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Doubly Stochastic Coherence via Noise-Induced Symmetry in Bistable Neural Models
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The generation of coherent dynamics due to noise in an activator-inhibitor system describing bistable
neural dynamics is investigated. We show that coherence can be induced in deterministically asym-
metric regimes via symmetry restoration by multiplicative noise, together with the action of additive
noise which induces jumps between the two stable steady states. The phenomenon is thus doubly
stochastic, because both noise sources are necessary. This effect can be understood analytically in the
frame of a small-noise expansion and is confirmed experimentally in a nonlinear electronic circuit.
Finally, we show that spatial coupling enhances this coherent behavior in a form of system-size

coherence resonance.
DOI: 10.1103/PhysRevLett.90.030601

Rhythm generation is a long-standing problem in sci-
ence, particularly in biological and cognitive science
contexts [1,2]. A paradigm of this kind of self-sustained
oscillating behavior in nonlinear systems is offered by
limit cycles. But even in the absence of limit cycles,
internal rhythms can be generated in nonlinear systems
by the effect of noise. An early realization of this phe-
nomenon was reported in a two-dimensional autonomous
system when operating close to a limit cycle and was
interpreted as a manifestation of stochastic resonance in
the absence of external forcing [3]. An optimal amount of
noise was also seen to lead to a maximally coherent
output in an excitable system [4]. This effect, called
coherence resonance, was studied in the well-known
FitzHugh-Nagumo model, which has been extensively
used to describe the dynamics of neural systems [5].
Coherence resonance has been confirmed in several ex-
perimental situations, such as in laser systems [6]. Fur-
thermore, it has also been predicted in a system with two
chaotic attractors [7] and in excitable media coupled via
an inhibitor concentration, provided the coupled elements
behave in antiphase [8].

A complete understanding of these different mecha-
nisms of coherence resonance is very important for the
study of rhythm generation in biological systems [2,9]
and, in particular, in neural tissue. On the other hand,
increasing experimental evidence has established in re-
cent years that certain types of neurons frequently oper-
ate in a bistable regime [10]. Thus, the question arises
whether noise can excite an autonomous coherent output
in bistable neural systems. In this direction, both standard
stochastic and coherence resonance have been observed in
a symmetrically bistable FitzHugh-Nagumo model [11].
In the present Letter, we show that coherence can also be
generated in the general asymmetric case, where the
stability of the two stable steady states is not necessarily
the same. We demonstrate that the mechanism of coher-
ence enhancement in this situation is utterly different
from the standard one, being based on the restoration of
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symmetry induced by a multiplicative source of noise.
This effect vividly contrasts with standard noise-induced
phase transitions, where noise usually leads to the break-
ing of symmetry [12].

Doubly stochastic coherence (DSC) can be observed in
an asymmetric system under the joint action of multi-
plicative and additive noises. Once multiplicative noise
induces a symmetric bistable state in the system, due to
the presence of optimal additive noise, coherence can be
maximized in the output. Hence, the resulting coherence
is doubly stochastic, since simultaneous optimization of
two noise intensities is required in order to observe the
phenomenon. The concept of doubly stochastic effects has
been introduced recently as a new mechanism of noise-
induced phenomena in the context of harmonically
driven systems [13]. These effects are usually possible
due to the interplay between additive and multiplicative
noise. In [13], multiplicative noise (in combination with
spatial coupling) induces bistability in a simple mono-
stable extended system, and additive noise induces
synchronization with the external signal in that noise-
induced bistable regime. Such doubly stochastic reso-
nance has been reported in simple electronic circuit
models [14]. Following those lines, we have shown re-
cently that doubly stochastic effects lead also to signal
propagation in simple monostable media [15]. The syn-
thesis of noise-induced transitions and noise-induced
transport reported in [16] is also related to this kind of
effects. In this Letter, we report the occurrence of DSC in
a modified version of the well-known FitzHugh-Nagumo
(FHN) model. The mechanism is explained theoretically
in the framework of a small-noise expansion of the
model, which extracts the systematic contribution of the
multiplicative noise that accounts for the symmetry res-
toration. The results of this analysis and numerical results
are confirmed by experiments on an electronic circuit.
Finally, we show that this effect can be generalized for
the case of spatially extended systems, where it leads to
synchronization induced by multiplicative noise.
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We consider the following version of the FHN model:

du

8= u(l —u)(u —a) — v,
dv .
T bu— v —uvé() + £(2).

In a neural context, u(f) represents the membrane poten-
tial of the neuron and v(7) is related to the time-dependent
conductance of the potassium channels in the membrane
[5]- The dynamics of u is much faster than that of v, as
indicated by the small time-scale-ratio parameter .
There are two mutually uncorrelated noise sources, rep-
resented by the §-correlated Gaussian noises £(¢) and £(z),
with zero mean and correlations (£(¢)£(¢)) = o2,8(t — ')
and (Z(1)¢(t)) = 028(t — t'). The additive noise is in-
serted in the slow-variable equation, as in most studies
of coherence resonance [4]. The multiplicative noise £() is
interpreted in the Stratonovich sense [12].

In what follows we use the parameters a = 0.15, b =
0.12, and & = 0.01, for which the deterministic system
has two stable fixed points with different stability (i.e.,
with different thresholds of escape through the extrema of
the u nullcline), as shown in Fig. 1(a) (curve 1 and its
crossing points with the u nullcline). Additive noise in-
duces here jumps between these two states, but the escape
times are very different in the two states. This behavior is
shown in Fig. 1(b), as obtained from numerical simula-
tions of model (1) for the above-mentioned parameters.

The effect of multiplicative noise in this system can be
determined by analyzing the systematic effect it produces
in the system dynamics due to the fact that the corre-
sponding fluctuating term in the v equation has a nonzero
average value. Computation of this average value by
means of standard techniques [17] leads to the following
effective deterministic model, which can be considered as
a first order approximation in a small-noise expansion of

@) [12]:
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FIG. 1. (a) Nullcline plot of the FHN model (1). Dashed line:
u nullcline (&z = 0); solid lines: v nullclines (¥ = 0) for three
different values of the multiplicative noise intensity: o2, = 0.0
(curve 1), 0.2 (curve 2), and 2.0 (curve 3). (b)—(d) Time
evolution of the activator variable u for the previous three
multiplicative noise intensities: (b) a2, = 0.0, (c) 0.2, (d) 2.0.
The intensity of additive noise is fixed to o2 = 2 X 10~4; other
parameters are given in the text.
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8% =u(l - u)u—a)—v, (2)
2
%=bu—v+%u2v+§(t). (3)

The nullclines of this model for two nonzero values of o2,
are shown in Fig. 1(a), as curves 2 and 3. It can be seen
that for an intermediate value of o2, corresponding to
curve 2, the two states are equally stable and the escape
times are basically identical. As a result, jumps in the
output of the system are more equidistant [Fig. 1(c)]. For
larger multiplicative noise intensity the asymmetry in-
creases again, this time reversed, as shown in curve 3 of
Fig. 1(a), and the system spends more time in the lower
state, as shown in Fig. 1(d) (in fact, in this extreme case
the upper steady state has turned unstable, and the system
becomes excitable).

Hence, an optimal amount of multiplicative noise opti-
mizes the symmetric response of the system. In that
situation, we can expect additive noise to be more effec-
tive in producing coherence, since the potential barrier
heights (and thus the corresponding escape times) are the
same in the two jump directions. To quantify this ex-
pected coherence enhancement, we have measured the
normalized variance of subsequent periods 7;. The illus-
tration of the definition of 7; is depicted in Fig. 1(b). The
normalized variance, which is called the coherence pa-

rameter [4], is determined as R = {/a%/(T;), where o7 is
the variance of the sequence T;, and (T;) is its average
value. The dependence of R on the multiplicative noise
intensity for the time series depicted in Figs. 1(b)—1(d) is
shown in Fig. 2 (left). It is clearly seen that R first
decreases to some minimum value and then increases
again. The minimal R corresponds to the highest degree
of periodicity in the system output and is a manifestation
of stochastically induced coherence. A similar behavior
occurs for varying the strength of the additive noise
as well, as shown in the inset of Fig. 2 (left). Different
values of the excitation threshold correspond to different
optimal intensities of the noise. To optimize the perio-
dicity, one should vary both the threshold (provided by
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FIG. 2. Left: coherence parameter R vs intensity of the multi-
plicative and additive (inset plot) noises. o2 =2 X 10™* and
o2, = 0.5, respectively. Right: contour plot of the coherence
parameter R vs intensity of the multiplicative and additive
noises (darker gray corresponds to smaller values of R).
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FIG. 3. Nonlinear electronic circuit with two asymmetrically
stable steady states. The values of the elements are R = 270 (),
L=10mH, C;, =1nF, C, =10nF, R" ' =220Q, V_=5V,
and V. =2 V. The operational amplifier is taken from a
TLO082 integrated circuit.

multiplicative noise) and the intensity of additive noise.
Both noise intensities need to be tuned in order to opti-
mize periodicity in the output [see Fig. 2 (right)], and
hence we call this effect doubly stochastic coherence.

With the aim of confirming experimentally the phe-
nomenon of DSC via noise-induced symmetry, we have
designed a circuit (Fig. 3), which has two asymmetrically
stable steady states. In this circuit, the difference between
the positive and negative voltages feeding the operational
amplifier provides the asymmetry in the stability of the
two fixed points. Multiplicative noise acts on the positive
voltage V., which is a parameter that changes the stabil-
ity of the higher voltage fixed point of the circuit [18]. A
second source of noise, which acts as a signal, induces
jumps between the two stable states and acts as an addi-
tive noise. The noise is produced electronically by ampli-
fying shot noise from a junction diode [19].

Following the numerical approach, we fix the intensity
of additive noise and increase that of multiplicative noise.
First, the upper steady state is more stable than the lower
one, and the system spends more time in the former
[Fig. 4(a)]. As the strength of multiplicative noise in-
creases, the situation is reversed [Fig. 4(c)], passing
through a symmetric regime for intermediate noise
[Fig. 4(b)]. Calculating the coherence parameter R for
the experimental time traces, we find clearly that multi-
plicative noise enhances coherence via the appearance of
symmetry [Fig. 4(d)].

We have also examined the effect of spatial coupling on
a set of distributed bistable FHN oscillators subject to two
noise sources. The model is now given by

ou.
el = u,»<]1) —u)(w; — a) — v
+ 5(ui+| + U1 — 2”[), (4)
av,-
o7 = bu; — v; — uv;£(1) + (),

where D denotes the strength of coupling and the
noise terms are now O correlated also in space,
with (&;()é,(1")) = 05,6(t — 1)8;; and (L(D);(1)) =
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FIG. 4. Time evolution of the voltage drop V; through ca-
pacitor C; for the circuit represented in Fig. 3, for three
different intensities of the multiplicative noise (measured as
peak-to-peak amplitude of the random voltage): (a) 1.6 V,
(b) 1.7 V, and (c) 1.9 V. Additive noise intensity is fixed to
0.88 V. (d) Coherence parameter vs multiplicative noise
intensity.

We now study the joint effect of additive and multi-
plicative noise on the spatiotemporal evolution of this
extended system, using a binary coding for the activator
variable u;(r), associating black or white to each one of
the two fixed points of the local bistable dynamics. The
numerical simulation results are shown in Fig. 5 for three
values of o2, and a fixed o2. As expected, the local
dynamics becomes more regular for an optimal amount
of multiplicative noise, as happens with an isolated FHN
element. However, remarkably enough, the most tempo-
rally coherent case corresponds also to the most spatially
uniform behavior of the system as a whole. To character-
ize such a synchronized coherence, we calculate the
coherence parameter R for the mean field m(r) = >, u;.
The dependence of this parameter on the intensity of
multiplicative noise is shown in Fig. 6(a) for a system of
50 coupled elements. The dependence is nonmonotonic,
reflecting the DSC characteristic of isolated elements,

0 T — 0
0 125 25 375 500 0 125 250 375 500 0 125 250 375 500
space space space

FIG. 5. Spatiotemporal evolution of a chain of FHN oscilla-
tors in the bistable regime for three intensities of the multi-
plicative noise. From left to right, o2, = 0.01, 0.2, 4. Additive
noise is fixed to o2 =4 X 107*. Coding is binary, with black
corresponding to the upper fixed point and white to the lower
one. Other parameters are D = 30, a = 0.15, b = 0.12, and
e = 0.01.

030601-3



VOLUME 90, NUMBER 3

PHYSICAL REVIEW LETTERS

week ending
24 JANUARY 2003

0.55 0.5

(a)

0.45
0.4

o 035 o
03 ¢
0.25 ]
0.15 0.2
0.000 0.005 0.010 0.015 0.020 0 50 100 150 200 250 300
c,2 Size
FIG. 6. (a) Coherence parameter R of the mean field m(r) vs

intensity of the multiplicative noise for a system with
50 coupled elements. (b) The dependence of R on the size of
the system (o2, = 0.005).

although in this case the parameter measures also the
degree of synchronization in the system. Furthermore,
Fig. 6(b) shows that increasing the number of elements in
the ensemble first increases the coherence of the output (R
initially decreases), due to the synchronization of the
elements, but further increase of the system size leads
to a loss of synchronization, and thus R increases again.
The result is a system-size coherence resonance (cf. with
system-size stochastic resonance, which happens in ex-
ternally forced systems [20]). In a neural context, this
property could imply that neurons benefit from coupling
in networks of optimal size for the organization of a
pacemaker.

In conclusion, we have shown that bistable models of
neural dynamics exhibit doubly stochastic coherence via
noise-induced symmetry. This mechanism of rhythm
generation arises whenever the two stable steady states
of the system have different escape thresholds. An opti-
mal amount of multiplicative noise renders the two fixed
points equally stable, and tuning the additive noise in this
noise-induced symmetric situation maximizes the coher-
ent behavior in the system. The influence of multiplicative
noise can be explained in terms of an effective model that
contains the systematic effect of the noise term. These
results have been confirmed by experimental measure-
ments on a bistable nonlinear electronic circuit. From a
second standpoint, we have shown that this effect leads to
synchronized behavior in spatially distributed systems. In
this case, this coherence enhancement also exhibits a
resonance with respect to the size of the system; i.e., there
is some optimal size of the system for which the output is
the most periodic one. Our study has been performed in
the general framework of the paradigmatic FHN model,
in a bistable asymmetric regime which is realistic for
biological systems [10], and hence we expect that our
findings could be of importance for understanding the
mechanisms of periodicity generation in neural and other
excitable media.
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