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Abstract 
 

Actin-binding proteins play well established roles in the regulation of actin 

dynamics and assembly of F-actin based structures involved in cell motility and 

adhesion. The Phosphatase and actin regulator (Phactr) family of proteins each contain 

four G-actin binding RPEL motifs and has been found to bind protein phosphatase 1 

(PP1) via their C-terminal domain. Their function is not well established and it has been 

unclear whether G-actin can be their regulator. Members of the Phactr family are highly 

expressed in the nervous system and in some metastatic cancers.  

 

The RPEL domain was previously shown to confer Rho-regulated nuclear 

shuttling and activation of Serum Response Factor (SRF) coactivator myocardin – 

related transcription factor A (MRTF-A, also known as MAL/MKL1). MRTF-A is 

cytoplasmic in unstimulated cells and accumulates in the nucleus upon activation of 

Rho-actin signalling.  

 

In this thesis I show that activation of Rho-actin signalling by serum stimulation 

induces nuclear accumulation of Phactr1, but not other Phactr family members 

(Phactr2-4). Actin binding by the three Phactr1 C-terminal RPEL motifs is required for 

Phactr1 cytoplasmic localisation in resting cells. Phactr1 nuclear accumulation is 

Importin α−β-dependent. I also reveal that G-actin and Importin α−β bind 

competitively to nuclear import signals associated with the N- and C-terminal RPEL 

motifs in Phactr1. All four motifs are required for the inhibition of serum-induced 

Phactr1 nuclear accumulation by elevated G-actin. G-actin and PP1 bind competitively 

to the Phactr1 C-terminal region, and expression of Phactr1 C-terminal RPEL mutants 

that cannot bind G-actin induces actomyosin foci dependent on PP1 binding. In CHL-1 

metastatic melanoma cells, Phactr1 exhibits actin-regulated subcellular localisation and 

is required for stress fibre assembly, motility, and invasiveness. These data support a 

role for Phactr1 in actomyosin assembly and suggest that Phactr1 G-actin sensing 

allows its coordination with F-actin availability. 
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Nap1    Nck-associated protein 1 

NIH3T3  National Institute of Health 3T3 fibroblasts 

NLS    nuclear localisation signal 

NPF    nucleation promoting factor 

PAGE    polyacrylamide gel electrophoresis 

PAK   p21-activated kinase  

PBS    phosphate buffered saline 

PCR    polymerase chain reaction 

PFAM    protein family database 

PH    pleckstrin homology 
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Phactr    phosphatase and actin regulator 

PIR121   p53-inducible messenger RNA 

PLD1    phospholipase D1  

PP1    protein phosphatase 1 

PtdInsI(4,5)P2  phosphatidylinositol (4,5) bisphosphate 

Rb    retinoblastoma 

RNA    ribonucleic acid 

RNP    ribonucleoprotein 

ROCK   Rho kinase 

RPEL motif   (RPxxxEL; PFAM 02755) 

rpm    revolutions per minute 

RPMI   Roswell Park Memorial Institute medium 

RTK   receptor tyrosine kinase 

s.e.m    standard error of the mean 

SAP    SAF-AIB, Acinus, Pias 

SAP1    SRF accessory protein 1 

SAXS   small-angle X-ray scattering  

SDS    sodium dodecyl sulfate 

SEC   size exclusion chromatography 

SEC-MALLS   SEC coupled to multi-angle laser light scattering 

SNP   single-nucleotide polymorphism 

Sra1    steroid receptor RNA activator 1 

SRE    serum response element 

SRF   serum response factor 

SSH   suppression subtractive hybridizations  

STOP genes  suppressors of tumorigenesis and/or proliferation 

TAD    transactivation domain 

Tat    transactivator of transcription 

TBE    Tris/Borate/EDTA 

TBS    Tris-Buffered Saline 

TCF    ternary complex factor 

Tβ4   thymosin β4  
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VEGF    vascular endothelial growth factor  

VEGFR  vascular endothelial growth factor receptor 

WASP   Wiskott-Aldrich syndrome protein 

WAVE   Wiskott–Aldrich syndrome verprolin homologous protein 

WH2    WASP homology 2 

 

v/v volume to volume 

w/v weight to volume 

 

Nucleotides:  

A – adenosine 

C – cytosine 

G – guanosine 

T – thymidine 

 

The standard single-letter amino acid code and the International System of units (SI) 

were used. 
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Chapter 1. Introduction 

 

1.1 Functions of actin 

 

Actin is one of the most abundant proteins in the cell. Diverse and complex actin 

functions result from its ability to polymerize. Actin polymerisation and de-

polymerisation mechanisms are essential for the formation of a dynamic cytoskeleton. 

Its ability to form filaments provides force that can generate movement and establishes 

cell shape – two crucial characteristics that determine cell survival. Moreover, the 

capability of actin to crosslink its filaments with myosin explains the basis of cell 

contraction, adding yet another level of functional significance to this remarkable 

protein. Actin also emerges as a critical player in cell polarity and is involved in 

transcription regulation.  

 

Here I review structures of monomeric and filamentous actin, describe 

signalling pathways that control actin turnover and discuss the basis of actin interaction 

with several binding partners. I also explain how the structures of actin complexes 

translate into function. 

 

1.1.1 The dynamics of actin turnover 

 

Actin was first isolated in 1940s during pioneering research on muscle 

contraction. Series of elegant experiments by Straub (1942) showed that actin exists in 

two main forms. The first form, called globular actin (G-actin), exists under low salt 

concentration, but in the presence of high salt it is able to polymerize and form actin 

filaments (F-actin). Straub found that actin, together with myosin, form a very regular 

network of filaments (accounting for more than half of the total protein content). In the 

1960s, actin and myosin were again found in two different organisms, first in the 

parasite plasmodium (Hatano and Oosawa, 1966) and later in slime mold (Adelman and 
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Taylor, 1969). This early research revealed that viscous filaments found in muscle 

contain both actin and myosin. Those proteins formed a highly specialised system, 

which could be used to explain muscle contraction. 

 

Monomeric actin, called G-actin is a 42kDa globular protein that binds either 

ATP or ADP (Figure 1.1). Main isoforms in vertebrates include cardiac, skeletal and 

smooth muscle α-isoforms and β- and γ-isoforms, found in both muscle and non-muscle 

cells. The subtle differences between actin isoform structures occur at the N-terminus 

(Herman, 1993). The first atomic resolution structure of G-actin was reported at 2.4 Å, 

bound to DNase I (Kabsch et al., 1990). This structural study revealed that over 40% of 

the G-actin structure is α-helical and that the nucleotide is bound in the deep cleft at the 

centre of G-actin (Figure 1.1 B). It also showed that Mg2+ cation determines how 

strongly the nucleotide is bound. Several other structures of G-actin were reported 

bound to various actin-binding partners, like cofilin or profilin, reporting 

conformational changes upon binding different partners (for review, see (dos Remedios 

et al., 2003). With dimensions of around 55 Å x 55 Å x 35 Å, the actin monomer has 

four subdomains (Figure 1.1 A). In the actin filament, subdomains 1 and 3 are exposed 

at the barbed end and subdomains 2 and 4 are exposed at the pointed end. Subdomains 1 

and 3 are structurally similar and many actin-binding proteins interact with G-actin 

within the target-binding cleft formed between those two subdomains (Figure 1.1 B) 

(Dominguez, 2007; Dominguez and Holmes, 2011). In vivo, G-actin binds Mg2+ cation 

and ATP/ADP. The binding of ATP or ADP in the central part of the molecule is 

largely dependent on the communication between the nucleotide cleft and the target-

binding cleft (Figure 1.1 B).  
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Figure 1.1 Monomeric and filamentous actin structure. 

(A) Left, atomic structure of actin filament, based on actin filament model of K.C. Holmes 

(Holmes et al., 1990); surface representation; the filament ends are labeled. Right, surface 

model of G-actin molecule indicating four subdomains (colour-labeled); subdomain 1 (residues 

1-32, 70-144 and 338-372), subdomain 2 (residues 33-69), subdomain 3 (residues 145-180 and 

270-337), subdomain 4 (residues 181-269). (B) Ribbon representation of G-actin structure 

indicating target-binding cleft between domains 1 and 3; ATP (orange) is bound within the 

nucleotide binding cleft; subdomains are colored as in A. Surface and cartoon structural models 

were assembled in PYMOL.  
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Filamentous actin (F-actin) was first described by Jean Hanson and Jack Lowy 

(Hanson and Lowy, 1964), nearly 50 years ago. They showed models, where F-actin is 

either a left-handed helix with a one-end start or a both-end start right-handed helix. 

The second model is a more conventional view of how F-actin is assembled, as later 

established by Kabsch (Holmes et al., 1990). Details of actin structure within the 

filament were recently deduced from X-ray fibre diagrams of F-actin and from electron 

microscopy, which led to atomic models of the actin filament (Fujii et al., 2010; Oda et 

al., 2009), for review see (Dominguez and Holmes, 2011). 

 

There are three sequential phases of actin filament polymerisation (for review, 

see (Lodish H, 2000)). During the first phase actin assembles into short, unstable 

oligomers and once the oligomer reaches certain length (usually three or four subunits), 

it becomes more stable and is often referred to as ‘nucleus’. During the second phase, 

the filament rapidly elongates by the addition of actin monomers to both of its ends. 

While the actin filament is growing, the concentration of G-actin monomers decreases 

until it is in equilibrium with the filament. This third phase is called a ‘steady state’, as 

there is no net change in the total mass of filaments and G-actin monomers exchange 

with subunits at the filament ends. Once the ‘steady state’ is reached, subunits continue 

to be added at the ‘plus end’ and lost form the ‘minus end’ (Lodish H, 2000). The two 

ends of an actin filament therefore exhibit different dynamics of subunit addition. The 

‘plus end’ (also called the barbed end) elongates five to ten times faster then the ‘minus 

end’ (also called the pointed end). The length of the filament remains constant and the 

newly added subunits of G-actin are traveling through the filament, as if on a treadmill, 

until they reach the pointed end, where they dissociate. This process is therefore 

referred to as treadmilling, where one end of a filament grows in length while the other 

end shrinks (for review, see (Lodish H, 2000)). 

 

Early studies suggested that ATP hydrolysis of bound nucleotide is strictly 

linked to actin polymerisation (Wegner, 1976). Subsequent studies showed however, 

that the kinetics of ATP hydrolysis and Pi release are actually two separate events 

(Carlier et al., 1984; Pardee et al., 1982). It was shown that ATP hydrolysis occurs at 
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ten times higher rate than Pi release. This suggested that the main intermediate in 

nucleotide hydrolysis is ADP-Pi-F-actin.  

 

In a motile cell, treadmilling occurs faster then in vitro, where 3 µm of a 

filament is renewed in 2 hours (for pure actin) and accelerates by two orders of 

magnitude, mainly due to the activity of actin depolymerizing factor - cofilin (Carlier et 

al., 1999). Actin-binding partners tightly regulate actin turnover. Dynamic actin 

filament turnover and the interaction of actin filament with actin-binding proteins is 

crucial for cell morphology, like establishing cell shape and maintaining cellular 

symmetry. Actin polymerisation is also crucial for single cell migration and for 

collective cell movement. Moreover, cell behaviour aspects, like phagocytosis or cell 

contraction are dependent on actin turnover. Therefore, actin polymerisation must be 

tightly coupled to extracellular signals. Signalling pathways connecting these events are 

dependent on specific, abundant, signalling molecules called Rho-GTPases (for review, 

see (Etienne-Manneville and Hall, 2002)). 

 

1.1.2 Actin control by Rho-GTPases 

 

Actin turnover in the cell is dynamically regulated by extracellular signals. The 

Rho family of small GTPases play a critical role in the regulation of actin dynamics by 

extracellular signals. GTPases are proteins that control multiple cellular processes. They 

are often referred to as molecular switches because they cycle between two 

conformational states, one bound to GTP and other bound to GDP, as they are able to 

perform hydrolysis of GTP to GDP (Figure 1.2). Those two states are reflecting their 

active or inactive form respectively. Three types of regulators that are controlling the 

activity of Rho-GTPases are called: (1) guanine nucleotide exchange factors (GEFs), 

which load the Rho proteins with GTP, (2) GTPase activating proteins (GAPs), which 

stimulate the GTPase activity and (3) guanine nucleotide dissociation inhibitors (GDIs), 

which are responsible for preventing nucleotide exchange (Figure 1.2) (for review, see 

(Jaffe and Hall, 2005)). GTPases are small, monomeric proteins that can be divided into 

five different groups: Ras, Rab, Ran, Arf and Rho (Etienne-Manneville and Hall, 2002). 
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Because the activation of Rho GTPases leads to the assembly of dynamic actin 

cytoskeleton, they will be discussed here in more detail.  

 
 

Figure 1.2 The Rho GTPase cycle. 

The cycle between an active (GTP-bound) and an inactive (GDP-bound) conformation of Rho 

GTPases. In the active state (dark blue) Rho-GTPases interact with one of the multiple target 

proteins (effectors). GEFs (green) catalyse nucleotide exchange and mediate activation, GAPs 

(red) stimulate GTP hydrolysis leading to inactivation, GDIs (orange) prevent nucleotide 

exchange (for details, see text) (Etienne-Manneville and Hall, 2002). 
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Rho GTPases are a Ras-related family of GTPases, found in all eukaryotic cells. 

There are many families of Rho GTPases in mammals. The well-studied families 

include Rho, Rac and Cdc42 (some of them are represented by multiple isoforms). The 

best known are the three isoforms of Rho: A, B and C and three isoforms of Rac: 1, 2 

and 3, but Rho-GTPase family has many more members. Those include for example 

RhoD, Rnd1 and 2, RhoE, Rif and others (Aspenstrom et al., 2004). In Saccharomyces 

cerevisiae there are five Rho proteins: Rho1, 2, 3, 4 and Cdc42. In worm 

Caenorhabditis elegans there are predicted to be ten Rho-GTPases and Drosophila 

melanogaster has eleven (for review, see (Etienne-Manneville and Hall, 2002)).  

 

The first insight into the function of Rho GTPases, Rho and Rac was provided 

over twenty years ago. It was shown that Rho rapidly stimulates stress fibre and focal 

adhesion formation when microinjected into serum starved Swiss 3T3 cells (Ridley and 

Hall, 1992). Similar experiments with Rac showed induction of actin protrusions, which 

caused the growth of lamellipodia (Ridley et al., 1992). Related approaches showed that 

Cdc42 was also able to influence actin cytoskeleton by promoting the formation of 

actin-rich membrane extensions, called the filopodia (Nobes and Hall, 1995). These 

findings led to the proposal that all three members of Rho-GTPase family control 

distinct functions during the formation of actin cytoskeleton. They were predicted to be 

involved in regulating separate signal transduction pathways that connect receptors 

localised on the plasma membrane with various actin-based structures in the cell. 

Subsequently, Rho-GTPases were shown to be involved in regulating variety of 

different signalling pathways, like control of cell polarity, cell cycle progression, 

vesicular transport, enzymatic activity and transcription regulation. It is not clear, to 

what extent these functions are independent of their roles in controlling cytoskeleton, as 

most effectors of Rho-GTPases are cytoskeletal regulators. 

 

Here, I will review how Rho-GTPases link extracellular signals with two 

important biochemical functions: formation of actin cytoskeleton and gene expression. I 

will explain how these important biochemical processes mediated by Rho-GTPases 

translate into biological functions. 
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1.1.2.1 Rho-GTPases in regulation of actin dynamics 

 

Rho-GTPases control three crucial events in actin dynamics: actin nucleation 

through nucleation promoting factors (NPFs) and actin turnover through effectors like 

cofilin, ROCK or PAK. 

 

Rho-kinase (ROCK) is the effector of the small GTPase Rho playing pivotal 

roles in cytoskeleton rearrangements. Rho-kinase is a serine/threonine kinase, 

structurally related to myotonic dystrophy kinase (DMPK) and to Cdc42-binding 

MRCK. There are two isoforms of ROCK kinase, ROCK1 and ROCK2 (referred to 

collectively as ROCK). The domain organisation of ROCK can be divided into three 

crucial parts, with the kinase domain being located at the N-terminus, a large coiled coil 

domain in the middle, containing the Rho-binding site and the pleckstrin homology 

(PH) domain at the C-terminus. Binding of Rho to ROCK activates its kinase activity 

(for review, see (Amano et al., 2010)). Structural studies of ROCK revealed a model of 

ROCK function that depends on the two extension regions flanking the kinase domain 

forming an intramolecular homodimer. This conformation of ROCK maintains its active 

form (Yamaguchi et al., 2006). Additionally, the domain that interacts with Rho forms a 

parallel structure supporting the view that active ROCK is a dimer (Chen et al., 2002). 

The C-terminal region of ROCK containing the PH domain can be engaged an 

intramolecular interaction with the catalytic N-terminal region of ROCK therefore 

inhibiting its kinase activity (Amano et al., 1997; Ishizaki et al., 1997; Leung et al., 

1996). Moreover, proteolytic cleavage at the C-terminus of ROCK leads to apoptotic 

phenotypes like membrane blebbling caused by constitutive active ROCK (Coleman et 

al., 2001).  

 

ROCK is ubiquitously expressed in all tissues, with ROCK1 being more 

abundant in liver, lung and testis, whereas ROCK2 in neural tissues and in muscles 

(Leung et al., 1996). Although very similar in amino acid content (64% homology), the 

two isoforms are implicated in mediating different functions. ROCK1 is involved in 

stress fibres assembly and ROCK2 was reported to mediate phagocytosis and cell 
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contractions. Both of those functions are reliant on the control of myosin light chain 

(MLC) phosphorylation (Yoneda et al., 2005).  

 

Interestingly, mice carrying homozygous deletion of ROCK1 and ROCK2 show 

postnatal and embryonic lethality respectively (Shimizu et al., 2005). To better 

understand the function of ROCK in vivo, several small molecule inhibitors have been 

developed to selectively target ROCK. The two broadly used inhibitors are Fasudil and 

Y-27632, which act in an ATP-competitive manner. Both of those inhibitors induce a 

conformational change resulting from binding to the catalytic domain of ROCK, which 

results in its inhibition. Some ROCK inhibitors have been developed for 

pharmacological purposes and are now in clinical trials (for review, see (Amano et al., 

2010)). 

 

Rho is a specific activator of actin filament formation and actomyosin network 

formation and it influences cytoskeleton through two effectors, formin mDia and ROCK. 

Rho, through the activation of ROCK, mediates actomyosin crosslinking. ROCK is 

involved in specifically phosphorylating components of the myosin network, like 

myosin targeting subunit of myosin light chain phosphatase (MLCP) complex (MYPT) 

or MLC itself, which allows F-actin filaments to crosslink with myosin (Riento and 

Ridley, 2003) (described in detail in section: ‘Actomyosin contractility’). In mammalian 

cells, diaphanous-related formin, mDia and in Saccharomyces cerevisiae formins Bni1 

or Bnr1 are direct effectors of Rho. Activation of Rho by GTP, relieves an 

intramolecular auto-inhibitory interaction in these formins, which causes exposure of 

their actin-binding domains and subsequent actin nucleation (Pring et al., 2003; 

Watanabe et al., 1999; Zigmond, 2004). Cooperation of Rho effectors: ROCK and mDia, 

is essential for the formation of actomyosin bundles, like stress fibres.  

 

Interestingly, the treatment of starved fibroblasts with either C3 transferase (Rho 

signalling inhibitor) (Morii and Narumiya, 1995) or Y-27632 leads to different effects 

on cell morphology. Y27632 treatment inhibited serum-induced stress fibre assembly 

and focal adhesion formation, as did C3 transferase treatment, but Y27632 additionally 

induced membrane ruffling. Analysis of this effect showed that Rho-mDia signal leads 
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to the activation of Rac signalling, which can than be supressed by ROCK (Tsuji et al., 

2002). Opposing effects of mDia and ROCK were also suggested in the process of 

adherens junctions in epithelial tissues formation (Sahai and Marshall, 2002). 

 

ROCK can also directly activate LIM kinase (LIMK) through phosphorylation, 

which has implications for cytoskeleton organisation. Firstly, LIMK is a direct kinase 

for cofilin, an F-actin severing factor. Cofilin is regulated on several levels, through 

changes in intracellular pH, protein-protein interactions and phosphorylation (described 

in section: ‘Actin binding proteins and their roles’). Once phosphorylated by LIMK, 

cofilin becomes inactive and cannot disassemble actin filaments. Therefore, Rho is 

again signalling to promote F-actin formation. Rac and Cdc42 are also able to 

phosphorylate LIMK through their effector kinase, p-21-activated kinase (PAK). 

Phosphorylation of LIMK by PAK and subsequent phosphorylation of cofilin leads to 

inhibition of actin monomer dissociation from the pointed end of the filaments. As a 

consequence, cellular membrane protrusions are formed (for review, see (Jaffe and Hall, 

2005)). 

 

The Arp2/3 complex (described in section: ‘Actin binding proteins and their 

roles’) is a major activator of actin polymerisation. Rac and Cdc42 influence the 

formation of morphologically different structures at the plasma membrane, but the 

genesis of both lamellipodia and filopodia is similar. They arise through actin 

polymerisation events mediated by Arp2/3 acting together with nucleation promoting 

factors (NPFs). The Arp2/3 complex mediates dynamic actin branching, therefore 

allowing the actin network to grow and extend to form three-dimensional systems (for 

review, see (Jaffe and Hall, 2005)). Interestingly, both Rac and Cdc42 are able to 

activate branching through binding to different NPFs.  

 

Active Cdc42 (Cdc42-GTP) can directly bind to an NPF of the Wiskott-Aldrich 

syndrome protein family (WASP), which causes release of the intramolecular inhibitory 

interaction of the Arp2/3 complex, consequently allowing it to engage in an active state 

and promote F-actin formation (Millard et al., 2004). Another direct target linking 

Arp2/3 and Cdc42 was recently identified and is referred to as Toca-1 (Transducer of 
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Cdc42-dependent actin assembly-1). Toca-1 was proven to be required for the 

activation of WASP (Ho et al., 2004). However, the existence of two direct targets 

within this pathway opened many questions about their cooperation. Recently, Cdc42 

interaction with Toca-1-WASP complexes was implicated in many biological functions, 

like endocytosis, cell motility and invasiveness (Bu et al., 2010; Chander et al., 2012; 

Hu et al., 2011). Moreover, the direct binding of Cdc42 and phosphatidylinositol (4,5) 

bisphosphate (PtdIns (4,5) P2) simultaneously activates neural WASP (N-WASP), 

which leads to the activation of the Arp2/3 complex (Badour et al., 2004; Vartiainen 

and Machesky, 2004).  

 

Arp2/3 complex can also be activated by regulator of lamellipodia formation – 

Rac, through NPFs called verprolin-homologous proteins (WAVEs). WAVE functions 

in Rac-induced membrane ruffling, but Rac does not bind directly to WAVE, which 

raised questions about its regulation (Miki et al., 1998). A substrate for insulin receptor, 

IRSp53, was found to activate Arp2/3 (Miki et al., 2000). Activated Rac was found to 

bind the N-terminus of IRSp53 and synergistically IRSp53 C-terminal domain was 

shown to bind to WAVE. Consequently, a trimolecular complex was formed to promote 

Arp2/3-mediated actin polymerisation, which caused membrane ruffling. The 

Scar/WAVE regulatory complex (WRC) was shown to be a component of a pentameric 

complex containing direct Rac targets, like Sra1 (Steroid receptor RNA activator 

1)/PIR121 (p53-inducible messenger RNA), Nap1 (Nck-associated protein 1), Hem-1 

(hematopoietic protein 1), HSPC300 and Abi1 (Abl-interactor 1) (Eden et al., 2002; 

Gautreau et al., 2004; Innocenti et al., 2004; Kunda et al., 2003; Steffen et al., 2004; 

Weiner et al., 2006). WRC exists in an autoinhibited state and is activated by negatively 

charged phospholipid membranes or the small GTPase Rac1 (Koronakis et al., 2011). 
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Figure 1.3 Rho-GTPases in actin dynamics. 

The downstream targets of active Rho-GTPases (Rho-A, Rac1 and Cdc42) include variety of 

effectors (not all are shown), like kinases: PAK and ROCK and nucleation promoting factors: 

mDia, WASP, WAVE. mDia stimulates polymerisation of actin by producing unbranched actin 

filaments. WASP and IRSp53/WAVE interact with Arp2/3 complex to generate branched actin 

filaments. PAK phosphorylates LIMK, which in turn phosphorylates and inhibits cofilin thereby 

regulating actin filament turnover. ROCK contributes to actin turnover by phosphorylating 

LIMK. ROCK also directly phosphorylates MLC and MLCK and promotes inhibitory 

phosphorylation of MLCP, therefore regulating actomyosin contractility. 
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1.1.2.2 Rho-GTPases in gene expression 

 

Rho-GTPases also regulate signal transduction pathways that regulate gene 

expression. Those functions can be either actin-related or actin-independent. The best-

known Rho-dependent mechanism of transcription regulation is the Serum Response 

Factor (SRF)-myocardin related transcription factor (MRTF) pathway (described in 

detail in section: ‘Actin in transcription regulation – regulation of SRF cofactors 

MRTFs’) (Miralles et al., 2003). In this pathway transcriptional activity responds 

directly to changes in G-actin concentration induced by Rho activation. Rho signalling 

stimulates changes in actin cytoskeleton, through the activation of formins, Arp2/3 

complex or actomyosin formation, depending on the cell type. Activation of those 

pathways leads to overall decrease of the cellular G-actin pool. MRTF, a G-actin 

binding protein, senses the decrease in G-actin concentration, which causes its 

detachment from G-actin and subsequent nuclear accumulation. In the nucleus, MRTF 

co-activates SRF-dependent transcription. Interestingly, SRF is responsible for 

mediating expression of many cytoskeletal genes, including actin itself. Therefore, this 

circuit might serve as an example of signal-induced, actin-dependent cellular 

homeostasis.  

 

Not all gene expression events mediated by Rho-GTPases are actin-dependent. 

Rho, Rac and Cdc42 can all activate c-Jun N-terminal kinase (JNK) and mitogen-

activated protein kinase (MAPKs) (Coso et al., 1995; Minden et al., 1995; Puls et al., 

1999). JNK/MAPK signalling pathway is involved in integrating extracellular signals 

into such physiological responses like differentiation, development, inflammatory 

response and apoptosis. JNK signalling is activating components of transcription 

machinery, e.g. activator protein-1 (AP-1), which becomes active through 

phosphorylation (for review, see (Weston and Davis, 2007)). Rho GTPases were 

reported to target four different MAP kinase kinase kinases (MAPKKKs). Rac and 

Cdc42 interact with MLK2, MLK3 and MEKK4, while MEKK1 is a target for all three 

GTPases (Burbelo et al., 1995; Gallagher et al., 2004; Teramoto et al., 1996).  
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Additionally, Rho-GTPases target different scaffold proteins, which regulate the 

specificity of MAP kinase signalling pathways (Morrison and Davis, 2003). For 

example, a scaffold protein CNK1 was identified as a Rho target, because it interacts 

with Rho-specific GEFs, Net1 and p115RhoGEF (Jaffe et al., 2005). CNK1, a protein 

controlling activation and specificity of MAP kinase signalling cascade, was shown to 

specifically promote Rho-dependent JNK activation in HeLa cells.  

 

Moreover, in response to extracellular stimulus, Rho, Rac and Cdc42 can 

activate nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) (Perona et al., 

1997). NFκB proteins are abundant transcription factors (Sen and Baltimore, 1986), 

found in all cell types, regulating variety of cellular processes like development, cellular 

growth or apoptosis and are critically responsible for immune response during 

inflammation (for review, see (Gilmore, 2006)). It was suggested that Rho-GTPases 

might induce transcriptional activity of NFκB through a mechanism that involves 

phosphorylation of inhibitory subunits IκBs at serines S32 and S36 (Perona et al., 1997). 

However, this finding was disputed due to the fact that Rac and Cdc42 can stimulate 

production of reactive oxygen species (ROS) and cytokines, which are powerful 

activators of NFκB (Kheradmand et al., 1998; Tapon et al., 1998). Therefore, it is 

unlikely that Rho-GTPases act directly on NFκB.  

 

1.1.3 Actin binding proteins and their roles 

 

Actin can bind a number of proteins, commonly called ABPs (actin-binding 

proteins). They have diverse functions and can be divided into G-actin sequestering, 

filament capping, crosslinking and filament severing. They belong to different structural 

families and can bind actin in a variety of ways. Proteins that interact with F-actin are 

involved in the regulation of actin dynamics or they are recruited to the cytoskeleton to 

perform specific functions. Proteins that interact with G-actin can either regulate actin 

assembly (e.g. profilin, cofilin) (for review, see (dos Remedios et al., 2003)) or they can 

be themselves regulated by G-actin (e.g. RPEL proteins: MRTFs and Phactr family) 

(Huet et al., 2012; Miralles et al., 2003; Wiezlak et al., 2012).  
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Altogether, ten years ago there were over 160 identified ABPs (dos Remedios et 

al., 2003) but this number is still growing. Most of ABPs bind to the same element in G-

actin, and therefore compete with each other. ABPs can include membrane-associated 

proteins, receptors or ion transporters. At least thirteen can cross-link filaments of actin 

and other can bind other cytoskeletal elements. Recent classification divides 

cytoskeletal ABPs into seven main groups, including monomer-binding proteins (e.g. 

DNaseI), filament depolymerising (e.g. CapZ and cofilin), pointed-end-binding (e.g. 

tropomodulin) and severing (e.g. gelsolin). Proteins that have two actin-binding sites 

belong are actin nucleators (e.g. Arp2/3) and those that prevent polymerisation (e.g. 

tropomyosin) are called stabilising proteins. Finally, there is a group of motor proteins 

that can rapidly move on actin filaments (i.e. myosin family) (dos Remedios et al., 

2003). Therefore, actin filaments together with big group of cytoskeletal actin binding 

proteins provide molecular basis for cell movement and mechanical structure of the cell 

(Figure 1.4).   
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Figure 1.4 Cytoskeletal roles of actin binding proteins. 

Overview of actin-binding proteins functions in actin dynamics. Rho-GTPases (Rho, Rac and 

Cdc42) regulate actin filament formation through different mechanism. Formins are mediating 

do novo filament nucleation and filament elongation (top left); NPFs activate Arp2/3 to mediate 

actin branching (left and middle); profilin promotes F-actin assembly (middle); cofilin promotes 

depolymerisation of F-actin and maintains G-actin pool (below, right); gelsolin severs and cap 

actin filaments (top, right); adapted from (Pollard and Cooper, 2009). 
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However, not all ABPs are involved in filament dynamics. There are many other 

biological functions that depend on actin dynamics, like endocytosis or cytokinesis. 

Endocytosis is a process that begins at many independent sites in the cell and involves 

variety of membrane proteins, clathrin and some adaptor proteins. The forces, which are 

contributing to the deformation of plasma membrane and into executing the fission 

itself, come from actin polymerisation and from actin motors action on the filaments. 

ABPs involved in this process include actin nucleators such as formins, Arp2/3, WH2 

domain and other groups like profilin, WASP of cofilin (for review see (Mooren et al., 

2012)). During cytokinesis, separation of two daughter cells occurs when myosin II 

generates contraction on polymerising actin filaments by pulling them together (for 

review see (Pollard, 2010)). Actin and nucleation-promoting factors are also crucial 

elements involved in the formation of bacterial comet tail after eukaryotic cell invasion, 

and myosin motors can transport organelles along actin filaments (Pollard and Cooper, 

2009).  

 

Moreover, actin is component of nuclear structure and function, a regulator of 

chromosome organisation and gene activity. Actin and multiple actin binding factors, 

even those normally mediating cytoskeletal processes, are also involved in multiple 

tasks that control transcription (for review, see (Olson and Nordheim, 2010; Percipalle, 

2012)).  

 

This discussion will be focused on actin dynamics and regulation. In the section 

below, I will first summarise crucial cytoskeletal actin binding partners and then focus 

on the non-cytoskeletal roles of actin and ABPs. I will provide insights into actin 

binding mechanisms and later explain why G-actin binding is a critical aspect of RPEL 

(RPxxxEL motif) proteins regulation. 
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1.1.4 Actin-binding proteins involved in actin filament nucleation and 

dynamics. 

 

1.1.4.1 ADF/Cofilin 

 

ADF/Cofilin family members are small (15-19kDa), ubiquitously expressed 

proteins involved in actin filament depolymerisation. They act mainly in such processes 

as cytokinesis or membrane ruffling (for review, see (Bernstein and Bamburg, 2010)). 

ADF and cofilin are expressed at different levels in adult tissues. ADF is highly 

expressed in kidney, testes, intestine and nerve tissue (Bamburg et al., 1980) and high 

cofilin levels are found mainly in fibroblasts, osteoclasts and hematopoetic cells 

(Yonezawa et al., 1990). The ADF/cofilin family of proteins contains actin-

depolymerising factor (ADF), cofilin-1 expressed in non-muscle cells, cofilin-2 found 

in muscle cells and twinfilin. Twinfilin is made of two ADF-homology (ADF-H) 

domains separated by a linker and its role is to prevent filament assembly by binding to 

the barbed end of the growing actin filament (Ojala et al., 2002). Because twinfilin has a 

slightly different mechanism of action than other family members, it has recently been 

classified separately (Bernstein and Bamburg, 2010).  

 

Cofilin is mainly localised in the cytoplasm and upon activation it relocates to 

cortical regions to drive cell motility though membrane ruffling (Bamburg and Bray, 

1987). It is also found at cleavage furrow of cells under division (Nagaoka et al., 1995) 

or at the neuronal growth cones (Nagaoka et al., 1996). Interestingly, the function of 

cofilin depends largely on how its concentration relates to overall actin concentration. 

At low cofilin/actin concentrations in vitro, filament severing will occur, while high 

concentrations will promote stabilisation of actin filament. At saturating concentrations 

cofilin can even nucleate actin and form complexes with actin monomers. It still 

remains to be elucidated how exactly this concentration dependence coordinates actin 

dynamics at the molecular level (Bernstein and Bamburg, 2010).  
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Recent studies revealed the interplay between cofilin and Arp2/3, a complex 

involved in basic processes such as forward movement of cells, crucial for embryonic 

development. Cofilin binding to actin was shown to reduce both the affinity of actin 

filaments for Arp2/3 complex and the stability of F-actin branches (Chan et al., 2009). 

There is no nuclear localisation signal in actin, but several studies found that cofilin can 

facilitate actin nuclear functions such as chromatin remodelling or regulation of gene 

expression by chaperoning actin to the nucleus (Pederson, 2008; Zheng et al., 2009). 

Recent study showed that dephosphorylated cofilin is required for nuclear localisation 

of actin, mediated by Importin 9 (Dopie et al., 2012). Importin 9 interacts with both 

actin and cofilin to promote active import of actin, therefore regulating actin-dependent 

transcription.  

 

Some recently characterised functions of cofilin are not related to cytoskeleton 

dynamics. Cofilin was found in mitochondria of apoptotic neuroblastoma cells. The 

presence of cofilin in the mitochondria seems to be required for mitochondrial pore 

permeability and cytochrome c release during apoptosis. There is no requirement for 

actin binding to cofilin during this process, but mutation of actin binding domain can in 

turn block apoptosis (Chua et al., 2003; Klamt et al., 2009).  Previously described as an 

inactive form, phospho-cofilin emerging function is to activate phospholipase D1 

(PLD1) (Han et al., 2007). This function is largely relevant during such processes as 

cancer cell migration or neuronal development (Bernstein and Bamburg, 2010). 

 

The structure of actin binding to ADF was recently reported, in the form of a 

complex with the C-terminal ADF part of twinfilin (Paavilainen et al., 2008). This 

structural study revealed how ADF-H domain inhibits G-actin nucleotide exchange, a 

mechanism occurring during gelsolin and WH2 proteins interaction with actin. The 

proposed model of inhibition explains in molecular detail how weakening intrafilament 

interactions can induce depolymerisation of actin filament (Paavilainen et al., 2008).   
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1.1.4.2 Profilin 

 

Profilin facilitates nucleotide exchange and acts as an important chaperone 

during F-actin assembly. The family of profilins consists of small (around 19kDa) 

(Ampe et al., 1988) proteins found in all eukaryotes, with four profilin genes found in 

humans (for review, see (Polet et al., 2007)). There are several isoforms of profilin and 

they all have highly conserved N-terminus with the C-terminal part resembling gelsolin.  

 

The main function of profilin is to bind actin subdomains 1 and 3 close to the 

hinge and to modulate nucleotide cleft opening. Essentially, profilin together with 

cofilin enhance the filament turnover (Didry et al., 1998). Profilin binding to actin 

allows for a quick growth of the barbed-end of actin filament (Ampe et al., 1988). 

Cofilin phosphorylation facilitates its dissociation from ADP-actin while profilin 

promotes the exchange of ADP for ATP and allows for profilin-ATP-actin addition. 

Profilin binds actin in a specific way, which leaves the front of actin cleft unoccupied. 

This allows for simultaneous binding of other proteins, especially WH2 domains (for 

review, see (Dominguez and Holmes, 2011)).  

 

The crystal structure of profilin bound to actin pointed out two molecular states 

of the complex, an “open” and a “closed” state (Chik et al., 1996). It was shown that 

profilin-actin assembled into a high-order structure and actin-actin contacts resembled 

an oligomeric protein. This was the first step towards understanding the interactions 

within the actin filament. Crystallographic data also demonstrated that profilin could 

bind proline-rich ligands (Mahoney et al., 1999). The interaction with proline-rich 

motifs enables targeting of profilin to specific sites to perform regulatory functions. 

Moreover, active export of actin from the nucleus, mediated by Exportin 6 depends on 

actin-profilin interaction (Stuven et al., 2003). 
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1.1.4.3 Gelsolin 

 

Gelsolin is the founding member of a gelsolin superfamily of proteins. It is 

localised to the cytoplasm of variety of eukaryotic cells and can bind, sever and cap 

filaments of actin (Sun et al., 1999). One isoform of gelsolin can also be found in 

plasma, where its levels largely increase after trauma (Christofidou-Solomidou et al., 

2002; Rothenbach et al., 2004). All members of gelsolin superfamily contain three to 

six gelsolin-like repeats. One of the main functions of this 84kDa protein is to control 

polymerisation of barbed ends, but gelsolin was also described as an actin filament 

initiator, due to its capability to bind two actin molecules. Ca2+ levels, phosphorylation 

of tyrosine, phosphoinositides and pH can all regulate activity of gelsolin (for review, 

see (Silacci et al., 2004)). Structural studies revealed that the C-terminal tail of gelsolin 

could modify its conformation by sensing Ca2+ levels. When Ca2+ levels are low, 

gelsolin remains in a globular conformation. High Ca2+ levels induce structural change 

in gelsolin, which results in the release of its C-terminal tail and exposes actin-binding 

sites (for review, see (McGough et al., 2003)). 

 

There are two actin-binding sites in gelsolin, one at the N- and one at the C-

terminus, which allows severing of two actin filaments while remaining bound to the 

newly formed one. The uncapping of actin requires binding to phosphatidylinositol 

lipids by gelsolin, exposing the barbed end of actin for polymerisation (Liepina et al., 

2003). Actin filament remodelling by gelsolin is linked to its role in cell motility. The 

first indication of this role was provided by experiments on fibroblasts that were 

transfected with gelsolin (Cunningham et al., 1991). Overexpression of gelsolin resulted 

in more motile cell behaviour and phospholipase C inhibition (Sun et al., 1997). Later, 

gelsolin was also linked to the regulation of hematopoetic stem cell motility, podosome 

formation and neuronal growth cones regulation (for review, see (Silacci et al., 2004)).  
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1.1.4.4 Thymosin 

 

Thymosin β4 (Tβ4) is an actin-buffering agent. Tβ4, the best-known member of 

the thymosin family is an important G-actin-sequestering molecule in mammalian cells. 

This small (around 5kDa) protein is unstructured in solution due to hydrophobic amino 

acid composition (Low et al., 1981). Interestingly, when Tβ4 binds to actin, it increases 

its helical content, but still remains unstructured. Tβ4 was first isolated from the thymus, 

but it is widely distributed in different tissues (Erickson-Viitanen et al., 1983). Tβ4 is 

mainly found in neural tissue, in leukocytes and macrophages (for review, see (dos 

Remedios et al., 2003)). Its main function is to inhibit polymerisation of actin filaments 

by sequestering actin. Hence, the function of Tβ4 is to maintain the pool of 

unpolymerised actin, which can be used to promote robust assembly of F-actin. Tβ4 is 

overexpressed in many tumours, it promotes wound healing and was recently found to 

be a potent therapeutic tool for myocardial infarction (Husson et al., 2010). Moreover, 

studies of the unique property of Tβ4 to promote wound healing has revealed that it can 

be used to reprogram adult cardiac fibroblasts into cardiomyocyte-like cells, what can 

have potential regenerative purposes (Qian et al., 2012). However, it is not known if the 

effects of Tβ4 expression are directly linked to its actin binding capability or to 

interactions with other partners. Understanding roles of this small peptide requires 

detailed analysis of its structural properties.  

 

Tβ4 serves as a model for actin-binding WH2 (WASP Homology 2) motifs. 

WH2 motifs were first recognised in WASP (Wiskott-Aldrich Syndrome Proteins) 

family of proteins and later in variety of other proteins. These proteins consists of one, 

two or more WH2 motifs and, in spite their homology, there are some that promote 

profilin-like, F-actin assembly. Crystallographic and mutagenetic studies revealed that 

if the motifs are in cluster of three, only the first one has very high affinity to actin. 

Consequently, the weaker interaction of the C-terminal region of Tβ4/WH2 with actin 

accounts for the rapid change between inhibition and promotion of F-actin assembly 

(Hertzog et al., 2004). It was later confirmed that mulifunctionality of Tβ4/WH2 is 

gained when WH2 motifs are in tandem (Husson et al., 2010). This structural feature 

can generate new functions, like actin filament nucleation or severing. Current work on 
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Tβ4 includes designing single or repeated WH2 motifs, that have a potential of 

modulating their own function and could be used as therapeutics.  

  

1.1.4.5 Formins 

 

The ability to form actin filaments de novo from monomers requires actin-

nucleating proteins. Formins are major actin nucleating factors. They are large proteins 

(120-220 kDa), containing several protein-interacting domains and binding to variety of 

partners (Chesarone et al., 2010). They are defined by a presence of the highly 

conserved formin homology 1 and 2 (FH1 and FH2) domains. The mechanism of 

nucleation by formins depends on stabilisation of the actin dimer through FH2 domain 

interaction. The FH1 domain contains a proline-rich region, which increases the local 

concentration of profilin-bound actin monomers, therefore driving filament elongation 

(Paul and Pollard, 2009).  

 

The ability of the formin family to drive actin elongation and nucleate actin 

makes them very important building components of the cytoskeleton. Because they are 

important for the formation of F-actin filaments, formins play multiple roles in cell 

migration. They mediate the growth of filopodia, support lamellipodial sheets and drive 

stress fibres assembly. They are also required for endosome formation and efficient 

phagocytosis. Moreover, they support membrane transport and assembly of the 

cytokinetic ring in yeast (for review, see (Chesarone et al., 2010)).  

 

Regulation of the activity of formins can depend on allosteric autoinhibition or 

might be mediated by other proteins (Firat-Karalar and Welch, 2011). For example, it is 

not clear how formins can be released from certain autoinhibitory interactions, but there 

is evidence that Rho-GTPases have crucial roles in activating formins at various levels 

(Heasman and Ridley, 2008). It was recently shown that binding of actin monomers by 

formins is mediated by their autoinhibitory C-terminal DAD domains, which cooperate 

with FH2 to enhance nucleation without affecting the rate of filament elongation (Gould 
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et al., 2011). The DAD domain therefore has dual function as it mediates autoinhibition 

and nucleation.  

 

1.1.4.6 The Arp2/3 complex 

 

The second major actin nucleating factor is the actin related protein (Arp2/3) 

complex. Arp2/3, together with nucleation promoting factors (NPFs) have the ability to 

nucleate the formation of new filaments extending from the sides of existing filaments. 

As a consequence, a Y-branched network of filaments can be formed. The actin 

nucleation mechanism mediated by Apr2/3 is essentially different from the formins-

driven mechanism, because Arp2/3 binds to the existing filament and recruits actin 

monomers. The exact mechanism of Arp2/3-mediated nucleation is still not well 

understood, but several models have been proposed (for review, see (Firat-Karalar and 

Welch, 2011)).  

 

Arp2/3 complex contains Arp2, Arp3 and additional subunits ARPC1-5 (Goley 

and Welch, 2006). Moreover, to be able to nucleate actin, Arp2/3 requires the 

cooperation of NPFs, which contain multiple WH2 domains and Arp2/3-binding 

central/acidic sites (CA), called WCA domains. A recent model of Arp2/3 complex Y-

branching mechanism suggests that Arp2 and Arp3 interact with the new filament while 

ARPC2 and ARPC4 contact the mother filament in the same time (Rouiller et al., 2008). 

It is believed that all seven subunits of Arp2/3 coordinate to anchor the pointed end of 

the new filament to the existing network. NPFs then deliver actin subunits to the Arp2/3 

complex at the barbed end, through WH2 domain interaction (Pollard and Borisy, 2003; 

Rouiller et al., 2008). More mutational analysis is required to better understand the 

mechanism of Y-branching by Arp2/3.  

 

The activity of NPFs is required for the efficient nucleation of actin by Arp2/3. 

Therefore, understanding the function of NPFs is crucial to elucidate how these 

complexes act. There are several well-characterised NPFs in mammalian cells, like 

Wiskott-Aldrich Syndrome Protein (WASP), neuronal WASP (N-WASP) or verprolin-
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homologous protein (WAVE), which are all Rho-GTPase effectors (Firat-Karalar and 

Welch, 2011). The mechanism of actin nucleation by NPFs could be mediated through 

allosteric regulation of their WCA domains, for example by autoinhibition (e.g. WASP 

and N-WASP) (Derivery and Gautreau, 2010). Another mode of regulation includes 

simultaneous interaction with signalling molecules, like Rac-GTPase and phospholipids 

(e.g. WAVE) (Lebensohn and Kirschner, 2009). Some studies also suggest that 

regulation of nucleation can be driven by oligomerisation mechanism, as dimerization 

of WCA domains can increase Arp2/3 binding affinity of NPFs (Padrick et al., 2008).  

 

Some actin-binding proteins compete with Arp2/3 for F-actin binding, which 

leads to debranching of F-actin filament. Recently, actin-cofilin interaction was found 

to change actin conformation and prevent it from binding to Arp2/3, therefore inhibiting 

actin nucleation (Bernstein and Bamburg, 2010). Another, recently discovered protein, 

glia maturation factor (GMF) targets Arp2/3 at branch points and prevents actin binding 

at those sites (Gandhi et al., 2010). Those, and other mechanisms are coordinated in the 

migrating cell to efficiently nucleate F-actin and promote branching in different cellular 

locations.   

 

Rho-driven nucleation of actin filaments by the Arp2/3 complex and formins 

promotes cell migration. Cell movement also depends on force generation that is 

created by the assembly of F-actin with myosin II. The details of this association are 

presented in the section below.  

 

1.1.5 Actomyosin contractility 

 

Studies of cell movement have been pursued for decades and questions about 

how muscle contraction drives movement resulted in many theories (for review, see 

(Vale and Milligan, 2000)). Over forty years ago, electron microscopy of muscle tissue 

revealed that F-actin filaments are bridged by myosin and it was proposed that this 

association could generate force (Huxley, 1969). This concept was soon coupled to the 

discovery that the tight actomyosin complex dissociates in the presence of ATP, and the 
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power stroke is a result of the phosphate release after the hydrolytic step of this reaction 

(Lymn and Taylor, 1971). The power generated during this hydrolysis is basic to cell 

movement. Given the profound effects that the actomyosin-generated force can have on 

a cell, it is not surprising that this process must very tightly regulated.  

 

1.1.5.1 Myosin II 

 

Myosin II (also known as conventional myosin) is a crucial motor molecule in 

both muscle and non-muscle cells. Myosin II is an important component of stress fibres, 

contractile structures containing actin filaments, crosslinking proteins and arrays of 

myosin. Stress fibres are found in non-muscle cells, where they are involved in 

adhesion and motility. Bundles of actomyosin in stress fibres are major mediators of 

cell contraction and resemble highly organised actomyosin structures present in muscle 

cells (for review, see (Pellegrin and Mellor, 2007)).  

 

Myosin II belongs to a large family of myosins and is known to be involved in 

cell migration, cell adhesion and cell polarity. Other subfamilies of myosin are called 

unconventional myosins and are involved in variety of processes ranging from 

membrane transport, mRNA transport to cytokinesis and signal transduction (Vale and 

Milligan, 2000). Muscle myosin II is mainly involved in muscle contraction and is 

expressed in muscle cells. Non-muscle myosin II is expressed in all eukaryotic cells and 

mediates variety of processes including cytokinesis and cell movement (Ma et al., 2012).  

 

Non-muscle myosin II is a multi-subunit protein, a product of MYH9, MYH10 

and MYH14 genes encoding three different isoforms of the 230 kDa myosin heavy 

chains and MYL6, MYL9, MYL12 genes encoding 20 kDa ‘regulatory’ light chains 

(Conti and Adelstein, 2008). All isoforms of non-muscle myosin II are hexamers, 

consisting of two heavy chains and two pairs of light chains. There is no evidence that 

the light chains have specificity towards certain isoforms of the heavy chains (Ma et al., 

2012), therefore for simplicity they will be referred to here as non-muscle myosin II. 

The important property of myosin II is the ability of actin binding in an ATP-dependent 
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manner. ATP dissociates from the actin-myosin complex in Mg2+-dependent process, 

which results in power stroke-driven tension or translocation of myosin on actin 

filaments. Structurally, the helical coiled coil domain located at the C-terminus of 

myosin is responsible for filament formation and the N-terminal globular motor domain 

contains ATP-binding and actin-binding sites. Thus, the N-terminal part of non-muscle 

myosin II and smooth muscle myosin is responsible for its ability to create tension 

(Kovacs et al., 2003; Wang et al., 2003a). Although structurally similar, isoforms of 

non-muscle myosin exhibit differences in their motor activities, resulting from 

alterations in ATP hydrolysis rate and the actin-myosin association period (Kovacs et 

al., 2003; Wang et al., 2003a).  

 

Importantly, the activation of ATPase activity of myosin II strictly depends on 

the phosphorylation of S19 and sometimes additionally T18 of the 20 kDa myosin light 

chain. Therefore, myosin light chain is often referred to as regulatory myosin light chain 

(RMLC/ RLC/ MLC).  

 

1.1.5.2 Regulation of actomyosin crosslinking 

 

 Both non-muscle and smooth muscle myosin II are regulated by phosphorylation 

of their MLC. This phosphorylation plays an essential role in smooth muscle 

contraction in muscle cells and in actin-myosin interaction during stress fibres and 

contractile ring formation in non-muscle cells (Adelstein and Sellers, 1987; 

Huttenlocher et al., 1995). MLC phosphorylation allows the heavy chain of myosin II to 

be released, which facilitates the association of myosin globular head with actin 

filaments. Subsequently, the force generated by ATP release is used by myosin to 

translocate (“walk”) on F-actin. When multiple myosins associate with actin filaments, 

contractile force is generated (Olson and Sahai, 2009).  

 

There are multiple kinases involved in MLC phosphorylation (Figure 1.5). 

Initially, Ca2+-calmodulin-dependent myosin light chain kinase (MLCK) was found to 

mediate phosphorylation of MLC at S19 (Adelstein et al., 1975). However, it was 
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already known that Ca2+-independent mechanisms could regulate smooth muscle 

myosin II (for review, see (Somlyo et al., 2000)). This led to the discovery of primary 

pathway involved in this phosphorylation, involving Rho and Rho-associated kinase 

ROCK (Amano et al., 1996). ROCK, which phosphorylates MLC at S19 and T18, is 

now established as a major Ca2+ -independent MLC kinase.  

 

Additionally, other kinases have been shown to mediate MLC phosphorylation 

at those two sites, like zipper-interacting protein kinase (ZIPK), which is primarily 

involved in apoptosis (Murata-Hori et al., 1999). Recently, myotonic dystrophy kinase-

related Cdc42-binding kinase (MRCK) and Rho-ROCK pathway were reported to 

cooperate to phosphorylate MLC during cell invasion. Interestingly, the involvement of 

those pathways was dependent on cell morphology and the type of cell movement 

(Wilkinson et al., 2005). Another, recently found kinase associated with MLC 

diphosphorylation is integrin-linked kinase (ILK), which most likely mediates this 

process in vascular smooth muscle cells and tissues (Wilson et al., 2005). During 

endothelial cell retraction, MLC phosphorylation might be mediated by p21-activated 

kinase (PAK) (Zeng et al., 2000). Additional kinases were also implicated in facilitating 

this process (for review, see (Olson and Sahai, 2009)). Nevertheless, two critical kinases 

mediating this phosphorylation are MLCK and ROCK, acting in Ca2+-dependent and 

Ca2+-independent manner respectively. To effectively control the phosphorylation level 

of MLC, a specific MLC phosphatase (MLCP) must act on myosin (Figure 1.5).  

 

MLC phosphorylation level is therefore determined by the balanced activities of 

MLC kinases and MLCP. At a given Ca2+ concentration, MLCP can alter MLC 

phosphorylation levels hence regulating the contractile behaviour of the cell (Ito et al., 

2004).  
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Figure 1.5 Regulation of actomyosin contractility.  

Phosphorylated MLC promotes actomyosin crosslinking, cell contraction and migration. 

Myosin II binds actin filaments through its globular heads and forms multimers through 

interaction of its heavy chains (indicated in the box on the bottom). The major, Ca2+-

independent mechanism that regulates actomyosin contraction is driven by signal-regulated 

Rho-kinase activity through direct phosphorylation of myosin light chain (MLC) of myosin II at 

S19 and T18 (location of MLC within myosin II is schematically indicated in the box on the 

bottom). Rho-kinase also directly phosphorylates regulatory subunit of MLCP, MYPT1 at T853 

and T696, which leads to inhibition of MLCP. Inhibitors of this pathway include Rho inhibitor 

C3 transferase (C3), ROCK inhibitor (Y-27632) and Myosin II ATPase inhibitor Blebbistatin. 
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1.1.5.2.1 Regulation of MLC phosphorylation by MLCK 

 

MLCK is a ubiquitous, Ca2+-calmodulin-activated kinase, found in many tissues. 

It is specifically implicated in regulating phosphorylation of MLC in smooth muscle, 

therefore mediating muscle contraction. Smooth muscle MLCK is encoded by a single 

MYLK1 gene, but its expression is not restricted to muscle tissues. MYLK2 encodes 

the skeletal muscle isoform and MYLK3 is a cardiac specific gene (Hong et al., 2011). 

Studies of the MLCK-mediated enzymatic reaction suggest that MLCK can bind MLC 

and ATP and than convert bound substrates to MLC-P and ADP. There are differences 

in the relative amounts of two MLC forms (MLC/ MLC-P) in smooth muscle and non-

muscle cells and this can be evaluated by measuring the ADP concentration in those 

cells. Consequently, the kinetics of this reaction can differ depending on the cell type 

and is rather isoform-specific. Nevertheless, both skeletal and smooth muscle isoforms 

show strong reaction inhibition upon phosphorylated MLC (Geuss et al., 1985). 

 

Structurally, MLCK contains a calmodulin and actin-binding site at the N-

terminus followed by the unstructured proline-rich region. Interestingly, it also contains 

additional two F-actin binding sites called Ig1 and Ig2. The kinase domain of MLCK is 

located in the middle of the protein and it can mediate binding to MLC and to ATP. 

This catalytic domain of MLCK phosphorylates MLC at S19. At the C-terminus, 

MLCK contains smooth muscle myosin binding site and can bind both smooth muscle 

myosin monomers and filaments (Hong et al., 2009). No crystal structure of full length 

MLCK is available, but structures of several domains of MLCK suggest that it is a 

flexible molecule. Electron microscopy studies suggest that it can adopt either elongated 

or compact conformation (Mabuchi et al., 2010). It has been an intriguing question how 

MLCK phosphorylates MLC in the environment of the muscle. MLCK is understood to 

be tightly bound to the contractile apparatus therefore it is puzzling how it mediates the 

phosphorylation. Supposedly, its flexibility can explain now MLCK can simultaneously 

bind actin, myosin and initiate phosphorylation of MLC to stimulate muscle contraction 

(Hong et al., 2011).  
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In contrast to ROCK, MLCK has only two known substrates in vivo: MLC of 

smooth muscle myosin and non-muscle myosin. MLCK can only phosphorylate S19 

and not T18 like some other MLC kinases. However, phosphorylation of MLC S19 is 

sufficient to promote muscle contraction. Additionally, knockout mice studies reveal 

that MLCK-mediated phosphorylation is essential in tracheal, bronchial and 

gastrointestinal smooth muscle (He et al., 2008; Zhang et al., 2010). It was only shown 

recently that MLCK can phosphorylate non-muscle myosin in addition to smooth 

muscle myosin, but no kinetic evidence was shown (Yuen et al., 2009). An in vitro 

study shows that non-muscle myosin is not as good substrate for MLCK as the smooth 

muscle myosin (Hong et al., 2011).  

 

1.1.5.2.2 Regulation of MLC phosphorylation by ROCK 

 

ROCK phosphorylates multiple cellular substrates and is involved in essential 

processes like cell migration, cell polarity, cytokinesis, stress fibre and focal adhesion 

formation and smooth muscle contraction (for review, see (Amano et al., 2010)). 

Interestingly, to control MLC phosphorylation during these processes it acts in two 

different ways. The first mechanism involves phosphorylation of MLC S19 and T18 by 

ROCK (Amano et al., 1996). The second mechanism is less direct. MLC 

phosphorylation is controlled by MLCP complex (described in section: ‘MLC 

dephosphorylation by MLCP’), which consists of catalytic subunit (PP1), and two 

regulatory subunits. One of those subunits is myosin phosphatase targeting subunit 

(MYPT1). ROCK phosphorylates MYTP1 at T853 and T696, which results in MLCP 

inhibition and consequent increase of the MLC phosphorylation (Kimura et al., 1996).  

 

The formation of stress fibres and focal adhesions is regulated by the Rho-

ROCK signalling pathway (Amano et al., 1997). Again, a crucial regulatory mechanism 

in this process is the specific phosphorylation of MLC, which can be mediated by direct 

kinase activity of ROCK in cooperation with actin nucleating factor, formin mDia. It 

was proposed that different ratios of the mDia and ROCK activities could result in 

various F-actin morphologies, like diverse thickness and densities of actin fibres 
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(Watanabe et al., 1999). Another mechanism involved in stress fibre formation is the 

phosphorylation of LIMK by ROCK, which results in the increased cofilin 

phosphorylation at serine S3. Cofilin depolymerizing activity towards F-actin becomes 

inhibited by this phosphorylation, resulting in F-actin stabilization. ROCK emerges here 

as a crucial molecule involved in maintaining stress fibre assembly, by balancing 

phosphorylation of MLC and LIMK. Indeed, purified stress fibres from fibroblasts 

contain Rho, ROCK and MYPT1 and treatment with specific inhibitors of ROCK but 

not MLCK results in the loss of stress fibres and tension (Katoh et al., 2001).  

 

1.1.5.2.3 MLC dephosphorylation by MLCP 

 

MLCP was originally purified from chicken gizzard myofibrils as a heterotrimer 

(Alessi et al., 1992). The catalytic part was a 37kDa protein and the two regulatory 

subunits were described as 110kDa large subunit and 20kDa small subunit. The 

catalytic component was found to be the β isoform of protein phosphatase 1 catalytic 

subunit (PP1C β), also known as PP1Cδ. The larger regulatory subunit was later 

described as myosin phosphatase targeting subunit (MYPT) also known as myosin 

binding subunit (MBS) and the smaller subunit was called small regulatory subunit 

(M20) (Hartshorne et al., 1998).  

 

To form an active MLCP holoenzyme, MYPT binds PP1 through its N-terminal 

region and M20 through the C-terminal part. MYTP is a critical component of this 

complex, as it brings together the phosphatase catalytic subunit and the phosphorylated 

myosin. The association of PP1 with MYPT1 also contributes to substrate specificity 

(Terrak et al., 2004). The MYPT gene encodes for many isoforms, but the best known is 

MYPT1 as it is expressed in many tissues with dominant expression levels in smooth 

muscle. The N-terminal region of MYPT1 contains seven ankyrin repeats and a PP1-

binding motif defined by a specific consensus (R/K)x0-1(V/I)x(F/W). At the very C-

terminus, MYPT binds to M20 regulatory subunit. Importantly, MYPT1 can be a 

platform for interaction with multiple ligands. Firstly, MYPT1 binds myosin at two 

different sites: it interacts with phosphorylated MLC at the N-terminus and binds 
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myosin through its C-terminal domain. Moreover, it was reported to interact with GTP-

bound RhoA and with phospholipids (for review, see (Ito et al., 2004)).  

 

The M20 subunit is a non-catalytical part of the MLCP holoenzyme of unknown 

function. Interestingly, the C-terminal region of M20 shares 91% amino acid identity 

with an isoform of MYPT, MYPT2. This finding may suggest that M20 can be in fact 

produced the same gene as MYPT2. Binding of M20 to MYPT1 does not interfere with 

the phosphatase activity of the complex, and it was proposed that M20 might bind 

myosin dimers or microtubules (for review, see (Ito et al., 2004)). 

 

There are several mechanisms that regulate the activity of MLCP. The inhibitory 

phosphorylation sites in MYPT1 (T853 and T696) can be targeted by multiple kinases, 

including ROCK. ZIPK (also referred to as MYPT1 kinase) increases phosphorylation 

of another inhibitory phospho-site, T654. ILK is implicated in phosphorylating MYPT1 

at T696. ROCK, ZIPK and ILK can all directly phosphorylate S19 and T18 of MLC and 

are all implicated in Ca2+-independent regulation of smooth muscle (Ito et al., 2004). 

Other inhibitory mechanisms were also proposed, like phosphorylation by the Cdc42 

effector PAK or the Rac1 effector DMPK (Ito et al., 2004). Taken together, these 

findings show that variety of kinases are involved in the regulation of MLCP activity.  

 

The mechanism by which phosphorylation of MYPT1 inhibits MLCP is not 

understood. Possibly, MYPT1 phosphorylated at T696 induces conformational change 

of the holoenzyme, which affects the active site of PP1 and inhibits its activity. 

Alternatively, the inhibitory phosphorylation at T696 could affect the binding of PP1 to 

the substrate. Nevertheless, this issue needs to be investigated further through structural 

and biochemical analysis.  

 

Since MYTP1 contributes to substrate recognition, dissociation of MYPT from 

PP1 promotes MLC phosphorylation (Gong et al., 1992). Subcellular localisation of the 

complex can have a role in modulating its function. It was shown that stimulation of 

smooth muscle cells with a specific agonist, prostaglandin, induced translocation of the 

MLCP complex from the cytoplasm to the plasma membrane, which resulted in the 
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dissociation of the subunits (Shin et al., 2002). This translocation was effectively 

inhibited by the ROCK inhibitor, Y-27632, but no direct role of T853 or T696 

phosphorylation in this process was shown. Instead, it was proposed that the lipid 

environment in the plasma membrane could promote dissociation of the holoenzyme. 

This shows that the activity of MLCP can be regulated by complex dissociation or 

targeting to specific subcellular compartments. 

 

MLCP activity can also be regulated by CPI-17, a small (17kDa), inhibitory 

protein expressed mainly in muscle and nervous tissues. CPI-17 is a specific inhibitor of 

MLCP holoenzyme, which and can also inhibit dissociated PP1. The centrally located 

domain of CPI-17 is essential for the specific recognition of MLCP. Within this region, 

CPI-17 is phosphorylated at T38 primarily by PKC, which leads to its activation. 

Interestingly, ROCK, ILK and PAK were also implicated in mediating this 

phosphorylation (for review, see (Ito et al., 2004)). Some studies suggest a potential role 

of CPI-17 in Ca2+ sensitization as phosphorylation of CPI-17 correlates with MLC 

phosphorylation during stimulation with agonists in smooth muscle (Kitazawa et al., 

2003; Niiro et al., 2003).  

 

Lastly, MLCP can be regulated through activation. The most important 

mechanism that mediates MLCP activation is the interaction of MYPT1 with the cyclic 

guanosine monophosphate (cGMP)-dependent protein kinase Iα (cGKIα). A structural 

study recently showed that MYPT1 binds to cGKIα through its C-terminal leucine 

zipper site (Zhou, 2011). Another described mechanism is related to the cyclic 

nucleotide signalling and involves RhoA inhibition by cGKIα or PKA. Several studies 

indicate that phosphorylation of RhoA at S188 can influence its interaction with 

RhoGDI, which results in reduction of the active GTP-bound RhoA. Consequently, this 

inhibition decreases ROCK activity therefore promoting MLCP activation (Ellerbroek 

et al., 2003). 
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1.2 Actin in transcription regulation – regulation of SRF 
cofactors MRTFs 

 

It has now been established that besides its cytoskeletal roles, actin can also 

mediate non-cytoskeletal processes in the cell. Years of research now show that actin is 

involved in chromatin remodelling, histone modification and gene transcription by all 

three RNA polymerases in eukaryotes. Actin also binds several ribonucleoprotein 

(RNP) complexes in cell nuclei. Moreover, actin can regulate the activity of some 

transcription factors and determine their subcellular localisation (for review, see (Olson 

and Nordheim, 2010; Percipalle, 2012)). G-actin can enter and exit cell nuclei by 

diffusion; however, it has now been established that actin can also be actively imported 

to the nucleus through Importin 9 and cofilin association, and exported through 

interaction with Exportin 6 and profilin (for review, see (Olson and Nordheim, 2010). It 

is puzzling how actin mediates functions in the nucleus and why it is crucial for variety 

of aspects during gene expression.  

 

The ability of actin to polymerise in the cytoplasm is well characterised and was 

introduced in previous sections. It is not well understood however, if actin can form 

filaments in the nucleus, as many components of the machinery that drives F-actin 

formation are absent from the cell nuclei. Some effectors of Rho-GTPases were found 

to shuttle between the nucleus and the cytoplasm, like mDia2 (Miki et al., 2009) or N-

WASP (Suetsugu and Takenawa, 2003), but the significance of these events is not clear. 

Some studies revealed that the conformation of actin in the nucleus is different than in 

the cytoplasm. This was achieved by the generation of specific antibodies that only 

recognised a conformation of native actin, present in the nucleus and not in actin 

filaments in the cytoplasm (Gonsior et al., 1999). Some studies indeed show by 

photobleaching that F-actin is present in the nucleus (McDonald et al., 2006). There is 

now evidence that actin is involved in transcription initiation, elongation and at gene 

level (for review, see (Olson and Nordheim, 2010; Percipalle, 2012)). Recent evidence 

demonstrates presence of nuclear actin targets, like pluripotency gene Oct4 in Xenopus. 

Nuclear actin polymerisation is necessary for transcriptional reprogramming of Oct4 



Chapter 1 Introduction 

 56 

through Toca1 (Miyamoto et al., 2011) and for retinoic acid-induced HoxB transcription 

(Ferrai et al., 2009). These observations suggest that polymerised actin is functional in 

cell nuclei.  

 

G-actin is also involved in transcriptional activities. Identification of G-actin 

regulated nucleocytoplasmic shuttling of Serum Response Factor (SRF) coactivators, 

MRTFs, revealed for the first time a direct mechanism enabling cytoplasmic G-actin to 

control nuclear transcriptional activity (Miralles et al., 2003). It was later shown that 

nuclear G-actin regulates the activity of nuclear MRTFs towards SRF-dependent 

transcription (Vartiainen et al., 2007).  

 

In the following section I will focus on the specific function of G-actin in 

controlling nucleocytoplasmic shuttling and the activity of transcription cofactors of the 

MRTF family. I will discuss how G-actin binding through regulatory RPEL motifs in 

MRTFs confers their subcellular localisation and SRF-dependent transcription (for 

review, see (Olson and Nordheim, 2010; Posern and Treisman, 2006)).  

 

1.2.1 SRF transcription factor 

 

SRF is a ubiquitous transcription factor, encoded by a single gene, whose 

homologs are found across metazoans (Norman et al., 1988). It belongs to a larger 

group of MADS-box (name is derived from the founding members of the family: 

MCM-1, AG, DEFA and SRF) transcription factors, which have been defined on the 

basis of their primary sequence homology between proteins in yeast, plants, insects, 

amphibians and mammals (Shore and Sharrocks, 1995). MADS-box transcription 

factors have significant biological roles in the yeast pheromone response, cell cycle 

regulation, metabolism and flower development in plants. The MADS-box is a 

sequence of 56 amino acids, with nine identical residues in all described proteins. The 

deletion studies of the 90 amino acid sequence encompassing this region in SRF 

showed that this region and its C-terminal extension are sufficient for DNA binding 
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(Norman et al., 1988). Most of the MADS-box proteins have the MADS-box located N-

terminally, but in SRF it is located in the central part of the protein.  

 

To bind DNA, SRF homodimerises and specifically targets a palindromic DNA 

sequence CC(A/T)6GG called the CArG-box, found upstream SRF-dependent genes 

(Pellegrini et al., 1995). This sequence is called a serum response element (SRE) and is 

a genomic sequence first identified as a c-fos promoter (Treisman, 1986). The crystal 

structure of SRF bound to DNA revealed that the homodimeric SRF-DNA complex is 

organised in three structural layers, which contain the coiled coil (bottom) layer, the β-

sheet (middle) layer and the C-terminal region (top layer). The DNA is tightly bound 

around SRF, which causes DNA bending (Figure 1.6) (Pellegrini et al., 1995). SRF has 

the ability to select a narrow minor groove, a structural feature of the AT-rich DNA 

sequences, flanked by a GG or CC sequences, which promote bending onto the minor 

grove (Pellegrini et al., 1995).  
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Figure 1.6 Serum response factor (SRF) bound to DNA. 

The X-ray crystal structure of human serum response factor core bound to DNA reveals DNA 

bending (for details, see text). Figure according to 3.2 Å structure by Pellegrini and Richmond 

(Pellegrini et al., 1995).  
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SRF is localised in the nucleus and is often found to bind DNA constitutively, 

but it remains inactive in the absence of stimulus (Herrera et al., 1989). Various studies, 

including genome-wide expression profiling analyses, identified many SRF candidate 

genes with the estimated number of around 300 (Descot et al., 2009; Hill et al., 1995; 

Medjkane et al., 2009; Philippar et al., 2004; Posern et al., 2004; Schratt et al., 2002). 

SRF plays a dominant role in the activation of genes, which encode for example 

proteins involved in the cell cycle G0 – G1 transition. (Descot et al., 2009; Selvaraj and 

Prywes, 2004). Above all however, SRF target genes encode for protein products that 

control and build the actin cytoskeleton. Within these, are proteins controlling cell 

contractility, microfilament dynamics and cell motility. Interestingly, the activation of 

specific genes (immediate early and/or cytoskeletal) is largely dependent on the SRF 

interaction with its cofactors. Consequently, to achieve transcriptional activity from 

binding the SRE of selected genes, SRF requires cofactors (Herrera et al., 1989; Shaw 

et al., 1989). Genome-wide ChiP-Seq analysis is underway to elucidate how the 

expression of different SRF target genes depends on binding events of specific SRF 

cofactors. This analysis reveals that there are nearly 850 genes that specifically interact 

with SRF (Esnault and Treisman, unpublished observations). The signal-regulated, 

tissue-specific cofactors of SRF can be divided into two main groups and are described 

below (Figure 1.7).  
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Figure 1.7 Two pathways regulating SRF activity.  

To activate transcription, SRF requires additional binding partners. SRF cofactors respond to 

two different signal transduction pathways. TCFs bind SRF at a subset of genes where SRE is 

located close to ETS site (left). TCFs respond to MAPK pathway activation by phosphorylation. 

The second set of SRF target genes is controlled via MRTFs (right), which respond to changes 

in actin dynamics induced by Rho-actin signalling. When actin polymerisation occurs, MRTFs 

accumulate in the nucleus and activate SRF-dependent transcription.  
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The initially discovered group of SRF cofactors are the ternary complex factor 

(TCF) family of proteins (Dalton and Treisman, 1992), which were found to be 

activated by mitogen activated protein kinase (MAPK) phosphorylation (Gille et al., 

1992; Janknecht et al., 1993; Marais et al., 1993; Shaw et al., 1989), (for review, see 

(Treisman, 1994)). TCFs possess an N-terminal ETS domain, a site though which they 

form ternary nucleoprotein complexes with SRF over the SRE site (Figure 1.7) 

(Buchwalter et al., 2004). Other described ETS proteins were found to be fundamental 

for development, differentiation, cellular proliferation and transformation (Oikawa and 

Yamada, 2003). There are three TCFs that were found to specifically form ternary 

complexes with SRF: Elk1, Net and Sap1. Structurally, they share four similar regions 

(Dalton and Treisman, 1992). Elk1, Net and Sap1 are recruited to the SRE through 

protein-protein and protein-DNA interaction, but all of them interact with the DNA 

through an ETS (Buchwalter et al., 2004). Interestingly, the expression of SRF target 

genes, which are activated through the activation of MAPK signalling and subsequent 

TCF binding, are unaffected by the changes in actin dynamics in the cell (Sotiropoulos 

et al., 1999).  

 

More recently, members of myocardin family of proteins were found to be SRF 

cofactors. This finding was driven by the fact that the formation of TCF complexes 

could not fully explain SRF-dependent transcription activities that result from serum 

induction (Hill et al., 1994). The answer to this puzzling issue came from the discovery 

that signalling to SRF requires activation of another signalling pathway, acting 

independently from MAPK pathway, the Rho-GTPase signalling (Hill et al., 1995). 

Indeed, it was shown that serum-regulated activation of SRF is mediated by changes in 

Rho-dependent actin dynamics (Sotiropoulos et al., 1999). It was later shown that 

cofactors that mediate the SRF-dependent expression of cytoskeletal genes belong to 

myocardin family. 

 

The discovery of a new SRF cofactor, myocardin, was firstly restricted to 

muscle cells (Wang et al., 2001). Not much later, a ubiquitously expressed 

megakaryocytic acute leukaemia (MAL or megakaryoblastic leukaemia 1, MKL1) 

protein was found together with one twenty-two MAL (OTT-MAL). They were 
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identified as fusion products of t(1;22)(p13,q13) chromosomal translocation present in 

megakaryoblastic leukaemia (AML) patients (Ma et al., 2001; Mercher et al., 2001). It 

was then established that a related protein, MAL 16, encoded by a gene in chromosome 

16 is also able to interact with SRF. Mouse homologs of MAL and MAL16 are referred 

to as myocardin-related transcription factors A and B (MRTF-A and MRTF-B) (Wang 

et al., 2002).  

 

Miralles and co-workers found that MRTF-A interacts with G-actin, but not with 

F-actin, therefore being a sensor of the monomeric actin concentration in the cell 

(Miralles et al., 2003). MRTF-A remains cytoplasmic in serum-starved NIH3T3 cells 

and accumulates in the nucleus upon serum-driven RhoA activation. Recent years 

yielded detailed analysis of the molecular mechanism underlying MRTF-SRF signalling 

to actin cytoskeleton (Guettler et al., 2008; Mouilleron et al., 2008; Mouilleron et al., 

2011; Pawlowski et al., 2010; Vartiainen et al., 2007; Zaromytidou et al., 2006). Below, 

I will introduce an actin-dependent regulatory mechanism that drives MRTF-SRF 

activity.  

 

1.2.2 MRTF family of SRF cofactors  

 

The founding member of the MRTF family of proteins is the initially 

characterised myocardin found in cardiac and smooth muscle cells. Myocardin can be 

found in two distinct isoforms, which result from alternative splicing reactions. 

Consequently, two different in size proteins can be found in either cardiac tissues or 

smooth muscle cells (myocardin-935 and myocardin-856). Myocardin was shown to be 

a potent transcription cofactor of SRF and to be required for myocardial cell 

differentiation in vivo (Wang et al., 2001). Myocardin was described as a SAP (SAF-

A/B, Acinus, PIAS) domain protein, which relates to a group of nuclear regulators of 

transcription and chromatin remodelling factors (Aravind and Koonin, 2000). Indeed, 

myocardin was later shown to regulate many SRF-dependent genes. In 10T1/2 

fibroblasts, myocardin expression stimulates expression of smooth muscle actin, 

calponin or smooth muscle MLCK, proteins normally restricted to myocytes (Wang et 



Chapter 1 Introduction 

 63 

al., 2003b). In contrast to myocardin, two other family members MRTF-A and MRTF-B 

have more widespread expression patterns (Wang et al., 2002).  

 

Loss-of-function studies of both myocardin and MRTF genes show that these 

SRF cofactors are required in vivo in distinct cell types and at various developmental 

stages. Mouse embryos that are homozygous for a myocardin loss-of-function mutation 

die during the embryonic development and show no differentiation of smooth muscle 

vasculature. Given the fact that expression of myocardin in fibroblasts can trigger 

smooth muscle gene expression, this shows that myocardin is regarded as necessary and 

sufficient for smooth muscle cells vasculature differentiation (Li et al., 2003). However, 

no defect in heart development is present, which is somewhat surprising given that mice 

carrying the null mutation of the myocardin gene in their cardiomyocytes suffer from 

heart failure, preceded by reorganization or sarcomeres and loss or cardiomyocytes 

through apoptosis (Huang et al., 2009). This shows that the expression of myocardin is 

required for cardiomyocyte survival. This report was in agreement with the finding that 

knockdown of myocardin in Xenopus embryos inhibits cardiac development and leads 

to downregulation of cardiac differentiation markers (Small et al., 2005). The fact that 

myocardin knockout mice embryos showed no defect in the development of the heart 

might be explained by the substitution of this function by MRTFs, therefore implicating 

possible functional redundancy of the family members. 

 

The loss-of-function study of MRTF-B in mice shows lethality during gestation 

stage resulting from multiple defects in the development of cardiovasculature. These 

included abnormalities in bronchial arch arteries, formation of right ventricle and thin-

walled myocardium. The defects were accompanied by a failure of smooth muscle cells 

differentiation within the arteries. Interestingly, these phenotypes were distinct from 

those observed in the myocardin loss-of-function study suggesting different roles of 

myocardin and MRTFs in the development of smooth muscle cells (Oh et al., 2005). 

Studies of MRTF-A knockout mice show no defects in the muscle cells development 

but exhibit abnormal differentiation of mammary myoepithelial cells. This results in 

defects in mammary gland formation and defective milk ejection, hence the inability of 

these mice to effectively nurse their offspring. Myoepithelial cells are derived from a 
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lineage distinct to smooth muscle cells, but the apparatus required for contraction of 

myoepithelial cells is strikingly similar to the smooth muscle cell contractile machinery. 

Myoepithelial cells from these mice exhibit downregulation of SRF target genes 

required for the effective contraction of these cells (Li et al., 2006). Therefore, MRTF-

A function might exhibit gene dose redundancy.  

 

1.2.3 Protein interaction and domain organisation of MRTFs 

 

The domain organization of MRTFs and myocardin is similar (Figure 1.8 A). 

All family members are around 100 kDa in size. The highly conserved C-terminal 

sequences mediate the transcriptional activity of myocardin family members (Miralles 

et al., 2003; Selvaraj and Prywes, 2004; Wang et al., 2001).  

 

The SRF binding site is located more N-terminally and is referred to as the B1 

box (Miralles et al., 2003; Zaromytidou et al., 2006). The analysis of the SRF-binding 

region by gel mobility shift assays identified a ‘LKYHQYI’ sequence, which is required 

for the formation of the MRTF-SRF ternary complex (Miralles et al., 2003; 

Zaromytidou et al., 2006). Immediately after the B1 box, a conserved Q-rich region is 

located (referred to as the Q-box). Analysis of the Q-box shows that it contributes to 

SRF binding, but is not essential (Miralles et al., 2003; Zaromytidou et al., 2006). The 

function of the SAP domain is not well understood, but reporter gene studies suggest 

that it plays a role in determining promoter specificity (Wang et al., 2003b). 

 

Myocardin family of proteins possess the ability to homo- and hetero-dimerise 

through their leucine-zipper (LZ) motifs, located C-terminally to the SAP domain 

(Miralles et al., 2003). Interestingly, dimerization might also occur between the family 

members and it was reported that SRF activity could be enhanced due to this 

dimerization (Miralles et al., 2003; Selvaraj and Prywes, 2004; Wang et al., 2003b). 

 

At the N-terminus, MRTF-A, MRTF-B and in myocardin-935 contain an RPEL 

domain, which is only partially present in myocardin-856 (Figure 1.8 A). The RPEL 
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domain consists of three RPEL motifs (Pfam 02755) (Figure 1.8 B), which are 

separated by linker sequences. The motif is described by the presence of the RP-(x)3-EL 

consensus at its core, but some variability within the sequence of the motif can occur 

between different species and family members. There are only two known families of 

RPEL proteins, myocardin and Phactr (Phosphatase and actin regulator) families 

(Figure 1.10). In both families RPEL domain acts as G-actin sensor and is critical for 

their Rho-dependent regulation (Miralles et al., 2003; Wiezlak et al., 2012). 

Interestingly, only MRTFs and not myocardin respond to the regulation by G-actin due 

to the lower affinity of the myocardin RPEL domain for G-actin (Guettler et al., 2008).  

 

Within the RPEL domain in MRTF-A, there is an extended bipartite nuclear 

localisation signal (NLS), containing two elements, referred to as B3 and B2 regions, 

separated by 30-residue linkers (Figure 1.8 A) (Pawlowski et al., 2010). Both are 

required for the nuclear import of MRTF-A, which is mediated by a classical Importin α 

(Imp α)-Importin β (Imp β) pathway. Moreover, binding of actin to the RPEL motifs 

inhibits the interaction of Impα-Impβ with the NLS in MRTF-A (Pawlowski et al., 

2010). Below, I will describe how actin binding to the RPEL domain in MRTFs 

regulates its subcellular localisation and activity. 
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Figure 1.8 Domain organisation of myocardin and MRTFs.  

(A) Similar domain organisation of myocardin and MRTFs (details in text). The RPEL domain 

consisting of three RPEL motifs (red) and B3-B2 NLS sequences (dark grey) are indicated. SRF 

binding site B1 box (B1, blue), Q-rich region (Q, brown), SAP domain (SAP, pink) and leucine 

zipper dimerization site (LZ, green) are schematically shown. (B) Pfam RPEL motif (02755) 

with RPEL core residues shown in red. 
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1.2.4 Actin-dependent regulation of MRTF localisation and activity  

 

The role of actin in the regulation of transcription was initially reported before 

the discovery of MRTFs. It was reported that the stabilisation of actin dimers by 

cytochalasin D, an actin-binding compound, enhances transcription of c-fos (Zambetti et 

al., 1991). Only later, it was shown that changes in actin concentration could influence 

expression of some SRF-target genes, like vinculin, β-actin or srf itself (Sotiropoulos et 

al., 1999). Interestingly, the treatment of cells with agents that promote F-actin 

formation, like jaspakinolide or overexpression of actin nucleating factors, like formins 

could stimulate the activity of SRF. In contrast, the treatment of cells with actin 

depolymerising agents like Latrunculin B, blocked the serum-induced activation of SRF 

target genes. These studies suggested that SRF responds to the depletion of monomeric 

actin levels in the cell. It was additionally shown that actin overexpression inhibits SRF 

activity, but profilin-induced F-actin assembly has the opposite effect on SRF. Taken 

together, these observations led to the proposal that SRF senses the depletion of G-actin 

pool through an additional, actin-interacting cofactor (Sotiropoulos et al., 1999). It was 

later shown that the G-actin sensing by SRF is communicated through its association 

with MRTF (Miralles et al., 2003).  

 

Miralles and colleagues showed that MRTF-A is retained in the cytoplasm of 

NIH3T3 fibroblasts in serum starved cells and upon serum stimulation it relocates to the 

nucleus (Figure 1.9). The nuclear accumulation of MRTF-A was triggered upon 

activation of Rho-actin signalling pathway (Miralles et al., 2003), which stimulates the 

formation of F-actin filaments and decreases the G-actin pool in the cytoplasm (Ridley 

et al., 1992). G-actin was found to be associated with the RPEL domain in MRTF-A in 

co-immunoprecipitation studies, which suggested that this interaction could dictate the 

cytoplasmic localisation of MRTF-A (Miralles et al., 2003; Posern et al., 2004). 

Interestingly, the RPEL domain from MRTF-A was shown to directly interact with G-

actin with very high affinity in actin polymerisation assays (Posern et al., 2004). 

Moreover, the N-terminal sequence containing the RPEL domain is sufficient for 

regulated translocation to the nucleus upon serum stimulation (Guettler et al., 2008). 
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These studies clearly showed that the RPEL domain in MRTF-A acts as an actin sensor 

and mediates its localisation and activity (Figure 1.9).  

 

G-actin influences the function of MRTF-A in multiple ways. Studies of the 

dynamics of MRTF-A GFP fusions showed that MRTF-A is continuously imported into 

the nucleus in the absence of stimuli and serum stimulation induces depletion of the G-

actin pool, which results in reduced binding of MRTF-A to G-actin. This mechanism 

was shown to reduce the nuclear export of MRTF-A, which is mediated by the exportin 

Crm1 (Vartiainen et al., 2007). Moreover, the inhibition of nuclear export by 

leptomycin B (LMB) causes MRTF-A nuclear accumulation but is not sufficient to 

activate SRF. Only additional actin removal (from MRTF-A) by cytochalasin D, which 

competes with MRTF-A for G-actin binding, can activate SRF (Posern et al., 2002; 

Vartiainen et al., 2007). This shows that actin is directly involved in the inhibition of 

transcriptional activity. On the other hand, the artificial increase of the G-actin pool in 

unstimulated cells effectively inhibits the (Impα-Impβ)-mediated nuclear import of 

MRTF-A, as the B2-B3 NLS overlaps the G-actin binding sites (Pawlowski et al., 2010). 

As indicated earlier, Guettler and colleagues showed that myocardin is not regulated by 

the Rho-actin signalling owing to the low affinity of RPEL1 and RPEL2 for G-actin. It 

was recently suggested that two leucine-rich sequences in myocardin and MRTFs 

mediate Crm1 binding, but in myocardin those sites can be inhibited autonomously and 

by SRF binding, which impairs the export of myocardin (Hayashi and Morita, 2013). 

However, the export mechanism of MRTFs is not yet fully understood. Myocardin or 

actin-defective MRTFs mutants are available for binding Impα-Impβ but are not 

effectively exported and thus localise constitutively to the nucleus (Guettler et al., 2008). 

Therefore, regulation of MRTFs depends on the specific Rho-signalling-mediated 

changes in actin interactions with the single RPEL motifs, which can individually bind 

G-actin with different affinities. 
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Figure 1.9 Regulation of MRTFs by actin. 

Interaction between actin and MRTFs regulates localisation and activity of MRTFs. In serum-

starved cells, MRTFs shuttle continuously between the nucleus and the cytoplasm. Actin 

inhibits import of MRTFs, promotes its export and inhibits transcriptional activity of SRF. 

Upon serum-induced actin polymerisation and G-actin depletion, MRTFs are no longer 

exported to the cytoplasm, but accumulate in the nucleus. Disruption of actin interaction with 

MRTFs leads to SRF activation.  
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1.2.5 The RPEL motif defines a G-actin binding element. 

 

The molecular basis for the RPEL domain interaction with G-actin and the 

significance of the RPEL motif sequence conservation were initially elucidated through 

structural analysis of single RPEL motifs bound to LatB-G-actin (Mouilleron et al., 

2008). This study showed that RPEL motifs (RPEL1 and RPEL2 from the triple RPEL 

domain), normally unstructured in solution, gain their secondary structure upon 

interaction with a single G-actin molecule. Mouilleron and colleagues showed that actin 

binding to a single RPEL motif induces the formation of two helices, helix-α1 and 

helix-α2 joined by an R-loop with an α2-C-cap at the C-terminus (Figure 1.10 A). 

Helix-α1 binds within the hydrophobic cleft between subdomain 1 and 3 of actin 

molecule and helix-α2 binds the hydrophobic ledge of the subdomain 3 (Figure 1.10 B). 

The structural and mutational analysis of RPEL motifs interacting with G-actin showed 

that sequence conservation occurs at positions that make direct contacts with G-actin or 

form intramolecular RPEL interactions induced upon actin binding (Mouilleron et al., 

2008).  

 

Crucial RPEL motif G-actin contacts within subdomain 3 ledge are 

predominantly hydrophobic and in RPEL2 involve L131, I136 and L137 in helix-α2 

(Figure 1.10 C). Helix-α1 also makes hydrophobic contacts through residues L118 and 

I122. The conserved proline P126 stabilises the angle between the two helices. The 

invariant R-loop arginine R125RPEL2, critical for G-actin binding, forms a cation 

interaction and a salt bridge with the C-terminus of G-actin (Figure 1.10 C) (Mouilleron 

et al., 2008).  
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Figure 1.10 The RPEL motif interaction with G-actin. 

(A) Sequence alignment of individual RPEL motifs from MRTF-A and a member of Phactr 

family, Phactr1; secondary structure features of the RPEL motif (green) are schematically 

indicated; core of the motif is shaded (grey box). (B) Structure of the RPEL2 motif from 

MRTF-A bound to G-actin between subdomains 1 and 3; RPEL motif is drawn in green 

(cartoon) and highly conserved residues are indicated as sticks; adapted from (Mouilleron et al., 

2008). (C) Critical RPEL motif G-actin contacts; hydrophobic and electrostatic interactions are 

indicated (for details, see text).  
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Both RPEL1 and RPEL2 bind G-actin with high affinities (1.0 µM and 1.9 µM), 

but RPEL3 binds with significantly lower affinity (28.9 µM) (Guettler et al., 2008; 

Mouilleron et al., 2008). The differences in affinities were explained by the distinct 

contacts that those motifs make with actin. Even though the structure of RPEL3 with G-

actin was not available, the mutational analysis and fluorescence anisotropy revealed 

the molecular basis of RPEL3 low affinity binding to actin. Most importantly, structural 

analysis showed crucial differences between the RPEL motifs binding to actin, which 

are reflected in a distinct amino acid content of the three RPEL peptides. The conserved 

RPEL arginine, located within the R-loop, was shown to be a crucial actin contact in 

RPEL2 and RPEL3, making an ion pair with the actin C-terminal carbonyl moiety, but 

the mutation of this arginine into alanine in RPEL1 did not decrease G-actin binding 

affinity as significantly. Consistently, the introduction of this mutation into the context 

of the full-length protein had a minor effect on the localisation of MRTF-A in 

unstimulated cells. In contrast, the R/A mutation of the RPEL3 had a very pronounced 

effect. Similar mutational analysis was performed for the actin-contact residues within 

helix-α1 and helix-α2 and showed a similar pattern. Taken together, these results 

suggested that the weakly interacting RPEL3 of MRTF-A is an important element that 

mediates localisation of MRTF-A, but the integrity of the whole domain is necessary to 

confer MRTF-A nucleocytoplasmic shuttling (Mouilleron et al., 2008). 

 

Within RPEL1 and RPEL2 motifs, conservation of most residues was explained, 

apart from the highly conserved RPEL glutamate, as this residue showed no direct 

contact with G-actin. The role of the RPEL glutamate was therefore not known. We 

recently explained the conservation of this residue through structural analysis of Phactr1 

interaction with G-actin, and showed that it is involved in the formation of higher-order 

actin assemblies on tandem RPEL motifs (Mouilleron et al., 2012)(see section 

‘Structural analysis of Phactr1 interaction with actin’).  

 

Recently, structure of the RPEL domain from MRTF-A bound to G-actin 

molecules was reported at 3.5Å resolution (Mouilleron et al., 2011). Surprisingly, this 

study revealed a pentavalent G-actinMRTF-ARPEL domain complex, with three G-actin 

molecules binding to each RPEL motif (actins R1, R2 and R3) and two additional actins 
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binding to the spacers between the motifs (actins S1 and S2) (Figure 1.11). Mutational 

analysis showed that binding of the spacer actins is required for MRTF-A cytoplasmic 

localisation in resting cells. Within the pentavalent complex, the RPEL domain is 

shown to possess a crank-shaped conformation with a superhelical twist of 150° within 

the crank. The conformation of a single RPEL motif within the helix is similar to the 

previously observed conformation in the single RPEL structures. The spacers joining 

RPEL motifs make similar contacts to the N-terminal RPEL contacts within the 

pentavalent assembly. Interestingly, this study also identified a trivalent G-actin 

complex (shown at 3.15Å resolution). Within the complex, the trivalent assembly was 

virtually identical to the RPEL domain binding actin R1, S1 and R2 within the 

pentavalent complex, but the two C-terminally located actins (R3 and S2) were missing 

from the structure. Both the pentavalent (5:1, actin:RPEL) and trivalent (3:1, 

actin:RPEL) complexes existed in solution when examined by gel filtration, but the 

pentavalent complex was only formed upon addition of G-actin to the running buffer. 

Consistent with the idea that RPEL3 motif in MRTF-A plays a crucial role in the 

regulation of its shuttling, the mutation of the crucial actin contact in RPEL3 caused the 

switch between the pentavalent and the trivalent complex in gel filtration.  

 

Shuttling of MRTF-A is dependent on the formation of the described above 

complexes. Depletion of the G-actin pool causes reduced formation of the pentavalent 

complex, therefore allowing for the Impα-Impβ heterodimers to associate with MRTF-

A and leading to the reduction of export rates. This is possible due to lower affinities of 

G-actin binding to RPEL3 and linker2 within the RPEL domain (Mouilleron et al., 

2011). Upon the artificial increase of G-actin concentration, all actin-binding sites 

would become saturated and NLS sequences become occluded. This would lead to the 

retention of MRTF-A in the cytoplasm (Figure 1.11). Taken together, studies of MRTF-

A RPEL domain complexes with G-actin show how actin can operate a molecular 

partner to dictate its function as a transcriptional coactivator.  
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Figure 1.11 Two crystal forms of the RPEL domain bound to actin reveal a model of 

MRTF-A regulation. 

(A) Two distinct complexes of MRTF-A RPEL domain bound to G-actins. Crystal form I 

reveals five G-actin molecules bound to RPEL motifs (red) and intervening spacers (left side); 

crystal form II contains three G-actin molecules bound to RPEL1, Spacer1 and RPEL2 (right 

side). (B) Schematic representation of the pentavalent and trivalent G-actinRPEL domain 

complexes (each G-actin is colour-labelled as in A). Within the pentavalent complex B2-B3 

NLS sequences (dark grey) are occluded, in the trivalent complex B2-B3 NLS sequences are 

available (dotted line). Five G-actin molecules bind in high actin concentration and the trivalent 

complex exists in a low G-actin concentration. (C) Proposed mechanism of MRTF-A regulation 

by G-actin. The 5:1 G-actinRPEL domain assembly (left) represents the export state of the 

complex, the 3:1 or ‘naked’ RPEL domain represents the import state (G-actin, RPEL motifs 

and NLS sequences are colour-labelled as in A and B).  
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Because the RPEL motif allows MRTF to respond to change in actin dynamics, 

MRTFs emerge as major players in cytoskeletal homeostasis by linking cytoskeletal 

gene expression to G-actin. It is therefore intriguing to understand if the function of 

RPEL motifs is restricted to MRTFs or if they regulate activity of other RPEL protein 

families. This thesis will focus on the role of RPEL motifs in Phosphatase and actin 

regulator (Phactr) family. Before discussing Phactr family, I will introduce PP1, the 

other binding partner of Phactr proteins.  

 

1.3 Protein Phosphatase 1 (PP1)  

 

Activity of more than a half of proteins is regulated by phosphorylation of their 

serine, threonine or tyrosine residues. To be effective in activating a big range of 

proteins, phosphorylation events are dynamic and reversible. In eukaryotic cells, there is 

a wide range of enzymes that control these reactions. All protein kinases and 

phosphatases have their own substrate specificities, subcellular localisation and 

regulatory factors. Interestingly, mammalian genomes encode around 100 protein 

tyrosine kinases, 400 serine/threonine kinases, but only around 40 serine/threonine 

phosphatases (Ceulemans and Bollen, 2004). This is because the full functional 

diversity of protein phosphatases is only visible when the enzyme and its regulatory 

partner are both considered. Often, these associations are referred to as protein 

phosphatase holoenzymes.  

 

Most protein serine/threonine phosphatases are classified in the phosphoprotein 

phosphatase (PPP) family, which consists of several subfamilies. PP1 and PP2A 

subfamilies are the two most abundant and account for more 90% of de-phosphorylation 

events in the eukaryotic cell. The PP2B subfamily (also called Ca2+-calmodulin-

regulated phosphatase calcineurin) together with PP5 also mediate a variety of 

processes, but are less abundant. Other subfamilies include PP4, PP6, and PP7. All 

subfamilies of PPP family of phosphatases have structurally related catalytical domains, 

but the composition of their holoenzymes differs significantly. Recent studies suggests 

that there are around 650 complexes containing PP1 protein phosphatase in mammals, 
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compared to 70 containing PP2A, placing PP1 in the forefront of all other phosphatases 

(for review, see (Bollen et al., 2010)).  

 

1.3.1 The structure of PP1 catalytic subunit  

 

PP1, also referred to as PP1 catalytic subunit (PP1c), is a very highly conserved 

eukaryotic protein. Eukaryotic genomes contain from one to eight genes encoding this 

abundant 37kDa protein. The differences between PP1 proteins among species are 

mainly due to the variability of the amino acid content of the C-terminal and N-terminal 

regions. Most of the middle region of the protein is highly conserved and 70% of the 

residues in the central part are virtually identical. There are three PP1 genes in 

mammals, encoding isoforms PP1α, PP1γ and PP1β (also referred to as PP1δ). 

Additionally, gene encoding PP1γ isoform can be alternatively spliced, which results in 

the formation of two splice variants, PP1γ1 and PP1γ2. All isoforms of PP1 are 

ubiquitously expressed, apart from the less abundant PP1γ2 (Ceulemans and Bollen, 

2004; Cohen, 2002). All isoforms of PP1 were reported both in the nucleus and the 

cytoplasm of the interphase HeLa cells, human lymphocytes and CHO fibroblasts, but 

more enhanced nuclear staining was always noted (Andreassen et al., 1998). PP1 does 

not contain a nuclear localisation signal, but is targeted to the nucleus through multiple 

regulatory proteins. 

 

Goldberg and colleagues reported three-dimensional structure of a PP1 catalytic 

subunit complexed with toxin microcystin (from marine cyanobacteria, Microcystis sp. 

and Nodularia sp.) (Goldberg et al., 1995). The structure of PP1 showed a compact 

ellipsoidal structure with dimensions 50 Å × 35 Å × 35 Å (Figure 1.12). The molecular 

analysis reveals requirement of PP1 catalytic subunit to bind metal ions Fe2+ and Zn2+ 

(Ceulemans and Bollen, 2004). The activity of PP1 was shown to be severely impaired 

when the metal-interacting residues were mutated, suggesting the critical role of those 

ions for PP1 function.  
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The PP1 catalytic subunit consists of 10 α-helices and 3 β-sheets comprised of 

14 β-strands. Overall, the structural features of PP1 can be grouped into two sub-

structures, the N-terminal region and the C-terminal region (also called N-subdomain 

and C-subdomain); this division of PP1 structure is only conceptual and does not 

indicate separate structures, though. Metal ions are embedded within the N-terminal 

part of PP1, which is mainly represented by α-helices and β-strands and forms a 

secondary arrangement containing a β-α-β-α-β metal-coordinating unit. This metal-

coordinating site is specifically formed into a regular, compact pocket (Figure 1.12). 

The existence of a di-nuclear ion-binding pocket is also presented in a structure of PP1 

catalytic subunit complexed with tungstate (Egloff et al., 1995). This study showed, that 

the enzymatic activity of PP1 is based on a single-step reaction involving a di-nuclear 

metal-activated water molecule. The central residue within the catalytic site, H125, 

plays a vital role in substrate immobilisation. Three longer and more exposed loops, 

which connect β-strands and α-helices in the β-α-β-α-β motif, provide a core of the 

catalytic site of the enzyme (Egloff et al., 1997). The C-terminal domain of the structure 

reveals a more irregular conformation, containing more β-strands than α-helices, 

providing a binding surface for many PP1 regulatory proteins. Catalytic Y-shaped cleft 

of PP1 contains three main substrate-interacting sites, referred to as C-terminal groove, 

hydrophobic groove and acidic groove (Figure 1.12) (Goldberg et al., 1995).  
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Figure 1.12 Structure of PP1 catalytic subunit.  

Structural representation of PP1 catalytic subunit shown as a cartoon (left) and as a surface 

model (right). The catalytic site of PP1 contains two metals (pink spheres) at metal coordinating 

unit (shaded in pink) with H125 (green) at its core. The Y-shaped catalytic cleft (yellow) of PP1 

is composed of three substrate-binding groves: C-terminal, acidic and hydrophobic. Major 

binding sites for regulatory subunits are located in the C-terminal part (shaded in grey) and 

often include the surface of β12-β13 loop (shown on the surface model on the right). Structure 

is based on a model from Goldberg (Goldberg et al., 1995) and was created using PYMOL.  
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The structural studies of PP1 revealed a mechanism for PP1 inhibition by toxins, 

such as microcystin, okadaic acid and others, which have been extensively used to 

dissect the molecular functions of phosphatases. PP1 inhibitors are also being exploited 

therapeutically, for example in cancer therapies (Kelker et al., 2009).  

 

Microcystin was shown to interact with two metal-bound water molecules, 

which results in the inhibition of enzyme activity through substrate displacement. It also 

interacts with the hydrophobic groove, located closely to the to the catalytic site, thus 

interfering with the catalysis (Goldberg et al., 1995). Okadaic acid (OA, polyether fatty 

acid from the marine dinoflagellates Prorocentrum sp. and Dinophysis sp.) also binds 

directly to the hydrophobic groove, and to some basic residues at the catalytic site itself, 

thereby inhibiting the catalytic reaction (Dounay and Forsyth, 2002). Calyculin A 

(octamethyl polyhydroxylated fatty acid from marine sponges) binds within the 

hydrophobic groove and the acidic groove, with its phosphate group occupying the 

metal-binding pocket (Kita et al., 2002). Structural study of PP1 bound to nodularin-R 

(cyclic penta-peptides occurring in marine cyanobacteria (Cheng et al., 1987)) and 

tautomycin (derived from bacteria Streptomyces sp. (Honkanen et al., 1991)) showed 

that hydrophobic groove interaction induces conformational changes of PP1 upon toxin 

binding, through removal of stabilising interactions in the active site (Kelker et al., 

2009).  

 

1.3.2 Substrate specificity, recognition and inhibition mechanisms 

 

The catalytic mechanism of all phosphatases from the PPP family is similar, as 

they share structurally comparable catalytic core. The differences between subfamilies 

of these enzymes reside in the conformation of their solvent-exposed loops. The 

secondary structure of those loops effectively determines the shape of the PP1 surface, 

and this contributes to substrate recognition. The specific feature of PP1 is the 

composition of the active site, which is surrounded by a cluster of acidic amino acids. 

This specific characteristic of PP1 contributes to the speed of catalytic reaction towards 

β-subunit of phosphorylase a, which is mediated much faster than dephosphorylation of 
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more acidic α-subunit. Other Ser/Thr phosphatases catalyse these reactions with 

virtually the same kinetics (Bollen and Stalmans, 1992). PP1 has another unique feature 

in its substrate recognition. Unlike other phosphatases, it poorly recognises short 

sequences surrounding the phosphorylated residue. In contrast, substrate recognition 

depends on docking motifs interactions with PP1 surface grooves, located distantly 

from the active site (for review, see (Bollen et al., 2010)).  

 

For efficient substrate recognition, PP1 almost always requires PP1 interacting 

proteins (PIPs), which contribute to substrate specificity and affinity. Some PP1 

substrates bind to PP1 with low affinities and cannot form stable complexes with PP1, 

such as glycogen phosphorylase, which contains weakly interacting docking site 

(Hubbard and Cohen, 1989). Therefore, to increase concentration of some substrates, 

PP1 requires PIPs, called also regulatory subunits. One of the best examples of PP1 

regulatory subunit that mediates substrate specificity is the binding of MYPT1 to PP1. 

MYTP1 is not only a targeting subunit but also enhances the specificity of PP1 towards 

MLC (for review, see (Bollen, 2001)).  

 

The mechanism of PP1 inhibition by physiological PP1 inhibitors is based on 

blocking the access to the active site, thus preventing dephosphorylation of all the 

substrates. Inhibitor-1 and CPI-17 have inhibitory functions only when phosphorylated, 

operating as pseudo substrates, but Inhibitor-2 and Inhibitor-3 function without prior 

phosphorylation. Although structural analysis is not available, the mechanism of PP1 

inhibition by Inhibitor-1 seems to rely on its phosphorylated residue being pushed to the 

active site of PP1 (for review, see (Roy and Cyert, 2009)). The structure of PP1 bound 

to inhibitor-2 indicated three crucial interaction points, involving two docking sites: 

RVxF motif and a SILK motif, and a long α-helix covering the active site by interacting 

with the acidic and hydrophobic grooves of PP1. Inhibitor-2 binding does not induce 

conformational change, but triggers the release of two metals, which are essential for 

catalysis (Hurley et al., 2007).  
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1.3.3 PP1 holoenzymes 

 

PP1 forms a variety of different multimeric holoenzymes, containing substrates 

of PP1 and its regulators, which can be either activators, inhibitors or substrate targeting 

subunits. A decade of studies on PP1 showed that classification of PP1 interactors is 

somewhat difficult, due to the complexity of interactions. For example MYTP1, is a 

targeting subunit, a substrate specificity enhancer and can have an inhibitory effect once 

phosphorylated (Bollen, 2001). Another example is neurabin, both a substrate-specifier 

and an inhibitor (Carmody et al., 2008). Phosphatase interacting proteins are often 

referred to as regulatory subunits, and can be classified as direct or indirect partners, 

according to whether binding is direct or through an additional interactor. Sometimes, it 

is even difficult to classify a PP1 binding partner as a regulator or a substrate, as it is not 

yet clear how certain interactors regulate PP1 activity (for review, see (Ceulemans and 

Bollen, 2004)).  

 

Nevertheless, some classify PP1 interactors as primary and secondary regulators, 

depending on the point of which PP1 binding was acquired during eukaryotic evolution 

(Ceulemans et al., 2002a). Primary regulators typically contain specific PP1-binding 

sites throughout different species, where they occur (e.g. Inhibitor-2, NIPP1). This 

characteristic enables to describe PP1 regulators, whose PP1-binding capability is their 

primary function. In contrast, secondary regulators have acquired the ability to regulate 

PP1 recently during evolution, and their primary function is unrelated to PP1 (e.g. 

AKAP149, Nek2) (for review, see (Ceulemans and Bollen, 2004)). 

 

Another way of classifying PP1 interactors can be based simply on their 

function, if this function is known (Bollen, 2001). Proteins that bind PP1 can be 

grouped as substrate-independent activity regulators (e.g., Inhibitor-1, Inhibitor-2, 

dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32)), substrate-

specific targeting subunits (e.g., MYTP1, Neurabin I) or just substrates (e.g., Aurora 

kinase, Retinoblastoma protein, phosphofruktokinase). This classification is limited by 

the fact that functions of many known PP1 interactors are still not known. Moreover, 

some proteins can act as both substrates and inhibitors, such as Inhibitor-2 or CPI-17, or 
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targeting subunits as well as substrates (e.g. NEK2, TIMAP), which adds another level 

of complexity to their categorisation (Eto, 2009; Helps et al., 2000; Hurley et al., 2007; 

Li et al., 2007).  

 

1.3.4 Regulatory binding sites 

 

The discovery of common binding sequences within the regulatory subunits of 

PP1 suggested that interaction of many PP1 interactors is based on competition. 

Moreover, some proteins possess a variety of PP1 interaction sites and bind PP1 

through several short motifs (for review, see (Ceulemans and Bollen, 2004)). Studies of 

different PP1 holoenzymes revealed that the activity of PP1 could be modified by an 

allosteric regulation or reversible phosphorylation of its regulatory subunits. These 

discoveries led to the proposal of a combinatorial control model of PP1, where a limited 

number of interaction sites for regulatory subunits combine with PP1 in many different 

ways to form a large variety of holoenzymes with distinct activities and substrate 

specificities (Bollen, 2001; Ceulemans and Bollen, 2004).  

 

Structural and mutational studies of PP1 complexes revealed some regulatory 

binding sites of PP1, which are conserved within many PP1-binding proteins. The best 

characterised site on PP1 in the “RVxF” binding channel, located in a hydrophobic 

groove, away from the catalytic pocket, formed by the top edges of the two central β-

sheets (Egloff et al., 1997). The consensus sequence recognised by this channel is 

present in most PP1 regulatory subunits and can be described as (R/K)x0-1(V/I)x(F/W), 

where x refers to any residue. This consensus is commonly denoted as simply RVxF 

motif and was first identified in studies of the glycogen-targeting subunits (GM and GL) 

as well as in the myosin targeting subunits (MYPTs) (for review, see (Cohen, 2002)). 

Mutation of valine or phenylalanine within the conserved motif can prevent PP1 

binding completely or significantly weaken the interaction of such important PP1 

interactors as NIPP1, AKAP220 or neurabin II (Hsieh-Wilson et al., 1999; Schillace et 

al., 2001; Trinkle-Mulcahy et al., 1999). Moreover, peptides containing RVxF motif can 

effectively block the interaction of some PP1 targeting subunits, like PNUTs or Nek2 
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(Helps et al., 2000; Kreivi et al., 1997). Several, highly conserved variations of the 

RVxF motif have been identified, which led to the final characterisation of the 

consensus. Screening of the catalytic subunit of PP1 with a peptide library revealed that 

peptides containing VxF and VxW motifs, following a basic residue, could bind PP1 

equally well (Zhao and Lee, 1997). Additionally, some PP1-binding mammalian 

proteins, like PNUTS, did not contain the basic residue, preceding the Vx(F/W) motif 

(Kreivi et al., 1997). Nevertheless, several lines of evidence now show, that RVxF motif 

is essential in vivo (for review, see (Cohen, 2002)). Recent bioinformatic efforts showed 

that the (R/K)x0-1(V/I)x(F/W) consensus could be found in more than 90% of PP1 

interacting proteins. Nevertheless, this motif can be randomly found in around 25% of 

proteins, therefore serves as a poor tool in new PP1 partners discovery (Roy and Cyert, 

2009). However, combining this strategy with searches containing stricter RVxF 

consensus could yield more comprehensive identification. When candidates found in 

one study were validated in vitro and in vivo, this resulted in almost doubling the 

amount of PP1 regulators in mammalian PP1 interactome (Hendrickx et al., 2009). 

 

Binding of the RVxF motif to PP1 is not associated with significant changes in 

the conformation of PP1 or its catalytic activity. However, because RVxF motifs are not 

independent units, but parts of often large regulatory proteins, the initial binding of PP1 

to this motif presumably anchors the primary interaction facilitating secondary 

interaction, which is frequently less strong, but can modulate the activity of PP1 (Bollen, 

2001; Ceulemans and Bollen, 2004).  

 

Other major regulatory binding site on PP1 includes the loop joining β-strands 

β12 and β13 (Figure 1.12). This loop is a flexible part of PP1, essential for the 

interaction with some inhibitors (Inhibitor-1, Inhibitor-2 and DARPP-32) and several 

inhibitory toxins (Connor et al., 1999). Another common interaction site includes the 

triangle of α-helices, precisely α4, α5 and α6, which have been shown to interact with 

Sds22, a specific regulator of Aurora-related protein kinases (Ceulemans et al., 2002b). 

Additionally, interaction of PP1 with Sds22 does not involve the RVxF channel in PP1. 

Lastly, some regulatory subunits of PP1, like MYPTs or neurabins interact with PP1 in 

an isoform-specific manner, indicating isoform-specific interaction sites on PP1.  
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Apart from the abundant RVxF motif, two other PP1-interacting consensus 

sequences were described in PP1-binding proteins. Crystallographic studies of PP1 in 

complex with the N-terminal domain of myosin phosphatase targeting subunit 1 

(MYPT1) showed, that besides interacting through the conserved RVxF motif, and 

ankyrin repeats, MYPT1 also contains a myosin phosphatase N-terminal element 

(MyPhoNE) (Terrak et al., 2004). This element was shown to direct binding of the N-

terminus of MYPT1 to PP1, consequently acting as a second docking site (Figure 1.13). 

It was then shown, that this motif is present in many PP1-interacting proteins. 

Bioinformatic analysis in the ENSEMBL database shows that MyPhoNE consensus 

RxxQ(V/I/L)(K/R)x(Y/W) occurs at increased frequency in proteins that interact with 

PP1 in comparison to other human proteins (Hendrickx et al., 2009). Similar analysis 

showed another conserved PP1-interacting sequence, identified initially in Inhibitor-2 

and referred to as SILK motif, with consensus (G/S)IL(R/K). The SILK motif was 

found in 7 out of 143 PP1-interacting proteins analyzed (Hendrickx et al., 2009; Hurley 

et al., 2007).  

 

Taken together, these analyses show that firstly, PP1 is structurally designed to 

interact with different regulatory sites of various proteins and that many proteins 

compete for PP1 binding. Secondly, specific interaction of regulatory subunits with PP1 

can be achieved by combination of several binding sites. 
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Figure 1.13 Structure of PP1 bound to MYPT1 indicating multiple docking sites. 

Major interaction sites between MYTP1 (yellow) and PP1 (green). The RVxF motif (purple) 

interacts within the ‘RVxF channel’ in PP1; the N-terminal MyPhoNE motif (orange) interacts 

with the base of PP1 catalytic cleft. Third contact consists of multiple ankyrin repeats (1-8, top 

of the figure). Figure was adapted from Roy and Cyert (Roy and Cyert, 2009), based on the 

PP1-MYPT1 structure from Terrak and Dominguez (Terrak et al., 2004).  
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1.3.5 Functions of PP1 regulatory subunits 

 

Thorough classification of mammalian PP1 regulatory subunits was performed 

by Patricia Cohen over ten years ago (Cohen, 2002). This study presents 54 well-

established PP1 regulators and classifies them into groups according to their 

physiological function, tissue distribution and, importantly, the cellular compartment 

targeted. Later, PP1 interactors were classified according to their cellular function, 

specifically showing diverse mechanisms that can be regulated by PP1 complexes 

(Ceulemans and Bollen, 2004). PP1 holoenzymes can regulate variety of unrelated 

mechanisms in the cell such as cell cycle, apoptosis, metabolism, new protein synthesis, 

ion channels, actomyosin organisation and others, but some picture its overall function 

in the cell as energy-conserving (Ceulemans and Bollen, 2004) (Figure 1.14). 

Furthermore, the function of many regulatory subunits is to specifically target PP1 to 

various compartments, therefore enabling its distinct roles. For example, PP1 can be 

targeted to glycogen and have roles in its metabolism or it can be targeted to 

actomyosin and act in muscle relaxation. PP1 can also be targeted to the nucleus, to the 

plasma membrane, mitochondrium, endoplasmic reticulum or to the proteasome (Cohen, 

2002).  
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Figure 1.14 Functional diversity of PP1.  

Overview of PP1 activity pictures it as a ‘green’ enzyme (Ceulemans and Bollen, 2004), which 

reduces energy and stockpiles it in the form of glycogen, promotes protein synthesis and returns 

cell to its basal state after stress, starvation or upregulation of some signalling pathways. PP1 

reverses translational mechanisms induced by stress, inactivates several transcription factors 

and promotes recycling of transcription factors; PP1 resets neural tissue to energy-conserving 

state, promotes muscle relaxation and actomyosin relaxation in non-muscle cells. After cell 

damage, PP1 induces apoptosis. PP1 is thus often referred to as an energy-conserving ‘reset’ 

enzyme (for an overview of PP1 functions, refer to (Ceulemans and Bollen, 2004)).  
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Here, I will present examples of PP1 functions and show how structural and 

mutational analysis of some PP1 holoenzymes helps to explain its diversity. 

 

1.3.5.1 Cell cycle 

 

One of the best-described roles of PP1 is the regulation of cell division, through 

variety of targets like Aurora B and crucially Retinoblastoma (Rb). Early mutagenesis 

and microinjection studies show that cells which contain defective PP1 stop dividing 

(for review, see (Ceulemans and Bollen, 2004)). Interestingly, studies in yeast show big 

phenotypical variability suggesting many different targets of PP1. PP1 was shown to 

have pleiotropic effects in mitosis in mammals as it was observed to target variety of 

structures involved in mitosis regulation, like centrosomes, the mitotic spindle or 

chromosomes (Andreassen et al., 1998; Bloecher and Tatchell, 2000). One of the best-

studied mitotic mechanisms controlled by PP1 is spindle checkpoint, which involves 

protein kinase Aurora B. Aurora B is an activator of spindle checkpoint and allows 

phosphorylation of various checkpoint proteins thus allowing them to prevent activation 

of degradation mechanisms (for review, see (Lesage et al., 2011)). In vertebrates, six 

different PP1 holoenzymes have been found to counteract Aurora B signalling at the 

kinetochores, therefore enabling effective spindle checkpoint exit and cell division 

(Lesage et al., 2011).  

 

An important cell cycle PP1 interactor is Retinoblastoma protein (Rb), 

introduced here because of its reported link to Phactr4-PP1 interaction (Kim et al., 

2007) (described in section: ‘The Phactr family of G-actin binding PP1 cofactors’). 

Initially identified as tumour suppressor, Rb is one of the main players in cell cycle 

(Friend et al., 1986; Weinberg, 1995). Rb possesses a bipartite pocket structure, which 

mediates its association with variety of cellular proteins, mainly transcription factors 

and components of transcription machinery. The best known partners of Rb are E2F 

transcription factors, which control activity of vital cell cycle genes, like cyclinE, 

cyclinA or Cdc25. Interestingly, some E2F family members can act as cell cycle 

activators (E2F1-3) and some as repressors (E2F4-5). Rb is a crucial component of this 
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machinery as it differentially associates with E2F transcription factors and prevents cell 

cycle progression (for review, see (Kolupaeva and Janssens, 2013)).  

 

The interaction of Rb with E2F transcription factors depends on the 

phosphorylation state of Rb. Best known phosphatases responsible for regulating Rb 

phosphorylation are cyclin-dependent kinases (CDKs). CDKs phosphorylate Rb at 

various sites throughout cell cycle to inactivate its activity and allow cell cycle 

progression. During early G1-phase, Rb has a low phosphorylation state and becomes 

phosphorylated by cyclinD/CDK4 in the middle of G1-phase. Later, Rb undergoes 

phosphorylation at the G1/S boundary by cyclinE/CDK2 and then in S phase by 

cyclinA/CDK2 (Grana et al., 1998; Kitagawa et al., 1996; Mayol et al., 1995; Xiao et al., 

1996). Therefore, the Rb phosphorylation state is high at S-phase and it becomes low 

during the exit from mitosis. Highly phosphorylated Rb releases E2F transcription 

factors, which activates cell cycle progression. Many phosphorylation sites on Rb have 

been identified and are well established in vivo (Zarkowska and Mittnacht, 1997). PP1 

was shown to be the major Rb phosphatase at mitotic exit. Studies of PP1 indicate that 

PP1 dephosphorylates Rb in mitotic cell lysates and that it directly interacts with Rb in 

yeast two-hybrid screens (Durfee et al., 1993; Nelson et al., 1997).  

 

Interestingly, the control of Rb by CDKs occurs not only by direct 

phosphorylation of Rb, but also by phosphorylating and inactivating PP1. This 

mechanism depends on phosphorylation of PP1 on T320 by CDKs. This regulatory 

mechanism was shown by the expression of constitutively active PP1 T320A mutant, 

which prevented Rb phosphorylation and caused cell cycle arrest (Berndt et al., 1997). 

The interaction between PP1 and Rb was shown to occur at the C-terminus of Rb, but 

several studies suggest that this interaction is very complex and involves more than one 

interaction surface (for review, see (Kolupaeva and Janssens, 2013)). Many studies also 

suggest that all PP1 isoforms bind to Rb equally well (Flores-Delgado et al., 2007; 

Vietri et al., 2006). Recent structural study of PP1α isoform bound to short Rb peptide 

elucidated many molecular details of this interaction (Hirschi et al., 2010). Firstly, the 

C-terminus of Rb was shown to be an enzyme docking site, required for the activity of 

PP1 towards Rb. Secondly, it was suggested that CDKs bind competitively to the same 
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surface on Rb and the competition between Rb and CDKs is sufficient to block cell 

cycle progression. Moreover, Rb interacts with PP1 at a site that is distinct from the 

catalytic site and the motif required for this interaction, a KLRF motif, similar to a 

KVxF consensus (Hirschi et al., 2010).  

 

1.3.5.2 Gene expression 

 

Transcription by RNA polymerase II relies on dynamic phosphorylation of the 

heptapeptide repeats in the C-terminal domain (CTD) of the polymerase. 

Phosphorylation of CTD is maintained by the activity of CDK7 and CDK9, while 

dephosphorylation depends on PP1 activity. Although one of the main phosphatases 

involved in this process was initially found to be the phosphoserine phosphatase FCP1, 

PP1 was found to play a dominant role in this process (Washington et al., 2002).  

 

One of the major regulators of PP1 in the nucleus is nuclear inhibitor of PP1 

(NIPP1), which inhibits dephosphorylation of a large amount of nuclear PP1 substrates 

(for review, see (Bollen and Beullens, 2002)). Both PP1 and NIPP1 have been found as 

components of Tat (Transactivator of transcription)-associated RNA polymerase II 

complex regulating transcription of human immunodeficiency virus type 1 (HIV-1). 

The expression of HIV-1 is blocked by NIPP1 addition, which can be reversed by the 

expression of PP1. Tat was found to contain a PP1-binding motif and act as PP1 

regulatory subunit (Ammosova et al., 2005). Mutations of the PP1-binding motif in Tat 

prevent Tat from activating HIV-1 transcription and PP1 nuclear translocation. 

Moreover, it was recently shown that the expression of NIPP1 suppresses HIV-1 

replication (Ammosova et al., 2011).  

 

PP1 was also implicated in the regulation of chromatin remodelling. Although 

one of the main nuclear regulators of PP1 is NIPP1, many other were also found 

(Ceulemans and Bollen, 2004). Nuclear PP1 also binds embryonic ectoderm 

development protein (EED), a member of the Polycomb family, which maintain 

transcription repression by epigenetic marks of histone deacetylation and methylation. 
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Interestingly, NIPP1, EED and PP1 can form a ternary complex, suggesting mutual 

targeting for dephosphorylation. Another trimeric complex consisting of PP1 and 

proteins involved in chromatin remodelling contains GADD34 (growth arrest and DNA 

damage protein) and SNF5 (component of the chromatin remodeling complex 

SWI/SNF). PP1 associates with GADD43 through canonical RVxF motif and also 

requires binding of SNF5. Both proteins bind PP1 simultaneously, but do not compete 

with each other. GADD34 seems to be involved in targeting PP1 to SNF5 therefore 

promoting dephosphorylation of SWI/SNF by PP1 (Wu et al., 2002).  

 

Eukaryotic translation initiation factor (eIF2α) is a key integrator of translational 

repression and stress-responsive genes during stress conditions. The phosphorylated 

form of eIF2α disables translation initiation complexes by sequestering some of their 

components. During stress, phosphorylated eIF2α acts as an activator of transcription 

factors involved in the stress response. Specific, stress-activated kinases stimulate eIF2α. 

One of them, protein kinase R (PKR), was found to be directly targeted and 

dephosphorylated by PP1 (Tan et al., 2002). Moreover, some studies indicate that PP1 

also contributes to recovery from stress by dephosphorylation of eIF2α. Consistently, 

experiments in reticulocyte lysates identified PP1 as eIF2α phosphatase. Targeting of 

PP1 to eIF2α was found to be mediated by GADD34, as GADD34/PP1 complexes 

dephosphorylate eIF2α in vitro (Connor et al., 2001). Moreover, the complex 

comprising PP1 and GADD34 also contained Inhibitor-1, one of the main PP1 

inhibitors. The analysis of these interactions suggested that direct cooperation of the 

three proteins mediated function of eIF2α through activating phosphorylation of 

Inhibitor-1 by PKA (Connor et al., 2001).  

 

1.3.5.3 Cytoskeleton 

 

Because several studies and our findings suggest that Phactr proteins associate 

with PP1 to induce cytoskeletal rearrangements (Allain et al., 2011; Huet et al., 2012; 

Jarray et al., 2011; Sagara et al., 2009; Wiezlak et al., 2012; Zhang et al., 2012), I will 

now introduce roles of PP1 in cytoskeleton regulation. 
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Dynamic reorganisation of actin cytoskeleton is controlled by phosphorylation 

of its components. PP1 emerged as an important regulator of cytoskeletal reorganisation 

as many of its regulatory subunits are targeting it to cytoskeleton (Cohen, 2002; 

Fernandez et al., 1990). Phylogenic analysis indicates that the role of PP1 in the 

regulation of cytoskeleton became evolutionally significant during a switch to 

multicellular organisation (Ceulemans et al., 2002a). Well-studied families of 

cytoskeletal regulatory subunits of PP1 include MYTPs, which control actomyosin 

phosphorylation and neurabins (neuronal actin binding proteins), which are targeted to 

F-actin to regulate synaptic plasticity.  

 

As described earlier, in smooth muscle and non-muscle cells, phosphorylation of 

MLC activates the ATPase activity of myosin and enables actomyosin crosslinking and 

muscle contraction. Several kinases and one major myosin light chain phosphatase 

(MLCP) regulates the phosphorylation state of MLC. PP1 and MYPT1 are crucial 

components of the MLCP complex and their association is vital for MLC 

dephosphorylation. The role of PP1 association with MYPT1 was described in previous 

section (see section: ‘Regulation of actomyosin crosslinking’). A structural insight into 

the regulation of PP1 by MYPT1 was gained through crystallisation of MYTP1 with 

PP1δ isoform (Figure 1.13) (Terrak et al., 2004). The most intriguing outcome of this 

study is the formation of extended catalytic cleft, which is specifically adapted to sense 

myosin as a substrate and is not compatible with other substrates. Moreover, the 

complex clearly shows multiple interaction sites of MYPT1 and PP1, with N-terminal 

part of MYPT1 tightly wrapping around PP1 (Figure 1.13). It is also shown that the 

overall charge of sequences surrounding the RVxF motif plays a role in PP1 binding 

and that weak interactions within the complex play important roles in modulating PP1 

activity (Terrak et al., 2004).  

 

The second group of actin-related PP1 regulators is the family of neurabins. 

They are large, membrane-associated proteins expressed at postsynaptic densities, 

growth cones and in the cytoplasm (Oliver et al., 2002; Sakisaka et al., 1999). There are 

two isoforms of neurabins in vertebrates, neurabin I and neurabin II (also called 
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spinophilin (Satoh et al., 1998)) and both of them contain an N-terminal F-actin binding 

domain. The middle part of neurabins contains a PP1-binding RVxF motif and a PDZ 

domain, which recruits the C-terminus of p70S6 kinase. Interestingly, the central 

domain of neurabins is selective towards PP1 isoforms and prefers the α-isoform to 

others. Furthermore, the central part of neurabins contains an oligomerisation domain, 

which enables them to homodimerise.  

 

Functionally, neurabins act as scaffolds for PP1 and other proteins at the 

synaptic cytoskeleton and enable them to regulate signals of neurotransmitters (Oliver 

et al., 2002). The link between regulation of synaptic plasticity and PP1 was previously 

shown (Malenka and Bear, 2004) (for review, see (Munton et al., 2004)). Recently, 

Both F-actin and PP1 binding was shown to be required for the regulation of synaptic 

transmission and hippocampal plasticity (Hu et al., 2006). PP1 inhibition coincides with 

long-term potentiation (LTP), a long-lasting enhancement of neurons enabling them to 

be stimulated simultaneously. LTP is a mechanism responsible for the ability of 

synapses to modulate their strength and is therefore considered vital during learning and 

memory (Bliss and Collingridge, 1993). The opposite mechanism, long-term depression 

(LTD), was consequently linked to PP1 activity (Malenka and Bear, 2004). Postsynaptic 

PP1 substrates include Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Strack 

et al., 1997), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

(Kameyama et al., 1998) and N-Methyl-D-aspartate (NMDA) receptors (Westphal et al., 

1999), all crucial for synaptic plasticity. It was established that the N-terminal F-actin 

binding domain of neurabins could modulate actin dynamics and stimulate growth of 

dendritic filopodia, which consist of actin-associated cytoskeletal proteins. Moreover, 

both PP1 and F-actin binding to neurabin is required for dendritic filopodia maturation 

and transition into dendritic spines (Terry-Lorenzo et al., 2005). 
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1.4 The Phactr family of G-actin binding PP1 cofactors 

 

The Phactr (Phosphatase and actin regulator) family of proteins is a recently 

discovered group of proteins, which like MRTFs and myocardin contain RPEL motifs 

and bind G-actin. However, whether Phactr protein function is regulated by G-actin has 

been unexplained until recently. Here, I will introduce Phactr protein family, discuss 

their domain organisation, reported functions and implication in human disease.  

 

1.4.1 Early studies of Phactr family 

 

Phactr family has four members: Phactr1, Phactr2, Phactr3 (also referred to as 

Scapinin) and Phactr4 (Figure 1.15). The founding family member, Phactr1, was 

discovered by the Greengard group in yeast-two-hybrid screen, which was designed to 

detect proteins interacting with the catalytic subunit of PP1α (Allen et al., 2004). 

Expression of the Phactr1 cDNA in mammalian cells revealed a protein with an 

apparent molecular weight of 75 kDa. By homology, three other members of the family 

were found. The examination of amino acid sequence revealed conserved RPEL motifs 

in the newly discovered proteins. Immunoprecipitation experiments with Phactr1 

confirmed that it binds both PP1 and actin (Allen et al., 2004).  
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Figure 1.15 Phosphatase and actin regulator family of proteins. 

Alignment of four Phactr family members form Mus musculus performed using Muscle 

Multiple Protein Sequence Alignment (Edgar, 2004) in Jalview software. 
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Another study of PP1 also led to the discovery of a member of Phactr family, 

Phactr3/Scapinin (Sagara et al., 2003). PP1α was previously shown to be associated 

with the nuclear matrix and nuclear lamina, structures implicated in the segregation of 

chromatin and regulation of other nuclear processes (Berezney and Coffey, 1975; Ma et 

al., 1999; Mirkovitch et al., 1984). To investigate novel proteins of the chromatin-

depleted nuclear structure (referred to as nuclear matrix intermediate filament scaffold, 

NM-IF) monoclonal antibodies against the HL-60 NM-IF were developed in mice 

leading to the discovery of Phactr3/Scapinin (scaffold-associated PP1 inhibiting 

protein) (Sagara et al., 2003). There are three Scapinin splice variants encoding proteins 

of 559 amino acids, 518 amino acids and 448 amino acids. Isoform 2 (518 amino acids), 

found by Sagara and colleagues was predominant in the human brain (Sagara et al., 

2009). Scapinin was reported to co-immunoprecipitate with PP1 and to bind PP1 in 

yeast two hybrid assays (Sagara et al., 2003).  

 

Finally, Favot and colleagues identified Phactr proteins by screening the 

ENSEMBL database in order to find novel genes containing RPEL motifs, referring to 

them as ‘RPELs’ (Favot et al., 2005). 

 

1.4.2 Phactr family domain organisation and reported interactions 

 

Phactr proteins contain several highly conserved regions (Figure 1.16). 

Conservation of Phactr family of proteins is high throughout species, with domain 

conservation ranging from Caenorhabditis elegans to Homo sapiens. Most vertebrates 

contain four Phactr proteins and in Caenorhabditis elegans and Drosophila 

melanogaster there is only one. There is no exact homolog of a Phactr family member 

in yeast Saccharomyces cerevisiae, but one report describes a protein called Bni4, 

which contains a region 32% identical to the C-terminal domain of Phactr proteins 

(around 70 amino acids) (Larson et al., 2008). This region in Bni7 is responsible for 

binding PP1 in yeast (Glc7). A protein called Afr1 was also reported, containing a 

similar Glc7-binding region (Bharucha et al., 2008). By similarity, Afr1 resembles the 

C-terminus of mammalian Phactr4.  
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The most conserved part within the family is the C-terminal region, which 

contains three RPEL motifs (Pfam 02755) separated by short spacers forming an RPEL 

domain (around 110 amino acids long), highly homological to the RPEL domain in the 

MRTFs and myocardin. The very C-terminal region contains a sequence of 55 highly 

conserved amino acids, shown to be required for PP1 binding (Wiezlak et al., 2012). 

The RPEL domain and the PP1-binding sites overlap. The N-terminal region of Phactr 

family is also conserved and contains a basic region and one unusual RPEL motif 

(RPEL-N) (Figure 1.16). In Phactr1-3 the N-terminal RPEL motif contains glutamine 

instead of proline within the consensus, and in Phactr4 this proline is substituted by a 

lysine. Located N-terminally to RPEL-N and RPEL3 in Phactr1 and are two Importin α-

β binding nuclear localisation signals (Wiezlak et al., 2012), also reported to be present 

at the C-terminus of Phactr4 (Huet et al., 2012). The middle region of Phactr proteins is 

not highly conserved and contains multiple prolines and glycines (Figure 1.15).  
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Figure 1.16 Conserved sequences in Phactr family of proteins 

Highly conserved Phactr family sequences from Mus musculus are shown as alignments 

(performed using Muscle Multiple Protein Sequence Alignment (Edgar, 2004) in Jalview 

software). Four RPEL motifs (red boxes) and two NLS sequences, B1 and B2 (grey boxes) and 

PP1 binding region (green box on the top and green line on the bottom) are schematically 

indicated. Localisation of potential RVxF-like motif is indicated on the right and reported 

interaction points of PP1 are shown (black stars). Note that sequences overlap.  
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Several reports describe interactions of the conserved regions in Phactr family 

with PP1, actin and other proteins. 

 

1.4.2.1 Interaction with PP1 

 

Early studies of Phactr proteins examined the PP1 binding property of their 

conserved C-terminal region. Allen and colleagues report the requirement of last ten 

amino acids from Phactr1 to efficiently co-immunoprecipitate with the α-isoform of 

PP1 catalytic subunit and alanine substitutions of the last five amino acids of Phactr1 

(576RFHRP580) suggest a role of F577 and H578 in PP1 binding (Allen et al., 2004). 

Studies of the brain-specific isoform of Phactr3/Scapinin showed loss of PP1 interaction 

in co-immunoprecipitation assay when F515 (equivalent of F577 in Phactr1) was 

substituted by an alanine (Sagara et al., 2009). Sagara and colleagues also showed that 

last 70 amino acids of Phactr3/Scapinin can inhibit the activity of PP1 as efficiently as a 

Inhibitor-2, but a peptide containing last 54 amino acids cannot. A construct containing 

the last 59 amino acids was also able to inhibit PP1 but to a lesser extent. We recently 

showed that the deletion of the whole RPEL domain also abolished the PP1 interaction 

(Wiezlak et al., 2012).  

 

Additionally, deletion of the last 10 amino acids from the C-terminus of 

Phactr3/Scapinin reduced PP1 inhibition activity towards phosphorylase a (Sagara et al., 

2003). Consistent with this finding, Allen and colleagues also reported inhibition of PP1 

activity towards phosphorylase a using full-length Phactr1 construct (Allen et al., 2004). 

In both of these studies, a established previously method for in vitro PP1 activity 

measurement was used (Shirato et al., 2000), but no in vivo activity of PP1 or its 

potential substrates were examined. In contrast, Huet and colleagues performed a 

colorimetric PP1 activity assay and showed that Phactr4 is a potent activator of PP1 

(Huet et al., 2012). These inconsistent results might reflect diverse functions of Phactr 

family members. 
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Additionally, it was shown that the mouse humdy mutant has a missense 

mutation within the PP1-binding conserved C-terminal region of Phactr4, substituting 

the conserved R650 (equivalent of R536 in Phactr1) with a proline, and is unable to 

bind PP1 in co-immunoprecipitation assays (Figure 1.15)(Kim et al., 2007).  

 

It was assumed that the PP1 binding consensus (R/K)x0-1(V/I)x(F/W) is not 

present in Phactr proteins. However, the analysis of the alignment between Bni4, a 

protein in yeast Saccharomyces cerevisiae containing PP1 binding site (~70 amino 

acids) that is similar to the one in the Phactr family, reveals a 828DQGVRF833 motif in 

Bni4 similar to 517KILIRF522 in Phactr1 (Larson et al., 2008) (Figure 1.16). Interestingly, 

the mutation of V831A F833A within this motif in Bni4 disrupts binding to Glc7 (yeast 

homolog of PP1). Moreover, the substitution of the Glc7 binding domain with the PP1 

binding domain from Phactr1 containing last 80 amino acids can functionally replace its 

function, which is targeting Glc7 and yeast chitin synthase III (CSIII) to the bud neck 

allowing it to act on a yet undefined substrate. Another yeast protein, Afr1, also 

contains similar sequence 543KKDVRF548 and similarly to Bni4, the mutation of V546A 

and F548A inhibit its binding to Glc7 (Bharucha et al., 2008). When Afr1 cannot bind 

Glc7, it is defective in regulating septin architecture during mating. Considering a huge 

variability of the KVxF motifs in PP1 binding proteins, it is probable that a similar 

motif is indeed present in Phactr family (by homology KILIRF in Phactr2, KILRF in 

Phactr3 and RILRF in Phactr4), but more mutational analysis in needed to address this 

issue (Figure 1.15).  

 

Taken together, those reports show that the C-terminal region in Phactr proteins 

is required for the interaction with PP1. The binding of PP1 seems to encompass 

multiple interaction points, which is consistent with the binding modes of many PP1 

regulatory subunits (Roy and Cyert, 2009). The function of PP1 binding to Phactr 

proteins is not clear, but some reports suggest a molecular role of this interaction (see 

section: ‘Proposed functions of Phactr proteins’).  
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1.4.2.2 Interaction with actin 

 

Allen and colleagues were the first to report an interaction between Phactr1 and 

actin. Yeast two-hybrid screen with a fragment of Phactr1 containing amino acids 161-

580 identified independent isolates of the cDNA encoding β-actin. Actin binding was 

abolished when a fragment containing last 80 amino acids of Phactr1 was used.  

Immunoprecipitation experiments from rat brain lysate also showed actin in complex 

with full length Phactr1 and with several Phactr1 C-terminal truncations, apart from 

Phactr1 1-490 (truncation of the last RPEL motif within the RPEL domain), where no 

actin binding was detected (Allen et al., 2004).  

 

Sagara and colleagues suggest that fragments containing GST-tagged RPEL1 

and RPEL2 (amino acids 350-422) or the whole RPEL domain (amino acids 350-468) 

of Phactr3/Scapinin bind actin in pull-down assays. In contrast, GST-tagged RPEL1 

(amino acids 350-385) or a RPEL domain containing a RP/AA mutation (Guettler et al., 

2008) within the second RPEL motif was unable to bind actin in pull-down assays. The 

authors also report severe degradation problems during the performance of their pull-

down assays, especially when using full length RPEL domain of Phactr3/Scapinin. Due 

to the degradation issues authors later used a construct containing RPEL1 and RPEL2 

(amino acids 350-422) and not the full length RPEL domain. They show that this 

fragment directly interacts with purified actin and inhibits actin polymerisation in 

ultracentrifugation experiments (Sagara et al., 2009). We recently showed by 

fluorescence polarization assays that all four RPEL motifs from Phactr1 interact directly 

with G-actin (Wiezlak et al., 2012).  

 

The actin binding ability of the full length RPEL domain was not tested until 

recently. We and Huet and colleagues respectively showed that Phactr1 and Phactr4 

bind G-actin directly through the C-terminal RPEL domain and that PP1 competes with 

actin for Phactr1 and Phactr4 binding (Huet et al., 2012; Wiezlak et al., 2012). We also 

showed by X-ray crystallography that the full length RPEL domain from Phactr1 

interacts with three G-actins and each RPEL motif interacts with one G-actin molecule. 

Our structural analysis shows that RPEL-N also interacts with G-actin (Mouilleron et al., 
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2012). Our study describes several similarities and differences between the Phactr1 and 

MRTF-A interactions with G-actin (details of these findings will be presented in 

section: ‘Structural analysis of Phactr1 interaction with actin’). 

 

1.4.3 Expression and tissue distribution  

 

Several reports suggest that members of Phactr family might be differentially 

expressed, showing high expression levels in neuronal tissues and cancer cell lines 

(Allen et al., 2004; Kim et al., 2012; Kim et al., 2007; Sagara et al., 2003; Solimini et al., 

2013). Additionally, Phactr1 was highly expressed in malignant melanomas (Koh et al., 

2009; Trufant, 2010; Wiezlak et al., 2012).  

 

Allen and colleagues performed Northern blot analysis to find location of 

Phactr1 cDNA. The transcript was most abundant in brain, but also present in heart, 

lung, kidney and testis (Allen et al., 2004). Small amounts were also reported in skeletal 

muscle, but Phactr1 cDNA was absent from spleen and liver. More detailed analysis of 

Phactr1 expression pattern within the brain revealed enhanced protein expression in 

cortex, hippocampus, olfactory tubercle and particularly striatum. Allen and colleagues 

also examined the expression of other Phactr family members in rat brain by in situ 

hybridisation. They picture the expression of Phactr1 and Phactr2 as complementary, 

with Phactr2 enhanced in cerebellum, choroid plexus and thalamus. Expression of 

Phactr3 was diffuse throughout the brain section and Phactr4 expression was reported in 

the hippocampus and cerebellum. 

 

Recent study of Phactr proteins expression pattern in the brain supports those 

observations (Kim et al., 2012). The mRNA expression patterns of Phactr family 

members were examined in developing, adult and injured mouse brains. Each member 

of the family was expressed in different brain regions. The mRNA level of Phactr2 was 

particularly high in regions associated with learning and memory and Phactr4 mRNA 

was enhanced in regions where neural stem cells and progenitors are localised. Authors 

also suggest that mRNA of Phactr1 and Phactr3 is mainly expressed in neurons and 
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Phactr2 and Phacr4 in astrocytes (Kim et al., 2012). Phactr4 is also highly expressed 

during the development of the neural tube and retina (Kim et al., 2007). Interestingly, 

Phactr4 RNA is expressed in a dynamic pattern during neurulation. Early in the 

development Phactr4 is expressed in the ventral region of the cranial tube and later its 

expression becomes uniform throughout the dorsal and ventral parts. Additionally, 

Phactr4 was recently shown as highly expressed in the enteric nervous system (Zhang et 

al., 2012).  

 

Recent report shows that Phactr4 gene is deleted in breast, colorectal, lung, 

neural, ovarian and renal cancer, with only 2.6% of all genes deleted as significantly as 

Phactr4. Furthermore, whole-genome and exome sequencing databases analysis from 

around 2500 solid tumours and found 11 loss-of-function and 16 missense mutations in 

Phactr4 (Solimini et al., 2013). Sagara and colleagues described Scapinin/Phactr3 

expression patterns in some tumour human cell lines and normal tissues (Sagara et al., 

2003). Northern blot analysis showed enhanced expression in the brain, in HL-60 

leukemia, U937 leukemia, and in GOTO neuroblastoma cells.  

 

Two independent studies found high expression levels of Phactr1 in malignant 

melanomas. Koh and colleagues employed gene expression microarray to increase the 

accuracy of discrimination between benign lesion and a malignant melanocytic tumour 

(Koh et al., 2009). Cells used in this study were isolated by microdissection from large 

numbers of formalin-fixed and paraffin-embedded tissues. This study found 14 genes, 

which were either significantly upregulated or downregulated in melanomas. Compared 

to nevi, melanoma had increased expression of Phactr1 and other, previously reported 

genes. A second study was based on immunohistochemical analysis of tissue arrays 

containing different malignant melanomas and nevi with several antibodies and markers 

of malignant melanoma. This work shows that Phactr1 staining is a highly sensitive tool 

in the clinical diagnosis of primary cutaneous melanoma (Trufant, 2010). We also show 

that Phactr1 is highly expressed in malignant melanoma cell line CHL-1 (Wiezlak et al., 

2012).  
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1.4.4 Subcellular localisation 

 

Analyses of reported Phactr family subcellular localisation suggest that they 

might be localised differentially depending on their expression level, the molecular tag 

they are linked to, cell type and isoform examined.  

 

In N2a neuroblastoma cells, HA-tagged Phactr1 was found in the cytoplasm, 

unlike its binding partner PP1α, which was enhanced in the cell nuclei (Allen et al., 

2004). Immunocytochemical analysis of brain sections showed endogenous Phactr1 

localisation in cell bodies and proximal dendrites, but not in nuclei. In cultured 

hippocampal neurons, GFP-tagged Phactr1 localised in cell bodies, dendrites and 

dendritic spines. Fractionation experiments suggested the enrichment of Phactr1 at 

postsynaptic densities (Allen et al., 2004). Immunohistochemical staining of paraffin-

embedded malignant melanoma tissues with Phactr1 antibody showed that it is 

predominantly cytoplasmic (Trufant, 2010).  

 

In proliferating HL-60 cells, endogenous Phactr3/Scapinin was reported in 

nuclei (Sagara et al., 2003), but in HeLa cells enhanced expression of exogenous 

Phactr3/Scapinin was reported in both the cytoplasm and nucleus with the enrichment at 

the cell edge (Sagara et al., 2009). Additionally, Phactr3/Scapinin did not translocate to 

the nucleus upon serum stimulation of HeLa cells. In Cos7 kidney carcinoma cells, 

GFP-tagged Phactr3/Scapinin was also localised throughout the cell with enrichment at 

the cell periphery (Sagara et al., 2009). Kim and colleagues report subcellular 

localisation of endogenous Phactr4 in the cytoplasm of neural tube cells in mouse 

embryos. However, the same study shows that in HeLa cells, Myc-tagged Phactr4 was 

found throughout the cell (Kim et al., 2007).  

 

Recent analysis shows that in starved NIH3T3 cells all GFP-tagged Phactr 

proteins are found in the cytoplasm (Huet et al., 2012). Phactr4 additionally exhibits 

enhanced localisation at the plasma membrane and the deletion of Phactr4 N-terminal 

region potentially triggers its nuclear accumulation (Huet et al., 2012). Huet and 

colleagues show that Phactr4 subcellular localisation is independent from G-actin 
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binding to the RPEL domain. Using FRAP assays they also showed that Phactr4 is 

imported to the nucleus in vivo and suggest that Phactr4 might actually shuttle between 

the plasma membrane and the nucleus. However, no mutational analysis showing the 

potential membrane localisation and/or nuclear localisation sites was performed. 

 

Our analysis of Phactr proteins shows that in serum starved NIH3T3 cells 

FLAG-tagged Phactr1 and Phactr2 are predominantly cytoplasmic and Phactr3 and 

Phactr4 are expressed throughout the cell. Phactr1 is the only member of the family that 

accumulates in the nucleus upon serum stimulation, both in fibroblasts and in melanoma 

cells (Wiezlak et al., 2012). Details of these findings will be presented in section: 

‘Molecular mechanisms of Phactr1 regulation’.   

 

1.4.5 Proposed functions of Phactr proteins 

 

Given that all Phactr proteins bind PP1, it is intriguing to understand whether 

they all perform the same biological function and what is the significance of the 

existence of four family members. Different functions of Phactr family members were 

suggested, but not many reports propose roles for Phactr proteins in in vivo models. 

First two reports suggest that they might have cytoskeletal roles due to their actin 

binding ability or could control neuronal functions due to their high expression levels in 

the neural tissues (Allen et al., 2004; Favot et al., 2005). One study suggests a role of 

Phactr1 in angiogenesis and few studies link Phactr3/Scapinin to neuroplasticity and 

actin dynamics (Allain et al., 2011; Farghaian et al., 2011; Jarray et al., 2011; Sagara et 

al., 2009; Sagara et al., 2003). Phactr4 is probably the best-studied member of the 

family as its function was examined in a mutant mouse model and linked to cell cycle 

regulation (Kim et al., 2007). Very recent report also suggests Phactr4 regulatory roles 

in cell cycle by revealing that Phactr4 is a tumour suppressor (Solimini et al., 2013). 

Two studies also link Phactr4 function to cofilin regulation, which have effects in actin 

pool maintenance and cell migration (Huet et al., 2012; Solimini et al., 2013). We 

uncover a role of Phactr1 in the regulation of actomyosin assembly (Wiezlak et al., 

2012). Below, I will review recent discoveries in Phactr family biology.  
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1.4.5.1 Neuroplasticity 

 

A recent study of Phactr3/Scapinin explored its roles in neural tissues using 

transient transfection with GFP-tagged Scapinin, to examine morphological changes of 

cultured neurons (Farghaian et al., 2011). The expression of Phactr3/Scapinin caused 

inhibition of axon elongation in neurons and this effect required actin binding, but not 

PP1 binding. This study showed that S277 phosphorylation is required for 

Phactr3/Scapinin inhibition of axon elongation and suggested that S277 

phosphorylation directs localisation of Phactr3/Scapinin from the axon to the cytoplasm. 

Because treatment of cells with Latrunculin A or Cytochalasin D had no effect on 

Scapinin localisation, authors also suggested that, unlike MRTFs, Scapinin localisation 

is independent from actin polymerisation. Farghaian and colleagues conclude that 

Scapinin might play a role in the regulation of neurite outgrowth and neuroplasticity. 

However, the relevance of this study is hard to assess as the phenotype might be caused 

by titrating G-actin through RPEL motifs in Phactr3/Scapinin.  

 

1.4.5.2 Cell cycle 

 

The function of only one Phactr family member, Phactr4 was studied in a mouse 

model (Kim et al., 2007). Kim and colleagues performed ethyl nitrosourea (ENU) 

mutagenesis screens for mutations in mice causing neural tube closure defects. Humdy 

(Phactr4 R650P) embryos were characterised by the failure to close the neural tube, 

exhibited exencephaly, shortened body axis, optic fissure defects and most died at 

embryonic day E14.5. Interestingly, humdy neural tube and retina cells displayed 

increased proliferation and decreased differentiation. Further analysis revealed, that the 

humdy mutation critically affects cell cycle exit and its overall length. 

 

Kim and colleagues propose that, due to PP1 binding defect, humdy mutation 

induces inhibitory phosphorylation of PP1 at T320 leading to hyper-phosphorylation of 

Rb, upregulation of E2F-dependent transcription and cell cycle progression (for details, 
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see section ‘Functions of PP1 regulatory subunits’). Indeed, one of the targets of E2F 

transcription factor, a protein called MCM2 was overexpressed in humdy mutants. To 

ultimately demonstrate that defects in humdy mutants are a result of increased E2F 

activity, the rescue of the humdy phenotype with the loss of E2F1 was shown. Thus, it 

was suggested that Phactr4 is involved in the control of cell cycle progression by 

regulating Rb and E2F1 function, but other targets of Phactr4-PP1 complex were not 

excluded. Surprisingly, it was recently shown that humdy enteric neural crest cells 

exhibit a perfectly well functioning cell cycle (Zhang et al., 2012), suggesting that their 

migratory defects are not related to the Rb-E2F1 pathway. This implies that disruption 

of cell cycle in the developing nervous system of humdy mouse (Kim et al., 2007) might 

not be directly related to Phactr4.  

 

Interestingly, a recent report also links Phactr4 function to cell cycle control 

(Solimini et al., 2013). Because cancer progression depends on a cell’s ability to 

continuously proliferate, authors employed genetic tools to identify suppressors of 

tumorigenesis and/or proliferation (STOP) genes, whose loss of function promotes cell 

proliferation and cancer development (Solimini et al., 2012). Solimini and colleagues 

analysed loss-of-function shRNA screens, which target the whole genome (Paddison et 

al., 2004; Schlabach et al., 2008; Silva et al., 2005) to find a set of uncharacterised 

tumour suppressors. They uncovered a tumour-suppressive role for Phactr4, as a STOP 

gene, with cell proliferation phenotypes linked to Phactr4 gene disruption. Interestingly, 

analysed tumours contained frameshift mutations at the N-terminus of Phactr4 resulting 

in the generation of short peptides. The ratio of nonsynonymous to synonymous 

mutations was significantly higher than that in the entire genome, showing that those 

mutations are functionally relevant to tumorigenesis. Phactr4 shRNA indeed increased 

proliferation in human mammary epithelial cells (HMECs). Cell cycle and tumorigenic 

phenotypes associated with Phactr4 deletion could be supressed by re-expression of 

wild-type protein. Because Phactr4 was previously shown to regulate the cell cycle 

through PP1-Rb-E2F pathway (Kim et al., 2007), Solimini and colleagues hypothesised 

that this pathway might be defective in Phactr4-depleted cells. Consistent with the 

findings of Kim and colleagues, Phactr4 depletion maintained Rb phosphorylation, 

while wild-type cells exhibited significant decrease of Rb phosphorylation. However, 
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HMECs express large T-antigen, which is a potent inhibitor of Rb, meaning that its 

activity in those cells is independent of Phactr4. Phactr4 must therefore interact with the 

cell cycle machinery using additional mechanisms.  

 

Nevertheless, Solimini and colleagues further characterised a role of Phactr4 in 

tumorigenesis. They subsequently showed that cancer cells in which Phactr4 is deleted 

are sensitive to Phactr4 complementation. The authors also determined if Phactr4 could 

act as a tumour suppressor in vivo. The injection of Phactr4-expressing breast cancer 

cells into the flanks of nude mice using a Doxycycline-inducible system showed 

significant decrease in tumour size upon Phactr4 expression.  

 

Although the mechanism of tumour suppression by Phactr4 must still be better 

explained, it is conceivable that it is linked to actin cytoskeleton regulation by Phactr4 

though G-actin binding. The anchorage-independent growth of Phactr4-depleted cells 

may suggest cytoskeletal rearrangements in these cells. Finally, Solimini and colleagues 

refrain to comment if other Phactr family members have roles in cell cycle, but genetic 

screen approach suggests that this function is specific to Phactr4.  

 

1.4.5.3 Actin dynamics 

 

1.4.5.3.1 Cell morphology and motility 

 

Recent study describing the regulation of angiogenesis, a process where new 

vessels are formed from the existing vasculature, identified Phactr1 as a potential 

Vascular Endothelial Growth Factor (VEGF)-dependent gene (Allain et al., 2011). 

VEGF is a cell-specific mitogen in vitro and a pro-angiogenic factor in vivo (Ferrara, 

2004; Senger et al., 1983). VEGF binds to specific receptors on the cell surface, called 

VEGFRs, which are transmembrane proteins containing receptor tyrosine kinase (RTK) 

domains. Additionally, VEGF can also bind other co-receptors, called neuropilins, 



Chapter 1 Introduction 

 114 

previously implicated in neuronal guidance (Harper and Bates, 2008) (for review, see 

(Neufeld et al., 2002)).  

 

To find new genes, which respond to VEGF165 stimulation, cross analysis of two 

suppression subtractive hybridizations (SSH) was performed (Rebrikov et al., 2004). 

One SSH was between cDNA libraries from human umbilical vein endothelial cells 

(HUVECs) and some non-endothelial cell lines (including tumour cells and 

lymphobasts) and the second SSH between VEGF165-stimulated and unstimulated 

HUVECs (Jarray et al., 2011). Phactr1 emerged as a new endothelial factor candidate, 

as significant upregulation of Phactr1 mRNA upon VEGF165  stimulation in endothelial 

cells was observed. To examine the role of Phactr1 in angiogenesis, the authors 

analysed the formation of new vessels in vitro upon Phactr1 depletion. Phactr1-silenced 

HUVECs failed to form tubular structures suggesting a role of Phactr1 in this process. 

The knock-down of both VEGF-R1 and neuropilin-1 inhibited the mRNA expression of 

Phactr1, highlighting the potential role of these two receptors in Phactr1 expression. To 

evaluate roles of PP1 and actin binding to Phactr1 in these processes (Allen et al., 2004), 

actin polymerisation assays and measurement of PP1 activity by colorimetric assay 

were performed. The depletion of Phactr1 interfered with VEGF165-induced actin 

polymerisation and significantly decreased the activity of PP1 in HUVECs. Moreover, 

the amount of actin filaments in Phactr1-depleted cells seemed to be reduced and the 

lamellipodium formation was disrupted. Allain and colleagues therefore suggest a role 

for Phactr1 in angiogenesis and propose that this function of Phactr1 is related to actin 

and PP1 binding capability (Allain et al., 2011). 

 

Because expression of Phactr3/Scapinin in Cos7 cells induced cell spreading and 

some morphological changes, the relevance of both PP1 and actin binding in the context 

of this phenotype were examined (Sagara et al., 2009). The disruption of PP1 binding to 

Phactr3/Scapinin induced cell rounding or shrinkage, but it did not promote cell 

spreading. Further deletion of actin binding sites together with PP1-interacting regions 

abolished all morphological changes in Cos7 cells. Abolishing actin-binding ability also 

reversed the phenotype completely. In HeLa cells, exogenously expressed 

Phactr3/Scapinin was shown to co-localise with F-actin at the cell edge. It was therefore 
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suggested that Phactr3/Scapinin might play roles in the regulation of actin dynamics, 

but the mechanism underling this process needs to be investigated. However, this study 

is reliant on phenotypes induced by overexpression of Phactr3/Scapinin, therefore 

effects linked to G-actin titration cannot be excluded.  

 

We recently showed that Phactr1 depletion in malignant melanoma cells leads to 

stress fibre and motility defects. Conversely, Phactr1 overexpression in NIH3T3 cells 

enhances actomyosin crosslinking and stress fibre assembly, a phenotype caused by 

Phactr1 binding to PP1 (Wiezlak et al., 2012)). We reveal a novel role of the Phactr1-

PP1 interaction in the regulation of actomyosin, cell motility and melanoma cell 

invasiveness (for details, see sections: ‘Molecular mechanisms of Phactr1 regulation’ 

and ‘Functional studies of Phactr1’).  

 

1.4.5.3.2 Cofilin regulation and maintenance of actin pool 

 

Recent report describes a role of Phactr4 in the genesis of Hirschsprung disease 

(HSCR) (Zhang et al., 2012). Gastrointestinal system has its own nervous system, called 

the enteric nervous system (ENS), which is composed of neural crest-derived neurons 

and glial cells (Heanue and Pachnis, 2007). Disruption of the ENS during development 

causes HSCR, a common congenital disorder. Many mutations of HSCR have been 

mapped, like defects in c-Ret gene encoding receptor tyrosine kinase (RET) or EdnrB 

encoding a ligand for RET (McCallion et al., 2003). One of the key mechanisms 

responsible for the accurate formation of the ENS during embryogenesis is the directed 

migration of neural crest cells to the gut (Druckenbrod and Epstein, 2005; Young et al., 

2004). To efficiently migrate to the ENS, enteric neural crest cells (ENCCs) must 

become polarised and form lamellipodial protrusions. 

 

Analysis of the previously described Phactr4 mutant humdy mouse embryos 

(Kim et al., 2007) revealed abnormal accumulation of the material in the gut, common 

for HSCR patients. Further analysis showed reduced number of ENCCs in the hindgut 

and their disorganisation. Because the differentiation of those cells was unaffected, cell 
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migration was investigated. Zhang and colleagues showed that Phactr4 is required for 

the directional migration of those cells. It is important to emphasise here that only the 

humdy mutant was analysed, and no phenotype resulting from the full knock-out of the 

gene is shown. Further analysis of the humdy ENCCs showed extensive defects in the 

migration along the gut and the regulation of cell directionality, suggesting the 

requirement of Phactr4 interaction with PP1 for proper regulation of these processes.  

 

The Humdy mutation seemed to affect the directionality and speed of mouse 

embryonic fibroblasts (MEFs) (Zhang et al., 2012). Moreover, the size and number of 

lamellipodia in these cells were also significantly decreased. The Humdy mutation did 

not affect Phactr4 subcellular localisation, as a humdy construct was concentrated at the 

tip of the lamellipodium, like in the cells transfected with wild-type Phactr4. Therefore, 

authors suggest that the humdy mutation does not affect actin binding ability of Phactr4, 

however no biochemical analysis was shown.  

 

Because humdy MEFs exhibited migratory defects and disrupted lamellipodia 

formation, a process regulated by Rho-GTPases and the activity of multiple actin 

binding proteins (Etienne-Manneville and Hall, 2002), Zhang and colleagues sought to 

analyse the activity of one of the most important cytoskeletal regulators, cofilin. They 

found that, indeed, the level of phosphorylated cofilin was increased in mutant MEFs in 

comparison with the wild-type cells. The inhibition of PP1 activity by okadaic acid also 

resulted in cofilin hyper-phosphorylation, which suggests that the Phactr4-PP1 complex 

might directly dephosphorylate cofilin. Phactr4 was also shown to co-localise with β1-

intergrin at the tips of the lamellipodia, and the phosphorylation of FAK was increased 

in the mutant MEFs, suggesting that Phactr4 might be a negative regulator of integrin 

signalling. Moreover, analysis with specific inhibitors showed that the increase in 

phospho-cofilin levels might be due to the activity of ROCK. To directly show that 

defects in integrin and cofilin signalling are caused by the disruption of Phactr4-PP1 

interaction, the humdy phenotype was rescued with integrin and ROCK inhibitors 

respectively. However, those inhibitors might also downregulate the basal level of 

phospho-cofilin, which complicates the interpretation. Zhang and colleagues suggest a 

role for Phactr4 in the control of directional migration of ENCCs through regulation of 
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integrin signalling and ROCK-cofilin pathway. How these observations relate to the 

studies of Phactr1 and Phactr3 remains unclear.  

 

Huet and colleagues examined the effect of Phactr4 expression on phospho-

cofilin (Huet et al., 2012). Consistent with previous results that the humdy mutation 

increases phospho-cofilin levels, expression of Phactr4 humdy in NIH3T3 cells 

increased phospho-cofilin level while wild-type Phactr4 expression resulted in 

decreased phospho-cofilin levels. This effect was abolished by addition of actin 

monomers in the context of wild-type Phactr4, but not when actin-binding-defective 

mutant of Phactr4 was expressed. In contrast, depletion of Phactr4 resulted in increased 

phospho-cofilin levels and the addition of actin monomers to Phactr4-depleted cells had 

no effect on cofilin phosphorylation. Additionally, the levels of G-actin in cells 

expressing Phactr4 or an actin-binding-defective mutant of Phactr4 were increased, 

suggesting that PP1 binding to Phactr4 affects cofilin phosphorylation. Okadaic acid 

was used to abolish this effect, suggesting that the increase of G-actin level was a result 

of PP1 activity. To show that G-actin levels in those cells are controlled by cofilin 

activity, cofilin was then depleted by siRNA and Phactr4 constructs failed to increase 

actin monomer levels upon this depletion. Lastly, Huet and colleagues showed by 

quantifying F-actin staining in NIH3T3 cells that expression of wild-type Phactr4 

decreases the F-actin signal, while the expression of the humdy mutant increases F-actin 

levels. Huet and colleagues conclude that Phactr4 responds to G-actin binding through 

RPEL domain to guide PP1 to dephosphorylate cofilin, a crucial actin disassembly 

factor. Therefore, Phactr4 might be involved in the maintenance of the G-actin pool in 

the cell.  

 

It is difficult to dissect the role of G-actin and PP1 binding in Phactr4 and Huet 

and colleagues attempt to address this issue by employing actin-binding-defective and 

PP1-binding-defective mutants of Phactr4. However, it is still unclear why the authors 

claim that exogenous expression of the humdy mutant in NIH3T3 cells affects cofilin 

levels. It is conceivable that the endogenous pool of PP1 will not be affected by the 

ectopic expression of the humdy mutant at all. One may hypothesise that this effect is 
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rather caused by the actin binding ability of the humdy mutant and not by the defective 

PP1 interaction. More biochemical analysis is required to better understand this issue.  

 

1.4.6 Implications in human disease  

 

Members of Phactr family were implicated in human diseases through genome-

wide association studies (GWAS) focused on analysing links between single-nucleotide 

polymorphisms (SNPs) and major disorders. Expression level studies and genetic 

models also suggest potential roles in human diseases. How these disorders relate to 

Phactr proteins biochemical and cellular functions in general remains unresolved. 

 

Several GWAS reports strongly associate the Phactr1 gene with myocardial 

infarction (Kathiresan et al., 2009; Patel et al., 2012). Other studies showed strong 

association of the Phactr1 gene and coronary artery disease and coronary artery 

calcification, an underlying cause of coronary artery disease (Hager et al., 2012; Lu et 

al., 2012; O'Donnell et al., 2011; Pechlivanis et al., 2013; Qi et al., 2011). These studies 

show the association of several SNPs in Phactr1 with myocardial infarction and related 

disorders, but Phactr1 function in this disease is not discussed. Two GWAS studies 

describe the association of Phactr2 with Parkinson’s disease (Maraganore et al., 2005; 

Wider et al., 2009). A recent GWAS study shows that the genetic locus of Phactr2 gene 

is associated with DNA repair capacity (DRC), linked to enhanced lung cancer risk 

(Wang et al., 2013).  

 

DNA fingerprinting analysis of genomic instability in 30 patients with non-small 

lung cancer suggest that Phactr3 and two other unrelated genes might play important 

roles in the genesis of this disease (Bankovic et al., 2010). Phactr3 was also identified 

as a novel hyper-methylated gene, showing significant increase in DNA methylation 

levels in advanced colorectal cancers (Bosch et al., 2012).  

 

Expression studies strongly implicate Phactr1 in melanoma progression (Koh et 

al., 2009; Trufant, 2010; Wiezlak et al., 2012). Expression studies of Phactr4 in mice 
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show that it could be involved in neural tube birth defects and in the genesis of 

Hirschprung disease (Kim et al., 2007; Zhang et al., 2012).  

 

1.5 Aims 

 

In this thesis I ask whether Phactr proteins are regulated by G-actin and how. To 

study a role of the RPEL motifs in Phactr proteins I compare their regulation to the 

previously established molecular mechanism of the MRTF’s nucleocytoplasmic 

shuttling. I also address a role of PP1 binding to Phactr1 and study a function of Phactr1 

in two systems: NIH3T3 fibroblasts and CHL-1 melanoma cells.  
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Chapter 2. Materials and Methods 

 

2.1 Chemicals and reagents  

 

Chemicals and reagents described in this chapter were obtained from Invitrogen, 

Sigma or Roche unless stated otherwise. The most commonly used chemicals are listed 

below. Subsequent sections contain descriptions of all method-specific reagents.  

 

Reagent Supplier 

4’,6’-diamidino-2-phenylindole (DAPI) Molecular Probes 

AEBSF Sigma 

Agarose Invitrogen 

Ampicillin Sigma 

Anti-Flag M1 agarose affinity gel Sigma 

Anti-HA-agarose Sigma 

ATP (disodium salt) Sigma 

Blebbistatin Sigma 

Bromophenol Blue BioRad 

BSA Sigma 

Chloramphenicol Boehringer Mannheim 

Complete protease inhibitor cocktail 

tablets 
Roche 
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Coomassie Brilliant Blue BioRad 

Cytochalasin D Calbiochem 

Dimethyl sulfoxide (DMSO) Fisher Scientific 

Dithiothreitol (DTT) Calbiochem 

DMEM Invitrogen 

Ethanol Sigma 

Ethidium Bromide Boehringer Mannheim 

FCS Invitrogen 

Fish skin gelatin Sigma 

Formaldehyde  Fisher Scientific 

Glutathione sepharose 4B GE Healthcare 

Isopropanol Sigma 

Isopropyl-β-D-thiogalactopyranoside 

(IPTG) 
MP Biomedicals 

Kanamycin Sigma 

Latrunculin B Calbiochem 

Leptomycin B Calbiochem  

LipofectamineTM2000 Invitrogen 

Methanol Sigma 

Milk powder Marvel 
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Nonidet P-40 Sigma 

Optimem  Invitrogen 

PMSF Sigma 

Protease inhibitors  Roche 

PROTRAN transfer membranes  Whatman 

RPMI Invitrogen 

Triton X-100  Sigma 

Trizma-base Sigma 

Tween 20  Sigma 

Xylene cyanol Biorad 

Y-27632 Sigma 

Y27632 Calbiochem 

β-mercaptoethanol Sigma 

 

Table 2.1 General chemicals and reagents.  

 

2.2 General buffers and solutions 

 

The most commonly used buffers are listed below. Specific buffers are described 

in the relevant chapters. Deionised Milli-Q water was used to prepare all buffers. Where 

necessary, vacuum-driven filtration system was used (0.2 µm sterile-filter from 

Milipore). 
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Phosphate Buffered Saline A (PBSA) 

137 mM NaCl 

2.7 mM KCl 

10 mM Na2HPO4 

1.8 mM KH2PO4 pH 7.4 

 

Tris-Buffered Saline (TBS) 

50 mM Tris-HCl pH 7.5 

150 mM NaCl 

 

Tris/Borate/EDTA (TBE) 

80 mM Tris base 

89 mM Boric acid 

2 mM EDTA 

 

Luria-Bertani (LB) medium 

1% w/v Bacto-tryptone 

0.5% w/v Bacto-yeast extract 

1% w/v NaCl 

 

SOC medium 

2% w/v Bacto-tryptone 

0.5% w/v Bacto-yeast extract 

10 mM NaCl 

2.5 mM KCl 

10 mM MgCl2 

20 mM glucose 
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Mowiol 

6 ml glycerol 

2.4 g Mowiol (Calbiochem) 

12 ml Tris-HCl pH 8.5 

add 6 ml water and mix at 50°C, 0.45 µm filter 

add 2.5 w/v 1,2-diazabucyclo-[2.2.2]octane (Dabco, Sigma) and store at -20°C 

 

2.3 Molecular cloning 

 

2.3.1 Bacterial techniques 

 

2.3.1.1 Strains of bacteria 

 

For all cloning One Shot Top10 E.coli chemically competent cells were used 

(genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 

Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG; Invitrogen). For protein 

expression BL 21 (genotype: F- ompT hsdSB(rB – mB-) gal dcm (DE3); Invitrogen) or 

Rosetta (genotype: F- ompT hsdSB(rB – mB-) gal dcm (DE3) pLysSRARE2 (CamR); 

Novagen) strains were used.  

 

2.3.1.2 Electrocompetent cells 

 

For the preparation of electrocompetent bacterial strains, relevant cells were 

plated on LB agar (LB medium supplemented with 1.5% w/v Bacto-agar) without 

antibiotics and cultured overnight. On the next day, a single colony was transferred to 

50 ml LB and cultured overnight at 37°C and 190 rpm. Subsequently, 10 ml of pre-

culture was used to inoculate 1 litre of LB medium and incubated at 37°C and 190 rpm 
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until OD reached 0.6. The culture was then spun down at 3000 x g for 15 min at 4°C. 

After spinning, the pellet was resuspended in 1 litre of ice-cold 10% glycerol. The wash 

was repeated several times, until the volume was reduced to 0.5 litre, 250 ml, 100 ml.  

Finally, bacteria were resuspended in 2 ml of 10% glycerol, aliquoted, frozen on dry ice 

and stored at -80°C until use was necessary.  

 

2.3.1.3 Transformation of competent cells 

 

The transformation of competent bacteria was initiated either through heat shock 

of electroporation. Transformation by heat shock was performed on chemically 

competent Top10 cells. 50 µl of Top 10 cells was thawed on ice and incubated with 

relevant plasmid DNA for 10 minutes. Subsequently, the mix was transferred to a 

thermoblock, which was heated up to 42°C for 40 seconds. The mix was then incubated 

on ice for 2 minutes. If the transformation of competent cells with a plasmid encoding 

ampicillin resistance was performed, bacteria were directly plated on LB agar 

supplemented with the antibiotic (100 µg/ml). If plasmid contained kanamycin 

resistance, bacteria were incubated with 500 µl of SOC medium without the antibiotic 

for 1 hour before plating on LB agar supplemented with kanamycin (30 µg/ml).  

 

Transformation by electroporation was performed using 50 µl of 

electrocompetent bacteria. Cells were firstly thawed on ice and then incubated with the 

relevant plasmid DNA for 10 minutes. In order to deliver the electric pulse, the mix was 

transferred to an electroporation cuvette (0.2 cm gap, Geneflow) and subjected to 

BioRad Gene pulser, which generated 2.5 kV, capacitance 25 µF and resistance 200 Ω. 

The bacterial solution was then mixed and cells were seeded on plates. If the 

transformation of competent cells with a plasmid encoding ampicillin resistance was 

performed, bacteria were directly plated on LB agar supplemented with the antibiotic 

(100 µg/ml). If plasmid contained kanamycin resistance, bacteria were incubated with 

500 µl of SOC medium without the antibiotic for 1 hour before plating on LB agar 

supplemented with kanamycin (30 µg/ml).  
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2.3.2 Expression vectors 

 

2.3.2.1 Protein expression in mammalian cells 

 

All Phactr1, Phactr2, Phactr3 and Phactr4 constructs used in the mammalian cell 

culture were cloned into pEF-Flag, a plasmid derived from previously described 

EF.plink vector (Hill and Treisman, 1995); produces an N-terminal FLAG epitope.  

 

Phactr1 cDNA sequence encodes protein of 580 aa, ‘phosphatase and actin 

regulator 1, isoform 4’ from Mus musculus, NCBI accession number AAY42814.1. 

This transcript variant encodes an isoform, which differs from the longest transcript 

variant encoding protein of 649 aa (‘phosphatase and actin regulator 1, isoform 1’ from 

Mus musculus, NCBI accession number NP_940811.2) by the deletion of aa 222-290 

within the non-conserved proline-rich region of the protein. Of all Phactr1 isoforms, 

isoform 4 from Mus musculus is the most similar to the longest Phactr1 isoform from 

Homo sapiens (97.59% similarity). Phactr2 cDNA sequence encodes protein of 626 aa, 

‘phosphatase and actin regulator 2, isoform A’ from Mus musculus, NCBI accession 

number NP_001181994.1. Phactr3 cDNA sequence encodes protein of 558 aa, 

‘phosphatase and actin regulator 3, isoform 1’ from Mus musculus, NCBI accession 

number NP_083082.1. Phactr4 cDNA sequence encodes protein of 694 aa, 

‘phosphatase and actin regulator 4, isoform 1’ from Mus musculus, NCBI accession 

number NP_780515.2. Phactr2, 3 and 4 transcript variants encode their longest isoforms. 

 

To insert Phactr1 cDNA BamHI and SpeI sites were used. To insert Phactr2 

cDNA EcoRI and SpeI sites were used. Phactr3 and Phactr4 cDNA were inserted  using 

BamHI and XbaI sites. Relevant cDNA was obtained by PCR with the use of specific 

primers, described in the sections below.  

 

PP1cα cDNA was inserted into the pEF-HA vector, derived form previously 

described EF.plink plasmid (Hill et al., 1995) using sites BamHI and XbaI. Mammalian 
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expression plasmids for C3 transferase, wild-type actin and R62D actin were previously 

described (Miralles et al., 2003; Posern et al., 2002). The MLC-GFP plasmid obtained 

from Eric Sahai was previously described (Wyckoff et al., 2006). MRTF-A plasmid was 

described previously (Miralles et al., 2003).  

 

2.3.2.2 Protein expression in bacteria 

 

Phactr1 constructs were expressed in pGEX-6P-2, a bacterial expression vector 

designed for expressing N-terminally tagged, GST-fusion proteins, containing a 

PreScission protease site (GE Healthcare). Phactr1 cDNA sequences were inserted 

between EcoRI and XhoI sites. PP1cα was expressed from a previously described 

plasmid containing an N-terminal His-tag (Kelker et al., 2009) (Addgene). Plasmids 

containing GST-tagged Importinα and Importinβ were previously described (Pawlowski 

et al., 2010). 

 

2.3.3 Purification of plasmid DNA 

 

LB medium (5 ml for a miniprep and 100 ml for a maxiprep) was inoculated 

with a single bacterial colony grown on an LB agar plate with the relevant antibiotic. 

The culture was grown overnight at 37°C, shaking with 190 rpm. The isolation of the 

DNA was performed by the CRUK Equipment Park service (minipreps) or using 

Plasmid Maxi Kit (Qiagen, maxipereps) according to the manufacturer’s instructions. 

To calculate DNA quantity, a ND-1000 UV/Vis spectrophotometer was used 

(NanoDrop Technologies) to read DNA absorption at 260 nm. Plasmid DNA was 

dissolved in deionised Milli-Q water, and stored at -20°C. 
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2.3.4 Polymerase chain reaction 

 

To amplify DNA, standard polymerase chain reaction (PCR) was implemented. 

Each PCR reaction was performed using appropriate primers, described below. PCR 

was carried out using KOD Hot Start Polymerase kit (Novagen) using a specific 

program (see below). 

 

Reaction components 

10 ng DNA 

1.5 µl forward primer (0.3 mM) 

1.5 µl reverse primer (0.3 mM) 

5 µl 10x PCR buffer 

5 µl 25 mM MgSO4 

6 µl dNTPs (2mM) 

1 µl KOD polymerase 

add water up to 50 µl  

 

PCR program cycles 

1. 95°C for 2 minutes 

2. 95°C for 30 seconds 

3. 50 - 55°C for 30 seconds 

4. 68°C for 0.5-3 minutes, back to step 2., repeat 35 times 

5. 68°C for 10 minutes 

6. 4°C pause 
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2.3.5 Site directed mutagenesis 

 

2.3.5.1 Substitutions of amino acids 

 

To substitute single or clusters of amino acids, a ‘quick change’ technique was 

implemented. Primers were designed to contain the relevant mutation in the middle, if 

possible (see below). Total length of primers was 33-37 bp, where at least 13-17 bp 

were not modified to achieve efficient annealing. PCR was carried out using the 

PfuTurbo DNA polymerase (Agilent Technologies). The reaction components and PCR 

program used for amino acid substitutions is described below. After the PCR reaction 1 

µl of DpnI restriction enzyme was added to the mix in order to digest the methylated 

DNA template and incubated for 2 hours at 37°C. Subsequently, the DNA was 

precipitated by the addition of 1.25 µl 0.5 M EDTA, 5 µl 3M NaOAc pH 5.2 and 125 µl 

96% ethanol. The precipitated DNA was pelleted by centrifugation at 13 000 x g at 4°C 

for 20 minutes and washed with 175 µl of 70% ethanol, before final centrifugation. The 

pellet was then dried at 37°C for 20 minutes and re-suspended in 10 µl of deionised 

Milli-Q water. Before transformation, the DNA solution was chilled on ice for 2 

minutes and 5 µl of the mix were added onto competent bacteria. The transformation 

was carried out as described above and the following day single colonies were 

harvested for sequence analysis.  

 

Reaction components – amino acid substitutions 

10 ng DNA 

1.5 µl forward primer (0.3 mM) 

1.5 µl reverse primer (0.3 mM) 

5 µl 10x PfuTurbo buffer 

6 µl dNTPs (2mM) 

1 µl PfuTurbo polymerase 

add water up to 50 µl 
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PCR program cycles – amino acid substitutions 

1. 95°C for 30 seconds 

2. 95°C for 30 seconds 

3. 50 - 55°C for 1 minute 

4. 68°C for 6 minutes, back to step 2., repeat 17 times 

5. 68°C for 7 minutes 

6. 4°C pause 

 

Mutation Primers 

 

Plasmid pEF-FLAG-Phactr1 

 

Nx: R147A 
Forward: aggaagatttcgatgGCgcagagcagagaggag 

Reverse: ctcctctctgctctgcGCcatcgaaatcttcct 

x23: R431A 
Forward: catcaaactcagcaacGCGccctctaagcgagagc 

Reverse: gctctcgcttagagggCGCgttgctgagtttgatg 

1x3: R469A 
Forward: caggcggctgagccagGCAccaactgcagaggaac 

Reverse: gttcctctgcagttggTGCctggctcagccgcctg 

12x: R507A 
Forward: tcgcaagctcagccaaGCGcccacagtggaagaac 

Reverse: gttcttccactgtgggCGCttggctgagcttgcga 

R3A:  

RRR 108-110 AAA 

Forward: caccccgcccatcGCgGCgGCgagtaagtttgcc 

Reverse: ggcaaacttactcGCcGCcGCgatgggcggggtg 

K3A:  

KKK 127-129 AAA 

Forward: cctggaaatggaggGCgGCgGCaagtgaaaagttcaa 

Reverse: ttgaacttttcacttGCcGCcGCcctccatttccagg 

KRE/3A:  

KRE 493-495 AAA 

(Cloned by J. Diring) 

Forward: gaagaacaggaggagGCgGCgGCaatcaagaggaggc 

Reverse: gcctcctcttgattGCcGCcGCctcctcctgttcttc 
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KRR/3A:  

KRR 497-499AAA 

(Cloned by J. Diring) 

Forward: gagaagcgggaaatcGCgGCgGCgctgactcgcaagc 

Reverse: gcttgcgagtcagcGCcGCcGCgatttcccgcttctc 

M146A 
Forward: gaaaggaagatttcgaGCaggcagagcagagagga 

Reverse: tcctctctgctctgcctGCtcgaaatcttcctttc 

E152A 
Forward: ggcagagcagagaggCgctgatcaagagaggggtc 

Reverse: gacccctctcttgatcagcGcctctctgctctgcc 

R156A 
Forward: agaggagctgatcaagGCaggggtcttgaaggaga 

Reverse: tctccttcaagacccctGCcttgatcagctcctct 

G157N 
Forward: ggagctgatcaagagaAACgtcttgaaggagatct 

Reverse: agatctccttcaagacGTTtctcttgatcagctcc 

G157H 
Forward: ggagctgatcaagagaCACgtcttgaaggagatct 

Reverse: agatctccttcaagacGTGtctcttgatcagctcc 

 

Plasmid pGEX-6P-2  

 

Phactr1 (414-528) 

R431A 

Forward: catcaaactcagcaacGCGccctctaagcgagagc 

Reverse: gctctcgcttagagggCGCgttgctgagtttgatg 

Phactr1 (414-528) 

R469A 

Forward: caggcggctgagccagGCAccaactgcagaggaac 

Reverse: gttcctctgcagttggTGCctggctcagccgcctg 

Phactr1 (414-528) 

R507A 

Forward: tcgcaagctcagccaaGCGcccacagtggaagaac 

Reverse: gttcttccactgtgggCGCttggctgagcttgcga 

Phactr1 (414-528) 

E436A/K440A 

Forward: ctctaagcgagCgctagaagaaGCgaacatcctcc 

Reverse: ggaggatgttcGCttcttctagcGctcgcttagag 
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Phactr1 (414-528) 

E474A/R478A 

Forward: caactgcagaggCactggaacagGCgaacattttgaa 

Reverse: ttcaaaatgttcGCctgttccagtGcctctgcagttg 

Phactr1 N171 (1-171) 

stop codon introduced  

(Cloned by J. Diring) 

Forward: gagaactctctatatGaTaatgaagatgactcc 

Reverse: ggagtcatcttcattAtCatatagagagttctc 

 

Table 2.2 Site-directed mutagenesis – primers designed for amino acid substitutions. 

 

2.3.5.2 Deletions of DNA fragments 

 

In order to delete desired fragments of DNA from plasmids, we used Phusion 

Hot Start high fidelity DNA polymerase (Finnzymes). 21 bp-long primers engineered 

for DNA deletions were 5’-phosphorylated and flanked the deletion (sequences are 

listed below). The PCR reaction components and PCR reaction cycles are summarised 

below. After the PCR reaction 1 µl of DpnI restriction enzyme was added to the mix in 

order to digest the methylated DNA template and incubated for 2 hours at 37°C. 

Subsequently, 5µl of the digestion reaction was mixed with Quick Ligation buffer and 

0.5 µl of Quick T4 DNA ligase (New England Biolabs). The ligation reaction was 

carried out at room temperature for 20 minutes. Before transformation, the ligation mix 

was chilled on ice for 2 minutes and 5 µl of the mix were added onto competent bacteria. 

The transformation was carried out as described above and the following day single 

colonies were harvested for sequence analysis. 
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Reaction components – DNA fragment deletions 

10 ng DNA 

2.5 µl forward primer (0.3 mM) 

2.5 µl reverse primer (0.3 mM) 

10 µl 5x Phusion Hot Start buffer 

1 µl dNTPs (2 mM) 

0.5 µl Phusion Hot Start polymerase 

add water up to 50 µl 

 

PCR program cycles – DNA fragment deletions 

1. 95°C for 30 seconds 

2. 95°C for 15 seconds 

3. 55°C for 30 seconds 

4. 72°C for 4 minutes, back to step 2., repeat 25 times 

5. 72°C for 5 minutes 

6. 4°C pause 

 

Deletion Primers 

 

Plasmid pEF-FLAG-Phactr1 

 

ΔN: Δ139-159 
Forward: tgctgacgtgtgcttgaactt 

Reverse: aaggagatctacgataaagat 

Δm: Δ171-413 
Forward: ctggccatgaaggtgtgcagg 

Reverse: agagagttctccatctttatc 

ΔRPEL123: Δ414-522 
Forward: agtgactacgtggaagtggca 

Reverse: tgagctggtgtacaaagaggc 
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ΔC: Δ529-580 
Forward: taaactagtctagaaattcac 

Reverse: cacttccacgtagtcactgaa 

ΔB1: Δ108-129 
Forward: agtgaaaagttcaagcacacg 

Reverse: gatgggcggggtgtgcgtacc 

 

Plasmid pGEX-6P-2 –Phactr1 

 

Phactr1 392C (Δ2-392) 
Forward: ggccgggaggaggaggaagag 

Reverse: catggatcccaggggcccctg 

 

Table 2.3 Site-directed mutagenesis – primers designed for DNA fragments deletions. 

 

2.3.5.3 Insertions of DNA fragments 

 

Standard molecular cloning techniques were used for inserting DNA fragments 

into desired vectors. Fragments were firstly amplified using a PCR program described 

in the section “Polymerase chain reaction”. Digestion with relevant restriction enzymes 

was performed according to the manufacturers instructions (New England Biolabs). To 

prevent re-ligation of vectors by removal of 5’ phosphate groups, calf intestinal 

phosphatase (CIP, NEB) was included to reaction mix. Subsequently, DNA was 

separated with agarose gel electrophoresis and purified with MinElute PCR Purification 

Kit or MinElute Gel Extraction Kit (Qiagen). Ligation of DNA fragments was 

performed using T4 DNA ligase (New England Biolabs) according to the 

manufacturer’s instructions at 16°C overnight. Before transformation, the ligation mix 

was chilled on ice for 2 minutes and 5 µl of the mix were added onto competent bacteria. 

The transformation was carried out as described above and the following day single 

colonies were harvested for sequence analysis. 
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Construct description Primers 

 

pEF-FLAG constructs  

 

Phactr1 (1-580) cloned 

with BamHI and SpeI 

Forward: gcgGGATCCatggattatcccaaaatggat 

Reverse: gcgACTAGTttaaggtcgatgaaacctggt 

Phactr2 (1-626) cloned 

with  EcoRI and SpeI 

Forward: gctaGAATTCatgggccagacctcggtgtcc 

Reverse: gctaACTAGTttatggacgatgaaaccttgt 

Phactr3 (1-558) cloned 

with BamHI and XbaI 

Forward: gctaGGATCCatggccgcatccgaggacggc 

Reverse: gctaTCTAGActatggcctgtggaatcttgt 

Phactr4 (1-694) cloned 

with BamHI and XbaI 

Forward: gctaGGATCCatggaagacccatcggaagaa 

Reverse: gctaTCTAGAtcatgggcgatggtagcgtgt 

 

pEF-HA construct 

 

PP1cα cloned with BamHI 

and XbaI 

Forward: ggccGGATCCgacagcgagaagctcaac 

Reverse: ggccTCTAGActatttcttggctttggcaga 

 

pGEX-6P-2 construct  

 

Phactr1 (414-528) cloned 

with BamHI and XhoI  

Forward: tatGGATCCctggccatgaaggtgtgcagg 

Reverse: tatCTCGAGttacacttccacgtagtcactgaa 

 

Table 2.4 Primers designed through standard DNA insertions. 
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2.3.5.4 Sequences generated through consecutive cloning steps 

 

Some sequences were obtained through multiplication of the techniques 

described above or through their combination.  All constructs derived this way (listed 

below) were always sequenced before introducing a new substitution of deletion.  

 

Construct 

description 
Obtained through consecutive substitutions or/and deletions 

pEF-FLAG-Phactr1 constructs  

xxx R431A, R469A, R507A 

x2x R431A, R507A 

xx3 R431A, R469A  

1xx R469A, R507A 

xx23 R147A*, R431A  

x1x3 R147A*, R469A  

x12x R147A*, R507A 

xxxΔC R431A, R469A, R507A, Δ529-580 

R3A,K3A RRR 108-110 AAA, KKK 127-129 AAA 

xxx K3A R431A, R469A, R507A, KKK127-129AAA 
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xxx K3A KRE/3A R431A, R469A, R507A, KKK127-129AAA, KRE493-495AAA 

pGEX-6P-2 Phactr1 constructs 

E436A/K440A, 

E474A/R478A 

Substitutions: E436A/K440A, E474A/R478A in pGEX-6P-2 

Phactr1(414-528) 

E436A/K440A, 

E474A/R478A 

R469A 

Substitutions: E436A/K440A, E474A/R478A, R469A in pGEX-

6P-2 Phactr1(414-528) 

 

Table 2.5 Mutants generated through consecutive cloning steps. 

(*) Substitution performed by J. Diring. 

 

2.3.5.5 Generation of chimeric constructs 

 

In order to generate ‘MRTF-A-Phactr1 RPEL domain’ construct, I combined 

standard cloning methods and overlap extension technique (Bryksin and Matsumura, 

2010). This technique allows cloning an insert of choice into a destination of choice 

without restriction endonucleases or DNA ligase. Overlap extension involves the design 

of chimeric primers containing the destination sequence at the 5’ ends and the insert 

sequence at the 3’ends. To substitute the RPEL domain from MRTF-A into the RPEL 

domain from Phactr1 I generated a chimeric fragment using overlap extension 

technique and inserted it into pEF-HA-MRTF-A plasmid with BamHI sites (using one 

internal BamHI site in MRTF-A cDNA sequence at position 777bp). To obtain chimeric 

fragment, six consecutive PCR reactions were performed, using standard PCR program 

described in section ‘Polymerase chain reaction’. Cloning steps are summarised in a 

table below.  
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PCR Primer sequence and reaction description 

I. 

PCR using pEF - MRTF-A as a template 

 

                      BamHI 

Forward tatggatccCCCCCTTCCGTCATTGCTGTG 

Reverse CCTGCACACCTTCATGGCCAG ATTGGGGTTCCTCCCAGGATG 

                          Phactr1RPEL                                   MRTF-A (2-63) 

 

Generates fragment of 207bp including 21 bp extension (MRTF-A 2-62) 

II. 

PCR using pEF - Phactr1 as a template 

 

                          MRTF-A (2-63)                                 Phactr1RPEL 

Forward CATCCTGGGAGGAACCCCAAT CTGGCCATGAAGGTGTGCAGG 

Reverse ATTTACCTGGCCCACAATGAT CACTTCCACGTAGTCACTGAA 

                          MRTF-A (191-260)                           Phactr1RPEL 

 

Generates fragment of 387 bp including 2x21 bp extension (Phactr1 RPEL 

domain) 

III. 

PCR using pEF - MRTF-A as a template 

 

                          Phactr1RPEL                                 MRTF-A (191-260) 

Forward TTCAGTGACTACGTGGAAGTG ATCATTGTGGGCCAGGTAAAT 

Reverse CTCTCCAggatccGGAGCCATTGGGAG 

                                 BamHI 

 

Generates fragment of 231 bp including 21 bp extension (MRTF-A 191-260) 

IV. 

PCR using products of PCR I and II as a template 

 

                      BamHI 

Forward tatggatccCCCCCTTCCGTCATTGCTGTG 

Reverse ATTTACCTGGCCCACAATGAT CACTTCCACGTAGTCACTGAA 

                          MRTF-A (191-260)                               Phactr1RPEL 

 

Generates intermediate fragment of 552 bp  
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V. 

PCR using products of PCR II and III as a template 

 

                          MRTF-A (2-63)                                     Phactr1RPEL 

Forward CATCCTGGGAGGAACCCCAAT CTGGCCATGAAGGTGTGCAGG 

Reverse CTCTCCAggatccGGAGCCATTGGGAG 

                                 BamHI 

 

Generates intermediate fragment of 576 bp 

VI. 

PCR using products of PCR IV and V as a template 

 

                      BamHI 

Forward tatggatccCCCCCTTCCGTCATTGCTGTG 

Reverse CTCTCCAggatccGGAGCCATTGGGAG 

                                 BamHI 

 

Generates final chimeric fragment of 741 bp  

 

Table 2.6 Generation of chimeric fragment for ‘MRTF-A-Phactr1 RPEL domain’ cloning.  

 

 In order to generate ‘MRTF-A-RPEL 3-Phactr1’ construct, I used ‘quick-change’ 

technique using primers listed below. Magaprimer generated in Step I was used to 

replace DNA sequence encoding RPEL3 in MRTF-A into DNA sequence encoding 

RPEL3 from Phactr1.  
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PCR Primer sequence and reaction description 

Megaprimer generation 

(Step I) 

Reaction components  

2 µl forward primer (10 mM) 

2 µl reverse primer (10 mM) 

 

Forward 

AAGAGAGCCAGGCTGGCTagaagacttacccgtaagctcagc

caacgtcccacagttgaa  

Reverse 

CAGGCTGGACTCCACAGGtaagatcttcctctcccggagttc

ttcaactgtgggacgttggct 

 

PCR program cycles  

1. 95°C for 60 seconds (denaturation) 

2. 60°C for 60 seconds (annealing) 

3. 72°C for 30 seconds (extension) 

 

MRTF-A-RPEL 3-

Phactr1 chimera 

generation (Step II) 

Standard PCR using pEF - MRTF-A as a template and 

megaprimer generated in step I followed by a Dpn1 digestion 

(for chimeric sequence see Figure 7.3). 

 

 

Table 2.7 Generation of ‘MRTF-A- RPEL3-Phactr1 chimera. 

 

2.3.6 DNA Sequencing 

 

All constructs generated in the presented above sections were confirmed by 

DNA sequencing.  20 µl or sequencing reactions contained 150-200 ng of plasmid DNA, 

3.2 pmol of the relevant sequencing primer, 8 µl of dirhodamine BigDye Terminator 

mix (BDT v3.1, Applied Biosystems) and deionised Milli-Q water. The PCR program 

cycles are described below. Subsequently, the DNA was precipitated by the addition of 

1.25 µl 0.5 M EDTA, 5 µl 3M NaOAc pH 5.2 and 125 µl 96% ethanol. The precipitated 

DNA was pelleted by centrifugation at 13 000 x g at 4°C for 20 minutes and washed 
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with 175 µl of 70% ethanol before final centrifugation. The pellet was then dried at 

37°C for 20 minutes and resuspended in deionised Milli-Q water. The sequences were 

analysed by sequencing service in Cancer Research UK Equipment Park.  

 

PCR program cycles – DNA sequencing 

1. 96°C for 5 minutes 

2. 96°C for 30 seconds 

3. 50°C for 15 seconds 

4. 72°C for 4 minutes, back to phase 2., repeat 25 times 

5. 4°C pause 

 

2.3.7 Agarose gel electrophoresis 

 

Where necessary, DNA fragments were separated by electrophoresis for analysis 

or purification purposes. Agarose gel was prepared with 1-2% w/v agarose in TBE 

buffer. The solution was heated up until agarose dissolved completely. Subsequently, 

ethidium bromide was added to the solution (0.5 µg/ml). Loading buffer (30% glycerol, 

0.25% bromophenol blue, 0.25% xylene cyanol FF) was added to the DNA samples 

before loading onto the gel. Agarose gels were run in TBE buffer at 100V until the 

desired separation of DNA fragments was obtained. For separation analysis, 100bp or 

1kb DNA ladders (New England Biolabs) were used. DNA was visualised with a UV 

transilluminator.  

 

2.4 Oligonucleotides 

 

Sigma Genosys performed synthesis of primers listed in the sections above. 

Lyophilised oligonucleotides were dissolved in deionised Milli-Q water. The final 

concentration of oligonucleotides was adjusted to 100 µM and they were stored at -20°C.  
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Depletion of Phactr1 was performed using Phactr1 siRNA ON-TARGETplus 

SMARTpool purchased from Dharmacon (sequences blow). siRNA was dissolved in 

siRNA buffer (Dharmacon) to final concentration of 75 µM. Depletion was performed 

with 20nM siRNA. Depletion of Importin β was performed using Importin β siRNA 

ON-TARGET SMARTpool (Dharmcon). For negative controls, AllStars siRNA was 

used (Qiagen).  

 

Gene Target siRNA sequence Cat No. (Dharmacon) 

PHACTR1  

5’-ccacauuaauggcggcauc-3’ J-025063-17 

5’-gcagaaugauagacgagcu-3’ J-025063-18 

5’-agaggaggcuaacccgaaa-3’ J-025063-19 

5’-acaaagcugccauccgaaa-3’ J-025063-20 

KPNB1 

(Importin β) 

5’-ggaggagccuaguaacaau-3’ J-058740-05 

5’-gguuacauuugccaagaua-3’ J-058740-06 

5’-ucacacagacacugacuaa-3’ J-058740-07 

5’-ggauagaguucugguccaa-3’ J-058740-08 

 

Table 2.8 si-RNA sequences. 
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2.5 Peptides 

 

All peptides and N-terminally FAM (fluorescein maleimide)-conjugated peptides 

used in this study were synthesised and HPLC (high-performance liquid 

chromatography)-purified by Protein and Peptide Chemistry Laboratory in Cancer 

Research UK (sequences below). Synthesis was accomplished by coupling the 5- 

carboxylic acid group of 5-carboxy fluorescein maleimide (5-FAM) to the N-terminus 

of the protected peptide. Peptides were obtained in lyophilised form and stored in -20°C. 

When required, lyophilised FAM-conjugated peptides were dissolved in peptide stock 

buffer (see below) and centrifuged. Peptide solutions were kept in -80°C. 

 

Peptide stock buffer 

20 mM Tris-HCl pH 8.0 

100 mM NaCl 

3 mM MgCl2 

0.2 mM EGTA 

0.7mM ATP 

2 mM DTT 

 

Peptide name Peptide sequence 

FAM-conjugated peptides for Fluorescence Polarisation assays 

Phactr1 RPEL-N  FKHTSAALERKISMRQSREELIKRGVLKEIYD 

Phactr1 RPEL1 KVCRKDSLAIKLSNRPSKRELEEKNILPRQTD 

Phactr1 RPEL2 RQQIGTKLTRRLSQRPTAEELEQRNILKPRNE 

Phactr1 RPEL3 KREIKRRLTRKLSQRPTVEELRERKILIRFSD 
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Phactr1 RPEL-Nx FKHTSAALERKISMAQSREELIKRGVLKEIYD 

Phactr1 RPEL1x KVCRKDSLAIKLSNAPSKRELEEKNILPRQTD 

Phactr1 RPEL2x RQQIGTKLTRRLSQAPTAEELEQRNILKPRNE 

Phactr1 RPEL3x KREIKRRLTRKLSQAPTVEELRERKILIRFSD 

Phactr1 RPEL-N F133A AKHTSAALERKISMRQSREELIKRGVLKEIYD 

Phactr1 RPEL-N E141A FKHTSAALARKISMRQSREELIKRGVLKEIYD 

Phactr1 RPEL2 G459K RQQIKTKLTRRLSQRPTAEELEQRNILKPRNE 

Phactr1 RPEL3 I496A KREAKRRLTRKLSQRPTVEELRERKILIRFSD 

Phactr1 RPEL3 R516A KREIKRRLTRKLSQRPTVEELREAKILIRFSD 

Phactr1 RPEL1 E436A KVCRKDSLAIKLSNRPSKRALEEKNILPRQTD 

Phactr1 RPEL2 E474A RQQIGTKLTRRLSQRPTAEALEQRNILKPRNE 

Phactr1 RPEL3 E512A KREIKRRLTRKLSQRPTVEALRERKILIRFSD 

Phactr1 RPEL1 E436A/K440A KVCRKDSLAIKLSNRPSKRALEEANILPRQTD 

Phactr1 RPEL2 E474A/R478A RQQIGTKLTRRLSQRPTAEALEQANILKPRNE 

Phactr1 RPEL3 E512A/R507A KREIKRRLTRKLSQRPTVEALREAKILIRFSD 
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Phactr1 RPEL-N M146A FKHTSAALERKISARQSREELIKRGVLKEIYD 

Phactr1 RPEL-N E152A FKHTSAALERKISMRQSREALIKRGVLKEIYD 

Phactr1 RPEL-N R156A FKHTSAALERKISMRQSREELIKAGVLKEIYD 

Phactr1 RPEL-N G157N FKHTSAALERKISMRQSREELIKRNVLKEIYD 

Phactr1 RPEL-N G157H FKHTSAALERKISMRQSREELIKRHVLKEIYD 

Phactr2 RPEL-N FRETSAVLERKISTRQSREELIRRGLLKELPD 

Phactr2 RPEL1 KIRRRDTLAIKLGNRPSKKELEDKNILQRTSE 

Phactr2 RPEL2 RQQIGTKLVRRLSQRPTTEELEQRNILKQKNE 

Phactr2 RPEL3 KMELKRRLSRKLSLRPTVAELQARRILRFNEY 

Phactr3 RPEL-N LKQTTSALEKKMAGRQGREELIKQGLLEMMEQ 

Phactr3 RPEL1 RKCKKELLAVKLRNRPSKQELEDRNIFPRRTD 

Phactr3 RPEL2 RQQIEMKLSKRLSQRPAVEELERRNILKQRND 

Phactr3 RPEL3 RREIKQRLTRKLNQRPTVDELRDRKILIRFSD 

Phactr4 RPEL-N FKETSEVLERKISMRKPREELVKRGVLLEDPE 

Phactr4 RPEL1 RVKRKDTLAMKLSSRPSEPETNLNSWPRKSKE 
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Phactr4 RPEL3 RHQIGNTLIRRLSQRPTAEELEQRNILQPKNE 

Phactr4 RPEL4 KREIKRRLTRKLSQRPTVAELLARKILRFNEY 

Chimeric peptide A1 
MRTF-A-Phactr1 RARLKRRLTRKLSQRPTVEELRERKILPVESS 

Chimeric peptide B1 
MRTF-A-Phactr1 RARLARRLTRKLSQRPTVEELRERKILPVESS 

Chimeric peptide C1 
MRTF-A-Phactr1 RARLADRLTRKLSQRPTVEELRERKILPVESS 

Chimeric peptide A 
MRTF-A-Phactr1 RARLKRRLTRKLSQRPTVEELRERKILIRFSD 

Chimeric peptide B 
MRTF-A-Phactr1 RARLARRLTRKLSQRPTVEELRERKILIRFSD 

Chimeric peptide C 
MRTF-A-Phactr1 RARLADRLTRKLSQRPTVEELRERKILIRFSD 

Peptides for Crystallisation  

Phactr1 RPEL-N  FKHTSAALERKISMRQSREELIKRGVLKEIYD 

Phactr1 RPEL1 KVCRKDSLAIKLSNRPSKRELEEKNILPRQTD 

Phactr1 RPEL2 RQQIGTKLTRRLSQRPTAEELEQRNILKPRNE 

Phactr1 RPEL3 KREIKRRLTRKLSQRPTVEELRERKILIRFSD 

 

Table 2.9 Peptides used in the study. 

  



Chapter 2 Materials and Methods 

 

 147 

2.6 Mammalian cell culture 

 

2.6.1 Cell culture maintenance  

 

Mammalian cell lines used in this study are summarised below. All cell lines were 

maintained in 15cm2 cell culture dishes. Cell lines were cultured in DMEM or RPMI 

(Invitrogen) supplemented with 10% foetal calf serum (FCS) (Invitrogen) and Pen/Strep  

(100 units/ml penicillin, 100 µg/ml streptomycin from 100x stock) (Cancer Research 

UK media production facility) at 37°C in incubators, supplemented with 10% CO2 

(Wolf Laboratories).  

Once thawed, cells were grown until confluent and either sub-cultured for 

propagation or seeded for relevant experiment. For sub-culturing, cells were washed 

with PBS, incubated with trypsin/Versene (0.25% (w/v) trypsin in 5x Versene) (Cancer 

Research UK media production facility) until they detached (around 3 min.) and 

suspended in relevant FCS-supplemented media (typical sub-culturing ratio was 1:10 – 

1:15). Cells suspension was then distributed into new cell culture dishes. For starvation, 

cells were kept in relevant cell culture media supplemented with 0.3% FCS overnight.  

 

Cell line Species Media 

NIH3T3 fibroblasts Mouse  DMEM 

MDA-MB-231 breast carcinoma Human DMEM 

CHL-1 melanoma Human RPMI 

 

Table 2.10 Cell lines used in the study. 

 

In order to freeze cells in liquid nitrogen, cells were incubated with 

trypsin/Versene solution as described above, re-suspended in culture media and 

centrifuged at 120g for 5 min. at room temperature. The cell pellet was re-suspended in 

FCS supplemented with 5% DMSO and aliquoted into cryo-vials (typically one 10cm2 
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dish into one cryo-vial) and transferred into -80°C. One week later cells were 

transferred into liquid nitrogen for a long-term storage.  

 

2.6.2 Transfection 

 

2.6.2.1 Transient transfection with plasmid DNA 

 

The method of transfection with plasmid DNA varied depending on the 

experimental format (see below). Cells were firstly sub-cultured into desired size cell 

culture dishes and grown until 80% confluent. The next day cells were either starved 

with 0.3% FCS or transfection with plasmid DNA was initiated. Cells were transfected 

with Lipofectamine2000 (Invitrogen) according to manufacturer’s instructions. Plasmid 

DNA was added to the indicated volume of Opti-MEM (Invitrogen) and Lipofectamine 

was suspended in the same volume of Opti-MEM (see below for specific volumes). 

DNA/Opti-MEM and Lipofectamine2000/Opti-MEM solutions were incubated 

separately for 5 min., then mixed together by vortexing and incubated at room 

temperature for 30 min. Prior to transfection, cells were washed with Opti-MEM and 

indicated volumes of the transfection mix were added onto the cells. Cells were 

incubated with the transfection mix and indicated volumes of Opti-MEM for 2h. 

Afterwards, the transfection mix was removed by vacuum pump and relevant media 

was added onto the cells. Cells were normally grown overnight before proceeding to 

relevant experiment.  

 

Format Total 

amount 

of DNA 

Vol. 

Lipofectamine 

2000 

Vol. Opti-

MEM in 

transf. mix 

Vol. Opti-MEM  

on cells 

Immunofluorescence microscopy 

6-well 

plates 
1 µg 3µl 200µl 1ml 
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Co-immunoprecipitation 

10-cm 

dishes 
4 µg 17µl 1ml 4ml 

 

Table 2.11 Amounts of reagents required for transient transfection with plasmid DNA. 

 

2.6.2.2 Transfection with siRNA 

 

Transfection with siRNA was performed in order to deplete Phactr1 in CHL-1 

cells. Transfection volumes were adjusted according to the format of relevant 

experiment (see below). Transfections were carried out using Lipofectamine 

RNAiMAX reagent (Invitrogen) according to manufacturer’s instructions protocol for 

reverse transfection. Cells were washed with PBS, incubated with trypsin/Versene until 

they detached (as described above) and suspended in FCS-supplemented RPMI media. 

siRNA (from 20µM stock) was added to the indicated volume of Opti-MEM 

(Invitrogen) and Lipofectamine RNAiMAX was suspended in the same volume of Opti-

MEM (see below for specific volumes). siRNA/ Opti-MEM and Lipofectamine 

RNAiMAX/ Opti-MEM solutions were incubated separately for 5 min., then mixed 

together by vortexing and incubated at room temperature for 20 min. The transfection 

mix was re-suspended in the media containing cells (volumes indicated below) in the 

well and mixed by gentle manual shaking. To obtain efficient knock-down, cells were 

grown for 72h without change of media.  
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Format siRNA 

(from 

20 µM) 

Vol. 

Lipofectamine 

RNAiMAX 

Vol. Opti-MEM in 

transf. mix 

Vol.  

cells 

Western blotting/ Immunofluorescence/ Matrigel invasion assays  

6-well plates  

(104 cells/well) 
2.4 µl 4µl 200µl 2.2ml 

Scratch-wound assays 

96-well plate 

(5000 cells/well) 
0.1 µl 0.16µl 20µl 80µl 

 

Table 2.12 Amounts of reagents required for transient transfection with siRNA 

 

2.6.3 Scratch-wound assays 

 

2.6.3.1 Evaluation of wound closure  

 

In order to investigate cell motility defects in Phactr1-depleted CHL-1 

melanoma cells, scratch-wound assays were performed using IncuCyte Live-Cell 

Imaging System (Essen BioScience). 5000 cells per well was seeded in 96-well Essen 

ImageLock plates (Essen BioScience). Cells transfected with relevant siRNA were 

grown in media supplemented with 10% FCS were transfected with siRNA (see above 

for siRNA transfection details). 72 hours post-transfection, confluent cells were scratch-

wounded using Woundmaker 96 (Essen BioScience) according to manufacturer’s 

instructions. Cell migration in the wound was monitored using IncuCyte (Essen 

BioScience) video microscope residing inside 37°C tissue culture incubator (LEEC) 

every 30 min for 45 hours after the scratch was applied.  
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2.6.3.2 Cell tracking 

 

Cells at the leading edge of the wound were tracked using Tracker software, 

designed by Daniel Zicha in London Research Institute. To visualise tracks, each cell 

was tracked over the recording time and tracks were plotted on the graph. Mean speeds 

were calculated over the recording time for each cell. Persistence was measured during 

successive 50-minute windows for each cell. To evaluate the speed and persistence of 

cell migration, a previously described algorithm was implemented in Mathematica 

software (Wolfram Research), with ANOVA (analysis of variance) analysis (Medjkane 

et al., 2009). ANOVA provides a statistical test of whether or not the means of several 

groups are all equal, and therefore generalizes t-test to more than two groups. Here, 

only two groups are analysed, therefore the implemented test is equivalent to a t-test.  

 

2.6.4 Matrigel invasion assays 

 

Matrigel invasion assays were performed in collaboration with Cell Motility 

Laboratory at London Research Institute (Cancer Research UK) by Jasmine Abella.  

 

After siRNA transfection (see above for siRNA transfection details) cells were 

transferred to duplicate wells (2 x104 cells/well) of a BD Matrigel Invasion Chamber 

(24-well plate, 8.0 micron; BD biosciences) is serum free medium. Cells were allowed 

to migrate through the matrigel-coated filter towards the medium for 22 hours at 37°C. 

Afterwards, cells on both sides of the wells were fixed for 20 min with 4% 

paraformaldehyde (Sigma) in PBS, then stained with Phalloidin Alexa-488 (Invitrogen) 

and DAPI for 1 hour. Cells, which had migrated through the filter were visualised by 

microscopy and imaged using a LSM 510 Zeiss confocal microscope (20x lens, 16 

images per well). Invasion of Phactr1 depleted cells was assessed by evaluating the 

DAPI staining of cells that migrated through the filter and compared to the invasion of 

control cells. Subsequently, the evaluated percentage of invasion/control cells was 

plotted on the graph and analysed using two unpaired t-tests. The unpaired t-test tests 
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the hypothesis that the population means related to two independent, random samples 

from an approximately normal distribution are equal (Armitage P, 1994). 

 

2.7 Immunofluorescence microscopy 

 

For immunofluorescence, relevant cells were grown in 6-well plates containing 

coverslips (2 coverslips per well) until they were 80% confluent. If starvation was 

required, 10% FCS/media was replaced with 0.3% FCS/media and cells were starved 

overnight. If required, cells were transfected with plasmid DNA or with siRNA (see 

above for transfection details). The following day cells were treated with specific 

inhibitors for indicated times (30 nM leptomycin B, 1 µM latrunculin B, 10 µM Y27632, 

10 µM cytochalasin D or 20 µM blebbistatin) and/or stimulated with 15% FCS for 

appropriate time. Afterwards, cells were fixed with 4% formaldehyde in PBS for 15 

minutes and washed with PBS. Fixed cells were stored at 4°C for up to 7 days, if 

necessary. After fixation, cells were permeabilised with 0.2% TritonX-100 in PBS for 

10 minutes at room temperature. Non-specific binding sites were then blocked with 

blocking solution (10%FCS, 1% fish skin gelatin in PBS) for 1 hour. Staining with 

primary antibodies (listed below) was performed by placing coverslips (cell-side down) 

on a 50 µl drop of blocking solution with an antibody (for specific dilutions see below). 

Staining was performed at room temperature for 1h on Parafilm (Pechiney), in closed 

plastic dishes containing moist wipers (Wypall) to prevent samples from drying out. To 

wash cells, coverslips were dipped in PBS twice. Staining with secondary antibodies 

was performed in blocking solution for 1h using the same technique. If staining with 

phalloidin and DAPI was required, they were added to the secondary antibody solution. 

Next, cells were washed in PBS and water and mounted on microscopy slides using 

Mowiol. Slides were kept in the dark until analysed by microscopy.  

 

In order to investigate Phactr1 localisation in either NIH3T3 cells of CHL-1 cells, 

Zeiss Axioplan 2 microscope (Plan-NEOFLUAR 40x/1.3 Oil or 63x/1.25 Oil lenses) 

equipped with a digital camera (Hamamatsu) was used. Imaging was carried out using 

Smart Capture software. Localisation of Phactr1 was scored as nuclear, pan-cellular or 
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cytoplasmic using specific antibodies (listed below) in indicated number of cells per 

experiment.  

 

Images of Phactr1-depleted /control CHL-1 cells were collected using a Zeiss 

Axioplan 2 microscope (Apochromat 63x/1.40 NA Oil or Plan-NEOFLUAR 25x 

lenses) controlled by Metamorph (Molecular Devices Corporation) using a 

monochromatic CoolSNAP HQ camera (Photometrics).  

 

Primary antibodies 

antibody species concentration 

Flag (F7425, Sigma) rabbit 1:500 

c-Myc (9E10, Abcam) mouse 1:500 

Phactr1 (HPA029756, Sigma)  rabbit 1:200 

PP1α (C-19, Santa Cruz) goat  1:200 

Paxilin (BD Bioscience)  mouse 1:200 

 

Secondary antibodies 

antibody species concentration 

Rabbit Cy3 (Molecular Probes) donkey 1:500 

Mouse Cy3 (Molecular Probes) donkey 1:500 

Rabbit Cy2 (Molecular Probes) donkey 1:200 

Rabbit Alexa Fluor 350 

(Molecular Probes) 
donkey 1:200 

Goat Cy2  

(Jackson Laboratories) 
donkey 1:200 

 

Staining reagents 
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reagent specificity concentration 

FITC-Phalloidin (Molecular Probes) F-actin 1:200 

Texas Red -Phalloidin (Molecular 

Probes) 
F-actin 1:200 

DAPI  

(Molecular Probes) 
DNA 300nM 

 

Table 2.13 Antibodies and staining reagents used for immunofluorescence microscopy. 

 

2.8 Fluorescence polarisation assays 

 

Fluorescence anisotropy assays were performed essentially as described 

previously (Guettler et al., 2008; Mouilleron et al., 2008). The reactions were set up at 

room temperature in a total volume of 75µl in 96-well plates and incubated for 2h in FP 

binding buffer (see below). FAM-conjugated peptides (for sequences see section 

“Peptides”) were used at a concentration of 0.5 µM. LatB-actin was added at a 

concentration range of 1nM up to 60 µM. The preparation of LatB-actin was described 

previously (Mouilleron et al., 2008). In order to perform readouts, reactions were 

transferred into 384-well flat-bottom plates with a non-binding surface (3654, Corning) 

and Safire2 microplate reader was used (Tecan). Magellan software was used to read 

anisotropies. Dissociation constants (KD) were calculated by nonlinear regression in 

Prism software using the equation: Y=((Ab-Af)*(X/(KD+X))) +Af, where X is protein 

concentration; Y is total anisotropy; Ab is anisotropy from bound ligand; Af is 

anisotropy from free ligand (Heyduk and Lee, 1990). KD values were derived from 

duplicate samples in three independent experiments.  
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FP binding buffer 

2 mM Tris-HCl pH 8.0 

100 mM NaCl 

3 mM MgCl2 

0.2 mM EGTA 

0.7mM ATP 

2 mM DTT 

 

2.9 Protein expression and purification 

 

In order to express proteins in bacteria, we used E.coli BL21 or Rosetta (DE3) 

pLysS strains. Firstly, bacteria were transformed with the expression plasmid of interest 

and plated on an agar plate containing relevant antibiotic. The next day, a single colony 

was harvested and transferred into 1/200 of the final volume LB media with the relevant 

antibiotic. The pre-culture was grown overnight at 37°C with 190 rpm agitation. The 

following day, the expression culture was inoculated with the pre-culture. The bacterial 

culture growth was monitored by OD measurement and expression was induced when 

the OD600 =0.6 by the addition of 0.5mM IPTG. The expression was carried out at 

appropriate, optimised temperature for relevant period of time.  

 

For the purpose of pull-down assays, GST-tagged Phactr1 constructs were 

expressed for 3h at 37°C. Importin α and Importin β were expressed as previously 

described (Pawlowski et al., 2010). PP1 was directly co-expressed with the GST-tagged 

Phactr1 392C construct. For the purpose of structural analysis, GST-tagged 

Phactr1(414-528) was expressed at 30°C.  

 

After protein expression, cells were harvested by centrifugation for 15 minutes at 

7000 rpm and the pellet was resuspended in the bacterial lysis buffer (see below for 

details). The suspension was then sonicated on ice with the maximum energy at the 

Soniprep 150 (MSE) using 9.5mm/19mm probe. The obtained cell lysates were then 

centrifuged for 40 minutes at 20 000 rpm at 4°C. Supernatants were incubated with the 
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appropriate volume (1 ml resin per 1 litre culture) of glutathione sepharose (GE 

Healthcare), which has been prewashed in the lysis buffer for equilibration. The 

incubation was performed for 3 hours at 4°C with continuous rotation. Afterwards, the 

resin was subsequently washed with “wash buffer 1” and “wash buffer 2” and with an 

“ATP wash buffer” (see below for details). Next, the resin was equilibrated in the 

“equilibration buffer” and the GST tag was cleaved by overnight incubation with GST-

3C protease (obtained from Structural Biology Laboratory at the London Research 

Institute). The following day, cleaved proteins were eluted from the resin and protein 

was concentrated to desired volume in Vivaspin concentrators (Vivascience) at 4°C 

according to manufacturers instructions.  

 

For the purpose of structural analysis Phactr1(414-528) and derivatives were  

purified by size exclusion chromatography using Superdex 200 column on ÄKTA 

FPLC (Fast Protein Liquid Chromatography) system (GE Healthcare).  

 

Lysis buffer Wash buffer 1 Wash buffer 2 

50 mM Tris-HCl pH8.0 

300 mM NaCl 

1% Triton X-100 

0.5 mM AEBSF 

1 mM EDTA 

15 µg benzamidine 

50 mM Tris-HCl pH8.0 

300 mM NaCl 

1 mM DTT 

0.5 mM AEBSF 

1 mM EDTA 

15 µg benzamidine 

50 mM Tris-HCl pH8.0 

500 mM NaCl 

1 mM DTT 

1 mM EDTA 

 

ATP wash buffer  Equilibration buffer 

50 mM Tris-HCl pH7.5 

50 mM KCl 

1 mM DTT 

20 mM MgCl2 

5 mM ATP 

50 mM Tris-HCl pH8.0 

100 mM NaCl 

1 mM DTT 

 

Table 2.14 Buffers used for protein purification. 
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2.10  Protein analysis 

 

2.10.1 Co-immunoprecipitation 

 

In order to co-immunoprecipitate FLAG-Phactr1 or derivatives and/or HA-PP1, 

NIH3T3 cells were transfected with relevant plasmids in 10 cm2 dishes (for details see 

section “Transfection”). Cells were lysed in 0.5% Nonidet P-40, 1 mM EDTA, 50 mM 

Tris pH 8.0, 120 mM NaCl, 0.1 mM sodium vanadate, 1 tablet/50ml protease inhibitors 

cocktail (Roche) ice. Lysates were centrifuged at 13000 rpm for 30 minutes and 

supernatants processed further. For immunoprecipitation, anti-HA-agarose or anti-

FLAG agarose affinity gels were incubated with a total of 1 mg protein for 2h at 4°C. 

Four consecutive washes in lysis buffer were performed before separation of proteins by 

SDS-PAGE. Proteins were detected by immunoblotting with specific antibodies (see 

section “Protein detection”). 

 

To co-immunoprecipitate endogenous proteins in CHL-1 cells, lysis was 

performed in 20 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.1% (w/v) SDS, 0.5% (w/v) Na-

deoxycholate, 1% (v/v) Triton X-100, 1 tablet per 50ml Roche Complete, 1.0 mM 

PMSF. Lysates were centrifuged at 13000 rpm for 30 minutes and supernatants 

processed further. To immunoprecipitate, 1µg PP1α (C-19, Santa-Cruz), antibody was 

used per 500 mg lysate. Subsequently, three consecutive washes in lysis buffer were 

performed before separation of proteins by SDS-PAGE. Proteins were detected by 

immunoblotting with specific antibodies (see section “Protein detection”).  

 

2.10.2 GST-affinity pull down assay 

 

In order to perform GST-affinity pull down assays, appropriate GST-tagged 

Phactr1 constructs were expressed in bacteria. Glutathione-sepharose was saturated with 

GST-tagged proteins from E.coli lysates and the beads were washed once with 20mM 



Chapter 2 Materials and Methods 

 

 158 

Tris-HCl pH7.8, 150 mM NaCl, 10mM MgCl2, 1 mM PMSF, 1mM DTT and once with 

20mM Tris-HCl pH7.8, 500 mM NaCl, 10mM MgCl2, 1 mM PMSF, 1mM DTT. Lastly, 

the beads were washed with the binding buffer (50 mM Tris-HCl pH 7.8, 50 mM NaCl, 

5 mM MgCl2). The beads were then incubated with purified recombinant Importin α3 

and Importin β1. The pulldown was performed for 1h at 4°C in binding buffer. 

Afterwards, the resin was washed four times with binding buffer and resuspended in 

SDS loading buffer for further analysis by SDS-PAGE.  

 

PP1 protein was co-expressed with GST-Phactr1-C in E.coli (for details see 

above). To purify the resulting complex, a previously described method for PP1 

purification was used (Kelker et al., 2009). The pulldown was performed for 1h at 4°C 

in binding buffer (20 mM Tris pH8.0, 100 mM NaCl, 0.5% Triton X-100, 5 mM MgCl2, 

0.5 mM MnCl2, 0.2 mM EGTA, 0.2 mM ATP, 1 mM DTT). Again, the resin was 

washed four times with binding buffer and resuspended in SDS loading buffer for 

protein separation by SDS-PAGE. Proteins were stained with Coomassie Brilliant Blue 

or detected by immunoblotting with specific antibodies (see section “Protein detection”). 

 

2.10.3 SDS-PAGE 

 

In order to fractionate proteins according to their size, sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) was performed. Prior to loading on 

the gel, samples were resuspended in 6x SDS-loading buffer (375 mM Tri-HCl pH6.8, 

12%SDS, 60% glycerol, trace bromophenol blue, 600 mM DTT), sonicated if necessary 

and boiled for 5 minutes in thermoblock. Usually for electrophoresis, pre-cast NuPAGE 

Novex Bis-Tris 4-12% gradient gels were used (Invitrogen).  For the separation of 

smaller proteins (Phactr1 truncations, MLC2) NuPAGE Novex Tricine 10-20% gels 

were used (Invitrogen).  Buffers used for electrophoresis differed according to the size 

of proteins (MOPS, MES, Tricine SDS running buffers; Invitrogen) and separation was 

carried out for 45min-2h at 120-200 volts according to the specific gel/buffer 

requirements. SeeBlue Pre-Stained standard was used as a protein molecular weight 

marker (Invitrogen).  
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2.10.4 Protein detection 

 

2.10.4.1 Coomassie staining 

 

If immunoblotting was not required, proteins fractionated by SDS-PAGE were 

detected by Coomassie brilliant blue staining. Coomassie staining was achieved by 

incubating gels in staining solution (2% Coomassie R250, 3% acetic acid in methanol) 

for 20 minutes with agitation. To visualize proteins, de-staining was performed in de-

staining solution (10% acetic acid, 40% methanol) for 1h-3h. 

 

 

2.10.4.2 Immunoblotting 

 

If detection of proteins with specific antibodies was required, immunoblotting 

was performed. After SDS-PAGE, gels were transferred onto activated in methanol 

PVDF membranes or onto nitrocellulose (Whatman). Proteins on the gels were 

transferred onto membranes using Mini Trans-Blot Electrophoretic Transfer Cell 

(Biorad). Gels were assembled in between foam pads and filter paper (Whatman 3MM). 

The transfer was carried out at 400 mA for 90 minutes in transfer buffer (192 mM 

glycine, 25 mM Tris base, 10% methanol). Afterwards, membranes were immersed for 

1h in blocking solution containing 5% milk powder, 0.1% Tween 20 in PBS for M2 

FLAG-HRP and HA-HRP or in 2% BSA, 0.1% Tween 20 in TBS for all other 

antibodies (see below for details). Membranes were then incubated with appropriate 

primary antibodies diluted to optimal concentration (see below) in relevant blocking 

solution overnight. The following day, membranes were washed in wash buffers (0.1% 

Tween 20 in PBS or 0.1% Tween 20 in TBS) four times for 5 minutes and incubated 

with secondary antibodies for 2h (this step was omitted if primary antibodies were 

coupled to HRP). Then, membranes were washed three times and developed with 

enhanced chemiluminescence (ECL) reagents (GE Healthcare) according to 
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manufacturers instructions. Subsequently, membranes were exposed to ECL Hyperfilm 

(GE Healthcare) or chemiluminescent readout was performed in ImageQuant LAS 4000 

biomolecular imager (GE Healthcare).   

 

Primary antibodies 

antibody species concentration 

M2 FLAG-HRP (Sigma)  mouse 1:1000 

HA-HRP (3F10, Roche) rat 1:1000 

Phactr1 (HPA029756, Sigma) rabbit 1:200 

MLC2 (3672, Cell Signalling) rabbit 1:1000 

P-MLC2 T18/S19  

(3674, Cell Signalling), 
rabbit 1:1000 

PP1α (C-19, Santa-Cruz) goat 1:1000 

Importin α  

(612654, BD Transduction 

Laboratories) 

mouse 1:1000 

Importin β (ab45938, Abcam). rabbit 1:1000 

α-Tubulin (T5168, Sigma), mouse 1:1000 

Actin (C-4, Santa-Cruz) mouse 1:1000 

Secondary antibodies were obtained from DAKO (used at dilution 1:1000) 

 

Table 2.15 Antibodies used for immunoblotting. 
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2.11  Complex stoichiometry analysis 

 

2.11.1  Size exclusion chromatography  

 

In order to perform analysis of G-actinRPELPhactr1domain complexes, size 

exclusion chromatography was used. Calibrated Superdex 200 column was linked to 

ÄKTA FPLC (Fast Protein Liquid Chromatography) system (GE Healthcare) and 

previously obtained proteins were injected onto the system (see “Protein expression” for 

Phactr1 constructs and (Mouilleron et al., 2008) for the preparation of LatB-actin). 

Stoichiometry analysis was performed in the presence or absence of 4µM LatB-actin in 

the running buffer: 20 mM Tris, pH 8, 100 mM NaCl, 3 mM MgCl2, 0.2 mM EGTA, 

0.2 mM ATP, 0.3 mM TCEP and 5 % glycerol (v/v). The stoichiometry of the complex 

was then calculated from obtained molecular weight of the complex, where one 

molecule of Phactr1(414-528) is 14kDa and one molecule of G-actin is 42kDa.  

 

2.11.2  SEC-MALLS 

 

Where more precise analysis of the molecular weight was necessary (analysis of 

Phactr1(414-528) mutants interaction with G-actin), we used multi-angle laser light 

scattering coupled with size exclusion chromatography using a SEC-MALLS/UV/RI 

Wyatt system (Mouilleron et al., 2012). For size exclusion chromatography ÄKTA 

FPLC system linked to Superose 6 column was used (GE Healthcare). After injecting 

proteins onto the system, the isocratic elution was performed at a flow rate of 0.5 

ml/min in running buffer (20 mM Tris pH 8, 100 mM NaCl, 3mM MgCl2, 0.2 mM 

EGTA, 0.2 mM ATP, 0.3 mM TCEP at 25 °C). The light scattering analysis of the 

complexes was monitored using a Mini Dawn–Treos instrument and an Optilab TrEX 

differential refractometer (Wyatt technology, Santa Barbara, CA). The concentration of 

the molecule in solution was evaluated by a specific refractive index increment (dn/dc) 

of 0.185. In order to measure the absolute refractive index of the solution, the refractive 
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index detector was implemented. To calibrate the light scattering detector we used 

toluene. ASTRA 6 software was used to analyse the data (Wyatt technology, version 

6.0.2). SEC-MALLS was performed by Stephane Mouilleron from Structural Biology 

Laboratory in London Research Institute.   

 

2.12 Crystallisation 

 

2.12.1 Complex preparation 

 

2.12.1.1 G-actin• RPELPhactr1 domain complex 

 

To obtain a complex of Phactr1(414-528) with G-actin, size exclusion 

chromatography was used (see above). Phactr1(414-528) is sensitive to proteolysis 

during purification (see Chapter 4). This results in heterogeneous distribution of G-

actin•RPELPhactr1 complexes, when complexes are formed upon actin excess. A 

heterogeneous G-actin•RPELPhactr1 complex is a mix of different complexes containing 

G-actin bound to full length RPELPhactr1 as well as G-actin bound to smaller products of 

protease cleavage. A homogenous complex was obtained by mixing purified 

Phactr1(414-528) and LatB-actin at a 3:1 molar ratio. Afterwards, the complex was 

purified by size exclusion chromatography in running buffer (20 mM Tris pH 8, 100 

mM NaCl, 3 mM MgCl2, 0.2 mM EGTA, 0.2 mM ATP, 0.3 mM TCEP and 5% 

glycerol) and stoichiometry was evaluated by SEC-MALLS as 3:1 (G-

actin:Phactr1(414-528)) (see above and Chapter 4 for details). Purified complexes were 

processed further for crystallization.  

 

G-actin•RPELPhactr1 complex Small Angle X-ray scattering data (SAXS) was 

collected at the SWING beamline of the Soleil synchrotron by Stephane Mouilleron 

(Mouilleron et al., 2012). 
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2.12.1.2 G-actin• RPELPhactr1 peptide complexes 

 

To obtain complexes of individual RPEL motifs with G-actin, the molar ratio of 

1:2 (G-actin:RPEL motif) was established for each motif (RPEL-N, RPEL1, RPEL2 

and RPEL3) before injection onto Superdex 200 column linked to ÄKTA FPLC system. 

The column was equilibrated in 20 mM Tris pH 8, 50 mM NaCl, 3 mM MgCl2, 0.2 mM 

EGTA, 0.2 mM ATP, 0.3 mM TCEP and 5% glycerol). Purified complexes were 

processed further for crystallization.  

 

2.12.2 Crystallisation and structure determination 

 

Crystallisation and structure determination was performed by Stephane 

Mouilleron from Neil McDonald’s Laboratory (Structural Biology Laboratory in 

London Research Institute).  

 

2.12.2.1 Crystallisation of G-actin•RPELPhactr1 domain complex 

 

After complex preparation, the obtained sample was concentrated to 20 mg/ml 

and crystallised at 20°C using the sitting-drop vapour diffusion method. Each sitting 

drop contained 6µl of 1:1 (v:v) mixture of protein and a well solution containing 0.1 M 

TRIS pH 7, 14 % PEG 6000, 0.2 M sodium chloride. The appearance of the crystals 

was seen after three days and after 10 days they reached their maximum size of 0.2 mm 

x 0.2 mm. To cryoprotect crystals, 0.1M TRIS pH 7, 20% PEG 6000, 0.2 M sodium 

chloride and 20% glycerol was used. Then, crystals were frozen in liquid nitrogen and 

X-ray data sets collected at 100 K at the 104 beamline of the Diamond Light Source 

Synchrotron (Oxford, UK). Data collection, refinement with molecular replacement, 

model building, model validation was performed by Stephane Mouilleron. Figures 

representing structural data were prepared in PYMOL graphics program by Stephane 
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Mouilleron (Mouilleron et al., 2012). For data collection and refinement statistics see 

Table 7.3.  

 

2.12.2.2 Crystallisation of G-actin•RPELPhactr1 peptides complexes 

 

Complexes of G-actin•RPELPhactr1 peptides were crystallized at 20°C using the 

sitting-drop diffusion method after obtaining a desired concentration of 10 mg/ml. Each 

sitting drop contained 1µl of 1:1 (v:v) mixture of concentrated protein and a well 

solution. Crystals appeared after two days, and after 14 days they reached their 

maximum size. Crystals were frozen in liquid nitrogen and X-ray data sets collected at 

100 K at the ID23-1 beamline (ID29 for G-actin•RPEL3Phactr1) of the European 

Synchrotron Radiation Facility (ESRF, Grenoble, France). Data collection, refinement 

with molecular replacement, model building and model validation was performed by 

Stephane Mouilleron (Mouilleron et al., 2012). Figures representing structural data were 

prepared in PYMOL graphics program by Stephane Mouilleron, where indicated. For 

data collection and refinement statistics see Table 7.3. 
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Chapter 3. Molecular mechanisms of Phactr1 

regulation  

 

3.1 Aims  

 

We previously observed that MRTFs accumulate in the nucleus upon serum 

stimulation (Miralles et al., 2003; Vartiainen et al., 2007). Rho-actin signal induces 

actin filaments formation causing depletion of the G-actin pool, which leads to 

translocation of MRTF-A to the nucleus and activation of SRF-dependent transcription. 

The availability of G-actin is detected by the regulatory RPEL domain of MRTF-A, 

which contains three G-actin binding RPEL motifs (Mouilleron et al., 2008).  

 

Because the Phactr family of PP1 binding proteins contain four RPEL motifs, 

with RPEL domain at the C-terminus and single RPEL motif at the N-terminus, we 

hypothesised that the activity of Phactr proteins might also be regulated by G-actin 

levels. Considering, that the relevance of G-actin binding to Phactr was unclear and the 

potential possibility that G-actin might influence Phactr behaviour towards PP1 activity, 

we firstly tested whether Phactr proteins exhibit nucleocytoplasmic shuttling in NIH3T3 

fibroblasts and sought to determine the signalling pathway responsible for this 

regulation.  
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3.2 Cellular localisation of Phactr1 

 

3.2.1 Phactr1, but not Phactr2, 3 or 4 accumulate in the nucleus upon 
serum stimulation 

 

To determine the subcellular localisation of Phactr family of proteins, we 

transiently transfected NIH3T3 fibroblasts with FLAG-tagged Phactr1, 2, 3 and 4 

cDNA and monitored protein localisation using immunofluorescence (Figure 3.1). In 

the unstimulated condition Phactr1 localised in the cytoplasm and upon one hour of 

serum stimulation it accumulated in the nucleus. Phactr2 was cytoplasmic in 

unstimulated cells and did not respond to serum stimulation. Both Phactr3 and Phactr4 

were pan-cellular and their localisation remained unaffected by the addition of serum.  

 

The translocation of Phactr1 to the nucleus upon serum stimulation exhibits 

somewhat slower dynamics in comparison to MRTF-A in this system, with MRTF-A 

fully accumulating in the nucleus after 5 minutes of serum treatment (Vartiainen et al., 

2007). Nevertheless, Phactr1 responded to the concentration of the G-actin pool, like 

MRTF-A and therefore was a good candidate for further analysis.  
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Figure 3.1 Phactr1, but not Phactr2, 3 or 4, accumulates in the nucleus upon serum 

stimulation. 

(Top) NIH3T3 cells expressing FLAG-tagged Phactr proteins were maintained in media 

containing 0.3% FCS for 24 hours, then stimulated with 15% FCS for indicated period of time; 

localisation of the proteins was visualised by fluorescence microscopy. (Bottom) Quantification 

of Phcatr1 (left) and Phactr2, 3 and 4 (right) subcellular localisation as indicated in A (C, 

cytoplasmic; N/C, pan-cellular; N, nuclear; at least 75 cells were counted per point, error bars 

represent the s.e.m. of three independent experiments). 
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3.2.2 Rho-actin signalling controls subcellular localisation of Phactr1 

 

It was previously shown that expression of C3 transferase, which ADP-

ribosylates and inactivates Rho, inhibits nuclear accumulation and reporter activation of 

MRTF-A. We co-expressed Phactr1 with C3 transferase in NIH3T3 fibroblasts and 

monitored localisation of Phactr1 by immunofluorescence (Figure 3.2 B and C). In cells 

expressing C3 transferase, serum stimulated Phactr1 nuclear accumulation was blocked, 

suggesting that the dynamic change of Phactr1 localisation in the cell depends on Rho 

signal.  

 

To further analyse the signalling pathway responsible for Phactr1 behaviour, we 

used specific inhibitors that act during different steps of the Rho pathway (Figure 3.2 A). 

Y-27632 is a selective, ATP-competitive inhibitor of Rho-associated protein kinase 

(ROCK), including ROCK-II and p160ROCK. We used Y-27632 to investigate whether 

Phactr1 nuclear accumulation is dependent on ROCK kinase. Pre-treatment of cells with 

Y-27632 caused significant, but not complete inhibition of Phactr1 nuclear 

accumulation suggesting that another branch of the pathway might also be involved in 

Phactr1 dynamics (see: Discussion).  

 

Because the critical downstream effect of Rho-actin signalling is the G- to F-

actin turnover, we tested whether preventing actin polymerisation inhibits Phactr1 

nuclear localisation. We pre-treated cells with latrunculin B, toxin that has the ability to 

modulate actin filaments (Spector et al., 1983). Latrunculin B binds to G-actin and 

inhibits F-actin formation (Coue et al., 1987). Phactr1 localisation was constitutively 

cytoplasmic in cells treated with latrunculin B suggesting that nuclear accumulation of 

Phactr1 critically depends on interaction with G-actin.  

 

Previous studies of MRTF-A showed that actin associates with MRTF-A via 

RPEL motifs and that disruption of this association is caused by Rho-actin pathway and 

subsequent depletion of the G-actin pool (Miralles et al., 2003; Sotiropoulos et al., 

1999). Cytochalasin D, an actin polymerisation inhibitor, was found to inhibit actin-

RPEL interaction causing constitutive nuclear localisation of MRTF-A and promoting 
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the activity of SRF (Miralles et al., 2003; Sotiropoulos et al., 1999). We found that 

similarly to MRTF-A, Phactr1 was also constitutively nuclear in cells that were pre-

treated with cytochalasin D. This finding suggests that RPEL motifs in Phactr1 are also 

responsible for the interaction with actin.  

 
 

 
 

Figure 3.2 Phactr1 nuclear accumulation is controlled by Rho-actin signalling pathway. 

Effects of inhibitors on serum-induced nuclear accumulation of Phactr1. (A) Schematic of the 

Rho-actin signal pathway, indicating points of action of the inhibitors used. (B) 

Immunofluorescence microscopy images showing effects on nuclear accumulation of FLAG-

tagged Phactr1, by co-expression with C3 transferase (C3), or following pre-treatment with 10 

µM Y-27632, 1 µM latrunculin B (LatB) or 10 µM cytochalasin D (CD), 1 hr after FCS addition. 

(C) Summary of the data, scored as in Figure 3.1.  
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Another study of MRTFs showed that in contrast to NIH3T3 fibroblasts, in 

MDA-MB-231 breast cancer cells localisation of MRTFs is predominantly nuclear in 

the unstimulated condition (Medjkane et al., 2009). In vitro, the MDA-MB-231 cell line 

has an invasive phenotype and exhibits abundant activity in both the chemoinvasion and 

chemotaxis assays. Those cells also form tumours in nude mice. Because Rho signalling 

is upregulated in some cancer cells, the basal level of Rho is higher in MDA-MB-231 in 

comparison with NIH3T3 cells (Medjkane et al., 2009). We found that Phactr1 is also 

predominantly nuclear in MDA-MB-231 cells indicating that both proteins react 

similarly to various basal levels of Rho-actin signalling (Figure 3.3). Taken together this 

data indicates that the subcellular localisation of Phactr1 is controlled by Rho-actin 

signalling pathway.  

 

 

 
Figure 3.3 Phactr1 is predominantly nuclear in MDA-MB-231 cells.  

Cells expressing FLAG-tagged Phactr1 were either grown in 10% serum (FCS) or maintained in 

0.3% serum for 20h with or without subsequent 1h stimulation with 15% serum. Localisation of 

Phactr1 was visualised by immunofluorescence microscopy. Comparison of Phactr1 localisation 

between MDA-MB-231 and NIH3T3 cells is summarized on the bottom (cells quantified as in 

Figure 3.1). 
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3.2.3 Phactr1 nuclear export is not Crm1-dependent 

 

Nuclear export of MRTFs depends on Crm1 (Vartiainen et al., 2007). Because 

MRTF-A and Phactr1 are both regulated by the Rho-actin signalling pathway and 

exhibit high homology of their RPEL domains, we sought to compare the export 

machinery of those two proteins. Treatment with the Crm1 inhibitor leptomycinB 

(LMB) did not induce nuclear accumulation of Phactr1 in unstimulated cells, which 

indicates that Crm1 exportin does not mediate nuclear export of Phactr1 (Figure 3.4), 

(see: ‘Discussion’).  
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Figure 3.4 Phactr1 export is not Crm1-dependent. 

NIH 3T3 cells were transfected with FLAG-tagged Phactr1 or HA-tagged MRTF-A. Cells were 

pre-treated with 30 nM (LMB) and stimulated with serum. (Top) Protein localisation before and 

after serum stimulation was monitored using immunofluorescence microscopy. (Bottom) 

Summary of the data, assessed as in Figure 3.1. 
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3.2.4 Phactr1 RPEL motifs are G-actin binding elements 

 

To define the interactions between actin and RPEL motifs in Phactr1, we 

employed fluorescence anisotropy assays. This approach was previously used to 

measure the affinity of MRTF-A RPEL motifs to actin (Guettler et al., 2008). We 

titrated increasing amounts of non-polymerisable latrunculinB-actin into steady 

amounts of fluorescently labelled Phactr1 RPEL peptides and measured the anisotropy. 

The binding affinity of RPEL motifs in Phactr1 to actin was higher than the affinity 

previously observed for MRTF-A. In MRTF-A, RPEL1 and RPEL2 bound G-actin with 

affinities of 5.4 ± 0.5 µM and 2.3 ± 0.2 µM, respectively (Figure 3.5 A), whereas 

MRTF-A RPEL3 bound much weaker, with KD of only 18.8 ± 1 µM (Guettler et al., 

2008). In Phactr1, affinities for RPEL motifs within the RPEL domain were 0.9 ± 0.1 

µM for RPEL1, 4.34 ± 0.86 µM for RPEL2 and 0.27 ± 0.02 µM for RPEL3. The N-

terminal RPEL motif, RPEL-N bound actin with high affinity of 0.32 ± 0.05 µM. Taken 

together, this data shows that similarly to MRTF-A, Phactr1 binds G-actin through its 

RPEL motifs. However, RPEL motifs (N, 1 and 3) bind actin with higher affinities than 

in MRTF-A. Because MRTF-A regulation depends on the weak affinity of RPEL3 

(Guettler et al., 2008; Mouilleron et al., 2008; Mouilleron et al., 2011), our study 

suggests that the molecular mechanism of G-actin sensing by Phactr1 might be different.  

 

Having demonstrated that RPEL motifs in Phactr1 are G-actin binding elements, 

we determined how R->A substitution in each RPEL motif affected actin binding 

affinity. Similarly to MRTF-A, this mutation significantly reduced actin binding affinity 

of RPEL motifs. Affinities for RPEL1 and RPEL2 were reduced to non-detectable 

anisotropies, while RPEL3 was reduced almost 70 fold, and RPEL-N almost 30 fold 

(Figure 3.5 A).  
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3.2.5 RPEL motifs in Phactr2, 3 and 4 bind actin less efficiently 

 

Puzzled by the fact that Phactr2, 3 and 4 do not shuttle into the nucleus in 

NIH3T3 cells, we examined their distinct behaviour by investigating their affinity to G-

actin. Again, we employed fluorescence anisotropy assays to test the affinity of G-actin 

to the RPEL motifs in Phactr2, 3 and 4. Surprisingly, although the homology between 

the motifs across Phactr family is quite high (Figure 4.9 A), their binding affinities 

differed significantly. Between all four RPEL motifs in Phactr2, 3 and 4 there was 

always one RPEL motif that had either very low affinity or showed no affinity for G-

actin at all (Figure 3.5 B).  

 

RPEL motifs in Phactr2 show high affinity to G-actin, apart from RPEL2, where 

the KD is only 28.1 ± 4.02 µM. In Phactr3, RPEL motifs within the C-terminal RPEL 

domain bind G-actin with high affinities, but RPEL-N seems not to bind actin at all. 

Phactr4 has quite low affinity to actin overall, with RPEL-N and RPEL3 binding 

strongly, but RPEL2 with KD of 6.35 ± 0.61 and RPEL1 showing no binding.  

 

The above results suggest that the homology between RPEL motifs in the Phactr 

family is not sustaining the similarities in actin binding affinity. The differences in the 

manner of actin binding might explain the alternative behaviour of Phactr1 in 

comparison to other family members (see: ‘Discussion’).  
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Figure 3.5 Affinities of Phactr family RPEL motifs to G-actin.  

(A) Fluorescence anisotropy measurement of G-actin binding by the four wild-type Phactr1 

RPEL motifs and Phactr1 RPEL R/A (x) mutant motifs. (B) Fluorescence anisotropy 

measurement of G-actin binding by RPEL motifs in Phactr2, Phactr3 and Phactr4. Anisotropies 

of FITC-conjugated 32-amino acid RPEL peptides (0.5 mM) were measured over a range of 

LatB–actin concentrations. Graphs correspond to one of three experiments performed in 

duplicate. Dissociation constants (KD) are means of three independent experiments ± s.e.m. ND, 

binding not detectable. 
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3.2.6 RPEL domain is required for Phactr1 nuclear accumulation upon 

serum stimulation. 

 

To test the functional significance of actin binding to Phactr1 we sought to 

determine which domains in Phactr1 are required for Phactr1 nuclear accumulation. We 

transiently transfected NIH3T3 cells with various FLAG-tagged Phactr1 truncations and 

mutants (Figure 3.6). Firstly we demonstrated that neither deletion of RPEL-N 

(Phactr1ΔN) or R->A substitution at the conserved RPEL arginine in RPEL-N had an 

affect on the localisation of Phactr1, in unstimulated or serum-induced cells. Similarly, 

the deletion of proline-rich, middle region from Phactr1 (Phactr1Δm) had no significant 

effect on Phactr1 accumulation. In contrast, both deletion of RPEL domain 

(Phactr1Δ123) and triple R->A substitution (Phactr1-xxx) resulted in constitutive 

Phactr1 nuclear accumulation. However, deleting the C-terminal conserved PP1-

interacting sequence (Phactr1ΔC) had no effect. These data show that C-terminal RPEL 

domain is required for Phactr1 nuclear accumulation upon serum stimulation, but the N-

terminal RPEL motif is not required.  
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Figure 3.6 Domains required for Phactr1 nuclear accumulation.  

Localisation of Phactr1 deletion and point mutants in resting and serum-stimulated cells 

visualised by fluorescence microscopy and scored as in Figure 3.1 (c, cytoplasmic; n/c, pan-

cellular; n, nuclear). The Phactr1 derivatives are shown schematically below; RPEL motifs are 

shown in red or pale red, NLS sequences are shown in yellow, PP1 binding site is in green; WT, 

wild-type. R->A mutations in the RPEL motifs are indicated by ‘x’.  
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3.2.7 All three C-terminal RPEL motifs are required to maintain Phactr1 in 

the cytoplasm.  

 

It was previously shown that RPEL motifs in MRTF-A functionally cooperate in 

regulating MRTF-A activity (Guettler et al., 2008). Therefore, we investigated the role 

of individual RPEL motifs in the regulation of Phactr1. Because R->A mutations of the 

conserved arginine in RPEL motifs efficiently reduced G-actin binding, we introduced 

those mutations into the full-length Phactr1 (Figure 3.7 A).  

 

Within the C-terminal RPEL repeat, R->A mutation of RPEL1 (Phactr1-x23) or 

RPEL2 (Phactr1-1x3) had small effect on the localisation of Phactr1 in resting cells. In 

contrast, when introduced into RPEL3 (Phactr1-12x), R->A mutations caused nuclear 

accumulation of Phactr1. We next introduced pairwise combinations of RPEL1 and 

RPEL2 mutations (Phactr1-xx3), these exhibited a lower effect in comparison with 

pairwise combinations of RPEL3 and RPEL1 (Phactr1-x2x) and RPEL3 and RPEL2 

(Phactr1-1xx). To investigate the role of RPEL-N in this assay, we introduced an 

RPEL-N R->A mutation into all three single C-terminal RPEL R->A mutants. We 

found that this change had a small, additional effect on Phactr1 nuclear accumulation. 

Taken together these results demonstrate that RPEL motifs at the C-terminal cluster of 

Phactr1 are all required to maintain Phactr1 in the cytoplasm in unstimulated cells. 

Additionally, RPEL3 has a dominant role in this regulation while the N-terminal RPEL-

N seems to have minor function in this localisation assay.  

 

Studies of RPEL R->A mutations revealed that as the number of C-terminal R-

>A mutations increased, the number of NIH3T3 cells expressing Phactr1 mutants 

decreased (Figure 3.7 B). This result suggests that abolishing actin binding in Phactr1 

leads to toxicity. In comparison with WT Phactr1, Phactr1-xxx had the most toxic effect, 

together with RPEL3 pairwise mutants of RPEL1 (x2x) and RPEL2 (1xx). This data is 

consistent with our finding, that RPEL3 is the major contributor to actin-dependent 

Phactr1 regulation. This result suggests that the toxicity is caused by the loss of G-actin 

contacts within Phactr1 RPEL domain. 
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Figure 3.7 C-terminal RPEL motifs are required to maintain Phactr1 in the cytoplasm. 

(A) Localisation in starved and serum-stimulated cells of Phactr1 derivatives carrying RPEL 

motif R->A mutations, singly and in combination, scored as in Figure 3.1; The Phactr1 

derivatives are shown schematically below. (B) Expression levels of Phactr1 C-terminal RPEL 

R->A mutants. NIH3T3 cells were transfected with FLAG-tagged Phactr1 derivatives (shown in 

A) and expression levels assessed. Left, immunoblotting; nonspecific band (NS) allows 

comparison of relative Phactr1 expression level. Right, number of transfected cells detected per 

field for the different mutants. At least 75 cells were counted per point; error bars represent the 

s.e.m. of three independent experiments. 
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3.2.8 RPEL domain from Phactr1 cannot functionally replace the RPEL 

domain from MRTF-A.  

 

MRTF-A and Phactr1 contain three highly homologous tandem RPEL motifs. In 

MRTF-A, the RPEL domain confers nucleo-cytoplasmic shuttling. Because the Phactr1 

RPEL domain is required for the nuclear accumulation of Phactr1, I asked if it could 

functionally replace the RPEL domain in MRTF-A (Figure 3.8).  

 

I therefore replaced the RPEL domain in MRTF-A with the RPEL domain from 

Phactr1 (Figure 3.8 A) and assessed subcellular localisation of the ‘MRTF-A-Phactr1 

RPEL domain chimera’ in comparison with MRTF-A. Surprisingly, the domains are not 

replaceable, as the chimera did not accumulate in the nucleus upon serum stimulation, 

Leptomycin B (LMB) or Cytochalasin D (CD) treatment (Figure 3.8 B). This suggests 

that Phactr1 RPEL domain utilises a distinct mechanism to confer nuclear accumulation 

of Phactr1 than the RPEL domain in MRTF-A. Most probably, Importin α-β cannot 

efficiently bind to the RPEL domain from Phactr1 to confer MRTF-A import (see: 

‘Discussion’).  

 

When only RPEL3 in MRTF-A was replaced by the high-actin-affinity Phactr1 

RPEL3 (‘MRTF-A RPEL3-Phactr1 chimera’), and the NLS of MRTF-A was not 

changed, the behaviour of MRTF-A was not affected in the localisation assay 

(preliminary observation, Figure 7.3). Taken together, these results suggest that the 

molecular mechanism of Phactr1 import might be different. To test this hypothesis we 

next examined Phactr1 nuclear import machinery.  
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Figure 3.8 Phactr1 RPEL domain is not functionally replaceable.  

(A) Schematic representation of the constructs used to perform the assay. As a control, HA-

tagged MRTF-A construct was used; ‘MRTF-A-Phactr1 RPEL domain chimera’ was also HA-

tagged (for construct generation, see; ‘Materials and methods’); RPEL motifs from Phactr1 are 

shown in orange and MRTF-A RPEL motifs are coloured in red (junctions are: N-terminal 

(MRTF-A) …HRGRNPN//LAMKVCR… (Phactr1), C-terminal (Phactr1) …FSDYVEV// 

IIVGQVN… (MRTF-A); other domains are labeled as in Figure 1.8 (MRTF-A) and Figure 

1.16 (Phactr1). (B) Subcellular localisation of MRTF-A and ‘MRTF-A-Phactr1 RPEL domain 

chimera’ in starved and stimulated cells and upon 10 µM Cytochalasin D (CD) and 30 nM 

Leptomycin B (LMB) treatment visualised by immunofluorescence.  
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3.3 Phactr1 nuclear import 

 

3.3.1 Two nuclear localisation signals in Phactr1 are recognised by the 
PredictProtein algorithm  

 

3.3.1.1 The PredictProtein server 

 

PredictProtein is a widely used online tool, designated for protein sequence 

analysis (Rost et al., 2004). Since 1999, it has been the standard protein structure and 

function prediction server. Currently, PredictProtein deals with multiple protein 

alignments, predicting protein domains and unusual regions, evaluating secondary 

structure of the protein with high accuracy and, most importantly, assessing protein 

domains function. It has been reported that PredictProtein server is very accurate in 

finding NLS sequences (Rost et al., 2004). To investigate the mechanism of Phactr1 

nuclear import, we therefore employed PredictProtein to find potential NLSs within 

Phactr1 sequence.  

 

3.3.1.2 NLS sequences found with PredictProtein algorithm. 

 

Having found a reliable tool to investigate presence of NLS sequences in 

Phactr1, we analysed Phactr1 sequence using PredictProtein algorithm. Within full-

length Phactr1 we were able to characterise two separate basic sequences as potential 

NLSs. The first sequence, B1 (108RRRSKFANLGRIFKPWKWRKKK129) is located at 

the N-terminus of Phactr1 and the second one, B2 (493KREIKRRL500) is close to the C-

terminus (Figure 1.16). Previous studies have shown that there are two types of 

common nuclear localisation signals: (1) monopartite, which contain one sequence of 

basic residues and (2) bipartite, which contain two short basic sequences separated by a 

linker (Dingwall and Laskey, 1991; Robbins et al., 1991). We therefore speculated that 
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the B1 sequence represents a bipartite NLS with two basic sequences (108RRR110) and 

(126RKKK129) flanking a linker. In contrast, B2 sequence would represent a monopartite 

NLS. In order to test this hypothesis, we performed mutagenesis of these sequences and 

examined the nuclear accumulation of Phactr1.  

 

3.3.2 Nuclear accumulation of Phactr1 is mediated by two RPEL-
associated nuclear localisation signals. 

 

We firstly deleted the B1 region in Phactr1 (Phactr1ΔB1) to test the effect on 

nuclear accumulation of Phactr1. In serum-stimulated cells, Phactr1ΔB1 was almost 

completely cytoplasmic, which suggests that the B1 region is required to promote 

nuclear import of Phactr1. Within the B1 sequence, the highest level of homology is 

seen at the basic flanking sequences. The B1 N-terminal flanking sequence: 108RRR110 

in Phactr1 is represented in both Phactr2 and Phactr4 by “KRK” and in Phactr3 by 

“RRN”. The C-terminal basic region of B1: 126RKKK129 is identical in all Phactr family. 

We therefore sought to substitute basic residues in those regions with clusters of 

alanines (Figure 3.9). The N-terminal B1 mutant RRR108-110AAA (R3A) was 

constitutively cytoplasmic as was the KKK127-129AAA (K3A) C-terminal B1 basic 

cluster mutant. When the mutations were combined, the R3A,K3A mutant also 

exhibited constitutive cytoplasmic localisation (Figure 3.9). This result suggests that 

two clusters of basic residues in B1 sequence are responsible for the maintenance of 

Phactr1 import.  

 

To examine the presence of the C-terminal NLS, we performed mutagenesis of 

the B2 region (Figure 3.9). We mutated the three first amino acids of the predicted 

sequence into an alanine cluster: KRE493-495AAA (KRE/3A) and found that this 

mutant did not accumulate in the nucleus as efficiently as WT Phactr1. Mutation of 

subsequent three amino acids in B2: KRR497-499AAA caused even more significant 

inhibition of Phactr1 nuclear accumulation (Figure 3.9).  
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Interestingly, the B1 sequence is in high proximity to RPEL-N, a G-actin 

interaction site. Similarly, the B2 region overlaps with RPEL3. It was previously shown 

that the nuclear localisation signal in MRTF-A is also located within the RPEL motifs 

(Pawlowski et al., 2010). We therefore sought to test how the actin-free, constitutively 

nuclear Phactr1 mutant (Phactr-xxx) behaves in the context of NLS mutations. We 

combined the cytoplasmic B1 mutant K3A with the xxx mutation (Figure 3.9) and 

found that Phactr1-xxxK3A was predominantly nuclear in unstimulated cells. This 

suggests that abolishing acting binding uncovers the B2 region. We then combined 

xxxK3A mutations with the B2 mutation KRE/3A to achieve complete inhibition of 

Phactr1 import. In this case, Phactr1-xxxK3A,KRE/3A was indeed much more 

cytoplasmic, but the inhibition of nuclear import was not complete. However, we noted 

that this mutant did not respond to signal, suggesting that its import signals are severely 

impaired. The fact that we were not able to inhibit import completely in this context 

might suggest that further, weak import signals are present in Phactr1 (see: 

‘Discussion’).  
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Figure 3.9 Nuclear localisation signals in Phactr1. 

(Top) Schematic representation of Phactr1 mutants, showing wild-type and mutant Phactr1 

nuclear localisation signals B1 and B2. (Bottom) Localisation of different Phactr1 NLS mutants 

in resting and serum-stimulated cells, assessed as in Figure 3.1; WT, wild-type; mutants are 

described in the text.  
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3.3.3 Importin β is required for serum induced Phactr1 nuclear 

accumulation. 

 

Having identified sequences responsible for mediating Phactr1 import, we next 

sought to determine the nuclear import pathway, which is utilised by Phactr1. The most 

common nuclear import pathway involves a heterodimer of Importinα (Impα) and 

Importinβ (Impβ) with up to 50% of receptor-mediated protein import events in the cell 

utilising this machinery (Lange et al., 2007). It was previously demonstrated that Impα 

–Impβ heterodimers are required and sufficient for MRTF-A nuclear import. Because 

both Phactr1 and MRTF-A accumulate in the nucleus in response to Rho-actin 

signalling and cellular G-actin levels, we hypothesised that they might also exploit 

similar nuclear import machinery. To test this hypothesis we used the RNA interference 

approach to knockdown endogenous Impβ in NIH3T3 fibroblasts and monitored 

Phactr1 nuclear accumulation (Figure 3.10 A and B). Depletion of Impβ1 completely 

abolished serum-induced Phactr1 nuclear accumulation, suggesting that the nuclear 

import of Phactr1 is Importin α–β dependent (Figure 3.10 B) (depletion of Impβ1 was 

performed by Jessica Diring). 

 

To directly test the interaction between Phactr1 and Impα –Impβ heterodimer, 

we employed an Impα–β pull-down assay. We expressed GST-fusion Phactr1 

derivatives containing two truncated constructs of Phactr1 (Figure 3.10 C). GST-

Phactr1-N171 contained the B1 region together with RPEL-N while GST-Phactr1-392C 

consisted of the triple RPEL domain and the C-terminal PP1-binding region. Because 

we previously found that the middle region of Phactr1 is not required for Phactr1 import, 

we did not include it is the assay. Consistent with the Impβ1 knockdown experiment, in 

pulldown assay, Phactr1 derivatives efficiently recovered recombinant Impα–β from 

solution (Figure 3.10 C) (Impα–β pulldown assay was performed by Jessica Diring). 
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3.3.4 Importin α-β and actin compete for binding to the Phactr1 N- and C-

terminal regions.  

 

During previous studies of MRTF-A we learned that G-actin binding RPEL 

motifs and Impα–β binding sites overlap. Pawlowski and colleagues showed a 

molecular mechanism for MRTF-A nuclear import, where monomeric actin competes 

with Impα-Impβ complex for binding the RPEL domain of MRTF-A (Pawlowski et al., 

2010).  

 

We reasoned that due to the overlap of the B2 region and the RPEL3 motif as 

well as close proximity of RPEL-N and the B1 region, G-actin might be in direct 

competition with Impα-Impβ heterodimer. Therefore, we titrated latrunculinB-actin (G-

actin) against constant amounts of N-terminal (GST-Phactr1-N171) and C-terminal 

(GST-Phactr1-392C) Phactr1 in the Impα/Impβ pulldown assays. The addition of G-

actin to the binding reaction effectively competed for binding with both Impα and Impβ 

(Figure 3.10 C).  

 



Chapter 3 Molecular mechanisms of Phactr1 regulation 

 

 191 

 
 

Figure 3.10 Impα–β-dependent import signals in Phactr1 are actin dependent. 

(A) Depletion of Imp-β shown by western blotting. (B) Localisation of wild-type Phactr1 in 

resting and serum-stimulated cells with or without Imp-β depletion showing requirement of 

Imp-β activity for Phactr1 nuclear accumulation in NIH3T3 cells; localisation was assessed as 

in Figure 3.1. (C) Actin competes with Impα–Impβ for binding to the Phactr1 N- and C-termini. 

GST-Phactr1 fusion derivatives containing either the N- or C-terminal NLS elements 

(schematic representation of Phactr1 showing wild-type Phactr1, GST-Phactr1 N171 and GST-

Phactr1 392C is shown on top) were used for pulldown of recombinant Impα or Impβ in the 

presence of increasing amounts of LatB–actin. Bound proteins were analysed by 

immunoblotting. Performed by Jessica Diring.  
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Taken together, these data elucidate the presence of two Impα-β-dependent 

nuclear import signals (B1 and B2) in Phactr1 and shows that Impα-β heterodimer 

competes with actin for Phactr1 binding similarly to MRTFs (Hirano and Matsuura, 

2011; Pawlowski et al., 2010). Because NLSs in Phactr1 are associated with the N- and 

C-terminal RPEL motifs, we hypothesised that the integrity of both RPEL-N and the 

RPEL domain might be required for Phactr1 regulation.  

 

3.3.5 Inhibition of Phactr1 accumulation by elevated actin requires both 

RPEL-N and the RPEL domain. 

 

Studies of MRTF-A interaction with actin allowed us to understand how actin 

regulates nuclear accumulation of MRTF-A and activity of SRF. When the 

concentration of cellular G-actin was artificially elevated by the expression of a R62D 

non-polymerising actin mutant, the nuclear accumulation of MRTF-A was blocked 

(Miralles et al., 2003; Posern et al., 2002; Sotiropoulos et al., 1999). The organisation of 

actin binding sites in Phactr1 is fundamentally different from that in MRFT-A, as the 

single RPEL-N motif is separated from the RPEL domain by the relatively long middle 

region of the protein, containing around 250 amino acids. We have already shown that 

subtle R->A mutation of RPEL-N or deletion of the whole RPEL-N sequence has no 

effect on Phactr1 nuclear accumulation in serum-induced cells (Figure 3.6). Because we 

found that both the N-terminal and the C-terminal regions mediate Phactr1 import and 

Impα-β compete with actin binding for those sites, we tested the behaviour of RPEL 

domain and RPEL-N deletions during artificial actin elevation (Figure 3.11).  

 

Firstly, we tested the localisation of Phactr1 upon overexpression of wild-type actin. 

We found that elevating actin levels in cells leads to inhibition of Phactr1 nuclear 

accumulation. Similarly, when the G-actin level was elevated through addition of R62D 

actin, Phactr1 import was blocked. Deletion of the entire RPEL domain in Phactr1 

(Δ123) led to constitutive nuclear localisation and elevating actin levels had no 

inhibitory effect in this context. When we deleted RPEL-N (ΔN), this mutant was much 

less susceptible to actin overexpression in comparison with wild-type Phactr1 (Figure 
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3.11 B and C). This result shows that overexpression of actin inhibits Phactr1 nuclear 

accumulation and that this inhibition requires the integrity of both RPEL-N and the C-

terminal RPEL domain. We therefore suggest that saturation of all the G-actin binding 

sites in Phactr1 is required for efficient inhibition of its nuclear accumulation in the 

context of actin overexpression. Moreover, this finding is consistent the view that actin 

binding to the RPEL domain in essential for maintaining Phactr1 in the cytoplasm.  
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Figure 3.11 Actin-mediated inhibition of Phactr1 nuclear accumulation. 

Integrity of both RPEL-N and the C-terminal RPEL domain is required for the inhibition of 

Phactr1 nuclear accumulation by actin overexpression. (A) Schematic representation of 

constructs used in the localisation assay; deletion of RPEL domain (Δ123); deletion of RPEL-N 

(ΔN). (B) Phactr1 derivatives were co-expressed with wild-type actin or non-polymerisable 

actin R62D and their localisation before and after serum stimulation was scored as in Figure 3.1. 

(C) Immunofluorescence microscopy images representing cells scored in part B.  
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3.4 Phactr1 interaction with PP1 

 

3.4.1 Activated Phactr1 interacts with PP1 

 

It was previously shown that Phactr family of proteins interact with Protein 

Phosphatase 1 (PP1), but the relevance of this interaction and the mechanism of PP1 

binding was not well understood (Allen et al., 2004; Sagara et al., 2009; Sagara et al., 

2003). Because Phactr proteins bind actin through RPEL motifs, with the C-terminal 

RPEL domain playing a dominant role, we were intrigued that the PP1 binding site 

overlapped with the RPEL domain (Sagara et al., 2003). Consequently, we undertook a 

biochemical analysis of the PP1 binding region in Phactr1, to determine its role and 

mechanism of PP1 interaction.  

 

We have previously learned that Phactr1 responds to stimulus by accumulating 

in the nucleus in NIH3T3 cells. Therefore, we first attempted to investigate the 

localisation of PP1 in this cell line. Because PP1 is a protein ubiquitously expressed in 

all tissues, we characterised the localisation of endogenous PP1. Using 

immunofluorescence microscopy, we visualised PP1 in the cells that were transiently 

expressing wild-type and constitutively nuclear Phactr1-xxx, before and after serum 

stimulation. We found that the localisation of endogenous PP1 was not altered in 

response to serum and PP1 was primarily nuclear with some diffuse cytoplasmic 

staining (Figure 3.12 A). However, when Phactr1 was localised in the nucleus, the 

nuclear staining of PP1 was much more defined. We could observe strong co-

localisation of Phactr1 and PP1 in the nucleus of NIH3T3 cells.  

 

This finding suggests that Phactr1 and PP1 might interact in the nucleus. To test 

this hypothesis we used a co-immunoprecipitation assay, where we expressed Phactr1 

and PP1 and determined the recovery of wild-type and Phactr1-xxx before and after 

serum stimulation. Adding serum, which induces nuclear accumulation of wild-type 

Phactr1, significantly increased recovery of Phactr1 in PP1 immunoprecipitates. In 
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contrast, the interaction between constitutively nuclear Phactr1-xxx and PP1 was 

considerably stronger than between wild-type Phactr1 and PP1, and it did not increase 

upon stimulus (Figure 3.12 B).  
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Figure 3.12 Activated Phactr1 interacts with PP1.  

(A) Subcellular localisation of PP1. PP1 was visualised by fluorescence microscopy in cells 

transfected with FLAG-tagged wild-type Phactr1 (WT) or Phactr1-xxx before and after serum 

stimulation. (B) Nuclear accumulation of Phactr1 correlates with increased PP1 binding. Cells 

were transfected with wild-type Phactr1 or Phactr1-xxx and HA-tagged PP1; interaction 

between PP1 and Phactr1 before and after serum stimulation was monitored by quantitative 

immunoblotting of immunoprecipitates with FLAG and HA antibodies using ImageQuant 

Analysis Software (AU, arbitrary units). 
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3.4.2 The RPEL domain in Phactr1 is required for PP1 binding 

 

Since the PP1-binding C-terminal sequence is located immediately next to the 

actin-binding site, we attempted to investigate the requirement of the RPEL domain for 

PP1 binding. To address this issue, we performed co-immunoprecipitation assays in 

resting NIH3T3 fibroblasts, where we co-expressed PP1 with the four mutants and/or 

truncations of Phactr1 (Figure 3.13 A). Consistent with our previous result, when 

Phactr1-xxx was expressed we could observe protein interaction, but no interaction was 

detected when Phactr1-xxx lacked the C-terminal region (xxxΔC). Deletion of the 

RPEL domain from Phactr1 (Δ123) was also sufficient to abolish the recovery of 

Phactr1 in PP1 immunoprecipitates. This result shows that Phactr1 lacking its RPEL 

domain, even though it is constitutively nuclear, is not able to bind PP1. Furthermore, 

the C-terminal deletion is sufficient to abolish binding of PP1 to both wild-type and 

Phactr1-xxx (Figure 3.13 B).  

 

3.4.3 Actin and PP1 bind competitively to Phactr1 

 

The results presented above show that the RPEL repeat and the conserved C-

terminal region are both required for the interaction with PP1. This finding is consistent 

with previous study of Phactr3 (Sagara et al., 2003) and suggests that actin might 

compete with PP1 for Phactr1 binding. To verify that possibility, we tested the PP1-

Phactr1 interaction directly. We co-expressed the GST-Phactr1 C-terminal fusion and 

PP1 in bacteria (Figure 3.13 B), and added increasing amounts of LatB-actin to the 

GST-Phactr1-PP1 complex. As a result, LatB-actin efficiently competed with PP1 for 

binding. To control the specificity of the interaction, we utilized cytochalasin D, whose 

binding site on actin overlaps that of the RPEL motif (Mouilleron et al., 2008; Nair et 

al., 2008; Vartiainen et al., 2007). Cytochalasin D was able to substantially impair the 

competition between actin and PP1. Previous co-immunoprecipitation assays showed 

that the PP1-Phactr1 interaction is less efficient than PP1-Phactr1-xxx interaction, 
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which suggests that even lower G-actin concentrations are sufficient to effectively 

compete with PP1 for Phactr1 binding. 
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Figure 3.13 Actin and PP1 bind competitively to Phactr1. 

(A) Phactr1 interaction with PP1 requires both the RPEL domain sequences and the conserved 

C-terminal sequences. Interaction between the indicated Phactr1 mutants (top) and PP1 in 

serum-starved cells was monitored by co-immunoprecipitation assay as in Figure 3.12 B. (B) G-

actin competes directly with PP1 for Phactr1 binding. GST-Phactr1 392C and PP1 were co-

expressed in bacteria (GST fusion is schematically shown on the top). The resulting complex 

was purified and incubated with increasing amounts of LatB–actin in the presence or absence of 

100 mM cytochalasin D. GST-Phactr1 392C-bound proteins were recovered by pulldown and 

analysed by Coomassie blue staining or immunoblotting (WB). GST pulldown performed by 

Jessica Diring.  
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3.4.4 Phactr1-PP1 interaction induces actomyosin rearrangements in 

NIH3T3 fibroblasts. 

 

Abolishing actin binding in Phactr1 has a toxic consequence in NIH3T3 

fibroblasts (Figure 3.7 B). Because loss of actin binding enhances the interaction 

between Phactr and PP1, this effect might be linked to Phactr1-dependent PP1 

behaviour. Consistent with this idea, we observed striking actomyosin rearrangement in 

the cytoplasm of cells expressing constitutively nuclear Phactr1-xxx. We analysed the 

appearance of the phenotype in the context of Phactr1-PP1 interaction and examined the 

connection between the observed phenotype and nuclear localisation of Phactr1.  

 

3.4.4.1 Phactr1-xxx expression induces actomyosin foci and thickened 

fibres 

 

Analysis of F-actin localisation in cells expressing Phactr1-xxx led to the 

discovery of actin rearrangements in the cytoplasm of NIH3T3 cells. Deletion of the 

PP1-binding C-terminal region (xxxΔC) abolished the formation of F-actin 

rearrangement (Figure 3.14 A). Interestingly, we observed two similar types of 

rearrangements in cells expressing Phactr-xxx,  ‘foci’ and ‘thick fibres’ (Figure 3.14 A). 

Presumably, this is the appearance of the same phenotype, but one shows much more 

punctate staining (foci) and the other appears as bright lines of phalloidin staining (thick 

fibres).  

 

Similar F-actin phenotypes were previously observed when the N-terminal 

catalytic domain of ROCK was expressed (Sahai et al., 1998). In addition, 

overexpression of ROCK in HeLa cells promoted formation of stress fibres and 

adhesion complexes (Leung et al., 1996). Phalloidin staining of those HeLa cells 

showed actin rearrangements that were analogous to those observed upon activated 

Phactr1 expression. Because ROCK is a potent kinase of MLC (Amano et al., 1996), we 

co-transfected cells with Phactr1-xxx and MLC-GFP and stained cells with an antibody 
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against MLC. This staining revealed that the F-actin rearrangements induced by 

Phactr1-xxx expression contained MLC (Figure 3.14 E and F). Taken together these 

data indicate that the presence of aberrant fibres in the cytoplasm of cells expressing 

Phactr1-xxx contain both F-actin and myosin, and that their formation is dependent on 

PP1 binding to Phactr1.  

 

Analysis of the phenotype caused by Phactr1-xxx expression led us to notice the 

appearance of a similar, but less pronounced phenotype in stimulated cells expressing 

wild-type Phactr1 (Figure 3.14 C). This phenotype was observed in only low frequency 

of untransfected cells (Figure 3.14 D). Because this phenotype differed from the one 

induced by Phactr-xxx, it was referred to as ‘bright fibre’. Confirming the requirement 

of PP1-Phactr1 interaction, deletion of the PP1 binding site abolished the formation of 

actomyosin rearrangements (Figure 3.14 D).  
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Figure 3.14 Active Phactr1 induces actomyosin assembly in fibroblasts. 

(A) NIH3T3 cells transfected with the FLAG-tagged Phactr1-xxx and Phactr1-xxxΔC were 

maintained in 0.3% FCS for 20 hours before visualisation of Phactr1 and F-actin by 

fluorescence microscopy. The actomyosin phenotypes were scored as ‘Foci’, ‘Thick Fibres’ or 

‘none’; further examples of specimen phenotypes are shown in Figure 3.15. (B) Quantitation of 

cytoskeletal phenotypes in cells expressing Phactr1-xxx and Phactr1-xxxΔC scored according to 

Phactr1 subcellular localisation (N, N/C or C as in Figure 3.1; 100 cells per experiment; error 

bars, s.e.m. of three independent experiments; NA, not applicable). (C) ‘Bright-fibre’ F-actin 

phenotype in NIH3T3 cells expressing exogenously wild-type Phactr1 (WT) after 1 hour of 

serum stimulation. Further examples of specimen phenotypes are shown in Figure 7.1. (D) 

Quantitation of ‘bright-fibre’ phenotypes in cells expressing Phactr1-WT or Phactr1ΔC, scored 

as in B. Phenotypes of serum-stimulated untransfected cells (NT) are scored on the right. (E) 

MLC rearrangement upon expression of constitutively active Phactr1-xxx (xxx, shown on the 

left), but not C-terminal deletion mutants (xxxΔC, shown on the right). Cells were transfected 

with the indicated FLAG-tagged Phactr1 derivatives alone (bottom panel) or together with 

MLC-GFP (top panel) and maintained in 0.3% serum for 20h, with or without stimulation with 

15% serum, before visualisation of Phactr1, MLC-GFP and/or F-actin.  (F) For simultaneous 

view of F-actin, MLC and Phactr1-xxx, cells were transfected with FLAG-tagged Phactr1-xxx 

and GFP- MLC (as in top panel of part E) before visualization of Phactr1 (blue), F-actin (red), 

and MLC-GFP by fluorescence microscopy.  
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3.4.4.2 Actomyosin rearrangements requires nuclear localisation of 

Phactr1 

 

We noted that formation of actomyosin structures in the cytoplasm of NIH3T3 

cells was strictly linked to nuclear localisation of Phactr1 (Figure 3.14 B and D). We 

evaluated this association by quantifying the number of transfected cells containing 

each version of the phenotype (‘foci’, ‘thick fibres’ and ‘bright fibres’) and expressing 

Phactr1 in different compartments (Figure 3.14 B and D). Because (1) Phactr1-xxx is 

predominantly nuclear, (2) Phactr1-xxxΔC expression does not promote formation of 

actomyosin structures and (3) phenotype caused by wild-type Phactr1 is less 

pronounced, these constructs did not provide enough insight into the relationship 

between Phactr1 nuclear localisation and cytoskeletal rearrangements.   

 

However, during the analysis of Phactr1 import, we designed a nuclear 

localisation mutant - Phactr1-xxxK3A,KRE/3A, which was nuclear in small proportion 

of cells (Figure 3.9 and 3.15 A). We therefore took advantage of this mutant to gain 

insight into the relationship between the occurrence of actomyosin phenotypes and 

Phactr1 nuclear localisation. Cells exhibiting predominantly nuclear Phactr1-

xxxK3A,KRE/3A had a greater preponderance of actomyosin rearrangement than those 

in which this mutant was cytoplasmic (Figure 3.15 B and C). This data shows that 

actomyosin structures are formed when Phactr1 is localised in the nucleus.  
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Figure 3.15 Nuclear Phactr1 induces actomyosin rearrangements. 

Localisation of actin-free NLS mutant Phactr1-xxxK3A,KRE/3A in NIH3T3 cells reveals a 

correlation between nuclear localisation and aberrant actomyosin structures. (A) Schematic 

representation of Phactr1-xxxK3A,KRE/3A construct shown as in Figure 3.9. (B) Cells were 

transfected with FLAG-tagged Phactr1-xxxK3A,KRE/3A and maintained in 0.3% serum for 

20h before visualisation of Phactr1 and F-actin. Subcellular localisation of Phactr1 in each 

transfected cell was scored as N (nuclear), N/C (pan-cellular) or C (cytoplasmic) and the 

actomyosin phenotypes were scored as ‘foci’, ‘thick fibres’ or ‘no phenotype’. Three 

representative images for each phenotype are shown. (C) Summary of the data as in Figure 3.14 

B.  
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3.4.4.3 Phactr1 interacts with PP1 to induce MLC phosphorylation 

 

We have shown that PP1 binding to Phactr1 is required for the formation of 

actomyosin rearrangements in the cytoplasm of NIH 3T3 cells following Phactr1 over-

expression. The thickened actomyosin fibres contained both F-actin and MLC, which 

might suggest a defect in the regulation of actomyosin contractility. To investigate this 

idea, we analysed the phosphorylation state of myosin II regulatory light chain (MLC) 

and the ATPase activity of Myosin II – two crucial aspects in the regulation of 

actomyosin contractility (Figure 3.16 A). 

 

The activation of myosin II depends on the phosphorylation of its light chain 

(MLC). Several different kinases phosphorylate MLC at two highly conserved residues, 

T18 and S19, therefore promoting actomyosin contractility (Matsumura, 2005). The 

best-known kinases involved in this process include ROCK and MLCK (myosin light 

chain kinase). In addition, ROCK can inhibit myosin phosphatase activity, which leads 

to higher phosphorylation status of MLC on those two residues (for review, see (Ito et 

al., 2004) and section: ‘Actomyosin contractility’).  

 

To investigate the role of Phactr1 in the regulation of actomyosin contractility, 

we evaluated the phosphorylation status of T18 and S19 upon expression of Phactr1-xxx. 

Because expression of Phactr1-xxx in NIH3T3 fibroblasts has a toxic effect on them 

and affects protein amounts, we quantified the phosphorylation state in relation to the 

expression of MLC-GFP. The proportion of co-expressed MLC-GFP phosphorylated at 

T18 and S19 was increased two-fold by the expression of Phactr1-xxx (Figure 3.16 B). 

This result suggests that Phactr1 interacts with PP1 to induce actomyosin 

phosphorylation.  

 

Contractility in cells arises from the interaction between F-actin filaments, 

molecular motor Myosin II and crosslinkers. To become a part of the contractile 

machinery, Myosin II must form a multimer (Sellers, 2000). In addition, Myosin II 

achieves motor activity through its heavy chain (the N-terminal ‘head’ region), which 

contains ATP binding sites. The ATPase activity of myosin II is linked to the 
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continuous attachment and detachment of F-actin filaments (Rayment et al., 1993). 

ATPase activity is therefore crucial for actomyosin formation. Firstly, ATPase mediates 

hydrolysis of ATP and phosphate release to promote actin movement by conformational 

change. Secondly, it promotes ADP dissociation and facilitates detachment of the 

myosin motor from actin. 

 

To better understand the role of Phactr1 in actomyosin assembly, we used a 

specific inhibitor of myosin II ATPase activity – blebbistatin (Straight et al., 2003) 

(Figure 3.16 A). Blebbistatin is widely used in the fields of cell motility and muscle 

physiology as it is permeable to cell membranes and can inhibit both muscle and non-

muscle myosin II without targeting other myosins. The inhibitory effect of blebbistatin 

is achieved by binding to the myosin-ADP-Pi complex, blocking phosphate release. 

Blebbistatin acts directly on ATPase activity, which has many implications in in vivo 

studies (Kovacs et al., 2004) (Figure 3.16 B). After expressing Phactr1-xxx in NIH3T3 

cells, we treated the cells with blebbistatin. Actomyosin structures formed upon active 

Phactr1 expression rapidly dispersed upon treatment with blebbistatin (Figure 3.16 C). 

This result is consistent with the presence of MLC in the F-actin structures.  
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Figure 3.16 Phactr1 interacts with PP1 to induce actomyosin contractility through MLC 

phosphorylation. 

(A) MLC-T18S19 phosphorylation and Myosin II ATPase activity are crucial for actomyosin 

crosslinking; blebbistatin specifically inhibits Myosin II ATPase activity (for details, see text). 

(B) Phactr1-xxx expression increases MLC-T18S19 phosphorylation. NIH3T3 cells expressing 

the indicated FLAG-tagged Phactr1 derivatives and MLC-GFP were maintained in 0.3% FCS, 

and cell lysates were analysed by quantitative immunoblotting using anti-Phospho-MLC2 

(T18/S19) and anti-MLC2 antibodies (AU, arbitrary units). Note that Phactr1-xxx is expressed 

at a significantly lower level. Error bars represent the s.e.m. of three independent experiments. 

(C) Rapid dispersal of aberrant actomysin structures in Phactr1-xxx-expressing NIH3T3 cells 

following treatment with 20 µM blebbistatin.  
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3.5 Conclusions 

 

In this chapter, I have presented the role of G-actin binding in the regulation of 

RPEL protein, Phactr1 in NIH3T3 fibroblasts. Rho-actin signalling induced nuclear 

accumulation of Phactr1, but not other Phactr family members. The RPEL domain in 

Phactr1 was required for the nuclear accumulation of Phactr1. I have uncovered a role 

for two basic sequences in Phactr1 and characterised them as nuclear localisation 

signals, an Importin α-β interaction sites. Actin effectively competed with Importin α-β 

for Phactr1 binding, therefore mediating its nuclear accumulation.  

 

I also showed that Phactr1 binding to PP1 causes actomyosin rearrangement in 

NIH3T3 fibroblasts. Moreover, G-actin competes with PP1 for Phactr1 binding thus 

having regulatory function. The nuclear localisation of Phactr1 correlated with the 

appearance of actomyosin phenotypes and we suggest that Phactr1 binds PP1 in the 

nucleus of NIH3T3 cell, where PP1 is predominantly localised. Lastly, I showed that 

the expression of active Phactr1 promotes actomyosin contractility through 

phosphorylation of MLC at S19 and T18. Because the activity of Phactr1 depends on its 

association with G-actin, I will now present molecular details of this interaction.  
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Chapter 4. Structural analysis of Phactr1 interaction 

with actin 

 

4.1 Aims 

 

The G-actin binding RPEL motifs play crucial roles in the regulation of Phactr1 

localisation and activity. Having shown the molecular mechanism of Phactr1 nuclear 

accumulation and its interaction with PP1, we now sought to analyse structural details 

of Phactr1 interaction with G-actin. The structural approach to study RPEL motifs has 

previously proven to effectively illustrate how the nucleocytoplasmic shuttling of 

another RPEL protein, MRTF-A is regulated by actin (Mouilleron et al., 2008; 

Mouilleron et al., 2011).  

 

In resting cells, MRTF-A is kept in the cytoplasm by actin and the Crm1-

dependent nuclear export machinery, but it shuttles to the nucleus upon signal-induced 

depletion of the G-actin pool (Vartiainen et al., 2007). Transcriptional activity of 

MRTF-A is critically regulated by actin binding to three RPEL motifs located at the N-

terminus of the protein (Guettler et al., 2008; Miralles et al., 2003; Vartiainen et al., 

2007). In addition, artificial elevation of the G-actin concentration in the cell inhibits 

MRTF-A import. Structural studies showed that the RPEL domain from MRTF-A binds 

five G-actin molecules to form a pentavalent G-actin•RPELMRTF-A complex with one 

actin binding to each of the three RPEL motifs and additional actins interacting with the 

intervening spacers. Within the pentavalent complex, the NLS sequences B2 and B3 are 

occluded by actin and not accessible to Importin α-β (Hirano and Matsuura, 2011; 

Mouilleron et al., 2011). The pentavalent G-actin•RPELMRTF-A complex is unstable in 

solution, but a trivalent G-actin•RPELMRTF-A complex, lacking G-actin binding to 

RPEL3 and Spacer2 is stable. Structural analysis of these complexes led to the proposal 

of the MRTF-A regulation model by G-actin (Figure 1.11).  
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We used X-ray crystallography to study Phactr1:G-actin interaction at a molecular 

level and to better understand the role of actin in Phactr1 regulation. Crystallography of 

G-actin•Phactr1 complexes and structural analyses shown here were performed in 

collaboration with Stephane Mouilleron, a postdoc form Neil McDonald’s Structural 

Biology Laboratory at the LRI.  

 

4.2 G-actinRPELPhactr1 domain complex 

 

To gain insight into the mechanism of G-actin binding by the RPEL motifs in 

Phactr1, we firstly focused on the C-terminal actin-binding site - the RPEL domain 

(referred to here as RPELPhactr1), which contains amino acids 414-528 from Phactr1 

(Figure 4.1). This sequence is required to confer Phactr1 nuclear accumulation and is 

highly similar the RPEL domain from MRTF-A (Figure 4.1 B). We expressed 

RPELPhactr1 domain in bacteria and evaluated its ability to bind rabbit skeletal muscle α-

actin / Mg•ATP / Latrunculin B (referred to here as G-actin). Before crystallization, G-

actin-binding properties of RPELPhactr1 domain were assessed by size exclusion 

chromatography and multi-angle laser light scattering (SEC-MALLS).  
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Figure 4.1 Phactr1 and MRTF-A RPEL domains.  

(A) Schematic representation of Phactr1 and MRTF-A conserved sequences, shown as in Figure 

1.8 and Figure 1.16. (B) Domain structure of Phactr1 and MRTF-A RPEL domains; RPEL 

motifs are show as red boxes; NLS elements are shown as dark grey, secondary structure is 

indicated and shows helices α1- α6 (red).  

  



Chapter 4 Structural analysis of Phactr1 interaction with actin 

 

 217 

4.2.1 Complex stoichiometry 

 

4.2.1.1 Size exclusion chromatography  

 

In order to form G-actinRPELPhactr1 complex we employed size exclusion 

chromatography (SEC). This technique separates molecules based on their molecular 

weight by subsequent exclusion from the pores that form the core of the SEC packing 

material. The profile is compared to the chromatography of sample molecules with 

known molecular weights. Because bigger molecules have less access to the porous 

matrix, they are eluted from the column much quicker than the smaller molecules. 

Small molecules have access to the pores and need more time to be efficiently eluted. 

SEC is a technique widely used in the fields of proteomics, biochemistry and cell 

biology, especially a form of SEC used for the separation of molecules in aqueous 

solution, gel filtration chromatography.  

 

4.2.1.2 SEC-MALLS 

 

To precisely measure the molecular weight of the obtained complex, we coupled 

gel filtration to multi-angle laser light scattering (SEC-MALLS). This technique allows 

measurement of the average molecular weight of the complex in solution by detecting 

how particles scatter light. The scattered light is detected at multiple angles by an array 

of detectors, which allows fast and accurate measurement. This technique essentially 

differs form classical light scattering, which takes longer and is less precise, because 

single moving detector is used. SEC-MALLS readout is not affected by the shape of the 

complex and is therefore more accurate than gel filtration.  
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4.2.1.3 How we obtained trivalent G-actinRPELPhactr1 complex 

 

Studies of the RPEL domain from Phactr1 revealed that it was highly sensitive 

to proteolysis during affinity-tag purification. The protein was readily targeted by 

proteases to create a mixture of shorter fragments. Therefore, we could only form 

complexes containing full length RPEL domain under limiting actin conditions. This 

approach successfully generated G-actinRPELPhactr1 complex of the experimental 

molecular weight of 127kDa ± 2 kDa by SEC-MALLS (Figure 4.2). This is consistent 

with the apparent approximate domain stoichiometry of 3:1 (G-actin:RPELPhactr1 

domain), as the molecular weight of actin is 42kDa and of the RPELPhactr1 domain is 

14kDa.  

 

Previously obtained pentavalent G-actinRPELMRTF-A domain complex was 

present in solution only when 4 µM of G-actin were added to the gel filtration buffer. 

This was due to the instability of the pentavalent complex in solution and the 

dissociation of actin R3 (bound to RPEL3) and S2 (bound to Spacer2) (Mouilleron et al., 

2011). In contrast, the trimeric G-actinRPELPhactr1 domain complex is unaffected by 

the presence of G-actin in the buffer (Figure 4.2 B), suggesting that is does not respond 

to G-actin concentration in the same way as MRTF-A. Because we previously found 

that, like the RPELMRTF-A domain, the RPELPhactr1 domain is required to mediate G-actin 

dependent nucleocytoplasmic shuttling, we sought to analyse the G-actinRPELPhactr1 

domain complex by X-ray crystallography.  
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Figure 4.2 Analysis of G-actin•RPELphactr1 complex stoichiometry.  

(A) Size exclusion chromatography (blue line, elution volume) coupled to multi-angle light 

scattering experiments (SEC-MALLS) indicate that the G-actin•RPELPhactr1 complex has an 

experimental molecular weight of 127kDa ± 2.0 kDa (red line). This is consistent with a 3:1 G-

actin•RPELPhactr1 domain stoichiometry. (B) Size exclusion chromatography analysis of actin-

RPELPhactr1 complex. Position of the peaks for G-actin•RPELPhactr1 migration in buffer alone and 

in buffer containing 3 µM LatB-actin are shown. The extended shape of the G-actin•RPELPhactr1 

complex slows down its retention time and increases the apparent stoichiometry of the complex 

measured by size exclusion chromatography to 3.8:1. The apparent stoichiometry is unaffected 

by the presence of G-actin in the buffer. Stephane Mouilleron, adapted.  
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4.2.2 G-actinRPEL Phactr1 domain crystallisation  

 

We crystallised the G-actinRPELPhactr1 complex in sitting drop. Crystals reached 

maximum size in about two weeks and diffracted to 3.3 Å resolution using the Diamond 

synchrotron X-ray source (Oxford, UK). The structure was solved by molecular 

replacement using the high-resolution structures of each individual RPEL motifs 1, 2 

and 3 bound to G-actin (structures of individual RPEL motifs are described further 

below). The final structure shows good geometry values with a final R/Rfree values of 

22.2/25.0%. The structure indicates that one G-actin molecule interacts with each RPEL 

motif in Phactr1 forming a trivalent complex (Figure 4.3 A). Analysis of the structural 

data allowed establishing that G-actinRPELPhactr1 crystals contained two trivalent 

complexes in the asymmetric unit (Figure 4.3 B). Both complexes had identical 

organization and a root mean square deviation (RMSD) of 1.04Å within the total of 103 

RPEL domain Cα atoms (for data collection and refinement statistics see Table 7.3). To 

confirm the number of G-actinRPELPhactr1 complexes in solution, small-angle X-ray 

scattering SAXS analysis was performed. Consistent with the SEC-MALLS analysis, it 

showed one trivalent G-actinRPELPhactr1 in solution (Mouilleron et al., 2012) (Figure 

7.2).  
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Figure 4.3 G-actinRPELPhactr1 complex structure.  

(C) Structure of the Phactr1 RPEL domain crank (red and white solid rendering) bound to three 

G-actin molecules (actin R1- pale blue; actin R2 - green, and actin R3 - pink ribbon). The 

position of the screw axis is shown as a black line; RPEL motifs are shown in red and spacers in 

grey; the B2 NLS sequence is shown in dark grey. (B) The G-actinRPELPhactr1 domain 

crystallographic asymmetric unit contains two nearly identical trivalent complexes. Upper panel 

shows the two trivalent complexes, one as ribbon, the other as a solid surface. Both trivalent 

complexes superpose closely (lower panel) with a root mean square deviation (RMSD) of 1.04 

Å over 103 Cα atoms. Stephane Mouilleron, adapted. 
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4.2.3 G-actinRPELPhactr1 domain complex assembly 

 

After obtaining structural details of G-actinRPELPhactr1 domain assembly, we 

characterised the unusual symmetry of the complex by comparison to known structural 

symmetries. Enantiomorphic symmetry allows for two proteins to be mirror images, 

which rotate the plane of polarized light in opposite directions, and therefore are not 

identical. Most oligomeric proteins, like alcohol dehydrogenase or glutamine synthetase 

possess rotational symmetry. When the translational symmetry is added to rotational 

symmetry, helical structures are formed. Helical non-hollow oligomers are built in a 

way that only several subunits form each turn of the helix. This is achieved by orienting 

the interacting sites of the monomers to form a tight and narrow filament. F-actin 

filaments and intermediate filaments are examples of such an assembly. This type of 

compilation of monomers is called ‘open helical assembly’, where the monomers can be 

efficiently added to the filament indefinitely. Because biomolecules are placed in a 

cellular environment, the filament will technically end when the boundary is met or 

when subunits run out (for review, see (Goodsell and Olson, 2000)).  

 

4.2.3.1 G-actinRPELPhactr1 domain complex forms a closed helical 

assembly 

 

Assessment of the structural features of the trivalent G-actinRPELPhactr1 

complex indicates that G-actin interacts with the RPELPhactr1 domain to form a helical 

assembly. This type of complex cannot be categorised as an open assembly though, as it 

has defined length. It is rather a rare example of closed helical assembly, where two 

bordering monomers of G-actin flank the one in the middle.  

 

Three G-actin molecules: actins R1, R2 and R3 are assembled around the helical 

axis of the left-handed RPELPhactr1 domain ‘crank’ (Figure 4.3 A). The complex has 

elongated shape and is very compact. The rigidity of the complex is not a result of the 

interactions between actins as they make little direct contact with each other. Actins 
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R1/R2 and R2/R3 have a very limited interface of 235 Å2 and 250 Å2, respectively. The 

trivalent complex is therefore formed through multiple contacts between RPEL motifs 

and actin. Below, I will describe interactions between RPELPhactr1 motifs and G-actin, 

based on the comparison to the G-actinRPELMRTF-A domain complex. Two classes of 

G-actinRPEL interactions will be described, primary and secondary contacts. 

 

4.2.4 G-actinRPELMRTF-A and G-actinRPELPhactr1 domains adopt identical 

trajectories. 

 

Analysis of the G-actinRPELPhactr1 domain complex revealed similarities to the 

previously established G-actinRPELMRTF-A domain complex. Their comparison also 

highlights the differences in the length of spacers between RPEL motifs in MRTF-A 

and Phactr1 (Figure 4.4 A). Spacers that join RPEL motifs in MRTF-A are 22 amino 

acids long each, but in Phactr1 spacers are six amino acids shorter (Figure 4.1 B). It was 

previously shown that MRTF-A spacers bind G-actin molecules (Mouilleron et al., 

2011). Spacer1 of MRTF-A (94-PPLKSPAAFHEQRRSLERARTE-115) contains 

conserved residues that make crucial contacts with G-actin. F102spacer1 and L109spacer1 

are engaged in hydrophobic interactions with the hydrophobic cleft of actin (Mouilleron 

et al., 2011). Similarly, in Spacer2 of MRTF-A (138-

EETSAEPSLQAKQLKLKRARLA-159) L146spacer2 and L153spacer2 are engaged in 

hydrophobic interaction with the hydrophobic cleft of actin. Those conserved, 

hydrophobic residues are not conserved in the shorter Phactr1 spacers, which are than 

unable to bind G-actin (Figure 4.4 A). Taken together, interactions that are crucial for 

the recruitment of spacer actins in G-actinRPELMRTF-A domain complex, are missing in 

G-actinRPELPhactr1 domain complex. Therefore, Phactr1 binds only three G-actin 

molecules and not five, like MRTF-A. Nevertheless, both RPELPhactr1 domain and 

RPELMRTF-A cranks have very similar trajectories (Figure 4.4 B).  
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Figure 4.4 Similar trajectories of RPELPhactr1 domain and RPELMRTF-A domains.  

(A) Top panel, schematic of the trivalent Phactr1 and pentavalent MRTF-A RPEL domain 

assemblies with G-actin indicating the location of the first ‘spacer’ actin bound to MRTF-A (red 

frame) and the first spacer in Phactr1 (black frame). Bottom panel, the short spacer sequences 

within Phactr1 (grey) linking RPEL1 (pale blue) and RPEL2 (green) preclude binding of a 

spacer G-actin. Comparison with the MRTF-A spacer (yellow) connecting RPEL1 and RPEL2 

(red) shows the G-actin cleft binding residues (yellow sticks) are missing in Phactr1. G-actin S1 

is shown as a surface rendering with its hydrophobic cleft indicated (blue patch). (B) Left, 

electron density map (shown in blue) for the Phactr1 RPEL domain prior to its inclusion in 

refinement, overlaid on the refined crank-shaped RPEL domain structure. Right, structural 

superposition of the RPEL domain crank from Phactr1 (ribbon) and MRTF-A (solid) and their 

very similar trajectories. Stephane Mouilleron, adapted. 
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There are two distinct groups of contacts that the RPEL motifs make with G-

actins. ‘Primary’ actin contacts are formed between actin subdomains 1 and 3 

hydrophobic clef and ledge and RPEL motif residues. Primary contacts were already 

observed in the structures of G-actinRPELMRTF-A peptides and defined elsewhere 

(Hirano and Matsuura, 2011; Mouilleron et al., 2008; Mouilleron et al., 2011). 

Additionally, the G-actinRPELPhactr1 domain structure contains ‘secondary’ actin 

contacts, which RPEL1 and RPEL2 motifs make with their neighbouring actins R2 and 

R3. Those contacts were not previously observed within the G-actinRPELMRTF-A 

domain complex. Secondary contacts are centred on the interaction between the 

conserved RPEL glutamate, which points into the opposite direction from the primary 

contacts (described in detail further below).  

 

Therefore, similar trajectory of the two complexes is based on the conserved 

interactions between RPEL motifs and G-actins. Screw axes of both complexes have 

strikingly similar rotational and translational elements with R=155.5°, t=39.5Å for 

Phactr1 and R=152.9°, t=38.7Å for MRTF-A (screw axes are represented by black 

lines) (Figure 4.4. A). This suggests that there is a spatial correspondence between the 

two complexes and that their overall organization is based on the interactions between 

one RPEL and one G-actin unit in each assembly.  

 

4.2.5 Primary actin contacts within the G-actinRPELPhactr1 domain 

complex 

 

The primary RPEL contacts were already observed in MRTF-A (Mouilleron et 

al., 2008) (see section: ‘The RPEL motif defines a G-actin binding element’). As 

predicted, RPEL motifs in Phactr1 engage the G-actin molecule in a similar manner to 

MRTF-A. The invariant arginines R431RPEL1, R469RPEL2 and R507RPEL3 are all engaged 

in a salt bridge with the C-terminal carboxylate group of F375 in actin R1, R2 and R3 

(Figure 4.5). The conserved L424RPEL1/ L428RPEL1, L462RPEL2/ L466RPEL2 and 

L500RPEL3/L504RPEL3 make hydrophobic contact with the actin hydrophobic cleft. 

Within the hydrophobic ledge, helix α2/α4/α6 interacts with G-actin subdomain 3 
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through L437RPEL1/ L443RPEL1, L475RPEL2/ L481RPEL2 and L513RPEL3/ L519RPEL3. 

Additional stabilising contacts are observed within the hydrophobic cleft and include 

I458RPEL2 and I496RPEL3 interactions with actin R2 and R3 respectively. Moreover, the 

nitrogen from K497RPEL3 bonds with the sidechain of S348 in actin R3 and R516RPEL3 

docks onto Y166 in actin R3 (Figure 4.5). All those contacts are also present in the 

structures of individual RPELPhactr1 domain peptides with G-actin and will be discussed 

further below. 

 

 
 

Figure 4.5 Primary G-actin contacts within the G-actinRPELPhactr1 domain complex.  

(Left) Schematic indicating the location of primary G-actin binding sites within the trivalent G-

actinRPELPhactr1 domain complex. (Right) Superposition of the three RPELPhactr1 motifs 

(coloured according to left panel) onto G-actin R1 (pale grey, solid rendering). The panel 

reveals highly conserved primary actin interactions made by each RPEL; RPEL motif specific 

contacts are indicated (hydrophobic cleft and ledge surfaces are colored as in Figure 1.10). 

Stephane Mouilleron, adapted. 
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4.2.6 Secondary G-actin binding sites within the G-actinRPELPhactr1 

domain complex 

 

Structural study of the G-actinRPELPhactr1 complex revealed additional 

interactions between RPEL motif and G-actin, which were not previously observed in 

the G-actinRPELMRTF-A domain complex and are referred to here as secondary contacts. 

Secondary contacts are mediating binding of RPEL1Phactr1 to actin R2 and RPEL2Phactr1 

to actin R3 (Figure 4.3 A). It appears that secondary contacts are less extensive than the 

primary contacts, but play a critical role in forming the G-actinRPELPhactr1 domain 

closed helical assembly.  

 

Residues N430RPEL1
 and Q468RPEL2, N-terminal to the conserved RPEL arginine, 

hydrogen-bond with the secondary actin S239 sidechain. The C-cap residues of helices 

α2 and α4, K440RPEL1
 and R478RPEL2

 hydrogen-bond secondary actin residue E214 

and E214/K215 carbonyls respectively, N-terminal to the 203-216 helix (Figure 4.6). 

The following RPEL sidechains also closely approach the nucleotide-binding pocket of 

the adjacent actin, although detailed contacts were not observed at the 3.3Å resolution 

of the trivalent complex. At the center of the secondary binding site is the conserved 

RPEL glutamate, which shows a well-defined density despite the absence of any direct 

contact with neighbouring residues. This definition, and the similar orientation of both 

E436RPEL1
 and E474RPEL2, is likely to reflect water-mediated hydrogen bonding with 

secondary actin (Figure 4.6) (Mouilleron et al., 2012). Further insight into secondary 

contacts was gained during the analysis of the G-actinRPEL peptidePhactr1 structures 

solved at high resolution (described in the following chapter). 
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Figure 4.6 Secondary actin contacts within the G-actinRPEL Phactr1 domain assembly.  

(Left) Schematic showing the location of the secondary G-actin binding sites within the 

trivalent G-actinRPEL Phactr1 domain complex. (Right) Superposition of RPEL1 bound to actin 

R2 and RPEL2 bound to actin R3 showing selected secondary actin contacts (see text for 

details). RPEL1 (pale blue) and RPEL2 (green) are shown as cartoons and actins R1 and R2 are 

shown as pale grey surfaces (actin R1 hydrophobic cleft and ledge surfaces are colored as in 

Figure 1.10). Stephane Mouilleron, adapted. 
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4.3 G-actinRPELPhactr1 peptide structures 

 

We have previously shown in fluorescence polarisation assays that the RPEL 

motifs from Phactr1 bind G-actin with high affinity (Figure 3.5). Even though the 

homology between the motifs is very high, the affinities differ for each peptide. To 

better understand the differences in affinity, we solved the structure of each Phactr1 

RPEL motif individually bound to G-actin at high resolution.  

 

In order to crystallise G-actinRPELPhactr1 peptide complexes we used 32 amino 

acid long peptides for each RPELPhactr1 motif. G-actin was again coupled to LatB in 

order to form G-actin monomers. Crystals were grown by vapour diffusion and reached 

the final size in two weeks. We were able to crystallise all four RPEL motifs from 

Phactr1 with G-actin (Figure 4.7). All crystals diffracted to high resolution, with G-

actinRPEL1Phactr1 diffracting to 1.95Å, G-actinRPEL2Phactr1 to 1.7Å and G-

actinRPEL3Phactr1 to 1.3Å. Crystals of the N-terminal RPEL-N with G-actin were 

represented by two distinct forms and diffracted to 1.95 Å for crystal form I and 1.75 Å 

for crystal form II (Figure 4.7) (for data collection and refinement statistics see Table 

7.3).  
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Figure 4.7 G-actinRPEL Phactr1 peptide crystal forms.  

Top panel, G-actinRPEL-N Phactr1 crystallises in two distinct crystal forms, which diffract at 

1.95 Å and 1.75 Å. Bottom panel, G-actinRPEL-1Phactr1 crystals diffract at 1.95Å, G-

actinRPEL-2Phactr1 crystals diffract at 1.7 Å and G-actinRPEL-1Phactr1 crystals diffract at 1.3 Å. 

Images taken by Stephane Mouilleron.  
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As predicted, all G-actinRPELPhactr1 peptide structures contained primary actin 

contacts, previously observed in the G-actinRPELMRTF-A peptide structures 

(Mouilleron et al., 2008), but also revealed additional primary contacts. Unexpectedly, 

high-resolution G-actinRPEL-NPhactr1 and G-actinRPEL2Phactr1 structures contained 

not only the primary but also the secondary actin contacts.  

 

4.3.1 Primary actin interactions within the G-actinRPELPhactr1 peptide 

complexes. 

 

Primary actin contacts are observed within the structure of G-actinRPELPhactr1 

domain complex and in the high-resolution G-actinRPELPhactr1 peptide structures 

(Figure 4.5 and Figure 4.8). However, additional primary contacts are observed in the 

peptide structures and some differences are apparent. For example, in the G-

actinRPEL2 peptide structure, I458RPEL2 density is not defined, with the density for the 

N-terminal RPEL helix beginning only at G459RPEL2. This is in contrast to the well-

ordered helix α3 seen in the trivalent complex, suggesting that the unstable helix α3 is 

stabilized in the context of the trivalent complex (Figure 4.5). 

 

We previously showed that RPEL motifs in Phactr1 bind G-actin with higher 

affinities than in MRTF-A. Higher RPEL-actin affinities were generally conserved in 

other Phactr family members. Because G-actinRPELPhactr1 peptide structures revealed 

additional primary actin contacts, we sought to evaluate whether they contribute to 

higher binding affinity of Phactr1 RPEL motifs in comparison with MRTF-A. We 

performed fluorescence polarisation anisotropy assay to measure the binding affinity to 

G-actin.  

 

Additional contacts in RPEL3, I496RPEL3 and R516 RPEL3 interact directly with 

primary actin, but are not highly conserved. Alanine substitution of I496RPEL3 and 

R516RPEL3 indeed reduced actin binding affinity two-fold (Figure 4.9). RPEL2 in 

Phactr1 has a relatively low affinity in Phactr1. Interestingly this is the case also for 

RPEL2 in Phacrtr2, 3, and 4, all of which have a glycine adjacent to the hydrophobic 
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contact residue I458. Substitution of this glycine (RPEL2 G459) by lysine, the 

equivalent residue in higher-affinity motif RPEL3, increased the RPEL2 actin binding 

affinity almost 10 fold (Figure 4.9) 

 

Therefore, the binding affinity can be modified by supplementary actin contacts 

or by affecting secondary structure of the RPEL motifs, especially by the addition of 

stabilising forces. 
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Figure 4.8 Phactr1 RPEL peptide-actin complexes.  

Close-up of structures for individual RPEL peptides from Phactr1 bound to G-actin. RPEL 

peptide is shown as a cartoon and G-actin as a pale grey solid rendering. Contact surfaces made 

by each of the RPEL peptide to the G-actin hydrophobic cleft (blue) and ledge (pink) are 

indicated. Selected residues from the RPEL peptides are shown together with the corresponding 

G-actin interacting residues (hydrophobic cleft and ledge surfaces are colored as in Figure 1.10). 

Stephane Mouilleron, adapted.  
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Figure 4.9 RPEL motif primary contacts define actin affinities.  

(A) Alignment of RPEL motifs from Phactr1, 2, 3 and 4 indicating highly conserved residues, 

colour-coded using Clustal X alignment tool. (B) Fluorescence polarization assay indicating the 

role of primary contacts in high actin affinities. Top, RPEL3 wild-type (WT) peptide and two 

mutants I496A and R516A indicating a role of additional primary actin contacts. Bottom, 

RPEL2 G459K significantly increases RPEL2 actin binding affinity (K in this position is a 

conserved residue in RPEL3 motif, which exhibits higher affinity to actin). 
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4.3.2 G-actinRPEL-NPhactr1 and G-actinRPEL2Phactr1 peptide structures 

contain secondary actin contacts  

 

Secondary actin contacts were observed within the G-actinRPELPhactr1 domain 

complex (see previous sections). However, the resolution of the trivalent complex was 

not sufficient to fully observe the secondary actin binding surface. Crystallisation of G-

actinRPEL-NPhactr1 and G-actinRPEL2Phactr1 peptides also revealed a secondary actin 

surface. 

 

4.3.2.1 G-actinRPEL-NPhactr1 and G-actinRPEL2Phactr1 peptide structures 

crystallise as open helical assemblies 

 

Complexes containing RPEL-N and RPEL-2 crystallised as open helical 

assemblies: filaments in which the primary G-actinRPEL peptide within the 

asymmetric unit makes a secondary contact with the G-actinRPEL peptide present in 

an adjacent asymmetric unit (Figure 4.10). Both crystal forms of G-actinRPEL-NPhactr1 

peptide contained the same arrangement, which strongly suggests that these assemblies 

are not related to the crystal lattice, but are reflecting true properties of those RPEL 

motifs.  

 

To better understand the arrangement of G-actinRPEL-NPhactr1 and G-

actinRPEL-2Phactr1 complexes we compared their screw axes to the axis of G-

actinRPELPhactr1 domain complex (Figure 4.10 A and Figure 4.11). These axes by 

definition rotate a point within a flat surface while translating it parallel to the surface. It 

emerged that the screw operator relating subsequent actins in G-actinRPEL-NPhactr1 and 

G-actinRPEL-2Phactr1 complexes is crystallographic, with exactly 180° rotation (Figure 

4.9 A). In contrast, the screw operator in the trivalent G-actinRPELPhactr1 domain 

complex is non-crystallographic, with 155° rotation (Figure 4.11). There is no 

difference in the translational operator between the peptides structures and the trivalent 

domain, with both remaining at around 39Å. This variability in the rotational angle 
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might indicate a certain degree of flexibility within the complex arrangement during 

disassembly.  

 

Another evidence that the open helical assemblies represent actual arrangement 

of RPEL motifs when bound actin molecules comes from the comparison of primary 

and secondary contacts with those observed in the trivalent complex. Despite the 

absence of fifteen amino acid-long spacer sequences, those two groups of interactions 

are very similar (Figure 4.11).  

 

4.3.2.2 Molecular details of the secondary actin contacts 

 

The high resolution of the G-actinRPEL-NPhactr1 and G-actinRPEL-2Phactr1 

structures provides the molecular detail (direct and water-mediated) of the secondary 

actin interactions that are less well defined in the 3.3 Å resolution trivalent complex. 

We observed the same three RPEL residues at the secondary actin interface: (1) the 

residue preceding the conserved RPEL arginine, (2) the conserved RPEL glutamate, (3) 

and the basic residue from the C-cap (M146 RPEL-N / E152 RPEL-N / R156RPEL-N and Q468 

RPEL2 / E474 RPEL2 / R478RPEL2, Figure 4.10 B).  

 

These residues act together to form a stable secondary interaction on the G-actin 

interface. R156RPEL-N and R478RPEL2 each engage three carbonyl moieties from the C-

terminus of helix 203–216 of the secondary actin through a network of hydrogen bonds. 

These arginine side chains also make two important water-mediated hydrogen bonds, 

one with the N8 atom of the ATP adenine moiety occupying the secondary actin 

nucleotide-binding cleft, the other with secondary actin R254. The invariant RPEL 

glutamate residue has a different side chain rotamer in each structure. E152RPEL-N 

interacts indirectly via a water molecule with R156RPEL-N and R254 of the secondary 

actin, while E474RPEL2 interacts directly with K238 of the secondary actin (Figure 4.10 

B).  
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Other secondary actin interactions include: M146RPEL-N with V247G-actin, 

similarly the structurally equivalent Q468RPEL2 contacts E241G-actin, while side chains at 

equivalent positions to G157RPEL-N (N440RPEL1; N479RPEL2; and K517RPEL3), all make a 

close approach to the secondary actin (Figure 4.10 B). 

  



Chapter 4 Structural analysis of Phactr1 interaction with actin 

 

 241 

 

 
 
Figure 4.10 G-actinRPELPhactr1 peptide structures form open helical assemblies 

containing the secondary actin contacts.  

(A) Filamental structures formed by single RPEL motifs (RPEL-N, left panel; RPEL2, right 

panel) within a crystal lattice. Consecutive adjacent asymmetric units each containing a single 

G-actinRPEL motif peptide complex generate an open helical assembly, where each RPEL 

motif (cartoon) bridges two actin molecules (pale grey and white, respectively); the 

crystallographic screw axis is shown as a black line. (B) Close-up of the secondary actin 

contacts within RPEL-N and RPEL2 helical assemblies, centered on the conserved RPEL 

glutamate. RPEL motifs are drawn as cartoons and actin molecules as pale grey surfaces. G-

actin cleft and ledge surfaces are colored as in Figure 1.10. Stephane Mouilleron, adapted.  
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Figure 4.11 Similar secondary contacts within G-actin•RPEL2Phactr1 peptide complex and 

the trivalent G-actin•RPELPhactr1 complex.  

Comparison of RPEL2 from G-actin•RPEL2Phactr1 peptide structure and from G-

actin•RPELPhactr1 domain structure shows similar secondary actin contacts. The different rotation 

angles for each structure (180° compared to 152°) leads to interaction differences, in particular 

the disposition of G-actin-bound nucleotide and helix 203-216. Additional direct and indirect 

interactions with G-actin are observed in the higher resolution RPEL2 peptide structure. G-actin 

cleft and ledge surfaces are colored as in Figure 1.10. Stephane Mouilleron, adapted.  
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These observations show the molecular detail of the secondary actin contacts in 

the context of single peptide structures and the trivalent complex. The secondary actin 

contacts seen in the G-actinRPEL-NPhactr1 and G-actinRPEL-2Phactr1 assemblies may 

be perturbed compared with those in the trivalent G-actinRPELPhactr1 domain complex 

as a result of crystal packing constraints. Nevertheless, the interactions described above 

are superimposable among the different structures, thus explain the conservation of 

secondary contact residues.  

 

4.3.2.3 The conservation of RPEL glutamate 

 

The RPEL glutamate is conserved within the Phactr family of proteins and within 

the MRTFs. Previous structural studies of MRTF-A have not clarified the rationale 

behind the strong conservation of this residue. Investigating the structures of G-

actinRPELPhactr1 peptide complexes and the trivalent complex explained the role of the 

glutamate. Superposition of the secondary actin contacts made by the RPEL domain 

from Phactr1 and MRTF-A showed strikingly similar contacts made by both proteins 

centered on the invariant RPEL motif glutamate (Figure 4.12). This residue is crucial 

for achieving higher order actinRPEL assemblies on repeated RPEL motifs. It remains 

unclear why this glutamate is conserved in the last RPEL within the domain (RPEL3) 

both in Phactr family and in MRTF-A (see: ‘Discussion’). Additionally, the RPEL 

glutamate contributes to the binding cooperativity of G-actin molecules on tandem 

RPEL motifs (see following section).  
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Figure 4.12 Secondary actin contacts in Phactr1 and MRTF-A complexes with G-actin.  

Superposition of the secondary actin contacts made by the RPEL domain from Phactr1 (RPEL1; 

blue and RPEL2; green) and MRTF-A (RPEL1; pink) showing the strikingly similar contacts 

made by both proteins centered on the invariant RPEL motif glutamate. Stephane Mouilleron, 

adapted.  
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4.4 Contribution of secondary actin contacts to Phactr1 
regulation 

 

We previously showed that the C-terminal RPEL domain is required for Phactr1 

regulation by actin turnover. Alanine mutations of the invariant arginine abolished actin 

binding (Figure 3.5). The combinations of R/A mutations within the RPEL domain 

significantly reduce Phactr1 cytoplasmic retention, which suggests cooperative G-actin 

binding on the RPEL repeat (Figure 3.7 A). We hypothesised that in addition to 

defining the relationship between the G-actin molecules within the trivalent G-

actinRPELPhactr1 assembly, secondary actin contacts might contribute to cooperative G-

actin binding to the C-terminal RPEL repeats. Moreover, actin overexpression studies 

showed that the integrity of both the RPEL domain and RPEL-N is required for 

effective inhibition of Phactr1 accumulation by actin (Figure 3.11). Therefore, we now 

sought to investigate the role of secondary contacts in actin binding cooperativity on 

Phactr1 RPEL domain and in maintaining the integrity of RPEL-N and the C-terminal 

repeat. 

 

4.4.1 Secondary contacts facilitate cooperative actin binding 

 

To test actin binding cooperativity on the C-terminal RPEL repeat we employed 

complex stoichiometry analysis. We used SEC-MALLS to assess the effects of RPEL 

mutations on the formation of multivalent G-actinRPELPhactr1 complexes. We 

previously showed that the R/A mutation of the invariant arginine, a primary actin 

contact in Phactr1 (R431ARPEL1, R496ARPEL2, and R507ARPEL3) effectively abolishes G-

actin binding to individual RPEL motifs (Figure 3.5 A). We next introduced those 

mutations into the triple RPEL repeat and analysed G-actin binding property by SEC-

MALLS.  

 

The R431ARPEL1 and R507ARPEL3 mutations reduced the stoichiometry of the G-

actinRPELPhactr1 complex from 2.7 to 1.8 (actin molecules bound), consistent with loss 
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of the RPEL1 and RPEL3 associated actins. In contrast, the R469ARPEL2 mutation had 

no effect G-actin binding (2.6 versus 2.7 actins bound) (Figure 4.13 B). Thus, in the 

context of the trivalent G-actinRPELPhactr1 complex, loss of the ion-pair contact from 

RPEL2 with its primary actin by the conserved arginine is not sufficient to outweigh 

cooperative interactions maintaining the integrity of the complex (Mouilleron et al., 

2012).  

 

Theoretically, mutations of secondary actin contacts should not affect actin 

binding affinity in the fluorescence anisotropy assay, where affinity of one G-actin 

molecule to an RPEL peptide is measured. Indeed, the secondary actin contact 

mutations EK436,440AARPEL1; ER474,478AARPEL2; and ER512,516AARPEL3 decreased 

primary actin-binding affinity only 3, 4 and 2-fold, respectively (Figure 4.13 A). 

Introduction of these mutations into the RPELPhactr1 domain, either singly or in 

combination, did not affect its actin binding stoichiometry, as assessed by SEC-MALLS 

(Figure 4.13 B). However, their combination with the primary actin R469ARPEL2 

mutation led to a decrease in apparent stoichiometry from 2.7 to 1.6 (127kDa vs. 

79kDa), consistent with loss of actin R2 (Mouilleron et al., 2012).  

 

Taken together, these results provide evidence for the functional significance of 

the secondary actin binding sites during the assembly of the trivalent G-

actinRPELPhactr1 domain complex. These results are consistent with a view that the 

secondary actin contacts made by RPEL1 and RPEL2, as well as affinities of each 

individual RPEL motifs for primary actins, contribute to stabilization of the trivalent G-

actinRPELPhactr1 complex.  
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Figure 4.13 Secondary actin contacts are required for cooperative binding. 

(A) Effects of RPEL mutations on primary actin binding affinities. The dissociation constants 

(KD) were determined by fluorescence polarization anisotropy assay. Data for wild-type RPEL 

motifs and primary actin contact mutants are presented in Figure 3.5 (RPEL1 0.9 µM, 

R431ARPEL1 ND ; RPEL2 4.34 µM, R469ARPEL2 ND; RPEL3 0.27 µM, and R507ARPEL3 18.4 µM; 

ND, not detectable). (B) Experimental molecular weights for RPELPhactr1 domain mutants bound 

to G-actin, derived from size exclusion chromatography coupled to multi-angle laser light 

scattering experiments (SEC-MALLS). Mutations within the RPEL domain are schematically 

shown on the left (for details, see text); apparent stoichiometries from the molecular weights are 

shown on the right.  
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4.4.2 Inhibition of actin-mediated nuclear accumulation of Phactr1 

requires secondary contacts 

 

Phactr1 accumulates in the nucleus upon serum activated Rho-actin signal 

(Wiezlak et al., 2012). I have shown that the C-terminal RPEL domain, but not RPEL-N 

was required to mediate Phactr1 regulation by G-actin (Figure 3.6). However, actin 

overexpression experiments suggest that the integrity of the C-terminal domain and the 

RPEL-N are required for the inhibition of Phactr1 accumulation by G-actin (Figure 

3.11). Inhibition of Phactr1 nuclear accumulation by G-actin therefore arises from the 

saturation of all four RPEL motifs by G-actin. We speculated that secondary actin 

contacts might facilitate this process. To investigate this possibility we introduced 

secondary contact mutations into RPEL-N within the full length Phactr1 and performed 

actin overexpression assay.  

 

First, we verified the secondary contact mutations in RPEL-N in fluorescence 

anisotropy assays. As predicted, substitution of conserved glutamate into alanine 

(E152A) had no effect on primary actin binding affinity (Figure 4.14 B). Subsequently, 

a 2-fold increase was observed for M146ARPEL-N and 3-fold for R156ARPEL-N mutations. 

We then tested two mutations that prevent close approach of secondary actin at 

previously position G157RPEL-N. We substituted this glycine with either histidine or 

asparagine, residues containing long sidechains, which impede the approach of RPEL1 

primary actin at this RPEL-N secondary binding site. As expected, G157HRPEL-N and 

G157N157 RPEL-N reduced binding affinity of primary actin only 4-fold (Figure 4.14 B). 

 

Next, we examined how those mutations affect Phactr1 regulation upon actin 

overexpression. We expressed Phactr1 wild-type or RPEL-N secondary contact mutants 

in NIH3T3 cells with or without non-polymerisable actin mutant R62D. Consistent with 

our previous results, nuclear accumulation of Phactr1 wild-type or secondary contact 

mutants was not affected when cells were stimulated with serum, and upon co-

expression of R62D actin mutant the nuclear accumulation of wild-type Phactr1 was 

inhibited. However, Phactr1 RPEL-N secondary contact mutants M146A, E152A and 

R156A showed reduced susceptibility to actin R62D expression. G157H and G157N 
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mutations also reduced the inhibitory effect caused by actin overexpression (Figure 4.14 

C). These findings demonstrate that RPEL-N secondary actin contacts are required for 

the inhibition of Phactr1 nuclear accumulation by G-actin (see: ‘Discussion’).  
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Figure 4.14 RPEL-N secondary contacts are required for actin-mediated inhibition of 

Phactr1 nuclear import.  

(A) Left, surface rendering of the RPEL-N peptide (orange surface) bound to the primary G-

actin (white surface) highlighting the secondary actin contacts (red surfaces). Secondary contact 

residues are indicated and colour-labelled according to mutations (M146A, brown; E152A, red; 

R156A, purple; G157N, grey; G157H, blue). Actin hydrophobic cleft and ledge surfaces 

between actin subdomains 1 and 3 are coloured as in Figure 1.10. The secondary G-actin is not 

shown for clarity. Right, sequence of RPEL-N indicating primary (grey stars) and secondary 

(colour-labelled rectangles) actin contacts. (B) Effects of RPEL-N mutations on primary actin 

binding affinities. The dissociation constants (KD) were determined by fluorescence polarization 

anisotropy assay. (C) The indicated FLAG-tagged Phactr1 derivatives (colour-labelled as in A) 

were co-expressed with the non-polymerisable actin R62D mutant in NIH 3T3 cells (to simplify 

quantification, Phactr1ΔC was used - protein expression levels remain unaffected by R62D 

actin overexpression upon Phactr1ΔC expression). The subcellular localisation before and after 

1 hr serum (FCS) stimulation was scored by immunofluorescence (C, cytoplasmic; N/C, pan-

cellular; N, nuclear; at least 75 cells counted per point, error bars represent the s.e.m. of three 

independent experiments).  
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4.5 Conclusions 

In this this chapter, I have presented structural analysis of Phactr1 interaction 

with actin. This study elucidated previously unknown aspect of the RPEL motif 

interaction with G-actin, a secondary actin contact. Secondary actin surface is crucial 

for the formation of the higher order actin complexes with Phactr1. Binding of the 

primary actin to the RPEL motif induces a conformational change of the RPEL motif, 

which generates a secondary contact surface. The secondary actin surface comprise 

residues at the end of helix 1, conserved RPEL glutamate and an arginine in helix 2. 

These residues contribute to cooperative actin binding on tandem RPEL repeats and are 

involved in the inhibition of Phactr1 nuclear accumulation by G-actin.  

 

Comparison of G-actinRPELMRTF-A complex with G-actinRPELPhactr1 complex 

clarified how differences in actin spacers’ length between the two proteins can be 

compensated by the fixed relative orientation of actins. Moreover, it explained the 

conservation of secondary contact RPEL glutamate in MRTFs.  
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Chapter 5. Functional studies of Phactr1  

 

5.1 Aims 

 

In previous chapters we described the mechanism of Phactr1 nuclear 

accumulation and PP1 interaction. Through structural studies we better understood how 

G-actin interacts with Phactr1 and how this association differs from G-actinMRTF-A 

complexes. Our next objective was to examine the role of Phactr1 in PP1 regulation and 

elucidate cellular function of Phactr1. Throughout our studies of Phactr1 we have 

shown its regulation in NIH3T3 fibroblasts, a cell line where Phactr1 is not 

endogenously expressed at high levels. Therefore, to study the function of Phactr1, we 

employed a cell line, where Phactr1 is highly expressed - a CHL-1 metastatic melanoma.  

 

Consistent with our previous findings, we now uncover a function of Phactr1 in 

the regulation of actomyosin assembly in the endogenous setting. Consequently, we 

show a connection between Phactr1 expression and melanoma cell motile and invasive 

behaviours.  

 

5.2 Phactr1 expression and regulation in CHL-1 melanoma cell 
line 

 

It was previously shown, that Phactr1 is highly expressed in the cells of neuronal 

origin (Allen et al., 2004). However, subsequent studies showed high Phactr1 

expression levels in malignant melanomas in comparison with nevi (Koh et al., 2009; 

Trufant, 2010). Melanomas are tumours that develop as a result of a malignant 

transformation of melanocytes, cells derived from the neural crest. Therefore 

consistently, Phactr1 high expression levels seem to be present in cells derived from a 

lineage in the nervous system.  
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We performed an oncogenomic analysis of Phactr1 mRNA expression levels 

using ‘Oncomine’, a cancer microarray database designed to facilitate discoveries from 

genome-wide expression data. This data-mining platform allowed us to characterise 

Phactr1 expression pattern in various malignant tumours and showed its consistently 

high levels in malignant melanomas (www.oncomine.org). To study Phactr1 function 

we thus took advantage of readily available melanoma cell line CHL-1.  

 

CHL-1 cell line is a derivative of another melanoma cell line RPMI7932, a human 

melanoma cell line derived from the pleural effusion of a 36-year-old female patient 

with malignant melanoma. CHL-1 cell line was designed as a transfection host and can 

grow to a higher density (5 x 107 cells/ml) in a suspension culture than RPMI7932. 

CHL-1 cells were engineered to contain specific plasmids, which contain several gene 

cassettes. Specific orientation of those cassettes enhances the growth of the cells by 

preventing mycoplasma contamination and by allowing high-density cell growth (Patent 

US5017478).  

 

In order to study the function of Phactr1 in CHL-1 cell line, we first characterised 

its regulation. To begin with, we used a commercially available antibody against 

Phactr1 to examine the nuclear accumulation of Phactr1 upon serum stimulation. We 

also monitored the behaviour of exogenous Phactr1 in the context of serum stimulus. 

This allowed us to make comparisons with the previously obtained, fibroblasts based 

assays. Finally, we examined the interaction of Phactr1 with PP1 in melanoma cells. We 

then drew conclusions based on the results obtained in NIH3T3 fibroblasts and CHL-1 

melanoma cells.  
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5.2.1 Serum stimulation of CHL-1 melanoma cells induces Phactr1 

nuclear accumulation 

 

Having previously found that transiently expressed Phactr1 accumulates in the 

nucleus of NIH3T3 cells upon serum stimulation, we now attempted to test the cellular 

localisation and dynamics of endogenous Phactr1. CHL-1 melanoma cells were grown 

in full medium until they reached desired density and then starved for 24 hours. After 

starvation, 15% serum was added onto the cells for up to one hour and localisation of 

Phactr1 was monitored by immunofluorescence. We could observe the rapid nuclear 

accumulation of endogenous Phactr1 upon serum stimulation (Figure 5.1 A). Phactr1 

was nuclear after already 10 minutes of serum stimulation and remained in the nucleus 

for up to one hour. This experiment showed that, like in fibroblasts, endogenous Phactr1 

accumulates in the nucleus of CHL-1 cells, but exhibits more rapid dynamics.  

 

5.2.2 Transiently expressed Phactr1 responds to signal in CHL-1 cells 

 

The preceding experiment showed, that endogenous Phactr1 behaves in a similar 

way to transiently expressed FLAG-tagged Phactr1 in NIH3T3 cells. We next sought to 

examine the regulation of FLAG-tagged Phactr1 and constitutively nuclear Phactr1-xxx 

in CHL-1 cells. Wild-type Phactr1 was cytoplasmic when cells were serum-starved, but 

accumulated in the nucleus upon serum stimulation. Consistent with previous findings, 

Phactr1-xxx exhibited constitutive nuclear localisation (Figure 5.1 B). These results 

suggest that Phactr1 nuclear accumulation in CHL-1 cells is based on the same 

mechanism as in NIH3T3 cells.  

 

Previous studies of Phactr1-xxx interaction with PP1 allowed us to earlier 

propose that the contractile phenotype of actomyosin fibres is a consequence of Phactr1 

interaction with PP1. As presented before, the appearance of actomyosin foci or thick 

fibres was observed when PP1-bound Phactr-xxx was expressed. In order to evaluate 

the formation of actomyosin structures in CHL-1 melanoma cells, we also visualised F-
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actin in cells transfected with Phactr1-xxx. However, actomyosin structures were not as 

pronounced as in NIH3T3 cells (Figure 5.1 B). Instead of containing ‘thick fibres’ or 

‘foci’, cells expressing Phactr1-xxx appear to exhibit brighter F-actin staining in 

comparison with untransfected cells.  

 

5.2.3 Nuclear accumulation of endogenous Phactr1 is accompanied by 
increased PP1 binding 

 

We previously showed by co-immunoprecipitation that interaction between PP1 

and Phactr1 is enhanced upon serum stimulation in NIH3T3 fibroblasts (Figure 3.12 B). 

To evaluate the interaction between Phactr1 and PP1 in CHL-1 melanoma we 

performed immunoprecipitation assay of endogenous proteins. Consistent with our 

previous results, we could observe increased recovery of Phactr1 in PP1 

immunoprecipitates following serum stimulation (Figure 5.1 C).  

 

Taken together, these results allow us to conclude that Phactr1 exhibits actin-

dependent nuclear accumulation and PP1 interaction in CHL-1 melanoma cells. 

Moreover, the nuclear accumulation of endogenous Phactr1 in CHL-1 cells is 

accompanied by enrichment of the PP1-Phactr1 interaction. These results are in 

agreement with our previous findings and establish CHL-1 melanoma cells as a suitable 

model for further studies of Phactr1.  
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Figure 5.1 Signal-induced Phactr1 nuclear accumulation and PP1 binding in CHL-1 

melanoma cells.  

(A) Cells were maintained in 0.3% FCS for 20 hours, stimulated with 15% FCS, and 

endogenous Phactr1 visualised by fluorescence microscopy. (B) Cells were transfected with the 

FLAG-tagged Phactr-WT and Phactr-xxx and maintained in 0.3% FCS for 20 hours, with 1 

hour serum stimulation, before visualisation of Phactr1 by fluorescence microscopy; white 

arrows indicate enhanced F-actin staining in cells transfected with Phactr1-xxx. (C) PP1 

immunoprecipitates from CHL-1 cells maintained in 0.3% serum for 20 hours with or without a 

1 hour serum stimulation were analysed by immunoblotting for endogenous Phactr1 and 

endogenous PP1. Immunoprecipitation was performed by Jasmine Abella.  

  



Chapter 5. Functional studies of Phactr1 

 

 261 

5.3 Function of Phactr1 in CHL-1 melanoma cells 

 

Having established a cell line for the studies of Phactr1 function, we next sought 

to characterise its role in the regulation of cytoskeletal dynamics. We have previously 

shown in NIH3T3 fibroblasts that the binding of PP1 to the C-terminal domain of 

Phactr1 can influence the actomyosin content of the cell (see section: ‘Phactr1 

interaction with PP1’). To examine the relevance of this finding and relate it to Phactr1 

regulation in CHL-1 cells, we characterised cytoskeletal phenotypes arising from 

Phactr1 siRNA knock-down.  

 

5.3.1 siRNA-mediated knockdown of Phactr1 expression  

 

The siRNA-mediated knockdown of Phactr1 gene was initially performed using 

a pool of four siRNA oligos. The efficiency of the knockdown was assessed by 

immunoblotting, which showed very effective depletion of Phactr1 at 72 hours post-

transfection with no protein detection at 64 kDa (Figure 5.2 A). To rule out off-target 

effects of the siRNA, deconvolution of the pooled siRNA was performed and three best 

oligos were used as a new siRNA pool (Figure 5.2 B). All experiments described below 

were carried out using the verified, pooled siRNA. 

 

5.3.2 Phactr1 depletion induces morphological changes 

 

To assess the effect of Phactr1 depletion in CHL-1 melanoma cells we firstly 

examined the morphology of the cells. Wild-type CHL-1 cells exhibit epithelial-like 

morphology with regular polygonal shapes and grow attached to the surface in discreet 

patches (Figure 5.2 C and Figure 5.3). Upon depletion of Phactr1 we could observe a 

significant change in the shape of the cells, which now became more rounded in 

comparison with the elongated wild-type cells (Figure 5.3). To assess changes in actin 

dynamics we visualised F-actin fibres with phalloidin. Phactr1 depletion led to the 
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reduction of transverse stress fibres and enhancement of F-actin staining on the cell 

periphery (Figure 5.3). This suggests an increase in the level of cortical actin versus 

transverse actin. 

 

Intrigued by the alteration of cell morphology upon Phactr1 depletion, we 

hypothesised that knockdown cells might also exhibit defects in focal adhesion 

formation. In healthy cells, focal adhesions function as connectors of F-actin bundles 

with extracellular matrix. A variety of cytoskeletal proteins are involved in the 

formation of those connections, but many structural and signalling molecules are 

recruited to focal adhesions by an adaptor protein, paxillin (Brown and Turner, 2004). 

Paxillin binding partners include actin binding proteins like tubulin or vinculin and 

signalling proteins like FAK. Therefore, to evaluate the role of Phactr1 in the formation 

of focal adhesions we visualised paxillin in Phactr1-depleted CHL-1 cells. Diffuse 

paxillin staining in Phactr1-depleted cells indicated that F-actin associated focal 

adhesions were dispersed into smaller structures localising around the cell periphery 

(Figure 5.3). Consistently, all three deconvoluted siRNA oligos showed a very similar 

result to the pooled siRNA when used separately (Figure 5.2 C). This confirms the 

appropriate use of the siRNA pool and supports the view that Phactr1 is required for the 

formation of F-actin stress fibres and their attachment to the plasma membrane.  

 

The interplay of actin polymerisation and the regulation of cell adhesion to 

extracellular matrix is necessary for proper regulation of cell migration. The analysis of 

Phactr1-depleted CHL-1 cells by immunofluorescence showed not only defects in F-

actin localisation and content, but also disruption of focal adhesion formation as shown 

by paxillin staining. As described in the introduction, the spatiotemporal regulation of 

actin cytoskeleton by Rho-GTPases is essential for the proper control of cell motility. 

Because we observed defects in cytoskeletal organisation upon Phactr1 depletion, we 

next examined motility defects in those cells.  
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Figure 5.2 siRNA-mediated knockdown of Phactr1 expression in CHL-1 cells. 

(A) CHL-1 cells treated with Dharmacon Phactr1 siRNA pool (for sequences see: ‘Materials 

and methods’) or control siRNA were analysed by immunoblotting with anti-Phactr1 antibody, 

detecting a Phactr1 doublet at 64kDa (*). (B) Three siRNAs from the siPhactr1 pool. Cells were 

treated with the Phactr1 oligonucleotides 18, 19, and 20 individually, or in combination, and 

analysed by immunoblotting with anti-Phactr1 antibody. (C) Morphological changes and actin 

stress fibre dispersal following Phactr1 knockdown by oligonucleotides 18, 19 or 20. Cells were 

stained for F-actin and paxillin. Images were taken by Jasmine Abella.  
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Figure 5.3 Phactr1 depletion induces morphological changes. 

Morphological changes and actin stress fibre dispersal following Phactr1 knockdown. F-actin 

and paxillin were visualised by immunofluorescence in cells treated with control siRNA or the 

three active Phactr1 siRNA oligonucleotides used in combination. Panels on the right show 

single cell fields (65x) from the larger fields (25x) in the left panels. Images were taken by 

Jasmine Abella.  
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5.3.3 Phactr1 is required for the motility of CHL-1 cells 

 

The scratch wound healing assay is a sensitive method for the evaluation of cell 

migration defects. Therefore, we used this technique to characterise the role of Phactr1 

in cell motility. We seeded control and Phactr1-depleted CHL-1 melanoma cells on 96-

well plates and applied a scratch when cells reached desired confluency. The closure of 

the scratch wound was monitored for 45 hours. Cells transfected with the control siRNA 

closed 90% of the wound in 45 hours, but Phactr1-depleted cells only reached 40% 

wound closure during that time (Figure 5.4 A).  

 

Cell migration is essential for wound repair in this model, but to be productive it 

must proceed with directionality. Therefore, we next evaluated the directionality of 

CHL-1 melanoma cells upon Phactr1-depletion. Cells at the leading edge of the scratch 

were tracked using the Tracker software. Upon Phactr1 knockdown, CHL-1 cells lost 

their directionality in comparison to control cells (Figure 5.4 B). Moreover, Phactr-1 

depletion caused a significant decrease in cell speed. Cells expressing control siRNA 

moved with the speed of around 13 µm/min, but Phactr1-depleted cells with only 8 

µm/min and were less persistent (Figure 5.4 C).  

 

5.3.4 Phactr1 activity is required for invasiveness 

 

Some types of cancers, like melanoma, exhibit more invasive behaviour than 

other cancers. It has been proposed that melanoma cells invasiveness is related to the 

specific capability of those cells to migrate from the neural crest to the epidermis 

(Gupta et al., 2005; Vance and Goding, 2004). Several genes whose expression 

correlates with the metastatic melanoma behaviour have been identified. Some of them 

have been associated with the cytoskeletal organisation of melanoma cells, like NEDD9, 

an adaptor for focal adhesion kinase (Kim et al., 2006). Microphthalmia-associated 

transcription factor (MITF), crucial for melanocyte development was also linked to the 
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regulation of mDia1, which controls actin polymerisation (Carreira et al., 2006; 

Opdecamp et al., 1997). 

 

Given the effects of Phactr1 depletion on stress fibre assembly, focal adhesions 

formation and cell motility, we hypothesised that the knockdown of Phactr1 might also 

affect the invasiveness of those cells. In order to metastasize, cells must be able to not 

only efficiently migrate but also secrete proteases to break down barriers on their way. 

Matrigel contains a complex mixture of proteins secreted by mouse sarcoma cells, 

which resembles extracellular environment of many tissues (Hughes et al., 2010). The 

use of matrigel as a system for studying the invasive behaviour of cells is now 

considered as a method of choice for quantitative measurement of cellular metastatic 

potential. Therefore, we performed a matrigel-based invasion assay in the Matrigel 

Invasion Chambers (for details see: ‘Materials and Methods’).  

 

Phactr-1 depleted cells showed a significant decrease in their invasive behaviour 

when compared to the control cells (Figure 5.4 E). Consistent with our previous results, 

all three siRNA oligos showed decreased invasion into matrigel. This result indicates 

that Phactr1 activity is required for the invasiveness of CHL-1 melanoma cells and 

suggests that it might play a role in their metastatic behaviour.  
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Figure 5.4 Phactr1 is required for motility and invasiveness in CHL-1 melanoma cells.  

(A) Phactr1 knockdown impairs cell motility. Cells were treated with control or the Phactr1 

siRNA pool and grown to confluence. A scratch was made across the monolayer and migration 

of individual cells tracked over 45 hours using video microscopy. Top, microscopy images at 0 

hours and 45 hours time points; bottom, time course of wound closure. (B) Tracks of 10 

individual cells from the scratch wound shown for each population. (C) Migration speed and 

persistence calculated from cell tracking. Statistical significance was assessed by ANOVA 

(*P,0.05; ***P,0.001) (D) Phactr1 knockdown reduces CHL-1 melanoma invasiveness. Cells 

treated with control, individual Phactr1 siRNAs or the Phactr1 siRNA pool were allowed to 

migrate through a matrigel-coated filter towards serum-containing medium for 22 hours, and 

cells that had traversed the filter were then imaged. Efficiency of migration was expressed 

relative to control cells. Error bars represent the s.e.m. of three independent experiments, 16 

images per experiment. Statistical significance was assessed by paired t-test (*P,0.05; 

***P,0.001); right, examples of control and siPhactr1 (pool) microscopy images. Invasion assay 

was performed by Jasmine Abella.  

  



Chapter 5. Functional studies of Phactr1 

 

 270 

5.4 Conclusions 

 

In this chapter I have presented a study of Phactr1 in the endogenous setting. 

Because previous results in NIH3T3 fibroblasts indicated a role of Phactr1 in the 

assembly of actomyosin, we sought to elucidate the effect of Phactr1 depletion in CHL-

1 cells melanoma cells.  

 

We firstly showed that endogenous Phactr1 accumulates in the nucleus upon 

serum stimulation of CHL-1 cells. Subsequently, we showed that Phactr1 nuclear 

localisation correlates with the increase of PP1 binding to Phactr1. We then revealed a 

role of Phactr1 in the cytoskeletal dynamics, including focal adhesions formation and 

stress fibre assembly. Lastly, we elucidated the effect of Phactr1 depletion on the 

motility and invasiveness of melanoma cells.  

 

We previously showed that Phactr1-PP1 interaction promotes MLC 

phosphorylation, which leads to actomyosin contractility. In contrast, upon Phactr1 

depletion we observe loss of stress fibres. Taken together, this reveals a clear role of 

Phactr1 in cytoskeletal dynamics and we propose that this function is associated with 

Phactr1 interaction with PP1. However, a direct mechanism of Phactr1 interaction with 

PP1 and its downstream role in regulating MLC phosphorylation remains unclear and 

requires further analysis (see: ‘Discussion’).  
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Chapter 6. Discussion 

 

The aim of this thesis was to elucidate the molecular mechanism of Phactr1 

interaction with actin and to explore its function. I have shown that Phactr1, like 

MRTF-A, responds to serum-induced activation of the Rho-actin signalling pathway. 

Depletion of the G-actin pool caused Phactr1 nuclear accumulation in fibroblasts and 

melanoma cells. Other members of Phactr family did not accumulate in the nucleus of 

NIH3T3 cell upon serum stimulation. The nuclear import of Phactr1 depends on 

Importin α-β binding to two nuclear localisation signals located within conserved 

domains at the N-terminus and C-terminus of Phactr1 and actin competed with Importin 

α-β for Phactr1 binding.   

 

Structural analysis of Phactr1-actin complexes showed that the RPEL domain 

from Phactr1 binds three G-actin molecules, and not five like the RPEL domain of 

MRTF-A. We uncovered a new actin-RPEL interaction surface, crucial for the 

formation of higher-order complexes with actin, a secondary actin surface. We showed 

that secondary contacts, centered on the conserved glutamate, facilitate cooperative 

binding of G-actin molecules on tandem RPEL repeats and are required for the 

inhibition of Phactr1 nuclear accumulation by actin overexpression.  

 

We showed that actin competes with PP1 binding for Phactr1 C-terminal region. 

Phactr1 binding to PP1 promoted actomyosin formation, dependent on Phactr1 nuclear 

localisation. In melanoma cells, Phactr1 depletion decreased stress fibre formation, cell 

motility and invasiveness. My data suggest that Rho-actin signalling to Phactr1 has an 

important role in controlling invasive and motile behaviour.  
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6.1 Mechanisms of Phactr1 regulation 

 

6.1.1 Actin binding property of Phactr1 

 

It was previously shown that Phactr proteins interact with actin (Allen et al., 

2004; Sagara et al., 2009; Sagara et al., 2003), but the molecular mechanism of actin 

binding was not understood. It was suggested that actin binding occurs at the C-terminal 

RPEL domain of Phactr1 and Phactr3. I showed that serum-induced depletion of G-

actin pool induces nuclear accumulation of Phactr1 (Figure 6.1). I then showed by 

fluorescence anisotropy that Phactr1 binds G-actin through all four RPEL motifs and 

mutation of the invariant arginine into an alanine abolished or significantly decreased 

actin binding. Cytoplasmic retention of Phactr1 is dependent on actin binding to its C-

terminal RPEL domain. Within the C-terminal RPEL domain, RPEL1 and RPEL3 bind 

G-actin with high affinities and RPEL2 binds with lower affinity. These affinities 

reflect specific G-actin sensing property of the RPEL domain.  

 

In MRTF-A, another RPEL protein, RPEL1 and 2 bind actin with higher affinity 

and RPEL3 binds with lower affinity (Guettler et al., 2008). Differences in RPEL-actin 

affinities signify regulatory properties of MRTF-A. RPEL domain in MRTF-A binds 

five actin molecules, but this complex is not stable and upon depletion of the G-actin 

pool two actin molecules dissociate. This allows Importin α-β binding and nuclear 

accumulation of MRTF-A (Mouilleron et al., 2011).  

 

We showed by complex stoichiometry analysis that Phactr1 RPEL domain 

stably binds three G-actin molecules and not five. This is because the spacers between 

RPEL motifs in Phactr1 are shorter than in MRTF-A and not compatible with actin 

binding (see section ‘Structural analysis of Phactr1 interaction with G-actin’). 

Regulatory G-actin binding to the RPEL domain in Phactr1 depends on competitive 

Importin α-β binding to the NLS within the domain and on specific affinity of each 
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RPEL motif to actin. Therefore relative affinities of RPEL motifs to G-actin contribute 

to the regulation of Phactr1. 

 

6.1.2 Phactr1 shuttling 

 

6.1.2.1 Response to signal 

 

Phactr1 accumulates in the nucleus upon serum stimulation and this response 

depends on Rho signalling, as co-expression of Phactr1 with a specific Rho inhibitor - 

C3 transferase, inhibits nuclear accumulation of Phactr1. Latrunculin B, an inhibitor of 

actin polymerisation induced constitutively cytoplasmic localisation of Phactr1. 

Cytochalasin D, an actin polymerisation inhibitor found to inhibit actin-RPEL 

interaction in MRTF-A (Miralles et al., 2003; Sotiropoulos et al., 1999) promoted 

nuclear accumulation of Phactr1 in unstimulated cells. These results show that Phactr1, 

like MRTF-A, responds to Rho-actin signalling.  

 

Rho kinase, ROCK, also partially impairs the accumulation of Phactr1, as shown 

by Y-27632 treatment. Because inhibition of ROCK only partially impairs 

accumulation of Phactr1, it is conceivable that activity of another Rho effector – mDia 

might also contribute to this mechanism. Formins nucleate and elongate actin filaments 

and this mechanism effectively decreases the pool of G-actin (Chesarone and Goode, 

2009). Activation of MRTF-SRF requires actin polymerisation and the ROCK-LIMK-

cofilin signalling pathway. Dominant mDia1 derivatives inhibit serum and LIMK-

induced SRF activation and reduce ability of LIMK to induce F-actin formation. This 

shows functional cooperation between RhoA-controlled LIMK and mDia effector 

pathways in MRTF-A-SRF pathway (Geneste et al., 2002). Consequently, Phactr1 

localisation might as well be influenced by the activity of formins and future 

experiments could address this issue by co-expressing active mDia with Phactr1 and 

evaluating its subcellular localisation. 
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The basal level of Rho signalling is higher in MDA-MB-231 breast cancer cell 

line than in fibroblasts, which essentially changes the output of F-actin in those cells 

(Medjkane et al., 2009). MDA-MB-231 exhibit predominantly nuclear localisation of 

MRTF-A and Phactr1, which indicates similar G-actin sensing properties of both 

proteins. However, the dynamics of Phactr1 translocation to the nucleus in NIH3T3 

cells is somewhat slower than of MRTF-A (Vartiainen et al., 2007). We observe 

Phactr1 accumulation in the nucleus after around 20 minutes of serum stimulation, but 

MRTF-A accumulates within few minutes. This difference might be a reflection of a 

relatively stronger G-actin interaction of Phactr1 RPEL motifs.  

 

6.1.2.2 Actin overexpression 

 

We have shown that G-actin sensing by Phactr1 is dependent on actin binding to 

the C-terminal RPEL repeat. Deletion of the triple RPEL domain or mutation of 

invariant arginines results in constitutive nuclear localisation of Phactr1. However, we 

found that either deletion or mutation of RPEL-N did not affect nuclear accumulation of 

Phactr1 upon serum stimulation. However, upon artificial elevation of G-actin levels, 

the integrity of both RPEL-N and the RPEL domain was required to inhibit the nuclear 

accumulation of Phactr1. The saturation of all actin binding sites and the effective 

occlusion of Importin α-β binding sites is therefore required to achieve the inhibition of 

Phactr1 by actin. This shows that RPEL-N is an additional sensor of G-actin, which 

registers upon high G-actin levels. This suggests that Phactr1 might form a tetravalent 

complex with G-actin in this context. The discovery of secondary actin surface supports 

this model (see following section: ‘Structural analysis of Phactr1 interaction with actin’).  

 

This regulatory mechanism is distinct from MRTFs and supports a model in 

which the two protein families are regulated differentially. However, actin 

overexpression is an in vitro system and we do not know under what physiological 

circumstances it would occur. Nevertheless, the finding that both RPEL families 

respond to Rho-actin signal and exhibit G-actin mediated inhibition of nuclear 
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accumulation shows that actin overexpression assay reflects a real regulatory 

phenomenon.  

 

6.1.2.3 Export 

 

There are many similarities in the mechanism of shuttling by MRTF-A and 

Phactr1. However, we still do not understand if Phactr1 is continuously shuttling 

between the nucleus and the cytoplasm, like MRTF-A. MRTF-A is continuously 

exported from the nucleus via exportin Crm1 and serum stimulation reduces binding of 

G-actin to MRTF-A, which in turn reduces its export (Vartiainen et al., 2007). We show 

by LMB treatment that Phactr1 is not exported from the nucleus via Crm1, which 

indicates a distinct export mechanism for MRTF-A.  

 

Finding an export pathway of Phactr1 would not only help to understand 

molecular mechanism of its export, but would also serve a tool for studying the 

continuous shuttling of Phactr1. Future studies should address this issue by employing 

siRNA screen of export factors inhibitors in NIH3T3 cells or CHL-1 melanoma cells. 

Inhibition of Phactr1 export pathway would also help to better understand its function in 

the nucleus.  

 

6.1.2.4 Import 

 

We show that import of Phactr1 is mediated by Importin α-β (Figure 6.1). We 

performed detailed mutational analysis of Phactr1 NLS sequences to show that both the 

B1 and B2 regions are mediating Phactr1 import. As expected, mutations of the basic 

residues within the B1 sequence abolished Phactr1 nuclear accumulation. Our studies of 

actin binding to the RPEL domain uncovered the B2 region, sensitive to mutagenesis 

even when the B1 region was active. However, combination of the B1 and B2 mutations 

together with abolishing actin binding to the RPEL domain (xxxK3A KRE/3A) showed 

that, to a small extent, nuclear import is still active. Interestingly, the actin-binding-
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defective NLS mutant of Phactr1 (xxxK3A KRE/3A) was pan-cellular in unstimulated 

cells suggesting a strong contribution of the B2 region to the regulation of Phactr1. It is 

hard to evaluate why this mutant is not fully cytoplasmic, and one possibility is that to 

achieve full cytoplasmic retention of Phactr1 in the absence of actin, the whole B2 

sequence might have to be deleted. Another possibility is that additional nuclear 

localisation signals are present in Phactr1.  

 

Import mechanisms of Phactr1 and MRTF-A are very similar. Both proteins bind 

Importin α-β to their conserved NLS sequences and in both cases actin competes with 

Importin α-β for binding. However, the RPEL domain from Phactr1 cannot functionally 

replace the RPEL domain in MRTF-A. This might be caused by the insufficient nuclear 

localisation signal within the domain of Phactr1, as Phactr1 import is mediated by two 

NLSs. This experiment also showed that apparent LMB sensitization by the chimera is 

decreased, which might suggest that the RPEL domain in MRTF-A determines Crm1 

signal.  

 

Similar, actin-dependent import mechanism was recently shown for Junction-

mediating and regulatory protein (JMY). JMY was first identified as a WH2-domain 

transcriptional co-activator that promotes cell death in response to DNA damage. 

However, in the cytoplasm JMY promotes actin filament assembly and cell migration 

(Coutts et al., 2007; Shikama et al., 1999; Zuchero et al., 2009). It was recently 

proposed that JMY shuttles to the nucleus to mediate its nuclear function, but it is not 

clear if JMY actually continuously shuttles between the nucleus and the cytoplasm as its 

export factor was not identified (Zuchero et al., 2012). However, like in RPEL proteins, 

the interaction of G-actin with JMY blocks Importin α-β binding to the NLS sequence 

and prevents its import. Genome analysis showed that besides MRTF and Phactr 

families, some other proteins contain putative actin-binding domains and Importin α-β 

binding sites (Zuchero et al., 2012). It would be interesting to test whether those 

proteins also confer actin-dependent nucleocytoplasmic shuttling.  
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6.1.3 Other Phactr family members 

 

Phactr1 is the only Phactr family member that accumulates in the nucleus upon 

serum stimulation in NIH3T3 fibroblasts. Given sequences similarity between the four 

proteins, it is somewhat surprising that Phactr2, 3 and 4 are not responding to cellular 

G-actin levels in the same way. This distinct behaviour might be related to several 

factors.  

 

Firstly, regulation of nuclear import might be different due to the properties of 

nuclear import signal elements and export machinery in other Phactr family members. 

This issue was not addressed in this study and analysis of NLS sequences in Phactr2, 3 

and 4 might explain this variability. Indeed, Huet and colleagues recently suggested that 

the N-terminal domain in Phactr4 might be a membrane-targeting unit (Huet et al., 

2012), but no specific myristoylation motif was shown. Surely, more mutational 

analysis is needed to fully understand behaviour of Phactr4 and location of membrane 

targeting sequences.  

 

Secondly, the affinity of Phactr1 to G-actin is high for all four RPEL motifs, but 

this is not the case for the rest of the Phactr family members, which each contain one 

RPEL that does not bind G-actin. Therefore, we might expect that those proteins would 

form different higher-order assemblies with G-actin. Future experiments should address 

differential behaviour of other Phactr family members. Determining the localisation of 

different Phactr family chimeric proteins, containing for example NLS sequences form 

Phactr1, could provide more insight about the functionality of these regions in other 

family members.  

 

6.1.4 Phactr1 interaction with PP1 

 

Previous studies indicated multiple interaction sites between PP1 and Phactr 

family members. It was shown that last ten amino acids of Phactr proteins were required 
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for PP1 binding in co-immunoprecipitation assays, with F577 and H578 playing crucial 

roles (Allen et al., 2004; Sagara et al., 2009) (Figure 1.16). R650 in Phactr4 was also 

shown to play a role in the PP1 interaction (Kim et al., 2007). Additionally, one study 

suggests that RPEL3 might also be involved in a PP1 interaction, as a construct 

containing this sequence was more effective in PP1 inhibition assays (Sagara et al., 

2003).  

 

We confirmed that truncation of the whole C-terminal region was indeed required 

for the interaction with PP1, as it was effective in abolishing PP1 binding in co-

immunoprecipitation assays. We also found that the RPEL domain in Phactr1 is 

required for PP1 binding, suggesting that the PP1 binding site extends and overlaps with 

RPEL3 within the RPEL domain. In a direct binding assay, we later showed that actin 

competes with PP1 for Phactr1 C-terminal region. However, the exact interaction points 

of PP1 and Phactr1 are not shown.  

 

Considering, that Phactr1 possesses a version of the PP1 binding consensus 

(R/K)x0-1(V/I)x(F/W) at the C-terminal end of RPEL3 (represented by 517KILIRF522), it 

might be interesting to perform additional mutational analysis of KILIRF region to 

address this question. Mutations of the I520 and F522 into alanines within this sequence 

in Phactr1 might answer questions about the presence of PP1 binding consensus in 

Phactr family of proteins. These mutations in yeast homologs of Phactr proteins, Afr1 

and Bni4 inhibit their interaction with yeast PP1, Glc7 (Bharucha et al., 2008; Larson et 

al., 2008). According to a recent view of PP1 binding mode, this consensus in Phactr1 

might serve as a docking region for PP1 binding (Roy and Cyert, 2009). Therefore, 

either the region encompassing the conserved R536 (R650 in Phactr4) or the conserved 

F577 would be the PP1 activity-modulating site (Allen et al., 2004; Kim et al., 2007). I 

hypothesise that Phactr1 might therefore exhibit similar PP1 binding mode to MYPT1, 

which has several PP1 interaction points and structurally wraps around PP1 (Figure 

1.13). Ultimately, only the structural analysis of PP1 binding to Phactr1 could fully 

explain the molecular mechanism of PP1 binding to Phactr1.  
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We found that PP1 binding site in Phactr1 is not required for its translocation to 

the nucleus. It was somewhat puzzling for us, why Phactr1 translocates to the nucleus in 

the first place, and the initial hypothesis was that Phactr1 is required in the nucleus as a 

PP1 binding partner. Because PP1 can be differentially expressed within the cell, we 

examined the localisation of endogenous PP1 in NIH3T3 cells to find that it was indeed 

nuclear. Consistent with our view, Phactr-xxx was constitutively nuclear and also bound 

PP1 all the time. However, deletion mutant of the PP1 binding site (Phactr1-xxxΔC) 

was also nuclear, but did not bind PP1. Therefore, Phactr1 is targeted to the nucleus to 

interact with PP1, but PP1 is not dictating the localisation of Phactr1 (Figure 6.1). It was 

suggested that other Phactr family member, Phactr4 interacts with PP1 in the cytoplasm, 

which also suggests that PP1 is not required for Phactr1 nuclear localisation (Huet et al., 

2012).  

 

In our study we analysed Phactr1 interaction with PP1α, an isoform of PP1 

initially found to bind Phactr1 by Allen and colleagues (Allen et al., 2004). We assume 

that Phactr1 is equally competent to bind other isoforms of PP1, as this was recently 

shown for Phactr4 (Kim et al., 2007). However, given some of the differences between 

Phactr proteins, a direct test should be performed to confirm our assumption.  
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Figure 6.1 Molecular mechanism of Phactr1 nuclear accumulation upon serum 

stimulation. 

In starved cells, Phactr1 is predominantly cytoplasmic and binds G-actin. Actin inhibits 

Importin α-β dependent import of Phactr1 and PP1 binding. It is not known whether Phactr1 is 

actively exported from the nucleus. Upon serum stimulation, G-actin pool in the cell decreases, 

which allows Importin α-β to bind Phactr1 and promotes its import. Subsequently, PP1 is now 

competent for the interaction with Phactr1 in the nucleus.  
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6.2 Structural analysis of Phactr1 interaction with G-actin 

 

6.2.1 RPEL motif interactions with G-actin 

 

It was previously shown that individual RPEL motifs from MRTF-A interact 

with actin monomers through primary contacts between the helices in RPEL motifs and 

hydrophobic cleft and ledge in G-actin (Mouilleron et al., 2008). Highly conserved 

RPEL motif G-actin contacts are predominantly hydrophobic and in RPEL2MRTF-A 

involve L131, I136 and L137 in helix-α2, and L118 and I122 in helix-α1 (Figure 1.10 

C). The invariant R-loop arginine, critical for G-actin binding, forms a salt bridge with 

the C-terminus of G-actin (Mouilleron et al., 2008). We showed by X-ray 

crystallography that primary actin contacts are also present in the high-resolution 

structures of Phactr1 RPEL motifs with G-actin. We observed additional primary 

contacts, which contribute to the high affinity of Phacr1 RPEL motifs, as shown by 

fluorescence anisotropy analysis.  

 

G-actinRPEL-N and G-actinRPEL2 structures revealed the presence of 

secondary actin interaction surface, also observed in the trivalent G-actinRPELPhactr1 

domain complex structure (see further below). These contacts are highly conserved in 

all RPEL motifs form Phactr1 and in RPEL motifs in MRTF-A. We observed the same 

three RPEL residues at the secondary actin interface in both structures: the residue 

preceding the conserved RPEL arginine, the conserved RPEL glutamate, and the basic 

residue from the C-cap (M146/ E152/ R156RPEL-N and Q468/ E474/ R478RPEL2) (Figure 

4.9 B). We show that these residues act together to form a stable secondary interaction 

on the G-actin interface. The basic C-cap residue represented by R156RPEL-N and 

R478RPEL2 each interact with the C-terminus of helix 203–216 of the secondary actin 

through hydrogen bonds. The invariant RPEL glutamate residue (E152RPEL-N and 

E474RPEL2 ) interacts either indirectly via a water molecule or directly with secondary 

actin.  
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Secondary contacts were not observed previously in MRTF-A due to the lower 

resolution of multivalent G-actinMRTF-A complexes. Superposition of the secondary 

actin contacts made by RPEL domain from Phactr1 and MRTF-A revealed a strikingly 

similar interaction surface, centred on the invariant glutamate. Therefore, RPEL motif 

interactions with G-actin are based of two groups of interactions, primary and 

secondary actin contacts (Figure 6.2).  

 
 

Figure 6.2 Schematic model of Phactr1 RPEL motifs interaction with actin monomers. 

Primary and secondary G-actin contacts made by RPEL motif (green) in Phactr1. Primary G-

actin contacts are based on the interaction of hydrophobic cleft and hydrophobic ledge of G-

actin with helix-α1 and helix-α2 of the RPEL motif. Secondary G-actin contacts are centred on 

the conserved glutamate and a conserved basic C-cap residue (here represented by an arginine). 

Helix 203-216 in G-actin and the nucleotide binding cleft are crucial points of G-actin 

secondary interaction surface with RPEL motif. Adapted from figure by Stephane Mouilleron. 
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6.2.2 Trivalent G-actinRPEL domain complex 

 

We show by X-ray crystallography that the RPEL domain form Phactr1 binds 

three G-actin molecules to form a trivalent complex. Analysis of the structural data 

shows that G-actinRPELPhactr1 crystals contained two trivalent complexes in the 

asymmetric unit. However, in solution a single trivalent complex is present, as shown 

by SEC-MALLS and SAXS analysis (Mouilleron et al., 2012).  

 

The trivalent G-actinRPEL domain Phactr1 complex is a rare example of a closed 

helical assembly and is distinct from the pentavalent G-actinRPEL domain MRTF-A 

assembly. In MRTF-A, primary actin contacts are conserved not only within the RPEL 

motifs, but also within the intervening spacers, which also bind G-actin and they are 

crucial for the formation of a pentavalent G-actinRPEL domain MRTF-A assembly 

(Mouilleron et al., 2011). The trimeric G-actinRPEL domainPhactr1 complex spacers are 

shorter and incompetent for the interaction with G-actin. Therefore, the main difference 

between the two complexes is the lack of spacer actins within the G-actinRPEL 

domainPhactr1 complex. However, both complexes adopt strikingly similar trajectories 

and the shape of both RPEL domain cranks is virtually the same. This similarity is due 

to the presence of the secondary actin contacts, present in both complexes.  

 

We showed by mutational and complex stoichiometry analysis that secondary 

actin interface within the G-actinRPEL domainPhactr1 complex facilitates cooperative 

actin binding within the RPEL domain of Phactr1 and contribute to the rigidity of this 

assembly. This analysis explained the lower affinity of RPEL2Phactr1 to G-actin (actin 

R2). Within the trivalent complex, the binding of actin R2 is supported by secondary 

interactions with RPEL1Phactr1 and by the rigidity of the complex. 

 

We also show that secondary contacts are present in the pentavalent G-

actinRPEL domain MRTF-A complex. Therefore, to explain the striking similarities 

between shapes of the two cranks, we suggest that the secondary contact surface 

contributes to the arrangement of the pentavalent G-actinRPEL domainMRTF-A complex. 
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However, mutational analysis of these interactions in MRTF-A should be performed to 

address this issue.  

 

We now understand the conservation of the secondary surface contact, glutamate 

in RPEL-N Phactr1, RPEL1 Phactr1, RPEL2 Phactr1 and in RPEL1 MRTF-A and RPEL2 MRTF-A. 

However, it remains hard to understand the conservation of this residue in the C-

terminal RPEL3 motif. Perhaps it is involved in the intramolecular interactions with 

other binding partners. In Phactr1, residues implicated in the maintenance of secondary 

actin interactions are essentially overlapping with PP1 binding sites. Structural analysis 

of PP1 interaction with Phactr1 could help to understand the conservation of secondary 

actin contacts in RPEL3.  

 

Although significant progress has been made in the understanding of actin-RPEL 

interactions within higher-order assemblies in both MRTF-A and Phactr1, we still 

struggle to fully understand the dynamics of actin loading onto tandem RPEL motifs. 

Indeed, we observe actin binding cooperativity within the RPEL domain, but we do not 

distinguish the order of actin monomers assembly and disassembly onto the domain. 

Analysis of secondary contacts within the MRTF-A RPEL domain might help to answer 

this intriguing question.  

 

6.2.3 Significance of the secondary actin surface 

 

Studies of Phactr1 regulation revealed that C-terminal RPEL domain, but not 

RPEL-N was required to mediate Phactr1 regulation by G-actin. However, actin 

overexpression experiments showed that the integrity of the C-terminal domain and 

RPEL-N is required for the inhibition of Phactr1 accumulation by G-actin, which arises 

from the saturation of all four RPEL motifs by G-actin. By mutational analysis we 

showed that secondary actin contacts facilitate this process. Mutagenesis of the 

secondary contact residues in RPEL-N showed that they are required for actin-mediated 

inhibition of Phactr1 nuclear accumulation in localisation assays.  
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We hypothesise that under conditions of elevated actin concentration in vivo, 

Phactr1 might form a tetravalent G-actinRPEL domainPhactr1 complex through 

secondary contacts between the actin-bound RPEL-N and the RPEL1 primary actin 

(Figure 6.3). We assume that within this tetravalent assembly, the access to both B1 and 

B2 import signals would be impaired. This state can be considered equivalent to the 

pentavalent G-actinRPEL domainMRTF-A assembly, in which Importin α-β binding sites 

are occluded by actin.  

 

A recently reported crystal structure of MRTF-A RPEL domain in complex with 

the ARM-repeat domain of Importin-α showed that upon this interaction MRTF-A 

adopts an extended conformation (Hirano and Matsuura, 2011). The folding of MRTF-

A in the pentavalent actin complex is entirely different from its conformation within the 

MRTF-A:Importin-α complex. The NLS residues in MRTF-A engage in a α-helical 

conformation upon actin binding, which is incompatible with Importin-α binding. The 

structural study of Phactr1 complex with Importin-α was not yet reported, but it is 

probable that the structure of RPEL motifs and NLS sequences in Phactr1 also engages 

in an extended conformation, or simply a different conformation to the actin-bound 

state. This would suggest that the actin-binding state and Importin α-β -binding states 

are indeed mutually exclusive.  

 

In theory, secondary actin contacts would induce the interaction between the N-

terminal and the C-terminal parts of Phactr1 and future experiments should establish if 

this interaction occurs. This can be investigated in vivo by fluorescence resonance 

energy transfer (FRET) between the donor and acceptor fluorofores fused to the ends of 

Phactr1. 

 

The question of generality of the RPEL motif in conferring nucleocytoplasmic 

shuttling was somewhat intriguing. We learned that Phactr1 and MRTF-A use very 

similar molecular mechanisms to be targeted to the nucleus. It would be interesting to 

find and study other proteins, which contain tandem RPEL repeats to further expand the 

analysis of RPEL generality. Because those motifs seem to play roles in targeting 

proteins to perform important biological roles, the discovery of new RPEL proteins 
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could lead to the discovery of new functions. Moreover, the presence of a secondary 

interaction surface supports a view that the actin-RPEL interaction promotes the 

formation of higher-order actin assemblies on tandem repeats, which could have actin-

sequestering cytoskeletal roles. 

 

 
 

Figure 6.3 Model of tetravalent G-actinPhactr1 assembly. 

Model for the recruitment of G-actinRPEL-N to the trivalent G-actinRPEL domainPhactr1 

complex through RPEL-N secondary actin contacts. This nuclear-import-inhibited tetravalent 

assembly might be present upon high G-actin concentrations. Adapted from figure by Stephane 

Mouilleron. 
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6.3 Function of Phactr1 

 

6.3.1 Actomyosin rearrangements induced by active Phactr1 

 

We showed that the expression of PP1-bound Phactr1-xxx promotes striking 

cytoskeletal rearrangements in NIH3T3 cells. These rearrangements depend on PP1 

binding to the C-terminal region of Phactr1, because deletion of this domain abolished 

the phenotype. Phactr1-xxx expression showed either condensed foci of actomyosin or 

thickened stress fibres. It is intriguing to understand why cells expressing Phactr1-xxx 

exhibit two forms of similar rearrangements. A simple assumption is that the two 

phenotypes reflect populations of cells with different levels of Phactr1-PP1 activity. A 

similar phenotype was also noticed during the expression of wild-type Phactr1, but only 

upon serum stimulation. Wild-type Phactr1 induced milder effect, as PP1-Phactr1 

interaction is weaker in comparison to PP1-Phactr1-xxx, as shown in co-

immunoprecipitation assays.  

 

We show by quantitative immunofluorescence and localisation analysis that 

Phactr1 needs to be localised in the nucleus to induce the actomyosin phenotype. We 

used actin-binding defective NLS mutant of Phactr1 (xxxK3A KRE/3A) to evaluate a 

link between Phactr1 nuclear localisation and actomyosin rearrangements. However, 

this mutant is not fully cytoplasmic and can still bind PP1 in the nucleus. Therefore, to 

ultimately show that nuclear localisation is required for PP1 binding, it would be best to 

use a mutant, which is (1) localised exclusively in the cytoplasm, (2) does not bind actin 

and (3) is able to interact with PP1. Nevertheless, our results strongly suggest that only 

nuclear Phactr1 binds PP1 as only Phactr1-xxx and stimulated wild-type Phactr1 induce 

rearrangements.  

 

Expression of ROCK was previously implicated in the promotion of actin 

rearrangements (Leung et al., 1996; Sahai et al., 1998), which are reminiscent of those 

induced by the expression of non-actin binding Phactr1 mutant (Phactr1-xxx). One of 
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the main functions of ROCK is the control of actomyosin crosslinking by regulation of 

MLC phosphorylation at S19 and T18 (see ‘Actomyosin contractility’ and (Somlyo and 

Somlyo, 2000)). We found that rearrangements observed in cells expressing Phactr1-

xxx exhibit enhanced MLC phosphorylation at S19 and T18. Moreover, the phenotype 

rapidly dispersed upon blebbistatin treatment, a specific inhibitor of MLC ATPase.  

 

This indicates that Phactr1 might regulate MLC phosphorylation by interacting 

with PP1. To dephosphorylate MLC, PP1 associates with MYPT1 to form active MLC 

phosphatase (MLCP) (for review, see (Ito et al., 2004)). Therefore, Phactr1 binding to 

PP1 might prevent the formation of active MLCP, which would lead to increase in 

MLC phosphorylation and actomyosin crosslinking. However, we do not know if the 

role of Phactr1 is directly linked to MLCP of if Phactr1 is involved in promoting MLC 

phosphorylation indirectly, for example through gene expression. A direct role is hard 

to evaluate, because nuclear localisation of Phactr1 is required to promote MLC 

phosphorylation and MLC is localised in the cytoplasm (see following section ‘Phactr1 

function in cytoskeletal homeostasis’).  

 

6.3.2 Cytoskeletal phenotypes induced by Phactr1 depletion.  

 

To better understand function of Phactr1 we examined its roles in the context of 

malignant melanoma cells, where it is highly expressed (Koh et al., 2009; Trufant, 

2010). In CHL-1 cells, Phactr1 also translocates to the nucleus and exhibits enhanced 

interaction with PP1 upon serum stimulation, as shown by fluorescence microscopy and 

co-immunoprecipitation. However, expression of non-actin binding Phactr1-xxx did not 

induce similar degree of cytoskeletal rearrangements as in NIH3T3 cells. This might be 

due to different relative levels of G- and F-actin in the two cell lines. Taken together, 

these findings confirmed that Phactr1 regulation is a more general mechanism and 

established CHL-1 as a relevant cell line to study Phactr1 function.  

 

Upon Phactr1 depletion in CHL-1 cells, stress fibres become severely dispersed, 

cell spreading and motility is significantly decreased and cells loose persistence in 
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scratch wound assays. Moreover, Phactr1-depleted cells fail to invade into the matrigel. 

Therefore, in CHL-1 melanoma cells Phactr1 is required for the maintenance of cell 

morphology, cell motility and invasiveness. This finding is in agreement with previous 

studies, which showed that Phactr1 is involved in promoting motility of endothelial 

cells (Allain et al., 2011; Jarray et al., 2011). Phactr3 was also shown to have a role in 

cell morphology, as disruption of PP1 interaction induced cell rounding and shrinkage 

(Sagara et al., 2009). We have shown in NIH3T3 cells that Phactr1-induced phenotypes 

are directly linked to the interaction with PP1. We therefore suggest that Phactr1 

binding to PP1 is required for the maintenance of stress fibre assembly and actomyosin 

crosslinking in CHL-1 melanoma cells.  

 

6.3.3 Phactr1 function in cytoskeletal homeostasis  

 

Here, we present a model, where Phactr1 binds and sequesters PP1 in the nucleus, 

therefore impairing the formation of MLCP complex in the cytoplasm. This is 

supported by the observation that the expression of nuclear Phactr1-xxx causes the 

enhancement of PP1 nuclear staining in NIH3T3 fibroblasts. Because there is less 

available PP1 in the cytoplasm, MLCP complex becomes less active, which leads to 

hyper-phosphorylation of MLC and the observed contractile phenotype (Figure 6.4). 

Our results suggest that the regulation of Phactr1 activity by G-actin provide a 

homeostatic feedback loop serving to coordinate levels of phosphorylated MLC, and 

hence actomyosin crosslinking, with F-actin assembly (Figure 6.4). This model is 

reminiscent of the role of MRTFs homeostatic control of cytoskeletal gene expression 

(Medjkane et al., 2009; Olson and Nordheim, 2010).  

 
We have not directly tested if Phactr1 is an inhibitor of PP1. It was previously 

shown that Phactr proteins can modulate activity of PP1, but some of those studies were 

inconsistent (Allen et al., 2004; Huet et al., 2012; Sagara et al., 2003). These variations 

might be related to the differences between Phactr family members. PP1 holoenzymes 

can either encompass regulatory subunits that act positively to enhance PP1 substrate 

specificity or as substrate-independent inhibitory cofactors (for review, see (Ceulemans 
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and Bollen, 2004)). We propose that Phactr1 directly regulates phosphorylation of MLC 

through the inhibition of MLCP complex, consisting of MYPT1 and PP1. The role of 

MYPT1-PP1 complex is to specifically sense MLC as a substrate, therefore enabling its 

dephosphorylation. The role of Phactr1 might be to specifically target PP1 and block its 

interaction with MYPT1. It was shown that MYPT1 interacts with PP1 through multiple 

sites, and the docking ‘RVxF’ channel in PP1 is crucially engaged during this 

interaction (Terrak et al., 2004). It is also possible that the ‘RVxF’ motif is indeed 

present in Phactr1 (Bharucha et al., 2008; Larson et al., 2008). If this was the case PP1-

Phactr1 interaction would be incompatible with MYPT1 binding, and PP1-MYTP1 or 

PP1-Phactr1 complexes would be mutually exclusive. However, this hypothesis was not 

directly tested and we cannot exclude that PP1 would form a ternary complex with 

Phactr1 and MYPT1.  

 

We suggest that Phactr1 is a negative regulator of PP1 activity, which is 

consistent with previous findings (Allen et al., 2004). Phactr3 was also shown to inhibit 

PP1 activity (Sagara et al., 2003). Phactr4-PP1 complex however was recently proposed 

to act positively to dephosphorylate Rb and cofilin but no direct demonstration of these 

findings was shown (Kim et al., 2007; Zhang et al., 2012). Huet and colleagues 

performed an in vitro assay to test the activity of PP1 upon Phactr4 and suggest that 

Phactr4 binding increases PP1 activity (Huet et al., 2012). Therefore, it is possible that 

Phactr1 and Phacr4 might affect PP1 activity in a different way. More studies are 

necessary to understand the activity of PP1-Phactr complexes and differences that those 

complexes might exhibit between Phactr family members. Structural analysis of 

Phactr1-PP1 interaction would certainly help to understand how Phactr1 modulates PP1 

activity.  

 

Lastly, the phenotypes described upon Phactr1 depletion in CHL-1 melanoma cell 

line allow us to suggest that Phactr1 has a role in cancer cell motility and invasion. This 

is consistent with high expression levels of Phactr1 in malignant melanoma cancers 

(Koh et al., 2009; Trufant, 2010). In contrast, Phactr4 was shown to act as a tumour 

suppressor in variety of cancers, again indicating its distinct function (Solimini et al., 
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2013). More biochemical and functional studies are needed to understand those 

differences.  
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Figure 6.4 Model of Phactr1 function in cytoskeletal homeostasis. 

Upon activation of Rho-GTPases and Rho effectors, G-actin assembles into filaments (F-actin). 

G-actin inhibits Phactr1 nuclear translocation and upon depletion of G-actin pool Phactr1 

accumulates in the nucleus. Phactr1 binds PP1 in the nucleus and this association promotes 

MLC phosphorylation at T18 S19. Potential mechanism involves sequestering of PP1 in the 

nucleus by Phactr1 and consequent inhibition of MLCP complex formation. Mechanism of 

MLC phosphorylation by Phactr1 is not fully understood, but might be either direct (inhibition 

through competition with MYPT1) or indirect (through transcriptional regulation).  Cell 

invasion and metastatic potential are important biological consequences of this mechanism.  

  



Chapter 6. Discussion 

 

 295 

6.4 Conclusions 

 

In this thesis, I have described the molecular mechanism of Phactr1 nuclear 

accumulation, its association with PP1 and its potential roles in cytoskeletal dynamics. 

My studies revealed a functional role of G-actin in control of Phactr1 

nucleocytoplasmic shuttling and PP1 interaction. Biochemical analysis of Phactr1 

showed that its nuclear accumulation is dependent on the direct competition between G-

actin and Importin α-β binding. Mutational studies allowed us to further characterise the 

domains of Phactr1, involved in its regulation. In collaboration with Stephane 

Mouilleron, I performed a structural analysis of Phactr-actin complexes. This approach 

allowed us to better explain the mechanism of Phactr1 nuclear accumulation. It also 

showed crucial similarities as well as differences compared to MRTF-actin complexes. 

Most importantly however, it enabled us to characterise a new actin interaction surface 

in RPEL proteins, which is involved in the formation of higher-order assemblies with 

G-actin. The analysis of these interactions indicates a conformational switch upon actin 

binding. These findings emphasise the significance of RPEL motif in modulation of 

protein interactions according to G-actin concentration. Lastly, through a functional 

analysis we suggest a role of Phactr1 in the motility and invasiveness of malignant 

melanoma cells. We propose that this function of Phactr1 depends on its association 

with PP1 and consequent cytoskeletal changes. 
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Appendix 

 
Figure 7.1 Expression of wild-type Phactr1 induces ‘bright fibre’ formation upon serum 

stimulation.  

‘Bright-fibre’ F-actin phenotype in NIH3T3 cells expressing wild-type Phactr1 (WT) after 1 

hour of serum stimulation. Subcellular localisation of Phactr1 was scored as N (nuclear), N/C 

(pan-cellular) or C (cytoplasmic). Three representative images are shown. 
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Figure 7.2 SAXS analysis of the G-actin•RPELPhactr1 complex.  

SAXS analysis indicates that the G-actin•RPELPhactr1 complex is trivalent in solution. (A) 

Experimental X-ray scattering intensities for the G-actin•RPELPhactr1 complex as a function of 

the maximum momentum transfer Qmax= 4πsin(θ)/λ of 0.40 Å-1 (green). Computed scattering 

patterns derived from the trivalent G-actin•RPELPhactr1 complex are shown in red. The radius of 

gyration (Rg) derived from the scattering curves and representing the average size of the particle 

in solution was Rg(exp) = 40.3Å. This value is in agreement with the expected value for a single 

trivalent G-actin•RPELPhactr1 complex (Rg=41.3Å). (B) Residuals for the least-square fits ((Iexp – 

Icalc)/ σexp) are shown for a linear scale. (C) Fit of the computed scattering patterns of the model 

to the experimental scattering curves over the entire Q range (Mouilleron et al., 2012).  
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Table 7.1 Data collection and refinement statistics. 

Table assembled according to Mouilleron and colleagues (Mouilleron et al., 2012). 
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Figure 7.3 MRTF-A RPEL3-Phactr1 chimera. 

(A) Affinities (KD) obtained in fluorescence polarisation anisotropy experiments for MRTF-A 

RPEL3 peptide (sequence is shown in red), Phactr1 RPEL3 (sequence is shown in blue), and 

chimeric peptides (replaced sequences are colour-coded); chimeric peptide B1 sequence 

(MRTF-A RPEL3-Phactr1 chimera) was introduced into full length MRTF-A. (B) Schematic 

representation of chimeric construct used in C. (C) Introduction of B1 chimera into the full-

length MRTF-A does not affect its regulation upon serum stimulation or LMB treatment; C, 

cytoplasmic; N/C, pan-cellular; N, nuclear; at least 100 cells were counted per point 

(preliminary observations) 
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