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Approximating ideal shapes with tight elements

E. L. Starostin (Dresden)

Abstract: A variational approach is applied to the problem of finding the shortest curves in space sepa-
rated by constant distance. Among particular extremal solutions are straight line, circular arc and double
helix. Various knots and links may be assembled from these elements. It turns out that the structures so
created may serve as very good approximations of the ideal shapes. Explicit construction of the trefoil
knot and link 4

2
1 furnishes the examples.
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1 Introduction

An ideal (or tight) knot or link is a configuration of one or several closed non-overlapping
tubes of constant uniform thickness such that the ratio of the centreline(s) length to thickness
is minimal for given topology [23]. It is believed that this ratio is a parameter that can help to
classify knots and links. The properties of the ideal shapes relate to various physical systems
and models ranging from behaviour of DNA in gel to glueballs (e.g. [8, 14, 2]). No analytical
description of any ideal knot except the unknot is currently known and only few ideal links are
characterized explicitly, though approximate configurations can be computed numerically [18,
12, 15, 1, 5].

If one looks at a numerical approximation of the ideal trefoil [11, 5], several features stand
out. In particular, the shape has 3-fold symmetry and there are large fragments which look like
circular arcs. On the other hand, if we take a short piece of the tight double helix [18, 24]
it seems to be very close to two pieces of circular tubes touching each other like in the Hopf
link which is known to be ideal as the solution of the Gehring link problem [6, 17] (see also
Ref. [4] and references therein). Both circular arc (plus its central point) and double helix are
extremal solutions to the problem of finding the shortest curves in space separated by constant
distance. These two observations suggest an attempt to build a shape from the elements of these
two types. Surprisingly, the result turned out to be very close to the numerical approximation
(though with a little greater length-to-radius ratio).

Since the trefoil is a torus knot, another simple analytical approximation of the ideal trefoil is
a curve lying on the surface of a torus [19]. It also gives the value of the ratio worse than both
numerics and our shape, and the difference between that toroidal configuration and ours is much
bigger than between ours and numerics.
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2 Variational approach

Let ri(σ), i = 1, . . . , n, n ≥ 2, be the curves in R
3 of class C2, σ being a common parameter,

σ ∈ [0, Λ]. We assume that the curves ri represent the centrelines of n pieces of an incompress-
ible rope of the constant thickness diameter D. The i-th and (i + 1)-st pieces touch each other
continuously so that, for every σ0 ∈ [0, Λ], the points ri(σ0) and ri+1(σ0) are the closest ones,
i.e. the distance between them is equal to D. We assume that the global curvature [7] for all the
curves does not exceed 2/D. Without loss of generality we may set D = 1.

We are seeking shapes of the curves ri connecting two sets of n points such that the sum of their
lengths is minimal and the minimal distance between every pair of curves ri, ri+1 is constant:

L =

Λ
∫

0

n
∑

i=1

‖r′i(σ)‖ dσ → min;

r′i(σ) · (ri(σ) − ri+1(σ)) = 0, i = 1, . . . , n − 1, σ ∈ [0, Λ];

r′i(σ) · (ri(σ) − ri−1(σ)) = 0, i = 2, . . . , n, σ ∈ [0, Λ]. (1)

The prime denotes the derivative with respect to σ. The first order necessary condition for
ri(σ), i = 1, . . . , n, to be a solution to the problem (1) is that there are the Lagrange multipliers
λ+

i (σ), i = 1, . . . , n − 1, and λ−
i (σ), i = 2, . . . , n, such that the functional

Λ
∫

0

(

n
∑

i=1

‖r′i(σ)‖−

−
n−1
∑

i=1

λ+
i r′i(σ) · (ri(σ) − ri+1(σ)) −

n
∑

i=2

λ−
i r′i(σ) · (ri(σ) − ri−1(σ))

)

dσ (2)

is stationary. The corresponding Euler-Lagrange equations are

t′1 − (λ+
1 )′(r1 − r2) + (λ+

1 − λ−
2 )r′2 = 0, (3)

t′i − (λ+
i )′(ri − ri+1) − (λ−

i )′(ri − ri−1) + (λ+
i − λ−

i+1)r
′
i+1 −

−(λ+
i−1 − λ−

i )r′i−1 = 0, i = 2, . . . , n − 1, (4)

t′n − (λ−
n )′(rn − rn−1) − (λ+

n−1 − λ−
n )r′n−1 = 0, (5)

where by ti we denoted the unit tangent vectors to the curves ri. Now we project Eq. (3) onto
r′1, Eq. (4) onto r′i and Eq. (5) onto r′n. Since t′i · r′i = 0 for any i = 1, . . . , n, the resulting
system reduces to n − 1 equations

(λ+
i − λ−

i+1) r′i · r′i+1 = 0, i = 1, . . . , n − 1. (6)

The i-th Eq. (6) is satisfied if at least one of the two conditions holds:

(a) λ+
i = λ−

i+1,
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Figure 1: The ideal Hopf link.

(b) r′i · r′i+1 = 0.

Under assumption of the case (a) for i = 1, . . . , n − 1, summation of all Eqs. (3)–(5) leads to
the vector integral

n
∑

i=1

ti = const. (7)

For n = 2, Eq. (7) immediately implies either a double helix or two parallel straight lines or a
circle (if the constant is zero). The latter forms the centreline of a bialy [10], a torus with no
hole which is the unknot, the only proven ideal shape among knots. There is a particular case
of the double helix when the pitch angle equals π/4 which means that r′1 · r′2 = 0, i.e. both
conditions (a) and (b) are satisfied [18, 24, 16]. The ideal Hopf link (Fig. 1) may be also viewed
as a configuration for which the tangents at the closest-approach points are orthogonal.

Equation (7) can be interpreted as the equilibrium equation for the tensile forces in the ropes
touching each other continuously [13].

The structure of contact sets obtained by numerical computations [5] suggests that the sequence
of the correspondence points may be cycled or infinite which can make solving the Euler-
Lagrange equations extremely hard even in topologically simple cases. Still, postulating certain
symmetry properties may help find a solution to the problem. For example, let the sequence
of four closest approach points form a cycle for every σ ∈ [0, Λ]. Further let the first and the
third points lie in the same constant plane and the other two points belong to the orthogonal
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Figure 2: The piecewise circular approximation of the ideal Borromean rings.

plane, also constant. Then, the Euler-Lagrange equations may be solved analytically to obtain
an explicit expression of a new extremal solution which is neither straight line nor circle nor
helix [21, 22]. The pieces of that extremal curve may be used in assembling the conjectured
tight configuration of clasped rope, periodic chains, 2D fabric-like periodic structures and the
Borromean rings [21, 3].

The aim of this paper is different: it will be demonstrated that the already known particular
types of solutions may be used to build good approximations of shapes for which we do not
know exact solutions. Note that a fairly good approximation of the tight Borromean rings made
up with circular arcs was proposed in Ref. [4] (Fig. 2).

3 Assembling procedure

The whole structure is to be composed from N (N = 3 or 4) circular tubes alternating with N
tight double helices of the same length with pitch angle π/4. We fix the thickness radius of the
tube to be 1/2 in accordance with the chosen distance between their centrelines D = 1.

Let Oz be m-fold symmetry axis, m = 3 for N = 3 (Fig. 3) and m = 2 for N = 4. We
direct the x-axis to the centre C1 of the circular arc. The distance OC1 is the first unknown
parameter a > 0. The orientation of the plane P1 of the circular arc is specified by the unit
vector e1 which is tangent to the other piece of centreline at point C1. To distinguish between
the pieces of the knotted curve (N = 3) or the components of the link (N = 4), we call the
fragment passing through C1 the 1-st strand and the circular arc (and its helical extension) the
2-nd strand. In the plane P1, the point A1 is the end point of the circular arc and, in the same
time, the starting point of the 2-nd strand of the double helix. The position of A1 is specified
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Figure 3: Construction of approximate ideal trefoil.

by the vector C1A1 = f1 ∈ P1, ‖f1‖ = 1. Let d1 be the unit tangent to the 2-nd strand in point
A1. Thus we have an orthonormal triad {e1, f1,d1}. Generally, its orientation may be given
by three Euler angles. However, we wish to find a solution that is symmetric with respect to
rotation around the axis Ox through π. In other words, let Ox ∈ P1. Then we need only two
angles to orientate the triad {e1, f1,d1}:

e1 = (0, sin θ1, cos θ1)
T ,

f1 = (cos φ1, sin φ1 cos θ1,− sin φ1 sin θ1)
T ,

d1 = (− sin φ1, cos φ1 cos θ1,− cos φ1 sin θ1)
T .

The point C1 is the starting point of the 1-st strand of the double helix. The axis of the double
helix is along h1 = 1√

2
(d1 + e1). We also introduce another unit vector g1 = h1 × f1 =

1√
2
(d1 − e1). The points on the 2-nd strand of the helix are given by

r2(γ) = rC1 +
1

2
(f1 + γh1 + f1 cos γ + g1 sin γ), (8)

where rC1 = (a, 0, 0)T and γ is a parameter.

We require that for some value of γ the second strand come to the point C2 which is the centre
of the next circular arc, i.e. rC2 = r2(γ). Moreover we require that

rC2(γ) = RNrC1 (9)
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with

R3 =





−1
2

−
√

3
2

0
√

3
2

−1
2

0
0 0 1



 and R4 ≡ R
(a,b)
4 =

b

a





0 −1 0
1 0 0
0 0 1



 , a, b ∈ R
+.

Clearly, R3
3 = I , I the identity matrix, and (R

(b,a)
4 R

(a,b)
4 )2 = I . It would be convenient to use

the vector aN = 2(RNrC1 − rC1), namely, a3 = (−3a,
√

3a, 0)T and a4 = (−2a, 2b, 0)T . Then
Eqs. (8) and (9) imply

d1
γ + sin γ√

2
+ e1

γ − sin γ√
2

+ f1(1 + cos γ) = aN

or, in the coordinate form,

cos φ1(1 + cos γ) − sin φ1
γ + sin γ√

2
= aNx, (10)

cos θ1

[

sin φ1(1 + cos γ) + cos φ1
γ + sin γ√

2

]

+ sin θ1
γ − sin γ√

2
= aNy, (11)

sin θ1

[

sin φ1(1 + cos γ) + cos φ1
γ + sin γ√

2

]

− cos θ1
γ − sin γ√

2
= 0. (12)

Now compute the tangent vector to the second strand in point C2:

e2(γ) =
1√
2
(h1 + g1 cos γ − f1 sin γ)

or

e2(γ) = d1
1 + cos γ

2
+ e1

1 − cos γ

2
− f1

sin γ√
2

. (13)

We further require that

e2(γ) = QNe1, (14)

where Q3 = R3 and

Q4 ≡ Q
(1,2)
4 =





0 − sin θ2

sin θ1
0

sin θ2

sin θ1

0 0

0 0 cos θ2

cos θ1



 ,

so that (Q
(2,1)
4 Q

(1,2)
4 )2 = I .

Projecting Eq. (14) onto the directions d1, e1 and f1 and using the expression Eq. (13) for the
tangent vector, we come to three equations

d1 · QNe1 −
cos γ + 1

2
= 0, (15)

e1 · QNe1 +
cos γ − 1

2
= 0, (16)

f1 · QNe1 +
sin γ√

2
= 0. (17)
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Figure 4: Approximation of ideal trefoil. One strand in each double helix pair is shown trans-
parent.

Now we multiply the first equation by sin φ1 and subtract it from the third one multiplied by
cos φ1 to obtain

(QNe1)x +
sin γ√

2
cos φ1 +

cos γ + 1

2
sin φ1 = 0. (18)

4 Trefoil

For N = 3, Eq. (16) transforms into

sin2 θ1 =
1 + cos γ

3
(19)

and Eq. (18) into

−
√

3 sin θ1 +
√

2 sin γ cos φ1 + (1 + cos γ) sin φ1 = 0. (20)

By means of Eq. (19), we can first exclude the angle θ1 from Eq. (20) (assuming that 0 < θ1 <
π/2 and in doing so we fix the chirality of the knot)

−
√

1 + cos γ +
√

2 sin γ cos φ1 + (1 + cos γ) sin φ1 = 0 (21)

and then from Eq. (12)

[
√

2(1+cos γ) sin φ1+(γ+sin γ) cos φ1]
√

1 + cos γ−(γ−sin γ)
√

2 − cos γ = 0. (22)
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Equations (21) and (22) may be treated as a linear system with respect to sin φ1 and cos φ1. We
may solve the system and find sin φ1 and cos φ1 as functions of the parameter γ and then exclude
φ1 from Eq. (21) (or Eq. (22)) to yield a single transcendental equation for γ. It is easy to localize
the first root γ > 0, γ ≈ 1.7738716012. Then φ1 ≈ 1.5006137011 and θ1 ≈ 0.5420048264
(Eq. (19)). The parameter a can be found from Eq. (10) or Eq. (11): a ≈ 0.6287060612.

The total length of the trefoil is L3 = 3(Lcrc + Lhlx), where Lcrc = 2φ1 is the length of the
circular arc and Lhlx =

√
2γ is the length of two strands of the helical part. Thus L3 = 3(2φ1 +√

2γ) ≈ 16.5438523491. According to Ref. [1], the lowest known probable upper bound of
the length is L3num ≈ 16.3716932. The relative error can be estimated as L3−L3num

L3

≈ 1.04%.
Note that the constructed shape (Fig. 4) is much closer to the numerical result than the toroidal
parametrization considered in Ref. [19] with length L3tor ≈ 17.0883.

5 Link 4
2
1

Now consider case N = 4. Equation (16) takes the form

cos θ1 cos θ2 =
1 − cos γ

2
(23)

and Eq. (18) becomes

sin θ2 −
sin γ√

2
cos φ1 −

1 + cos γ

2
sin φ1 = 0. (24)

By means of Eq. (24), we can eliminate θ2 from Eq. (23)

cos2 θ1

[

1 −
(

sin γ√
2

cos φ1 +
1 + cos γ

2
sin φ1

)2
]

=
1

4
(1 − cos γ)2. (25)

The last equation allows us to express the angle θ1 which we insert into Eq. (12). We can
consider the result as an equation for the unknown φ1, depending on the parameter γ:

[4 − (
√

2 sin γ cos φ1 + (1 + cos γ) sin φ1)
2] ×

×[2(1 + cos γ) sin φ1 +
√

2(γ + sin γ) cosφ1]
2 =

= [2(γ − sin γ)2 + (2(1 + cos γ) sin φ1 +
√

2(γ + sin γ) cosφ1)
2](1 − cos γ)2. (26)

Knowing the solution of Eq. (26) φ1(γ), we can find θ1 by Eq. (25) and θ2 by Eq. (24). After
that, Eqs. (10) and (11) allow us to compute the distances a and b.

The length of the whole link is given by L4 = 2(Lcrc1 + Lcrc2 + 2Lhlx), where Lcrc1 = 2φ1,
Lcrc2 = 2φ2 and Lhlx =

√
2γ as before.

The end point of the helix axis is rC1 + 1
2
(f1 + γh1). The vector connecting this point with C2

forms the angle φ2 with the y-axis, hence, φ2 can be found from the equation (f1 +γh1−a4)y =
cos φ2 or

cos θ1 sin φ1 +
γ√
2
(sin θ1 + cos θ1 cos φ1) − 2b = cos φ2.
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Figure 5: Approximation of ideal link 42
1. The helical parts of one component are shown trans-

parent.

Finally, L4 = L4(γ) = 4(φ1(γ) + φ2(γ) +
√

2γ).

Since the parameter γ has not been specified yet, we can vary it to look for the smallest L4. The
graph L4(γ) shows that the minimal length is achieved when one of the rings touches itself in
the origin point, i.e. when either a = 1/2 or b = 1/2. For the definiteness sake, let us choose
a = 1/2. Solution for γ yields γ ≈ 1.9234874489. The other variables are θ1 ≈ 0.3553039796,
θ2 ≈ 0.7705487841 and b ≈ 1.0011187376. The assembled configuration is presented in Fig. 5.

Note that θ1 ≈ π/4 which means that the circular arcs of the self-touching ring are almost
orthogonal to each other. It is also interesting that the parameter b is very close to 1. The angles
defining the lengths of the circular arcs are φ1 ≈ 0.8023098550, φ2 ≈ 1.5395250794 and the
length of the whole link L4 ≈ 20.2482278867. The numerical approximation gives the length
L4num = 20.0542 [11] and the relative error L4−L4num

L4
≈ 0.96% is at the same level of accuracy

as for the trefoil.

6 Concluding remarks

For both the trefoil knot and the link 42
1, the approximations constructed have constant curvature

and hence their centrelines, which are of class C2, may serve as examples of closed space curves
of constant curvature. Other examples of such curves can be found in Ref. [9].

Chronologically, the first numerical approximations of centrelines of ideal shapes were polyg-
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onal [18, 12, 15]. Indeed, the straight line is a solution of the Euler-Lagrange equations: to
see this, just consider the case n = 1. Later, it was proposed to approximate ideal shapes with
biarcs [20, 5], i.e. with circular arcs. Again, as we have seen, the circular arc is an exact solu-
tion in some cases. In view of this, widening the set of building blocks by adding the double
helices is a natural step to keep moving in the same direction. In the configurations made up
with polygonal lines or circular arcs, torsion is concentrated in junction points as distinct from
the presented examples with helical intervals of constant torsion.
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