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Abstract

To understand fully cell behaviour, biologists are making progress towards cataloguing the functional elements in the
human genome and characterising their roles across a variety of tissues and conditions. Yet, functional information – either
experimentally validated or computationally inferred by similarity – remains completely missing for approximately 30% of
human proteins. FFPred was initially developed to bridge this gap by targeting sequences with distant or no homologues of
known function and by exploiting clear patterns of intrinsic disorder associated with particular molecular activities and
biological processes. Here, we present an updated and improved version, which builds on larger datasets of protein
sequences and annotations, and uses updated component feature predictors as well as revised training procedures. FFPred
2.0 includes support vector regression models for the prediction of 442 Gene Ontology (GO) terms, which largely expand
the coverage of the ontology and of the biological process category in particular. The GO term list mainly revolves around
macromolecular interactions and their role in regulatory, signalling, developmental and metabolic processes. Benchmarking
experiments on newly annotated proteins show that FFPred 2.0 provides more accurate functional assignments than its
predecessor and the ProtFun server do; also, its assignments can complement information obtained using BLAST-based
transfer of annotations, improving especially prediction in the biological process category. Furthermore, FFPred 2.0 can be
used to annotate proteins belonging to several eukaryotic organisms with a limited decrease in prediction quality. We
illustrate all these points through the use of both precision-recall plots and of the COGIC scores, which we recently
proposed as an alternative numerical evaluation measure of function prediction accuracy.
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Introduction

The picture of human biology is becoming more and more

complex, given the discovery of novel functional elements and the

observations of widespread alternative splicing events [1,2,3].

Currently, UniProtKB [4] includes more than 131,000 human

protein chain entries, 8% of which have received Gene Ontology

(GO) [5] annotations based on functional assays. However, 30% of

these entries carry no functional information at all – a figure

unlikely to change, even if we were to consider data waiting for

inclusion into public databases. The combinatorial complexity of

gene products, biological functions and cellular conditions makes

systematic in vitro or in vivo testing impracticable; furthermore,

proteins are not equally amenable to different experimental

protocols.

Computational methods can be useful, but their reliability rests

on our limited understanding of how function diverges as

sequence, structure or environmental conditions vary. The most

popular tools detect conserved patterns of sequence or structural

features, ranging from short motifs to domains and domain

arrangements [6]. Most sequence-similarity based approaches

produce fairly detailed annotation transfers, when evolutionary

relationships to previously characterized proteins can be confi-

dently established. Structure-based techniques build on the

assumption that structural conservation reflects better protein

functional similarity, but their use is constrained by the data

available and by the difficulty of assessing the statistical

significance of structural matches.

A few attempts have been made to make functional assignments

for proteins with distant or no detectable homologues with

experimentally characterized function [7]. The ProtFun method

pioneered the idea of transferring functional annotations between

human proteins with similar biophysical attributes – e.g. the

occurrence of charged amino acids, low complexity regions, signal

peptides and trans-membrane helices and post-translationally

modified residues [8,9]. The possibility of identifying such features

with sufficient accuracy and of linking them explicitly to particular

biological roles is key to the viability of this approach. The current
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running server uses artificial neural networks to integrate the

output of independent feature predictors, and consequently

annotates protein sequences with cellular roles, enzyme classes

and selected GO categories for which robust statistical models

could be learned. FFPred took this approach further by

considering the strong correlation between the length and position

of intrinsically disordered protein regions with some molecular

activities and biological processes [10,11]. Similar to ProtFun,

FFPred was initially conceived for orphan human proteins, but it

generalizes well to other vertebrate proteomes too.

Programs for data integration have also emerged, which

leverage on genome-wide datasets including protein interactions

with other proteins or nucleic acids, as well as metabolic, signalling

and gene regulatory networks. These hold the promise of

increasing prediction scope and accuracy, but their usefulness is

still hampered by the noisy and heterogeneous nature and by the

limited taxonomic coverage of the underlying measurements and

data [12].

Here, we present an updated version of FFPred, which results

from a different training procedure coupled to larger protein

sequence and annotation databases. We first describe how the list

of predicted GO term has changed and then provide evidence for

improved performance. We confirm that prediction accuracy is

acceptable also for other model organisms’ proteins, supporting

the use of FFPred 2.0 for eukaryotic function prediction. Finally,

we describe the integration of the new tool within the resources

maintained by the UCL Bioinformatics Group at http://bioinf.cs.

ucl.ac.uk/psipred/.

Materials and Methods

Training of FFPred 2.0
Selection of proteins and GO terms. Annotations for human

proteins were obtained from the Gene Ontology Annotation

(GOA) [13] database, version 26 June 2012, while amino acid

sequences were retrieved from UniProtKB [4] version 2012_06.

The Gene Ontology (GO) OBO file version 1.3281 was used for

term definitions and semantic relations [5]. Only GO terms

belonging to the molecular function (MF) or biological process

(BP) domains were considered. An initial set of 39,971 proteins

with at least one such functional annotation and maximum

sequence length of 1,500 amino acids was initially selected; 22,528

representatives with less than 90% pair-wise sequence identity

were subsequently identified with CD-HIT [14].

A support vector regression model was learnt for a term t if:

N t also occurs in UniProtKB/SwissProt;

N there are at least 150 proteins (positive examples) annotated in

GOA with t or its descendants;

N there are at least 500 proteins (negative examples) that are (i)

not labelled with t, its descendants and its ancestors; and (ii)

nonetheless bear at least 2 MF terms and 2 BP terms with

evidence code other than IC, NAS, TAS and IEA.

Both ‘‘is a’’ and ‘‘part of’’ relations were followed in the graph to

collect ancestor and descendant terms.

Protein features. FFPred 2.0 employs the same feature encoding

scheme as described before [10]. Table 1 lists the software

currently used for the prediction of sequence-based features, which

are still grouped into 14 sets – see table S2 in [10]. Due to changes

in WoLF-PSORT [15] and SignalP [16] output, the correspond-

ing feature lists were updated.

Preparation of the protein sets. All positive and negative sets

were partitioned for later use in the k-fold cross validation and

testing procedures. For every set, 30% of the proteins were

randomly selected and kept aside for final validation. The

remaining proteins were partitioned into kƒ5 equally sized

groups with at least 35 proteins; also, positive and negative sets for

the same GO term needed to have the same number of partitions.

The highest value of k that satisfied these criteria was used. The

groups were created using a custom-made algorithm that ensured

equal group size, while clustering proteins according to their

relative distances as in standard K-medoids clustering algorithms

[17]. For each pair of proteins, the distance used was a measure of

the homology relationship between them, calculated as the

minimum of all of the alignment E-values obtained using bl2seq

(from the BLAST 2.2.26 package [18]) on the two protein

sequences.

Training of the SVMs. The SVM-Light package version 6.02

[19] was used to train one binary classifier for each of the GO

terms. For a given GO term, the procedure used was as follows.

Firstly, a series of cross validation steps was performed that

ensured optimisation of kernel type, kernel parameters, and list of

useful features at the same time. The kernels used were linear and

radial basis function (RBF) kernels. Optimised kernel parameters

were C in the linear case, C and c in the RBF case. Features in

each of the 14 different groups, described in section ‘‘Protein

features’’ above, were either all included or the whole group

discarded. The cross validation procedure tested all combinations

of kernel type and kernel parameters using an exhaustive grid

search, initially using all feature groups in the input files, and then

iteratively removing one feature group at a time from the inputs,

while still testing all kernel types and parameter values for every

different feature list. Each time, the excluded feature group was

eliminated for the GO term under consideration if the optimal

performance obtained from the grid search improved with its

exclusion, otherwise it was kept in. This was iterated for all feature

groups. For every given kernel type, set of kernel parameter values

and list of feature groups, a k-fold cross validation was performed

using the k homology-based partitions of the positive and negative

sets to train and test k classifiers. The imbalance between sizes of

positive and negative sets was compensated for by setting the j

parameter of the SVM-Light software to the ratio of negative to

Table 1. Software for feature prediction.

Feature Group Program Reference

Amino acid composition in-house C++ code NA

Sequence features in-house C++ code NA

Transmembrane segments MEMSAT-SVM [27]

Secondary structure PSIPRED 3.3 [28]

Intrinsically disordered regions DISOPRED 2.43 [29]

Signal peptides SignalP 4.0 [16]

Subcellular localization WoLF PSORT 0.2 [15]

PEST regions epestfind in EMBOSS 6.4.0 [30]

Low complexity regions Pfilt [31]

Coiled coils COILS 2.2 [32]

Phosphorylation sites NetPhos 3.1 [33]

N-linked glycosylation sites NetNGlyc 1.0c [33]

O-GalNAc-glycosylation sites NetOGlyc 3.1d [34]

For any input amino acid sequence, FFPred 2.0 calculates several feature groups
that are listed in the first column. The second and third columns report the
name of the package used and the relevant literature citation respectively.
doi:10.1371/journal.pone.0063754.t001
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positive examples. The performance of all classifiers was measured

and optimised using the Matthews Correlation Coefficient (MCC).

The MCC ranges from 21 to 1, where 0 is random classification

and 1 is perfect classification, and can avoid bias due to

unbalanced class frequencies.

MCC~
TP:TNð Þ{ FP:FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ: TPzFNð Þ: TNzFPð Þ: TNzFNð Þ
p ð1Þ

The resulting optimal values of kernel type, kernel parameters

and list of feature groups were then used to train a classifier using

all of the positives and negatives from the k partitions used in the

procedure. This classifier was tested against the testing sets of

proteins obtained earlier when the 30% of the positive and

negative sets had been put aside. If the classifier had a value of

MCC lower than 0.05, the GO term was discarded, so that such

GO terms are not part of the vocabulary of FFPred 2.0. For later

use, the values of sensitivity (also known as recall), specificity and

precision were also calculated for the classifier.

sensitivity~
TP

TPzFN
specif icity~

TN

TNzFP

precision~
TP

TPzFP

ð2Þ

The values of all performance indicators for all classifiers are

listed in Table S1.

Finally, in order to achieve optimum real world performance by

using all available examples, all proteins in the GO term’s training

sets (including the test proteins) were used to train a final SVM,

which is the classifier actually used by FFPred 2.0 for the GO term

under consideration. To do so, all example proteins were pooled

together for both the positive and negative sets, and then

partitioned into k groups as before; the best kernel type and

feature group list obtained earlier were used, and the kernel

parameters were optimised again with a further grid search using k

classifiers. Using the optimal values of the kernel parameters, the

final classifier for the GO term was trained on the whole pool of

positive and negative examples. Note that the performance of this

classifier cannot be measured exactly, but is estimated using the

performance of the classifier tested earlier.

In order to estimate the posterior probability of a prediction

being correct at runtime, a recent improved implementation of the

classic method by Platt was used [20,21]. Briefly, a sigmoid

function was fitted to the distribution of SVM output values

obtained for an appropriate set of example proteins, and estimates

of the A and B parameters of the sigmoid were recorded. Such

values can then be used when running FFPred 2.0 on query

sequences using Eq. (3), where y indicates the class, and f(x) is the

output of the SVM when x is the input.

Pr y~1Dfð Þ&PAB fð Þ~ 1

1ze A:fzBð Þ where f~f(x) ð3Þ

To avoid bias in the estimation, the values used for the fit were

those obtained from all proteins during the final k-fold cross

validation on the k classifiers with the optimal parameter set, in the

last step of the training procedure [21].

Lastly, this version of FFPred was implemented so that at

runtime it labels each GO term with a ‘‘higher’’ level of reliability

if the corresponding classifier passes a further test, or with a

‘‘lower’’ reliability level otherwise. The test consists in having

values of MCC, sensitivity, specificity, and precision higher than

0.3, 0.3, 0.7, and 0.3 respectively; these values were chosen

empirically.

Evaluation of FFPred 2.0 and Benchmarking
Benchmarking, application to model organisms and comparison

to original method. Reference annotations for these analyses were

obtained from UniProtKB/Swiss-Prot ‘‘complete’’ or ‘‘taxonomic

divisions’’ files, release 2012_11; the same versions of CD-HIT

and BLAST indicated elsewhere were used.

For all benchmarking analysis and for the comparison to the

first release of FFPred, the Swiss-Prot file for human was used, and

the test set of proteins was created extracting only proteins that

had at least one recent ‘‘direct assay’’ experimental annotation

Figure 1. Make up of FFPred 2.0 GO term list and differences from the previous release. High-level summary of the FFPred 2.0 GO term
vocabulary: each tag in the cloud is a child of the root of the MF or BP domains (shown in orange and blue respectively), and their size reflects how
many of their descendants can be predicted (A). Extent of the overlap between FFPred 1.0 and FFPred 2.0 GO term lists in the MF (B) and BP (C)
domains.
doi:10.1371/journal.pone.0063754.g001
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(IDA evidence code) that was not present in the GOA file used for

the training of FFPred 2.0. Redundancy was reduced using CD-

HIT with a sequence identity threshold of 40%, resulting in a test

set of 148 proteins.

Furthermore, only for the benchmarking against BLAST and

ProtFun, annotations were discarded if the annotated protein or

any of its homologues had been used to train the FFPred 2.0 SVM

for the annotated GO term or for any of its ancestor or descendant

terms. For the purpose of this analysis, proteins were considered

homologues of a target if they were individuated by a BLAST

search with E-value threshold equal to 1023.

FFPred 1.0 predictions were obtained using the old web

interface; obsolete GO terms were mapped into new ones when a

single replacement term was provided via the ‘‘alternative id’’ or

‘‘replaced by’’ fields of the GO OBO file, or discarded otherwise.

ProtFun predictions were obtained via the web interface at http://

www.cbs.dtu.dk/services/ProtFun/; only the GO term corre-

sponding to the category indicated by an arrow in the ProtFun

Table 2. Comparison of MCC values for common GO terms.

GO term Description Domain MCC – FFPred 1.0 MCC – FFPred 2.0

GO:0000166 nucleotide binding MF 0.361 0.63

GO:0003677 DNA binding MF 0.568 0.622

GO:0003700 sequence-specific DNA binding transcription factor activity MF 0.538 0.741

GO:0004252 serine-type endopeptidase activity MF 0.719 0.732

GO:0004672 protein kinase activity MF 0.429 0.616

GO:0004674 protein serine/threonine kinase activity MF 0.479 0.684

GO:0004713 protein tyrosine kinase activity MF 0.488 0.666

GO:0004866 endopeptidase inhibitor activity MF 0.568 0.576

GO:0004871 signal transducer activity MF 0.646 0.719

GO:0004872 receptor activity MF 0.429 0.751

GO:0004888 transmembrane signaling receptor activity MF 0.526 0.809

GO:0004930 G-protein coupled receptor activity MF 0.706 0.896

GO:0005125 cytokine activity MF 0.558 0.711

GO:0005215 transporter activity MF 0.390 0.748

GO:0005261 cation channel activity MF 0.447 0.624

GO:0008083 growth factor activity MF 0.346 0.568

GO:0008233 peptidase activity MF 0.309 0.531

GO:0008236 serine-type peptidase activity MF 0.711 0.721

GO:0016773 phosphotransferase activity, alcohol group as acceptor MF 0.339 0.607

GO:0006351 transcription, DNA-dependent BP 0.566 0.645

GO:0006355 regulation of transcription, DNA-dependent BP 0.581 0.517

GO:0006468 protein phosphorylation BP 0.372 0.574

GO:0006486 protein glycosylation BP 0.414 0.661

GO:0006796 phosphate-containing compound metabolic process BP 0.348 0.516

GO:0006810 transport BP 0.306 0.509

GO:0006811 ion transport BP 0.370 0.738

GO:0006812 cation transport BP 0.315 0.687

GO:0007155 cell adhesion BP 0.371 0.610

GO:0007156 homophilic cell adhesion BP 0.714 0.916

GO:0007165 signal transduction BP 0.319 0.211

GO:0007166 cell surface receptor signaling pathway BP 0.525 0.448

GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway BP 0.343 0.484

GO:0007186 G-protein coupled receptor signaling pathway BP 0.724 0.817

GO:0007606 sensory perception of chemical stimulus BP 0.685 0.942

GO:0007608 sensory perception of smell BP 0.730 0.956

GO:0009101 glycoprotein biosynthetic process BP 0.417 0.641

GO:0016310 phosphorylation BP 0.321 0.496

GO:0016337 cell-cell adhesion BP 0.578 0.636

GO:0016567 protein ubiquitination BP 0.303 0.417

For each GO term, the table reports its GO domain, its description, and the MCC values of its corresponding SVMs within FFPred 1.0 and FFPred 2.0.
doi:10.1371/journal.pone.0063754.t002
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output was used as a prediction for each protein. BLAST

predictions were obtained transferring annotations from the best

BLAST hit on a database obtained filtering the ‘‘complete’’ Swiss-

Prot database using CD-HIT with a sequence identity threshold of

40%, and extracting only experimental annotations (EXP, IDA,

IPI, IMP, IGI, IEP evidence codes).The best hit was the protein

containing at least one experimental annotation and with the

lowest E-value higher than 1023 and 0.1 respectively for BLAST

E-3 and BLAST E-1 predictors.

In the analysis on eukaryotic model organisms, for each

organism (including human) the set of all proteins annotated in

the corresponding Swiss-Prot ‘‘taxonomic divisions’’ file was

filtered using CD-HIT with a sequence identity threshold of

40%, and then only proteins having at least one annotation

belonging to the MF domain and one belonging to the BP domain

were included in the test set.

Evaluation measures of prediction accuracy. Prediction accu-

racy was gauged against reference experimental annotations using

two independent approaches. We carried out precision-recall

analysis similar to the official assessment of the predictions

submitted to the first Critical Assessment of protein Function

Annotation (CAFA) experiment [22]. For a given protein s,

ancestral nodes linked by ‘‘is a’’ relationships were added to the

sets of predicted terms Ps and validated annotations As excluding

root terms – though the assessors at CAFA made also use of other

relationships between terms. Ancestors in Ps were assigned the

maximum confidence value among those of their descendants. At

a particular confidence threshold v, we then calculated: i) how

many elements in Ps were scored at least v and were also found in

As (TPs,v); ii) how many of them had a score higher than or equal

to v but did not occur in As (FPs,v); iii) how many terms in As did

not occur in Ps with a score higher than or equal to v (FNs,v); iv) the

precision Prs(v)~
TPs,v

TPs,vzFPs,v
; and v) the recall

Rcs(v)~
TPs,v

TPs,vzFNs,v
. At a given confidence threshold v, we

counted the number nv of proteins in the dataset D with one or

more GO term assignments scored at least v, and we calculated

the overall precision as Pr(v)~
1

nv

:
X

s[D

Prs(v). The aggregated

recall value was computed as Rc(v)~
1

DDD
:
X

s[D

Rcs(v), where DX D

represents the number of elements in the set X. Finally, the F-

measure for that confidence threshold was calculated as

F(v)~
2:Pr(v):Rc(v)

Pr(v)zRc(v)
, and that was maximised over all thresholds

to obtain Fmax~maxvF(v).

For the comparison of FFPred 2.0 to the BLAST-based tools,

alternative precision-recall plots were also obtained. The overall

procedure was the same as above, however for each protein s the

sets Ps and As contained predicted terms and validated annotations

Figure 2. Comparison of FFPred 1.0 and FFPred 2.0 by means of precision-recall plots. Precision-recall plots comparing the performance
of FFPred 1.0 and FFPred 2.0 on a common dataset of 148 human proteins, for predictions in the MF domain (left) and BP domain (right).
doi:10.1371/journal.pone.0063754.g002

Figure 3. Comparison of FFPred 2.0 and BLAST-based tools by means of precision-recall plots. Precision-recall plots comparing the
performance of FFPred 2.0 to the BLAST-based tools described in the main text on a common dataset of 148 human proteins, for predictions in the
MF domain (left) and BP domain (right).
doi:10.1371/journal.pone.0063754.g003
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only, with no inclusion of ancestors. Then, for each confidence

threshold v, TPs,v was calculated as the number of elements in Ps

that were scored at least v and also were found, or had an ancestor

or descendant annotation, in As; FPs,v was calculated as

DPsD{TPs,v, and FNs,v was calculated as DAsD{TPs,v.

Candidate and reference annotations were also compared

through the COmbined simGIC (COGIC) scores, which have

been recently proposed to take explicitly into account GO term

specificity and predicted confidence values [23]. To this end, we

developed a software tool (available for download at https://

github.com/damianopiovesan/cogic) that initially estimates the

specificity of a GO term x by its information content

IC(x)~{ log
f (x)

f (r)
, where r is the root of the ontology and f (y)

is the frequency of y and its descendants in the database cross-

references to GO inside UniProtKB/SwissProt entries. In order to

minimize assessment bias towards homology-based annotations,

only GO term assignments with evidence code IEP, IPI, IMP,

IGC, IGI or IDA were used [24].

The tool then compares predicted P and annotated A GO terms

for a protein by defining four subsets P1, P2, P3 and P4 of P based

on confidence scores greater than or equal to 0.75, 0.50, 0.25 and

0, respectively. All ancestral nodes are added to such sets as well as

to the A, and the simGIC scores [25] S1, S2, S3, and S4 are

computed from separate comparison of A with P1, P2, P3 and P4 as

simGIC A,Pið Þ~
P

t[A\Pi
IC(t)

P
t[A|Pi

IC(t)
i[ 1,2,3,4f g ð4Þ

The output COGIC score is

COGIC P,Að Þ~ S1zS2zS3zS4

4
, ð5Þ

and takes a value in the range [0,1], giving higher credit to correct

predictions with higher confidence scores. The COGIC score is 1

if and only if all predicted GO terms are validated and their

confidence scores are greater than or equal to 0.75. It equals 0 if

and only if the root of the ontology is the only element shared by P

and A.

Results and Discussion

An Extended Vocabulary of Binding Activities and
Biological Processes

FFPred 2.0 makes feature-based assignments of molecular

function (MF) and biological process (BP) categories by exploiting

updated public resources and tools. The impressive growth of

protein sequence and annotation databases has allowed us to apply

more restrictive conditions, particularly aimed at the confident

selection of negative examples for training. Additionally, some

feature predictors have been updated to the latest release, which is

expected to further enhance functional inference accuracy.

Figure 1 summarizes the key features of the new vocabulary and

the changes from the previous one. The updated SVM library

provides models for 442 GO terms and largely extends the

coverage of the ontology – and of the BP domain in particular – by

focusing on molecular recognition and its role in regulatory,

signalling, developmental and metabolic processes. Compared to

the first release, the GO term dictionary has considerably grown in

size, but not through a straightforward extension of the earlier

version: the number of MF categories has dropped from 111 to 96

and, indeed, the new list shares only 94 items out of the original

197. This stems partly from the revised training procedures, and

partly from the changes in GO term definitions and in the

ontology organization, which follow the accumulation of new

biological knowledge over time. Finally, despite the more stringent

criteria for GO term selection, the new list does not differ

substantially in specificity from that previously used (see Figure

S1).

As of December 2012, UniProtKB/Swiss-Prot curators have

discontinued using some GO terms in their annotations, including

20 MF terms that either FFPred version can assign to input amino

acid sequences. Such terms are not considered in the following

analyses, although they are still part of the online server output.

Performance Evaluation and Improvement Over the
Original FFPred

The performance of the SVM corresponding to each GO term

was measured using the MCC and other performance indicators,

as reported in Table S1. Values of MCC for SVMs range between

0.052 and 0.956 with an average of 0.375, and there are several

high-performing GO terms, with 28 of them (19 MF terms, 9 BP

terms) having MCC values higher than 0.7. GO terms in the

vocabulary of FFPred 2.0 are sorted into two different categories

with higher and lower level of reliability, according to whether or

Figure 4. Evaluation of FFPred 2.0 on eukaryotic proteomes by means of precision-recall plots. Precision-recall plots describing the
performance of FFPred 2.0 on several eukaryotic proteomes, for predictions in the MF domain (left) and BP domain (right).
doi:10.1371/journal.pone.0063754.g004

FFPred 2: Improved Eukaryotic Function Prediction
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not the corresponding SVM had high values of MCC, sensitivity,

specificity, and precision. This distinction is clearly indicated in the

web server results page, where results concerning GO terms with a

lower level of reliability are displayed against a red background.

Overall, there are 200 GO terms in the ‘‘higher reliability’’ set (72

in the MF domain, 128 in the BP domain), and the corresponding

SVMs have an average MCC of 0.538; the remaining 242 GO

terms are in the other set (24 MF, 218 BP), with an average MCC

of 0.240. It is evident that GO terms in the MF domain tend to be

more reliably predicted – although they are less numerous than the

BP terms.

Figure 5. Sample FFPred 2.0 output within the PSIPRED web server. Top part of the FFPred 2.0 tab within the results page for the
submission of the sequence of Serotonin receptor 1B to the PSIPRED Protein Analysis Workbench web server. Predicted GO term assignments are
listed together with the associated posterior probability and SVM reliability level.
doi:10.1371/journal.pone.0063754.g005

FFPred 2: Improved Eukaryotic Function Prediction
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The performances of SVMs for 39 GO terms that are common

to the vocabularies of FFPred 1.0 and FFPred 2.0, and for which

the FFPred 1.0 data is available, are compared in Table 2. With

the exception of three cases, these GO terms can be predicted

more confidently now than before, with an average 40% increase

in MCC value.

Comparison to original FFPred on a common set of recently

annotated human proteins. A direct comparison on a common set

of target proteins shows that FFPred 2.0 performs better than

FFPred 1.0. Both tools were run on a set of 148 human proteins

that were annotated on the UniProtKB/Swiss-Prot database with

experimental annotations after the training of FFPred 2.0. In order

to avoid bias in favour of one tool or the other, all annotations

were used in the analysis, includes annotations used for the

training of either tool: this allows a realistic evaluation of the

output that a putative user would obtain from the two servers.

The predictions were evaluated using precision-recall plots

(Figure 2) and by means of COGIC scores (Figure S2). For both

domains, the precision of FFPred 2.0 predictions is usually higher

than that of FFPred 1.0 predictions at the same level of recall, and

the range spanned in terms of recall is much wider for the new

version of FFPred. Moreover, for the MF domain, the median

COGIC score increases more than 3-fold from FFPred 1.0 to

FFPred 2.0 (0.061 to 0.225), while for the BP domain it increases

more than 6-fold (0.018 to 0.113), denoting a marked improve-

ment from the old to the new version of FFPred.

These results prove the benefit of retraining and updating

FFPred on a regular basis, as databases of functional annotations

change and increase in size, and updated or more sophisticated

tools for predicting features are released.

Benchmarking on Human Proteins
A complete benchmark test was performed using the new

version of FFPred, two BLAST-based tools, and the ProtFun

server [9], which is the other main publicly available tool for

protein function prediction based on sequence features. The test

set of proteins was the same used for the comparison between

FFPred 1.0 and FFPred 2.0 above. However, all annotations to

targets that were homologue to proteins used in the training

procedure were excluded from the analysis, in order to replicate

the situation where no homology information is available to users

of FFPred 2.0. The BLAST tools were able to transfer annotations

from database proteins with E-value higher than 1023 (‘‘BLAST

E-3’’ tool) or 0.1 (‘‘BLAST E-1’’ tool), mimicking two situations

with little homology information left.

The benchmark test using the two BLAST tools and the

comparison to ProtFun were kept separate. The first test involved

tools of a different nature, as the BLAST-based tools make use of

direct albeit limited homology information to reassign pre-existing

annotations, while FFPred 2.0 does not require any annotations to

be present in the underlying protein database. In fact, the test was

useful to point out how much of the performance of tools

performing homology-based transfer FFPred 2.0 can achieve. In

contrast, the second test was a direct comparison between ProtFun

and FFPred 2.0. For ProtFun, both the ‘‘Gene Ontology category’’

and ‘‘Enzyme’’ predictions were kept into account.

Comparison to BLAST-based tools. The outcome of the

test against the BLAST tools was analysed using precision-recall

plots, as depicted in Figure 3. For the MF domain, the maximum

F-measure is equal to 0.144 for FFPred 2.0, while it evaluates to

0.167 and 0.197 for the E-1 and E-3 BLAST tools respectively;

similarly, the overall curves suggest that FFPred 2.0 can recover

most of the precision of homology-based tools in these predictions.

For the BP domain both the overall precision-recall curve and the

values of Fmax (equal to 0.180, 0.087, 0.063 respectively for

FFPred 2.0, BLAST E-3, BLAST E-1) actually denote a much

higher accuracy for FFPred 2.0 predictions compared to those

obtained with BLAST-based tools. Moreover, for a complemen-

tary comparison, alternative precision-recall plots are shown in

Figure S3. These employ a very simple measure of the accuracy of

predictions: a prediction is considered correct if and only if the

predicted GO term is an ancestor term (a correct, but generic

prediction) or a descendant term (a compatible prediction) of a

reference annotation for the target protein. This compensates for

the fact that most GO terms in the FFPred 2.0 vocabulary are far

more generic than the average annotations transferred by BLAST,

which gave FFPred 2.0 an evident disadvantage in the standard

evaluation. Using this measure, the performance of FFPred 2.0

overwhelms the one of BLAST-based tools for both GO domains.

These results suggest that often the relatively poorer performance

obtained in the standard analysis of MF predictions was due to

FFPred 2.0 not being able to predict terms that were deep enough

in the GO graph, although the high-level predictions were correct.

Finally, the COGIC score plots for this benchmark test are

provided in Figure S4 for both GO domains. The analysis

highlights a comparable performance for the MF domain, while

for the BP domain FFPred 2.0 achieves higher scores, with an

increase of more than 400% in the median value to the BLAST E-

3 and E-1 tools.

This analysis shows the usefulness of FFPred 2.0 predictions,

which are independent of the annotations present in the database

when a query sequence is processed. In practice, for effective

functional annotation in the BP domain FFPred 2.0 can be used as

the superior method. For MF annotation, users will usually exploit

homology information available on the query sequence first;

however, especially when little or no information is available,

FFPred 2.0 is shown to be very valuable in complementing such

knowledge with novel predictions of functional annotation.

Comparison to ProtFun. In the case of the direct comparison to

ProtFun on the same dataset, the precision-recall plots (shown in

Figure S5) describe a better performance of FFPred 2.0. For

predictions in the MF domain, both ranges of precision and recall

are better for FFPred 2.0, and often the precision values are higher

at the same value of recall; the improvement is more striking for

the BP domain. This is exemplified by the maximum F-measure

values: for predictions in the MF domain, Fmax is equal to 0.144

and 0.049 respectively for FFPred 2.0 and ProtFun, while for

predictions in the BP domain Fmax is equal to 0.180 and 0.008

respectively. Moreover, COGIC scores box plots (reported in

Figure S6) show how the median score achieved on this dataset

was much higher for FFPred 2.0 compared to ProtFun, for both

GO domains. In summary, both measures of prediction accuracy

highlight an overall higher performance of FFPred 2.0 in this case.

Use of FFPred 2.0 with Other Eukaryotic Organisms
FFPred 2.0 was trained using human data. However, in order to

more generally assess its usefulness in predicting functional

annotations, this version of FFPred was tested on several other

eukaryotic model organisms: mouse (Mus musculus), rat (Rattus

norvegicus), fly (Drosophila melanogaster), zebrafish (Danio rerio), worm

(Caenorhabditis elegans), and yeast (Saccharomyces cerevisiae). For each of

these organisms plus human, we evaluated the performance of

FFPred 2.0 on a dataset containing all proteins with annotations

both in the MF and in the BP domains taken from a non-

redundant version of the whole proteome. The results of the

analysis are shown in Figure 4 (precision-recall plots) and Figure

S7 (plots of COGIC scores).
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The performance of FFPred 2.0 on all model organisms is

comparable to that achieved on human targets, and therefore

FFPred 2.0 can be effectively considered a useful tool for general

eukaryotic function prediction. The classification accuracy de-

creases for species with higher evolutionary distance to human;

this can be expected for example due to decreasing of conservation

of some of the analysed sequence features between proteins from

distant eukaryotic proteomes, and to variable comprehensiveness

of annotation databases for different organisms. However, the

precision-recall plots show that the extent of this decrease is just

11% (precision at 30% recall, for rat) to 48% (for yeast) compared

to human for MF predictions, and 23% (for mouse) to 54% (for

yeast) for BP predictions. Similarly, the median COGIC score only

decreases by 12% (for mouse) to 63% (for yeast) of the value for

human in the case of MF predictions, and by 26% (for mouse) to

56% (for yeast) in the case of BP predictions.

Visualisation of the Results
FFPred 2.0 runs within the web servers of the UCL

Bioinformatics Group [26]; users can access the interface of the

PSIPRED Protein Analysis Workbench at http://bioinf.cs.ucl.ac.

uk/psipred/and select the ‘‘FFPred v2.0’’ option. Figure 5 shows

the content of the top half of the ‘‘FFPred’’ tab within the results

page for a sample protein, Serotonin receptor 1B (UniProtKB

primary accession number: P28222). For each of the two GO

domains under consideration, a table lists all terms that were

predicted for the query sequence: each line shows the GO term

code and description, the posterior probability associated to the

prediction itself, and the intrinsic reliability level of the SVM

corresponding to that GO term (see Materials and Methods, end

of section ‘‘Training of the SVMs’’). In the default view of the

‘‘FFPred’’ results tab, predictions of GO terms from higher

reliability SVM models (‘‘H’’) are listed first, while predictions of

GO terms from lower reliability models (‘‘L’’) are listed below

against a red background, and can be interpreted as further,

relatively less safe suggestions for functional characterisation.

Predictions can however be sorted according to the values of any

column.

It is worth noting that the intrinsic reliability level associated

with a given GO term SVM is independent of the query sequence,

since it depends on the quality of the SVM model only. The actual

confidence level of each individual prediction for the query protein

is instead indicated by the posterior probability value. Compared

to the output of the previous version of FFPred, the interpretation

of the results is more straightforward, due to the absence of a

‘‘jury’’ value. For FFPred 1.0 predictions, such value described the

consensus of several SVMs that were run for the prediction of an

individual GO term. This is not needed any more, since for each

GO term only a single SVM is used. The SVM output is converted

into the posterior probability that the query protein is actually

annotated with that GO term. The corresponding annotation is

therefore displayed whenever such probability is higher than 0.5.

The full content of the ‘‘FFPred’’ results tab is reported in

Figure S8. The rest of the web page has not been modified for this

version of FFPred: it displays more detailed information about the

feature content of the query sequence, that was used for the GO

term assignments. Moreover, users can now use the ‘‘Download’’

results tab to obtain copies of the list of predictions and the list of

all posterior probabilities corresponding to the 442 GO terms,

both in plain text format.

Finally, a standalone version of FFPred 2.0 can be downloaded

from the group’s download webpages (http://bioinfadmin.cs.ucl.

ac.uk/downloads/ffpred/). As FFPred 2.0 relies on several pieces

of third party software, detailed instructions and suggestions for

configuring the standalone version can be found in the

accompanying documentation.

Supporting Information

Figure S1 Specificity distribution of the vocabulary
terms of FFPred 1.0 and FFPred 2.0. For the old and new

versions of FFPred, the histogram shows the vocabulary specificity,

which is measured for each term as the minimum distance from

the root of the Ontology. Both MF and BP terms are considered

together in each distribution.

(TIF)

Figure S2 Comparison of FFPred 1.0 and FFPred 2.0 by
means of COGIC scores. Box plots depicting the distribution

of values of COGIC scores on a common test set of 148 human

proteins for FFPred 1.0 and FFPred 2.0, for predictions in the MF

domain (left) and BP domain (right).

(TIF)

Figure S3 Alternative comparison of FFPred 2.0 and
BLAST-based tools by means of precision-recall plots.
Precision-recall plots comparing the performance of FFPred 2.0 to

the BLAST-based tools on a common dataset of 148 human

proteins, for predictions in the MF domain (left) and BP domain

(right). An alternative measure is used here, that simply considers

each prediction correct if and only if it assigns a GO term that is

an ancestor term or a descendant term of a reference annotation of

the target protein.

(TIF)

Figure S4 Comparison of FFPred 2.0 and BLAST-based
tools by means of COGIC scores. Box plots depicting the

distribution of values of COGIC scores on a common test set of

148 human proteins for FFPred 2.0 and the BLAST-based tools

described in the main text, for predictions in the MF domain (left)

and BP domain (right).

(TIF)

Figure S5 Comparison of FFPred 2.0 and ProtFun by
means of precision-recall plots. Precision-recall plots

comparing the performances of FFPred 2.0 and ProtFun on a

common dataset of 148 human proteins, for predictions in the MF

domain (left) and BP domain (right).

(TIF)

Figure S6 Comparison of FFPred 2.0 and ProtFun by
means of COGIC scores. Box plots depicting the distribution

of values of COGIC scores on a common test set of 148 human

proteins for FFPred 2.0 and ProtFun, for predictions in the MF

domain (left) and BP domain (right).

(TIF)

Figure S7 Evaluation of FFPred 2.0 on eukaryotic
proteomes by means of COGIC scores. Box plots depicting

the distribution of values of COGIC scores obtained by FFPred

2.0 on several eukaryotic proteomes, for predictions in the MF

domain (left) and BP domain (right).

(TIF)

Figure S8 Sample FFPred 2.0 output page. Complete

FFPred 2.0 output as shown in the FFPred tab within the results

page for the submission of the sequence of Serotonin receptor 1B

to the PSIPRED Protein Analysis Workbench web server. After

the list of predicted GO term assignments, the feature content of

the query sequence is shown, as in the previous version of FFPred.

(TIF)
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Table S1 FFPred 2.0 vocabulary and SVM performance.
The table lists all GO terms that are present in the vocabulary of

FFPred 2.0, together with the values of MCC, sensitivity,

specificity, and precision obtained by the corresponding SVMs

during the training procedure.

(XLSX)
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