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ABSTRACT 

The congenital muscular dystrophies are a clinically and genetically heterogeneous 

group of disorders characterised by a congenital onset of weakness and hypotonia, 

typically associated with dystrophic-appearing muscle biopsy findings.  The spectrum 

of clinical phenotypes associated with the congenital muscular dystrophy subgroup 

resulting from a deficiency of collagen VI in the extracellular matrix of muscle are 

collectively termed ‘collagen VI-related myopathies’ and include the early onset 

Ullrich congenital muscular dystrophy and the milder and later onset Bethlem 

myopathy as well as a phenotype of intermediate severity called ‘intermediate 

collagen VI-related myopathy.’  A major goal of this research has been to study the 

natural history of respiratory insufficiency in the collagen VI-related myopathies by 

analyzing longitudinal forced vital capacity data in a large, international cohort.  A 

total of 486 forced vital capacity measurements obtained in 145 genetically and/or 

biochemically confirmed collagen VI-related myopathy patients from 10 

neuromuscular centres [United States (2), United Kingdom (2), Australia (2), Italy (2), 

France (1) and Belgium (1)] were analysed and the resulting clarification of the 

phenotypic stratification of collagen VI-related myopathies reported.  Another focus of 

this research has been the evaluation and the refining of the challenging diagnostic 

pathway for collagen VI-related myopathy patients, including evaluations of the 

diagnostic role of muscle histopathology, skin fibroblast immunocytochemistry and 

flow cytometry studies as well as muscle ultrasound and muscle magnetic resonance 

imaging studies.  Finally, this research has studied the role of next generation genetic 

sequencing technologies including whole-genome and exome sequencing in the 

assessment of patients evaluated for collagen VI-related myopathies and related 

conditions. 
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AIMS OF THIS THESIS 

 

1. To report an improved understanding of the phenotypic stratification of the 

collagen VI-related myopathies resulting from natural history data collected as part of 

a large, retrospective international study. 

 

2. To propose a revised diagnostic algorithm for assessing patients with phenotypes 

suggestive of collagen VI-related myopathies. 

 

3. To evaluate the role of chromosomal microarrays and next generation/high-

throughput sequencing, including whole-genome sequencing and exome 

sequencing, in evaluating patients with phenotypes suggestive of collagen VI-related 

myopathies. 

   

4. To evaluate how histological and immunohistochemical findings in muscle biopsies 

of collagen VI-related myopathy patients serve as diagnostic tools and as well as 

potential indicators of the pathophysiology underlying the collagen VI-related 

myopathies. 

 

 

This thesis is divided into 6 parts.  Chapter 1 serves as an Introduction, providing 

background about the collagen VI-related myopathies.  Chapters 2-5 discuss the 

aims listed above, and Chapter 6 serves as a Conclusion.  Discussions are within 

Chapters 2-5 with a broader discussion included in Chapter 6. 

 

 

 

 

 

 

 

 

 

 



 18   

 

CHAPTER 1:  INTRODUCTION 
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1.1 INTRODUCTION 

 

The congenital muscular dystrophies (CMDs) are a clinically and genetically 

heterogeneous group of disorders characterised by the congenital onset of weakness 

and hypotonia, typically associated with dystrophic-appearing muscle biopsy findings 

(fibrosis with or without necrosis).  In his description of the congenital muscular 

dystrophies in 1903, Dr Frederick Eustace Batten, a neurologist and paediatrician at 

Great Ormond Street Hospital noted, ‘The disease is congenital or starts in early 

infancy, and is characterized by smallness, lack of power, and loss of tone in all the 

muscles of the body without localized atrophy or hypotrophy of individual muscles or 

groups of muscles.  …The child usually learns to talk at the normal age, and 

intellectually is often in advance of his years.’1  Over 105 years later, this description 

still holds true for many subgroups of CMD, and, in particular, is an appropriate 

clinical description of a CMD subgroup known as collagen VI-related myopathies 

which result from a decrease, absence or dysfunction of the extracellular matrix 

protein collagen VI.    

 

Studies of the incidence of the CMDs as a group have been estimated as 4.7 per 

100,000 (live births) in Northern Italy2 and 6.3 per 100,000 live births in Western 

Sweden.3  The increased awareness and recognition of the clinical phenotypes of the 

collagen VI-related myopathies has more recently resulted in the conclusion that this 

group of conditions is one of the most common forms of CMD.4-6  A Northern England 

study of genetic muscle disease reported an estimated incidence of UCMD of 0.13 

per 100,000 and BM of 0.77 per 100,000.7  An Australian study of muscle biopsy 

immunohistochemistry studies performed in 101 patients with congenital muscular 

dystrophy estimated that collagen VI-related myopathies are the second most 

frequent CMD subtype after dystroglycanopathies in their cohort.8   

 

Our neuromuscular centre (the Dubowitz Neuromuscular Centre), as the UK National 

Specialised Commissioning Team (NSCT) referral centre for congenital muscular 

dystrophies, offers a great opportunity to study a large CMD population.  A recent 

retrospective review of the diagnostic outcomes of 214 patients referred to our 

neuromuscular centre for an evaluation of possible CMD between 2001-2008 

revealed that collagen VI-related myopathies were the most common form of 

genetically-confirmed CMD, with a relative frequency of 19%, compared to 
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dystroglycanopathies and merosin-deficient CMD (MDC1A), with relative frequencies 

of 12% and 10% respectively.9   

 

 

1.2 STRUCTURE AND ASSEMBLY OF COLLAGEN VI 

 

 Mutations in any of the three collagen VI genes (COL6A1, COL6A2 or COL6A3) can 

affect the complex assembly and secretion of collagen VI, resulting in the spectrum 

of phenotypes seen in the collagen VI-related myopathies.  COL6A1 and COL6A2 

are located on chromosome 21q22.3,10-11 and COL6A3 is located on chromosome 

2q37.12  Collagen VI is a heterotrimeric monomer composed of three alpha chains: 

α1(VI), α2(VI) and α3(VI) encoded by COL6A1, COL6A2 and COL6A3 respectively13-

14 and each containing a short triple helical domain flanked by globular domains.  The 

α1(VI) and α2(VI) chains are similar in size and structure, as both chains contain a 

335 or 336 amino acid triple helix containing a glycine triplet repeat motif and contain 

one A type domain found in von Willebrand factor type A (VWA) domain N-terminal to 

the triple helix (N1) and two VWA domains C-terminal to the triple helix (C1 and C2).   

The α3(VI) chain is larger with 10 N-terminal domains (N1-N10) and two C-terminal 

VWA domains (C1 and C2).  The α3(VI) chain also contains other C-terminal 

domains (C3-C5).15  Assembly of collagen VI proceeds intracellularly with monomers 

aligning in an antiparallel fashion to form dimers (Figure 1).  This initial chain 

association is thought to be mediated by C1 domains.16-17  The dimers in turn align 

laterally to form tetramers.  Disulfide bonds between cysteine residues found in the 

triple helix of all 3 collagen VI chains help to stabilize the dimers and tetramers.18-20  

The tetramers are then secreted extracellularly and align in an end-to-end fashion, 

forming beaded microfilaments as the final product of collagen VI assembly, which 

have a diameter of 4.5 nm and a periodicity of 100-105 nm.18, 20-25 
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  (Modified from Pan TC et al. 200326 and reproduced with permission from Elsevier.) 
 

 

 

 

 

 

 

Figure 1: Graphic representation of the assembly of Collagen VI microfilaments. 
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The function of collagen VI as an extracellular matrix protein is not precisely 

understood.  Some studies suggest that collagen VI helps to anchor the basement 

membrane to the pericellular matrix in muscle27-29 while other studies suggest that 

collagen VI plays a role in cell signalling and cell migration.30-31  Collagen VI interacts 

with multiple extracellular matrix proteins including perlecan,32 fibronectin, decorin, 

biglycan,33-34 collagen II,34 collagen IV,35 collagen XIV,36 fibulin 2,37 hyaluran38-39, 

heparin,40 microfibril-associated glycoprotein 141 and membrane-associated 

chondroitin sulfate proteoglycan 442 (Figure 2).  Certainly the full extent of the 

complex and numerous interactions collagen VI has with neighbouring extracellular 

matrix proteins and cell surface receptors have yet to been fully elucidated.  (See 

Chapter 5, section 5.2 for a further discussion of collagen VI and its muscle 

extracellular matrix neighbours.) 
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  (Figure adapted from Voermans et al. 200811 and reproduced with permission from  
   Elsevier.) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic of the muscle extracellular matrix (ECM). 
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1.3 COLLAGEN VI-RELATED MYOPATHY PHENOTYPES 

 

1.3.1 Ullrich congenital muscular dystrophy 

 

Ullrich congenital muscular dystrophy (UCMD [MIM 254090]), Bethlem myopathy 

(BM [MIM 158810]) and intermediate collagen VI-related myopathy form a subgroup 

within the congenital muscular dystrophies known as the collagen VI-related 

myopathies.43  Ullrich congenital muscular dystrophy was first described in 1930 by 

Dr Otto Ullrich, who termed the condition ‘Skleratonische Muskeldystrophie’ 

(scleratonic muscular dystrophy), noting evidence of congenital weakness associated 

with proximal joint contractures and joint laxity.44-45  UCMD results from recessively or 

dominantly acting mutations in any of the three collagen VI genes (COL6A1, COL6A2 

or COL6A3).26, 46   

 

The first signs of Ullrich congenital muscular dystrophy can manifest in utero with 

decreased fetal movement frequently reported.43-45, 47-48  At birth, UCMD patients 

classically demonstrate hypotonia, proximal joint contractures, hip dislocation(s), 

prominent calcanei and distal hyperlaxity resulting in abnormal positioning of the 

hands and feet (with hands in a position of wrist flexion and resting against the 

ventral surface of the forearms and feet in a position of dorsiflexion and resting 

against the anterior surface of the shins).  Torticollis and kyphoscoliosis can often be 

seen at birth, as well.43, 48-50 

 

While children with UCMD may achieve independent ambulation, this ability is lost in 

early childhood.43, 48-50  Some patients attain the ability to walk on their knees only, 

often related to progressive knee contractures.  After becoming wheelchair-

dependent, most UCMD patients demonstrate relatively stable muscle weakness 

while joint contractures continue to progress, compounding the muscle weakness 

and significantly contributing to their overall level of disability.51   

 

Early-onset of an invariable decline in respiratory function necessitating the initiation 

of night-time non-invasive ventilation is a salient clinical feature of UCMD,43, 48, 52 and 

is discussed in detail in Chapter 2.  It is essential to note that in the past, the failure to 

recognise respiratory insufficiency and implement non-invasive ventilation has 

resulted in the untimely death of UCMD patients during the teenage years.48  For this 

reason, knowledge of the natural history of UCMD past the late teenage years in 
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patients in whom respiratory support (non-invasive ventilation) has been 

appropriately initiated, had been limited.51   

 

While primary cardiac involvement has not been associated with UCMD, autopsy 

evidence of cor pulmonale (right heart failure) has been reported in an Italian UCMD 

patient secondary to untreated respiratory failure.53  Right ventricular hypertrophy 

was also noted in a patient in the States in whom the non-invasive ventilation 

parameters were not appropriately adjusted to meet the patient’s respiratory function 

needs over time (unpublished report; Dr Carsten Bönnemann). 

 

Transient feeding difficulties necessitating nasogastric tube feedings can be evident 

in the newborn period52 or present later with failure-to-thrive necessitating 

gastrostomy tube feeds.49  While some UCMD patients demonstrate spinal stiffness 

without an evident spinal curvature, the vast majority develop progressive scoliosis, 

requiring surgical intervention/spinal instrumentation during the first decade of life. 

The onset of scoliosis typically precedes the loss of ambulation in UCMD, and can 

appear as early as the preschool years or even congenitally.52, 54   

 

Preserved intelligence is another noteworthy feature of Ullrich congenital muscular 

dystrophy.  In particular, UCMD patients tend to excel academically and continue 

education onto the graduate level (personal experience in the US and the UK).   

 

 

1.3.2 Bethlem myopathy  

 

Bethlem myopathy (BM) is characterized by slowly progressive muscle weakness 

and distal joint contractures and was first described in 1976 by Drs Jaap Bethlem and 

George K. van Wijngaarden.55  The identification of causative mutations in COL6A1, 

COL6A2 and COL6A3 in Bethlem myopathy patients resulted in BM being 

recognized as the first collagen VI-related myopathy.56-59  Whilst BM typically follows 

autosomal dominant inheritance, rare autosomal recessive inheritance has been 

described as well.60-61  One particular recessive mutation, a homozygous nonsense 

mutation in COL6A2 described in a consanguineous family, has been associated with 

a specific Bethlem myopathy phenotype termed ‘myosclerosis,’ which manifests with 

significant contractures, only mild muscle weakness and what is described as a 

‘woody’ feel to the muscles.62   
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While Bethlem myopathy is often described as a slowly progressive myopathy of 

adulthood, its categorisation within the congenital muscular dystrophies likely relates, 

in part, to the fact that symptoms of Bethlem myopathy can present as early as birth.  

Symptom onset during infancy in BM was reported in a study of 23 children (from 7 

different families) diagnosed with Bethlem myopathy (based on autosomal dominant 

inheritance, generalised onset of weakness and joint contractures either in infancy or 

early childhood and a myopathic-appearing muscle biopsy).  In particular, early 

symptoms reported include hypotonia, neck flexion weakness and contractures.  The 

BM patients included in this study typically demonstrated a Gowers’ manoeuvre 

when arising from the floor and a delayed onset of walking.  In particular, 18/23 

(78%) of the BM patients evaluated as part of this study demonstrated 

neuromuscular symptoms within the first 2 years of life.  Evidence of hypermobility of 

the wrists and fingers in children with BM, subsequently evolving into flexion 

contractures, is also highlighted in this study.63 

 

Progressive contractures of the Achilles tendons and elbows usually manifest by the 

end of the first decade in patients with Bethlem myopathy.  While long finger flexor 

tightness can be evident in BM patients during childhood (personal experience), their 

progression becomes most apparent during adulthood, typically resulting in patients 

being unable to fully extend their fingers when the wrist is ‘dorsiflexed,’ a well-

recognised sign of Bethlem myopathy49 which has been referred to as the ‘Bethlem 

sign.’51  Some patients with BM may develop scoliosis.  Progressive stiffening of the 

spine can be seen, as well. 

 

BM patients develop proximal muscle weakness but typically maintain the ability to 

ambulate into adulthood.  By 50 years of age, however, more than 2/3 of BM patients 

rely on the use of a wheelchair to aide ambulation, classically for outdoor use while 

independent ambulation indoors is usually maintained.63  In most BM patients it is the 

progression of joint contractures, in combination with predominantly limb-girdle 

weakness, which may ultimately limit independent ambulation.  Some BM patients 

undergo surgical release of the Achilles tendons which can, at least for a period of 

time, stabilise walking ability by improving ankle mobility.   

 

Respiratory insufficiency necessitating night-time ventilation can occur in late 

adulthood in Bethlem myopathy patients but can be quite variable.59, 64  As detailed in 

Chapter 2, the results of our recent international study of pulmonary function in the 

collagen VI-related myopathies indicate that the need for non-invasive ventilation in 
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adult Bethlem myopathy patients is rare, with only 1/43 (2%) of the BM patients 

studied having initiated night-time non-invasive ventilation.  

 

 

1.3.3 Intermediate collagen VI-related myopathy 

 

Ullrich congenital muscular dystrophy and Bethlem myopathy were initially viewed as 

two separate phenotypic entities.  Subsequently, however, it has become apparent 

that there is indeed a phenotypic spectrum of conditions resulting from a deficiency 

or aberrant formation of collagen VI.  While UCMD patients fall along the severe end 

of this spectrum and BM patients fall at the mild end of this spectrum, in between fall 

patients with phenotypes intermediate to UCMD and BM, referred to as having 

‘intermediate’ collagen VI-related myopathy.51, 53  The phenotypic data gathered as 

part of a large-scale international study of collagen VI-related myopathy patients 

(Chapter 2) has enabled me to define the parameters of the intermediate collagen VI-

related myopathy phenotypic category, based on both motor function and pulmonary 

function.  In particular, intermediate collagen VI-related myopathy patients maintain 

ambulation until the late teenage or early adult years and have a profile of decline in 

pulmonary function similar to UCMD patients, albeit with an onset slightly after that 

seen in UCMD patients.   

 

Prior to efforts to define this ‘intermediate’ collagen VI-related myopathy category, 

patients with this phenotype were diagnosed with either ‘mild UCMD’ or ‘severe 

BM.’53  For this reason, determining an accurate frequency for patients within the 

intermediate collagen VI-related myopathy category is challenging.  The data 

gathered as part of a large international natural history study of collagen VI-related 

myopathy patients (Chapter 2) was carefully analysed and patients categorised as 

UCMD, BM or intermediate collagen VI-related myopathy according to their profiles 

of motor function and pulmonary function.  Of the 145 molecularly confirmed collagen 

VI-related myopathies patients with pulmonary function data available, 75 patients 

(52%) had a phenotype consistent with UCMD, 43 patients (30%) had a phenotype 

consistent with BM and 27 patients (19%) had a phenotype consistent with 

intermediate collagen VI-related myopathy.  Based on this data, one could 

hypothesise that the frequency of collagen VI-related patients falling within the 

intermediate category may be significantly less than the frequency of UCMD patients 

and BM patients (Figure 3). 
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Figure 3: Graphical representation of a working hypothesis on the 

phenotypic spectrum of the collagen VI-related myopathies. 
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1.3.4 Skin findings in the collagen VI-related myopathies 

 

As collagen VI is also expressed in the skin, collagen VI deficiency results in skin 

findings.  These findings can be striking and, as such, can aid in arriving at a clinical 

diagnosis of collagen VI-related myopathy.  Unlike motor function and pulmonary 

function, which manifest differently in UCMD, BM and intermediate collagen VI-

related myopathy patients, the skin findings seen in the collagen VI-related 

myopathies do not appear to be phenotype-specific, per se.   

 

In fact, most collagen VI-related myopathy patients have some abnormal skin 

findings.  These findings include keratosis pilaris (or follicular keratosis) typically 

along the extensor surfaces of the arms and legs, abnormal scar formation (including 

keloid scars and atrophic or ‘cigarette paper’ type scars) as well as striae 

formation.65-66  ‘Spontaneous’ keloids, that is, keloids occurring along sites on the 

skin which have not been previously injured, have been observed in patients with 

Bethlem myopathy.67  Other skin findings include soft skin on the palms of the hands 

and feet as well as a fine ‘criss-cross’ pattern of creases along the palms of the 

hands and feet, which can also be seen in patients with Ehlers Danlos syndrome.51 

 

 

1.4 GENOTYPE-PHENOTYPE CORRELATIONS 

 

One might hypothesise that analogous to the spectrum of clinical phenotypes in the 

collagen VI-related myopathies there may be a molecular spectrum of mutations 

resulting in varying degrees of collagen VI expression and correlating with particular 

phenotypes.  Despite multiple attempts at establishing genotype-phenotype 

correlations, the identification of different collagen VI-related myopathy phenotypes 

resulting from identical COL6A1, COL6A2 and COL6A3 mutations have complicated 

these efforts and have highlighted the molecular complexity underlying these 

conditions.  Among the large number of mutations identified in the collagen VI genes, 

however, a number of mutational mechanisms as well as locations of mutations in 

specific regions of the COL6A1, COL6A2 and COL6A3 genes have been recognised 

as correlating with severity of phenotype. 

 

As stated above (section 1.3), both autosomal recessive (AR) and autosomal 

dominant (AD) mutations in COL6A1, COL6A2 and COL6A3 have been found to 



 30   

 

underlie the spectrum of collagen VI-related myopathies.  For this reason, pursuing 

parental COL6A1, COL6A2 and COL6A3 sequencing is essential in determining the 

mode of inheritance in collagen VI-related myopathy probands.   

 

In BM, the most common mode of inheritance is autosomal dominant; however, I and 

others have reported rare autosomal recessively inherited Bethlem myopathy.60-61 

Sequencing performed in these families demonstrated that COL6A2 frameshifting 

mutations resulting in premature termination codons (truncating mutations) do not 

confer a phenotype of collagen VI-related myopathy when occurring in 

heterozygosity, as in the case of asymptomatic parents of children with Bethlem 

myopathy.  The occurrence of a COL6A2 truncating mutation in compound 

heterozygosity with a COL6A2 missense mutation, however, results in a phenotype 

of Bethlem myopathy.60-61  Without efforts devoted to carefully deciphering modes of 

inheritance in collagen VI-related myopathies, accurate genetic counselling may not 

be possible. 

 

   

1.4.1 Common mutational mechanisms in collagen VI-related 

            myopathies 

 

The most common mutational mechanism resulting in a phenotype of UCMD (in non-

consanguineous populations) is de novo autosomal dominant.6, 26, 68-69  In order to 

form the collagen VI heterotrimeric or triple helical monomer, the α1(VI), α2(VI) and 

α3(VI) collagen chains are believed to fold from their respective C terminal ends.  

Further assembly into dimers and tetramers is reliant on two essential cysteine 

residues in the N terminal region of the triple helical (TH) domain of each monomer.  

A strong ‘dominant negative’ effect from de novo autosomal dominant mutations can 

result when in-frame skipping of exons in the N-terminal region of the collagen VI α 

chains does not disrupt the essential cysteine residues for dimer and tetramer 

formation.  As a result, mutant and normal monomers assemble into dimers and 

tetramers, so that only 1/4 of the dimers and 1/16 of the tetramers are composed 

entirely of normal chains.  Since 15/16 tetramers contain mutant chains, and mutant 

tetramers cannot properly align with normal tetramers, the final assembly of collagen 

VI microfibrils cannot proceed.  Collagen VI mutations causing skipping of exon 16 of 

COL6A3 are the most common of the de novo autosomal dominant mutations and 

result in a severe UCMD phenotype.69-70   
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A milder ‘dominant negative’ effect can result from de novo autosomal dominant 

mutations which disrupt the essential cysteine residues, preventing the formation of 

monomers and dimers with abnormal collagen VI chains.  As a result, all tetramers 

secreted are composed of normal collagen VI chains, albeit at less than 1/2 the 

quantity of controls.26  Collagen VI mutations resulting in skipping of exon 14 in 

COL6A1 are an example of this milder type of ‘dominant negative’ mutation and 

result in collagen VI-related myopathy phenotypes milder than UCMD.  In particular, 

exon skipping mutations of exon 14 in COL6A1 are the most common mutation found 

in Bethlem myopathy patients.26, 71-75  

 

Another form of ‘dominant negative’ mutation which commonly occurs in the collagen 

VI-related myopathies are so-called ‘glycine mutations.’  These mutations result in 

substitutions of single amino acids for glycine in the Gly-X-Y motifs of the highly 

conserved N-terminal triple helical domain of any of the collagen VI chains57, 73-74, 76-77  

and allow assembly of the affected collagen VI chain into triple helical monomers.  

The result of glycine mutations, both molecularly and clinically, depend on the 

location of the amino acid substitution.78  As such, glycine mutations have been 

identified in autosomal dominantly inherited Bethlem myopathy as well as de novo 

autosomal dominant intermediate collagen VI-related myopathy and UCMD.6, 54, 78 

 

Autosomal recessive inheritance occurs in UCMD, typically by mutational 

mechanisms such as nonsense mutations, intragenic deletions and splice site 

mutations (resulting in out-of-frame transcripts) and mutations near the C terminal 

end of the triple helical domain69 which result in a ‘functional null’ alleles.27, 46, 79  

Although not as common, homozygous missense mutations can result in UCMD.80  A 

recent clinical, cellular and molecular study of 49 collagen VI-related myopathy 

patients reported that homozygous mutations either before or within the triple helical 

domains which result in premature termination codons (PTCs) were associated with 

the most severe UCMD phenotypes (patients who never achieved independent 

ambulation).81 

 

While intermediate collagen VI-related myopathy patients have been found to 

harbour either autosomal dominant or autosomal recessive mutations in COL6A1, 

COL6A2 or COL6A3, exon skipping mutations or de novo autosomal dominant 

mutations involving glycine residues are two common mutational mechanisms which 

result in this collagen VI-related myopathy phenotype.       
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1.4.2 Biochemical consequences of collagen VI mutations 

 

The sequencing of COL6A1, COL6A2 and COL6A3, a combined total of 107 coding 

exons, in patients being evaluated for collagen VI-related myopathies, has revealed a 

large number of polymorphic variants of unknown significance.74  Given the uncertain 

significance of these variants, further genetic as well as biochemical analyses are 

essential for determining potential pathogenicity.  One means of studying the 

biochemical consequences of dominant or recessive collagen VI mutations is by 

analysing collagen VI biosynthesis.  One such study discovered that the α2(VI) C1 

domain is not essential for dimer formation,82 while other studies found that this 

domain is critical for microfibril formation.80, 83  

 

In vitro biochemical studies of collagen VI have revealed alternative splicing of 

COL6A2, which results in 3 collagen VI α2 chains: α2C2, α2C2a and α2C2a’ with 

α2C2 recognised as the major species.84  A study of the role of the C2a splice variant 

demonstrated that in an UCMD patient with recessively inherited homozygous 

mutations in the C2 domain of COL6A2, fibroblasts secreted collagen VI protein 

exclusively composed of the α2C2a splice variant.  The authors hypothesise that the 

use of the α2C2a splice variant may be a compensatory measure due to the absence 

of normally formed collagen VI α2 chain.  Since the reported patient’s clinical severity 

is less than would be expected from the mutational and biochemical mechanisms, 

and may be related to the increased use of the α2C2a splice variant, this study 

highlights how clinical severity cannot be predicted based on biosynthetic 

abnormalities.80 

 

 

1.4.3 Recently-described human collagen VI genes (COL6A4, COL6A5 and  

          COL6A6) 

 

In 2008 three new collagen VI genes were identified on chromosome 3q22.1: 

COL6A4, COL6A5 and COL6A6, corresponding to murine collagen VI α4, α5 and α6 

chains. The human COL6A4 gene is disrupted by a chromosome break, which 

results in functional inactivity.  COL6A5 mRNA expression is restricted to a few 

tissues and is not expressed in muscle.  COL6A6  is reportedly expressed in many 

tissues including heart and skeletal muscle.15  Given that the collagen VI α4, α5 and 

α6 chains demonstrate high homology to the collagen VI α3 chain and collagen VI 
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knockout mice (Col6a1-/-) do not express the collagen VI α4, α5 or α6 chains, it has 

been hypothesised that perhaps the collagen VI α5 or α6 chains substitute for the 

collagen VI α3 chain.85  It is important to note, however, that to date no patient with 

collagen VI deficiency without mutations in COL6A1, COL6A2 or COL6A3 has been 

identified to have a mutation in COL6A6.  

 

 

 1.5 POTENTIAL PATHOPHYSIOLOGICAL MECHANISMS /  

       THERAPEUTIC TARGETS 

 

Initial insights into potential pathophysiologic mechanisms underlying the collagen VI-

related myopathies originated from in vitro and in vivo studies performed on a mouse 

model of collagen VI deficiency (Col6a1-/-)30, 86-88 as well as in muscle biopsy 

specimens and myoblast cultures from collagen VI-related myopathy patients.89-90  

Evidence of mitochondrial dysfunction, which was discovered along with increased 

apoptosis in patient-derived myoblast cultures, first implicated mitochondrial 

dysfunction as a pathophysiologic mechanism in the collagen VI-related myopathies.  

Further studies sought to understand how the deficiency of an extracellular matrix 

protein might result in mitochondrial dysfunction.  Studies in the Col6a1-/- mouse 

revealed loss of muscle contractile force with associated ultrastructural abnormalities 

of the sarcoplasmic reticulum (SR) and mitochondria and apoptotic changes.  A 

reversal of these ultrastructural changes and a decrease in apoptotic nuclei occurred 

when Col6a1-/--derived myofibres were plated on purified collagen VI or by treatment 

with cyclosporin A (CsA).30  Given that CsA inhibits the mitochondrial permeability 

transition pore (PTP), these findings supported mitochondrial dysfunction as a 

pathophysiology underlying collagen VI deficiency.  Studies performed in patient 

myoblasts further supported mitochondrial dysfunction, with evidence that the 

mitochondrial PTP threshold was low, predisposing the mitochondrial PTP to 

aberrant opening and consequently ATP depletion.90    

 

A subsequent study of genetic ablation of cyclophilin (CyP) D in Col6a1-/-mice 

demonstrated a normalisation of apoptotic rates and ultrastructural appearances of 

SR and mitochondria, thus providing evidence suggesting that it is cyclosporine A’s 

inhibition of CyP D which rescues the muscle alterations in Col6a1-/- mice.91  Besides 

inhibiting cyclophilin D, cyclosporin A inhibits calcineurin, as well, resulting in 

immunosupression.  D-MeAla3-EtVal4-cyclosporin (Debio 025) is a selective 
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cyclophilin D inhibitor which does not have the calcineurin inhibiting properties of 

CsA.   A study of treatment of Col6a1-/-mice with D-MeAla3-EtVal4-cyclosporin (Debio 

025) demonstrated desensitisation of the mitochondrial permeability transition pore 

and prevention of muscle cell apoptosis, providing evidence that this compound has 

promising therapeutic implications for patients with collagen VI-related myopathies.92 

 

More recently, studies performed in the Col6a1-/- mouse have revealed that increased 

apoptosis as well as ultrastructural alterations of sarcoplasmic reticulum and 

mitochondria result from defective autophagy (the process by which the cell forms 

cytoplasmic autophagosomes to deliver to lysosomes).  Restoration of normal 

autophagic flux either by a low protein diet or treatment with rapamycin or 

cyclosporine A improved structural abnormalities of the SR and mitochondria, 

blocked apoptosis and induced autophagy with concomitant improvement of muscle 

strength in the Col6a1-/- mouse.93 

 

While the Col6a1-/- mouse skeletal muscle demonstrates findings similar to human 

collagen VI-related myopathy patient muscle, including a complete absence of 

collagen VI expression, the phenotype of the Col6a1-/- mouse is that of a very mild 

myopathy involving skeletal muscles and the diaphragm.  Given the inability of the 

Col6a1-/- mouse to accurately recapitulate the human clinical phenotype, the use of 

another animal model has been investigated.  Using morpholinos to exon 9 of col6a1, 

a zebrafish model of UCMD was created, while morpholinos to exon 13 of col6a1 

were used to create a zebrafish model of a milder collagen VI-related myopathy, 

similar to BM.94  (Exon 9 is equivalent to the human COL6A1 exon 10, which when 

deleted results in a truncated collagen VI α1 transcript and causes a phenotype of 

UCMD by way of a dominant negative mechanism.  Exon 13 is equivalent to exon 14 

in the human COL6A1 gene, with skipping of this exon being the most common 

mutational mechanism resulting in Bethlem myopathy.)  Both the zebrafish generated 

with exon 9 morpholinos and those with exon 13 morpholinos demonstrated 

dystrophic-appearing muscle with myofibre damage and evidence of apoptosis.  

Ultrastructurally, the mitochondria were swollen in appearance and the endoplasmic 

reticulum appeared dilated.  There was also evidence of thinning of the sarcolemmal 

membrane along with membrane discontinuities. (Overall, all findings were more 

severe in the UCMD zebrafish model, created with the exon 9 morpholino than in the 

milder, BM-like zebrafish model created with the exon 13 morpholino.)94      
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Treatment of these two zebrafish models with CsA decreased apotosis and abnormal 

mitochondria but did not improve the myofibre integrity or repair the sarcolemmal 

membrane damage evident in the morphant zebrafish model.  The improvement of 

motor function in both the zebrafish created with morpholinos designed to exon 9 of 

col6a1 as well as those designed to exon 13 of col6a1 further supports a role for 

cyclosporin A- or other cyclophilin D inhibitors- in the treatment of collagen VI-related 

myopathies.  This study highlights, however, the clear need for another treatment 

strategy aimed at improving myofibre integrity and repairing sarcolemmal damage 

evident in these zebrafish models of collagen VI-related myopathy.94 

 

 

1.6 DISCUSSION 

 

The collagen VI-related myopathies have been recognised as a common form of 

congenital muscular dystrophy (CMD), and indeed have the highest relative 

frequency among genetically-confirmed CMDs in the UK.9  Despite the often striking 

mixture of muscle and connective tissue features which manifest in patients with a 

deficiency of the myomatrix protein collagen VI, the diagnostic journey for patients 

with collagen VI-related myopathies can be challenging, particularly for those patients 

with mild and moderate phenotypes. 

 

A primary goal of this clinical research is to better define the phenotypic spectrum of 

the collagen VI-related myopathies with a particular focus on delineating the category 

of patients falling between Ullrich congenital muscular dystrophy and Bethlem 

myopathy.  In particular, given that unrecognised respiratory failure in patients with 

moderate-to-severe collagen VI-related myopathy carries a risk of high morbidity, as 

well as a risk of untimely death in the teenage to young adult years, studying and 

reporting the natural history of respiratory insufficiency in this patient population is 

imperative.  Furthermore, robust natural history data is essential for optimising 

patient care as well as preparing for upcoming experimental clinical trials. 

 

The journey toward clinical trials is dependent on an understanding of the molecular 

mechanisms underlying the clinical manifestations of disease.  An understanding of 

the mechanisms by which mutations in COL6A1, COL6A2 and COL6A3 affect the 

complex assembly of the collagen VI microfibrils and manifest in a spectrum of 

collagen VI-related myopathy phenotypes has informed the generation of mouse and 
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zebrafish models.  Despite studies performed on various collagen VI-related 

myopathy animal models, as well as parallel studies using patient-derived myofibres 

and myoblast cultures, the exact mechanism by which a deficiency of the 

extracellular matrix protein collagen VI results in abnormal mitochondrial function and 

abnormal autophagy remains unclear.  Promising results from studies of Debio-025 

in the collagen VI mouse model (Col6a1-/-) offer hope for future experimental clinical 

trials in the collagen VI-related myopathies.  Whether a reversal of apoptosis and an 

improvement in mitochondrial function alone are sufficient to affect a stabilisation of 

disease, or rather a therapeutic approach combining an anti-apoptotic compound 

with an agent which improves myofibre integrity and stabilises the sarcomere will be 

necessary to affect clinical improvements in collagen VI-related myopathy patients, 

remains to be seen. 

 

First and foremost, the journey toward clinical trials begins with the careful 

phenotypic classification of patients, without which an accurate understanding of 

corresponding natural history would not be possible.  Chapter 2 reports the results of 

a study of a large international series of collagen VI-related myopathy patients, which 

clarifies the phenotypic classification of the collagen VI-related myopathies with a 

particular focus on a leading cause of morbidity and mortality in this patient 

population, respiratory insufficiency.  
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CHAPTER 2: NATURAL HISTORY OF THE COLLAGEN VI-

RELATED MYOPATHIES 
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2.1 INTRODUCTION 

 

There has been a need for larger scale natural history studies to better understand 

the spectrum of collagen VI-related myopathy phenotypes, particularly given the 

diversity of terms used to describe the collagen VI-related myopathy phenotypes 

among different international centres and the lack of clear guidelines for 

distinguishing between these overlapping phenotypes.  Robust natural history studies 

are an essential step for clarifying and validating phenotypic classifications, 

optimising clinical care and preparing for clinical trials.  The internationally recognised 

need of optimising and standardising care in the congenital muscular dystrophies 

(CMDs)95 along with the development of potential therapies for the collagen VI-

related myopathies89, 92 has highlighted the need for identifying relevant and viable 

outcome measures for future clinical trials in this patient population.  The recognition 

that the collagen VI-related myopathies are one of the most common forms of 

congenital muscular dystrophy 4-6, 96 emphasises the importance of better defining the 

natural histories of this group of conditions. 

 

Significant, progressive joint contractures complicate assessments of motor function 

and muscle strength in collagen VI-related myopathy patients, particularly those 

patients with UCMD and intermediate phenotypes.  At the same time, previous 

reports and smaller case series have highlighted the frequent occurrence of 

respiratory failure in this patient population as arguably the most important aspect of 

the natural history as it is relevant to disease progression, mortality, and morbidity. 

Forced vital capacity (FVC) is a quantitative measure of pulmonary function which 

can be reliably measured in patients over 6 years of age, regardless of the severity of 

joint contractures and, therefore, may provide a good tool to chart the disease course 

and to better define the clinical subtypes.   

 

While a reduction in vital capacity is an index of respiratory insufficiency, the degree 

of reduction is believed to be predictive of the presence of sleep disordered breathing 

(a decreased capacity to compensate for sleep-related decrease in alveolar 

ventilation).  In particular, the consensus statement of the 117th ENMC Workshop on 

Ventilatory Support in Congenital Neuromuscular Disorders - Congenital Myopathies, 

Congenital Muscular Dystrophies, Congenital Myotonic Dystrophy and SMA (II) 

concluded that a vital capacity (VC) below 60% predicts the onset of sleep 

disordered breathing, and a VC below 40% predicts the presence of sleep 

hypoventilation.97  Respiratory muscle testing has not yet been studied in detail in the 
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congenital muscular dystrophy population.  A correlation between volitional 

respiratory muscle testing, nonvolitional testing and forced vital capacity has been 

established in other neuromuscular disorders of childhood, however, indicating that 

FVC can function as a reasonable indicator of global respiratory function.98   

 

A UK retrospective study of 13 patients with Ullrich congenital muscular dystrophy 

reported a pattern of early and invariable decline in pulmonary function beginning at 

6 years of age.52  A more comprehensive natural history study of respiratory 

insufficiency assessing a large cohort of collagen VI-related myopathy patients has 

never been performed, however.  Furthermore, the pulmonary function of collagen 

VI-related myopathy patients falling in the mild-to-moderate end of the phenotypic 

spectrum have not been studied in detail.  We sought to evaluate longitudinal 

pulmonary function data (in the form of FVC values) to determine if profiles of decline 

in pulmonary function could help in clarifying the natural histories of the various 

phenotypes within the collagen VI-related myopathies and in improving anticipatory 

clinical care.  Here I report the findings from a large, international retrospective study 

of pulmonary function in the collagen VI-related myopathies which I coordinated, the 

first study of this type and size in an international cohort of congenital muscular 

dystrophy patients.  

  

 

2.2 METHODS 

 

2.2.1 Patients 

   

I coordinated the collection of phenotypic data from collagen VI-related myopathy 

patients with molecularly and/or biochemically confirmed diagnoses by liaising with 

neuromuscular specialist working at 10 different neuromuscular centres worldwide: 

United States (2), United Kingdom (2), Australia (2), Italy (2), France (1), and 

Belgium (1).  Patients were considered to have molecular confirmation when the 

diagnosis was confirmed genetically (with pathogenic mutation/s in COL6A1, 

COL6A2 or COL6A3), while biochemical confirmation indicates a diagnosis based on 

evidence of significantly decreased or mislocalised collagen VI on muscle biopsy 

immunohistochemical studies.  Retrospective chart reviews were performed by 

collaborating neuromuscular specialists (see Collaborators, page 5) in accordance 
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with ethical guidelines of each participating neuromuscular centre.  Spirometry 

techniques were performed according to international standards.99   

 

 I had initiated this research with the collection of phenotypic data on a cohort of 

collagen VI related myopathies referred to the Children’s Hospital of Philadelphia 

(from many areas of the US).  Recognizing that such data would be significantly 

more powerful in defining the natural history of the collagen VI-related myopathies if 

expanded to other cohorts of collagen VI-related myopathy patients, I relocated to the 

Dubowitz Neuromuscular Centre at the Great Ormond Street Hospital, a National 

Specialised Commissioning Team (NSCT) for congenital muscular dystrophies.  Here 

I began working on gathering comprehensive phenotypic data from a large cohort of 

collagen VI-related myopathy patients referred to our NSCT centre from across the 

UK.  Consequently, I was able to personally collect data from the patients followed at 

2 participating neuromuscular centres (Great Ormond Street Hospital for Children, 

London, UK and The Children’s Hospital of Philadelphia, Philadelphia, USA) and 

coordinate the collection of data from collaborators at 8 further specialised 

neuromuscular centres internationally. 

 

While it had become clear that phenotypes of collagen VI-related myopathy 

intermediate to UCMD and BM exist, this phenotypic category had not been clearly 

defined.  To address the natural variation amongst neuromuscular specialists in 

clinically categorizing patients as intermediate collagen VI-related myopathy versus 

Bethlem myopathy, the patients designated as having either Bethlem myopathy or 

intermediate collagen VI-related myopathy were initially studied as one group.  

Patient forced vital capacity measurements were plotted in order to evaluate 

individual patient patterns of FVC over time.  In studying individual trends of FVC 

measurements over time in this group, two clear subgroups were apparent: one 

group whose FVC values demonstrated continued decline beginning at 

approximately 7 years of age and another group whose FVC values either remained 

stable or improved over time.  When the maximal motor function data of the patients 

in these two subgroups was studied, it was found that none of the patients with 

progressive decline in pulmonary function (measured by FVC) ever achieved the 

ability to run or hop; these patients were then assigned to the phenotypic category of 

intermediate collagen VI-related myopathy.  The group of patients with either stable 

or improving FVC values typically achieved the ability to run or hop and were 

assigned the phenotypic category of Bethlem myopathy. 
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Due to the fact that forced vital capacity data was collected retrospectively from ten 

different neuromuscular centres spanning 6 countries and 3 continents, spirometry 

machines varied and; therefore, percent predicted FVC values were derived from the 

reference equations specific to the spirometry machines used.  I attempted to gather 

‘raw’ FVC data (FVC in litres) corresponding to each percent predicted FVC value 

provided, with the goal of utilising the same formula for converting the ‘raw’ FVC data 

into percent predicted values.  I discovered, however, that ‘raw’ FVC data (in litres) 

was not available for a large number of FVC measurements.  Rather than discard a 

large number of FVC values, I (in consultation with a statistician at the National 

Institutes of Health, Bethesda, Maryland, USA) decided to analyse the percent 

predicted FVC values provided by each centre as derived from their respective 

spirometry machines. 

 

 

2.2.2 Statistical analyses 

 

Statistical analyses were performed in consultation with a statistician (S. Auh; see 

Collaborators, page 5) from the National Institute of Neurological Disorders and 

Stroke (NINDS)/National Institute of Health (NIH), USA).  Linear mixed models were 

used to examine the effect of an independent variable (or variables) of interest on 

forced vital capacity (FVC).  The analysis was based on multiple FVC values per 

subject.  A working covariance structure was assumed as intraclass correlation 

covariance structure in order to take into account correlations among different 

number of FVC values per subject.  Analyses were implemented in SAS (SAS 

institute Inc., Cary, NC) using PROC Mixed 100 to conduct linear mixed models and 

PROC Lifetest to generate graphs for time to events data.  A concordance correlation 

coefficient (CCC), proposed by Vonesh et al101 for a goodness-of-fit measure in linear 

mixed model was calculated in order to check the adequacy of the linear mixed 

models.  Summary statistics for FVC were described by using mean standard 

deviation.  All statistical tests were conducted with a significance level of 0.05.  

 

 

2.3 RESULTS 

 

From a cohort totalling 211 molecularly confirmed collagen VI-related myopathy 

patients originating from 10 international neuromuscular centres, 486 forced vital 
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capacity measurements were recorded in 145 patients.  The total number of FVC 

measurements collected per patient ranged from 1 to 14 measurements (mean= 

3.35; median= 3).  Of the 145 patients with FVC data 80 (55%) were male and 65 

(45%) were female.  Seventy-five patients (52%) were diagnosed with Ullrich CMD 

(Table 1).  FVC data from 13 patients followed at the Dubowitz Neuromuscular 

Centre and 13 patients followed at the Neuromuscular Centre, Garches (France) had 

been described previously.52, 54   

 

The relationship between forced vital capacity and phenotype was highly significant 

(p < 0.0001) with the distribution of FVC values demonstrating a direct relationship 

with severity of clinical phenotype (Figure 4).  The relationship between age and FVC 

for UCMD and intermediate patients was also highly significant (p < 0.0001) with 

UCMD patients demonstrating a decline in FVC of 2.6% per year [95% confidence 

interval (CI): (-0.031, -0.021), p < 0.0001; concordance correlation coefficient (CCC) 

= 0.92] and intermediate patients with a decline in FVC of 2.3% per year [95% CI: (-

0.030, -0.015), p < 0.0001; CCC = 0.92].  In contrast, the relationship between age 

and FVC in Bethlem myopathy patients was not significant [95% CI: (-0.005, -0.001), 

p = 0.1432; CCC = 0.86] (Figure 5).   

 

We decided to also specifically evaluate forced vital capacity measurements 

corresponding to ages between 5 and 15 years (5 years ≥ age ≤ 15 years; a total of 

348 FVC measurements), given that this is a clinically relevant age range for decline 

in both respiratory and motor function.  While the FVC data within each phenotypic 

subgroup demonstrated a pattern of continued decline (without evidence of stepwise 

decline), we felt that studying the rates of decline in FVC corresponding to 5-15 years 

of age would provide data which could be instrumental for future clinical trial 

planning.  These subanalyses revealed that between 5 and 15 years of age FVC 

declined in UCMD patients by 3.5% per year [95% CI: (-0.044, -0.028), p < 0.0001; 

CCC = 0.92] whilst intermediate patients had a slightly decreased rate of decline of 

1.7% per year [95%CI: (-0.031, -0.002), p = 0.0260; CCC = 0.91].  Again, the 

relationship between age and FVC in Bethlem myopathy patients was not significant 

[95%CI: (-0.013, 0.009), p = 0.7261; CCC = 0.74].  Further age stratification analyses 

revealed statistically significant trends in UCMD patients only, revealing a decline in 

FVC of 4.2% per year between 5 and 10 years of age (p < 0.0001), 2.9% per year 

between 10 and 15 years of age (p < 0.0001) and 2.5% per year between 15 and 20 

years of age (p = 0.0164).   
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Centre 
Collagen VI-Related 

Myopathy Patients with 
FVC Measurements 

Males Females Ullrich CMD 
Intermediate and 

Bethlem myopathy  

 
     

London, UK 47 25 22 28 19 

Newcastle, UK 20 10 10 3 17 

Garches, France 24 14 10 14 10 

Brussels, Belgium 10 5 5 7 3 

Rome (B), Italy 6 2 4 3 3 

Rome (C), Italy 8 6 2 2 6 

Philadelphia, USA 11 7 4 11 0 

Cincinnati, USA 7 4 3 1 6 

Sydney, Australia 7 4 3 5 2 

Melbourne, Australia 5 3 2 1 4 

            

Totals: 145 80 65 75 70 

 

 

 

Table 1: Demographic features of the international collagen VI-related 

myopathy patient cohort. 

 

 

FVC = forced vital capacity; CMD = congenital muscular dystrophy; Rome (B) = 

Bambino Gesù Children’s Hospital, Rome; Rome (C) = Catholic University, Rome  
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Figure 4: Box-plot demonstrating distribution of forced vital capacity measurements 

corresponding to the different collagen VI-related myopathy phenotypic categories.  
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Figure 5: Profiles of decline of forced vital capacity for Ullrich congenital muscular 

dystrophy, intermediate collagen VI-related myopathy and Bethlem myopathy patients. 
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Of the 75 Ullrich CMD patients evaluated, 44 (59%) had initiated non-invasive bilevel 

positive pressure ventilation at the time of this study.  The average age of initiation of 

nocturnal noninvasive ventilation (NIV) was 11.3  4.0 years with an average FVC of 

34% just prior to NIV initiation.  Of the 27 intermediate collagen VI-related myopathy 

patients evaluated, 3 (11%) had started nocturnal noninvasive ventilation at an 

average age of 20.7 1.5 years with corresponding FVC values of 41%, 50% and 

60% just prior to NIV initiation.  Only 1 (2%) of the 43 Bethlem myopathy patients 

evaluated had initiated nocturnal NIV which was at the age of 41 years.  Kaplan 

Meier curves depicting ventilation-free probability demonstrated a statistically 

significant (p=0.006) difference between UCMD and intermediate patients with 50% 

of UCMD patients on nocturnal NIV by 11.0 years of age and 50% of intermediate 

patients on nocturnal NIV by 21.5 years of age (Figure 6). 

 

Of the 486 FVC measurements analysed, corresponding maximal motor ability was 

available for 475 values (98%).  The relationship between maximal motor ability and 

forced vital capacity was highly significant (p < 0.0001) with the distribution of FVC 

measurements demonstrating a direct relationship with motor ability (Figure 7).  The 

relationship between age and FVC was highly significant within maximal motor ability 

categories with those patients who achieved sitting demonstrating a decline in FVC 

of 4.2% per year [95% CI: (-0.057, -0.027), p < 0.0001; CCC = 0.92], those who 

achieved walking with assistance demonstrating a decline in FVC of 2.1% per year 

[95% CI: (-0.032, -0.017), p = 0.0003; CCC = 0.90] and those who achieved walking 

independently with a decline in FVC of 0.6% per year [95% CI: (-0.009, -0.002), p = 

0.0016; CCC = 0.95] (Figure 8).  The relationship between those who achieved 

running and FVC was slightly significant (p= 0.0134) and demonstrated a cumulative 

increase in FVC of 1.2% per year [95% CI: (0.003, 0.022)].  Kaplan Meier curves 

depicting the probability of independent ambulation revealed that 50% of UCMD 

patients were non-ambulatory by 10 years of age, whilst 50% of intermediate patients 

were non-ambulatory by 19 years of age (Figure 9). 
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Figure 6: Kaplan-Meier curves depicting ventilation-free status in Ullrich 

congenital muscular dystrophy and intermediate collagen VI-related 

myopathy patients. 
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Figure 7: Box-plot demonstrating distribution of forced vital capacity 

measurements corresponding to different maximum motor functional abilities.  
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Figure 8: Profiles of decline of forced vital capacity corresponding to different 

maximum motor functional abilities. 
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Figure 9: Kaplan-Meier curves depicting independent ambulation in Ullrich congenital 

muscular dystrophy and intermediate collagen VI-related myopathy patients. 



 51   

 

2.4 DISCUSSION  

 

 In 1982, McMenamin and colleagues reported the clinical and pathologic features of 

24 congenital muscular dystrophy patients.  In this early, descriptive study of a cohort 

of CMD patients (in whom the diagnosis of CMD was based on a clinical history of 

congenital weakness and dystrophic muscle biopsy findings) 6 out of 24 (25%) of the 

patients described died of respiratory failure.  Forced vital capacity measurements 

performed in 8 patients at a mean age of 10.75 years was less than or equal to 35% 

predicted.102  In the years ensuing since that study, respiratory decompensation 

during childhood or adolescence, even in the setting of relatively stable muscle 

weakness, has become a well-recognized clinical feature of the congenital muscular 

dystrophies97 and appropriate anticipation of this decompensation of great 

importance for clinical care.103 

 

Respiratory insufficiency in muscular dystrophy patients has been attributed to a 

combination of weakness of inspiratory and expiratory muscles and decreased 

compliance of the chest wall.  Conclusions from the American Thoracic 

Society/European Respiratory Society (ATS/ERS) Statement on Respiratory Muscle 

Testing include: ‘respiratory muscle weakness reduces vital capacity (VC)’ and 

‘reduction in chest wall and lung compliance, as a consequence of muscle weakness, 

reduces lung volumes, notably VC.’104  Chronic breathing at lower-than-normal lung 

volumes is further hypothesised to be a factor in promoting chest wall stiffening 

which, in combination with decreased lung compliance, increases the so-called ‘load’ 

against which the respiratory ‘pump’ works.105  It is this constellation of physiologic 

factors which results in an increased mechanical load or work of breathing on the 

already weakened muscles of muscular dystrophy patients.106 

 

Respiratory involvement in the collagen VI-related myopathies was described in a 

case report of a Bethlem myopathy patient in 199959 and in 13 patients with Ullrich 

congenital muscular dystrophy in 2009.52  A large-scale international study of 

pulmonary function in the collagen VI-related myopathies has not been reported to 

date, however.  This study of longitudinal forced vital capacity measurements in 145 

molecularly and/or biochemically confirmed collagen VI-related myopathy patients is 

the largest of its kind performed in any congenital muscular dystrophy subtype.  The 

findings of this study increase our understanding of the natural history of this patient 

population in which respiratory insufficiency is a leading cause of morbidity and 

mortality.  We have demonstrated that collagen VI-related myopathy patients at the 
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moderate-to-severe end of the phenotypic spectrum experience an invariable decline 

in pulmonary function beginning from approximately 7 years of age.  In all patients 

whose motor function resulted in a diagnostic classification of UCMD or intermediate 

phenotypes, a decline in pulmonary function heralded subsequent dependence on 

nocturnal noninvasive bilevel positive pressure ventilation.  In fact, all patients with 

UCMD and intermediate collagen VI-related myopathy followed this trend, making 

forced vital capacity a highly sensitive tool for predicting the impending risk of sleep 

disordered breathing/dependence on nocturnal noninvasive ventilation and 

respiratory failure.   

 

This data suggests that among collagen VI-related myopathy patients, pulmonary 

function declines in a fashion parallel to decline in motor function/muscle strength.  In 

particular, the observation that patients with intermediate collagen VI-related 

myopathy demonstrate an onset of decline in pulmonary function- and ultimate 

dependence on nocturnal noninvasive ventilation- later than UCMD patients follows 

the motor profile of these intermediate patients in whom loss of ambulation occurs in 

the late teenage years or young adult years, later than that seen in UCMD patients 

who typically lose ambulation by approximately 10 years of age (Figure 9).  The 

parallel profiles of decline in respiratory and motor function within the UCMD 

phenotype and within the intermediate phenotype suggest that decline in pulmonary 

function in the collagen VI-related myopathies is primarily a function of muscle 

weakness.  This assumption would be consistent with the restrictive pulmonary 

function pattern seen in the collagen VI-related myopathies (as well as other 

neuromuscular conditions) and attributed to severe weakness of inspiratory 

muscles.107  Studies of pulmonary function in neuromuscular diseases have 

demonstrated that once respiratory muscle strength has been reduced by more than 

50%, however, loss in vital capacity can be exacerbated by decreased compliance of 

the chest wall and the lungs.108  Given the significant, progressive joint contractures 

which affect range of movement and motor abilities in collagen VI-related myopathy 

patients, it is possible that decreased compliance of the chest wall might be 

compounded by involvement of the intercostals joints.  Similar to the manner in which 

severe contractures contribute to the loss of ambulation of UCMD and intermediate 

patients, it may be possible that these patients experience a more significant and 

consistent decline in respiratory function (compared to BM patients) due to a greater 

degree of decreased chest wall compliance.  
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This large, international study demonstrates the natural history of pulmonary function 

in collagen VI-related myopathies and indicates that profiles of decline in forced vital 

capacity in combination with respective motor function profiles can be used to stratify 

collagen VI-related myopathy patients into the phenotypic categories of Ullrich 

congenital muscular dystrophy, intermediate collagen VI-related myopathy and 

Bethlem myopathy (Table 2).  In determining these pulmonary function profiles, FVC 

data gathered from the entire cohort (all ages) were included and a linear mixed 

model used to determine rates of decline in FVC specific to UCMD patients and 

intermediate patients.  (Further linear mixed model analyses were performed within 

various age ranges, yielding age range specific rates of decline in FVC.)  This 

proposed collagen VI-related myopathy phenotypic stratification, based on the largest 

study of pulmonary function in this patient population, is the first to use both motor 

function as well as pulmonary function criteria. 

 

These data also demonstrate the value of profiles of decline in forced vital capacity in 

predicting motor function in collagen VI-related myopathy patients who remain 

ambulant past 10 years of age.  In young collagen VI-related myopathy patients with 

muscle weakness either entirely preventing ambulation or enabling only assisted 

ambulation by the age of 7 years, a diagnosis of Ullrich congenital muscular 

dystrophy can be made based on motor function alone, which in turn highlights the 

necessity of careful surveillance of pulmonary function in these patients from an early 

age.  In collagen VI-related myopathy patients who achieve independent ambulation, 

however, the phenotypic distinction between UCMD, intermediate collagen VI-related 

myopathy and Bethlem myopathy can challenging, particularly in young children 

whose future motor function can be difficult to predict or in teenagers who remain 

ambulant.  While ambulant UCMD patients typically lose ambulation by 10 years of 

age and some UCMD patients never achieve ambulation, intermediate collagen VI 

and Bethlem myopathy patients continue ambulating, into the late teenage years and 

early adult years for intermediate patients and into older adult years for Bethlem 

patients.  As this study demonstrates, FVC continues to decline in intermediate 

collagen VI-related myopathy patients at a rate of 2.3% per year with the average 

age of nocturnal noninvasive ventilation dependence of 21 years.  Bethlem myopathy 

patients, however, do not follow a clear pattern of decline in pulmonary function over 

time.  Although some Bethlem myopathy patients demonstrate a progressive decline 
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CMD = congenital muscular dystrophy 
NIV = noninvasive ventilation 
 

Table 2: Phenotypic stratification of the collagen VI-related myopathies. 
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in pulmonary function, ultimately necessitating the initiation of nocturnal noninvasive 

ventilation, this study demonstrates that this is very rare and does not occur until 

after 40 years of age.  In fact, only 1 (2%) of the 43 Bethlem myopathy patients 

studied in this international cohort had initiated nocturnal noninvasive ventilation, 

which was at the age of 41 years.  Taken together, this data demonstrates the value 

of early motor function in the collagen VI-related myopathies in predicting profiles of 

pulmonary function decline as well as the value of profiles of pulmonary function 

decline in predicting motor function in collagen VI-related myopathy patients who 

remain ambulant past 10 years of age.    

 

Given the difficulty of reliably performing pulmonary function testing in children less 

than 5 years of age, clinicians are naturally dependent on other clinical signs to aid in 

the diagnosis of Ullrich CMD.  For those children not diagnosed during infancy, 

progressive muscle weakness and joint contractures limiting ambulation or causing a 

loss of ambulation by approximately 10 years help to distinguish these patients as 

having Ullrich CMD.  As this study demonstrates, careful assessment of pulmonary 

function with sequential forced vital capacity measurements at least annually is 

essential to document the level of respiratory compromise and initiate nocturnal 

noninvasive ventilation for managing sleep hypoventilation.  It is precisely the timely 

recognition and treatment of respiratory compromise in Ullrich congenital muscular 

dystrophy which can prevent morbidity and early mortality in this condition. 

 

While the diagnostic distinction between intermediate collagen VI myopathy and 

Bethlem myopathy patients is challenging, this distinction is important for 

prognosticating both motor and pulmonary function in these collagen VI-related 

myopathy subtypes.  This study demonstrates that intermediate patients demonstrate 

an invariable decline in forced vital capacity while Bethlem myopathy patients do not.  

Annual pulmonary function testing is an effective means of assessing respiratory 

function, which delineates the phenotypic categorisation of patients, consequently 

enabling the clinician to appropriately anticipate the need for non-invasive ventilation.  

Indeed, FVC can serve as a litmus test for predicting the likelihood of sleep 

hypoventilation/the need for nocturnal noninvasive ventilation.  In fact, the criteria for 

initiating noninvasive ventilation for ‘progressive neuromuscular disease’ proposed by 

the American College of Chest Physicians is, ‘maximal inspiratory pressures < 60 

cm/H2O or FVC < 50% predicted.’109  Polysomnogram studies with either end-tidal 

CO2 or transcutaneous CO2 monitoring are recommended, as well, in order to 
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confirm a diagnosis of sleep hypoventilation95 and to monitor the efficacy of 

noninvasive ventilation in ameliorating this sleep disordered breathing.  

 

A recent study of 49 patients with ‘early onset’ collagen VI-related myopathy patients 

utilised motor function alone to divide patients into phenotypic categories of early 

severe, moderate progressive and mild.  Forced vital capacity for patients 

categorised as ‘mild’ ranged from 35 - 82%54, indicating that this category likely 

contains patients in the phenotypic category of intermediate collagen VI-related 

myopathy as well as patients in the category of Bethlem myopathy.  Given that 

respiratory insufficiency is the leading cause of morbidity and mortality in Ullrich 

congenital muscular dystrophy and intermediate collagen VI-related myopathy 

patients, the inclusion of pulmonary function in the algorithm used to stratify collagen 

VI-related myopathy patients into the phenotypes of Ullrich CMD, intermediate and 

Bethlem myopathy is essential. 

 

Although both sitting and supine FVC measurements are the gold standard for 

assessing diaphragmatic dysfunction110 and supine FVC measurements were not 

routinely measured in collagen VI-related myopathy patients included in this study, it 

has been our experience that supine FVC values do not differ by more than 20% 

from sitting FVC values in this patient population.  Given that a decrease in vital 

capacity between sitting and supine measurements of 10-30% is considered to 

reflect the presence of mild diaphragmatic weakness,111 it seems likely that a degree 

of diaphragmatic weakness contributes to the progressive respiratory insufficiency in 

collagen VI-related myopathy patients.  While further efforts to obtain supine FVC 

measurements in collagen VI-related myopathy patients will be necessary to better 

elucidate the degree of diaphragmatic weakness occurring in the collagen VI-related 

myopathies, the level of weakness can be distinguished from congenital myopathies 

due to MTM1 or MEGF10 mutations or other neuromuscular disorders including 

Pompe disease and spinal muscular atrophy with respiratory distress (SMARD1), for 

example, in which respiratory failure results from primary diaphragmatic dysfunction.   

 

If indeed skeletal muscle weakness is the primary aetiology of the relentless decline 

in forced vital capacity observed in UCMD and intermediate collagen VI-related 

myopathy patients, then future therapeutic interventions aimed at slowing the 

progression of muscle weakness might help to reduce the progression of respiratory 

insufficiency in this patient population.  In particular, the rate of decline in forced vital 

capacity could serve as an outcome measure for Ullrich CMD and intermediate 
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collagen VI-related patients enrolled in future clinical trials.  To achieve the goal of 

gathering pulmonary function data over a sufficient amount of time to measure if a 

particular pharmacological intervention improves the natural history of decline in 

pulmonary function, future clinical trials in the collagen VI-related myopathy 

population should then endeavour to monitor forced vital capacity measurements for 

a minimum of 12 months’ duration.   

 

In a prospective open-label pilot trial of daily cyclosporine A performed in 6 Ullrich 

CMD patients between 1 to 3.2 years’ duration (with patients ages at drug initiation 

ranging from 5.5 to 9.8 years) a decline in forced vital capacity of 7% per year was 

recorded.112  This is in contrast to the rate of decline in FVC for patients found in this 

study, which between the ages of 5 and 15 years was 3.5% per year in Ullrich CMD 

patients and 2.1% per year in intermediate patients.  Although this pilot trial of 

cyclosporine A only studied 6 UCMD patients, it is notable that the rate of decline in 

FVC/year indicates a more severe degree of respiratory insufficiency than on 

average for the UCMD patients included in this large, international study.  As the 

natural history of the 6 UCMD patients preceding the cyclosporin A treatment is not 

reported, it is difficult to ascertain whether the respiratory insufficiency in the UCMD 

patients included in this trial was more severe than average.   

 

While limited in size, the first clinical trial reported in Ullrich CMD patients highlights 

the necessity of careful natural history data and, in particular pulmonary function 

data, in all collagen VI-related myopathy patients considered for inclusion in future 

clinical trials.  Furthermore, the design of future clinical trials should consider 

studying an age range during which time respiratory function demonstrates 

significant change.  In particular, as the data in our study demonstrates, UCMD 

patients experience their steepest rate of decline in FVC (4.2% per year) between 5 

and 10 years of age.   

 

As forced vital capacity data is collected prospectively in this patient population, 

measures can be taken to improve both the integrity of the data collected at each 

neuromuscular centre as well as the consistency of data collection techniques across 

the various centres.  The use of a standard means of measuring height in all patients 

is essential, as height has been found to be allometrically related to spirometric lung 

function.113  An accurate measurement of height is challenging in the collagen VI-

related myopathy patient population, given the potential variables of non-ambulatory 

status as well as progressive joint contractures and scoliosis.  A standard means of 
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measuring height in all patients regardless of age and/or ambulatory status, such as 

ulnar length measured with the same equipment and technique would help to 

increase the accuracy of calculated percent predicted FVC values.114  A prospective 

study of pulmonary function in this patient population should ideally collect FVC data 

in litres and apply the appropriate reference equation for calculating percent 

predicted FVC, using an estimation of height (ulnar length), calculated age and race. 

 

While gathered retrospectively, this data was collected from the largest group of 

molecularly and/or biochemically confirmed collagen VI-related myopathy patients 

studied to date and provides clinical information essential for determining the natural 

history of the collagen VI-related myopathies.  Given the size of this cohort, and the 

high significance of the relationship between collagen VI-related myopathy 

phenotypes and rates in decline in FVC, we feel that this cohort reflects the trends of 

both pulmonary function and motor function in individuals with collagen VI-related 

myopathy.  

 

In conclusion, this large, international retrospective study demonstrates the natural 

history of pulmonary function in the collagen VI-related myopathies, namely that 

intermediate collagen VI-related myopathy and Ullrich congenital muscular dystrophy 

patients experience a relentless decline in forced vital capacity, culminating in 

nocturnal noninvasive ventilation dependence but without a progression to daytime 

noninvasive ventilation dependence.  Furthermore, the results of this study indicate 

that careful and consistent monitoring of forced vital capacity is absolutely essential 

in collagen VI-related myopathy patients.  In particular, pulmonary function testing 

should be performed in all patients starting by approximately age 5 years and 

continually at least annually.  Above all, this study provides information which will 

result in an optimisation of respiratory surveillance, and help to decrease rates of 

morbidity and mortality in this patient population.  

 

 The development of potential therapies in the collagen VI-related myopathies has 

made possible the prospect of clinical trials, for which robust natural history data is 

essential for defining inclusion criteria, exclusion criteria, outcome measures, cohort 

sizes and trial durations.  Notably, this study of the collagen VI-related myopathies, 

so-called ‘rare diseases,’ has resulted from an international collaboration of patients, 

physicians and researchers.  Indeed, such collaborations have been precisely the 

means of driving forward natural history studies and the design and execution of 

clinical trials in rare diseases.115  Rare diseases face numerous challenges on the 



 59   

 

road toward clinical trials including that of establishing the natural history of the 

condition as well as achieving sufficient power in clinical trials.  In designing trials for 

rare diseases, one option is that of using patients to serve as their own controls, 

which enables a trial to achieve the same power as traditionally designed trials but 

with fewer patients.  Another approach to designing clinical trials in rare diseases 

includes the use of adaptive designs in which the response of early enrolled patients 

influences the enrolment of subsequent patients.116  By both providing essential 

‘lead-in’ natural history data as well as offering forced vital capacity as a relevant and 

viable outcome measure, this study promotes further progress toward clinical trials in 

the collagen VI-related myopathies. 
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CHAPTER 3: TOWARD AN IMPROVED DIAGNOSTIC 

ALGORITHM 
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3.1 SKIN FIBROBLAST STUDIES IN COLLAGEN VI-RELATED  

      MYOPATHIES 

 

The gold standard for diagnosing collagen VI-related myopathies is the sequencing 

of the COL6A1, COL6A2 and COL6A3 genes.  This technique is complicated, 

however, by the large size of these genes (a combined total of 107 coding exons) 

and the high frequency of polymorphisms.74  Deciding when to pursue molecular 

genetic screening for mutations in the collagen VI genes (COL6A1, COL6A2 and 

COL6A3) can be challenging, especially when assessing patients whose phenotypes 

fall at the milder end of the collagen VI-related myopathy spectrum, as the classic 

constellation of weakness, joint contractures and/or hyperlaxity seen in UCMD 

patients may not be clearly evident, especially in young patients.  Given the time and 

effort involved in sequencing COL6A1, COL6A2 and COL6A3, the challenge of 

interpreting variants of unknown clinical significance revealed by mutation analysis 

and identifying patients with collagen VI deficiency at the mild end of the phenotypic 

spectrum, immunocytochemical or immunofluorescence (IF) studies of collagen VI 

expression in fibroblast cultures has been employed by numerous neuromuscular 

centres as a type of ‘gatekeeper’ for deciding which patients should undergo 

COL6A1, COL6A2 and COL6A3 sequencing.   

 

In a study of patients diagnosed with Bethlem myopathy, the muscle biopsies of five 

genetically confirmed BM patients were reported to have immunohistochemical 

findings of collagen VI-perlecan double-labelling which blinded investigators were not 

able to distinguish from controls.  Immunocytochemical studies performed on skin 

fibroblast cultures, however, were interpreted by blinded investigators as 

demonstrating decreased collagen VI expression in 78% of genetically confirmed 

Bethlem myopathy patients.117  When used prospectively to evaluate patients for a 

diagnosis of Bethlem myopathy, skin fibroblast immunocytochemical studies had a 

reported positive predictive value of 75%, a negative predictive value of 100% and a 

sensitivity of 100% in predicting a diagnosis of BM.  The specificity of decreased 

expression of collagen VI in fibroblast immunocytochemical studies was notably 

lower at 63%.  The authors suggest that immunofluorescence labelling of collagen VI 

using skin fibroblast cultures may avoid muscle biopsy in patients being evaluated for 

Bethlem myopathy and, in combination of the use of complementary DNA (cDNA) 

extracted from the fibroblast culture for collagen VI gene screening when indicated, 
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can serve as a cost effective and time effective means of evaluating patients for 

Bethlem myopathy.117 

  

Skin fibroblast cultures are undoubtedly an important diagnostic tool for evaluating 

patients for collagen VI-related myopathies.26, 68, 117-118 In skin, collagen VI is 

produced by skin fibroblasts, while in muscle, collagen VI is produced by muscle 

interstitial fibroblasts.119  Skin fibroblast cultures facilitate the evaluation of collagen 

VI expression in Bethlem myopathy patients, who may have normal-appearing 

collagen VI expression in muscle.  It is important to note, however, that some BM 

patients may have evidence of decreased sarcolemmal expression of collagen VI on 

muscle biopsy.117   

 

In contrast to skin fibroblast cultures, immunohistochemical staining of skin biopsies 

themselves have not been found to be an effective diagnostic tool for the collagen VI 

related myopathies.  In fact, except for completely absent or very clearly reduced 

collagen VI expression, skin biopsies from patients with genetically proven collagen 

VI-related myopathy typically demonstrated maintained collagen VI expression, even 

when skin fibroblast cultures revealed clearly reduced collagen VI expression.118  The 

low sensitivity of skin biopsy immunohistochemical (IHC) studies for identifying 

underlying collagen VI deficiency is well known.  In particular, in patients with 

collagen VI deficiency, skin biopsy IHC studies have revealed the preservation of 

collagen VI expression in dermal structures, including vessels, nerves, glands and 

smooth erector pili muscles and a decrease in the papillary dermis and surrounding 

hair follicles.120-121 

 

Immunocytochemical studies of collagen VI expression in fibroblast cultures can 

reveal a complete absence of collagen VI (as in recessively inherited UCMD)122 or 

evidence of abnormally formed collagen (as in autosomal dominant UCMD,26, 122 

autosomal dominant BM117 or autosomal recessive BM60 - Figure 10).  Mutations 

which affect the formation of collagen VI microfibrils result in an abnormal 

appearance of collagen VI in skin fibroblast cultures.  Terms proposed to describe 

the appearance of aberrantly-formed collagen VI include: ‘disorganisation,’ 

‘rarefication,’ ‘stippling’117 ‘dot/spot-like’122 and ‘speckled.’60  In patients with collagen 

VI mutations which affect the formation of monomers, dimers and/or tetramers (and 

consequently the extracellular secretion of collagen VI), fibroblast IHC studies may 

demonstrate collagen VI expression only with permeabilisation of cells (using a 

detergent such as Triton X-100 or Tween 20).117-118, 123   
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(Figure from Foley et al.60  Reproduced with permission from Elsevier.) 

 

 

                     Figure 10: Skin fibroblast immunocytochemical studies.   

 

Studies performed (by Y Hu, see Collaborators, page 5) using a monoclonal anti-

collagen VI antibody in cells derived from a control patient and in a patient with 

autosomal recessively inherited Bethlem myopathy.  Collagen VI expression in the 

patient (b) appears decreased compared to control (a) which has a dense-appearing 

and well-formed extracellular matrix.  There is evidence of significant intracellular 

retention of collagen when the BM patient’s cells are permeabilised with Triton X-100 

(d) which is not seen in the control permeabilised cells (c).  Insets with 4’,6-

diamidino-2-phenylindole (DAPI) nuclear staining.  Images at x20 magnification.  

Measurement bar = 10 µm 
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The conventional analysis of collagen VI immunocytochemistry in skin-derived 

fibroblasts is, in essence, a subjective, non-quantitative technique which, when 

applied in the diagnostic clinical settings, has limitations.118  In an effort to improve 

our method of screening for collagen VI deficiency, our neuromuscular centre (the 

Dubowitz Neuromuscular Centre) investigated flow cytometry analysis as a means of 

quantitatively measuring collagen VI in primary skin fibroblasts and compared this 

method with the standard method of fibroblast collagen VI immunocytochemical 

analysis.   

 

 

3.1.1 Materials and Methods 

 

Eight Ullrich CMD and 5 Bethlem myopathy patients with genetically confirmed 

diagnoses underwent skin biopsy after informed consent was obtained.  Control skin 

biopsies were obtained from paediatric patients without known neuromuscular 

disorders undergoing surgical procedures following written informed research 

consent.   

 

Skin fibroblast culturing, immunostaining and flow cytometry studies were performed 

by J Kim (see Collaborators, page 5) and details of these techniques (as described in 

Kim J, Jimenez-Mallebrera C, Foley AR, et al. Flow cytometry analysis: a quantitative 

method for collagen VI deficiency screening. Neuromuscul Disord 2012;22:139-48123) 

are included here.   

 

Fibroblasts were grown from skin explants and cultured in Dulbecco’s modified Eagle 

medium (Invitrogen) supplemented with 20% fetal bovine serum (FBS) (PAA 

Laboratories), 1% L-glutamine (Sigma-Aldrich) and 1% penicillin, streptomycin and 

neomycin (Sigma-Aldrich).  Cells were cultured at 37˚C in 5% CO2.  105 cells were 

seeded onto clean coverslips coated with fibrillar collagen I solution (PureCol 5409, 

Nutacon).  When confluent, the medium was changed to contain 50 µg/ml of L-

ascorbic acid phosphate to allow for the correct post-translational modification and 

secretion of collagen molecules.  The medium was subsequently changed and 

ascorbic acid added every 2 days for 7 days’ duration.  Cells were then fixed with 

fresh 2% paraformaldehyde (pH adjusted to 7.4 0.2) for 10 minutes.  An aliquot of 

cells was permeabilised with Triton X-100 (0.05%, VWR International) in phosphate 

buffered saline (PBS) for 3 minutes.  All cells were immunolabelled with a 

monoclonal primary antibody against collagen VI (MAB1944, Millipore) diluted in 
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PBS/Triton X-100 or PBS alone for 1 hour (1/500) at room temperature.  Coverslips 

were washed 3 times with PBS (with or without Triton X-100), and anti-mouse 

biotinylated secondary antibody (1/200, Amersham) was applied for 30 minutes at 

room temperature which was followed by washing with streptavidin-conjugated Alexa 

594 (1/1000, Invitrogen) for 15 minutes at room temperature.  Nuclei were stained 

with Hoescht 33342 (1/2000, Molecular Probes) for 5 minutes, and preparations were 

examined under a Leica Digital Module R epifluorescent microscope linked to 

MetaMorph software (Universal Imaging). 

 

Primary skin fibroblast cultures (standardised for passage number and at a density of 

8x105) were grown in 75 cm2 tissue culture flasks (VWR International).  When cells 

were confluent, 50 µg/ml of L-ascorbic acid phosphate was added, and cells were 

further incubated for 24 hours.  Cells were harvested with a non-enzymatic cell 

dissociation solution (Sigma-Aldrich) and fixed with 2% paraformaldehyde for 10 

minutes on ice.  Afterwards, cells were washed with PBS (Mg2+ and Ca2+ free, 

Invitrogen) containing 0.1% FBS and centrifuged.  Pellets were re-suspended and 

incubated with a monoclonal primary antibody against collagen type VI (1/250, 

MAB1944, Millipore) in PBS/0.1% FBS or PBS/0.05% FBS and Tween 20 (for 

permeabilisation) for 1 hour.  For a negative control, cells were incubated without 

primary antibody on ice.  Cells were washed twice with or without 0.05% Tween 20 

and then spun down at 3000 g for 3 minutes.  Rabbit anti-mouse IgG conjugated to 

R-Phycoerythrin (Star12A, AbD Serotec) was diluted (1/20) with either PBS/0.1% 

FBS or PBS/0.1% FBS and 0.05% Tween 20 for 20 minutes on ice.  Cells were then 

washed twice with PBS (with or without Tween 20, as appropriate) and centrifuged at 

3000 g for 3 minutes. Finally, cells were re-suspended in PBS/0.1% FBS and filtered 

through a 0.7 µm strainer to ensure cells were separated individually.  Cells were 

then processed for flow cytometry and run on a CyAn ADP Analyzer (Beckman 

Coulter, California, USA) fitted with a 488 nm laser and a 633 nm red diode.  Data 

analysis was done using Summit software (Beckman Coulter, California, USA) or 

Flowjo software (TreeStar, Oregon, USA).  A total of 15,000 cells were analysed and 

gated using the two-parameter analysis side light scatter (linear scale) on the y-axis 

and fluorescence intensity (R-Phycoerythrin-collagen VI; log scale) on the x-axis.  

Side scatter is related to the cellular cytoplasmatic granularity and R-Phycoerythrin 

fluorescence is collected with a 575 12.5 nm band pass filter (FL2 detector).  A 

negative control (where primary antibody is omitted) was used to set up collagen VI 

positive immunolabelling gate, and the same gate was applied to all samples.  
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For assessing differences among patients groups (UCMD, BM and controls) multiple 

regression analysis was performed (R version 2.12.0). (Advice for the statistical 

analyses was obtained from Professor Timothy Cole, Department of Medical 

Statistics, Institute of Child Health, University College London). 

 

My involvement in this project included (1) the collection and organisation of patient 

clinical information, (2) assistance with statistical analyses of the flow cytometry data, 

(3) interpretation of the results of the statistical analyses and their clinical relevance 

and (4) drafting and revision of the manuscript, which was eventually published 

(reference 123). 

 

 

3.1.2 Results  

 

The clinical features of the 13 patients studied are listed in Table 3.  Our flow 

cytometry results for these 13 patients demonstrate that in non-permeabilised cells, 

the decrease in collagen VI surface expression in UCMD patients was statistically 

significant (19.6 10.0) when compared with control patient cells (65.3 10.7) (p < 

0.001).  The skin fibroblasts of Bethlem myopathy patients studied did not 

demonstrate a statistically significant decrease in collagen VI cell surface expression 

(54.1 8.0) when compared to controls (65.3 10.7) (p < 0.1), however (Figure 11). 

 

When cells were permeabilised and the difference between the flow cytometry values 

for collagen VI expression in permeabilised and non-permeabilised cells was 

calculated (in order to determine the level of intracellular retention), UCMD patient 

cells had a statistically significant increase in intracellular retention (70.9 7.5%) 

when compared to control (30 10.3%) (p < 0.001).  Bethlem myopathy patients also 

had a statistically significant increase in intracellular retention (42.0 8.5%) when 

compared with control (30 10.3%) (p < 0.05), albeit to a lesser degree than the 

UCMD patients.123 
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The following patients had been previously reported: BM173; UCMD6 and UCMD968, 

74, 118; UCMD7 and UCMD874, 118; UCMD10 and UCMD124, 118 

 

       (Table from Kim J et al.123  Reproduced with permission from Elsevier.) 

Table 3: Patient clinical features.  



 69   

 

 

 

 

 

 

 

 

 

 

 

(Figure from Kim J et al.123  Reproduced with permission from Elsevier.) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Quantification of collagen VI expression in skin fibroblasts 

using flow cytometry.  

  

* = statistically significant (difference between collagen VI expression in 

UCMD patients compared to control using non-permeabilised cells). 
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3.1.3 Discussion 

 

The already complicated diagnostic pathway for collagen VI-related myopathy 

patients is further complicated in Bethlem myopathy patients who may have a high 

level of residual collagen VI expression.  The results of our study of the use of flow 

cytometry in quantitatively assessing collagen VI expression in patient fibroblast 

cultures indicate that this method is more objective in assessing collagen VI 

expression.  Furthermore, technically speaking, flow cytometry is a method which is 

reproducible and less time-consuming than standard immunocytochemical 

techniques.  

 

While flow cytometry is highly sensitive in detecting collagen VI deficiency in UCMD 

patients, it is less sensitive when testing fibroblasts of genetically confirmed BM 

patients.  In fact, in some of the BM patients assessed, flow cytometry did not 

demonstrate a statistically significant decrease in collagen VI expression in 

fibroblasts compared to control fibroblasts.  Given that mild Bethlem myopathy 

patients can have qualitative differences in collagen VI production in skin fibroblasts 

(as mentioned above), it is not surprising that the quantity of collagen VI may not 

differ significantly from controls. 

   

Flow cytometry is an effective technique for screening for collagen VI deficiency in 

skin fibroblasts cultures since it is objective, rapid and reproducible.  This technique 

may also serve as a tool for helping to determine the pathogenicity of variants of 

unknown significance found in COL6A1, COL6A2 and COL6A3 sequencing.  In 

Bethlem myopathy patients with mutations affecting the quality of collagen VI 

produced in skin fibroblast cultures, however, flow cytometry may not uncover 

evidence of collagen VI deficiency, as the quantity of collagen VI may not significantly 

differ from that of controls.  Given this decreased sensitivity of flow cytometry to 

identify Bethlem myopathy patients, the diagnostic evaluation of patients being 

evaluated for Bethlem myopathy should be coupled with additional studies including 

that of fibroblast immunolabelling techniques (focussed on the assessment of subtle 

quantitative and qualitative differences in collagen VI expression including the density 

of collagen VI, its appearance in the matrix of fibroblast cultures and the degree of 

intracellular retention of collagen VI in permeabilised fibroblasts) as well as muscle 

imaging.123   

 



 71   

 

3.2 MUSCLE IMAGING IN COLLAGEN VI-RELATED MYOPATHIES 

  

With the proposal of a short duration magnetic resonance imaging (MRI) protocol 

aimed for children with muscular dystrophy in 2002,124 muscle MRI, once reserved for 

adult patients who could tolerate lying still for the duration of traditionally long MRI 

protocols, evolved into a valuable diagnostic tool for assessing children with muscle 

disease.  Initial studies using MRI in primary skeletal muscle diseases demonstrated 

the ability of MRI (restricted to the leg) of revealing patterns of selective muscle 

involvement.125  More recently, muscle MRI has been reported to detect disease-

specific imaging patterns in collagen VI-related myopathies126-128 and, in particular, 

with an overall sensitivity of 90% and a specificity of 96% in a cohort of patients with 

muscular dystrophy and spinal rigidity secondary to mutations in COL6A1, COL6A2, 

COL6A3, SEPN1, LMNA or CAPN3.129 

 

The muscle MRI pattern seen in Bethlem myopathy patients is striking and is 

characterised by the involvement of the periphery with sparing of the central region of 

the vastus lateralis (VL) muscle (a pattern referred to as called ‘outside-in’) and 

abnormal signalling within the centre region with of the rectus femoris (RF) muscle 

(termed ‘central shadow’130) (Figure 12).  While this MRI pattern appears to be highly 

specific for Bethlem myopathy and, in fact, has been considered as practically 

pathognomonic for Bethlem myopathy, a study formally assessing the sensitivity and 

specificity of this MRI pattern for Bethlem myopathy has not yet been performed.     

 

In a study of 19 genetically confirmed collagen VI-related myopathy patients (10 BM 

patients; 9 UCMD patients), 7/10 BM patients had evidence of abnormal signalling 

within the centre of the rectus femoris muscle.  Of note, two of the BM patients 

without evidence of abnormal signalling in the rectus femoris were the youngest 

patients in the series (both 10 years of age at the time of MRI scanning).  Imaging of 

the calves revealed a rim increased signalling between the gastrocnemius and 

soleus muscles in all of the BM patients except for the two patients scanned at 10 

years of age.  Of note, all of the BM patients had MRI evidence of abnormal 

signalling along the peripherally of the vastus lateralis muscle including the two 

patients scanned at 10 years of age.131 

 

Muscle MRI in UCMD patients typically demonstrates more diffuse involvement with 

relative sparing of sartorius, gracilis and adductor longus muscles and often less 

striking vastus lateralis (VL) and rectus femoris (RF) findings.  In the aforementioned 
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muscle MRI study in genetically confirmed BM and UCMD patients, 8/9 UCMD 

patients demonstrated a ‘central shadow’ pattern within the rectus femoris and 

peripheral involvement of the vastus lateralis muscle with sparing of the central 

region (‘outside-in’ pattern).  Calf involvement ranged from diffuse involvement of all 

calf muscles (2/9) to selective involvement of the gastrocnemius and soleus muscles 

(7/9) and increased signal intensity between these muscles (6/9).131 

 

Muscle ultrasound is another muscle imaging modality which can demonstrate 

disease-specific patterns.  In the 1980s our neuromuscular centre (the Dubowitz 

Neuromuscular Centre) first described the ability of ultrasound to distinguish between 

normal and diseased muscles.132  Since that time, muscle ultrasound has served as 

an essential diagnostic tool which can be utilised in clinic at the time of the initial 

evaluation of patients.  An important benefit of muscle ultrasound is that it can be 

performed in infants and young children for whom sedation for muscle MRI may 

introduce undue risks.133-136 

 

A report of muscle ultrasound findings in a family with Bethlem myopathy (affected 

mother and two daughters) demonstrated evidence of increased echogenicity within 

the central region of the rectus femoris muscle (‘central shadow’ sign) when 

ultrasound was performed in one of the affected daughters at 2 years and 4 months 

of age.130  In a case report of a 15 year-old patient clinically diagnosed with Bethlem 

myopathy, muscle ultrasound of the thigh revealed clear evidence of increased 

echogenicity in the centre of the rectus femoris while muscle MRI performed at the 

same age did not real this ‘central shadow’ sign.137  These findings raise the question 

of whether muscle ultrasound may be more sensitive than muscle MRI in detecting 

the ‘central shadow’ pattern in the rectus femoris in younger patients in whom this 

finding may be more subtle.  In order to determine if indeed muscle ultrasound is 

more sensitive than muscle MRI in detecting disease-specific imaging findings in 

Bethlem myopathy, a formal study comparing findings from both imaging modalities 

performed sequentially in genetically proven BM patients of various ages and clinical 

severities will need to be performed.  

 

In  a study of 100 children evaluated for neuromuscular disorders using muscle 

ultrasound (and the criteria for grading muscle abnormalities proposed by 

Heckmatt133), muscle ultrasound was found to have a sensitivity of 78% and a 

specificity of 91% for detecting any type of neuromuscular disorder (including 

muscular dystrophies, myopathies, motor neuron disease and neuropathies).  In a  
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Figure 12: Muscle MRI of a Bethlem myopathy patient. 

 

(A) T1-weighted MRI of thighs demonstrating an area of abnormal signal 

within the centre of the rectus femoris muscle, the so-called ‘central shadow’ 

pattern (arrowhead) and abnormal signal of the periphery of the vastus 

lateralis muscle with preservation of the interior region, the ‘outside-in’ 

pattern (arrow).  (B) T1-weighted MRI of the calves demonstrating increased 

signal intensity between the gastrocnemius and soleus muscles (arrow). 
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retrospective study of 134 children with definitive genetic or histologic diagnoses of 

neuromuscular conditions, blinded evaluators correctly identified patients with muscle 

conditions based soley on qualitative ultrasound appearance and pattern recognition  

(without use of quantification of ultrasound paramaters) with an overall accuracy 

(mean of sensitivity and specificity) of 88%.138  The authors of this study highlight that 

patterns seen with muscle ultrasonography typically are not specific for a particular 

neuromuscular condition except for the ‘central shadow’ pattern seen in Bethlem 

myopathy patients138 (Figure 13).   

 

Unlike muscle MRI, muscle ultrasound can be performed at bedside by the same 

clinician evaluating the patient.  In this manner, muscle ultrasound becomes an 

extension of the neuromuscular examination, providing a non-invasive means of 

visualising muscles in real time, revealing findings which can be essential in 

narrowing the differential diagnosis and directing further diagnostic testing as well as 

care.  Critical to the use of qualitative muscle ultrasound analyses, however, is 

adequate exposure of the clinician serving as the ultrasound operator/evaluator to 

the ultrasonographic appearances and patterns of muscle involvement evident in 

various neuromuscular conditions.   

 

Undoubtedly, muscle imaging has become a crucial element of the diagnostic 

pathway for children being evaluated for neuromuscular disease.  Furthermore, 

muscle imaging can help to distinguish between collagen VI-related myopathies and 

other conditions with similar clinical features.139  For example, patients with SEPN1-

related myopathy, whose spinal rigidity and respiratory involvement clinically overlap 

with collagen VI-related myopathy patients, have muscle imaging findings which 

typically reveal selective involvement of the sartorius muscle,129, 140-141 while the 

sartorius is typically spared along with the gracilis and adductor longus in UCMD 

patients.128  While progressive joint contractures seen in patients with LMNA-related 

Emery-Dreifuss muscular dystrophy clinically overlap with the collagen VI-related 

myopathies, muscle imaging findings distinguish these conditions.  Prominent 

involvement of the posterior thigh (the vasti muscles) and more severe involvement 

of the medial versus the lateral head of the gastrocnemius are seen in imaging of 

LMNA-related Emery-Dreifuss muscular dystrophy patients129, 142-143 while UCMD 

patients have clear sparing of the sartorius, gracilis and adductor longus muscles in 

the thigh and no differential involvement between the medial and lateral heads of the 

gastrocnemius muscle. 
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While the muscle imaging findings evident in the vastus lateralis and rectus femoris 

muscles of patients with collagen VI deficiency have been viewed as being practically 

pathognomonic for the collagen VI-related myopathies, the sensitivity of these 

findings has not been determined.  Going forward, it will be essential to formally 

establish the sensitivity and specificity of both muscle MRI and muscle ultrasound in 

identifying patients with collagen VI-related myopathy.  To this end, studies designed 

to evaluate muscle MRI and muscle ultrasound in cohorts of patients with clinical 

phenotypes overlapping with the collagen VI-related myopathies (including SEPN1-

related myopathy, LMNA-related Emery-Dreifuss muscular dystrophy and Ehlers-

Danlos syndrome (EDS) subtypes- in particular those due to mutations in TNXB, 

FBN1 and FKBP14) will be necessary.  Such studies may elucidate whether 

ultrasound is more sensitive than MRI in detecting collagen VI-related myopathy 

patients among age-matched individuals, which is an important question to address 

for the goal of minimising the false negative rate of muscle imaging.  Additionally, 

such studies could help to determine the specificity of muscle MRI and muscle 

ultrasound for identifying collagen VI-related myopathy patients from among patients 

with similar clinical phenotypes. 
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Figure 13: Muscle ultrasound of a Bethlem myopathy patient. 

 

The highly specific ‘central shadow’ pattern is evident in the central region of the rectus 

femoris muscle (arrow). 
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3.3 PROPOSING A NEW DIAGNOSTIC ALGORITHM FOR THE  

      COLLAGEN VI- RELATED MYOPATHIES 

 

While the concomitant occurrence of joint contractures, distal hyperlaxity and muscle 

weakness is highly suggestive of a collagen VI-related myopathy, the presence of 

these clinical symptoms in isolation is not specific for a collagen VI-related myopathy.  

For example, joint contractures can be seen in other neuromuscular conditions such 

as Emery-Dreifuss muscular dystrophy144 and LMNA-related CMD,145 and joint 

hyperlaxity may be evident in numerous neuromuscular disorders.11, 146  Further 

complicating matters is the neuromuscular involvement evident in patients with 

various primary connective tissue disorders (Ehlers-Danlos syndrome subtypes) 

whose distal hyperlaxity and skin findings may mimic collagen VI-related 

myopathies.11, 147  Given the challenge of distinguishing collagen VI-related 

myopathies from clinically overlapping conditions as well the inherent complexity of 

arriving at a molecular or biochemical confirmation of a collagen VI-related myopathy, 

a clear road map or algorithm for guiding the diagnostic journey of patients being 

evaluated for collagen VI-related myopathy is indispensible. 

 

In 2001 the Dubowitz Neuromuscular Centre was commissioned as the UK 

Congenital Muscular Dystrophy (CMD) National Specialised Commissioning Team 

(NSCT) Centre with the goal of assessing, investigating and managing children with 

CMDs.  The clinical referral criteria agreed upon by the UK CMD NSCT as the 

‘absolute/minimum requirements’ for performing sequencing of the COL6A1, 

COL6A2 and COL6A3 genes are ‘positive family history; reduced/absent collagen VI 

in muscle, abnormal collagen VI in fibroblast culture; CMD phenotype with typical 

concentric signal abnormality on muscle MRI.’  The criteria of ‘additional features’ for 

which COL6A1, COL6A2 and COL6A3 sequencing would be considered following 

consultation with Dubowitz Neuromuscular Centre (NSCT centre for CMDs) clinicians 

are: ‘muscle biopsy showing dystrophic changes, offer to do collagen VI under NSCT 

service if muscle available; congenital/early onset hypotonia, weakness; distal laxity, 

proximal contractures; normal/mildly elevated CK; motor delay, walking >18 months, 

loss of ambulation < 20 years; progressive contractures.’148  Using these criteria, 

56% of all cases which underwent collagen VI molecular genetic screening during an 

18-month period (11/2007-5/2009) had clear pathogenic mutations found in COL6A1, 

COL6A2 or COL6A3, and 25% had unclassified variants.  Fifty-eight percent of the 



 78   

 

cases were sequenced using complementary DNA (cDNA) while 42% were 

sequenced using genomic DNA (gDNA).149  

 

It is remarkable that even with a system in place for carefully selecting candidates, in 

whom there is high clinical suspicion for a collagen VI-related myopathy, for COL6A1, 

COL6A2 and COL6A3 sequencing only slightly more than half of the patients 

sequenced have pathogenic mutations found.  At the same time, it has become more 

evident that muscle imaging may be more specific than collagen VI skin fibroblast 

immunocytochemical studies in identifying Bethlem myopathy patients.  Taken 

together, and in an effort to improve the diagnostic journey of patients being 

evaluated for collagen VI-related myopathies, I have endeavoured to create a new 

diagnostic algorithm for evaluating patients for collagen VI-related myopathies 

(Figure 14).   

 

The diagnostic algorithm I am proposing increases the emphasis placed on muscle 

imaging findings.  This algorithm initiates with the clinical history and examination 

instead of with the muscle biopsy.  Whilst many patients referred to our centre have 

already undergone a muscle biopsy, I am proposing a new approach which would not 

automatically necessitate a muscle biopsy.  In this way, if referring centres have the 

ability to perform muscle ultrasound or muscle MRI and encounter findings consistent 

with a collagen VI-related myopathy, then gDNA sequencing of the collagen VI genes 

could be pursued directly.  If this algorithm were adopted on a widespread basis, it 

may promote both the increased use of muscle imaging as well as the training of 

neuromuscular specialists in performing and interpreting muscle ultrasound and 

reading muscle MRI. 

 

Given its portability, ease of use, ability to display muscle images in real time and, 

perhaps most importantly, its patient friendliness (particularly for young children), 

muscle ultrasound is an ideal diagnostic tool for use in the neuromuscular clinic.  

Furthermore, the use of muscle ultrasound to quickly visualise muscles of patients’ 

family members (willing to undergo muscle ultrasound) may be instrumental in 

clarifying family history (personal experience).  As significant variability in the degree 

of symptoms is well-known amongst patients with genetically confirmed Bethlem 

myopathy,71, 130 visualisation of a ‘central shadow’ pattern in the rectus femoris 

muscle of a family member without obvious clinical symptoms would raise one’s  
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Figure 14: Proposed new diagnostic algorithm for patients being evaluated 

for collagen VI-related myopathies. 

cDNA = complementary DNA 
gDNA = genomic DNA 
IF = immunofluorescence  
MRI = magnetic resonance imaging 
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suspicions that the family member is affected with BM.  Given the apparent specificity 

of this muscle ultrasound pattern for BM and following my proposed diagnostic 

algorithm, gDNA sequencing of the collagen VI genes could be pursued directly in 

this situation. 

 

In the case of patients referred to our neuromuscular centre from other centres, a 

muscle biopsy is typically already performed by the time the patient is clinically 

evaluated in our centre.  In Ullrich CMD, the muscle biopsy findings of significantly 

decreased or absent collagen VI are typically unequivocal, allowing the diagnosis to 

be confirmed and appropriate as well as anticipatory care to be initiated.  

Intermediate collagen VI-related myopathy and Bethlem myopathy patients may have 

equivocal muscle biopsy findings, however.  The diagnostic algorithm which I 

propose (Figure 14) would prompt the clinician to re-focus on the clinical history 

(including the family history), the examination and muscle imaging findings.  In this 

manner, if clinical and muscle imaging findings are suggestive of a collagen VI-

related myopathy, patients may proceed toward sequencing of the collagen VI genes 

without delay.   

 

When variants of unknown significance are found or the effects of particular COL6A1, 

COL6A2 or COL6A3 mutations are unclear following gDNA sequencing, cDNA 

sequencing is recommended.  A skin fibroblast culture can serve as an excellent 

source of cDNA.  The availability of a skin biopsy also allows the opportunity for 

collagen VI expression studies, including flow cytometry and/or immunocytochemical 

studies.  It is important to note that even in the setting of a clinical phenotype of a 

collagen VI-related myopathy and clear collagen VI deficiency on muscle biopsy, a 

mutation in COL6A1, COL6A2 or COL6A3 may not be found.  Recommendations for 

the next step in the diagnostic journey for this particular, albeit more rare, situation 

are discussed in Chapter 4. 
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CHAPTER 4: NAVIGATING THE MOLECULAR MAZE 
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4.1 CHALLENGES OF GENETIC DIAGNOSIS IN COLLAGEN VI-RELATED  

      MYOPATHIES 

 

While a diagnosis of collagen VI-related myopathy based on clinical phenotype along 

with biochemical evidence of decreased collagen VI expression in muscle is sufficient 

for directing clinical care, arriving at a genetic diagnosis in the collagen VI-related 

myopathies allows patients and their families to receive accurate genetic counselling.  

Furthermore, a genetically confirmed diagnosis may be necessary for inclusion in 

future experimental clinical trials.  As genetic sequencing of the collagen VI genes 

(COL6A1, COL6A2 and COL6A3) is now available in diagnostic DNA laboratories 

and a clinical trial for collagen VI-related myopathy patients is presently being 

planned (see Chapter 6), the goal of achieving a genetically confirmed diagnosis is 

not only of clinical importance but also of potentially therapeutic importance.  

 

Beyond the occurrence of both autosomal recessive and autosomal dominant 

inheritance, what makes the goal of arriving at a genetically confirmed diagnosis in 

the collagen VI-related myopathies challenging is the large number of polymorphic 

variants of unknown significance found in COL6A1, COL6A2 and COL6A3, making 

further genetic and biochemical studies necessary in order to determine whether or 

not such changes are pathogenic.51  While bioinformatics offers the potential of 

clarifying the effect which COL6A1, COL6A2 and COL6A3 variants have on protein 

structure and function, such studies require time and expertise.  Online databases 

such as the Leiden Open Variation Database (LOVD) which provides updated 

cataloguing of genetic variants and associated pathogenicity is a valuable resource.  

Another database, known as the database of Genotypes and Phenotypes (dbGAP) 

and developed by the National Institutes of Health (NIH), contains information 

regarding phenotypes associated with particular genotypes.  This resource may help 

to improve the ease of interpretation of polymorphic variants and prevent duplicated 

efforts by individual laboratories in genetic, biochemical and bioinformatic type 

studies.  Despite careful phenotyping and biochemical studies, however, there are 

patients with clinical and biochemical evidence of collagen VI-related myopathies in 

whom no pathogenic mutations in COL6A1, COL6A2 or COL6A3 are found.28, 70, 150   

 

When clinical and biochemical evidence point toward a collagen VI-related myopathy 

but genetic sequencing of COL6A1, COL6A2 and COL6A3 does not reveal 

pathogenic mutation(s), the use of chromosomal microarray analyses including array 

comparative genome hybridization (aCGH) and single nucleotide polymorphism 
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(SNP)-based genomic array analysis should be considered, as conventional genetic 

sequencing (Sanger sequencing) does not detect the presence of copy number 

variations (CNVs) (which result from deletions, insertions, duplications or inversions).  

Both aCGH and SNP array are genetic sequencing technologies which can detect 

CNVs, aCGH by competitive hybridisation between patient DNA to unaffected control 

DNA and SNP array by hybridising patient DNA to an array designed with SNPs from 

multiple databases.151 

 

I (along with colleagues from the Children’s Hospital of Philadelphia) reported how 

the use of SNP array in two UCMD patients revealed evidence of large genomic 

deletions on chromosome 21q22.3, resulting in complete loss of COL6A2 or both 

COL6A1 and COL6A2 on one allele in combination with either a mutation or deletion 

of COL6A2 on the other allele (Figure 15).  As hitherto only intragenic deletions in 

COL6A1, COL6A2 or COL6A3 had been reported,26, 75 this was the first report of 

large genomic deletions as a genetic mechanism causing UCMD.152 

 

In particular, the phenotypes of two of the patients reported [patient 1 (P1) and 

patient 2 (P2)] were consistent with Ullrich CMD, and their parents had no history of 

neuromuscular disease and normal neuromuscular examinations.  Patient 2’s brother 

had epilepsy and global developmental delay but no evidence of neuromuscular 

symptoms, as would be seen in a congenital muscular dystrophy.  Patient 3 (P3) had 

a SNP array performed due to symptoms of global developmental delay and 

hypotonia.  His phenotype was not consistent with a collagen VI-related myopathy.  

Patient 3’s father had a normal neuromuscular examination, and muscle ultrasounds 

performed both in P3 and his father were normal in appearance. 

 

Genomic DNA sequencing in P1 revealed a heterozygous intronic nucleotide change 

(G>A) at position c.1970-9 at the intron 25-exon 26 junction of COL6A2 (Figure 15). 

Using cDNA extracted from P1’s fibroblast, COL6A2 sequencing revealed a 7 base 

pair insertion resulting from the use of a novel splice acceptor site in intron 25, 

created by the mutation (Figure 15).  This insertion causes a frameshift and results in 

a premature stop codon (G656AfsX17).  SNP analysis in P1 revealed a 69 kilobase 

(kb) genomic deletion at 21q22.3, encompassing at least 18 exons of COL6A2 

(Figure 15).  P1’s asymptomatic mother was found to be heterozygous for the 

COL6A2 nucleotide change (G>A) at c.1970-9, and his father was found to be 

heterozygous for the 69 kb deletion.  SNP-based genome array analysis in P2 

revealed 2 deletions at 21q22.3: a 1.61 Megabase (Mb) deletion encompassing the 
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entire COL6A1 and COL6A2 genes as well as surrounding genes on one allele and a 

smaller deletion of 47 kb encompassing the entire COL6A2 gene on the other allele 

(Figure 15).  DNA sequencing of P2’s parents revealed that P2’s mother was 

heterozygous for the 1.61 Mb deletion and his father was heterozygous for the 47kb 

deletion.  Neither parent had mutations in COL6A1 or COL6A2 in the nondeleted 

alleles.  P2’s brother was found to be heterozygous for the 1.61 Mb deletion 

encompassing COL6A1 and COL6A2.  SNP array performed in P3 due to a history of 

developmental delays and hypotonia revealed a heterozygous 1.09 Mb deletion 

encompassing COL6A1 and COL6A2 as well as adjacent genes (Figure 15).  P3’s 

asymptomatic father was found to carry the same 1.09 Mb deletion. 

 

The finding of these large genomic deletions on chromosome 21 involving COL6A1 

and COL6A2 established a new type of mutational mechanism in the collagen VI-

related myopathies.  This finding also adds to the complexity of genetic evaluations in 

the collagen VI-related myopathies, as large genomic deletions would not be 

detected by single-exon amplification and sequencing (unless performed 

quantitatively).  Furthermore, hemizygous changes occurring on the nondeleted allele 

will seem to occur in apparent homozygosity, thus potentially obscuring the true 

genetic causation of the patient’s condition. 

 

The observation made that the parents of patients 1, 2 and 3 are clinically 

asymptomatic despite carrying deletions encompassing COL6A2 or both COL6A1 

and COL6A2 provides the most conclusive evidence to date that haploinsufficiency 

for collagen VI is not a disease mechanism for collagen VI-related myopathy, and in 

particular for Bethlem myopathy- as had been hypothesised in the literature.153  This 

finding is of great translational importance since it indicates that potential therapeutic 

strategies which are aimed at eliminating a dominant-negatively acting mutation- and 

would result in a functional state of haploinsufficiency- would not result in clinical 

symptoms of neuromuscular disease. 

 

Finally, these findings indicate the importance of considering the use of chromosomal 

microarray analyses (including aCGH and SNP array genomic analyses) in the 

diagnostic evaluation of patients with phenotypes suggestive of collagen VI-related 

myopathies.  In particular, chromosomal microarray analysis should be considered in 
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  (Figure from Foley et al.152 Reproduced with permission from John Wiley and Sons.) 

 

 

 

 

 

Figure 15: Mapping of genomic deletions on chromosome 21q22.3. 

 

             (Chromosome 21 ideogram from http://www.genecards.org.) 
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patients with convincing collagen VI-related myopathy phenotypes in whom no 

mutations are identified in COL6A1, COL6A2 or COL6A3.  Furthermore, in those 

patients in whom a heterozygous mutation found in COL6A1, COL6A2 or COL6A3 

cannot account for the patient’s phenotype, chromosomal microarray analysis should 

be considered, especially if this mutation is carried in an asymptomatic parent.  When 

a mutation in COL6A1, COL6A2 or COL6A3 on one allele occurs in combination with 

a large genomic deletion encompassing an entire collagen VI gene (COL6A1, 

COL6A2 or COL6A3) on the other allele, the mutation found with conventional 

Sanger sequencing will appear to occur in homozygosity; therefore, the presence of 

apparently homozygous mutations in COL6A1, COL6A2 or COL6 in patients without 

a family history of consanguinity should prompt chromosomal microarray analysis, as 

well.  

 

 

4.2 THE ROLE OF NEXT GENERATION SEQUENCING IN THE  

      EVALUATION OF COLLAGEN VI-RELATED MYOPATHIES 

 

For those patients who demonstrate a classic collagen VI-related myopathy clinical 

phenotype and muscle biopsy findings of collagen VI deficiency, in whom no 

pathogenic mutation is identified by either gDNA or cDNA sequencing of COL6A1, 

COL6A2 and COL6A3, a yet undiscovered causative gene may be responsible for 

the clinical and biochemical manifestations of collagen VI deficiency.  New genetic 

technologies including ‘next-generation sequencing’ (NGS) or ‘high-throughput 

sequencing’ offer the potential of discovering further causative genes for collagen VI 

deficiency.  In contrast to conventional sequencing methods (‘first generation’ or ‘low-

throughput’ sequencing), which require polymerase chain reaction (PCR) 

amplification of all exons and adjacent intron regions and Sanger sequencing of the 

genes, high-throughput sequencing allows massively parallel sequencing, 

simultaneously sequencing thousands of genes at one time. 

 

The increased potential to uncover new causative genes through the use of high-

throughput sequencing offers an unprecedented opportunity for potentially 

determining the molecular causation in patients with suggestive clinical phenotypes 

and biochemical evidence of collagen VI deficiency who have been hitherto 

molecularly uncharacterised.  The discovery of new causative genes in the collagen 
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VI-related myopathies could further our understanding of pathways involved in 

collagen VI deficiency with promising therapeutic implications.   

 

 

4.2.1 Whole-genome sequencing 

 

Whole-genome sequencing is a form of high-throughput sequencing which allows 

sequencing of the entire genome (chromosomal DNA as well as mitochondrial DNA) 

at one time.  A major advantage of this sequencing technology is its ability to 

sequence a large number of genes remarkably faster and at significantly lower cost 

than traditional low-throughput methods.  In particular, the cost of whole-genome 

sequencing fell from 100,000,000 US dollars in 2001 to below 10,000 US dollars in 

2011 (National Human Genome Research Institute).154
   

 

The advantages of whole-genome sequencing over the conventional, targeted, exon-

capture approaches in genetically heterogeneous Mendelian disorders have been 

well-recognised.155  In whole-genome sequencing, however, individual sequence 

reads are smaller and of lower accuracy than traditional Sanger sequencing, factors 

which may affect the ability to ‘capture’ or ‘call’ variants which may be of clinical 

significance.156  Furthermore, given the immense quantity of data produced by whole-

genome sequencing, a limiting factor to its use is (1.) the amount of time necessary 

for wading through the data and (2.) clinical as well as bioinformatics expertise for 

recognising relevant variants from among the many hundreds of variants reported.   

 

The extension of the use of whole-genome sequencing to commercial genome 

sequencing companies has made possible the independent access of patients to 

whole-genome sequencing.  While the role of whole-genome sequencing in the 

diagnostic evaluation of patients with phenotypes suggestive of collagen VI-related 

myopathies has not been formally studied, there are limitations to this sequencing 

technology.  In particular, some of these limitations have been demonstrated in the 

case of two Bethlem myopathy patients who pursued commercial genome 

sequencing. 

 

The proband presented to the Neuromuscular Clinic (National Hospital for Neurology 

and Neurosurgery, NHNN) at 33 years of age.  He was never able to run, and he had 

developed slowly progressive proximal weakness beginning in his teenage years.  

Examination revealed bilateral elbow contractures, Achilles tendon tightness and 
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proximal muscle weakness [Medical Research Council (MRC)-grade 4/5].  Deep 

tendon reflexes were present.  Creatine kinase was 354 IU (reference range: <150 

IU).  The patient’s mother reported a similar history, albeit with a later onset with 

proximal muscle weakness noted around age 30 and progressing to dependence on 

a cane for walking by age 60 years.  Muscle biopsies performed in the proband and 

his mother revealed dystrophic-appearing muscle.  No other family members were 

noted to have joint contractures and/or muscle weakness.  The family was 

counselled that their condition was likely a form of autosomal dominant muscular 

dystrophy with Bethlem myopathy and Emery-Dreifuss muscular dystrophy included 

in the differential diagnosis.  Further investigations were recommended; however, the 

family did not return to the NHNN for the ensuing 5 years.   

 

When the family was reassessed in 2010, they had an electronic storage device with 

their annotated whole-genome sequence data (performed commercially by a human 

genome sequencing company).  Analysis of the kindred genome data revealed 

several variants carried by the proband and his mother (but no unaffected family 

member) in genes implicated in neuromuscular diseases.  The strongest candidate 

shared by both patients was a heterozygous missense variant (G347A; p.Ser116Asn 

in exon 3 of COL6A1) which is modestly common (~8% allele frequency) in the 

general population.  Given the finding of this COL6A1 variant, I became involved in 

reviewing this case with colleagues at the NHNN (both genetically and clinically).  We 

decided that the interpretation of these uncertain genomic variants necessitated 

further elucidation of the patients’ pattern of muscle involvement and recommended 

lower extremity muscle MRI be performed.   

 

MRI in the proband and his mother revealed abnormal signalling in the central region 

of the rectus femoris muscle (‘central shadow’ pattern) and abnormal signalling along 

the periphery of the vastus lateralis muscle (‘outside-in’ pattern) (Figure 16).  Given 

this muscle MRI pattern strongly evocative of Bethlem myopathy and consistent with 

our clinical impression, we pursued COL6A1, COL6A2 and COL6A3 sequencing in a 

diagnostic laboratory (Guy’s and St Thomas’ DNA Laboratory, London).  Genomic 

DNA sequencing revealed a heterozygous c.6365G>T (p.Gly2122Val) mutation in 

exon 20 of COL6A3 in both the proband and his mother.  Skin biopsies performed in 

both the proband and his mother for the purpose of collagen VI immunocytochemistry 

studies in dermal fibroblasts revealed abnormal collagen VI expression.  In re-

analysing the whole-genome sequencing data it was evident that  
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Figure 16: Muscle MRI demonstrating patterns specific for Bethlem 

myopathy. 

 

Axial cut through mid-thigh region of the proband (A) and his mother (B).  

Abnormal signalling in the central region of the rectus femoris muscle (‘central 

shadow’ pattern) (arrowheads).  Abnormal signalling along the periphery of the 

vastus lateralis muscle (‘outside-in’ pattern) (arrows).  (Signal artefact in left leg 

of the proband’s mother (B) due to metallic implant.) 
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this COL6A3 mutation had not been ‘called’ or identified as a variant of potential 

pathogenic significance. 

 

One potential factor leading to the inability of whole-genome sequencing to identify 

this pathogenic COL6A3 mutation may be the guanine-cytosine (GC)-rich content of 

the collagen VI genes.12, 157  High GC content has been identified as a factor 

associated with poor capture rates using high-throughput sequencing 

technologies.158-160  Given that GC pairs are bound by three hydrogen bonds (versus 

the two hydrogen bonds binding adenine-thymine pairs), DNA with higher GC content 

is more stable, making it more difficult to anneal during the PCR amplification 

process.  To improve ‘coverage’ (percentage of genome sequenced) of GC-rich 

areas, amplification-free high-throughput sequencing techniques have been trialled in 

order to decrease the amplification ‘bias’ of PCR for GC-rich areas of DNA.161-162  

While high-throughput sequencing protocols are being modified to accommodate the 

issue of poor coverage over GC-rich areas, statistical methods of estimation and 

correction for this issue of GC content bias are still being understood.163 

 

Another potential reason why the pathogenic COL6A3 mutation was not identified by 

whole-genome sequencing may be related to the information available on the coding 

transcripts of COL6A3 in the genetic and bioinformatic databases utilised in the 

analyses of the whole-genome data, for predicting functional effects of particular 

variants.  In contrast to locus-specific databases, such as Leiden Open Variation 

Database (LOVD), the generalised tools used for interpreting variants in whole-

genome sequencing do not have the benefit of detailed information of variants nor 

precise phenotypic correlations for variants such as available in LOVD.   

 

As this case clearly highlights, the role of the clinician is essential in directing the 

diagnostic pathway for collagen VI-related myopathy patients.  In this instance, the 

patients independently pursued whole-genome sequencing, the findings of which 

served to distract the diagnostic journey from its original course.  When, however, the 

patients returned to the recommended diagnostic pathway (following the collagen VI-

related myopathy diagnostic algorithm – see Figure 14) and muscle MRI was 

performed, imaging findings highly specific for Bethlem myopathy were evident 

(Figure 16).  These findings prompted Sanger sequencing of the collagen VI genes 

and lead to the discovery of the pathogenic COL6A3 mutation in both the proband 

and his mother, thereby providing genetic confirmation of their Bethlem myopathy 

diagnosis. 
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4.2.2 Exome sequencing 

 

Exome sequencing involves sequencing of all protein-coding exons - estimated at 

approximately 200,000.  By interrogating the 1.5% of the genome containing an 

estimated 95% of pathogenic variants, exome sequencing greatly expedites efforts to 

identify new genes as well as causative mutations in known genes in Mendelian 

disorders.164-178  What remains to be seen, however, is if this high-throughput 

sequencing technology will be able to move from the research realm, where it plays 

an important role in gene discovery, to the clinical setting, where it may ultimately 

serve as a diagnostic tool.159   

 

Our neuromuscular centre (the Dubowitz Neuromuscular Centre) has had the 

opportunity to collaborate with the Wellcome Trust Sanger Institute on a large-scale 

exome sequencing research project called the UK10K project.  As part of UK10K 

Rare Diseases Subgroup, we have had the opportunity to submit DNA samples for 

exome sequencing at the Sanger Institute.  During the past two years I have 

coordinated a cohort of 125 neuromuscular patients from our neuromuscular centre 

who have conditions without a previously identified genetic aetiology.  I collected 

detailed phenotypic data, gathered DNA samples and prepared these samples for 

submission to the Sanger Institute, where exome sequencing is performed. 

 

While exome sequencing in all samples submitted as part of the UK10K project has 

not yet been completed, the results of those samples which have exome sequencing 

and exome data analyses completed have demonstrated the power of this high-

throughput genetic technology in uncovering the genetic aetiology in hitherto 

molecularly uncharacterised neuromuscular patients.  Our experience has 

demonstrated that the approach of studying families with multiple affected members 

sharing distinct or ‘deep’ phenotypes has proven to be a powerful method for 

reducing a pool of candidate genes in rare, monogenic disorders.  In particular, 

patients with genetically uncharacterised congenital muscular dystrophies are ideal 

candidates for exome sequencing, particularly given their typically autosomal 

recessive inheritance, the benefit of biobank material (muscle biopsies/myoblast 

cultures and skin biopsies/fibroblast cultures) and extensive patient phenotyping 

including muscle imaging (MRI and ultrasound) which our neuromuscular centre has 

available for these patients.   
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Indeed, the careful selection of affected individuals from informative families (for 

which family history is well known as well as DNA from affected and unaffected 

individuals available) has been crucial for gene discovery in rare diseases.179-180  In 

particular, sequencing patients with autosomal recessively inherited conditions of 

deep clinical phenotype has been a particularly successful method of finding 

causative variants in hitherto molecularly uncharacterised patients, even when 

sequencing a single affected individual.181   

 

In particular, the exome sequencing performed through our neuromuscular centre’s 

collaboration with the Sanger Institute has identified 5 novel genes to date.  Three of 

these genes (ISPD, β3GALNT2 and GMPPB) were found to be causative of 

dystroglycanopathy phenotypes while 2 of these genes (DYNC1H1 and DCTN2) 

were found to be causative of distal spinal muscular atrophy (dSMA) phenotypes.  

Work on these genes is in progress at present with manuscripts describing the 

characterisation of these genes underway.  While I have dedicated a considerable 

effort to the exome sequencing project over the course of the past two years, this 

work was performed as part of a larger collaborative initiative with the Sanger 

Institute, and I have elected to concentrate the scope of my thesis on the collagen VI-

related myopathies, for which my input has been that of a lead investigator. 

 

The collagen VI-related myopathies are genetically heterogeneous, given that some 

patients with phenotypes consistent with collagen VI-related myopathies and with 

clearly decreased or absent collagen VI expression in muscle have no evidence of 

mutations in the known collagen VI genes (COL6A1, COL6A2 and COL6A3).  Based 

on the success of exome sequencing in uncovering novel causative genes in 

autosomal recessively inherited conditions, it seems probable that exome 

sequencing may uncover new causative genes in molecularly uncharacterised 

patients with clinical and muscle biopsy evidence suggestive of collagen VI 

deficiency.   

 

In filtering large volumes of sequencing data produced by exome sequencing in 

patients with clear autosomal recessive inheritance, variants occurring in 

heterozygosity are excluded.  The caveat when studying collagen VI-related 

myopathy patients is that de novo autosomal dominant inheritance has been 

recognised as a common mutational mechanism in the known collagen VI genes 

(COL6A1, COL6A2 and COL6A3) (section 1.4.1).  When the possibility of 

pathogenicity of heterozygous variants (such as in de novo autosomal dominant 
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inheritance) exists, the task of studying/filtering large quantities of exome sequencing 

data is more challenging.  In the setting of suspected de novo autosomal dominant 

inheritance, exome sequencing of parents is essential.  Submission of parental DNA 

along with proband DNA as so-called ‘trios’ is an exome sequencing strategy with 

has proven to be successful in identifying novel variants in known genes.182-184  

 

 

4.2.3  Discussion 

 

While our current understanding of variations in non-coding regions of the genome is 

limited, mutations in these regions may be disease causing.  For this reason, and 

given the potential of the price of whole-genome sequencing to continue to fall, 

whole-genome sequencing may start to be preferred over exome sequencing as a 

more time and cost-effective diagnostic tool.180  At present, however, technological 

challenges exist for both whole-genome and exome sequencing technologies which 

need to be overcome for high-throughput sequencing techniques to become viable 

as clinical diagnostic tools.  For either whole-genome or exome sequencing to be 

considered as tools for routine clinical use, high accuracy will be essential.185  There 

is a need for automated algorithms for annotating variants as well as improved 

means of determining the functional impact of rare or novel variants.186  Furthermore, 

standards and guidelines for testing and reporting of whole-genome and exome 

sequencing data will need to be established prior to these high-throughput 

sequencing technologies being offered by clinical laboratories as clinical tests.187   

 

Analogous to the need for an algorithm to arrive at a clinical and biochemical 

diagnosis of collagen VI-related myopathy, there is a need for an algorithm to ensure 

an accurate molecular diagnosis, as well. The starting point of a molecular diagnostic 

algorithm for collagen VI-related myopathies would be with conventional (Sanger) 

sequencing of the collagen VI genes (COL6A1, COL6A2 and COL6A3) performed on 

genomic DNA (gDNA).  Most commonly, the initial clinical evaluation of patients 

begins with a series of blood tests including creatine kinase.  For this reason, it is 

common for gDNA to be extracted from blood drawn at the time of initial evaluation.  

This gDNA can then be Sanger sequenced for COL6A1, COL6A2 and COL6A3.   

 

Given the risk of Sanger sequencing of missing heterozygous large deletions or 

duplications or deep intronic mutations affecting splicing, cDNA sequencing should 

be considered, particularly if no clear pathogenic mutation has been identified by 
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gDNA sequencing.  cDNA sequencing can identify some deletions and duplications 

and exon skipping events resulting from splicing mutations.  Indeed, this later 

mutational mechanism is common in the collagen VI-related myopathies (section 

1.4.1).  Since cDNA is synthesised from mRNA, effects of alternative splicing are 

evident.  Furthermore, the incomplete use of an alternative splice site can be 

revealed by reverse transcriptase polymerase chain reaction (RT-PCR) evidence of 

different sized bands.  Fibroblast cultures grown from skin biopsies are an ideal 

source of cDNA.  As cDNA sequencing plays an important role in complementing 

gDNA sequencing results, a skin biopsy is recommended for patients being 

evaluated for collagen VI-related myopathies.  Furthermore, skin biopsy serves as a 

source of fibroblasts for use in both collagen VI immunocytochemical studies as well 

as flow cytometry studies, which are important components of the collagen VI-related 

myopathy diagnostic algorithm (Chapter 3).   

 

As Sanger sequencing does not identify copy number variations (CNVs) resulting 

from large deletions, insertions, duplications or inversions, the use of chromosomal 

microarrays (array CGH or SNP array) should be considered in patients with clinical 

phenotypes and muscle biopsies studies convincing for collagen VI deficiency in 

whom mutations in COL6A1, COL6A2 or COL6A3 have not been identified (section 

4.1).  It is important to point out that at the present time neither whole-genome 

sequencing nor exome sequencing technologies are able to consistently identify copy 

number variations, although this shortcoming is starting to be addressed.  For this 

reason, it seems logical to pursue chromosomal microarray analysis before 

embarking on next-generation/high-throughput sequencing.   

 

The increased potential of finding causative mutations in known or novel genes in 

genetically uncharacterised collagen VI-related myopathies patients made possible 

by next generation sequencing is unprecedented.  While the advent of the era of 

genomic medicine is undoubtedly an exciting time, it is important that genetic 

evaluations in patients evaluated for collagen VI-related myopathies be pursued in a 

coordinated and careful manner.  To this aim, I am proposing an algorithm for genetic 

analyses in the collagen VI-related myopathies (Figure 17).  As this proposed 

algorithm indicates, next-generation/high-throughput sequencing should be reserved 

for patients in whom careful gDNA and cDNA sequencing of COL6A1, COL6A2 and 

COL6A3 have been performed as well as chromosomal microarray.  This algorithm 

demonstrates that skin biopsy serves a dual role as a source of cDNA as well as a 

means for skin fibroblast immunocytochemistry and flow cytometry studies, which 
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serve to complement the ongoing genetic studies being performed in patients 

evaluated for collagen VI-related myopathies.  Indeed, it was by following this genetic 

analyses algorithm (Figure 17) that the adult Bethlem myopathy patients described 

above (section 4.2.1), who pursued commercial whole-genome sequencing, arrived 

at a genetic confirmation of their diagnosis when gDNA sequencing revealed a 

causative mutation in the COL6A3 gene. 
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Figure 17: Algorithm for genetic analyses in the evaluation of patients for 

collagen VI-related myopathies. 

cDNA = complementary DNA 
CGH = comparative genome hybridisation 
CNVs = copy number variations 
gDNA = genomic DNA 
RT-PCR = reverse transcriptase polymerase chain reaction 
SNP = single nucleotide polymorphism 
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CHAPTER 5: HISTOLOGICAL AND IMMUNOHISTOCHEMICAL 

FINDINGS IN COLLAGEN VI DEFICIENT MUSCLE 
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5.1 HISTOLOGICAL FINDINGS IN COLLAGEN VI-RELATED 

MYOPATHIES 

 

The interpretation of muscle biopsies in the collagen VI-related myopathies can be 

challenging.  Unlike the congenital myopathies which are characterised by particular 

structural abnormalities such as nemaline rods, cores, cap-like structure, etc, specific 

morphological abnormalities are not seen on histological studies of muscle in patients 

with collagen VI-deficiency.  In fact, the muscle pathology is often not overtly 

‘dystrophic’ in the collagen VI-related myopathies.  Dystrophic muscle is typically 

considered to show evidence of necrosis and regeneration;188 however, necrosis 

frequently is not seen in collagen VI deficiency.  On haematoxylin and eosin (H&E) 

staining necrosis is visualised in fibres which stain palely and frequently are filled with 

phagocytes.  Necrotic fibres also stain positive for acid phosphatase stain.188   

 

Muscle fibre regeneration can be more difficult to determine.  It can be evident by 

basophilic fibres, which on H&E staining appear to have a blue-coloured cytoplasm 

related to high RNA content.  Vesicular nuclei (nuclei which are small, rounded and 

with a transparent nucleoplasm and prominent nucleoli) associated with basophilic 

fibres are felt to represent regeneration, as well.188  Small, basophilic fibres in muscle 

biopsies of collagen VI-related myopathy patients likely represent regenerating fibres; 

however, small non-basophilic fibres could represent atrophic fibres or fibres which 

have not matured.  Fibres in muscle biopsies of collagen VI deficient patients older 

than 6 months of age which stain positive for fetal myosin indicate pathologically 

immature fibres and are typically reflective of fibre regeneration, but fetal myosin can 

also stain nuclear clumps (darkly-stained nuclei which are shrunken in appearance 

and frequently occur in small groups in chronic muscular dystrophies or 

denervation188).  Fibres which stain with both fetal myosin and developmental 

myosin, however, typically represent regenerating fibres.   

 

Other histopathology features observed in muscular dystrophies including variation in 

fibre size, whorled fibres, split fibres, fibrosis and increased adipose tissue can be 

evident in muscle biopsies of collagen VI-related myopathy patients.  In an early 

paper about a condition labelled ‘Ullrich’s disease’ (as the categorisation of this 

condition as a ‘muscular dystrophy’ had not been clearly established), a histological 

and histochemical analysis of 5 muscle biopsies from patients clinically diagnosed 

with ‘Ullrich’s disease,’ reported variation in fibre size, internal nuclei and fibrosis in 
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all 5 biopsies with evidence of type I fibre predominance in 3 of the biopsies.  

Evidence of necrotic fibres was observed in only 2 of the 5 biopsies studied, 

however.48  Another study of muscle histopathology characteristics of two UCMD 

patients (one molecularly confirmed) reported evidence of neonatal myosin positive 

fibres only in the smallest fibres of the biopsies and a striking absence of 

developmental myosin staining on those fibres.  The authors of this study 

hypothesise that these findings may represent a problem with muscle fibre 

regeneration or maturation evident in collagen VI-related myopathies.189  A further 

histopathology study of molecularly confirmed UCMD patients revealed that early 

biopsies performed in UCMD patients (performed between 6 and 30 months of age) 

revealed evidence of fibre atrophy.  The authors propose that UCMD may be a 

primary atrophic myopathy rather than a primary dystrophic myopathy.190  The 

authors further state that this hypothesis would be consistent with the finding of 

normal to only mildly elevated CK values in UCMD patients.190  Indeed, unlike most 

CMDs including merosin-deficient CMD and the dystroglycanopathies in which CK 

elevation is pronounced, collagen VI-related myopathy patients have normal to mildly 

elevated CK levels.5, 191   

 

Histopathology findings may offer clues as to underlying pathophysiological 

mechanisms in the collagen VI-related myopathies.  In particular, if collagen VI 

deficiency results in deficient or abnormal muscle fibre regeneration, research 

strategies focussed on muscle regeneration- such as with satellite cells- may hold 

therapeutic promise for collagen VI deficiency.  Lack of cardiac involvement in 

collagen VI-related myopathy patients may suggest aberrant regeneration as a 

potential pathophysiological mechanism, particularly given the fact that skeletal 

muscle regeneration is mediated by satellite cells192-193 while cardiac myocytes lack 

this regenerative capacity given their absence of satellite cells or analogous type of 

precursor cells.194-195 

 

The occurrence of cores in the muscle biopsies of patients with collagen VI-related 

myopathy has been noted in the cohort of patients evaluated at our centre (Dubowitz 

Neuromuscular Centre);188 however, the frequency of this histopathology finding in 

the collagen VI-related myopathy patient population had not been studied.  Cores 

have been classically associated with the ‘core myopathies’ resulting from mutations 

in RYR1 or SEPN1.  Cores are not specific to the RYR1 or SEPN1-related core 

myopathies, however, and have been described in several conditions including 

neurogenic conditions and myopathies with a variety of genetic causes.  
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Ultrastructurally, cores are characterised by a decrease or an absence of 

mitochondria and a variable degree of Z-line streaming and myofibrillar 

disorganisation.  Minicores are characterised ultrastructurally by focal myofibrillar 

disorganisation and smearing of the Z-line.188  

 

For the purposes of diagnosis, however, it is the finding of reduced or absent 

collagen VI on immunohistochemical (IHC) studies, more than any particular 

histopathology finding in patients with collagen VI deficiency, which can effectively 

direct the diagnostic work-up towards sequencing of COL6A1, COL6A2 and 

COL6A3.  At times, however, basal lamina defects can be subtle in muscle biopsies 

of collagen VI-related myopathy patients, which can cause the interpretation of 

perlecan-collagen VI IHC double-labelling to be challenging.  The decision to proceed 

with muscle IHC studies (collagen VI-perlecan double-labelling) is often based on 

muscle histological findings in combination with available clinical information.  In this 

scenario, nonspecific muscle histological findings could result in a collagen VI-related 

myopathy patient’s diagnosis being delayed or even missed.  The aforementioned 

histopathology study of early muscle biopsies in molecularly confirmed UCMD 

patients highlighted the presence of fibre atrophy and fibre-type disproportion.190  

Indeed, the muscle histopathology findings of patients with collagen VI deficiency 

who are less than one year of age are highly suggestive of a myopathy.  It is 

precisely in these young children whose muscle biopsies may demonstrate 

nonspecific myopathic findings where the greatest challenge lies in identifying 

candidates for collagen VI immunohistochemical studies.  Delaying or missing a 

diagnosis of collagen VI-related myopathy could result in increased morbidity and 

possibly mortality in UCMD and intermediate collagen VI-related myopathy patients 

whose relentlessly decline in pulmonary function must be recognised and addressed 

in a timely manner (see Chapter 2). 

 

 

5.1.1 Materials and Methods 

 

I performed a comprehensive retrospective review of muscle biopsies in 15 collagen 

VI-related myopathy patients, as well as muscle biopsies of 7 RYR1 and 7 SEPN1-

related core myopathy patients, given the histopathology overlap of these conditions.  

I reviewed the clinical notes of the patients whose biopsies were assessed in order to 

ensure that only cases with molecularly confirmed diagnoses (with proven mutations 
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in COL6A1, COL6A2 or COL63) were included.  Biopsies were carefully reviewed by 

myself as well as by a neuropathologist (Dr Rahul Phadke), who was blinded to the 

biopsy findings originally reported by another pathologist (Professor Caroline Sewry).  

Dr. Phadke and I together assessed each muscle biopsy for the presence of 

internal/central nuclei, regeneration and necrosis, excessive connective tissue, fat, 

structural abnormalities, fibre typing and fibres staining positive for fetal myosin.  The 

general pattern of a biopsy was labelled ‘dystrophic’ if there was evidence of both 

necrosis and regeneration.  If necrosis and regeneration were not seen in the biopsy, 

but other findings such as increased internal/central nuclei and/or structural 

abnormalities were present, the biopsy was categorised as ‘myopathic.’  

 

 

5.1.2 Results 

   

Cores and/or minicores were present in the muscle biopsies of 12/15 (80%) of 

molecularly confirmed collagen VI-related myopathy patients studied (Table 4).  Both 

large and small fibres positive for fetal myosin were present in biopsies of collagen 

VI-myopathy patients in contrast to the presence of only very small (<5 microns) fetal 

myosin positive fibres typically seen in the muscle biopsies of RYR1-related core 

myopathy patients.  SEPN1-related myopathy muscle biopsies demonstrated 

patterns of fetal myosin positive fibres mimicking that of collagen VI-related myopathy 

muscle biopsies, however. 

  

The appearance of cores and minicores seen in collagen VI-related myopathy 

patients was similar to the cores and minicores seen in the biopsies of patients with 

RYR1-related myopathy or SEPN1-related myopathy (Figure 18).  While 8/15 (53%) 

of the collagen VI-related myopathy patient biopsies assessed were categorised as 

having a dystrophic appearance (based on evidence of necrosis and regeneration), 

none of the RYR1-related myopathy patient biopsies assessed and only 1/7 (14%) of 

SEPN1-related myopathy patient biopsies assessed was found to be dystrophic-

appearing.  Of note, while 2 RYR1-related myopathy biopsies had evidence of 

regenerating fibres, there was no evidence of necrosis to fulfil the criteria necessary 

for being considered dystrophic. 
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Patient 

Number 

Gender, age 

(years) at time 

of biopsy, 

phenotype  

General 

pattern 

Internal/ 

central 

nuclei 

Regeneration 

and Necrosis 

Excess 

Connective 

Tissue 

Fat Structural 

Abnormalities 

Frequency of 

Structural 

Abnormalities 

Fibre typing Fetal Myosin 

Collagen VI-Related Myopathy Patients 

1 F, 1, UCMD dystrophic few present none none none none 2 fibre type 

pattern 

small and 

large 

2 M, 2.2, UCMD Myopathic few absent endomysial, 

mild, focal 

absent cores + 

minicores 

patchy 2 fibre type 

pattern 

not assessed 

3 M, 2.3, UCMD dystrophic few present endomysial, 

mild, diffuse 

peri- and 

endomysial, 

moderate, 

patchy 

cores focal 2 fibre type 

pattern 

not assessed 

4 M, 2.5, UCMD dystrophic few present endomysial, 

mild, diffuse 

peri- and 

endomysial, 

moderate, 

patchy 

cores + 

unevenness 

patchy 2 fibre type 

pattern 

very small, 

small and 

large 

5 F, 3, UCMD dystrophic few present endomysial, 

mild, diffuse 

peri- and 

endomysial, 

moderate, 

patchy 

cores + 

unevenness 

patchy 2 fibre type 

pattern 

very small, 

small and 

large 

6 F, 3.2, Int dystrophic few present none none cores + 

unevenness 

focal 2 fibre type 

pattern 

very small, 

small and 

large 

7 M, 4, Int dystrophic frequent present endomysial, 

mild, diffuse 

endomysial, 

mild, patchy 

cores + 

minicores 

patchy 2 fibre type 

pattern 

very small, 

small and 

large 

8 M, 4, BM dystrophic few present endomysial, 

mild, focal 

endomysial, 

moderate, 

patchy 

cores + 

unevenness 

patchy 2 fibre type 

pattern 

small and 

large 

9 F, 4, UCMD Myopathic  absent peri- and 

endomysial 

peri- and 

endomysial 

none none 2 fibre type 

pattern 

small and 

large 

10 M, 4.8, UCMD Myopathic frequent absent peri- and 

endomysial, 

marked, 

diffuse 

peri- and 

endomysial, 

marked, 

diffuse 

cores + 

unevenness 

patchy 2 fibre type 

pattern 

small and 

large 

11 M, 4.8, UCMD dystrophic frequent present peri- and 

endomysial, 

moderate, 

diffuse 

 

peri- and 

endomysial, 

marked, 

diffuse 

unevenness patchy 2 fibre type 

pattern 

not assessed 
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Patient 

Number 

Gender, age 

(years) at time 

of biopsy 

General 

pattern 

Internal/ 

central 

nuclei 

Regeneration 

and Necrosis 

Excess 

Connective 

Tissue 

Fat Structural 

Abnormalities 

Frequency of 

Structural 

Abnormalities 

Fibre typing Fetal Myosin 

12 M, 7.3, UCMD Myopathic frequent absent peri- and 

endomysial, 

marked, 

diffuse 

peri- and 

endomysial, 

moderate, 

patchy 

cores + 

unevenness 

focal 2 fibre type 

pattern 

very small, 

small and 

large 

13 F, 11.8, UCMD Myopathic few absent peri- and 

endomysial, 

moderate, 

diffuse 

perimysial, 

mild, focal 

cores + 

unevenness 

patchy 2 fibre type 

pattern 

small and 

large 

14 M, 14.5, Int Myopathic few absent peri- and 

endomysial, 

moderate, 

patchy 

endomysial, 

marked, 

diffuse 

cores + 

unevenness 

patchy uniformity not assessed 

15 F, 18.6, UCMD Myopathic few absent peri- and 

endomysial, 

mild, diffuse 

peri- and 

endomysial, 

marked, 

diffuse 

cores + 

minicores + 

unevenness 

patchy 2 fibre type 

pattern 

very small, 

small and 

large 

RYR1-Related Core Myopathy Patients 

16 M, 1 Myopathic frequent present                        

(2 

regenerating 

fibres) 

peri- and 

endomysial, 

mild, diffuse 

peri- and 

endomysial, 

moderate, 

patchy 

none none uniformity very small 

and small 

17 F, 2.7 Myopathic occasional absent none none cores + 

minicores 

widespread type 1 

predominance 

not assessed 

18 F, 3.4 Myopathic occasional absent endomysial, 

mild focal 

perimysial, 

moderate 

diffuse; 

endomysial, 

mild, focal 

cores widespread type 1 

predominance 

very small 

19 M, 4.8 Myopathic frequent absent none none cores widespread type 1  

predominance 

very small 

20 F, 9.8 Myopathic few absent endomysial, 

mild focal 

perimysial, 

marked, 

diffuse 

cores + 

minicores 

patchy type 1 

predominance 

very small 

21 F, 12.4 Myopathic occasional absent none none cores focal type 1 

predominance 

very small 

and small 

22 F, 15.3 Myopathic very 

frequent 

present                  

(one 

regenerating 

fibre) 

 

endomysial, 

mild, focal 

perimysial, 

marked, 

diffuse 

cores + 

unevenness 

widespread 2 fibre type 

pattern 

very small, 

small and 

large 
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Patient 

Number 

Gender, age 

(years) at time 

of biopsy 

General 

pattern 

Internal/ 

central 

nuclei 

Regeneration 

and Necrosis 

Excess 

Connective 

Tissue 

Fat Structural 

Abnormalities 

Frequency of 

Structural 

Abnormalities 

Fibre typing Fetal Myosin 

SEPN1-Related Core Myopathy Patients 

  23 M, 2 Myopathic occasional absent none none minicores focal 2 fibre type 

pattern 

none 

24 F, 2.3 Myopathic occasional absent none none cores + 

minicores 

patchy 2 fibre type 

pattern 

very small 

25 M, 2.5 Myopathic occasional absent none none cores + 

minicores 

focal 2 fibre type 

pattern 

very small 

and large 

26 F, 4 Myopathic occasional absent perimysial, 

mild, diffuse 

peri- and 

endomysial, 

moderate, 

patchy 

cores + 

minicores + 

unevenness 

patchy 2 fibre type 

pattern 

very small, 

small and 

large 

27 M, 11.9 Myopathic occasional absent endomysial, 

mild, focal 

perimysial, 

marked, 

diffuse 

cores + 

minicores 

focal 2 fibre type 

pattern 

very small, 

small and 

large 

28 F, 12.6 Myopathic occasional absent none perimysial, 

mild, focal 

minicores widespread 2 fibre type 

pattern 

very small 

29 M, 37.3 dystrophic few present endomysial, 

mild, focal 

perimysial, 

marked, 

diffuse 

cores + 

minicores + 

unevenness 

patchy 2 fibre type 

pattern 

very small 

and large 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Table 4: Histopathology features of collagen VI-related myopathy muscle biopsies 

compared to RYR1-related core myopathy and SEPN1-related core myopathy muscle 

biopsies.  

 

 

BM = Bethlem myopathy 
F = female 
Int = Intermediate 
M = male 
UCMD = Ullrich congenital muscular dystrophy 
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Figure 18: Muscle histopathology findings of collagen VI-related myopathies 

compared to RYR1-related and SEPN1-related core myopathies. 

  

(A-D) Muscle biopsies from collagen VI-related myopathy patients 5 (P5), 7 (P7) and 

14 (P14) (see Table 4 above) demonstrating dystrophic-appearing findings including 

increased perimysial connective tissue and perimysial and endomysial fat (A), cores 

and minicores in a patchy distribution (B), cores and ‘unevenness’ in a patchy 

distribution (C) and very small (<5 microns), small and large fibres positive for fetal 

myosin (D).   

 

(E-F) Muscle biopsies from RYR1-related core myopathy patients 18 (P18) and 20 

(P20) (see Table 4 above) demonstrating widespread cores (E) and very small (<5 

microns) fibres positive for fetal myosin (F). 

 

(G-H) Muscle biopsies from SEPN1-related core myopathy patients 28 (P28) and 26 

(P26) (see Table 4 above) demonstrating widespread minicores (G) and very small 

(<5 microns), small and large fibres positive for fetal myosin (H). 

 

 

COX = cytochrome oxidase 
NADH-TR = nicotinamide adenine dinucleotide-tetrazolium reductase 
 
 
(Images courtesy of Dr Rahul Phadke, Dr Lucy Feng and Mr Darren Chambers, 
Dubowitz Neuromuscular Centre.) 
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5.1.3 Discussion 
 

This study of histological findings in collagen VI-related myopathy patients 

demonstrates that cores and/or minicores are common muscle histopathology 

findings in this patient population.  Given this information, it is essential to include 

collagen VI-related myopathies in the differential diagnosis for patients presenting 

with a clinical picture of congenital weakness and cores and/or minicores on muscle 

biopsy.  

 

The clinical phenotypes of infants with collagen VI-related myopathy and RYR1-

related core myopathy can have significant overlap.51  While muscle imaging findings 

can reveal different patterns of muscle involvement in these conditions, not all 

neuromuscular centres have expertise in muscle ultrasound, and young children are 

not good candidates for muscle MRI given the requirement of sedation to obtain such 

imaging.  In the absence of muscle imaging patterns, muscle histopathology findings 

can offer clues for distinguishing between collagen VI-related myopathy and RYR1-

related core myopathy.  In particular, patients with collagen VI-related myopathy 

typically have fibres of varying sizes positive for fetal myosin: small and large; or very 

small (<5 microns), small and large.  Patients with RYR1-related core myopathy 

classically have only very small (<5 microns) fibres positive for fetal myosin.  It is, 

however, important to note that those patients with autosomal recessively inherited 

RYR1-related core myopathy have histopathology findings more closely resembling 

collagen VI-related myopathy patients.  In particular, patient 22 in this series has 

autosomal recessively inherited RYR1-related core myopathy and has fetal myosin 

positive fibres of various sizes (very small, small and large), as frequently seen in the 

biopsies of patients with collagen VI-related myopathy. 

 

The clinical phenotypes of SEPN1-related core myopathy patients do not overlap 

with those of collagen VI-related myopathy patients to the degree which RYR1-

related core myopathy phenotypes do.  The histopathology findings in SEPN1-related 

core myopathy and collagen VI-related myopathy overlap significantly, however.  

While the muscle of SEPN1-related core myopathy is classically defined by the 

presence of cores and minicores, this study reveals that the structural findings of 

cores and minicores are common in collagen VI deficiency as well.  The role which 

patterns of fetal myosin positive fibres play in helping to distinguish between RYR1-

related core myopathy and collagen VI-related myopathy is not applicable to SEPN1-

related core myopathy, as both patients with SEPN1-related core myopathy and 
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collagen VI-related myopathy typically have muscle biopsy findings of very small (<5 

microns), small and large fibres positive for fetal myosin.  Consequently, 

distinguishing between SEPN1-related core myopathy and collagen VI-related 

myopathy relies heavily on clinical findings, as well as muscle imaging findings, 

which can be highly sensitive in identifying disease-specific patterns,129 and not on 

muscle histopathology findings. 

 

The fact that only one of the collagen VI-related myopathy patients included in this 

series has a clinical phenotype of Bethlem myopathy (P8) should be noted.  We have 

seen core-like regions in the muscle biopsies of further patients with Bethlem 

myopathy (unpublished data).  Given that the clinical course of BM patients is milder 

than that of UCMD and intermediate collagen VI-related myopathy patients, it is 

noteworthy that BM patients have the histopathology finding of cores in common with 

UCMD and intermediate patients. 

 

Finally, electron microscopy (EM) studies of the core and minicore-like regions seen 

with light microscopy in the muscle biopsies of collagen VI-related myopathy patients 

would be helpful to further characterise these structural abnormalities.  EM may 

reveal myofibrillar disorganisation, Z-line streaming and/or a decrease or absence of 

mitochondria corresponding to the cores and minicores seen with light microscopy.  

Some types of cores have only minimal myofibrillar disorganization evident with 

EM.188   

 

Studies aimed at understanding the pathophysiology underlying the formation of 

cores in RYR1-related core myopathy suggest that cores are due to increased 

calcium leak and resultant uncoupling of the muscle’s excitation-contraction 

mechanism.196  Further studies in a zebrafish model of RYR1-related core myopathy 

have demonstrated that calcium dysregulation results in mitochondrial dysfunction 

and, in particular, the production of mitochondrially derived reactive oxygen 

species.197  Studies performed in collagen VI-related myopathy patient-derived 

myoblast cultures and the Col6a1-/- mouse have demonstrated evidence of 

mitochondrial dysfunction.30, 89-90  Taken together, the occurrence of cores in the 

muscle biopsies of collagen VI-related myopathy patients potentially may offer further 

evidence of mitochondrial dysfunction as a pathophysiologic mechanism underlying 

collagen VI deficiency.  Furthermore, the establishment of cores as a common 

histopathology finding in the collagen VI-related myopathies will - in conjunction with 

clinical and muscle imaging findings (when available) - assist in refining the 
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challenging diagnostic pathway leading to a molecularly confirmed diagnosis of 

collagen VI-related myopathy. 

 
 
5.2 THE MYOMATRIX 

 

A mixture of non-collagenous glycoproteins and fibrous proteins comprise the muscle 

extracellular matrix (ECM) known as the ‘myomatrix.’  Together, these proteins act as 

a type of scaffold, providing structural integrity to the muscle fibre while also allowing 

‘myofascial force transmission’ (transmission of contractile forces generated by the 

muscle to tendons and, in turn, bones).198-200  Histologically, the sheet-like muscle 

ECM or myomatrix is the basement membrane surrounding each muscle fibre 

(endomysium), muscle fascicle (perimysium) as well as the muscle as a whole 

(epimysium).  Embedded within the myomatrix are nerve branches, capillaries, 

fibroblasts, macrophages and satellite cells.11, 192-193  

 

The basement membrane can be visualised by light microscopy and is composed of 

the basal lamina as well as an external reticular lamina (fibrillar reticular layer).  

Ultrastructurally, the basal lamina contains an electon-dense layer, the lamina densa, 

and a less opaque inner layer called the lamina rara, which have been identified by 

electron microscopy.201  Between the basal lamina and the sarcolemma lie satellite 

cells, the resident muscle progenitor cells.192-193, 202-203  The basal lamina is composed 

of non-fibrillar collagen (collagen IV), non-collagenous glycoproteins (laminins and 

nidogen) and proteoglycans (perlecan, decorin, biglycan).  Collagen IV, as the most 

abundant protein of the basal lamina, and laminins form distinct self-assembly 

networks.202  Covalent cross-links stabilise the collagen IV networks which are linked 

via nidogen to the laminin networks.204  Together, these basal lamina proteins contain 

cell surface recognition sites for: (1.) binding other basal lamina components, (2.) 

anchoring reticular lamina components to the basal lamina and (3.) serving as 

ligands for transmembrane receptors such as integrins and dystroglycans.  In this 

manner, the basal lamina proteins link the muscle fibre cytoskeleton to the reticular 

lamina.202, 205-206   

 

The reticular lamina includes collagens (III, V, VI, XV, XVIII) and glycoproteins 

including fibronectin which lie within a proteoglycan-rich substance and bind to other 

reticular lamina proteins as well as basal lamina proteins, promoting the scaffolding 

of the ECM.  Besides promoting muscle structural stability, there is expanding 
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evidence that the myomatrix plays important roles in muscle maintenance, 

regeneration and developmental processes including myogenesis and 

synaptogenesis, predominantly through signalling pathways.202, 205, 207   

 

 

5.2.1 Collagen VI within the myomatrix 

 

Resulting from a decrease or deficiency of the extracellular matrix protein collagen 

VI, the collagen VI-related myopathies are considered disorders of the muscle ECM 

or myomatrix.  Collagen VI is expressed in the extracellular matrices of several 

tissues and tissue components including blood vessels, nerves, skin, tendons, 

cartilage, intervertebral discs, lenses and internal organs.208-209  In blood vessels and 

skin, collagen VI microfibrils associate with basement membranes, where they 

appear to function as anchors.35, 209  An immunoelectron microscopy study (using 

gold-labelled secondary antibodies to a mouse antibody which recognises the helical 

domain of human collagen VI23) revealed a significant increase in the concentration 

of type VI collagen surrounding the basement membrane of blood vessels, nerves 

and fat cells.209  In cells without basement membranes, however, collagen VI has 

been found to have a pericellular distribution, such as around tendon fibroblasts.210 

 

The exact mechanisms by which altered interactions of the myomatrix with muscle 

result in myomatrix-type symptoms, or mixed connective tissue and muscle 

symptoms, remain unclear.  It is interesting to note that connective tissue disorders 

resulting from various extracellular matrix protein deficiencies such as Ehlers-Danlos 

syndrome (EDS) (resulting from tenascin X deficiency) and Marfan syndrome 

(fibrillin-1 deficiency) can be associated with muscle atrophy and weakness, which 

might suggest a type of inter-dependency between the myomatrix and the muscle 

itself for structural integrity as well as function.  These proteins, like collagen VI, are 

expressed in the ECM of muscle as well as in tendons and joint capsules,211-212 which 

may offer one explanation why patients with deficiencies in these proteins can 

present with both muscle weakness, as well as joint hyperlaxity and contractures.146   

 

Neuromuscular symptoms are not only seen in EDS subtypes which result from 

primary deficiencies of extracellular matrix proteins, however.  FKBP14, a recently 

described gene which causes a form of EDS associated with sensorineural hearing 

loss, codes for an endoplasmic reticulum (ER) protein.  In vitro studies performed in 
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skin fibroblasts demonstrate that a deficiency of FKBP14 disrupts the composition of 

the extracellular matrix proteins including collagen VI.213  In particular, the clinical 

phenotypes of patients with mutations in FKBP14 share similarities with UCMD 

patients including follicular hyperkeratosis, hypertrophic and atrophic scarring, joint 

hypermobility, kyphoscoliosis, congenital hypotonia, weakness and delayed motor 

development.  Muscle biopsies from patients with this EDS subtype demonstrate 

findings which range from variation in fibre size and areas of decreased oxidative 

staining (core-like areas) to fibre atrophy and increased fat.  The authors of this study 

hypothesise that FKBP14’s role in protein folding in the ER may affect the assembly 

of the extracellular matrix of skin, joints, muscles, vessels, ears and eyes and, in this 

way, underlie the clinical manifestations of this EDS subtype.213 

 

The collagen VI myopathies are indeed a clinical hybrid of connective tissue and 

muscle conditions. Given the expression of collagen VI in the extracellular matrix of 

muscle, tendons and cartilage and skin, it seems plausible that a primary deficiency 

of collagen VI may alone account for the muscle, joint and skin manifestations seen 

in patients with collagen VI-related myopathies.  What is more difficult to explain, 

however, is how even in patients with completely absent collagen VI expression, 

vascular pathology has not been encountered, as collagen VI is also expressed in 

the extracellular matrix of vessels.  This finding suggests that the absence or 

aberrant formation of collagen VI does not necessarily result in pathology in all 

tissues where collagen VI is expressed and points toward an apparent tissue-specific 

function of collagen VI.  This theory would not only help to explain the absence of 

vascular pathology, but also might help to explain the lack of cardiac and nerve 

involvement in collagen VI-related myopathies despite the recognised expression of 

collagen VI in the heart214 and nerves.209  

 

 

5.2.2 Collagen VI mouse model studies of tendons and cartilage 

 

The collagen VI-related myopathy mouse model (Col6a1-/-) has demonstrated 

evidence of abnormal tendon morphology, namely disrupted cellular organisation and 

fibril formation.  Biomechanical analyses of Col6a1-/- tendons have revealed a 

reduction in maximum load as well as stiffness when compared to wild type 

tendons.87  Further Col6a1-/- mouse studies have revealed evidence of osteoarthritis 

developing at an accelerate rate, suggesting that collagen VI plays an important role 

in the mechanical stabilisation of the pericellular matrix of articular cartilage.215  The 
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extent to which these findings may account for the hypermobility or hyperlaxity of the 

distal joints and proximal joint contractures seen in humans with collagen VI 

deficiency is unknown.  

 

 

5.2.3 Integrin α7β1: a myomatrix neighbour 

 

Integrin α7β1 is known to play important roles in anchoring the intracellular 

cytoskeleton to the extracellular matrix as well as in signalling cascades.  Integrins 

are important transmembrane glycoproteins of heterotrimeric structure, containing 

non-covalently associated α (120-170 kDa) and β (90-100 kDa) subunits.11, 205, 216  

Integrin α7β1 is present in both skeletal and cardiac muscle and is known to bind 

laminin.217  Intracellularly, integrin α7β1 binds to cytoskeletal proteins including 

vinculin, talin and α-actinin.204  Extracellularly, it binds to laminin α2 and may interact 

with collagen IV and fibronectin, which in turn binds to tenascin X.   

 

ITGA7 codes for α7 integrin, which through developmentally regulated RNA splicing 

results in different isoforms (3 cytoplasmic domains: α7A, α7B and α7C; 2 alternative 

extracellular domains: α7X1 and α7X2).218-221  The α7A and α7B isoforms are 

reportedly concentrated at myotendinous junctions222 and also are present at the 

sarcolemmal membrane and in neuromuscular junctions.220  In particular, the α7B 

integrin isoform is expressed in skeletal and cardiac muscle as well as in the 

vasculature and in the central nervous system.223-225  The β1D integrin isoform is 

specifically expressed in skeletal and cardiac muscle where it associates with the α7 

subunit and is found at the costameres as well as the myotendinous and 

neuromuscular junctions and in cardiac muscle where it localises to costameres and 

intercalated discs.226-229  The expression of α7B is developmentally regulated in 

myocytes and reportedly not fully expressed in skeletal muscle until 2 years of 

age.188, 230   

 

Studies have suggested complementary structural and functional roles of dystrophin 

and integrin α7B, particularly given the upregulation of integrin α7B in the dystrophin-

deficient skeletal muscle of patients with Duchenne muscular dystrophy (DMD) and 

mdx mice.231  Interestingly, increased expression of integrin α7B was even noticed in 

DMD patients less than 2 years of age.230  Dystrophin, like integrin α7B, mediates the 

connection of the muscle cytoskeleton with the extracellular matrix, although from a 

position along the cytoplasmic side of the muscle plasma membrane.  This linkage 
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occurs via the dystrophin glycoprotein complex (DGC), a complex of glycoproteins 

including dystroglycans, sarcoglycans and syntrophins.232 

 

Conversely, studies of laminin α2 deficiency performed in both human and murine 

muscle (dy-/- and dy2J-/- mouse models) have demonstrated a secondary decrease in 

integrin α7β1 expression.221, 230, 233  Furthermore, a study of transgenic 

overexpression of integrin α7 in the dyW-/- mouse model of merosin-deficient CMD 

revealed a reduction in muscle pathology, maintenance of muscle strength and 

function and an improvement of life expectancy.234    

 

In a study of 117 patients with ‘unclassified’ congenital myopathy and congenital 

muscular dystrophy, 3 patients (ages 4 years, 11 years and 8 months, respectively) 

were found to have evidence of integrin α7 deficiency (using antibodies against α7A, 

α7B and β1D) and normal laminin α2 expression.235  These patients were originally 

described with phenotypes consistent with congenital myopathies; however, a follow-

up paper reported that the subsequent severe clinical course of one of the patients 

was more consistent with a congenital muscular dystrophy than a congenital 

myopathy.236  Mice  lacking integrin α7 demonstrate a progressive muscular 

dystrophy as well as a disruption of myotendinous junctions.237  

 

In a further, large study evaluating 210 muscle biopsies obtained from patients with 

muscular dystrophies and myopathies of unknown aetiology, integrin α7B expression 

was decreased in 35 patients (17%) and absent in 6 patients (3%).238  Interestingly, 

all 6 patients with absent integrin α7B expression were muscular dystrophy patients 

(based on muscle biopsy evidence of muscle fibre degeneration and regeneration) 

with 4 of the patients more than 2 years of age at the time of muscle biopsy and 2 of 

the patients less than 2 years of age at the time of biopsy.  Sequencing for integrin 

α7B mutations revealed only one ITGA7 missense mutation with no further mutation 

identified on the second allele.  Based on these results, this study concluded that a 

secondary integrin α7 deficiency is common in muscular dystrophies and myopathies 

of unknown aetiology.238   

 

A further study evaluated integrin α7 expression in a cohort of unsolved congenital 

muscular dystrophy patients and found that 31/45 patients (69%) had altered 

expression of integrin α7.  Twelve patients (27%) had completely absent integrin α7 

expression; however, none of these patients were found to have mutations in 

ITGA7.8  This is similar to our experience in a cohort of unsolved congenital 
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myopathy patients studied at our neuromuscular centre.  In particular, 14/58 (24%) 

congenital myopathy patients of unknown genetic aetiology (whose clinical 

phenotypes I studied in detail and who were over 2 years of age at the time of 

biopsy) had absent sarcolemmal integrin α7B expression (unpublished results; Dr 

Francesco Conti).   

 

 

5.2.4 Hypothesis on the effect of collagen VI deficiency on integrin α7  

         expression 

 

While integrin α7β1 is not known to bind to collagen VI, other members of the integrin 

family, including integrins α1β1 and α2β1, may mediate cell binding to collagen VI, 

and integrins α5β1 and αvβ3 bind to collagen VI via a hidden Arg-Gly-Asp motif.239-240  

Given that integrin α7β1 is an important transmembrane protein which links the 

extracellular matrix and the intracellular cytoskeleton, I hypothesised that the 

myopathic findings evident on histological studies of collagen VI-related myopathy 

patients could be exacerbated by a generalised destabilisation of the myomatrix 

resulting from collagen VI deficiency.  While studies of Duchenne muscular dystrophy 

(both in patient muscle and muscle from the mdx mouse) have reported an increased 

expression of integrin α7B, studies of models of merosin-deficient CMD have 

revealed a decreased expression of integrin α7B in the absence of the myomatrix 

protein laminin-α2.  Since collagen VI, like laminin-α2 is an extracellular matrix 

protein, I hypothesised that integrin α7B would similarly be decreased in the setting 

of collagen VI deficiency.  Furthermore, I hypothesised that a concomitant decrease 

in the transmembrane protein integrin α7B may result in further destabilisation of the 

myomatrix, and thereby contribute to the muscle pathology seen in patients with 

collagen VI deficiency.   

 

To investigate this hypothesis, I (in collaboration with Dr Francesco Conti, see 

Collaborators, page 5) performed immunohistochemical studies looking at integrin 

α7B expression in muscle biopsies from patients with confirmed mutations in 

COL6A2.  Integrin α7B expression in collagen VI deficient muscle has not been 

reported in the literature.  Furthermore, considering the possible therapeutic 

implications of potentially decreased integrin α7 in collagen VI-related myopathies, 

given the findings of transgenic overexpression of integrin α7 in a merosin-deficient 
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CMD mouse model,234 this hypothesis seemed to be an important research question 

to study. 

 

 

5.2.5 Materials and Methods 

 

I obtained clinical information from two patients with autosomal recessively inherited 

UCMD followed in our neuromuscular centre (the Dubowitz Neuromuscular Centre) 

as part of an ethically approved study.  Sanger sequencing of the collagen VI genes 

was performed in a diagnostic laboratory (Guy’s and St Thomas’ DNA Laboratory, 

London) on genomic DNA extracted from blood taken from the patients and their 

unaffected parents using single condition amplification/internal primer (SCAIP) 

sequencing as previously reported.74  Consent was obtained for performing 

diagnostic as well as research studies on the muscle biopsy sample for both patients.  

 

Muscle biopsy sections were stained and immunolabelled as described.241  Collagen 

VI immunohistochemical studies were performed using monoclonal antibodies to 

collagen VI, and double-labelling with perlecan was performed as described.118  

Further immunohistochemical staining was performed using collagen VI α1, α2 and 

α3 chain-specific antibodies (in collaboration with Dr L Feng and Mr D Chambers; 

see Collaborators, page 5) and integrin α7B antibodies (in collaboration with Dr F 

Conti, see Collaborators, page 5).  The properties of the antibodies used are listed 

below (Table 5).  Muscle sections were viewed with an epifluorescence microscope: 

Leica Digital Module R microscope with MetaMorph software (Universal Imaging). 
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Antibody Clonality Source Epitope(s) Company 

collagen VI monoclonal mouse not mapped 
Millipore                 

(MAB3303) 

collagen VI monoclonal mouse not mapped 
Millipore                  

(MAB1944) 

collagen VI α1   polyclonal rabbit not mapped 
Lifespan 

Biosciences        
(LS-B696) 

collagen VI α2  monoclonal mouse not mapped 
Abnova                 

(H00001292-M01) 

collagen VI α3  polyclonal rabbit not mapped 
Sigma-Aldrich  
(HPA010080) 

perlecan                   
(anti-heparan sulfate 

proteoglycan) 
monoclonal rat 

perlecan 
domain 4 

Merck Millipore    
(MAB1948) 

integrin α7B polyclonal rabbit 
(intracellular 

domain) 
(gift from Dr Ulrike 

Mayer) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Properties of Antibodies. 
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5.2.6 Results 

 

An infant girl (patient 30) with a phenotype of UCMD was found to have autosomal 

recessive loss-of-function mutations in COL6A2 [c.1170+1delG in intron 23 and 

c.2386A>T (p.Lys796X) in exon 26], which parental testing confirmed were present in 

trans.  A boy (patient 31) with a phenotype of UCMD was found to also have 

autosomal recessively COL6A2 mutations (homozygous mutation: r.2839_2850del; 

p.Leu947Gly950del).  (See Table 6 for details of clinical phenotypes.) 

 

Patient 30 had a large muscle biopsy performed at 6 months of age at an outside 

hospital which was sent to our neuromuscular centre for further analyses.  

Haematoxylin and eosin (H&E) staining of this muscle biopsy revealed the presence 

of an intramuscular nerve as well as an artery and a vein (Figure 19).  There was 

evidence of variation in fibre size and excess connective tissue.  Oxidative stains 

revealed evidence of core-like areas, some fibres with central accumulation of 

mitochondria as well as fibres with a lobulated-like appearance.  There were fetal 

myosin positive fibres varying in size from very tiny fibres (<5 microns) to large fibres.  

Immunohistochemical double-labelling with collagen VI and perlecan antibodies 

revealed a complete absence of collagen VI expression at the sarcolemma.  While 

there was no evidence of collagen VI expression (with either antibody) on the 

intramuscular nerve, the vessels present in the muscle biopsy demonstrated striking 

collagen VI expression (Figure 20), with particularly strong expression along an 

intramuscular artery (Figure 21). 

 

Patient 31 underwent a muscle biopsy at our neuromuscular centre at 2 years of age.  

H&E staining revealed variation in fibre size and occasional split fibres.  There was 

evidence of excess fat and connective tissue.  Oxidative stains revealed core-like 

regions.  While immunohistochemical double-labelling with collagen VI and perlecan 

demonstrated decreased collagen VI expression at the sarcolemma, collagen VI 

expression was not entirely absent (not shown).   
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Patient Sex 
Current 

age 
(years) 

Collagen VI mutations Motor Function Contractures Hyperlaxity Skin Findings 

30 Female 1.6 
COL6A2 [c.1170+1delG in 
intron 23 and  c.2386A>T 
(p.Lys796x) in exon 26] 

antigravity limb strength; 
unable to sit without 

support 

elbows and 
knees 

significant at 
distal joints 

none 
appreciated 

31 Male 10.6 
COL6A2 (homozygous 

mutation: r.2839_2850del; 
p.Leu947Gly950del) 

sat at 10 months; crawled 
at 22 months; walked with 

gaiters at 3 years; took 
first independent steps at 

5 years; presently 
wheelchair dependent 

elbows and 
knees 

significant at 
distal joints 

follicular 
hyperkeratosis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Patient clinical phenotypes and corresponding COL6A2 genotypes for 

two autosomal recessive Ullrich CMD patients. 
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(Courtesy of Dr Rahul Phadke and Mr Darren Chambers, Dubowitz Neuromuscular  
  Centre.) 

 

 

 

 

 

 

 

 

 

 

 

 

(Courtesy of Dr Rahul Phadke and Mr Darren Chambers, Dubowitz Neuromuscular  
  Centre.) 

 

Figure 19: H&E staining of muscle of patient 30.   

 

There is evidence of an intramuscular nerve (arrow), artery 

(arrowhead) and vein (asterisk).   

 

Figure 20: Collagen VI Immunohistochemical studies of the muscle biopsy of 

patient 30. 

 

Staining with collagen VI antibody (MAB 1944) (A), perlecan antibody (B) and 

double-labelling with collagen VI (green) and perlecan (red) antibodies (C), 

demonstrating an absence of collagen VI expression along the sarcolemma with 

retention of collagen VI expression on intramuscular vessels.   
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(Courtesy of Dr Rahul Phadke and Mr Darren Chambers, Dubowitz Neuromuscular  
  Centre.) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Collagen VI immunohistochemical studies of a muscle biopsy sample 

from patient 30 containing an intramuscular nerve, artery and vein.   

 

Staining with collagen VI antibody (MAB 3303) (A), perlecan antibody (B) and double-

labelling with collagen VI (red) and perlecan (green) antibodies (C), demonstrating an 

absence of collagen VI expression along the sarcolemma and along the large 

intramuscular nerve with retention of collagen VI expression on an intramuscular 

artery (arrow). 
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Further immunohistochemical staining with collagen VI chain-specific antibodies was 

undertaken (Figure 22) to elucidate whether the retained expression of collagen VI 

was due to α1 and/or α3 chains.  Given patient 30’s compound heterozygous 

mutations in COL6A2 (a missense mutation predicted to result in aberrant splicing in 

combination with a stop mutation on the other allele), one would expect that the 

collagen α2 chain would not be formed.  Furthermore, given the reliance of the α1 

and α3 chains on the presence of the α2 chain to form a heterotrimeric monomer in 

the initial step of the complex assembly process of the collagen VI protein, the 

absence of one of the three collagen VI chains would be predicted to result in no 

production of the collagen VI tetramer, termed a ‘functional null.’   

 

One potential explanation for the retained expression of collagen VI along the blood 

vessels in patient 30 could be that of tissue-specific collagen VI expression resulting 

from COL6A2 splice variants.  As stated in Chapter 1 (section 1.4.2), alternative 

splicing of COL6A2 results in 3 recognised collagen VI α2 chains: α2C2, α2C2a and 

α2C2a’.84  Our present understanding of alternative splicing in COL6A2 indicates that 

the ‘variable’ region (where alternative splicing occurs) begins in exon 28.84  Patient 

30’s deletion in intron 23 of COL6A2 is predicted to cause aberrant splicing while her 

exon 26 mutation causes a premature stop.  Given the location of these mutations 

upstream from exon 28, the known COL6A2 splice variants (α2C2, α2C2a and 

α2C2a’) would not be responsible for the apparent collagen VI expression seen along 

intramuscular blood vessels in patient 30.     

 

In theory, however, the formation of a COL6A2 splice variant (by a splice variant 

beyond those variants recognised to date) might explain how residual collagen VI α2 

expression could occur.  Furthermore, the mRNA variants resulting from alternative 

splicing demonstrate variable expression between different tissue types242-244 which 

may explain how collagen VI expression is present only on the intramuscular vessels 

and not on the sarcolemma or the intramuscular nerves.  Some authors have 

hypothesised that alternative splicing of COL6A2 may result in different functional 

properties of collagen VI α2.245 Alternative spliced COL6A2 hypothetically could bind 

with collagen VI α1 and α3 chains, enabling the formation of the collagen VI tetramer. 

 

Interestingly, staining with an α1 chain-specific antibody revealed subtle residual 

expression on intramuscular vessels only (with no expression along the 

sarcolemma).  No expression of the α2 chain or the α3 chain was appreciated either 

along the sarcolemma or on intramuscular vessels (Figure 23).  The apparent 
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(Courtesy of Dr Rahul Phadke and Mr Darren Chambers, Dubowitz Neuromuscular  
  Centre.) 

 

 

 

 

 

 

 

 

 

 

Figure 22: Immunohistochemical studies with collagen VI chain-specific 

antibodies.   

 

Staining of control muscle with antibodies for collagen VI α1 (A), α2 (B) and α3 (C).  

Staining of muscle from patient 30 with antibodies for collagen VI α1 (D), α2 (E) and α3 

(F).  There is evidence of some expression of the collagen α1 chain along an 

intramuscular vessel of patient 30 (D - arrow). 
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expression of the collagen VI α1 antibody along the vessel wall (Figure 23) is 

challenging to explain.  Cross-reactivity of the of the collagen VI antibody to another 

protein expressed along the vessel wall is one possibility, which seems probable 

given that the collagen VI α1 antibody used is a polyclonal antibody, and the epitopes 

of this antibody are not mapped (Table 5). 

 

Staining with an integrin α7B antibody (Table 5) was performed on muscle from 

UCMD patients 30 and 31 and compared to staining in control muscle (from a 

teenage individual without neuromuscular disease).  Integrin α7B expression was 

notably increased in patient 30 and in patient 31 (Figure 23).  This result contradicted 

my hypothesis of secondarily decreased integrin α7 expression in collagen VI 

deficiency.  Furthermore, it is important to note that patient 30’s muscle biopsy was 

performed at 6 months of age, which is an age when the developmentally regulated 

expression of integrin α7B is not typically evident (see section 5.2.3).188, 230  Patient 

31 was 2 years at the time of his muscle biopsy, and integrin α7B expression is also 

notably increased in his muscle biopsy (Figure 23). 
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              (Courtesy of Dr Francesco Conti, Dubowitz Neuromuscular Centre.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Expression of integrin α7B in patients with autosomal recessively 

inherited Ullrich congenital muscular dystrophy.   

 

Control muscle (from a teenage individual without neuromuscular disease) reveals 

normal integrin α7B expression (A).  Muscle from UCMD patient 30 at 6 months of age 

demonstrates apparent upregulation of integrin α7B expression somewhat uniformly (B) 

while muscle from UCMD patient 31 at 2 years of age demonstrates apparent patchy 

upregulation of integrin α7B expression. 
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5.2.7 Discussion 

 

In UCMD patient 30 a complete absence of collagen expression would be expected, 

given her compound heterozygous loss-of-function mutations (namely a deletion 

resulting in aberrant splicing and a stop mutation) which result in a state of ‘functional 

null’ for the collagen VI protein.  The apparent retention of collagen VI expression, 

however, on patient 30’s intramuscular vessels in the setting of absent sarcolemmal 

expression (using monoclonal antibodies purported to bind to the collagen VI 

tetramer) is striking.  One potential explanation is that of COL6A2 splice variants 

which could have tissue-specific expression.  Given that the epitope for these 

collagen VI antibodies have not been mapped (Table 5), there remains a possibility 

that these antibodies are cross-reacting with vascular proteins.   

 

It is important to note, however, that apparently retained expression of collagen VI on 

intramuscular vessels in the setting of absent sarcolemmal expression is not 

unprecedented, as this finding has been described in two UCMD patients with absent 

sarcolemmal expression of collagen VI using a monoclonal antibody for the triple 

helical domain of collagen VI (Fuji Chemical, Japan).189  Interestingly, one of UCMD 

patients reported with these similar immunohistochemical findings harboured a 

homozygous COL6A2 mutation (26 base pair deletion in exon 14, resulting in a 

frameshift and a premature stop codon).246 

 

We undertook further studies, using collagen VI chain-specific antibodies and found 

evidence of subtle expression of the collagen VI α1 chain on an intramuscular vessel 

(Figure 22).  Again, antibody cross-reactivity remains possible especially in light of 

the fact that the collagen VI α1 antibody is polyclonal.  The use of other chain-

specific antibodies is necessary for determining significance of this finding.  In 

particular, given the strong expression of collagen VI α1, α2 and α3 on the control 

muscle, the expression of the collagen VI α1 antibody appears subtle and certainly 

not as strong as the apparent expression of collagen VI on the intramuscular vessels 

with collagen VI antibodies (Table 5), which likely bind to collagen VI tetramers, 

although the epitopes of the two monoclonal collagen VI antibodies used are not 

mapped. 

 

As these results are based on the assessment of a limited number of cases, further 

studies are necessary using different collagen VI antibodies in order to evaluate 



 125   

 

whether or not this result is simply reflective of antibody cross-reactivity.  To date, 

tissue-specific expression of collagen VI has not been reported; however, detailed 

studies evaluating collagen VI expression in muscle, nerve, skin and tendons in 

patients with collagen VI deficiency have not been performed.  Furthermore, even in 

the absence of known tissue-specific expression in wildtype collagen VI α2 

transcripts, tissue-specific expression of collagen VI α2 splice variants are predicted 

to occur.245  Patients with complete absence of sarcolemmal collagen VI expression, 

or collagen VI ‘functional nulls’ afford an opportunity to further investigate the 

question of tissue-specific collagen VI expression.     

 

As stated above (section 5.1.1), it is intriguing that patients with collagen VI 

deficiency have not been reported to manifest vascular pathology given that collagen 

VI is expressed in the extracellular matrix of blood vessels.  Instead, the expression 

of collagen VI in muscle, tendons and skin appears to play a definitive role in the 

phenotypic characteristics manifested in patients with collagen VI deficiency.  In 

particular, a tendency towards vascular fragility and bleeding has not been noted in 

collagen VI-related myopathy patients nor reported in the collagen VI mouse model 

(Col6a1-/-).86  In a cohort of 57 molecularly confirmed collagen VI patients, which I 

studied in the United States, only one patient had a history significant for vascular 

pathology.  That particular patient had a clinical phenotype of UCMD and 

unfortunately suffered a fatal cerebral aneurysmal bleed at the age of 40 years 

(unpublished data).  As cerebral aneurysms can be inherited independently, it is not 

possible to determine from one case whether or not there is an association between 

collagen VI deficiency and vascular malformations.  

 

It remains possible that if a proclivity towards vascular events does exist in collagen 

VI-related myopathy patients, such vascular vulnerability might be a function of 

patient age and/or the severity of the collagen VI deficiency.  Due to the fact that the 

UCMD patient population I studied in the United States was skewed toward young 

ages, with all but 2 patients below 25 years of age, an accurate study of prevalence 

of associated vascular pathology could not be performed.  While screening for the 

presence of cerebral vascular malformations in our collagen VI-related myopathy 

cohort was considered, the complicated issues surrounding magnetic resonance 

imaging in this patient population (including the need for non-invasive ventilation to 

lie recumbent for the duration of an MRI scan and the high likelihood of metallic 

spinal instrumentation) precluded this screening from being carried out.  With this in 

mind, and given the lack of data surrounding the role of collagen VI in the 
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extracellular matrix of vessels, in vivo studies of collagen VI vascular expression 

would be valuable and could be performed in muscle biopsy samples from collagen 

VI related myopathy patients. 

 

Studies of integrin α7B expression in human muscle have revealed an absence of 

integrin α7B expression in the sarcolemma until 2 years of age but strong staining of 

integrin α7B in vessels (medium calibre/non-capillary) in fetal skeletal muscle.230  

Furthermore, whilst integrin α7β expression was found to be reduced along the 

sarcolemma of patients with laminin α2 deficiency, integrin α7B expression was 

evident on intramuscular vessels.230  Integrin α7β expression on intramuscular 

vessels appears to be present prior to the sarcolemmal expression of integrin α7B 

and sustained in the absence of sarcolemmal laminin α2, suggesting both 

developmental regulation and tissue-specific expression.  While collagen VI is not 

known to be developmentally regulated, the question of tissue-specific expression 

has not been fully explored.   

 

The increased expression of integrin α7B in collagen VI-deficiency is a finding which 

offers evidence, although preliminary, towards disproving my hypothesis of 

secondarily decreased expression of integrin α7B in collagen VI-related myopathies.  

While both collagen VI and laminin α2 are myomatrix proteins, it is important note 

that integrin α7B is a receptor of laminin α2 247 but is not known to be a receptor for 

collagen VI.  It is also important to point out that the binding between integrin α7B 

and laminin α2 is functional as well as mechanical, which is highlighted by the fact 

that the degree of integrin α7B reduction observed in the muscle of laminin α2 

deficient CMD patients was not correlated with the degree of laminin α2 

expression.230   

 

Clearly, these results are only preliminary, and studies of integrin α7B expression 

must be performed in a larger sample of muscle obtained from collagen VI-related 

myopathy patients, with collagen VI deficiency resulting from different mutational 

mechanisms and mutations occurring in the three different collagen VI chains [α1(VI), 

α2(VI) and α3(VI)].  If, indeed, a more extensive study of integrin α7B expression in 

collagen VI deficiency replicates these results, then transgenic overexpression of 

integrin α7B would not be considered a viable therapeutic strategy for the collagen 

VI-related myopathies.  Various strategies aiming at stabilising the transmembrane 

bridge which links the muscle cytoskeleton to the extracellular matrix have been 

undertaken.204  In particular, the transgenic overexpression of integrin α7 in the dyW-/- 
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mouse model for laminin α2 deficiency has demonstrated promising results.234 Whilst 

these preliminary results of integrin α7B upregulation in collagen VI deficient muscle 

raise uncertainty about the potential therapeutic role of integrin α7β in collagen VI 

deficiency, the potential role of upregulation of other myomatrix proteins in stabilising 

the cytoskeleton-extracellular matrix link should be considered. 

 

Decorin and biglycan are leucine-rich proteoglycans of the myomatrix which bind 

close to the N terminus of the collagen VI triple helical region.33  Furthermore, 

biglycan has been found to promote the organisation of collagen VI into a hexagonal-

like network.248  Since biglycan binds to collagen VI and also interacts with the 

dystroglycan complex as well as the sarcoglycan complex, collagen VI may be 

indirectly linked- via biglycan and the dystrophin associated protein complex- to the 

sarcolemma receptors.249-250  Given these reported interactions, the upregulation of 

biglycan might hold therapeutic promise in the collagen VI-related myopathies as a 

means of stabilising the essential cytoskeleton-myomatrix link.  Furthermore, given 

the presence of biglycan in the extracellular matrices of cartilage, tendons, bones 

and teeth as well as muscle,251 perhaps the upregulation of biglycan might also have 

beneficial effects on the tendon and cartilage pathologies seen in collagen VI 

deficiency.  Studies of recombinant non-glycanated biglycan251 in the collagen VI-

related myopathy Col6a1-/- mouse model may begin to address these questions.    
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CHAPTER 6: CONCLUSION 
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6.1 NAVIGATING THROUGH CLINICAL MANIFESTATIONS 

 

While the collagen VI-related myopathies are among the most common of the 

congenital muscular dystrophy subtypes4-6 (with the highest relative frequency 

among CMD subtypes in the UK),9 they are indeed ‘rare’ diseases (defined by the 

European Commission on Public Health as having a prevalence of less than 5 

affected persons per 10,000 individuals in a community252 and defined by the US 

Congress by less than 200,000 affected persons in the US253).  The journey towards 

clinical trials for rare diseases begins with the recognition of the condition’s clinical 

phenotype and is followed by efforts to arrive at a genetic confirmation of the 

diagnosis.  Extensive natural history data is the subsequent challenge facing rare 

diseases, and it is an essential hurdle to overcome in order to progress toward 

clinical trials. 

   

In the UK, a network of neuromuscular centres has been established for coordinating 

natural history data collection in neuromuscular conditions.  Through the efforts of 

this ‘UK Neuromuscular Network’ and support from the Muscular Dystrophy 

Campaign and the Medical Research Council (MRC) Centre for Neuromuscular 

Diseases, tools for gathering prospective natural history data in Duchenne muscular 

dystrophy patients and spinal muscular atrophy patients have been established and 

have already provided essential information for defining motor function natural 

history254-255 and optimising clinical care.  In order to extend natural history data 

collection to the collagen VI-related myopathies as well as all congenital muscular 

dystrophies and all congenital myopathies, I created data entry forms for gathering 

prospective natural history data in these patient populations.  A ‘Key Clinical 

Information Form’ is used for entering the clinical history and diagnostic testing 

results at the time of the patient’s initial assessment (Figure 24) while the ‘Medical 

Information Form’ is used for entering clinical information at subsequent clinical 

evaluations (Figure 25).  I entitled this initiative ‘MD-CORE: Muscle Disorders of 

Congenital Onset Reaching Excellence’ because the natural history data gathered 

through the use of these forms increases the potential of neuromuscular centres of 

reaching excellence of clinical care and clinical research.  With the assistance of a 

computer database design company (Certus Technology) these data entry forms 

have been converted into ‘scannable’ forms, allowing the data to be scanned into a 

computer and stored in a secure database, thus greatly facilitating the data collection 

process.   
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Figure 24: A page from the MD-CORE Key Clinical Information data entry forms.   

 

On this form clinicians enter the diagnostic information available (clinical, pathological 

and/or genetic) for patients with different forms of congenital muscular dystrophies.  Other 

pages of the Key Clinical Information Form contain areas for recording details about 

prenatal/birth history, signs at birth, presenting symptoms, family history, investigations 

and diagnostic samples collected. 
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Figure 25: A page from the MD-CORE Medical Information data entry forms.   

 

On this form clinicians enter information regarding interim changes and current 

functioning.  Other pages of the Medical Information Form contain areas for recording 

details about respiratory function, cardiac function, feeding/nutrition, orthopaedic 

issues, eye issues, central nervous system issues, endocrine symptoms, pain, 

medications, allergies, general examination findings (including pulmonary function 

testing results) and neurologic examination findings - including areas for recoding 

details of the neuromuscular examination. 
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Simultaneous to my efforts to create data entry forms for the ‘MD-CORE’ initiative, I 

worked closely with other paediatric neuromuscular physicians from the United 

States in developing ‘Core Data Elements’ (CDEs) for the congenital muscular 

dystrophies, an effort launched by the National Institute of Neurological Disorders 

and Stroke (NINDS), National Institutes of Health (NIH), USA.  The NINDS has 

promoted the creation of CDEs with the goal of facilitating clinical research as well as 

‘streamlining’ data collection for clinical trials.  These forms can be used for clinical 

research and clinical trials in any of the congenital muscular dystrophies and are 

accessible to clinical researchers and investigators online 

(http://www.commondataelements.ninds.nih.gov/CMD.aspx#tab=Data_Standards).   

Given my involvement in both the UK ‘MD-CORE’ and the USA CMD ‘CDEs’ 

initiatives, I have been able to help harmonise these natural history data collection 

tools.  That is, the phenotypic data elements collected via the MD-CORE and the 

CDEs data entry forms largely overlap.  In this manner, these data collection tools 

promote consistency between the natural history data gathered prior to clinical trials 

(which can serve as ‘lead-in’ data) and the natural history data gathered during 

potential clinical trials in the collagen VI-related myopathies as well as other CMD 

subtypes. 

 

Detailed natural history data such as the extensive pulmonary function data collected 

in an international cohort of collagen VI-related myopathy patients (Chapter 2) 

promotes the optimisation of clinical care.  Furthermore, natural history data is a 

prerequisite for effective clinical trial design.  In particular, natural history data is 

essential for determining appropriate inclusive criteria, exclusion criteria and outcome 

measures in clinical trials.  The delineation of annual rate of decline in forced vital 

capacity (FVC) in UCMD and intermediate collagen VI-related myopathy patients has 

identified pulmonary function as a disease-relevant outcome measure which is also 

viable, given the ability of FVC to be measured in patients regardless of degree of 

muscle weakness or joint contractures.  

 

Given the wide phenotypic spectrum of collagen VI-related myopathies, finding motor 

scales which are effective in capturing the natural history of motor function in patients 

with varied clinical severity is challenging.  Furthermore, the ability of a particular 

motor scale to serve as an outcome measure in clinical trials depends on its ability to 

be relevant to the patient’s motor phenotype as well as its ability to measure change 

within the timeframe of a potential clinical trial.256  As a member of the Congenital 

Muscular Dystrophy Outcome Measures Working Group (jointly coordinated and 
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sponsored by the NINDS and Cure CMD, a non-profit patient organisation), I 

collaborated with neuromuscular specialists and physiotherapists from 

neuromuscular centres in Europe, the United States and Australia in an effort to 

establish outcome measure candidates for the congenital muscular dystrophies.  

Along with other members of this CMD Outcome Measures Working Group, I 

assessed collagen VI-related myopathy patients as well as merosin-deficient CMD 

(MDC1A) patients during annual Outcome Measure Study weekends when we 

trialled various pulmonary function tests and motor scales in CMD patients who had 

consented to participate in this NINDS sponsored study. 

 

In particular, I piloted a motor function scale called the Egen Klassifikation (EK) 

(Danish for ‘our scale’) on a total of 29 CMD patients.  The EK scale was created in 

Denmark for assessing motor function in non-ambulant Duchenne muscular 

dystrophy patients (Figure 26).257  The validity of this scale’s sum score in 

distinguishing differences in muscle strength was demonstrated in a study of 56 

Duchenne muscular dystrophy and 38 spinal muscular atrophy patients.257  A small 

pilot of the EK scale version 2 (EK2) scale in eight non-ambulant CMD patients 

(Newcastle, UK) found that the majority of the EK2 scale seemed relevant to CMD 

patients.256  I led an extended pilot of the EK2 scale by using this scale to assess 

collagen VI-related myopathy and MDC1A patients.  Following the first NINDS CMD 

Outcome Measures Study (2010) when I evaluated 21 patients with collagen VI-

related myopathy or merosin deficient congenital muscular dystrophy using the EK2 

scale, I collaborated with a UK neuromuscular physiotherapist (Dr Anna Mayhew, 

Institute of Human Genetics, International Centre for Life, University of Newcastle, 

UK) and a Danish neuromuscular physiotherapist scale (Dr Birgit Steffensen, 

National Rehabilitation Centre for Neuromuscular Diseases, Aarhus, Denmark)- the 

original author of the EK scale- in adapting the EK2 scale for CMD patients, in 

particular to better capture hand function (Figure 27).  I then repeated evaluations of 

the same 21 CMD patients (as well as 8 others, for a total of 29 CMD patients) using 

the EK2 scale (the original version as well as the version adapted for use in CMD 

patients) at the one year follow-up NIH CMD Outcome Measures Study (2011).  The 

analysis of this data remains in progress as part of an ongoing NINDS CMD 

Outcome Measures Study.  The results of this study will help to inform clinical trial 

planning and also provide further natural history data for the collagen VI-related 

myopathy and MDC1A patient populations. 
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(EK2 scale items from Steffensen, Hyde, Lyager and Mattsson, 2001257 and inclusive  

 of further additions from Dr Birgit Steffensen, 2008. ) 

 

 

 

 

 

 

 

Figure 26: EK2 scale recording form. 
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EK2 17a: Hand function 
 

Can you do the following items using 
your hands?   
 

0:  Can unscrew the lid of a water  
      or fizzy drink and break the seal 
1:  Can write two lines or use a  
      computer keyboard (able to  
      move arms) 
2:  Can write signature or send  
      text using remote control 
3:  Cannot use hands 

EK2 17b: Hand function 
 

How do you open up a water bottle?  0:  Can break seal and unscrew lid  
      of water bottle 
1:  Can unscrew lid once seal is  
      broken 
2:  Can remove lid unscrewed and  
      resting on top of bottle 
3:  Not able to remove lid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Adaptations made to EK2 scale for use in congenital muscular dystrophy patients.   

 

In particular, item 17 is divided into 2 parts (17a and 17b) in order to better capture hand function/ 

motor ability.  
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6.2 NAVIGATING THROUGH THE MOLECULAR MAZE AND MYOMATRIX 

 

At present, the mechanisms by which a deficiency of the extracellular matrix protein 

collagen VI results in abnormal functioning of the mitochondrial permeability 

transition pore, increased apoptosis and aberrant autophagy have not been fully 

elucidated.  Our understanding of the pathophysiologic mechanisms underlying 

collagen VI deficiency may increase, however, through the use of new genetic 

technologies.  Indeed, the advent of next-generation/high-throughput sequencing has 

increased the potential for uncovering new genes in collagen VI-related myopathies, 

which could lead to increased understanding of molecular and biochemical pathways 

underlying the pathogenesis of collagen VI deficiency, thereby uncovering new 

therapeutic targets. 

 

Our present understanding of the molecular mechanisms resulting from mutations in 

COL6A1, COL6A2 and COL6A3 may offer potential candidates for therapeutic 

targets, as well.  In collagen VI-related myopathy due to autosomal recessive 

mutations in COL6A1, COL6A2 or COL6A3 and resulting in an absence of one of the 

collagen VI chains, a potential therapeutic strategy is gene replacement (of the 

mutated gene).  Given the common mutational mechanism of de novo autosomal 

dominant mutations in the collagen VI-related myopathies, however, the potential use 

of this strategy would be limited.  A strategy of functional knock-down or inactivation 

of the mutated allele may be possible in patients with de novo autosomal dominant 

collagen VI mutations,258 especially given the evidence that haploinsufficiency for 

collagen VI genes does not result in neuromuscular disease (section 4.1).152 

 

Our understanding of the interactions of collagen VI with its myomatrix neighbours 

may also inform therapeutic strategies.  In particular, strategies aimed at stabilising 

the extracellular matrix (ECM) and/or the ECM–cytoskeletal link may be effective in 

stabilising sarcolemmal integrity and ultimately muscle function.  While the potential 

of transgenic overexpression of integrin α7 of improving muscle pathology and 

function in collagen VI deficient muscle seems uncertain, given the preliminary 

evidence of upregulation of integrin α7 in collagen VI deficient patient muscle 

(section 5.2.6), the success of this strategy in the merosin deficient mouse model 

offers experimental evidence that this type of approach may be efficacious.  Further 

studies of overexpression of other ECM proteins including biglycan will be necessary 

to determine if such an approach offers therapeutic promise by stabilising or 

improving muscle function in the collagen VI-related myopathies. 
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At present, the therapeutic target most extensively studied by groups working with 

the collagen VI-deficient animal models has been apoptosis.  Studies both in the 

Col6a1-/- mouse as well as in collagen VI zebrafish models have revealed evidence of 

increased apoptosis30, 89-92, 94 with improvement (normalisation of apoptosis) following 

treatment with cyclosporine A30, 89-90, 94 or D-MeAla3-EtVal4-cyclosporin (Debio 025)92 

(section 1.5). 

 

A further anti-apoptotic compound N-(dibenz(b,f)oxepin-10-ylmethyl)-N-methyl-N-

prop-2-ynylamine maleate (Omigapil) has been studied in the merosin-deficient 

mouse model (dyw/ dyw mouse) where it demonstrated efficacy in inhibiting GAPDH-

Siah1-mediated apoptosis in muscle with concomitant decreased weight loss and 

improved locomotor activity.259  Ongoing studies of Omigapil in the Col6a1-/- mouse 

model have demonstrated efficacy in decreasing apoptosis in particular of the 

diaphragm muscle as well as improving skeletal muscle mitochondrial integrity 

(unpublished data).   

 

Finally, when considering potential therapeutic targets in collagen VI-related 

myopathies, it is important to acknowledge emerging targets which may prove to be 

venues for future development.  It is notable that while a deficiency of the collagen VI 

protein results in pathology in skeletal muscle, this is not the case in cardiac muscle.  

Indeed, cardiac involvement has not been documented in collagen VI-related 

myopathy patients (except for right-heart failure associated with untreated respiratory 

insufficiency).  For this reason, it seems plausible that there are pathomechanisms 

underlying collagen VI-related myopathies which are specific to skeletal muscle.  One 

possible explanation for why the heart appears unaffected by collagen VI deficiency 

is that cardiac muscle, unlike skeletal muscle, lacks satellite cells or analogous 

progenitor cells.  Perhaps the pathophysiology of collagen VI deficiency is, in some 

part, related to problematic regeneration, for which therapeutic strategies focussed 

on muscle regeneration may be effective.  In particular, recent research performed by 

colleagues at our neuromuscular centre (the Dubowitz Neuromuscular Centre) using 

human synovial stem cells (a subset of mesenchymal stem cells reported to 

regenerate muscle fibres and increase the satellite cell pool260) revealed that these 

stem cells secreted collagen VI and laminin α2 into the skeletal muscle (in an 

immunodeficient mouse model).261  Further studies, and in particular studies 

performed in collagen VI-deficient animal models, would be necessary, however, to 

determine whether synovial stem cells may have therapeutic potential in collagen VI-

related myopathies. 
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6.3 ON A JOURNEY TOWARD CLINICAL TRIALS 

 

While experimental therapeutic approaches may offer promise in animal models, the 

real test of efficacy of these approaches lies in their ability to be translated to patients 

in clinical trials.  Ultimately, a combination of various therapeutic approaches may 

prove to be the most efficacious in collagen VI-related myopathy patients; however, 

each therapeutic approach will need to be tested in isolation.  Plans are presently 

being made for an experimental clinical trial of the anti-apoptotic compound Omigapil 

in patients with collagen VI-related myopathies as well as patients with merosin-

deficient CMD, making the goal of preparing the collagen VI-related myopathy patient 

population for clinical trials more important than even.  As apoptosis is an apparent 

common ‘downstream’ or secondary effect in skeletal muscles of both collagen VI 

deficiency and merosin deficiency patients, both collagen VI-related myopathy and 

merosin-deficient CMD patients are being considered for inclusion in an upcoming 

clinical trial to establish the safety and pharmacokinetics of Omigapil.  [The safety of 

this compound in adults has been established from its use (under the name TCH346) 

in two separate clinical trials performed in neurodegenerative conditions with 

underlying apoptotic pathomechanisms: Parkinson’s disease262 and amyotrophic 

lateral sclerosis (ALS).263  Unfortunately, this compound did not demonstrate efficacy 

when compared to placebo in either of those clinical trials.262-263] 

 

I wrote the initial draft for a clinical trial of Omigapil in collagen VI-related myopathy 

patients via my participation in a Clinical Trial Methods Course in Neurology, 

organised and sponsored by the NINDS.  This draft was used to write the present 

clinical trial protocol for Omigapil in collagen VI-related myopathies and merosin-

deficient CMD, which is being planned for two study sites: the Great Ormond Street 

Hospital (London) and the National Institute of Neurological Disorders and 

Stroke/National Institutes of Health (Bethesda, Maryland, USA).  The pulmonary 

function natural history data collected and analysed in collagen VI-related myopathy 

patients (Chapter 2) has been instrumental in informing the design of this clinical trial, 

which includes forced vital capacity as an outcome measure (to be trialled during the 

initial safety and pharmacokinetics study).  While it remains to be seen whether 

Omigapil will result in clinical improvement in respiratory function and/or motor 

function for CMD patients with collagen VI deficiency or merosin deficiency, the 

planning of this first clinic trial for congenital muscular dystrophy patients, represents 

an important step forward for these rare disease patient populations.   
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The availability of next generation/high-throughput sequencing increases our 

potential for identifying new therapeutic targets in the collagen VI-related myopathies.  

It is important to remember that the process of translating research of any therapeutic 

target from the basic science lab -or the proverbial ‘bench’- to clinical trials -or the 

proverbial ‘bedside’- relies on well-defined patient populations including detailed 

knowledge of natural history and clearly defined phenotypic categories in target 

patient populations.  Certainly, the planning of a clinical trial in the collagen VI-related 

myopathies and merosin-deficient CMD subgroups establishes an important 

precedent for the congenital muscular dystrophies, demonstrating that despite great 

challenges in gathering natural history data and identifying relevant and viable 

outcome measures in these rare diseases, these patient populations are indeed 

progressing forward toward clinical trials. 

 

The journey toward clinical trials begins where it ends, with the patient.  The clinical 

research discussed in this thesis has aimed to help improve that journey by 

navigating through the clinical manifestations (Chapters 2 and 3), the molecular 

maze (Chapter 4) and the myomatrix (Chapter 5).  It is my hope that this clinical 

research, in particular the natural history data analysed, the diagnostic algorithms 

proposed and the tools created for ongoing natural history data collection, collectively 

proves to be effective in the continued journey of collagen VI-related myopathy 

patients towards future clinical trials. 
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