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Nonlinear internal waves are commonly observed in the coastal ocean. In the weakly
nonlinear long wave régime, they are often modeled by the Korteweg-de Vries equa-
tion, which predicts that the long-time outcome of generic localised initial conditions
is a train of internal solitary waves. However, when the effect of background ro-
tation is taken into account, it is known from several theoretical and numerical
studies that the formation of solitary waves is inhibited, and instead nonlinear wave
packets form. In this paper, we report the results from a laboratory experiment at
the LEGI-Coriolis Laboratory which describes this process. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4805092]

I. INTRODUCTION

Internal solitary waves have been intensively studied over the past few decades, due to the
in situ and remote sensing evidence for their common occurrence in coastal and marginal seas,
see the reviews by Grimshaw,1 Holloway et al.,2 and Helfrich and Melville,3 for instance. It is
now commonly accepted that the canonical model for describing their dynamics is the well-known
Korteweg-de Vries (KdV) equation, see (1) below, in which a balance between weak nonlinearity,
represented by an amplitude parameter a/h0, and weak nonhydrostatic linear dispersion, represented
by the parameter h2

0/L2 leads to the existence of solitary waves. Here a is a wave amplitude scale,
h0 is a suitable depth scale, and L is a wavelength scale. KdV models with extensions to include
variable bottom topography, dissipation and other effects have been applied to oceanographic, and
to similar atmospheric observations, with generally good results. The essential qualitative features
of observed internal solitary waves are well captured by these KdV models, although not always
providing precise quantitative information.

However, the significant effects of the earth’s rotation have only recently received comparable
attention, This is because while the waves are long with respect to the depth, they are short when
compared to the internal deformation radius, LR = c0/f, that is LR/L � 1. Here c0 is the linear long
wave phase speed, and f is the Coriolis frequency. However, although rotational effects are small on
the scale of an individual wave, observed waves often survive for several days, and then the influence
of background rotation can be significant. It has been known for some time that rotation inhibits the
formation of internal solitary waves, see Gerkema and Zimmerman4 and Gerkema,5 for instance,
and that attempts to create a solitary wave in the presence of rotation fail due to the generation of
radiating internal gravity waves, see Grimshaw et al.6, 7 and the references therein. Further, in a series
of recent papers, Helfrich8 and Grimshaw and Helfrich9, 10 have shown that the long-time effect of
rotation is the destruction of an internal solitary wave by the radiation of inertia-gravity waves, and
its replacement by a coherent steadily propagating nonlinear wave packet.
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For internal solitary waves the KdV equation is, expressed in the reference frame moving with
the linear long wave speed c0,

At + ν AAx + λAxxx = 0. (1)

Here A(x, t) is the amplitude of the linear long wave mode φ(z) corresponding to the linear long
wave phase speed c0, which is determined from the modal equation,

c2
0{ρ0φz}z − gρ0zφ = 0, for − h < z < 0, (2)

with

φ = 0 at z = −h, c2
0φz = gφ, at z = 0. (3)

Here ρ0(z) is the stably stratified background density stratification, and the coefficients ν and λ are
given by

Iν = 3 c2
0

∫ 0

−h
ρ0φ

3
z dz, Iλ = c2

0

∫ 0

−h
ρ0φ

2 dz, (4)

where I = 2c0

∫ 0

−h
ρ0φ

2
z dz.

The solitary wave solution is

A = as sech2(
x − V t

D
), V = νas

3
= 4λ

D2
, (5)

where as is the wave amplitude, V is the phase speed, and D is the width.
However, as we have already noted above, observed internal waves often exist for several

inertial periods, and hence the effects of the earth’s background rotation need to be taken into
account. Several numerical experiments of model equations, including the Ostrovsky equation (see
Eq. (6) below), and of fully nonlinear equation systems have shown that background rotation tends
to inhibit the production of internal solitary waves, see Helfrich,8 Grimshaw and Helfrich,9, 10 and
Stastna et al.,11 and the references therein. In particular, Helfrich8 found that an initial solitary wave
disturbance decayed through the radiation of inertial gravity waves, and eventually an envelope wave
packet formed.

The simplest model equation which takes account of background rotation is the Ostrovsky
equation, which is an adaptation of the KdV equation (1) given by, see Ostrovsky,12 Grimshaw,13

and Grimshaw et al.,7

{At + ν AAx + λAxxx }x = γ A. (6)

The background rotation is represented by the coefficient γ which is given by

γ = f 2

2c0
, (7)

where f is the Coriolis parameter. Once ρ0(z) has been specified, the modal function φ(z) and the
speed c0 can be found from (2) and then the coefficients ν, λ evaluated. For oceanic internal and
surface waves λγ > 0, see (4) and (7), and then it is known that Eq. (6) does not support steady
solitary wave solutions, see Grimshaw and Helfrich10 and the references therein. Although the
additional term on the right-hand side of (6) is a linear long-wave perturbation to the KdV equation,
it has the effect of removing the spectral gap on which solitary waves exist for the KdV equation.
Indeed, the linear dispersion relation of the Ostrovsky equation (6) for the phase velocity c and the
group velocity cg as a function of wavenumber k are given by

c = γ

k2
− λk2, cg = dω

dk
= − γ

k2
− 3λk2. (8)

Some typical plots are shown Figure 1 for coefficients evaluated for our experimental setup (see
Sec. III). For the KdV equation (1) (γ = 0) there is a gap in the spectrum for all c > 0 where solitary
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k

c g,  
c

FIG. 1. Plot of the phase velocity (top four curves) and group velocity (bottom four curves) from (8) for the experimental
setup and various rotation rates, T = 120, 90, 60, 45 s shown as dashed-dotted, dotted, dashed, solid, respectively.

waves can exist. But there is no such gap for the Ostrovsky equation, and hence no solitary waves are
expected to occur. Complete proofs of the non-existence of solitary waves in the Ostrovsky equation
(6) for λγ > 0 have been given by Galkin and Stepanyants,14 Leonov,15 and in the simplest form by
Grimshaw and Helfrich.10

The issue is then the fate of a KdV solitary wave, when this is set as an initial condition for the
Ostrovsky equation (6). This was addressed by Grimshaw and Helfrich9, 10 who used a combination
of asymptotic analyses and numerical simulations to show that the initial KdV solitary wave at
first decays by radiation into trailing inertia-gravity waves, from which emerges a nonlinear wave
packet whose carrier wavenumber is that corresponding to a maximum in the group velocity, and
corresponds to the leading disturbance, see Figure 1. The purpose of this paper is to report on a series
of laboratory experiments, designed to test the hypothesis that the effect of rotation on an internal
solitary wave is to destroy that wave and replace it with a nonlinear wave packet whose envelope
propagates steadily with the maximum allowed group velocity. The experiments were conducted
in September 2009 using the 13 m diameter rotating platform at the LEGI-Coriolis Laboratory in
Grenoble.

In Sec. II we briefly review the theory and report some numerical simulations, which show the
emergence of a nonlinear wave packet from an initial solitary wave. Then in Sec. III we describe the
experimental set-up and outcomes. We conclude in Sec. IV.

II. THEORY AND NUMERICAL SIMULATIONS

A. Linear dispersion and wave packets

As noted above, KdV solitary waves are destroyed by the effect of rotation, and a substantial
part of the initial energy is converted into a nonlinear wave packet, whose carrier wavenumber is
determined by a maximum in the group velocity. For the Ostrovsky equation the group velocity is
negative for all wavenumbers k, see (8), and has a local maximum cgm where dcg/dk = 0 at k = km

where 3λk4
m = γ . Note that as γ increases so does km, |cgm|. At the group velocity maximum cgm,

the phase speed c = cpm, and

cpm = 2

3

√
3γ λ, cgm = −2

√
3γ λ, k2

m =
√

γ

3λ
. (9)
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FIG. 2. Plot of the full dispersion relation from solutions of (A12) (solid) and that from the Ostrovsky equation (8) (dashed)
for T = 120 s (a) and T = 45 s (b).

In the Appendix, we derive c0 and the coefficient λ for a two-layer fluid in the Boussinesq
approximation. However, while the two-layer model captures the essential dynamics, the continuous
stratification of the experiments leads to quantitative differences in the linear dispersion that need to
be accounted for when analyzing the experimental results. As shown in Sec. III below the experiments
have a background stratification that is well-approximated by a hyperbolic tangent profile, see (25).
Using this density profile, numerical solutions of the modal equations (2) and (3) in the Boussinesq
limit where ρ0 = ρ1 = constant in the first term and N2 = −(g/ρ1)dρ0/dz give c0 = 6.39 cm s−1

for g′ = g(ρ2 − ρ1)/ρ1 = 9.81 cm s−2, and the dispersive coefficient of the KdV equation from (4)
is λ = 231 cm3 s−1. The corresponding two-layer values are c0 = 7 cm s−1 and λ = 210 cm3 s−1.
The dispersion curves, see (8), for the actual experimental stratification are plotted in Figure 1 for
several rotation rates. All expressions are non-dimensionalized with a length scale h1 = 6 cm and a
velocity scale of c0 = 6.39 cm s−1.

In the Appendix, we describe the corresponding calculations for the full linear dispersion rela-
tion for both the two-layer fluid and the continuously stratified cases. Figure 2 shows a comparison
between the full, continuously stratified dispersion relation from solutions of (A12) and the corre-
sponding dispersion relation (8) from the Ostrovsky equation (with c0 added), for the slowest and
fastest rotation rates. Figure 3 shows the corresponding plots for the group velocity. The critical
points are at km = 0.20, 0.35, respectively, for the full system, whereas the corresponding values for
the Ostrovsky equation are km = 0.19, 0.32, respectively. Note that while there is a good qualitative
agreement, we do see some measurable quantitative differences.
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FIG. 3. Plot of the group velocity from the full dispersion relation (solid) and that from the Ostrovsky equation (dashed) for
T = 120 s (a) and T = 45 s (b).
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Next, we build on the linear dispersion relation to find a weakly nonlinear wave packet. In many
physical systems, the canonical model for these is the nonlinear Schrödinger equation (NLS)

i(At + cg Ax ) + �Axx + μ|A|2 A = 0, (10)

written for the complex envelope A(x, t) of the weakly nonlinear asymptotic solution,

η = A(x, t) exp (ikx − iωt) + c.c. + · · · , (11)

where c.c. denotes the complex conjugate. Here ω = ω(k) satisfies the linear dispersion relation and
at leading order the envelope moves with the linear group velocity cg = ωk. The dispersive term
in the NLS equation generically has the coefficient � = cgk/2, but the coefficient μ of the cubic
nonlinear term is system-dependent. Our concern here is precisely with the case when � = cgk/2
= 0, selecting a wavenumber k = km where the group velocity has a local extremum.

As described by Grimshaw and Helfrich,9, 10 here the NLS equation is replaced with a higher-
order NLS equation

i(At + cg Ax ) + �Axx + iδAxxx + μ|A|2 A (12)

+i(α|A|2 Ax + β A2 A∗
x ) = 0.

Here * denotes the complex conjugate. The coefficient of the third-order linear dispersive term is
δ = −cgkk/6 �= 0, while the coefficients α, β of the mixed nonlinear dispersive terms are system-
dependent. In the present context, it was shown by Grimshaw and Helfrich9 that δ > 0, μ < 0, α

> 0, β > 0 for all wavenumbers k. This higher-order NLS equation (12) has the envelope solitary
wave solution,

A = F(X − V t) exp (iκ X − iσ t), X = x − cgt, (13)

where the gauge κ and the chirp σ are given by

μ + 2κβ = (α + β)�

3δ
,

σ = 3κV + 8δκ3 + �

δ
(4δκ2 − V ) − 2κ�2

δ
, (14)

and F(X ) = a sech (K X ),

Ṽ = V + 3δκ2 − �κ = δK 2 = a2(α + β)

6
. (15)

This solution requires that δ(α + β) > 0, which is always the case for the Ostrovsky equation (6),
and that δṼ > 0 which places a constraint on the allowed speeds V . It was shown by Grimshaw and
Helfrich9 that this asymptotic solution can be confirmed numerically, and that it agrees reasonably
well with the wave packets found in numerical simulations of the Ostrovsky equation (6).

B. Numerical simulations of the rotation-modified Kadomtsev-Petviashvili equation

Although our experimental setup was designed to mimic the one-dimensional theory described
above as far as possible, the finite transverse width (5 m) of the wavemaker implies there will be
some variability in the y-direction, although this appears to be quite small in our experiments, see
Figure 16 in Sec. IV. Nevertheless, both for the experimental configuration, and with the aim of
extrapolating the present results to realistic oceanic situations, it is useful to examine transverse
effects in more detail, especially as the theory and numerical simulations described in Grimshaw
and Helfrich9, 10 were only for the one-dimensional configuration. A full account of transverse effects
is beyond the scope of this article, and is the subject of an ongoing study. Here, instead we report
some numerical simulations of the (rKP) equation derived by Grimshaw,13

{At + ν AAx + λAxxx }x + c0

2
(Ayy − f 2

c2
0

A) = 0. (16)
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The Ayy term takes count of weak transverse linear dispersion, and in its absence this reduces to the
Ostrovsky equation (6).

Next note that the transformation

x = Lx̃, y = K ỹ, t = T t̃, η = M η̃, (17)

L4 = λ

γ
, K = c0

f
, T = L3

λ
, M = λ

νL2
(18)

takes the rKP equation into itself, but with all coefficients equal to unity. Thus we can replace (16),
after omitting the “tilde” symbol, by

{At + AAx + Axxx }x = A − Ayy . (19)

Note that the y-scale has been chosen to be equal to the Rossby radius and hence, in a dimensional
unscaled form, is much larger than the x-extent of the initial pulse. In these transformed coordinates
the critical wavenumber is now km = (1/3)1/4 = 0.760, and so the length scale of the carrier wave is
2π /km = 8.27. Also note that the amplitude scales with

√
γ , and thus in the original equation (16)

the smaller γ , the more difficult it becomes to find an envelope wave of small amplitude. But that
difficulty is avoided here by using the transformed equation (19) instead. However, we need then to
note that when using the KdV sech2-profile as an initial condition, the dependence on γ re-emerges
in the transformed equation and is now in the initial condition. That is,

η = a0 sech2(x/D), νa0 D2
0 = 12λ, (20)

becomes η̃ = ã0 sech2(x̃/D̃0), (21)

where a0 = Mã0, D0 = L D̃0, ã0 D̃0
2 = 12.

Thus for a given input amplitude a0, ã0 varies as γ −1/2 and D̃0 as γ 1/4. As γ decreases, the input
becomes larger and narrower. Equation (19) was integrated numerically using a two-dimensional
spectral code with damping regions at large distances upstream, downstream and to each side to
absorb radiated waves. The surface was taken to be released from rest with the initial profile

A(x, y, t = 0) = F(x)G(y), (22)

F(x) = a sech2[(a/12)1/2x], (23)

G(y) = 1

2
{tanh[(y + ye)/yw] − tanh[(y − ye)/yw]}. (24)

This of course is only a qualitative representation of the actual experimental initial conditions. Here
we set ye = 20, yw = 3 giving an initial solitary-wave like disturbance that is twenty times as wide
in the transverse direction as in the dominant direction of propagation, and thus also giving a Rossby
radius of 20. Figure 4 shows a pseudo-colour plot of the amplitude at a time t = 40 for the case when
the initial amplitude a = 8. Equation (19) gives the evolution of the disturbance relative to a frame
advancing in the positive-x direction with the linear long wave speed. The slowly evolving weakly
nonlinear disturbance in the (x, y) plane travels more slowly than this long wave speed and thus moves
in the negative-x direction. In Figure 4 the disturbance has fallen behind the linear long wave speed
by a distance of approximately 150 and decreased in amplitude by a factor of approximately 3, due
to the spreading in the transverse y-direction. This dispersive decay can be seen in the corresponding
time evolution of the amplitude along the centreline in Figure 5. The wave packet has spread in
the transverse direction, and collapsed to a smaller amplitude than that found in the analogous
Ostrovsky equation simulation, see Figure 6 in Grimshaw and Helfrich.9 Figures 6 and 7 give the
corresponding plots for the initial amplitude a = 32. Figure 6 shows that by t = 30 the disturbance
has collapsed, spread, and curved significantly more than in the lower amplitude run. This is also
shown in the centreline plot of Figure 7 where the amplitude is seen to have collapsed by a factor
of approximately 5 at t = 30. The most striking feature of these simulations, also found in other
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FIG. 4. A pseudo-colour plot of the amplitude from the rKP equation (19) for the initial condition (22) with a = 8,

ye = 20, yw = 3 at t = 40. The bar at the base of the figure illustrates the extent of the initial disturbance.

analogous simulations, is that although the wave develops considerable curvature, the nonlinear wave
packet structure persists along the entire wave profile. The duration of the experiments described
below is short compared to the times for the slow evolutions here, and so although packets form
rapidly, as shown in Figures 5 and 7 the spreading of Figures 4 and 6 is neither expected nor seen in
the experiments, see Sec. III.

C. Numerical simulations of the two-dimensional Navier-Stokes equations

Next, because the rKP equation (16) is restricted to the weakly nonlinear regime, we also
performed some fully nonlinear numerical simulations. The numerical model solves the Boussinesq
form of the incompressible Navier-Stokes equations using the second-order finite-volume method
introduced by Bell and Marcus.16 This model has been used previously in a number of problems
on large-amplitude internal waves (e.g., Helfrich and White17). While the solutions considered here
include rotation and the transverse velocity, there is no y-dependence, as that is beyond the scope of
this present article.
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FIG. 5. The amplitude along the centreline y = 0 from the rKP equation (19) for the initial condition (22) with a = 8,

ye = 20, yw = 3.
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FIG. 6. A pseudo-colour plot of the amplitude from the rKP equation (19) for the initial condition (22) with a = 32,

ye = 20, yw = 3 at t = 30. The bar at the base of the figure illustrates the extent of the initial disturbance.

The simulations were done using conditions that mirror the experiments described in Sec. III.
The background density field is given by

ρ0(z) = ρ1 + ρ2 − ρ1

2

(
1 − tanh[

z − zi

di
]

)
, (25)

where ρ1 and ρ2 are the densities of the upper and lower layers, respectively, zi is the interface
position, and di is the interface thickness scale. The simulations are done in a domain with total
depth h = 36 cm and length Lx = 1548 cm , zi = −6 cm, di = 2 cm, density difference �ρ = ρ2

− ρ1 = 0.01 gm cm−3. There resolution is 2200 × 100 in x and z, respectively. The model has a
rigid upper boundary and is run with no explicit viscosity or density diffusion. The runs are initiated
via a lock exchange with a jump in interface depth, �h0, and a lock length of 45 cm. The lock is
located at x = 0.

The interface displacement η(x, t) determined by the departure of the mid-density surface from
its position before the waves arrive, is shown in Figure 8(a) for a case with Coriolis parameter f
= 0.14 s−1 and �h = 6 cm. The leading disturbance is a well-defined wave packet with distinct
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FIG. 7. The amplitude along the centreline y = 0 from the rKP equation (19) for the initial condition (22) with a = 32,

ye = 20, yw = 3. The vertical scale for A is doubled for times t > 20 as shown by the axes at t = 0, 22.5 of height 32, 8,
respectively.
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phase and group speeds, followed by a less-organized dispersive tail. The frequency-wavenumber
spectrum P(ω, k) (normalized to a maximum of one) computed from the data in Figure 8(a) for
50 ≤ x ≤ 200 and 0 ≤ t ≤ 400 is plotted in Figure 8(b). The ridge in P(ω, k) follows the full
linear dispersion relation for the background stratification (see (A12) in the Appendix). The location
of the maximum group speed, km, from the linear theory is indicated by the circle. A significant
fraction of the energy in the wave field is concentrated along the linear dispersion curve for k ≤ km.
Figure 9 shows time series of η(t) at downstream positions that match the experimental measurements
(see Sec. III for details). Note that in these two figures quantities are scaled using h1 = 6 cm for
lengths and h1/c0 for time, where c0 = 6.39 cm s−1 is the linear long wave phase speed found with
the background stratification.

III. EXPERIMENTS

The combination of asymptotic theory and numerical simulations described by Grimshaw and
Helfrich9, 10 and summarised above provide convincing evidence that an initial KdV solitary wave
will decay due to the radiation of inertia-gravity waves, and eventually a new coherent structure
emerges, namely, a nonlinear wave packet. To examine this hypothesis further, a series of laboratory
experiments were conducted in September 2009 using the 13 m diameter rotating platform at the
LEGI-Coriolis Laboratory in Grenoble. A sketch of the experimental setup is shown in Figure 10. All
the experiments were conducted with a salt-stratified, two-layer system with the upper layer depth
h1 = 6 cm and lower layer depth h2 = 30 cm. The density difference between the layers was fixed
at 0.01 gm cm−3. The measured background stratification is well-approximated by the hyperbolic
tangent profile (25) with zi = −h1 and the mean interface thickness di = 2.0 cm. The table rotation
periods were

T = 4π/ f = ∞, 120, 90, 60, 45 s,

or f = 0, 0.105, 0.140, 0.209, 0.279 s−1.

The initial wave was generated by a lock-release from a 5 m wide by 45 cm long reservoir that
was situated adjacent to the outer tank wall. The large width of the reservoir helped to minimize
geometric spreading effects. Prior to each experiment the interface within the reservoir was lowered
by the addition of fresh water to produce an initial interface elevation difference of approximately
�h0 = 3, 6, 9, or 12 cm. An array of sloping beaches spanning the interface were situated along the
far wall of the tank to reduce reflection. The tank was emptied after each set of runs with varying
�h0 at a fixed f. The wave generation, propagation and dissipation did not significantly alter the
stratification over the course of one set of runs.

Time series of interface displacement, η(t), were obtained using an array of 8–10 ultrasonic
probes spaced along the x-axis (origin at the midpoint of the reservoir gate) between 0.75–9.5 m,
see Figure 10. The locations were varied between experiments in some cases. These probes use
variations in acoustic travel-time between a source and receiver to infer the vertical displacement of
the interface. They were calibrated prior to each run by vertically traversing the probes through the
stationary stratification gives the motion equivalent to interface displacements of ±4 cm. The time
between calibration and the run was usually just several minutes so that changes in the sound speed
profile due to possible temperature change is expected to be very small. Probe output voltages were
digitized at 240 Hz during a run. The conversion between travel time and wave-induced interfacial
displacement assumes that the waves simply heave the background stratification up and down and
can only capture the first vertical mode. However, because the waves of interest are first-mode and
long, this is a good approximation. The wave structure in the transverse (y) direction was obtained by
dying the upper layer, lighting from below, and imaging with three overhead digital video cameras
at 1 Hz. When the camera images were stitched together after a mapping from the image to spatial
coordinates they cover a rectangular area from y = −2.2–0 m to x = 2.8–9.7 m. The upper layer
depth is proportional to image pixel intensity and was calibrated from a series of images taken as
the top layer was added to the tank. The pixel-level estimates of η were averaged into 1 cm by
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FIG. 8. (a) The interfacial displacement η(x, t) for the full simulation with f = 0.131 and �h = 1. (b) The corresponding
ω-k power spectrum P normalized to a maximum of one. The white curve is the full, linear dispersion relation and the white
circle indicates wavenumber of maximum group speed km.
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FIG. 9. The interfacial displacement η(t) for the simulation in Figure 8. The x-location of each probe is indicated by the
position of the dashed lines at t = 0.

1 cm cells. It proved difficult to obtain good calibrations of the image intensity to upper
layer depth consistently over the whole imaging area due to the large gradients in the back-
ground lighting, variation in ambient lighting, and the filling procedure which only allowed
the relationship between image intensity and upper layer depth to be determined for h1 ≤ 6
cm. Thus the ultrasonic probes were used to extract quantitative data (wave amplitudes and
speeds).

wave generator 

interface beach 

ultrasonic probes 

camera view 

FIG. 10. Plan view sketch of the experimental set-up in the 13 m diameter Coriolis Platform.
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FIG. 11. Example of density profiles just prior to a rotating run inside (lower curve) and outside (upper curve) the reservoir.
The dashed lines are best fits of (25). The measured reservoir depth �h is indicated.

Measurements of the stratification inside and outside the reservoir were made prior to each
run using micro-scale conductivity-temperature probes. Figure 11 shows a typical set of density
profiles from a rotating experiment with �h0 = 9 cm and T = 90 s, together with a fit of the
hyperbolic tangent function (25). The fitting parameters are the interface depth zi and the interface
thickness scale di . The difference in zi between the reservoir and the ambient stratification gives
the actual reservoir height �h. For the non-rotating runs di = 1.05 ± 0.06 cm. Filling the basin
while rotating led to a thicker interface with di = 2.0 ± 0.03 cm. From these mean values of
the stratifications numerical solutions to the Boussinesq version of modal equation (2) gives c0

= 6.39 and 6.65 cm s−1 for the rotating and non-rotating runs, respectively. The corresponding
coefficients of the KdV equation from (4) are ν = −1.18 s−1 and λ = 231 cm3 s−1 with rotation
and ν = −1.29 s−1 and λ = 220 cm3 s−1 for the non-rotating cases. For comparison, the two-layer
model gives c0 = 7 cm s−1, ν = −1.4 s−1, and λ = 210 cm3 s−1. The differences between the
continuous and two-layer models, while relatively small, are important, especially for the rotating
runs.

In the presentation of the experimental results that follows, all quantities are nondimensionalized
using the nominal upper layer depth h1 = 6 cm and c0 = 6.39 cm s−1 from the average continuous
stratification. Thus,

(x, y) = (x∗, y∗)

h1
, t = t∗c0

h1
, η = η∗

h1
, �h = �h0

h1
,

c = c∗

c0
, k = k∗h1, ( f, ω) = ( f ∗, ω∗)h1

c0
,

where the superscript * indicates the dimensional variable.
Before presenting the experimental results it is important to note that Renouard and Germain18

conducted a nearly identical set of experiments. Their reservoir was not as wide and the propagation
distance was somewhat shorter. They did not use overhead imaging nor as dense an array of ultrasonic
interface probes. Most significantly, they did not have the advantage of the current theoretical model
and numerical results to guide their interpretation of the experiments. Rather they attempted to
explain their observations as steadily propagating solitary waves, which are known not to exist.
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FIG. 12. The interfacial displacement η(t) from the ultrasonic probes for a non-rotating experiment with �h = 1.58. The
x-location of each probe is indicated by the position of the dashed lines at t = 0.

However, from their Figure 13 it is clear that their experiments produced the same phenomena
discussed below. Unfortunately, they did not take or report adequate information about their runs to
use here.

Ultrasonic probe recordings of the interface displacement η(t) are shown in Figure 12 for a
non-rotating run with �h = 1.58. The figure shows the propagation of a solitary wave of depression
with nearly steady wave amplitude η0 = min (η) = −0.59 and phase speed c = 1.20. The amplitude
is measured at x = 127.3 and the phase speed is determined by a least squares fit to the position of
the wave crest versus time through the dense array of probes in x > 120. This speed is quite close to
the prediction c = 1.23 from the KdV model (5). The flat wave crest at x = 157 is a consequence of
data drop-out. The large trailing disturbances for t > 200 and x ≥ 120 are primarily reflections from
the interface beach. Figure 13(a) shows an x-t plot of wave amplitude η along y = −3.33 from the
overhead images. Although amplitudes from the camera images are less reliable than the interface
probes, the figure clearly shows that the leading solitary wave propagates at a nearly constant speed.
The frequency-wavenumber spectrum P(ω, k) (normalized to a maximum of one) computed from the
data in Figure 13(a) is plotted in Figure 13(b). The solitary wave shows up as the linear ridge of high
spectral amplitudes. The dispersive part of the spectrum agrees well with the full, linear dispersion
relation (see (A12) in the Appendix) for the average non-rotating stratification. The non-rotating
runs with �h = 1.08 and 2.13 confirm that the generation mechanism produces a single, steadily
propagating solitary wave of depression and a dispersive tail.

The effect of rotation is illustrated in Figure 14 for an experiment with �h = 1.57 and f = 0.131
(T = 90 s). The wave recorded at the first probe, x = 16.7, shows a leading solitary-like depression
of the interface followed by a substantial dispersive tail. Once the disturbance reaches the probe at x
= 88 a leading wave packet, rather than a solitary wave, has emerged. The propagation of the packet
through the downstream probe array shows clearly an identifiable carrier wave with a phase speed
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FIG. 13. (a) The interfacial displacement η(x, t) along y = −3.33 from the overhead cameras for the experiment in figure 12
( f = 0 and �h = 1.58 ). (b) The corresponding ω-k power spectrum P normalized to a maximum of one. The white curve is
the full, linear dispersion relation.

that is faster than the group speed of the packet. This is in qualitative agreement with the theoretical
discussion in Sec. II.

The phase speed of the carrier wave in Figure 14 is c = 1.10 and was found by fitting lines to
the x-t positions of individual wave crests and troughs for x > 120. The slopes of these fits are then
averaged to give c. The uncertainty of the speed determined with this method is ±5% based on the
standard deviation of the phase speed estimates for individual crests and troughs and the quality of
the linear fits. The carrier wave wavelength � = 2π /k = ctc = 27.4 is found from the average wave
period tc in the packet. The packet group speed cg = 0.70 is found by fitting a cubic spline wave
crests (or troughs) at a fixed x ≥ 120. The maximum of this spline function gives the x-t locations
of the packet which are fitted to a line. The average from the trough and crest packet locations gives
cg. The uncertainty in the group speed is estimated to be ±10%. The group speed was also found
by fitting a line through the x-t locations of the leading edge of the packet. This method is more
subjective than the spline fit, but gives comparable values of cg.

Figure 15(a) shows an x-t plot of η along y = −3.33 from the overhead images. Again, a
well-defined localized, leading packet with different phase and group speeds is clear. This is again
consistent with the probe data, but provides a more complete view of the leading packet structure
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FIG. 14. The interfacial displacement η(t) from the ultrasonic probes for a rotating experiment with f = 0.131 and
�h = 1.57. The x-location of each probe is indicated by the position of the dashed lines at t = 0.

and the distinct phase and group speeds. It also shows clearly that the packet is followed by smaller
amplitude waves with different wave numbers. The spatial modulation of the amplitude of any
individual trough or crest within the packet is a consequence of the problematic calibration of the
imaging. The systematic variations in interface displacement, for example, the v-shaped features
along x = 125 and the horizontal striping, are caused by ambient lighting variations introduced by the
platform rotation. The corresponding spectrum P(ω, k) is plotted in Figure 15(b). The ridge in P(ω,
k) follows the full linear dispersion relation computed with the average, continuous stratification for
the rotating runs. The location of the maximum linear group speed, km, from the linear theory is
indicated by the circle. In contrast to the non-rotating example in Figure 13(b), most of the energy
in the wave field is concentrated along the linear dispersion curve for k ≤ km.

The experimental results in Figures 14 and 15 compare quite well to the numerical simulation
with the same stratification and rotation rate shown in Figures 8 and 9. However, the simulation was
done with �h = 1. The need for a reduced �h to obtain comparable wave amplitudes is potentially
a consequence of geometric spreading absent in the calculations. It is also due to the inability of
the numerical model to accurately simulate the three-dimensional turbulent mixing and dissipation
produced by the sudden lock release.

The overhead imaging can also be used to examine the horizontal structure of the interfacial
displacement. Figure 16 shows η(x, y) at t = 181 for the experiment in Figure 14. Geometric
spreading due to the finite extent (|y| ≤ 41.7) of the reservoir is apparent. However, the transverse
variations of η in the centre of the domain, |y| < 10, are relatively small. Thus to leading order the
effects of geometric spreading can be ignored. Waves properties measured along the x axis with the
ultrasonic probes are assumed independent of y, as in the theory and numerical modeling.

The interfacial responses for all the runs are summarized in Figures 17–20 for �h0 = 0.5,
0.1, 0.15, and 2, respectively. Each figure shows η(t) from the ultrasonic probes at x = 16.7 and
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FIG. 15. (a) The interfacial displacement η(x, t) along y = −3.33 from the overhead cameras for the rotating experiment in
Figure 14 ( f = 0.131 and �h = 1.57 ). (b) The corresponding ω-k power spectrum P normalized to a maximum of one. The
white curve is the full, linear dispersion relation. The white circle indicates wavenumber of maximum group speed km.

x = 127.3 for the same �h0 across the range of rotation periods T = 4π /f explored. The time origin of
each run has been shifted so that the first local minimum of η at x = 16.7 occurs at t = 0. The figures
show that the character of the response is largely independent of �h0. The non-rotating experiments
produce a single solitary wave that propagates with little change in amplitude. The introduction of
rotation leads to the formation of a well-defined wave packet by x = 127.3, and for f > 0.19 the

x

y

FIG. 16. Plan view of the interfacial displacement η(x, y) at t = 181 from the experiment in Figure 14 ( f = 0.131 and
�h = 1.57). The waves are propagating from left to right.
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f = 0.262

f = 0.197

f = 0.131

t

(a) x =16.67

t

(b) x =127.3

FIG. 17. Interfacial displacement η(t) at (a) x = 16.7 and (b) x = 127.3 from experiments with �h0 = 0.5 and f as indicated.
The time in each run has been shifted so that the first local minimum in η at x = 1.67 occurs at t = 0. Each run is offset by
one in η.

packet structure is evident by the first probe at x = 16.7. The leading packet group speeds decrease
with f, while the carrier wave frequency increases. Also, two runs were made at �h0 = 1.5 and
f = 0.098. Both are plotted in Figure 19. Except for the trailing, high frequency part of the signals,
these two runs are nearly identical indicating the experiments are repeatable.

The measured carrier wavelength �, phase speed c, and packet group speed cg are shown as
functions of f for all the rotating experiments in Figure 21. The figure also shows the predictions
for the carrier wavelength, 2π /km, phase speed, cpm, and the maximum group speed cgm from the
Ostrovsky equation dispersion relation (9). The same quantities from the full, linear dispersion

f = 0.262

f = 0.197

f = 0.131

f = 0.094

f = 

t

(a) x =16.7

t

(b) x =127.3

FIG. 18. Same as Figure 17 except �h0 = 1.
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(a) x =16.7

t

(b) x =127.3

FIG. 19. Same as Figure 17 except �h0 = 1.5.

relation from solutions of (A12) are also plotted. Both sets of theoretical curves use the average,
continuous stratification from (25) for the rotating runs. Overall, the agreement between the the-
oretical predictions and the experimental data is very good. The carrier waves tend to be slightly
longer than predicted, especially as f increases and consistent with the spectrum in Figure 15(b). The

f = 0.262

t

f = 0.197

f = 0.131

f = 0.098

f = 

(a) x =16.7

t

(b) x =127.3

FIG. 20. Same as Figure 17 except �h0 = 2.
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FIG. 21. Experimental results for (a) the carrier wavelength � = 2π /k, (b) phase speed c, and (c) packet group speed cg

versus f. The symbols indicate �h0 = 0.5 (square), 1 (circle), 1.5 (triangle), and 2 (diamond). Representative error bars are
shown for �h0 = 1. Theoretical predictions for �m, cm, and cgm using average stratification are shown for the Ostrovsky
equation (dashed) and the full dispersion relation (solid).

phase speeds are generally faster than predicted, while the group speeds agree well with the theory,
especially the full linear dispersion relation.

The results in Figure 21 do not indicate any systematic dependence on �h0, and hence wave
amplitude. This is shown more explicitly in Figure 22 where the phase and group speeds are plotted
as functions of the wave amplitude η0 = min (η) at x = 127.3 . First, the phase speeds of the solitary
waves in the non-rotating runs are plotted in Figure 22(a) along with the prediction from the KdV
theory (5) using the average, non-rotating stratification. The agreement with the KdV model is quite
good. In contrast, the rotating results for c and cg in Figures 22(b) and 22(c), respectively, do not
show any clear dependency on η0 for a fixed f. This could be a consequence of the experimental
errors and uncertainty. It is more difficult to measure carrier wave phase and packet group speeds
than the phase speed for a solitary wave. However, numerical solutions of the Ostrovsky equation
(6) by Grimshaw and Helfrich9 showed that the group speed was relatively insensitive to the packet
amplitude (see Figure 9). In Figure 23 we show comparisons of the packet speed V and wavenumber
K from the theoretical result (15), from the numerical solutions of (6) by Grimshaw and Helfrich,9

and from the experiments. The experimental wavenumber was determined by fitting a sech(Kcgt)
envelope to the leading packet at x = 127.3. While there is clearly some discrepancy between
the theoretical values and the numerical and experimental values, the latter two are in quite good
agreement.

As shown in Figure 21, the measured values of �, c, and cg of the leading packets are all close to
those predicted from the linear dispersion relation for a wave with the maximum group speed. While
this is consistent with the nonlinear theory, it is also consistent with linear theory and by itself is not
a distinguishing feature of a nonlinear response. However, the distinct structure of the leading packet
in Figures 17–20 with maximum wave amplitude behind the leading edge and fore-aft symmetry



056602-20 Grimshaw, Helfrich, and Johnson Phys. Fluids 25, 056602 (2013)

0.3 0.4 0.5 0.6 0.7 0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2 0.25 0.3

1

1.2

1.4

0 0.05 0.1 0.15 0.2 0.25 0.3

0.4

0.6

0.8

1

(a)

(b)

(c)

FIG. 22. (a) Measured phase speed c versus wave amplitude η0 = min (η) for the non-rotating runs. The dashed line is the
prediction from the KdV model (5). (b, c) The measured phase, c, and group, cg, speeds versus amplitude η0 for the rotating
runs. The symbols in (b) and (c) indicate f = 0.098 (triangle up), 0.131 (triangle down), 0.196 (diamond), and 0.262 (square).

of the packet envelope, evident especially as f increases, is indicative of nonlinear behavior. Linear
analysis predicts the largest amplitude at the leading edge with oscillations decaying monotonically
behind, described by an Airy function (see Sec 2.3 in Grimshaw et al.7), whereas the symmetric
envelope is in qualitative agreement with the nonlinear theoretical and numerical results above. This
together with the agreement between the experiments and numerical solutions in Figure 23 implies
that packets are a consequence of nonlinearity and qualitatively described by the extended NLS
model and numerical solutions of the Ostrovsky equation.
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FIG. 23. (a) The nonlinear correction to the group speed V versus packet amplitude η0. (b) The packet wavenumber K versus
η0. The results are non-dimensionalized using the scaling (17). The solid lines show the predictions from the NLS model.
The circles with the connecting dashed lines show results from the numerical solutions of the Ostrovsky equation (6). The
experimental results are indicated as f = 0.098 (triangle up), 0.131 (triangle down), 0.196 (diamond), and 0.262 (square).
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IV. DISCUSSION

Our recent numerical modeling and theoretical studies8–10 have shown that the long-time out-
come of weak rotational influence on an initial solitary wave is the development of a leading
nonlinear wave packet described by an extended nonlinear Schrodinger equation. The packet carrier
wave characteristics are determined by the maximum group velocity of the linear dispersion rela-
tion. These theoretical results have been tested through a series of laboratory experiments on the
rotating 13 m Coriolis Platform in Grenoble. The experiments were conducted by a lock-exchange
mechanism that for no rotation produced single solitary waves that propagate steadily and in good
agreement with the KdV solitary wave amplitude dispersion relation. The introduction of rotation
in all cases led to the formation of a leading nonlinear wave packet with carrier wavenumber, carrier
phase speed, and packet group speed in good agreement with the theoretical predictions from the
linear dispersion relation calculated using the continuous stratification of the experiments. Inclusion
of the effects of finite wavelength in the dispersion relation generally improved the agreement. The
nonlinearity of the leading packet is demonstrated by their fore-aft symmetry, whereas a linear
theory would lead to an Airy function structure. The nonlinear modification to the packet group
speed and the packet envelope wavenumber did not agree well with the extended NLS model, but
did agree with those from previous numerical solutions to the Ostrovsky equation, implying that
the extended NLS model captures the qualitative behavior, but not the quantitative details of the
nonlinear development. See Grimshaw and Helfrich9 for a discussion of the limitations on the NLS
model.

For low rotation rates the initial wave signal close to the lock was a leading solitary wave
followed by radiating inertia-gravity waves. This is consistent with the idealized theory and mod-
elling which were initialised with a KdV solitary wave. Increasing the rotation rate in the ex-
periments reduced the leading solitary wave to the point where it was no longer identifiable in
the interface displacement recorded at the probe closest to the lock, yet the nonlinear packets
still emerged. Thus the development of the packet does not require an initial solitary wave, but
is the expected outcome of a general initial condition, in this case a geostrophic adjustment, that
radiates inertia-gravity waves followed by the development of leading wave packet. This may
be important in applications to the ocean since it demonstrates that the packets need not evolve
exclusively from the radiative decay of an internal solitary wave. However, we note that Euler
equation simulations by Stastna et al.11 show that the time scale for this development can be un-
realistically long in certain oceanic conditions. In general, initial conditions are expected to lead
to wave packets on a time scale set by the requirement that the inertia-gravity wave with the
maximum group speed can emerge from the initial disturbance. This may be less than the time
for the packets to form from a solitary wave since it does not involve the initial radiative decay
phase.

We are not aware of clear oceanic observations of these nonlinear wave packets. However,
there are some indications of this behavior. In particular, Vlasenko et al.19 call attention to obser-
vations by Garrido et al.20 of solitary-like wave packets propagating from the Strait of Gibraltar
into the Alboran Sea that do not have the classic rank-ordered structure typical of non-rotating KdV
dynamics. Rather, in some cases the packets have an envelope structure more in character with
the nonlinear wave packets found in our experiments. Vlasenko et al.19 used a three-dimensional
non-hydrostatic numerical model to study wave packets and concluded that the non-rank-ordered
packets are a consequence of wave scattering and reflection by the complex topography of the
Strait. However, they do find that rotation is required for these packets to form in their model
simulations. The apparent carrier wavelength � ≈ 3–4 km in Figure 14 of Vlasenko et al.19 The
carrier wavelength � = 2π /km = 2π (3λ/γ )1/4 ≈ 7 km from (9) using the two-layer KdV co-
efficients from (4) with h1 = 60 m, h2 = 240 m, g′ = 0.02 m s−2, and f = 8.5 × 10−5 s−1

representative of their calculations. So while there is a factor of two difference between the theory
and this one example, the results of Vlasenko et al.19 are nevertheless suggestive of the dynam-
ics demonstrated by our experiments, especially in light of the rapid, robust wave packet forma-
tion from general initial conditions (e.g., topographically scattered internal solitary waves in the
Strait).
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APPENDIX: FULL LINEAR DISPERSION RELATION FOR TWO-LAYER
AND CONTINUOUSLY STRATIFIED FLUIDS

For the two-layer fluid, the full linear dispersion relation in the absence of rotation and in the
Boussinesq approximation is

c2 = ω2

k2
= g′

k[coth kh1 + k coth kh2]
. (A1)

Here h1, 2 are the upper and lower layer depths. In the long wave limit, k → 0, and for right-going
waves, these reduce to

c ≈ c0(1 − k2h1h2

6
), c2

0 = g′h1h2

h1 + h2
. (A2)

Thus, for the KdV equation (1) the coefficient λ = c0h1h2/6. In the above equations and throughout
the rest of the Appendix dimensional variables are used.

When rotation is included, the governing equations for a linearized two-layer configuration are
in each layer are

u jtt + f 2u j + q jxt = 0, (A3)

w j t + q jz = 0, (A4)

u jx + w j z = 0, (A5)

where j = 1, 2 in the upper layer −h1 < z < 0 and lower layer −h2 − h1 < z < −h1, respectively.
At the upper rigid boundary w1 = 0, z = 0 and at the lower rigid boundary w2 = 0, z = −h2 − h1.
Here in the upper layer the full pressure is −ρ1g(z + h1) + ρ1q1 and in the lower layer the full
pressure is −ρ2g(z + h1) + ρ2q2. At the interface, using the Boussinesq approximation ρ2 − ρ1

� ρ2,

ζt = w1 = w2, ρ2q2 − ρ1q1 = g(ρ2 − ρ1)ζ. (A6)

Then, seeking solutions proportional to exp (ikx − iωt) we get that

w j zz = κ2w j , κ2 = ω2k2

ω2 − f 2
(A7)

while qj satisfies the same equation. Hence

w1 = iωa
sinh (κz)

sinh (κh1)
, w2 = −iωa

sinh (κ(z + h1 + h2))

sinh (κh2)
, (A8)

where the kinematic boundary condition, and the upper and lower rigid lid boundary conditions
have been imposed. Note that here a is the interface amplitude, and that q j = iωw j z/κ

2. Finally,
imposing the dynamic boundary condition we get the dispersion relation

ω2 = g′κ
coth (κh2) + r coth (κh1)

, (A9)
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where r = ρ1/ρ2, g′ = g(ρ2 − ρ1)/ρ2. The known result for water waves follows by putting ρ1 = 0,
while the Boussinseq approximation sets r = 1, so that

ω2 = g′κ
coth (κh2) + coth (κh1)

= g′κ sinh (κh1) sinh (κh2)

sinh (κ(h1 + h2))
. (A10)

In the absence of rotation κ = k, and then (A10) collapses to (A1). We shall assume that we are only
concerned with solutions for which ω2 > f 2, so that κ is real-valued. In the long-wave limit k → 0,
we may write ω2 ≈ f 2 + c2

0k2 + O(k4), so that κ ≈ f/c, and then (A10) collapses to

f c0 ≈ g′

coth ( f h2/c0) + coth ( f h1/c0)
, (A11)

which is an implicit expression for c0. However, making the further approximation that fh1, 2 �
c0, we recover the long-wave limit of the non-rotating dispersion relation (A2). However, the
experimental parameters where f = 4π/T s−1, h1 = 6 cm, h2 = 30 cm, c0 = 7 cm s−1 suggest that
this last approximation may not be valid here. A correction when fh1, 2 � c0 yields instead

c2
0 ≈ g′h1h2

(h1 + h2)(1 + f 2(h1 + h2)/3g′)
,

showing that the effect of f is to reduce the phase speed. For the experimental parameters the
rotational correction is 0.04, 0.29 when T = 120, 45 s, respectively. In general, Eq. (A11) has a
unique solution for c0 which decreases as f 2 increases, when h1, 2 are fixed.

When the fluid is continuously stratified the full linear dispersion relation ω(k) with rotation
must be found from the modal problem, see Pedlosky21

d2φ

dz2
+ k2

(
N 2(z)2 − ω2

ω2 − f 2

)
φ = 0, (A12)

for − h < z < 0, and φ(−h) = φ(0) = 0.

Here we have used the Boussinesq approximation where N2 = −(g/ρ1)dρ0/dz where ρ1 is a reference
density. The linear dispersion relation ω = ω(k) for the first vertical mode, when f and ρ0(z) are
specified, is found from a numerical solution of (A12).
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