
Assessing Predictors of Changes in Protein Stability upon
Mutation Using Self-Consistency
Grant Thiltgen, Richard A. Goldstein*

Department of Mathematical Biology, National Institute for Medical Research, Mill Hill, London, United Kingdom

Abstract

The ability to predict the effect of mutations on protein stability is important for a wide range of tasks, from protein
engineering to assessing the impact of SNPs to understanding basic protein biophysics. A number of methods have been
developed that make these predictions, but assessing the accuracy of these tools is difficult given the limitations and
inconsistencies of the experimental data. We evaluate four different methods based on the ability of these methods to
generate consistent results for forward and back mutations, and examine how this ability varies with the nature and
location of the mutation. We find that, while one method seems to outperform the others, the ability of these methods to
make accurate predictions is limited.
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Introduction

The stability of a protein is generally represented by the change

in the Gibbs free energy upon folding (DG), where an increasingly

negative number represents greater stability. The substitution of a

single amino acid in a protein sequence can result in a significant

change in the protein’s stability (DDG), where a positive DDG

represents a destabilizing mutation and a negative value represents

a stabilizing mutation. The ability to understand and to predict the

size and magnitude of these changes is an important goal for a

number of different reasons. Firstly, we are often interested in

modifying proteins in order to provide them with specific

properties such as enhanced stability. Given the number of

possible mutations, it is critical for us to be able to predict which

ones are likely to have the desired effect. Secondly, we are often

interested in understanding the physiological effect of various

single nucleotide polymorphisms (SNPs) that are found in some

fraction of the population. We might expect that SNPs that result

in a significant change in protein properties are more likely to be

deleterious. Thirdly, understanding of how substitutions affect

protein properties are an essential part of the program to connect

protein biophysics and evolutionary analyses. Maybe most

broadly, being able to predict the impact of a substitution on a

protein’s property is a way of refining our understanding of the

general principles of protein thermodynamics.

To satisfy these goals, a number of programs have been

developed that estimate the effect of a mutation on the stability of

a protein, using either biophysical models of amino acid

interactions [1–4], statistical analyses of available proteins and

their thermodynamic properties [5–7], machine learning methods

[8,9], or a combination thereof [10,11]. With the availability of

these programs comes the need for them to be evaluated and

compared. The most straightforward approach is to compare the

DDG predictions generated by these programs to experimental

data, such as those compiled in the ProTherm [12] database.

Recently, there have been two independent comparisons of these

DDG predictors. The first comparison used a set of 2156 mutations

from the ProTherm database in order to compare six different

methods for DDG predictions: FoldX [5], CC/PBSA [13], Rosetta

[14], EGAD [15], I-Mutant2.0 [16], and Hunter [17]. EGAD

performed best with a correlation coefficient of 0.59, while Rosetta

performed the worst in this evaluation with a correlation

coefficient of 0.26. The range of coefficients for the other five

methods ranged from 0.45 to 0.59, indicating roughly similar

performance. One limitation of this study was that the metric used

for assaying performance, the correlation coefficient between

computed and experimentally determined values, is insensitive to

systematic biases - a method that predicts values of DDG that are

too high by a constant 10 kcal/mol, or underestimates these values

by a constant factor of 1/2, could still have a perfect correlation

coefficient of 1.0.

A second study of eleven predictors also compared their

computed values to values from ProTherm, but rather than using

the correlation coefficient the methods were evaluated based on

their ability to classify mutations into stabilizing mutations

(DDGƒ{0:5), destabilizing mutations (DDG§0:5), and neutral

mutations ({0:5ƒDDGƒ0:5) [18]. Their comparison showed I-

Mutant3.0 [8] to be the most accurate predictor for the three state

prediction.

A limitation of all of these methods that compare predicted

versus measured changes in stability is variability of DDG values in

the database. The value of DDG can depend upon the

experimental method used as well as the temperature, pH, ionic

strength, presence of denaturants, redox state of co-factors,

method of protein preparation, etc. Thus comparing DDG values

calculated using different experimental methods may create
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confusion when creating datasets for training. One mutation

(C112S in Pseudomonas aeruginosa azurin, PDB 5AZU), for

example, occurs twelve times in the ProTherm database with DDG
values ranging from 0.24 to 4.40 kcal/mol [19]. It is not clear

what are the experimental conditions that correspond with the

methods used for making the predictions. This has lead some

investigators to simply use the average of the values for each

mutation [1,19], an unsatisfactory solution that makes the

comparisons dependent upon the distribution of experiments

included in the database.

Because of the variability of experimental results and the

difficulty of determining which of these values should be used as

the ‘‘correct’’ value of DDG, we propose a new type of evaluation.

We would expect that, whatever experimental conditions are most

appropriate match for the calculations, these calculations should

themselves be self-consistent. In particular, mutating a given

location from X to Y should have an opposite effect to the reverse

mutation from Y to X, that is, DDGYX ~{DDGXY . This exact

equality will not be satisfied by available prediction methods due

to the limitations, heuristics, and approximations that these

methods necessarily make. It does, however, provide a standard

with which prediction methods can be compared, providing an

estimate for the accuracy of these methods.

We make this comparison by finding 65 pairs of protein with

known crystal structures, where the members of each pair differ at

only a single location. We can then consider mutations in each

protein so that the mutant protein matches the other protein in the

pair. We propose checking this consistency rather than comparing

to experimental values that may or may not be accurate. In

particular, by making a few modest assumptions, we can estimate

and compare the magnitude of the errors of different computa-

tional methods without requiring any information about the real

values of DDG.

We tested this method of evaluating predictors by applying it to

four different methods for calculating DDG: FoldX [5], Rosetta’s

ddg_monomer method [1], the Eris web-server [2], and I-

Mutant3.0 [8]. While Rosetta has been evaluated in one of the

two previous comparisons, their new method incorporating a

flexible backbone had not been tested. The Eris method was also

not evaluated by either of the two previous comparisons, and it is

also a method that allows for a flexible backbone. We find that

Rosetta provides, in general, more accurate results than the other

three methods.

Results

Comparison of methods
Calculated predictions of DDGXY and DDGYX are shown for

the four methods in Figure 1. We find that there is a significant

discrepency between the predictions by all three methods and the

expectation of DDGYX ~{DDGXY . The exact values of DDGXY

and DDGYX for each method can be found in Table S1.

One limitation of the evaluation method is that it is unable to

determine the scale of the predicted values, yet this scaling would

also scale the estimated errors; the estimated error would be

reduced, for instance, by multiplying all of the calculated estimates

of DDG by a number smaller than one. The four methods generate

predictions with significantly different magnitudes, with the RMS

of the predicted DDG values equal to 0.97, 1.58, 2.41, and 3.95 for

I-Mutant3.0, FoldX, Rosetta, and Eris, respectively. To counter-

act this bias, we scaled the calculated errors by the root mean

square (RMS) of the predicted values for each method. We

estimated the systematic biases in the computational predictions of

changes in thermodynamic stability, as well as the variance of the

random component of the error, where this random component

has mean zero. The scaled systematic bias as well as the scaled

square root of the variance in the error for each method (
ffiffiffiffiffiffiffiffiffiffiffi
var(d

p
)

are shown in Figure 2. Also shown is the RMS of the error (x,

calculated with Equation 8), again scaled by the RMS of the

predictions. We find that Eris has the smallest systematic bias,

while the bias of I-Mutant3.0 is substantially higher than that of

the other methods. The random component of the error is smaller

for Rosetta and I-Mutant3.0. Overall, Rosetta has significantly

lower errors (as characterized by x) compared with the other three

methods (Pv0:05).

We can characterize the absolute performance of these three

methods by estimating the fraction of the variation explained by

the predictions by calculating one minus the ratio of the variance

in the error divided by the variance in the computed values. The

results are not pleasing, with values of 0.44 for Rosetta and

essentially zero for the other methods.

Comparison of mutation types
In order to better characterize the performance of these various

predictors, we categorized the mutations in two ways; either how

conservative the mutation was in terms of the effect on the protein

structure, as measured by root mean square deviation (RMSD)

between the two protein structures, or where the mutation was

relative to the surface of the protein, as indicated by relative

solvent accessibility (RSA). Figure 3 shows the estimated accuracy

(x scaled by the RMS of the predictions) of these computational

methods for structure conserving (RMSDv0:4), structure chang-

ing (RMSDw0:4), surface (RSAw0:3), and buried (RSAv0:3)

mutations. Separate values for the systematic bias and random

error are shown in Figures S1 and S2.

No method showed a significant difference between the

accuracy obtained with structure conserving and structure

changing mutations, although FoldX, which assumes a fixed

Figure 1. A scatter diagram of DDGXY against DDGYX . Values are
in kcal/mol. The blue dots represent the exposed set of the mutations
(relative solvent accessibility w0:3) and the red dots represent the
buried set. The dotted lines represent the expectation that
DDGXY ~{DDGYX .
doi:10.1371/journal.pone.0046084.g001
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backbone, was close (P~0:93). Eris showed the smallest depen-

dence on the amount of structural change, with an increased bias

for structure changing mutations countered by a decrease in the

random error. All four methods exhibited substantially better

results with mutations at exposed sites compared with buried sites.

Interestingly the systematic bias was higher for Rosetta, FoldX,

and I-Mutant3.0, while the random error was substantially higher

for Rosetta, FoldX, and Eris. For all categories, Rosetta was as

good as or superior to the other methods, with the exception of

mutations at surface locations, where FoldX was slightly (although

not statistically significantly) better.

Discussion

We present an evaluation for DDG predictors that avoids the

use of inconsistent experimental values. By making a limited set of

assumptions involving the statistical properties of the errors, we are

able to characterize the errors of the predictions by considering

pairs of proteins of known structure, separated by a single

mutation. Unlike approaches which consider correlation coeffi-

cients between predictions and actual values [17], we can

characterize the systematic bias and the random errors separately.

Similarly to those methods, however, we have difficulties with

systematic scaling of the values; if all of the values were multiplied

by a constant, we would not be able to detect the resulting

discrepency. Possibly more seriously, the estimated errors scale

with this constant. We can account for this effect by scaling the

different errors by the RMS of the predicted values.

By considering the results with the scaled data, it appears that

Rosetta performs the best of the three methods evaluated, with

FoldX, Eris, and I-Mutant3.0 performing somewhat worse. In

particular, the much smaller random errors achieved by I-

Mutant3.0 were countered by a much higher systematic bias,

approximately the same magnitude as the values of the

predictions. The observed bias may represent the machine-

learning techniques used by I-Mutant3.0, in that the database of

mutations may be weighted towards destabilizing mutations. The

various methods were generally insensitive to the amount of

structural change involved by the mutation, measured by the

RMSD of the two protein structures, with the possible exception of

FoldX, which employs biophysical approaches assuming a fixed

protein backbone. All four methods did substantially worse with

buried locations, as would be expected due to the complexity of

the local environment.

Our analysis assumes that the distributions of errors for the

forward and reverse mutations are similar. This is a reasonable

assumption for the biophysical methods such as Rosetta and Eris,

but machine learning approaches such as I-Mutant3.0 may be

better at predicting mutations away from the wild type than

reverse mutations to the wild type [11], as the forward mutations

may be more frequent in the training sets. If our assumption is

incorrect, it will still be true that the bias will reflect the average

bias of the forward and reverse mutation, and the variance will be

1=4 the sum of the variances for these two mutations. For some

applications it may be better for the errors to be smaller for the

forward mutation, especially when considering whether a SNP is

deleterious. For understanding the relationship between pheno-

typic change and (generally reversible) evolutionary processes, or

understanding the fundamentals of protein biophysics, however,

there is a need to make accurate predictions in both directions.

And when considering the needs for protein engineering, we are

particularly interested in stabilizing mutations which may corre-

spond more closely to reverse mutations.

The results demonstrate that there is much work that needs to

be done to improve DDG predictions, especially for buried amino

acids, with Rosetta the only program that can explain a significant

fraction of the observed variance in DDG values.

Figure 2. A comparison of the methods for bias,
ffiffiffiffiffiffiffiffiffiffiffiffi
var(d)

p
, and x

scaled by RMS of the predictions. The center bars represent the
calculated value for each of the methods. The top and bottom bars
represent the 67% confidence intervals and the thin vertical lines
extend to the 95% confidence intervals. The order of methods is Rosetta
(black), FoldX (red), Eris (green), and iMutant3.0 (blue). For Rosetta,
FoldX, and Eris the contributing factor for x appears to be the Variance,
while I-Mutant3.0 seems to be affected more by the bias.
doi:10.1371/journal.pone.0046084.g002

Figure 3. A comparison of the x value with the RMSD datasets
and RSA datasets scaled by RMS of the predictions. The center
bars represent the calculated value for each of the methods. The top
and bottom bars represent the 67% confidence intervals and the thin
vertical lines extend to the 95% confidence intervals. The order of
methods is Rosetta (black), FoldX (red), Eris (green) and iMutant3.0
(blue). The open RMSD bars represent those pairs of proteins with small
changes in the two structures (RMSDv0:4) and the shaded bars
represent the pairs with larger changes. The open RSA bars represent
those mutations that are buried within the protein (RSAv0:3) and the
shaded bars are those mutations that are more exposed. The RMSD split
shows that Rosetta and I-Mutant3.0 do slightly better on structures with
a lower RMSD value, while Eris performs equally as well on both sets.
FoldX shows the most change between these two protein sets. All the
methods perform better on exposed mutations than buried mutations,
with Rosetta doing the best on buried and FoldX doing the best on
exposed.
doi:10.1371/journal.pone.0046084.g003
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Methods

Model
Consider a mutation at a given location from amino acid X to

amino acid Y, and the corresponding back mutation from amino

acid Y to amino acid X, where DDGXY and DDGYX ~{DDGXY

are the true but unknown changes in stability for these two

mutations, respectively. These quantities are predicted by our

computational model to have the values DDGP
XY and DDGP

YX ,

respectively, resulting in errors dXY and dYX :

dXY ~DDGP
XY {DDGXY

dYX ~DDGP
YX zDDGXY

ð1Þ

We do not know the correct value of DDGXY . We instead

consider, initially, the value (DDG�XY ) that would minimize the

error, given by.

DDG�XY ~
DDGP

XY {DDGP
YX

2
ð2Þ

We can also consider d�XY and d�YX , the values of dXY and dYX

that would result if DDGXY ~DDG�XY :

d�:d�XY ~d�YX ~DDGP
XY {

DDGP
XY {DDGP

YX

2

~
DDGP

XY zDDGP
YX

2

ð3Þ

where we have used the equality of d�XY and d�YX to define

d�:d�XY ~d�YX . By combining equations 1 and 3, we get

d�~
dXY zdYX

2
ð4Þ

The distribution of errors dXY and dYX produced by the

computational method can be characterized by a systematic bias d,

as well as a random component with mean 0 and variance var(d).
These parameters can be calculated by considering the averages

and variances of both sides of equation 4, resulting in

d�~
dXY zdYX

2

~d

ð5Þ

and

var(d�)~var(
dXY zdYX

2
)

~
1

4
var(dXY )z

1

4
var(dYX )

~
var(d)

2

ð6Þ

where we have taken advantage of the fact that the designations of

X and Y are arbitrary, so that the variance and bias of dXY and

dYX are equal, and have assumed that the errors made in the

calculations of DDGXY and DDGYX are uncorrelated. We then

arrive at our estimates for the distribution of errors of the method

d~d�

var(d)~2 var(d�)
ð7Þ

Comparing methods
In order to compare methods, we would like to characterize the

performance of these methods. A natural choice would be

x~

ffiffiffiffiffiffiffiffiffiffi
Sd2T

q
, the root mean square of the error. Unfortunately,

we can only compute statistics of d�, which as described above,

gives an unbiased estimate of d but underestimates the magnitude

of var(d) by a factor of 2. We can, however, rewrite

x~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(d)zd

2
q

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2var(d�)zd�

2
q

ð8Þ

Procedure
To create the dataset, all single chain PDB sequences were

compared to each other and all pairs of sequences with only one

amino acid change were selected. This provided 22947 pairs of

proteins. To further reduce this number to a reasonable testing

size and to allow for structural variability among the proteins, a

pairs of proteins were randomly selected among SCOP (v1.75)

families with a maximum of one pair from each family (although

not all families are represented). [20]. This reduced the size of the

dataset to 83 pairs of proteins. Further reduction of the dataset was

done by removing pairs where the mutation was not resolved in

the crystal structure (seven cases), pairs where either Rosetta (one

case) or Eris (eight cases) could not read the PDB file, generally

due to missing backbone atoms or unusual amino acid types, or

when Eris produced either a failure notice or non-numerical

output (two cases). This reduced the size of the dataset to 65 pairs

of proteins which are listed in Table S1 along with the mutation

made on each protein.

The Rosetta ddg_monomer program requires pre-minimized

structures to remove possible clashes. Once the mutation is made,

three iterations of the process were run starting with a lower

repulsive value of the van der Waals term and increasing it to the

normal value by the third round. This process allows for slight

backbone movements in order to compensate for the side-chain

substitutions. The minimization was done on both the wild type

and mutated structures. To run the Rosetta ddg_monomer

program, we used the recommended parameters finding the

minimal DDG after fifty iterations of optimization [1]. FoldX was

run based on recommendations from the authors. To obtain the

DDG values from FoldX we ran the RepairPDB method to

optimize the energy for each PDB file. We then ran the

PositionScan method with the single point mutation to obtain

the predicted values [5]. Eris was run on their web-server (http://

dokhlab.unc.edu/tools/eris/index.html) using the recommended

parameters allowing for flexible backbone and pre-relaxation of

the structure [2] I-Mutant3.0 uses Support Vector Machine based

predictors to obtain DDG values from either a sequence or a

structure. I-Mutant3.0 was ran using the structural option with

standard set parameters for temperature and pH [8].

Confidence intervals were obtained through non-parametric

bootstrapping. For each method, we generated a dataset of 65
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pairs of homologous proteins by sampling our original set (with

replacement), and calculated d�, var(d�), and x. This was repeated

10,000 times. The fraction of these replicates where one method

has a higher value of x than another reflects the P value for the

superiority of the first method. This approach was also used to

indicate where the performance of a given method was statistically

different on structure conserving mutations versus non conserva-

tive mutations, or for mutations at exposed versus buried locations.

The division of mutations into structure preserving and

structure modifying sets was based on a calculation of the

backbone atom RMSD between the two proteins in the pair; an

RMSD cut-off of 0.4 gave us a set of 34 pairs of proteins for the

low RMSD group and 31 pairs for the high RMSD group. The

solvent accessibility was calculated using the Stride secondary

structure classifier [21]. These values were normalized with the

average solvent accessibility of each amino acid calculated by

Oobatake, et al [22]. We then averaged the two RSA values for

the protein pairs together to get the final RSA value. The buried

group (RSAv0:3) contains 32 pairs of proteins and the exposed

group contains 33 pairs. The proteins that were used in both of

these datasets can be found in Table S1.

In order to estimate the fraction of the variance explained by the

different methods, we considered that the variance of the true

values could be approximated by the RMS of the calculated

values. Using this approximation, this estimate is equal to

1{
x2

var(DDGP)
.

Supporting Information

Figure S1 A comparison of the bias and
ffiffiffiffiffiffiffiffiffiffiffiffi
var(d)

p
values

with the RMSD dataset scaled by RMS of the predic-
tions. The center bars represent the calculated value for each of

the methods. The top and bottom bars represent the 67%

confidence intervals and the thin vertical lines extend to the 95%

confidence intervals. The order of methods is Rosetta (black),

FoldX (red), Eris (green) and iMutant3.0 (blue). The open bars

represent those pairs of proteins with small changes in the two

structures (RMSDv0:4) and the shaded bars represent the pairs

with larger changes. For Eris, most of the difference between the

datasets occurs in the bias. FoldX and I-Mutant3.0 have little

change in bias with larger changes in the variance. Rosetta has

small changes in both the bias and the variance.

(EPS)

Figure S2 A comparison of the bias and
ffiffiffiffiffiffiffiffiffiffiffiffi
var(d)

p
values

with the RSA dataset scaled by RMS of the predictions.
The center bars represent the calculated value for each of the

methods. The top and bottom bars represent the 67% confidence

intervals and the thin vertical lines extend to the 95% confidence

intervals. The order of methods is Rosetta (black), FoldX (red),

Eris (green) and iMutant3.0 (blue). The open bars represent those

pairs of proteins with buried mutations (RSAv0:3) and the

shaded bars represent the pairs with mutations that are more

exposed. FoldX has the most differences in bias and variance than

the others, likely due to a non-flexible backbone. I-Mutant3.0 has

a larger bias in buried mutations, but a small change in the

variance. Eris has little change in the bias but a large change in

variance, and Rosetta has small changes in both.

(EPS)

Table S1 Raw data for each method. The table contains the

PDB id for the pairs of proteins, the mutation in each protein, the

raw results (unscaled) for each of the methods in both directions,

the SCOP fold, and which of the two groups for RMSD and RSA

the proteins are in. The raw results are labeled with DDG followed

by the subscript for the method (R = Rosetta, F = FoldX, E = Eris,

and I = I-mutant3.0). For the split, the 1 represents the proteins

with RMSDv0.4 and the RSAv0.3. The mutation numbers are

based on the residue number in the PDB file.

(PDF)
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