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Entanglement monotones, such as the concurrence, are useful tools to characterize quantum correlations

in various physical systems. The computation of the concurrence involves, however, difficult optimizations

and only for the simplest case of two qubits a closed formula was found by Wootters [Phys. Rev. Lett. 80,

2245 (1998)]. We show how this approach can be generalized, resulting in lower bounds on the concurrence

for higher dimensional systems as well as for multipartite systems. We demonstrate that for certain families

of states our results constitute the strongest bipartite entanglement criterion so far; moreover, they allow us

to recognize novel families of multiparticle bound entangled states.
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Entanglement has proven to be a fundamental concept in
physics, with applications spanning virtually all areas of
quantum science: These include antipodal topics such as
the black hole information paradox and industrial realiza-
tions of quantum cryptographic devices. By definition,
entanglement between two or more particles is given by
those quantum correlations which cannot be created by
local operations and classical communication. For the
case of more than two particles, also different classes of
entanglement can be distinguished. For the quantification
of entanglement and also for the discrimination between
entanglement classes, one can use so-called entanglement
measures or entanglement monotones—parameters that
indeed are nonincreasing under local operations and
classical communication. The concurrence and the
entanglement of formation are important parameters of
this kind [1].

A central problem for the quantification of entanglement
is the fact that nearly all entanglement monotones are
extremely difficult to compute. Indeed, most definitions
of entanglement monotones contain nontrivial optimiza-
tions, such as the optimization over all possible local
operations and classical communication protocols or the
minimization over all possible decompositions of a given
density matrix. This difficulty is an important issue for the
application of monotones to real world problems or
experiments.

A milestone in the theory of entanglement measures was
the derivation of a closed formula for the concurrence of
two qubits by Wootters in 1998 [2]. In this work, it was
shown how the minimization over all state decompositions
can be done for such a special case. Consequently, the
Wootters formula has led to many applications of the
concurrence, e.g., for characterizing phase transitions in
spin models [3]. In the following years, the formula has

been shown to work also for a special type of multipartite
measures by Uhlmann [4]. Furthermore, the concurrence
can also be computed for some special states with high
symmetries [5].
In the present Letter, we generalize the idea of Wootters

to compute lower bounds on the concurrence. Our methods
work for higher dimensional bipartite systems as well as
for multipartite systems. Compared with the large amount
of research about lower bounds on entanglement measures
[6–8], our approach has substantial advantages: For the
bipartite case, we discuss a family of bound entangled
states and show that our result gives the strongest separa-
bility criterion so far; for the multipartite examples, our
estimates give the precise value of the multipartite con-
currence, and allow us to identify a novel and simple
family of bound entangled states. Finally, our approach
can also be used to estimate other quantities besides the
concurrence, which might be useful to deal with entangle-
ment monotones based on antilinear operators and combs
[9]. It should be noted that lower bounds on the concur-
rence based on Wootters’ idea have appeared in the litera-
ture before [8]; as we will see, however, the existing
approaches are fundamentally limited.
Setting the stage.—To start, let us recall the main defi-

nitions. For a general (m� n)-dimensional bipartite pure
quantum state %AB ¼ jc ihc j on H A �H B, the concur-
rence [1,10] can be defined as

Cðjc iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� Tr%2

AÞ
q

; (1)

where %A ¼ TrBðjc ihc jÞ is the reduced density matrix of
the first particle [11]. A pure state is separable if and only if
its concurrence is zero. The above definitions are extended
to mixed states via the so-called convex roof construction
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Cð%Þ ¼ min
fpi;jc iig

X
i

piCðjc iiÞ; (2)

where the minimization is meant as an optimization over
all possible ensemble realizations % ¼ P

ipijc iihc ij,
where pi � 0 and

P
ipi ¼ 1. The decomposition attaining

the minimum is said to be the optimal decomposition.
Clearly, this is a difficult optimization problem, and differ-
ent estimates have been obtained [6–8].

The bipartite bound.—For our approach, we first need to
reformulate the definition of the concurrence. The pure
state jc i can be expressed in a product basis as jc i ¼P

m
i¼1

P
n
j¼1 c ijjiji. Furthermore, we can define onH A the

generators of the group SOðmÞ as L� ¼ jiihjj � jjihij.
There are mðm� 1Þ=2 generators of this type; similarly,
there are nðn� 1Þ=2 generators S� of SOðnÞ on H B.

Then, a direct calculation for the c ij shows that one can

express the concurrence as (see also Ref. [12])

C2ðjc iÞ ¼ 2ð1� Tr%2
AÞ ¼

X
�;�

jhc jL� � S�jc �ij2; (3)

where jc �i denotes the complex conjugation. In the fol-
lowing, it is convenient to use a single index for the
matrices L� � S�, and we define Jt ¼ L� � S�, where

the index t runs from 1 to N ¼ ½mnðm� 1Þðn� 1Þ�=4.
In order to formulate our bound, we first fix an integer k.

We then choose a subset of indices ~t ¼ ft1; . . . ; tkg �
f1; . . . ; Ng, where we use the ordering ti < tiþ1.
Moreover, we can choose k complex numbers ~u ¼ fusg
for which the absolute values are bounded via jusj � 1.
Then, we consider the quantity

�kð%; ~t; ~uÞ ¼ max

(
0; �ð1Þ

mn �
X
i>1

�ðiÞ
mn

)
; (4)

here the numbers �ðjÞ
mn are the square roots of the

eigenvalues of

X ¼ %

0
@Xk

s¼1

usJts

1
A%�

0
@Xk

s¼1

u�sJts

1
A (5)

in nonincreasing order. Alternatively, one can say that the

�ðjÞ
mn are the eigenvalues of the Hermitian matrix

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%

p  X
s

usJts

!
%�
 X

s

u�sJts

! ffiffiffiffi
%

p
vuut : (6)

For our given k, we consider the set of all possible ~t and
choose for any of them a different vector ~u and compute the
corresponding �kð%; ~t; ~uÞ. This leads to ðNkÞ numbers, and

for these we can state our first main result.
Observation 1.—Let % be a density matrix acting on an

(m� n)-dimensional bipartite quantum system and con-
sider for fixed k all the possible ~t and a possible choice of ~u
as discussed above. Then, a lower bound on the concur-
rence is given by

Cð%Þ2 � N

k2ðNkÞ
X
~t

½�kð%; ~t; ~uÞ�2: (7)

Especially if % is separable, then �kð%; ~t; ~uÞ ¼ 0 for any
choice of k, ~t, and ~u.
Before proving this theorem, let us discuss some of its

implications. Equation (7) is a lower bound for the con-
currence for any given choice of the ~u. In order to obtain a
good bound, the set of the ~u has to be optimized for the
given state %. Often this has to be done numerically, but we
will also present examples where a good choice of the Jts is

given analytically.
Second, for the case of two qubits there is only one

possible generator, namely, L� ¼ S� ¼ j0ih1j � j1ih0j ¼
i�y. This implies that the only possibility in Observation 1

is k ¼ N ¼ 1, and then Eq. (7) reduces to the well known
formula for the concurrence of mixed states. Of course,
obtaining a closed formula for the concurrence is a sig-
nificantly more advanced result, as one has to prove in
addition that equality holds. In Refs. [2,4], this has been
achieved by writing down an explicit decomposition. This
is, however, beyond the scope of the present Letter; we
focus on the problem of deriving lower bounds.
Finally, one should add that other researchers have

obtained lower bounds on the concurrence by using the
formulation of Eq. (3) and ideas similar to the original
construction [8]. In these works, the terms jhc jL� �
S�jc �ij2 are estimated separately. A single observable

L� � S�, however, acts on a 2� 2 subspace only, and for

these subspaces the criterion of the positivity of the partial
transpose is a necessary and sufficient criterion for entan-
glement [1]. This implies that the approaches in Ref. [8]
can never detect weak forms of entanglement, such as
bound entanglement which is not detected by the positivity
of the partial transpose criterion [13]. On the other side,
Observation 1 represents a strong criterion for bound
entanglement, as we will see below.
Proof of Observation 1.—First we prove that for a fixed k

and fixed vector ~t we have that

min
fpi;jc iig

�X
i

pijhc ij
Xk
s¼1

usJts jc �
i ij
�
� �kð%; ~t; ~uÞ; (8)

where the minimum is taken over all decompositions % ¼P
ipijc iihc ij. Let �i and j�ii be the eigenvalues and the

eigenvectors, respectively, of %. It is known that any
decomposition of % is connected to the eigenvalue decom-
position via a unitary matrix Uij; namely, one hasffiffiffiffiffi
pi

p jc ii ¼
P

mn
j¼1 U

�
ijð

ffiffiffiffiffi
�j

p j�jiÞ [14]. Therefore, we haveffiffiffiffiffiffiffiffiffiffi
pipj

p hc ijPk
s¼1 usJts jc �

j i ¼ ðUYUTÞij, where the matrix

Y is defined by Y�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
����

p h��jPk
s¼1 usJts j��

�i. Since
the Jk are symmetric, the matrix Y ¼ YT is complex and
symmetric, and we can use Takagi’s factorization [15] to
write Y ¼ VDVT with a real diagonal matrix D. The
entries ofD are non-negative and given by the square roots
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of the eigenvalues of YYy. Then, following directly the
argumentation of Ref. [2], we have

min
fpi;jc iig

�X
i

pijhc ij
Xk
s¼1

usJts jc �
i ij
�

¼ min
W¼UV

�X
i

j½WDWT�iij
�
� �ð1Þ

mn �
X
i>1

�ðiÞ
mn

¼ �kð%; ~t; ~uÞ; (9)

where �ðjÞ
mn are the entries of D in decreasing order. These

quantities are, however, nothing but the eigenvalues of X
in Eq. (5). Therefore, if a state % is separable, then a
decomposition into pure states without concurrence exists.
Due to Eq. (3), all the mean values of Jk vanish, which
implies already that �kð%; ~t; ~uÞ ¼ 0.

It remains to show that �kð%; ~t; ~uÞ can give a lower
bound on the concurrence also for entangled states.
Suppose that % ¼ P

ipijc iihc ij is an optimal

decomposition of %. Then Cð%Þ ¼ P
ipiCðjc iiÞ ¼P

ipi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
t¼1 jhc ijJtjc �

i ij2
q

. From the argumentation

above, we know that for fixed k and ~t and fixed t1; . . . ; tk
the estimates �kð%; ~t; ~uÞ �

P
ipi

P
k
s¼1 jhc ijusJts jc �

i ij �P
ipi

P
k
s¼1 jhc ijJts jc �

i ij hold.
Finally, using the rule ðPk

j¼1 xjÞ2 � k
P

jx
2
j and the

Cauchy-Schwartz inequality, we can directly estimate the
right-hand side of Eq. (7) as

X
~t

½�kð%; ~t; ~uÞ�2 � k2

N

�
N

k

�
Cð%Þ2: (10)

The details of this calculation are given in Appendix A1
[16]. This concludes the proof of Observation 1.

Before proceeding to the examples, let us discuss the
properties of the concurrence that were used in the proof.
The starting point was Eq. (3), and the only further require-
ment needed was the fact that the Jt ¼ JTt were symmetric
[17]. Moreover, if At ¼ �AT

t were antisymmetric, then one
has for any state jhc jAtjc �ij2 ¼ 0, so restricting to sym-
metric Jt can be done without losing generality. In sum-
mary, the convex roof of any quantity Eðjc iÞ, which can be
written as

E2ðjc iÞ ¼ X
t

	mtjhc jMtjc �ij2; (11)

can be estimated with our methods: One can split each Mt

into a symmetric and an antisymmetric part and estimate
the contributions from the symmetric part. The fact that
some of the coefficients mt can be negative does not
matter: Using the relation

P
tjhc jGtjc �ij2 ¼ 1 (where

the Gt form an orthonormal basis of the operator space),
one can rewrite E2ðjc iÞ as a sum with only positive
coefficients minus a constant term.

Bound entangled states as an example.—In order to
show that Observation 1 results in a stronger separability
criterion than the best methods that are currently known,
we consider the family of 3� 3 bound entangled states
introduced by Horodecki [18]. This family of states %PH

a is
not detected by positivity of the partial transpose criterion
but is nevertheless entangled for any 0< a< 1. The
detailed form of these states is given in Appendix A2
[16]. We consider a mixture of these states with white
noise, %aðpÞ ¼ p%PH

a þ ð1� pÞ1=9, and ask for the mini-
mal p, so that the entanglement in %aðpÞ is still detected.
First, we use Observation 1 with the purpose of detecting
entanglement and find the optimal Jt via numerical opti-
mization. We finally compare our values with the values
obtained via different known criteria: the Zhang-Zhang-
Zhang-Guo (ZZZG) criterion [19], the Ma and Bao (MB)
criterion [20], and the method based on symmetric exten-
sions and semidefinite programming (SDP) [21,22]. We
also used the algorithm proposed in Ref. [23] to prove
separability of quantum states. This allows us to compute
values of p, for which %aðpÞ is provably separable.
The results are given in Fig. 1. One clearly sees that

Observation 1 provides the best criterion, but the compari-
son with the separability algorithm also suggests that
Observation 1 does not detect all states.
Estimating the multipartite concurrence.—For simplic-

ity, we discuss only the three-particle case, but our results
can be directly generalized to arbitraryN-partite states. Let
us consider a pure state jc i in a d� d� d system. Its
concurrence is given by

C�ðjc iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½3� ðTr%2

1 þ Tr%2
2 þ Tr%2

3Þ�
q

; (12)

where %1 ¼ Tr23ð%Þ, etc., are the reduced one-particle
states. For this definition, it directly follows that for pure

states C�ðjc iÞ2 ¼ 1
2 ð½Cð1j23Þðjc iÞ�2 þ ½Cð2j13Þðjc iÞ�2 þ

½Cð3j12Þðjc iÞ�2Þ, where Cð1j23Þðjc iÞ, etc., are the corre-
sponding bipartite concurrences. This definition is

0.0 0.2 0.4 0.6 0.8 1.0

0.90

0.92

0.94

0.96

0.98

1.00

a

p

SEP

OBS1

SDP

MB

ZZZG

FIG. 1 (color online). Detecting entanglement in the
Horodecki 3� 3 bound entangled state mixed with white noise.
The criterion of Observation 1 (points denoted by OBS1) is
stronger than previously known criteria. For values of p smaller
than the values given by SEP, the states %aðpÞ are proven to be
separable. See the text for further details.
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extended to mixed states via the convex roof construction.
Clearly, C�ð%Þ ¼ 0 if and only if % is a fully separable
state.

A first possibility to estimate the multipartite concur-
rence is to start with an estimate of the bipartite concur-
rence for each bipartition (as in Observation 1) and then
estimate the total concurrence C� from it. This is indeed a
viable way; in Appendix A3 [16], we present and discuss a
corresponding theorem. The disadvantage of this approach
is that there are states which are separable for any biparti-
tion but not fully separable [24]. For them, this method will
not succeed, since all the bipartite concurrences vanish.

To overcome this limitation, one should note that
C�ðjc iÞ2 is of the same structure as Eq. (11): We define
the operators Jt as before, but separately for any biparti-

tion, and write J1j23t ¼ L1
� � S23� and similarly for the other

bipartitions. Then we have the expression C�ðjc iÞ2 :¼
1
2

P
t½jhc jJ1j23t jc �ij2 þ jhc jJ2j13t jc �ij2 þ jhc jJ3j12t jc �ij2�.

So we have to consider

�tot
k ð%; ~t; ~xÞ ¼ max

�
0; �ð1Þ

mn �
X
i>1

�ðiÞ
mn

�
; (13)

where the �ðjÞ
mn are the square roots of eigenvalues of

Xtot ¼ %
Xk
s¼1

ðusJ1j23ts þ vsJ
2j13
ts þ wsJ

3j12
ts Þ

� %� Xk
s¼1

ðu�sJ1j23ts þ v�
sJ

2j13
ts þ w�

sJ
3j12
ts Þ (14)

in decreasing order. Here, ~x ¼ ð ~u; ~v; ~wÞ denotes a triple of
complex vectors which are normalized as in Observation 1
and ~t ¼ ft1; . . . ; tkg. For this quantity we can state the
following.

Observation 2.—For any arbitrary mixed state on H �
H �H and for every fixed k and for arbitrary ~x, we have

N

6k2ðNkÞ
X
~t

½ð�tot
k ð%; ~t; ~xÞÞ2� � C�ð%Þ2: (15)

A proof is given in Appendix A4 [16].
Multipartite examples.—We will consider two simple

examples for three qubits, but these already demonstrate
two interesting points: First, they give an idea how the
observables Jt and the coefficients ~x can be chosen; sec-
ond, it turns out that the entanglement criterion in
Observation 2 is strong and allows us to identify a novel
family of bound entangled states.

As the first example, we consider the three-qubit

Greenberger-Horne-Zeilinger (GHZ) state jGHZi ¼
ðj000i þ j111iÞ= ffiffiffi

2
p

and mix it with white noise,
%GðpÞ ¼ pjGHZihGHZj þ ð1� pÞ1=8. Then we take the

single-qubit operator SðaÞ ¼ j0ih1j � j1ih0j and the two-

qubit operator LðbcÞ ¼ j00ih11j � j11ih00j, and from them

we form the operators Jijjk ¼ SðiÞ � LðjkÞ for all three

bipartitions. Applying Observation 2 for the choice k ¼ 1
and u1 ¼ v1 ¼ w1 ¼ 1, one finds already from a single
term in the sum of Eq. (15) that the three-qubit concurrence
is bounded by

ðC�½%GðpÞ�Þ2 � 1

6

�
3

4
½5p� 1�

�
2
: (16)

For p ¼ 1, this reproduces exactly concurrence of the pure
GHZ state. Moreover, this bound shows that the state
%GðpÞ is entangled for p > 1=5. This means that
Observation 2 provides a necessary and sufficient criterion
for entanglement for the family of states %GðpÞ, since it is
known that for p � 1=5 these states are separable [25]. In
fact, Eq. (16) gives a linear lower bound on the convex
function C�½%GðpÞ�, and this bound coincides with the
exact value on the points p ¼ 1=5 and p ¼ 1. This means
that the bound equals the exact value on the whole interval
p 2 ½1=5; 1�, and for them we have C�½%GðpÞ� ¼
ð34 ½5p� 1�Þ= ffiffiffi

6
p

.

As the second example, we consider the three-qubit W

state jWi ¼ ðj001i þ j010i þ j100iÞ= ffiffiffi
3

p
mixed with white

noise, %WðpÞ ¼ pjWihWj þ ð1� pÞ1=8. In this case, we

use again the operator SðaÞ ¼ j0ih1j � j1ih0j, but for two
qubits we use the LðbcÞ ¼ j00ih10j � j10ih00j, and from

them we form the operators Jijjk ¼ SðiÞ � LðjkÞ. Applying
Observation 2 for k ¼ 1 and u1 ¼ v1 ¼ w1 ¼ 1, we find

that ðC�½%WðpÞ�Þ2 � ð1=96Þ½pð8þ ffiffiffi
3

p Þ � ffiffiffi
3

p �2; espe-
cially, the state %WðpÞ is entangled for p > ps ¼ffiffiffi
3

p
=ð8þ ffiffiffi

3
p Þ 
 0:178.

This is a remarkable value for several reasons. First,
using the separability algorithm from Ref. [23], one
can prove that the states %WðpÞ are fully separable for
p � 0:177, giving strong evidence that Observation 2
provides a necessary and sufficient criterion for the family
of states %WðpÞ.
Second, these calculations show that the states %WðpÞ

exhibit quite peculiar entanglement properties: One can

directly check that for p � 3ð8 ffiffiffi
2

p � 3Þ=119 
 0:2096 the
states have a positive partial transpose for any bipartition,
and using the separability algorithm [23] one finds that for
p � 0:2095 the states are indeed separable for any biparti-
tion. Hence, for p 2 ½ps; 0:2095� the states %WðpÞ are
separable for any bipartition but not fully separable. This
implies that they are bound entangled: No entanglement
can be distilled from them, even if two of the three parties
join. It was known that such states exist [24]; however,
the existing examples required a sophisticated construc-
tion. It is surprising that the simple family %WðpÞ includes
bound entangled states, and it underlines the power of our
approach that these states can be detected with Observation
2. Finally, the bound entanglement in the family %WðpÞ can
easily be generated experimentally (contrary to other
known examples of bound entangled states), since adding
noise to a pure state is easy in practically any experimental
implementation.
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Conclusion.—We have provided a general method to
bound entanglement monotones by extending in a non-
trivial way the original construction of Wootters [2], an
approach that works for both bipartite and multipartite
concurrence. We leave open the problem of determining
for which states our method gives the exact value of the
concurrence. It would also be interesting to broaden our
approach to the general classification of invariants of quan-
tum states [9], since this may help to understand the differ-
ent entanglement classes for multiparticle systems.

We thank M. Hofmann for discussions. This work has
been carried on while Z.M. was visiting the Department of
Computer Science and the Department of Physics at
University College London. Z. C. is supported by NSF of
China (11201427), Z.M. is supported by the NSF of China
(10901103), O.G. is supported by the EU (Marie Curie
CIG 293993/ENFOQI) and the BMBF (Chist-Era Project
QUASAR), and S. S. is supported by the Royal Society.

*ma9452316@gmail.com
†otfried.guehne@uni-siegen.de

[1] For reviews see M.B. Plenio and S. Virmani, Quantum
Inf. Comput. 7, 1 (2007); R. Horodecki, P. Horodecki, M.
Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865
(2009); F. Mintert, A. R. R. Carvalho, M. Kuś, and A.
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