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1 Background

Support Vector Machines (SVMs) are a form of maximum margin clas-
sification, first proposed by Boser et al. 1 . A training data set is used
to derive an algorithm that separates classes of data. A basic SVM is
a binary classifier that linearly separates data into two groups. As not
all data sets are linearly separable in their basic (input space) form, a
function maps the data into higher dimensional space (feature space),
and then a linear separating hyperplane is determined. Once the hyper-
plane has been determined, the SVM can be used to classify data. The
distance between the separating hyperplane and the nearest data point
of each class is calculated to be as large as possible (hence maximum
margin classifier), which ensures that the classifier is robust against new
data points that lie slightly outside the observed class boundaries.

In practice, although some data are linearly separable in this way,
many are not; measurement noise in observed points that are on the mar-
gins of a class can have a disproportionate effect on the hyperplane cho-
sen and may even mean that it is not possible to separate classes without
error. Consequently, in the soft margin approach to classification, a hy-
perplane is chosen in such a way as to minimise a cost function that
balances the impact of training errors against the size of the margin for
correctly classified data, using a parameter C that is tuned through cross
validation.

0a Dept. of Security and Crime Science, University College London, 35 Tavistock Sq., London, UK,
WC1H 9EZ

0b School of Engineering and Materials Science, Queen Mary University of London, Mile End Road,
London, UK, E1 4NS

0c Dept. of Computer Science, University College London, Gower St., London, UK, WC1E 6BT
0d Dept. of Chemistry, University College London, 20 Gordon St., London, UK, WC1H 0AJ Fax: +44

(0)20 7679 7463; Tel: +44 (0)20 7679 4669; E-mail: i.p.parkin@ucl.ac.uk

1



As described above, SVMs are binary classifiers, distinguishing be-
tween two classes; however, in many practical cases it is necessary to
classify data into multiple classes. There are two approaches to the mul-
ticlass case: (i) a classifier is trained per class - each classifier defines the
hyperplane that separates the examples of a particular class from all the
remaining data points (the “one-against-all technique”); (ii) a classifier
is trained for every pair of classes and, when classifying a point, a num-
ber of votes is allocated to each class based on the pairwise comparisons.
The assigned class is selected as that with the greatest number of votes
(the “one-against-one technique”).

There are a number of SVM-based tools in common use; that selected
for use in this study was libSVM, designed and maintained by Chang and
Lin 2 . This applied a “one-against-one technique” to extend the binary
classifier to a multiclass problem, as the most effective implementation
of a multiclass SVM.3,4 The implementation used was run in the data
mining package, WEKA.5

A C-SVC classification SVM was used and the Gaussian radial-basis-
function kernel was selected, as recommended by the literature. Train-
ing this form of classifier requires two parameters to be set: the cost
parameter C, discussed above, which is a measure of how strictly a point
in the training set must be classified accurately; and γ , which is an in-
verse width parameter for the Gaussian kernel (related to the curvature
of the decision boundary between classes). Before the classifier can be
used, values for both parameters must be determined, and this is typi-
cally achieved by searching over a grid of plausible values using cross
validation to determine classification accuracy for a given parameter set-
ting. In this case, the grid was formed using values of 2x, with x between
-6 and 10 for C and -10 and 5 for γ , in 0.5 step intervals. Grid ex-
tension was allowed where necessary, so numbers outside of this range
were accessible to the algorithm. This search was carried out with 2-
fold cross-validation to find the best approximate values quickly; next,
sequential 10-fold cross validations were performed, using adjacent pa-
rameter pairs to refine the values. These optimised C and γ parameters
were then used to build the SVM model and test data.

2 Building the SVM

The data used for training and testing the SVM models consisted of 948
data vectors containing the attributes: |S|, Direction of Response (1 for
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Ro/R, 0 for R/Ro), Sensor Material (7 types), Pulse Length (600 s), Hu-
midity (0%) and Sensor Temperature (in ◦C). Concentration (in ppm)
was initially included, but then later removed in further experiments.
Each vector was also labelled with the class (NO2, MeNO2, NH3 or
EtOH).

The data were randomly split into a training set of 664 vectors and a
testing set of 284 vectors. The model was trained, using the grid search
to optimise C and γ , on the training data and, once trained, was tested
with the test data. This was run using the original split data and a nor-
malised form, to see if this offered any improvement. The original data
was well classified with 94% accuracy, however the SVM built using
normalised data appeared to mis-classify much of the NH3 data, leading
to a lower accuracy of 81%. The confusion matrices are given in Table 1.

Table 1 Confusion matrices for training with 664 data vectors and testing on 284 with optimised
C and γ . True class is defined vertically and output classification horizontally.(a) Data was not
normalised and accuracy was 94.37%. (b) Data was normalised and accuracy was 80.63%

(a)

Classification

Class NO2 MeNO2 NH3 EtOH

NO2 106 0 0 0

MeNO2 0 67 0 0

NH3 1 0 46 3

EtOH 0 3 9 49

(b)

Classification

Class NO2 MeNO2 NH3 EtOH

NO2 106 0 0 0

MeNO2 0 67 0 0

NH3 0 0 8 42

EtOH 0 0 13 48

Next, concentration information was removed from the training and
test data, as this information would not necessarily be available in a sens-
ing situation. The training and testing was run using non-normalised
and normalised data, with optimised parameters. As expected, these
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SVMs were not as successful as the non-normalised model with con-
centration information; however in this instance the normalisation of the
data slightly improved classification, from 85.6% to 85.9% (Table 2).

Table 2 Confusion matrices for training with 664 data vectors and testing on 284 with
optimised C and γ . True class is defined vertically with the output classification across the
horizontal. Concentration values were omitted for both train and test data and data were not
normalised for (a), but were subsequently normalised in (b). Classification accuracies were (a)
85.56% and (b) 85.92%

(a)

Classification

Class NO2 MeNO2 NH3 EtOH

NO2 105 1 0 0

MeNO2 0 61 0 6

NH3 0 1 39 10

EtOH 1 13 9 38

(b)

Classification

Class NO2 MeNO2 NH3 EtOH

NO2 106 0 0 0

MeNO2 0 59 5 3

NH3 0 1 44 5

EtOH 0 15 11 35

Finally the SVM was trained using all 948 data vectors (all with 600 s
gas pulse and 0% humidity) and tested first against a further 100 data
vectors collected at 50% humidity, and then 303 vectors collected in
dry air but with 150, 300 and 900 s gas pulses. The SVM was trained
as before, using normalised data without the concentration attribute in
either training or testing data, and the confusion matrices are given in
Table 3.

The use of humidity reduced classification accuracy very slightly
from the model in Table 2b by only 0.92%, to 85.00%. Variable pulse
length data, was actually more successfully classified, with an SVM ac-
curacy of 89.77%.
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Table 3 Confusion matrices for training with 948 data vectors and testing on (a) 100 vectors at
50% humidity and (b) 303 vectors at 150, 300 and 900 s. C and γ were optimised. True class is
defined vertically with the output classification across the horizontal. Concentration values
were omitted for both train and test data in each case and the data were normalised.
Classification accuracy was 85.00% for (a) and 89.77% for (b)

(a)

Classification

Class NO2 MeNO2 NH3 EtOH

NO2 13 0 0 0

MeNO2 0 38 0 2

NH3 1 0 13 7

EtOH 0 4 2 21

(b)

Classification

Class NO2 MeNO2 NH3 EtOH

NO2 39 0 0 0

MeNO2 0 117 0 3

NH3 0 3 54 6

EtOH 0 9 10 62
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