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The four mammalian phosphatidylinositol 4-kinases modulate inter-organelle lipid trafficking, phosphoin-
ositide signalling and intracellular vesicle trafficking. In addition to catalytic domains required for the syn-
thesis of PI4P, the phosphatidylinositol 4-kinases also contain isoform-specific structural motifs that
mediate interactions with proteins such as AP-3 and the E3 ubiquitin ligase Itch, and such structural
differences determine isoform-specific roles in membrane trafficking. Moreover, different permutations
of phosphatidylinositol 4-kinase isozymes may be required for a single cellular function such as occurs dur-
ing distinct stages of GPCR signalling and in Golgi to lysosome trafficking. Phosphatidylinositol 4-kinases
have recently been implicated in human disease. Emerging paradigms include increased phosphatidylino-
sitol 4-kinase expression in some cancers, impaired functioning associated with neurological pathologies,
the subversion of PI4P trafficking functions in bacterial infection and the activation of lipid kinase activity
in viral disease. We discuss how the diverse and sometimes overlapping functions of the phosphatidylino-
sitol 4-kinases present challenges for the design of isoform-specific inhibitors in a therapeutic context.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

The four enzymes that make up the mammalian phosphatidyl-
inositol (PI) 4-kinase family can be divided into two groups based
on primary sequence and biochemical properties: consisting of
type II (PI4KIIa and PI4KIIb) and the type III (PI4KIIIa and PI4KIIIb)
isozymes [1,2]. All members catalyse the phosphorylation of phos-
phatidylinositol (PI) at the D4 position of the inositol head-group
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Fig. 1. Organisation and subcellular compartmentation of PI4P synthesis. The four
mammalian PI 4-kinases have different subcellular localisations. The main pool of
plasma membrane PI4P is maintained by PI4KIIIa which has been imaged in
separate studies either in association with the ER or recruited to the plasma
membrane by EFR3B and TTC7B. PI4KIIIb and PI4KIIa generate PI4P at the trans-
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to synthesize phosphatidylinositol 4-phosphate (PI4P) which is an
essential precursor in the enzymatic pathways that produce
PI(4,5)P2 and PI(3,4,5)P3 for receptor-activated phospholipase C
(PLC) and phosphoinositide 3-kinase signalling [3]. In addition to
the generation of phosphoinositides for receptor signalling, PI 4-ki-
nase activity underlies the recruitment a number of PI4P-specific
binding proteins such as the pleckstrin homology (PH) domain
containing proteins CERT [4] and FAPP2 [5] which regulate lipid
synthesis on Golgi membranes, and also the recruitment of the
clathrin adaptors AP-1 [6] and AP-3 [7] during Golgi-endosomal
trafficking. However, PI 4-kinases do not just produce PI4P.
Another level of cellular regulation exists at the non-catalytic,
protein-interaction level, where structural binding motifs mediate
isoform-specific interactions with molecules such as Rab11 [8],
NCS-1 [9,10], AP-3 [7,11,12] and the E3 ubiquitin ligase itch [13].
Recent work has also established that different PI 4-kinase isoform
permutations are required during receptor-activated PLC signalling
[14–16] and in Golgi-endosomal trafficking [16,17] all of which
suggests that there is still much still to be discovered about this,
the least well studied mammalian PI kinase family.
Golgi network and PI 4-kinase activity on these membranes is required for the
formation of constitutive plasma membrane vesicular carriers, secretory vesicles
and in trafficking to late endosomes. Additionally, PI4P at the TGN targets lipid
transfer proteins such a FAPP2 and CERT which effect non-vesicular transfer of
glucosylceramide and ceramide to late Golgi compartments. PI4KIIb has been
observed in the cytosol and in association with membranes, here we show PI4KIIb
in association with intracellular endosomal-like vesicles. PI4KIIa also localises to
late endosomes where it modulates the trafficking and degradation of internalised
ligand-activated receptors and cargo sorting during TGN to late endosome
trafficking.
2. PI 4-kinases and the intracellular compartmentation of PI4P
synthesis

For over 40 years there has been intense interest in mapping
out the cellular compartments where PI 4-kinases are active
[18–24]. Pioneering work from Michell, Harwood and Hawthorne
established an early precedent for PI4P synthesis in plasma
membrane enriched fractions [20,25] and the presence of a bio-
chemically distinct PI 4-kinase activity associated with the ER
which could be activated by the non-ionic detergent Cutscum
[19]. More recently, in the post-cloning era, these original observa-
tions have been built on and there has been substantial progress in
mapping the subcellular distributions of the four mammalian PI 4-
kinase isoforms [26–29] (Fig. 1). Subcellular fractionation and
immunocytochemical experiments have established that PI4KIIa
(55 kDa) localises to the trans-Golgi network (TGN) [6,28–31])
where its lipid kinase activity has been implicated in the recruit-
ment of AP-1 [6] and GGA clathrin adaptors [32]. PI4KIIa also local-
ises to various membranes of the endosomal system
[12,26,29,33,34] as well as specialised trafficking intermediates
such as synaptic vesicles [35] and Glut4 transport vesicles [36].
In addition, there is biochemical evidence for a minor but highly
active pool of PI4KIIa at the endoplasmic reticulum (ER) [29]
where it may be activated by interactions with the c-FOS transcrip-
tion factor [37]. On endosomal membranes both PI4KIIa catalysed
PI4P generation and the presence of a dileucine sorting motif are
required for optimal binding of AP-3 [7] – a key step in cargo selec-
tion and trafficking to late endosomes/lysosomes. Despite its high
degree of structural homology to the PI4KIIa isoform, PI4KIIb has a
different subcellular distribution profile and has been observed in
both in the cytosol [38,39] and in association with trafficking
vesicles [26,40].

As for the two wortmannin-sensitive PI4KIIIs [41–43], PI4KIIIa
[42,44–46] (230 kDA) has been localised by immunostaining with
isoform specific-antibodies to cytosplasmic membranes [47–49],
and more specifically to early cis-Golgi compartments [50] and
the nucleolus [47]. PI4KIIIa has also been identified the main
isozyme responsible for PI4P generation at the plasma membrane
[14,27,51]. Recently, Nakatsu et al. [52] demonstrated that PI4KIIIa
visits the plasma membrane, in a dynamic process mediated by
interactions with the palmitoylated, membrane-resident protein
EFR3B and TTC7B – a protein recruited from the cytosol [52]. Most
strikingly, the generation of PI4P hotspots at the plasma membrane
in yeast requires similar molecular components indicating a very
high degree of evolutionary conservation for this process [53].
These recent insights also revealed a major function for mammalian
PI4KIIIa in maintaining the normal proteomic and lipid
composition of the plasma membrane as evidenced by the mistraf-
ficking of GPCRs and cholesterol to intracellular compartments in
PI4KIIIa knock-out cells [52]. In a separate study, Hammond and
colleagues have established multiple, non-precursor, roles for
PI4P at the plasma membrane [54,55]. The first such function could
be considered a general one, whereby PI4P in combination with
other negatively charged phosphoinositide species, electrostati-
cally defines the cytoplasmic-facing plasma membrane layer as a
negatively charged lipid landscape with the capacity to recruit a
range of proteins containing polybasic lipid binding domains such
as those found in MARCKS and K-Ras. Secondly they observed that
PI4P regulates particular ion channels such as the transient receptor
potential vanilloid 1 (TRPV1) cation channel, the activity of which
was found to be inhibited through either selective depletion of
PI4P or PI(4,5)P2 [54]. Additionally, PI4P, at physiologically relevant
concentrations as low as 2 mol%, can induce curvature in model
membranes [56]. Therefore, PI4P can contribute to the biochemical
and biophysical identity of the plasma membrane, and this multi-
functional pool of PI4P is generated principally by PI4KIIIa. The
other wortmannin-sensitive isoform, PI4KIIIb [57–60] (92 kDa)
does not have a major role in the generation of plasma membrane
PI4P but instead seems to mainly function in the generation of Gol-
gi-derived carriers [8,31,61–63]. In line with these trafficking func-
tions, PI4KIIIb can interact with Arf1 [63–65], neuronal calcium
sensor-1 (NCS-1) [9,10,65–67] and the Rab11 GTPase [8]. In addi-
tion to the Golgi apparatus, PI4KIIIb has also been visualised on
lysosomes [68] where it functions to maintain lysosomal mem-
brane integrity and in a PKD-phosphorylated from in the nucleus
[69] where it’s physiological function has yet to be determined.

In summary, the markedly different subcellular distributions of
the four PI 4-kinases give rise to highly compartmentalised PI4P
synthesis and thus organelle-specific functions for this phosphoin-
ositide species [5,70,71].
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3. Cell signalling

The requirement for PI4P synthesis and resupply during recep-
tor-activated phosphoinositide signalling was one of the principal
spurs for early studies aimed at identifying and purifying the mam-
malian PI 4-kinases. Early work demonstrated the presence of an
EGF-activated PI 4-kinase activity at in membrane fractions that
was associated with a decreased apparent Km for PI substrate but
with no increase in the Vmax for PI phosphorylation activated EGFR
[72,73]. Subsequent investigations demonstrated that activated
EGFR could be co-immunoprecipitated in complex with a PI4KII
activity, PLCc and phosphatidylinositol transfer protein [74,75]
(which was hypothesized to transfer PI substrate to the lipid
kinases during ligand-activated signalling). Further detailed
analyses of phosphoinositide turnover kinetics during receptor-
stimulated PLC signalling, demonstrated a requirement for a wort-
mannin-inhibited PI4KIII activity in the generation of a signaling
pool of PI4P [76,77]. A subsequent study that used RNA interfer-
ence to abrogate the expression of individual PI 4-kinase isozymes
discovered that wortmannin-sensitive PI4KIIIa was primarily
responsible for maintenance of the plasma membrane phosphoin-
ositide pool which is turned over rapidly during GPCR signalling
[14,27].

A possible disconnection between sites of PI4P synthesis and
utilisation was revealed in elegant studies that used organelle-tar-
geted, recombinant phosphoinositide phosphatases such as Sac1, to
deplete PI4P levels at particular subcellular membranes [16,54].
Using this strategy Golgi-compartmentalised PI4P synthesis was
shown to be required during the substrate replenishment phase
of the angiotensin-stimulated PLC response [16]. At first glance it
seems counterintuitive that PI4P synthesis at distal sites can supply
the plasma membrane during ligand-activated signalling. However,
the recent discovery of stable inter-organelle membrane contacts
which facilitate lipid transfer between different organelles [78,79]
is worth considering in this context. Most strikingly, a precedent
for such inter-organelle regulation of phosphoinositide concentra-
tions has been demonstrated in yeast where the ER-associated
PI4P phosphatase Sac1, can act in trans at inter-membrane contact
sites to dephosphorylate PI4P at the plasma membrane [80]. This
process requires the PI4P-binding Osh3 (oxysterol homology 3)
protein that appears to simultaneously function both as a plasma
membrane PI4P sensor and activator of the Sac1 PI4P phosphatase
activity at intermembrane contact sites. Additionally, 6 proteins
have been identified that mediate ER-plasma membrane tethering
and regulate plasma membrane PI4P levels. These proteins are
the vesicle-associated membrane protein-associated proteins
(VAP) Scs2 and Scs22 which are similar to mammalian VAP proteins
that target FFAT (two phenylalanines in an Acidic Tract [81,82])
motif-containing proteins to the ER; 3 tricalbin protein isoforms,
Tcb1, Tcb2 and Tcb3 that contain membrane spanning, lipid binding
and multiple C2 domains and are related to the mammalian synapt-
otagmins [83,84]; and Ist2, which contains multiple transmem-
brane spanning domains and is orthologous to the mammalian
TMEM16 family of Ca2+-activated chloride channels [85–88]. Inter-
estingly, Ist2 has been shown in an unconnected study to mediate
interactions between the plasma membrane and ER [89].

While mammalian cells express orthologues of the yeast
proteins required for the formation of ER-plasma membrane con-
tacts and the control of plasma membrane PI4P concentrations, it
is not yet known if an exactly analogous regulatory system exists
in higher eukaryotes. Nonetheless, it is noteworthy that in mam-
malian cells, transient ER plasma membrane contacts are known
to form during agonist-stimulated PLC and Ca2+ signalling in the
capacitive re-entry phase when extracellular Ca2+ replenishes de-
pleted ER stores [79,90–92]. This store refilling event is mediated
by direct interactions between an ER protein STIM1 and a plasma
membrane Ca2+ channel Orai1 [91,92]. Therefore, this Ca2+-
triggered membrane contact event demonstrates that it may be
feasible for an ER-associated PI 4-kinase to supply phosphoinosi-
tide substrate to receptors during signalling. Of relevance to this
proposal are the findings that PI4KIIIa inhibition results in
decreased store-operated Ca2+ entry [90] and that PI4KIIIa expres-
sion is required for the formation of STIM1-Orai1 intermembrane
contacts [52]. Intriguingly, we have recently discovered that
CDP-DAG synthase and phosphatidylinositol synthase – two
enzymes required to produce the PI 4-kinase substrate PI, also
localise to ER membrane microdomains that are in close contact
with the plasma membrane [93]. Hence, it seems more and more
likely that inter-organelle membrane contact sites play a pivotal
role in the cellular organization of receptor-evoked phosphoinosi-
tide signalling (Fig. 1).

Since non-vesicular lipid transfer between contacting mem-
brane sites tends to be high flux and energy independent [94,95]
such a mechanism would be particularly well suited to supporting
large scale and rapid turnover of PI4P pools following GPCR activa-
tion. These insights may mean that apparent spatial restrictions on
PI4P generation due to the differential organelle targetting of the PI
4-kinases may not be as restrictive for signalling as previously
envisaged. Furthermore, the ability for lipids to be transferred be-
tween closely apposed membranes suggests that the dynamics of
organelle contact site formation and dissolution may impact on
the spatiotemporal control of cellular PI4P metabolism.

While PI4KIIIa has a prominent role in GPCR stimulated PLC sig-
nalling which tends to be a very dramatic and robust response
mediated by G-protein activated PLCb, the situation differs with
the two PI4KII isoforms which seem to have at best minor roles
in the agonist-stimulated Ca2+ response [14,90]. However there
are specific instances of PI4KIIa being important for the regulation
of receptor tyrosine kinase [15,33] and Wnt signalling [13,96,97].
In particular, TGN/endosome localised PI4KIIa regulates the endo-
somal traffic of activated EGFR [33] and knockdown of this enzyme
retards the degradation of internalised EGFR. Further evidence for
this isozyme modulating receptor signalling has emerged from a
study which demonstrated a role for PI4KIIa in regulating Wnt3a
signalling through Frizzled seven transmembrane receptors
[96,97]. This particular mode of canonical Wnt signalling is associ-
ated with b-catenin and T cell factor-induced gene transcription
rather than Wnt-activated PLC and Ca2+ signalling. These studies
found that PI4KIIa is required for PI(4,5)P2 formation and Wnt3a-
dependent phosphorylation of the low-density lipoprotein recep-
tor-related protein 6 (LRP6) [96]. Furthermore, Dishevelled (Dvl)
– a cytosolic protein recruited to Wnt3a–bound Frizzled receptors,
forms a complex with PI4KIIa resulting in a doubling of lipid kinase
activity [97]. Conversely it was later discovered that Itch, a HECT-
type E3 ubiquitin ligase that regulates the endosomal trafficking of
Wnt-activated Frizzled receptors, inhibits PI4KIIa activity and that
this effect is mediated by direct association of the Itch WW do-
mains with a PPxY motif of PI4KIIa (residues 15PPDY18 in the ami-
no terminus of PI4KIIa) [13]. Whilst PI4P synthesis is inhibited by
the PI4KIIa Itch complex formation, the ubiquitin ligase activity of
Itch is enhanced [13]. Hence, the opposing effects of Dvl and Itch
are consistent with activated PI4P synthesis being important in
the early events of Wnt signalling, particularly for phosphorylation
of the LRP6 co-receptor, but with a non-catalytic role for PI4KIIa
becoming predominant during the later stages of Wnt-receptor
trafficking and sorting via the ubiquitin pathway. Interestingly
while RNAi studies have not implicated the PI4KIIIs in Wnt signal-
ling, there is evidence that both PI4KIIIa and PI4KIIIb are required
for activation of Hedgehog signalling in mammalian cells – a pro-
cess which in Drosophila is thought to involve PI4P upregulating
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vesicular trafficking of the Smoothened receptor to the plasma
membrane [98].

Unexpectedly, non-catalytic functions of the PI 4-kinases may
also be important in regulating receptor-stimulated phosphoinosi-
tide signalling. This can particularly be seen in the case of the
PI4KIIa isoform where recombinant overexpression of a lipid
kinase-inactive mutant impairs EGF-stimulated Akt activation
[15]. Overexpression of kinase-inactive PI4KIIa does not inhibit
endogenous PI4P synthesis but induces defective TGN-endosomal
trafficking as evidenced by enlarged late endosomes and reduced
transferrin receptor trafficking to recycling endosomes [7,26,33].
Therefore, the effect on Akt activation can be attributed to defec-
tive intracellular vesicle trafficking rather than reduced PI4P
substrate supply and subsequent PI(3,4,5)P3 generation [15].
PI4KIIa expression levels determine the time course of EGFR
trafficking [33] to the lysosome and are important for the recruit-
ment of clathrin adaptors during Golgi-endosomal trafficking
[6,7,11,32,34]. Moreover, these trafficking functions are mediated
through both lipid kinase and modular protein binding properties
of the enzyme. Therefore, non-lipid kinase functions may regulate
phosphoinositide signalling pathways, albeit indirectly through
effects on the intracellular trafficking dynamics of signalling
proteins.

Although it only accounts for a small fraction of overall cellular
PI4P production, the PI4KIIb isoform has been reported to undergo
membrane recruitment following receptor activation [38]. The
mechanism ascribed for this regulatory event is unique amongst
the PI kinases and it involves in the absence of agonist, PI4KIIb
being sequestered in a cytosolic complex with Hsp90 where it is
catalytically inactive but at the same time protected from ubiqui-
tination and consequent proteolytic degradation. Following recep-
tor tyrosine kinase activation, the Hsp90 interaction is interrupted
and PI4KIIb undergoes membrane translocation [38] and possible
activation by the Rac GTPase. [99] PI4KIIb palmitoylation is associ-
ated with membrane recruitment and catalytic activity but unlike
the PI4KIIa isoform it is not constitutively palmitoylated [38,100].
Membrane-associated PI4KIIb is subject to agonist-dependent
phosphorylation in its structurally unique amino terminal domain
but this post-translational modification does not alter its lipid ki-
nase activity [38]. Biochemical evidence suggests that this isozyme
can also associate with crosslinked T cell receptor CD3 zeta chains
following tyrosine phosphorylation of the receptor [101]. PI4KII
activity has been observed by several groups in complex with tet-
raspanins (transmembrane-4 superfamily proteins) [40,102–107]
which are cell surface, plasma membrane spanning proteins with
important roles in adhesion and signalling [108–110]. In the case
of the tetraspanin CD81, PI4KIIb has been shown to be the co-
immunoprecipitated isoform [40]. However, the molecular
mechanisms that determine PI4KIIb interactions with either tetra-
spanins or tetraspanin-enriched membrane domains have yet to be
elucidated.
4. Interactions with other lipid pathways

There are now multiple reports that PI4P generation on Golgi
membranes is intrinsically linked with the synthesis of other lipids
specifically glycosphingolipids and sphingomyelin, and that this is
mediated by lipid transfer proteins that associate with Golgi mem-
branes via PI4P-binding PH domains [5]. In addition to its role in
promoting non-phosphoinositide lipid production there is also evi-
dence that PI 4-kinase activity is itself modulated by membrane
composition [111–113] and thus PI4P synthesis plays a key role
in sensing and controlling the concentrations of a variety of lipid
classes on late Golgi membranes.
4.1. Sterol regulation of PI4KIIa

PI4KIIa localises mainly to the TGN and endosomes and is only PI
kinase enzyme that constitutively associates with membranes
[28,29,100,114–116]. Different to all the other PI kinases, the bio-
chemistry and enzymology of PI4KIIa is largely defined by its target-
ing to cholesterol and glycosphingolipid-enriched microdomains of
the TGN and the modulation of its lipid kinase activity by membrane
sterol and oxysterol concentrations [28,100,111–113,116,117].
Work from our laboratory has shown that manipulating the sterol
concentration of intracellular membranes with methyl-b-cyclodex-
trin results in changes to the morphology and size of these mem-
branes which affects both the diffusion rate and mobile fraction of
the enzyme [112]. There is also evidence that enhanced sterol con-
centrations augment the catalytic activity of PI4KIIa [111–113]. Tar-
geting of PI4KIIa to TGN rafts is achieved through dual-
palmitoylation of cysteines within a CCPCC motif located in the cat-
alytic region of the protein by Golgi-associated palmitoyl transfer-
ases [100,115–117]. Interestingly, tight membrane association of
PI4KIIa does not necessitate its prior palmitoylation since palmi-
toyl-mutants remain tightly membrane bound. However, palmitol-
ylation is indispensible for PI phosphorylation and for the correct
subcellular targeting of the enzyme [100,115]. Most recent work
has revealed that PI4KIIa is in fact palmitoylated by DHHC3 and
DHHC7 which are two Golgi-associated palmitoyl acyltransferases
[117]. PI4KIIa can be co-immunoprecipitated from cholesterol-rich
lipid raft-like domains of the TGN in complex with these palmitoyl
acyltransferases and these interactions are lost following sterol
depletion with methyl-b-cyclodextrin [117]. In this way reversible
palmitoylation represents a unique cholesterol-sensitive regulatory
mechanism that simultaneously links the lipid kinase activity of
PI4KIIa with its targeting to raft-like microdomains of TGN-
endosomal membranes [117]. Another way of viewing these
biochemical relationships is to consider PI4KIIa localisation and
activity at this subcellular locus as reporters for the sterol content
and lipid microdomain organization of the tubulovesicular TGN
compartment [111,112].

4.2. PI 4-kinases & sphingomyelin synthesis

Sphingomyelin is generated from phosphatidylcholine and cer-
amide at the TGN in a reaction catalysed by sphingomyelin syn-
thase 1 which also produces diacylglycerol (DAG). However,
ceramide is synthesized in the ER and therefore must be trans-
ported to the TGN in order for sphingomyelin synthesis to take
place. The transfer of ceramide to the Golgi is effected by CERT –
a lipid transfer protein [118–120]. Structurally, in addition to
carboxy-terminal StART lipid-binding domain, CERT contains a
FAAT motif [81,82,121–123] which can bind to ER-localised VAP
proteins and in its amino terminus a PH domain which specifically
binds PI4P at the Golgi. The positioning of a Golgi-interacting PH
domain and ER interacting FFAT motif at opposite ends of CERT
facilitates the simultaneous binding of two compositionally dis-
tinct membranes and the non-vesicular transfer of ceramide across
this protein-mediated inter-organelle contact site [118,120].
Through pharmacological inhibition and RNA interference studies
the Balla laboratory established that the Golgi/TGN-localised
PI4KIIIb isoform is required for CERT-mediated non-vesicular
trafficking of ceramide to the TGN [4]. In this way, PI4KIIIb controls
the supply of substrate to sphingomyelin synthase and thereby the
rate of sphingomyelin production at the TGN. More recently, a
study from Banerji and colleagues has detailed how OSBP – an-
other PH domain containing protein, regulates sterol levels at the
TGN which affects PI4KIIa activity, PI4P-dependent CERT recruit-
ment and consequently sphingomyelin production [111]. This
places PI4KIIa downstream of OSBP and of critical importance in



298 E.L. Clayton et al. / Progress in Lipid Research 52 (2013) 294–304
integrating changes to cholesterol concentration with sphingomy-
elin synthesis. Since cholesterol and sphingomyelin are proposed
to be concentrated within lipid rafts, one inference from these
studies is that PI4KIIa is a key enzyme in driving lipid raft forma-
tion at the TGN. While this is an attractive model it should be noted
that the Balla laboratory only found a minor role for PI4KIIa in
CERT recruitment to the TGN [4], hence there is some debate over
which PI 4-kinase isoform is most important for maintaining
sphingomyelin levels.

The reaction catalyzed by sphingomyelin synthase also
produces DAG [124] which is required for activation [125] and
targeting Protein Kinase D (PKD) to TGN membranes [126,127].
Furthermore, PI4KIIIb catalytic activity is activated through PKD
catalysed phosphorylation of serine 294 [62,128]. This suggests
the existence of an integrated lipid-based regulatory mechanism
where the generation of DAG by sphingomyelin synthase leads to
increased PI4P production through the DAG-PKD-PI4KIIIb axis
[129]. PKD-induced phosphorylation of PI4KIIIb upregulates the
formation of plasma-membrane destined vesicular carriers in a
process that involves the formation of a complex between PI4KIIIb,
14-3-3c adaptin dimers and CtBP1-S/BARS [130]. Whilst mem-
brane trafficking to the plasma membrane driven by PI4KIIIb is in-
creased, ceramide delivery to the TGN is decreased as PKD
phosphorylation of CERT on serine 132 inhibits interaction of the
CERT PH-domain with PI4P [131]. PKD also serine phosphorylates
oxysterol-binding protein (OSBP) another protein implicated in
PI4P-dependent sphingomyelin synthesis at the TGN resulting in
impaired sterol and oxysterol-dependent recruitment of OSBP
[132]. Together these recent findings illustrate the central impor-
tance of PKD in the homeostatic control of the TGN lipid
composition.

4.3. PI 4-kinases & glycosphingolipid synthesis

The synthesis of complex glycosphinglipids at the Golgi is crit-
ical for maintaining the characteristic lipid compositions of the
both the TGN and plasma membrane, and depends absolutely on
the activity of PI4KIIIb and to a lesser extent PI4KIIIa [133–135].
Four-phosphate adaptor protein 2 (FAPP2) [119,120,136] like CERT,
Fig. 2. Redistribution of PI4P from the plasma membrane to a membranous web during H
and the plasma membrane and intracellular pools of this lipid were visualised by micro
appears in red. In control Huh7.5 hepatoma cells, there is a sizeable plasma membrane-
(genotype 2a) there is a reduction in PI4P at the plasma membrane and a concomitan
originates from the ER. PI4KIIIa is the PI 4-kinase implicated in producing both the p
reproduced from the work of Bianco and co-workers [51].
is a member of the family of lipid transfer proteins which contains
an N-terminal PI4P-binding PH domain [119,120,137]. However,
unlike CERT, FAPP2 contains a C-terminal glycolipid transfer pro-
tein homology domain which is required for efficient transfer of
glucosylceramide from cis- to trans-Golgi compartments, or as laid
out in alternative model, the retrograde transfer of glucosylcera-
mide to the ER followed by subsequent transport back to the Golgi
for additional enzymatic glycosylation [138]. CERT also contains a
FFAT-like motif which may mediate interaction with ER associated
VAP proteins [139]. PI4P production by PI4KIIIb and to a lesser ex-
tent PI4KIIa has been implicated in the recruitment of FAPP2 to
late Golgi membranes [134]. Furthermore, FAPP2 is a component
of the recently described PKD- and PI4KIIIb-regulated molecular
complex that facilitates the formation of plasma membrane-des-
tined vesicular carriers [5,130,140].

Since PI4KIIIb activity is under the control of DAG activated PKD
and PI4KIIa is responsive to membrane sterol concentrations, it
could be said that the Golgi/TGN PI 4-kinases co-ordinate a mem-
brane composition and sensing function that can transduce
changes in membrane environment into altered PI4P generation
thereby modulating the synthesis of the lipid raft–defining sphin-
gomyelin and glycosphingolipids (Fig. 2). As both PI 4-kinases also
mediate vesicle trafficking from the TGN, augmented PI4P synthe-
sis has the potential to modify the lipid composition of distal mem-
branes such as the plasma membrane. Therefore, PI 4-kinases
occupy a key role in co-ordinating and integrating the lipid compo-
sition of the various post-Golgi membranes with enormous conse-
quences for signalling, trafficking and membrane organization at
extra-Golgi loci [5,141,142].
5. Emerging roles for PI 4-kinases in disease

In this section we explore the emerging roles for the PI 4-ki-
nases across a wide range of human disease but particularly in can-
cer, neurological disease and infections caused by both bacteria
and viruses.
CV infection. PI4P (green) was imaged by immunostaining with anti-PI4P antibody
scopy. Nuclei are stained blue with the Hoescht dye and the Golgi protein giantin
associated pool of PI4P. However, in cells replicating subgenomic replicons of HCV
t large increase in intracellular PI4P in the HCV-induced membranous web which
lasma membrane and membranous web pools of PI4P. This figure is adapted and
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5.1. Cancer

The indications so far from cell based studies are that altera-
tions to individual PI 4-kinase isozyme expression levels can mod-
ulate receptor tyrosine kinase, Wnt, integrin and tetraspanin
signalling – all of which when deregulated can contribute towards
the development of neoplastic disease. However, in the absence of
disease causing mutations in the PI 4-kinases, it is not yet estab-
lished whether alterations to catalytic or non-catalytic functions
of the enzymes are most important in cancer (reviewed in [143]).
So far, increased expression of PI4KIIa and PI4KIIb has been re-
ported for a range of cancers with increased PI4KIIa levels associ-
ated with augmented activation of the HER2 receptor kinase
pathway, HIF production and angiogenesis [144]. In a separate
study, a potential anti-metastatic role for PI4KIIb has emerged
which involves this isozyme promoting the trafficking of CD81 tet-
raspanin proteins away from the plasma membrane into a popula-
tion of intracellular trafficking vesicles that also contain actinin
thereby inducing anti-migratory remodelling of the actin cytoskel-
eton [40]. Meanwhile PI4KIII has been identified in non-biased
screens as contributing towards a more aggressive metastatic phe-
notype of pancreatic ductal carcinoma cells [145] and was identi-
fied as one of several proteins that mediate resistance to the
chemotherapeutic agents gemcitabine [146] and cisplatin [147].
However, unlike the well established case of constitutively active
phosphoinositide 3-kinase mutations as found in PI3KCA or phos-
phatase PTEN deletions which can both elevate PI(3,4,5)P3 levels
and drive oncogenic signaling [148,149], it is significant that nei-
ther activating mutations of the PI 4-kinases nor deletions of
PI4P phosphatases have yet been discovered in cancer. While there
is some evidence that stimulation of PI4KIIIb activity by the onco-
genic eukaryotic protein elongation factor eEF1A2 may have a role
in the development of metastatic breast cancer [150–152], it is not
yet clear whether increased catalytic or non-catalytic functionality
of the PI 4-kinases, or even a combination of both properties, are
important for oncogenesis. However, the balance of evidence so
far suggests that defective vesicular trafficking, an important
parameter in mediating the spatiotemporal control of receptor sig-
nalling, may be an important contributory factor in malignancies
associated with augmented PI 4-kinase expression.

5.2. Neurological disease

Decreases in PI 4-kinase expression levels have also been asso-
ciated with neuronal dysfunction and in particular the impaired
survival of specific cell populations within the CNS. Reduced PI4-
KIIIa expression in the CA1 region of the hippocampus following
surgically induced-transient ischemia [153], while PI4KIIIb expres-
sion is reduced in the brain of rodents subject to chronic ethanol
consumption [154]. There is also some evidence that polymor-
phisms in the PIK4CA gene which encodes for PI4KIIIa may be
associated with genetic predisposition to schizophrenia [155] and
psychiatric disorders associated with chromosome 22q.11
[156,157], although this may be confined to particular, restricted
populations [158].

While cell-based studies have revealed important roles for the
PI 4-kinases in neuronal vesicular trafficking [11] it is not yet clear
which PI 4-kinase dependent functions lead to aberrant neuronal
survival. However, Genetrap mice which do not express PI4KIIa
are subject to selective cerebellar cell loss and progression to cer-
ebellar spinal degeneration which is ultimately fatal [159]. Inter-
estingly, transgenic animals with knocked-out PI4KIIIa
expression or those with a conditional knock-in of a lipid kinase
inactive version of this isozyme do not exhibit any neurological
abnormalities [160]. This may be an indication that the non-cata-
lytic functions of PI4KIIa may be important for neuronal survival
since unlike PI4P generation, these isoform-specific functions are
less likely to be compensated for by other isozymes. Cell based
studies have shown that PI4KIIa is recruited to clathrin-coated ves-
icles through interactions with the clathrin adaptor AP-3 and is
part of the protein complex that transports proteins such as dys-
bindin [11] and calcyon [161]. These observations intimate that
at least for PI4KIIa, alterations to clathrin-dependent intracellular
trafficking could possibly be important for maintaining neuronal
viability.

5.3. Bacterial infection

All of the mammalian PI 4-kinases have roles in either bacterial
entry or replication. In the case of Listeria monocytogenes, which
enters the cell through initial binding of the bacterial protein InIB
to the Met hepatocyte growth factor receptor in membrane sites
that also contain the tetraspanin CD81 [162]. Additionally both
PI4KIIa and PI4KIIb are required for bacterial internalisation and
this may be in part mediated by these isozymes regulating cell sur-
face levels of CD81 through affects on the intracellular trafficking
dynamics of this protein [40]. This is an interesting parallel with
the proposed role for PI4KIIb in hepatocellular carcinoma where
alterations to cell adhesion and motility are due to this isoform
regulating cell surface levels of CD81 [40]. PI4KIIa has also been
localised along with the PI4P producing PI(4,5)P2 5-phosphatase
OCRL to the surface of Chlamydia trachomatis inclusions [163].
These bacterial inclusions are non-acidified vacuoles that fuse with
the Golgi and multivesicular bodies during the cytosolic remodel-
ling phase of their development. Protected within inclusions, Chla-
mydiae can survive and replicate whilst avoiding trafficking to the
lysosomes. Further evidence for PI 4-kinase involvement in this
disease mechanism stems from the observation that the PI4P-bind-
ing and ceramide transporting protein CERT is recruited to the
inclusions at sites of interorganelle contact with the ER
[164,165]. Therefore, PI4P synthesis on Chlamydial inclusions sus-
tains the lipid identity of this replicative membrane compartment
and thus the trafficking of this structure away from lysosomes but
towards the perinuclear region of the cell.

The PI4KIIIb isoform has been implicated in the replication of
Legionella pneumophila [166], a process which occurs inside intra-
cellular vacuoles and is concomitant with the subversion and inter-
ference of host cell lipid signalling and trafficking pathways [167].
Amongst the bacterial proteins translocated into the host cytosol
are two proteins called SidC and SidM/DrrA [167–169] that com-
pete for a limited pool of PI4KIIIb-synthesised PI4P on the cyto-
solic-facing vacuolar membrane. DrrA is of particular note since
the carboxy terminal helical domain of this protein mediates the
highest yet recorded binding affinity for PI4P [169]. These PI4P-an-
chored proteins can redirect membrane trafficking by an unusual
mechanism involving the recruitment and activation of Rab1b by
DrrA-catalyzed adenosine monophosphorylation (AMPylation) of
the small GTPase on tyrosine 77 [170]. This PI4P-dependent, cova-
lent modification of Rab1b causes ER-derived vesicles to be re-
cruited to the replicative vacuole resulting in a major diversion
of intracellular membrane trafficking pathways [170–172] There-
fore, bacterial entry is dependent on PI 4-kinases to transport the
bacterium into the cell in association with endogenous cell surface
binding partners while replication depends on silencing and mask-
ing of phagosomal PI4P functions which would otherwise result in
host-mediated elimination.

Finally, PI4KIIIa has been identified in an RNA interference
screen as an endogenous host factor along with an ubiquitin
hydrolase USP22, and the ubiquitin ligase CDC27, which are re-
quired for the intracellular replication of Francisella tularensis
[173]. Unlike the scenarios with Chlamydia and Legionella where
PI4P production maintains a pro-replicative membrane environ-
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ment through subversion of host membrane trafficking, PI4KIIIa is
required during the later cytosolic phase of Francisella prolifera-
tion. Hence these recent findings demonstrate that PI 4-kinases
can regulate multiple steps in different phases of infection by path-
ogenic bacteria and with the possible exception of PI4KIIIa this oc-
curs by molecular exploitation and modulation of host endosomal
trafficking pathways that are dependent on PI4P generation.

5.4. Viral disease

In the past three years there has been huge progress in identi-
fying PI 4-kinases as essential host factors required for the propa-
gation of a number of RNA viruses including those responsible for
human diseases such as Hepatitis C [49,160,174–184], polio [185]
and severe acute respiratory syndrome (SARS) [186]. Similar to the
emerging functions for PI 4-kianses in bacterial infection, PI4P pro-
duction has been implicated in the generation of intracellular
membranous web-like structures that provide an environment
supportive of pathogen replication. This could be viewed as further
evidence for the role of PI 4-kinases and particularly the PI4KIIIs in
promoting organelle biogenesis at the level of lipid synthesis. One
important difference with all other pathologies involving the PI 4-
kinases is that viral proteins actively stimulate PI4P synthesis
through direct binding [49]. To date, PI4KIIIb has been implicated
in the intracellular RNA replication of several enteroviruses
[185,187,188] and in the endosomal fusion phase of SARS coronoa-
virus [186] infection. While in the case of the Hepatitis C virus
(HCV), PI4KIIIa has emerged from RNA interference screens and
pharmacological studies as a host protein that is bound and acti-
vated by the non-structural viral protein NS5A [49,181] to produce
large amounts of PI4P and thus an ER-derived membranous web
that promotes viral replication [51,174,189] (Fig. 2). This repre-
sents the first example of activated PI 4-kinase activity having a
pathological role. Unlike the scenario with PI4P on the surface of
bacterial vacuoles which is exploited by bacterial proteins to redi-
rect intracellular trafficking there is as yet little evidence that for-
mation of the large ER-derived PI4P rich web structure impairs
vesicular trafficking along the secretory pathway. Indeed the pres-
ence of the Golgi-localised PI4KIIIb isoform is required for the
propagation of Hepatitis C virus [182,183] and enteroviruses
[185,188].

There is a possibility that the PI4P enriched surface of the mem-
branous web may act as a docking surface for host, as opposed to
viral proteins that contain apposite binding domains. In concor-
dance with this hypothesis both OSBP [190] and CERT [191] – pro-
teins with key roles in non-phosphoinostide lipid transfer and
sensing at the TGN, have been identified as additional host factors
required for HCV replication. This raises another issue as to
whether such a massive enrichment of PI4P molecularly defines
the identity of this virally induced organelle in terms of its surface
electrostatics and also in the recruitment and homeostasis of other
components of this membrane compartment [192]. Of relevance to
this idea is the observation that host sphingolipid synthesis, a pro-
cess known to be under the control of PI 4-kinases, is known to be
greatly upregulated during HCV infection [193,194]. In addition,
the PI4P-binding protein OSBP, which may control CERT-mediated
ceramide transfer to sphingomyelin synthase, interacts with the
amino terminal domain I of the HCV protein NS5A protein at the
TGN and is required for the process of HCV maturation [190,191].

Another possible outcome of virally-induced PI4KIIIb activation
is greatly enhanced signalling due to elevated PI4P substrate levels.
Consistent with this proposal, a number of reports have demon-
strated HCV-induced alterations to pro-oncogenic signalling path-
ways [195–199]. It remains to be established though, if elevated
PI4P at the virally-induced compartment constitutes a signalling
competent pool capable of supplying substrate to upstream phos-
phoinositide kinases and phospholipases at the plasma membrane
and endosomes. Another proviso is that alterations to signalling
and trafficking could be accounted for by the interactions of viral
proteins with multiple host proteins. As an example, in addition
to PI4KIIIb, NS5A can bind other host proteins including the cellu-
lar retinoic acid binding protein 1, centaurindelta2 [174] and other
lipid metabolizing enzymes such as calcium-dependent, group IVA
phospholipase A2 [200]. In terms of PI signalling, Cenaturindelta2,
also known as ARAP1, is especially interesting as it is a multi-do-
main protein that contains phosphoinositide binding PH domains,
ankyrin repeats as well as GAP domains specific for Arf and Rho
GTPases [201,202]. Furthermore, the related protein ARAP2 has
been implicated in the internalization of Listeria monocytogenes
which suggests the engagement of similar host factors for bacterial
and viral infections [203]. Therefore it seems likely that alterations
to PI4KIIIa activity may contribute to an overall systems level
change in signalling outputs during HCV infection [192,200].
6. Pharmacological targeting of the PI 4-kinases and future
perspectives

Due to their emerging and important role in several diseases
there has been some interest in developing small molecule, iso-
form-selective inhibitors of the mammalian PI 4-kinases. There
has been some progress in identifying reasonably specific inhibi-
tors of the PI4KIIIs. Particularly noteworthy in this regard are
PIK93, the anti-enteroviral T-00127-HEV1 and some aminoimidaz-
ole inhibitors developed by Novartis [183] all of which selectively
inhibit PI4KIIIb. Although there is now one report demonstrating
that some coxsackievirus mutants can overcome their dependence
on PI4P for their intracellular replication [187], suggesting that the
acquisition of resistance may become a problem in targeting host
PI4KIIIb in viral disease. As regards PI4KIIIa the anti-viral mole-
cules AL-9 – a 4-anilino quinazoline molecule [51], and the Boeh-
ringer Ingelheim compounds A and B [160] are all newly
identified, selective inhibitors of this isoform. This contrasts with
the current situation with the PI4KIIs where with the exception
of less specific molecules such as resveratrol [204,205], and epigal-
locatechin gallate [206] there has been little progress. Neverthe-
less, the pharmacological targeting of individual isoforms may
not be straightforward and this may in part due to the multiplicity
of cell functions controlled by the PI 4-kinases coupled with com-
pensation particularly at the level of PI4P synthesis – a common
function shared by all isoforms. Hence to effectively silence PI 4-ki-
nase-dependent trafficking, it may also be necessary to inhibit
their modular protein-binding functions. A good example of such
a scenario is the role of PI4KIIa in the recruitment of AP-3 on late
endosomal membranes as this function requires both PI4P synthe-
sis and a dileucine AP-3 interaction motif [7]. Therefore, co-inci-
dent targeting of more than one aspect of PI 4-kinase structure
may be required to silence a single biological function. To extend
this idea, there are now documented instances where more than
one PI 4-kinase controls distinct steps along the same trafficking
pathway. This has been observed in yeast in the sequential recruit-
ment of AP-1 and clathrin adaptors at the TGN [207], and in mam-
malian cells in the trafficking of b–glucocerebrosidase enzyme
from the TGN to lysosomes in distinct steps requiring PI4KIIIb
and PI4KIIa consecutively [17]. These new insights suggest that
it may be necessary to inhibit the activity of more than one PI 4-ki-
nase isoform to comprehensively suppress a particular biological
pathway.

A further challenge in targeting the PI 4-kinases has emerged
from more recent studies which have revealed differential cell
and tissue dependencies on the PI 4-kinase isoforms that are not
always predictable. As an example, animal studies have shown that



E.L. Clayton et al. / Progress in Lipid Research 52 (2013) 294–304 301
genetic knockdown of PI4KIIIa leads to severe changes in the gas-
trointestinal mucosal epithelium [160] whereas loss of PI4KIIa
leads to selective loss of specific neuronal cell populations such
as cerebellar Purkinje cells [159]. Therefore, it is not yet clear if
inhibiting individual PI 4-kinase isoforms in a therapeutic setting
represents a feasible strategy. However, a more comprehensive
knowledge of the roles of different PI 4-kinase permutations in
modulating lipid metabolism, signalling and trafficking, may illu-
minate which PI4P pathways to target in human disease.
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