Solutions of the nonlinear shelf wave equation in §4 differ
substantially from our experimental results. Our nonlinear
wave theory cannot capture the overturning of the wave and
the resulting break-up into eddies, due to the assumption of
a single-valued interface r = R(0,t). The theory should to
describe the flow accurately as long as the azimuthal gradi-
ents remain O(p'/?), which is certainly the case during the
initial generation of the wave. The dispersive terms in (28)
may be expected to inhibit wave steepening, and thereby
maintain a small amplitude-to-wavelength ratio, as in Fig-
ure 4. It is therefore unclear why the numerical and exper-
imental shelf waves develop gradients that are O(1) within
10-50s. The formation of a wave train in Figures 3 and
7 indicate that some dispersion takes place, but that it is
not sufficient to prevent breaking. This phenomenon is the
subject of ongoing research.

Previous laboratory investigations of coastal currents
have focused on buoyant gravity currents [Whitehead and
Chapman, 1986; Cenedese and Linden, 2002; Folkard and
Davies, 2001; Wolfe and Cenedese, 2006; Sutherland and
Cenedese, 2009] or turbulent jets [Cenedese et al., 2005].
Our experiments employ a barotropic coastal current gener-
ated via a rapid change in the tank’s rotation rate. Such a
configuration has received little attention in previous lab-
oratory studies, though Pierini et al. [2002] generated a
barotropic shoreward mean flow using a wide, slow-moving
plunger. Our use of dye to visualize our experimental results
implicitly describes the evolution of the coastal current as a
wave. This may be insufficient for more realistic bathymetry
like the coastal trough of Sutherland and Cenedese [2009],
though their trough-crossing current resembles a trapped to-
pographic Rossby wave [Kaoullas and Johnson, 2012]. The
wave-like description of the current breaks down when eddies
form, as in the experiments of Folkard and Davies [2001] and
Wolfe and Cenedese [2006], and in the long-term evolution
of our experimental and numerical coastal currents.

Our results show that retrograde coastal current flow past
a continental headland shifts the PV front shoreward from
the continental slope. The resulting large-amplitude lee
wave breaks, and subsequently tends to form eddies that
exchange water between the coastal waters and the deep
ocean. However, if the velocity of the current is sufficiently
large then the wave and any eddies are simply swept away
downstream. Our parameter sweep in §6 yields insight into
the eddies formed by the wave breaking, and the resulting
exchange of water across the shelf break. For the purpose of
comparison with the real ocean, Ay measures the velocity of
the coastal current, and f measures the PV jump between

the continental shelf and the open ocean. The lee wave is
longest, resulting in the largest eddies, when the coastal cur-
rent is strong and the PV jump is small. We measure the
penetration of open ocean water onto the experimental shelf
using the amplitude of the lee wave at breaking. In general,
water is transported further onto the shelf when the coastal
current is strong and the PV jump is large, but the complete
dependence on f and Ay is somewhat more complicated (see
§6.4).

There is a developed body of theory that describes the
evolution of coastal currents in terms of shelf waves [e.g.
Mysak, 1980b; Johnson and Clarke, 2001]. Predictive mod-
els of coastal shelves require adaptation for the sharply-
varying bathymetry, and must employ very high resolution
to capture the shelf processes [e.g. Haidvogel et al., 2008].
As a result, there remains scope for laboratory experiments
to inform oceanographic research on the subject of continen-
tal shelf dynamics, and to evaluate numerical ocean models.
It would be particularly valuable to perform further exper-
iments with strongly nonlinear flows, such as the evolution
of turbulent boundary currents [Sutherland and Cenedese,
2009], generation of geostrophic eddies over the continen-
tal slope [Pennel et al., 2012], or the nonlinear shelf waves
considered here.
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Figure 8. Contour plots of (a) the time of wave break-
ing in seconds, (b) the breaking wave length in cm, and
(c) the breaking wave amplitude in cm, calculated us-
ing the nondispersive (v = 0) wave equation (28). The
contours have been interpolated linearly between data
points, which are indicated by crosses.
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Figure 9. Contour plots of (a) the time of wave breaking
in seconds, (b) the breaking wave length in cm, and (c)
the breaking wave amplitude in cm computed in numer-
ical solutions of the QG model equations (34a)—(34b).
The contours have been interpolated linearly between
data points, which are indicated by crosses.



STEWART ET AL.:. LARGE-AMPLITUDE COASTAL SHELF WAVES

MEZ LY
7
R /J

<1 0.03} j
>
0.02} QJi
/3

—
0.01f ~—28
1 1.5 2 2.5 3

0.077 X 4 ,‘4 r[ll’

0.06/ J/% L

% 0.05 - x

<= \\h
o] _

2004 » -
L,

<

— 59—
T L
I 5

002 3" 45—

—45— —
0.017 x /34{/ —x
1 1.5 2 2.5 3
(c) [ (rad/s)

Figure 10. Contour plots of (a) the time of wave break-
ing in seconds, (b) the breaking wave length in cm, and
(c) the breaking wave amplitude in cm, extracted from
our experimental results. The contours have been inter-
polated linearly between data points, which are indicated
by crosses.
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Figure 11. Relative error between our numerical and
experimental calculations for (a) the time of wave break-
ing, (b) the breaking wave length, and (c) the breaking
wave amplitude.



