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ABSTRACT  
 
High sensitivity multi-constellation GNSS receivers can 
dramatically improve the satellite availability in an urban 
environment. However, positioning accuracy remains a 
challenge because of blockage, reflection and diffraction 
of signals by buildings. In typical urban positioning 
scenarios, the receiver often receives a mixture of non-
line-of-sight (NLOS) signals, multipath-contaminated 
direct line-of-sight (LOS) signals, and clean direct-LOS 
signals. Multi-constellation GNSS allows maximising the 
positioning accuracy by selecting only those signals that 
are least contaminated by multipath and NLOS 
propagation to form the navigation solution. A technique 

exploring the consistency among received signals using 
randomly draw subsets of all available signals is proposed 
in this research. The implementation of the algorithm 
follows an estimation scheme known as RANdom 
SAmple Consensus (RANSAC). A pre-defined cost 
function is firstly used to select the best available subset 
of measurements. A reference solution is produced from 
the best available subset. The “residuals” of all received 
signals, i.e. the differences between the observed 
measurements and the predictions from the reference 
solution, are examined. The examination features a 
receiver autonomous integrity monitoring (RAIM) like 
statistical test based on specific distributions. A final 
solution is produced from measurements passed the 
examination plus the best available subset. In addition, 
height aiding from a terrain elevation database is used as 
an additional ranging measurement to further enhance the 
positioning performance. Two GPS/GLONASS data sets 
collected from different urban areas of central London 
were used for testing. Different versions of the cost 
function and the effect of introducing height aiding are 
tested. The results show an improvement of positioning 
accuracy over conventional least-squares algorithm and 
previous consistency-checking algorithm through 
reduction of the impact of multipath and NLOS 
propagation errors. 
 
1. INTRODUCTION  
 
The urban environment presents two major challenges to 
GNSS signal reception. Firstly, buildings and other 
obstacles, such as buses, block the direct line-of-sight to 
many satellites, reducing the number in view. The 
remaining signals often have poor geometry, degrading 
the positioning accuracy [1]. The second problem is that 
urban environments contain many flat and reflective 
surfaces that reflect GNSS signals. Reception of these 
reflected signals results in significant positioning errors.  
 
Where the direct signal is blocked and the signal is 
received only via reflections, this is known as non-line-of-
sight (NLOS) reception. Where the signal is received 
through multiple paths, this is known as multipath 
interference. NLOS reception and multipath interference 
are often grouped together as “multipath”. However, they 
are actually separate phenomena that produce very 
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different ranging errors. NLOS reception and multipath 
interference can occur separately, but also occur together 
whenever a signal is received via multiple reflected paths 
but not directly. 
 
NLOS reception results in a pseudo-range measurement 
error equal to the additional path delay, the difference 
between length of the path taken by the reflected signal 
and the (blocked) direct path between satellite and 
receiver. This error is always positive and, although 
typically tens of metres, is potentially unlimited. Signals 
received via distant tall buildings can exhibit errors of 
more than a kilometre. NLOS signals can be nearly as 
strong as the directly received signals, but can also be 
very weak. As high-sensitivity receivers can acquire much 
weaker signals, their use can significantly increase the 
number of NLOS signals received. 
 
Where multipath interference to directly received signals 
occurs, the reflected signals distort the code correlation 
peak within the receiver such that the code phase of the 
direct line-of-sight (LOS) signal cannot be accurately 
determined by equalising the power in the early and late 
correlation channels. The resulting code tracking error 
depends on the receiver design as well as the direct and 
reflected signal strengths, path delay and phase 
difference, and can be up to half a code chip [2, 3, 4]. 
Carrier-phase tracking errors are limited to a quarter of a 
wavelength (assuming the direct LOS signal is stronger 
than the reflections). 
 
Although the NLOS reception and multipath interference 
affect both code- and carrier-phase observations, code-
phase contamination is on a much larger scale and is 
usually the dominant error source for urban positioning 
situations.  
 
Several methods exist for mitigating multipath 
interference and NLOS reception. However, they all have 
their limitations. Techniques may be classified as 
antenna-based, receiver-based and post-receiver, and may 
be used in combination. Antenna-based techniques such 
as beam-forming antenna arrays [5], ground planes and 
choke rings are usually bulky and expensive. The 
application of dual-polarisation antenna [6] can be used to 
detect the NLOS reception. Receiver-based techniques, 
summarised in [2], that sharpen the peak of the code 
correlation function are relatively expensive to implement 
and have no effect on NLOS signal reception. 
 
Post-receiver techniques operate using the pseudo-range, 
carrier-phase and carrier-power-to-noise density ratio, 
C/N0, measurements prior to the positioning calculation. 
Multipath interference may be detected and mitigated by 
comparing measurements on different frequencies from 
the same satellite [6]. However, these techniques are of 
little use for mitigating NLOS reception. 
 
The assumption held by lots of conventional techniques is 
that only a single GNSS constellation is used. However, 

multi-constellation GNSS provides access to many more 
signals. Accuracy can thus be maximised by selecting 
only those signals least contaminated by multipath and 
NLOS propagation to form the navigation solution and 
discarding the rest. With single-constellation GNSS, there 
is limited scope to do this without compromising the 
availability of a position solution with adequate geometry, 
particularly in challenging environments, such as city 
centres. 
 
NLOS reception may be detected using a dual-
polarisation antenna [7], an antenna array [8], or a 
panoramic camera [9, 10]. However, these techniques all 
require additional hardware, increasing the cost, size and 
power consumption of the user equipment. 
 
The focus of this paper is signal selection by consistency 
checking, whereby measurements from different satellites 
are compared with each other to identify the NLOS and 
multipath-contaminated signals. Consistency checking 
can operate using only one measurement per satellite, 
though sensitivity is improved by using multiple 
measurements. It may thus be used either as a low-cost 
alternative to the other methods or as an augmentation to 
improve overall robustness. 
 
Furthermore, the urban mapping activities carried out by 
commercial companies have already expanded beyond the 
scope of traditional sense of a 2D map of only streets and 
buildings. 3D maps with height information can be easily 
obtained on consumer mobile devices. Indoor mapping is 
also under rapid development. Therefore, the effect of 
combining height aiding with the consistency-checking 
algorithm is also investigated in this research.  
 
Section 2 reviews the basic principles of consistency 
checking. A summary of previous research is also 
included along with the rationale of the new consistency-
checking algorithm. Section 3 describes the 
implementation of the new algorithm. Different versions 
of the cost functions and the formulation of height aiding 
are also given. Section 4 shows the test results obtained 
using two GPS/GLONASS data sets collected from 
different parts of central London. Finally, the conclusions 
of the research on the new algorithm and suggestions for 
future improvements are given in Section 5. 
 
Consistency-based NLOS and multipath detection, and 
height aiding may both be implemented as part of an 
intelligent urban positioning system using multi-
constellation GNSS with 3D mapping [11], alongside 
conventional GNSS positioning and shadow matching 
[12]. 
 
2. BACKGROUND ON CONSISTENCY 

CHECKING  
 

The principle of consistency checking is that NLOS and 
multipath-contaminated measurements produce a less 
consistent navigation solution than clean direct-LOS 
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measurements. In other words, if position solutions are 
computed using combinations of signals from different 
satellites, those obtained using only the multipath-free 
signals should be in greater agreement than those that 
include multipath-contaminated and NLOS 
measurements. Thus these measurements may be 
identified through various consistency-checking based 
approaches. By eliminating these contaminated 
measurements, a more accurate position solution can be 
produced. The same principle is used for fault detection in 
receiver autonomous integrity monitoring (RAIM) [13, 
14]. The difference is that, in RAIM, the object is to 
detect and exclude faulty data and to calculate protection 
levels, whereas here, the aim is to identify the set of 
measurements least affected by multipath and NLOS 
propagation. 
 
Previous research on using consistency-checking to 
mitigate NLOS reception and multipath interference 
errors [15] has shown that this technique can identify and 
eliminate NLOS signals when most of the other received 
signals are direct LOS with minimal multipath 
interference, but is less reliable in more challenging 
environments. The processing scheme used for that study 
operates in a similar “top down” mode to RAIM, starting 
from the overall residuals from a least-squares solution 
obtained from all available measurements. The algorithm 
is usually implemented as an iterative process. 
Problematic signals are eliminated and residuals are 
recomputed until either the test is passed or insufficient 
signals remain. The elimination criteria can also be 
adjusted to reflect the assumption that a NLOS signal is 
always delayed with respect to the corresponding direct 
signal.  
 
The underlying assumptions of such a “top down” 
implementation of consistency checking are:  
 

• Measurement errors follow a zero-mean Gaussian 
distribution;  

• Faulty signals are the minority amongst the received 
signals; and 

• The errors on different signals are independent of 
each other.  

 
This, however, is not always true under extreme NLOS 
and multipath conditions, such as typical urban canyons. 
When only a small part of sky can be seen and a large 
number of highly reflective objects are present around the 
receiver location, a set of received signals may be found 
that are consistent amongst them but still produce an 
erroneous position solution. Without further information 
on the signals or surrounding environment, the 
consistency-checking method struggles to work with the 
biased residuals. 
 
Another assumption of the hypothesis testing is that the 
measurement errors follow a zero-mean Gaussian 
distribution; hence the core of the testing is a chi-square 
test examining the normality of the measurement 

residuals.  However, errors caused by extreme multipath 
and NLOS signals do not become white over time as 
shown in previous research [15]. Instead, a more 
systematic pattern is usually expected. Therefore, when 
only consistency checking methods are applied, the 
accuracy improvement can sometimes be limited. 
 
It is also demonstrated from the previous study that when 
a suitable weighting scheme is combined with the 
consistency checking method, it is possible to improve the 
accuracy and reliability of the solution. This is because 
NLOS signals usually exhibit a lower C/N0 value than 
direct-LOS signals.   
 
Residuals produced from a weighted least-squares 
solution alone do not show the quality of each signal 
when multiple erroneous signals are present. This is 
because least-squares as an estimation algorithm has a 
particular low break point, i.e. the method performs 
poorly on data sets containing a high ratio of erroneous 
outliers [16]. In order to ensure a high-quality solution 
and useful residuals, the noise level on the different 
measurements must be at a similar level. However, the 
satellite ranging measurements produced in an urban 
environment do not meet this requirement.  Some subset 
of measurements may be consistent within only a small 
group instead of the whole set.  This leads to groups of 
subsets exhibiting different noise level to each other, and 
results in the residuals information to be biased. 
 
Therefore it is necessary to understand the noise level 
structure within the whole measurement set before putting 
it through a least-squares estimator. In this way, it reveals 
more information on each individual measurement that 
could be potentially used for error correction, and ensures 
the usefulness of least-squares residuals for any further 
attempt to improve the estimation accuracy. 
 
Because some measurements could exhibit consistency 
within a small subset of all available measurements, it 
naturally follows to make use of these subsets. A subset 
that consists only of the minimum number of 
measurements required to produce an exact solution, can 
be used to provide a reference for the remaining 
measurement to be compared against.   
 
Figure 1 shows an example of the position errors of all 
possible subsets of 5 measurements at a single epoch in a 
dense urban location. The errors are plotted in easting and 
northing directions, and the truth was obtained using 
conventional surveying techniques.  
 
As the dots are plotted with a certain level of 
transparency, it can be immediately observed from the 
figure that consistency among subsets of measurements 
results in some area having a higher density of solutions 
than others. It can also be seen that a minority of the 
solutions, shown within the red square, do show a better 
accuracy than most of the others. This indicates, firstly, 
that the majority of signals in this scenario are 
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contaminated; and, secondly, that it is possible to provide 
a better reference against which individual measurements 
may be compared by properly selecting a subset of the 
measurements.  
 

 
Figure 1: An example of position cluster produced from 

all possible subsets of available measurements 
 
Based on this reasoning, we propose a new processing 
scheme for consistency-based NLOS and multipath error 
mitigation. The new scheme incorporates a technique 
known as RANdom SAmple Consensus (RANSAC), 
which utilises random-draw subsets of the measurements 
and a probability-based stopping criterion for efficiency. 
The RANSAC technique that was previously proposed for 
computer image processing to deal with data sets with 
high portion of outliers [16]. Details of the algorithm are 
presented in Section 3. 
 
3. ADVANCED CONSISTENCY CHECKING 

ALGORITHMS 
 
This section introduces the implementation of the new 
advanced consistency checking algorithms. Section 3.1 
firstly formulates the basic least-squares problem within 
the GNSS context and the modeling for GPS/GLONASS 
code-phase pseudorange measurements. Section 3.2 
briefly reviews the implementation scheme of a “Top 
down” recursive consistency checking algorithm. Section 
3.3 describes the estimation process of the new 
RANSAC-based “bottom up” consistency-checking 
algorithm. Lastly, section 3.4 shows how the height 
measurement is modeled and incorporated with satellite 
pseudorange measurements. 
 
3.1. FORMULATION OF ESTIMATION PROBLEM 
 
Assuming n  measurements are available, m  unknowns 
need to be determined, and n ≥m , the basic GNSS 
measurement and solution relationship can be described 
by an over-determined system of linear equations in the 
form of  
 
z = Gx + e      (1) 
 
where z  is a n×1  measurement vector; x  is a m×1  state 
vector; G  is a n×m  measurement matrix; And e  is the 
measurement error vector ( n×1 ). 

For the case of positioning with satellite-ranging 
measurements, the measurement vector z  accommodates 
the differences between the actual measured pseudorange 
and the predicted ranges based on a nominal user position, 
and the state vector x  includes estimates of the user 
position plus the receiver clock error and/or inter-
constellation timeframe differences ( n = 4  or 5 ). The 
measurement matrix G  contains the geometry 
information of the available constellation that links the 
measurements to the solution. The measurement error is a 
combination of all unaccounted-for ranging errors such as 
residual satellite orbit and clock, residual atmospheric 
effects and multipath etc. 
 
The well-known least-squares solution of the problem 
presented in Equation (1) can be written as [6] 
 
x̂ = (GTG)−1GT z      (2) 
 
where x̂  is the least-squares solution of the state vector. A 
n×1  residual vector v  can be calculated using a 
predicted measurement vector ẑ , which can be calculated 
with  
 
ẑ = Gx̂       (3) 
 
Hence, the residual vector v  is obtained using  
 
v = z− ẑ = [I−G(GTG)−1GT ]z    (4) 
 
A weight matrix W ( n×n ) can be applied to the 
estimated state vector as in Equation (2): 
 
x̂ = (GTWG)−1GTWz     (5) 

 
Here, W  is defined as  
 
W = diag(σ1

2,,σ j
2,,σ n

2 )−1    (6) 
 

where σ j
 is the modelled error standard deviation of each 

measurement. The difference between two weighting 
schemes lies in the modelling of σ j . 
 
The signal carrier power to noise density ratio, C/N0, is an 
effective indication of the received signal strength, which 
is normally lower for reflected signals. One of the models 
used to form σ j  as a function of the measured C/N0 in 
this research is described by [14]: 
 
σ j

2 = c ⋅10−
C/N0 j

10      (7) 
 
where c  is the model parameter, and is a constant 
depending on receiver and antenna types. Although 
antenna and receiver designs can affect the absolute C/N0 
value, a relative comparison of C/N0 among the received 
signals can still indicate their quality. 
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The corrected GNSS pseudorange measurements obtained 
from for the satellites of the different constellations may 
be written as 
 
ρG = r + clight ⋅δtu + εG     (8) 

ρR = r + clight ⋅ (δtu +δtG−R )+ εR    (9) 
 
where ρG  and ρR

 are, respectively, the corrected GPS 
and GLONASS pseudorange measurement after the 
troposphere and ionosphere corrections have been applied 
to the measured ranges; r  is the true geometric range 
between the satellite at the signal emission time and the 
receiver at the signal reception time; clight

is the speed of 
light; δtu is the receiver clock bias relative to GPS time at 
the signal reception time; δtG−R  in Equation (6) is the 
timeframe difference between GPS and GLONASS; εG  
and εR

 consists of residuals after applying corrections 
from the broadcast navigation data and other residual 
multipath and atmospheric errors.  
 
Equations (8) and (9) are both incorporated into the linear 
system described by Equation (1) to solve for the receiver 
position. 
 
3.2. “TOP DOWN” CONSISTENCY-CHECKING 

APPROACH 
 
A brief illustration of the “Top down” recursive checking 
process is shown in Figure 2. The least-squares solution is 
firstly computed as the starting point of the checking. A 
test statistic is calculated using the measurement 
residuals. The result of the comparison between the test 
statistics and the threshold indicates whether an 
inconsistency is identified among the available 
measurements. 
 

 
Figure 2: The “Top down” approach 

 
A failed test result will lead to the elimination of the 
measurement with the largest normalised residual. A new 
least-squares solution is recomputed after each 
elimination, hence producing a new set of residuals. The 
test statistics and the threshold are all recomputed with 
the new residuals. This recursive procedure carries on 

until the test is passed, or insufficient measurements 
remain. Further details may be found in [15]. 
 
3.3. “BOTTOM UP” CONSISTENCY-CHECKING 

APPROACH 
 
The implementation scheme of the “Bottom up” approach 
follows the conventional RANSAC scheme, which 
consists of two essential steps that repeat as an iterative 
process as illustrated in Figure 3: 
 

• Hypothesize: A Minimal Sample Set (MSS) is 
randomly selected from all available measurements at 
one epoch. The size of the MSS is the smallest 
sufficient to determine a reference positioning 
solution (4 or 5 depending on MSS constellation 
constitution); 

• Test: The consistency is then determined using the 
“residuals” of all remaining measurements. A 
“residual” under this context is defined as the 
difference between the observed measurement and its 
prediction produced based on the reference solution 
calculated using the MSS.  

 

 
Figure 3: The “Bottom up” approach 

 
Those measurements whose residuals fall within a certain 
threshold are assumed to be consistent with the reference 
solution and are known as inliers. The set of inliers is 
referred to as the Consensus Set (CS) for the MSS. A 
predefined cost function is used to assess the quality of 

83



each MSS. The goal of the iteration is to achieve a 
minimisation of the cost function, i.e. find the best quality 
MSS, when it finishes. The iteration terminates when the 
probability of finding a better MSS drops below a certain 
threshold. 
 
For the ith MSS, comprising the measurements zz ~~ ∈i , its 
reference solution x̂i  is generated following Equation (2): 
 
x̂i = ((Gi )T Gi )−1(Gi )T zi     (8) 
 
Except that Gi  is the partial measurement matrix, 
containing only those rows of G that apply to the 
measurements within the ith  MSS, and the reference 
solution is exact. The set of “residuals”, ei defined as 
[e1

i ,e2
i ,,en

i ]T , is calculated using  
 
ei = zi − ẑi = zi −Gix̂i     (9) 
 
Assuming the “residual” of all the measurements follows 
a known distribution, the “residuals” can be tested for the 
goodness-of-fit based on a threshold δ . In this paper, a 
Gaussian distribution is assumed. However, the RANSAC 
method allows a more realistic distribution to be 
employed in its place. 
 
Under the hypothesis that there are no contaminated 
measurements, let q  be the probability of sampling a 
MSS for which all of the remaining measurements are 
inliers. The probability of picking a MSS for which there 
is at least one outlier is 1− q . The probability of 
constructing h  MSSs and all of them leading to the 
detection of outliers is (1− q)h . The size of h  should be 

large enough that (1− q)h <α  where α is the false alarm 
probability. The relationship can be rewritten as: 
 

h ≤ logα
log(1− q)
#

$
$

%

&
&      (10) 

 
where x!" #$  denotes the smallest integer larger than x . 

Therefore with a given false alarm rate α , the stop 
criteria is defined as: 
 

Titer =
logα

log(1− q)
"

#
#

$

%
%  ,    (11) 

 
where Titer  is the maximum number of MSSs generated. 
 
If each individual in all measurements n  has the same 
probability of been selected for a size m  MSS, the q  can 
be written as 
 

q =

n̂inlier

m

!

"

#
#
#
#
#

$

%

&
&
&
&
&

n
m

!

"

#
#
#
#

$

%

&
&
&
&

     (12) 

 
where n̂inlier  is an estimate of the number of inliers 

available within all the measurements, and a
b

!

"

#
#
#
#

$

%

&
&
&
&
 is the 

number of b -element combinations of a set  a . 
Following [16], the size of the current best CS can be 
used as a valid approximation of n̂inlier . 
 
The cost function Ci (⋅)  to assess the quality of the MSS 
and its associated CS can be defined in various forms. A 
common RANSAC cost function, based purely on the size 
of individual “residual”, is defined by [16] as 
 

Ci (z) = ρ(e j
i ,δ)

j=1

n

∑      (13) 

 
Where: 
 

ρ(e j
i ,δ) =

e j
i , e j

i ≤ δ

δ, otherwise

"
#
$

%$
   (14) 

 
For the case of GNSS, different weighting factors can also 
be applied to enhance the probability of generating an 
optimal MSS and CS. To apply a weighting based on the 
measured C/N0 values of the individual measurements, 
Equation (14) becomes 
 

ρ(e j
i ,δ) =

e j
i

σ j

, e j
i ≤ δ

δ
σ j

, otherwise

"

#

$
$

%

$
$

,  (15) 

 
where σj is as defined by Equation (7) for the normal 
least-squares solution. 
 
Lastly, once a best MSS and its CS have been identified 
through the CS, they can then be used along with an 
appropriate weighting scheme to produce a new least-
squares position solution. 
 
3.4. HEIGHT AIDING 
 
The height information obtained from a 3D city model is 
integrated into the final least-squares solution produces 
from the best CS. The height measurement can be 
modelled as an additional range measurement ρH

 from 
the centre of the earth to the priori receiver position. With 
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reference to Equations (8) and (9), the model can 
therefore be written as: 
 
ρH = r + εH      (15) 

 
The unit vector ûH

, used within the measurement matrix, 
can be obtained using 
 

ûH =
r̂u

r̂u

     (16) 

 
where r̂u  is the a priori receiver position vector from the 
center of the Earth. The least-squares position solution is 
then determined in the same way as for an all-satellite 
solution, except that the height-aiding row of the 
measurement matrix has a zero in the receiver clock 
column. 
 
4. TEST RESULTS AND DISCUSSION 
 
Two sets of urban data have been used to test the 
algorithm. Each data set contains GPS/GLONASS data 
collected in a different location in the City area of Central 
London.  
 
The positioning errors using a conventional weighted 
least-squares solution only, using the “Top down” 
consistency checking method and using “Bottom up” 
approach to consistency checking, have been compared 
for each data set. Note that all three methods make use of 
C/N0 weighting. In addition, the percentages of 
positioning errors exceeding a threshold are also 
compared for all three algorithms. Finally, results from 
the height-assisted weighted least-squares solution and the 
“Bottom up” solution are used to test the effect of height 
aiding. 
 
Note that the results from [15] already indicate that the 
“Top down” approach works well under moderate urban 
conditions, but is less reliable for severe urban conditions. 
While the new “Bottom up” approach generally out 
performs the old method, the two scenarios presented here 
are chosen to demonstrate severe urban conditions where 
the “Top down” approach fails to perform and study the 
behaviour of the new algorithm under the same 
circumstances. 
 
4.1. TEST 1 
 
The first test data was collected near Moorgate 
underground station on 8th April 2011. The duration of the 
data is 38 minutes. Figure 4 shows a comparison of 
positioning solutions produced with three algorithms in 
the first 10 minutes of data. A yellow pin in the picture 
marks out the truth point, T3. The truth was established 
using traditional surveying methods and is accurate at cm-
level (the traversing accuracy was 1 in 56000). The red 
triangles in the figure are the least-squares position 

solutions without consistency checking; the blue triangles 
show the solutions with “Top down” consistency 
checking; and the green triangles show the positions 
obtained using the “Bottom up” consistency-checking 
approach. The smaller circle has a 10-metre radius, and 
the larger circle a 20-metre radius.  
 
The overall position error of all three algorithms 
throughout the whole data set is shown in Figure 5. The 
red lines in the figure represent the least-squares solution 
without consistency checking; the blue lines show the 
“Top down” solution; and the green line are the “Bottom 
up” solution. The RMS easting, northing and vertical 
positioning errors are also presented in Table 1. 
 

 
Figure 4: The first 10 min positioning solution for test 1 

 

 
Figure 5: The positioning error comparison of the three 

algorithms for test 1 
 
 dE (m) dN (m) dH (m) 
Least-squares 29.0 43.1 70.4 
“Top down” 30.4 46.0 62.2 
“Bottom up” 24.1 43.2 59.5 

Table 1: The RMS positioning error comparison of the 
three algorithms for test 1 

 
From the RMS error figures in Table 1, while no 
significant improvements are observed from either the 
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“Top down” or “Bottom up” consistency checking 
approaches in the northing direction, a 17% improvement 
is achieved in the easting direction by using the “Bottom 
up” consistency-checking approach. Both algorithms 
produce a similar improvement to the height error.  
 
Based on the information in Figure 4, 5 and Table 1, it is 
shown that “Bottom up” consistency-checking method 
can improve the accuracy even under difficult urban 
situations where the conventional and “Top down” 
algorithms struggle. More importantly, as can be seen by 
looking at the number of position solutions outside the 
20m circle in Figure 5, the “Bottom up” algorithm is less 
prone to producing erroneous solutions, exhibiting an 
overall higher quality solution. In order to demonstrate 
this, the percentages of positioning errors that are larger 
than 50 metres for each algorithm are given in Table 2. 
 
 East (%) North (%) Height (%) 
Least-squares 8.6 9.6 33.8 
“Top down” 7.8 22.5 36.0 
“Bottom up” 2.2 8.8 25.6 

Table 2: Percentage of positioning errors greater than 
50m, produced by the three algorithms during test 1 

 
As can be seen from the table, the “Bottom up” 
consistency algorithm achieves, respectively, 74%, 8% 
and 24% reductions in the number of easting, northing 
and height errors exceeding 50m compared to 
conventional least-squares. The “Top down” algorithm in 
this respect, however, performs worse than the 
conventional solution, indicating that it frequently 
converges on the wrong self-consistent subset of 
measurements. 
 
Nevertheless, occasional erroneous solutions are still 
obtained from the “Bottom up” consistency-checking 
algorithm. This is because, at those particular epochs, 
only a few or even zero inliers could be found with the 
best MSS set. The final solutions were exact solutions 
produced using only the minimum number of 5 mixed 
GPS and GLONASS satellites. This indicates that either 
the assumed best MSS was actually biased, i.e. that the 
cost function needs further improvement, or that there 
were not enough “clean” signals to produce good 
solutions.  
 
This can be further clarified by introducing a 10-metre 
accuracy height aiding measurement obtained from a 3D 
city model. For this test, the height aiding error is at a 
known level, and the height is effectively one additional 
ranging measurement from the centre of the Earth, which 
helps by improving the geometry of the set of ranging 
measurements. One additional range measurement and an 
improved geometry would help to improve the 
performance if the erroneous solutions are due to their 
being insufficient “clean” signals, whereas less 
improvement is expected if the errors are due to a 
suboptimal cost function. The effects of introducing 
height aiding are shown in Table 3 and Table 4. 

 
 dE (m) dN (m) dH (m) 
Least-squares 23.0 15.1 5.3 
“Bottom up” 19.3 14.3 5.4 

Table 3: The RMS positioning error with height aiding 
for test 1 

 
 East (%) North (%) Height (%) 
Least-squares 7.9 2.1 0.0 
“Bottom up” 1.8 1.0 0.0 

Table 4: Percentage of positioning errors greater than 
50m, produced with height aiding during test1 

 
As can be seen from the tables, while limited 
improvements can be seen from the easting RMS errors, 
the RMS error in northing is improved dramatically. In 
Table 1 and 3, it is also very clear that further 
improvement is achieved reducing the number of 
erroneous solutions from Table 2 and 4. The percentage 
of erroneous solution in the north direction is further 
reduced by 88%. This shows that for this particular test, 
the number of “clean” signals available was the main 
limiting factor affecting the performance of the “Bottom 
up” consistency-checking algorithm. 
 
4.2. TEST 2 
 
The second test data set was collected near Fenchurch 
Street on 23rd July 2012. The duration of the data is 10 
minutes. Figure 6 shows a comparison of the position 
solutions produced with the three algorithms. The yellow 
pin in the picture marks out the truth point, G004. This 
was established using a 3D city model with tape 
measurements from landmarks, which is accurate at 
decimetre-level. The solution markings follow the same 
convention as Figure 4. The smaller circle has a 10-metre 
radius, and the larger circle a 20-metre radius.  
 

 
Figure 6: The positioning solution for test 2 

 
The overall positioning error of all three algorithms is 
shown in Figure 7. The colouring convention follows 
Figure 5. The RMS positioning errors are also expressed 
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as easting, northing and height in Table 5. The 
percentages of erroneous positioning errors for each 
algorithm are given in Table 6, noting that the erroneous 
positioning error is defined as larger than 20 metres for 
this test. 
 
From the RMS and percentages of erroneous errors 
information shown in Tables 5 and 6, neither of the two 
consistency checking algorithms significantly 
outperforms the conventional method. The “Top down” 
algorithm performs significantly worse than the other two 
methods. The “Bottom down” algorithm in general 
achieves a similar level of performance to the 
conventional method with occasional improvement in the 
height direction.  
 
However, another side of the story can be told from a 
close examination of Figure 7. As shown in the figure, the 
performance of the “Bottom up” algorithm is significantly 
better than other two algorithms in the first 5 minutes. 
The level of performance for the last 5 minutes however, 
is degraded to a similar or even slightly worse level than 
the conventional method. 
 

 
Figure 7: The positioning error comparison of three 

algorithm for test 2 
 
 dE (m) dN (m) dH (m) 
Least-squares 4.2 13.6 31.3 
“Top down” 19.58 45.98 18.17 
“Bottom up” 4.3 16.3 12.9 

Table 5: The RMS positioning error comparison of the 
three algorithms for test 2 

 
 East (%) North (%) Height (%) 
Least-squares 0.0 17.7 20.3 
“Top down” 61.0 92.6 15.1 
“Bottom up” 0.0 27.7 6.7 

Table 6: Percentage of positioning errors greater than 
20m, produced by the three algorithms during test 2 

 
First of all, the constellation status was different for the 
two halves of data. The fact that the conventional least-

squares solution performed better at times during the 
second half of the data set indicates that it is likely that 
the “Bottom up” consistency-checking method was 
converging on the wrong subsets of signals as the “Top 
down” method is prone to do. This hypothesis is 
supported by again introducing a 10-metre-accuracy 
height aiding measurement. 
 
 dE (m) dN (m) dH (m) 
Least-squares 6.3 16.7 6.3 
“Bottom up” 4.8 15.8 5.7 

Table 7: The RMS positioning error with height aiding 
for test 2 

 
 East (%) North (%) Height (%) 
Least-squares 1.2 18.6 0.0 
“Bottom up” 0.7 30.6 0.0 

Table 8: Percentage of positioning errors greater than 
20m, produced with height aiding during test2 

 
Table 7 and 8 show the effect of introducing height aiding 
on the second test data. No visible improvement from 
introducing height aiding can be observed.. This supports 
the hypothesis that the algorithm was converging on the 
wrong subset of data due to a suboptimal cost function. 
 
5. CONCLUSIONS AND FUTURE WORK 
 
A new RANSAC-based “Bottom up” approach for using 
consistency checking to mitigate GNSS NLOS and 
multipath errors has been explored in this paper. The 
positioning performance of  the new algorithm and 
conventional methods has been compared in difficult 
urban environments n. In addition, the effect of using 
height aiding at the final MSS and CS solution level has 
been investigated. 
 
The test results demonstrate accuracy improvement of the 
new method over conventional methods and, more 
importantly, an improved resilience to erroneous urban 
GNSS positioning errors. Occasional performance 
degradation, however, can still be observed when there is 
either a limited number of “clean” signals available or the 
algorithm converges on the wrong subset of signals. The 
introduction of height aiding demonstrates significant 
further performance enhancement for the first situation, 
but has little effect on the second. 
 
For future improvement of the new algorithm, it is clear 
that in order to deal with incidences of wrong 
convergence, it is necessary to further improve the 
existing cost function. Extra information, such as 
elevation and street orientation, or even NLOS error 
characteristics could be brought into the formulation of a 
new cost function. 
 
Furthermore, while the height aiding information is 
currently only used to aid the final solution, it may be 
worth incorporating the additional measurement into the 
MSS evaluation stage as well as producing the final 
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solution. So that the improved MSS “residuals” can 
provide more information on the consistency among 
measurements.  
 
The current algorithm exhibits the ability to improve 
along street solutions. By combining the new algorithm 
with other techniques such as shadow matching [12], an 
approach known as intelligent urban positioning, it is 
possible to achieve an overall improvement in 
performance [11]. 
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