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Abstract

mTOR is a serine/threonine protein kinase that has been shown to be a key player in

the regulation of cell growth and proliferation. Furthermore, mTOR forms the

catalytic core of two known mTOR complexes, mTORC1 and mTORC2. These

complexes sense various intra and extracellular signals, and regulate cellular

processes that are critical for cell growth and proliferation. However, when

conventional mTOR signalling is deregulated, cellular homeostasis is disrupted,

resulting in a wide range of human diseases such as diabetes, neurodegeneration and

cancer. Due to its involvement in tumorigenesis, mTOR has attracted enormous

interest as a therapeutic target. Initially, the classical mTOR inhibitor rapamycin was

tested as a potential treatment. However, when the compound was assessed in clinical

trials, it proved to be of limited efficacy. This led to the design of novel types of

inhibitors, which are currently being evaluated. The results obtained with rapamycin

clearly indicated that our understanding of the mTOR signalling pathway is far from

complete.

In addition, mTOR is currently known to exist in two isoforms, which are

generated by alternative splicing of the transcript. These are known as mTORα and

mTORβ respectively. The mTORα protein was the first isoform discovered and is

2,549 residues long. mTORβ is approximately one third of the length at 706 amino

acids. Both proteins share identical C-terminal domains, but mTORβ lacks the N-

terminal HEAT and FAT repeats that mTORα possesses. Work done in our lab has

shown that mTORβ is capable of forming complexes with Raptor and Rictor, which

are the key components of mTORC1 and mTORC2. Furthermore, overexpression of

mTORβ transforms immortal cells and causes tumour formation in nude mice. It is
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thought that modulation of cell proliferation via the mTOR signalling pathway could

be achieved through mTORβ, which behaves as a protooncogene. Thus, mTORβ has

the potential to be used as a target for anti-cancer therapies.

The first chapter of my thesis consisted of comparative modelling of

mTORβ’s C-terminal region from the FRB domain to the kinase domain. The model

that was generated could then be used to give us insight into potential mechanisms for

the inhibition of mTOR by either rapamycin or ATP-competitive inhibitors.

The second chapter examined the effects of two different mutations in

mTOR’s kinase domain on its activity. A point mutation (S2215Y) and a deletion of

12 amino acids (12del) were introduced into the kinase domain of mTORβ. Mutant

proteins were expressed in HEK293 mammalian cells and the phosphorylation status

of various mTOR substrates was assessed under different experimental conditions.

The final chapter of my thesis described how a TAP-tag fusion protein was

created. This would have been used to search for novel mTORβ binding partners in

mammalian cells had I chosen to complete my PhD studies.
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Rapanui – Where the m(s)TOR(y) all started
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Chapter 1

General Introduction
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Chapter 1: General Introduction

Overview of mTOR

Target of Rapamycin (TOR) first rose to prominence as the cellular target for the

macrocylic lactone, rapamycin in yeast cells. Further studies in higher eukaryotes

revealed that a similar protein existed in mammals, which was named the mammalian

target of rapamycin (mTOR). mTOR, also known as FRAP, RAFT1, SEPT and

RAPT1 (Harris & Lawrence, Jr. 2003b), is an evolutionarily conserved 289-kDa

serine/threonine kinase that belongs to the phosphatidylinositol kinase-related kinase

(PIKK) family (Laplante & Sabatini 2009). Other members of this family include

ATM, ATR, DNA-PK, SMG1 and TRRAP (Sengupta, Peterson, & Sabatini 2010);

(Hall 2008) Robitaille & Hall 2008). All the PIKK proteins possess a C-terminal

protein kinase domain that shares significant sequence similarity to the catalytic

domains of PI3Ks and PI4Ks (Wullschleger, Loewith, & Hall 2006). However, unlike

the PI3Ks and PI4Ks, mTOR does not display lipid kinase activity. Instead, mTOR is

capable of phosphorylating cellular proteins at two specific sites; a threonine or serine

residue followed by a proline (Thr/Ser-Pro), and a threonine or serine adjacent to a

large hydrophobic (Φ) amino acid (Φ-Ser/Thr-Φ) (Hall 2008). Besides its kinase

activity, mTOR has no other known enzymatic functions (Yip et al. 2010).

mTOR forms the catalytic core of two known, distinct signalling complexes;

mTORC1 and mTORC2. As the key components of the mTOR signalling pathway,

these complexes sense various intracellular and extracellular signals, and respond by

modulating the appropriate cellular processes to maintain cellular homeostasis. As

such, abundant experimental evidence suggests that deregulation of mTOR signalling

results in a host of human diseases ranging from diabetes to cancer and cardiac
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hypertrophy (Fig. 1.1). Due to its critical involvement in tumorigenesis, mTOR has

attracted enormous interest as a therapeutic target for the treatment of cancer.

It has also been shown that several isoforms of mTOR exist. mTORα was the

first mTOR isoform discovered, but a second isoform, denoted mTORβ has recently

been revealed (Panasyuk et al. 2009). The focus of my studies was to to elucidate the

mTORβ signalling pathway in both normal and cancerous cells.

Fig. 1.1, Diseases linked to dysregulated mTOR signalling and the corresponding
affected organs. (Dazert & Hall 2011)
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Subcellular localisation of mTOR and its importance in mTOR
signalling

Work conducted by several groups has led to the conclusion that mTOR is primarily

cytosolic. However, mTOR has also been found on the membranes of several

intracellular organelles such as the Golgi, endoplasmic reticulum and mitochondria

(Desai, Myers, & Schreiber 2002), (Drenan et al. 2004), (Liu & Zheng 2007),

(Sabatini et al. 1999), (Tirado et al. 2003), (Withers et al. 1997). These results are

consistent with the multitude of cellular activities that are regulated by the mTOR

complexes. Indeed, there is mounting evidence which suggests that mTOR signalling

could be regulated by membrane trafficking. For example, it appears that amino acids

are essential in the shuttling of mTORC1 to the lysosomal surface, where it is able to

respond to growth factors. The localisation of mTORC1 to the lysosome also implies

that it may play a direct role in the regulation of autophagy. This is possible because

autophagic membranes fuse with lysosomes, where their contents are then degraded.

The proximity of mTORC1 to the region of degradation places it in an ideal position

to phosphorylate and cause the inhibition of proteins that promote autophagy.

Unfortunately, the precise subcellular location(s) of mTORC2 is currently unknown.

Nevertheless, a recent study suggested that yeast TORC2 localises to specific, dot-like

domains on the plasma membrane (Berchtold & Walther 2009).

Also of interest is the existence of a Golgi/ER localisation sequence in

mTOR’s HEAT repeats. When GFP was fused to the HEAT repeats, it was later

detected at the Golgi/ER (Liu & Zheng 2007). Furthermore, Phosphatidic acid (PA) is

able to bind to mTOR’s FRB domain, which suggests that PA may mediate movement

of mTOR to cellular membranes. Finally, mTOR translocates between the cytoplasm

and the nucleus, but the mechanism for this process remains unknown.
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The structure of mTOR and the different mTOR isoforms

mTORα

In humans, the mTOR gene encodes a protein of 2,549 amino acids and is composed

of several conserved structural domains. At the extreme N-terminus of mTOR, there

are a series of 20 HEAT repeats (Andrade & Bork 1995). Each of the HEAT motifs is

~39 amino acids in length and possesses three highly conserved positions consisting

of the residues Proline, Aspartic acid and Arginine. Every HEAT repeat also contains

several conserved hydrophobic amino acids. It is thought that the structure of

mTOR’s HEAT repeats could resemble those of PP2A’s A subunit. In PP2A, each

individual HEAT repeat is formed from a pair of antiparallel α helices that stack

alongside other repeats to create an ordered array (Groves et al. 1999). The HEAT

region is postulated to mediate protein-protein interactions, due to the extensive

surface formed by its stacked helices. For example, the protein Gephyrin which is

required for the clustering of glycine receptors in neurons, interacts with one of

mTOR’s HEAT repeats. (Sabatini et al. 1999)

Adjacent to the HEAT motifs is the relatively large helical FAT (for FRAP,

ATM, TRAP) domain, which is common amongst the PIKKs. Overexpression of this

domain in yeast led to arrest of the G1 phase of the cell cycle (Alarcon et al. 1999). It

was thought that this could be due to the sequestration of requisite interacting proteins

away from TOR1. Downstream of the FAT domain is the FRB (for FKBP12-

rapamycin binding) domain. This portion of the mTOR protein is able to bind the

FKBP12-rapamycin complex, which inhibits mTOR kinase activity. A crystal

structure of the FRB domain bound to the FKBP12-rapamycin complex has been

elucidated (Choi et al. 1996). This model showed that there were numerous

interactions between rapamycin and FRB, but a smaller number of interactions
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between FKBP12 and FRB. These results suggest that FKBP12 presents rapamycin to

mTOR in a conformation that facilitates interaction with FRB. In addition to the FRB

domain, the C-terminal half of mTOR also contains the catalytic domain, followed by

a putative negative regulatory domain (RD) (Sekulic et al. 2000) and a FATC domain.

The potential negative regulatory domain is phosphorylated in response to growth

factors and insulin (Scott et al. 1998), (Nave et al. 1999), (Sekulic et al 2000). It has

been shown that the FATC domain is crucial for mTOR’s kinase activity. Deletion of

just one amino acid from this domain, or the addition of an epitope tag to the C-

terminus virtually abolishes the kinase activity of mTOR (Takahashi et al. 2000).

Furthermore, it is thought that FATC and FATN may interact and fold in a manner

that facilitates exposure of the catalytic domain. Moreover, a NMR study revealed

that the FATC domain forms a disulphide bridge between two conserved cysteine

residues (Dames et al. 2005). mTOR contains numerous phosphorylation sites:

Ser2448, Ser2481, Thr2446 and Ser1261. These are shown in Fig. 1.2.

Fig. 1.2, Schematic diagram of mTOR domains: The 2549-amino acid mTOR
protein is depicted above a scale indicating amino acid residue number. The different
mTOR domains are shown in grey and white. Other proteins that mTOR is known to
interact with or form complexes with have been shaded in various colours (Watanabe
et al. 2011) .
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mTORβ

mTORβ is 706 residues in length and is a splicing iso form of mTOR (see Fig. 1.3 for

a detailed schematic). The sole difference between the two isoforms is that mTORβ

lacks mTORα’s HEAT as well as the majority of its FATN domains. Furthermore,

mTORβ is a protein kinase that has the ability to stimulate cellular proliferation and to

control the cell cycle progression via the G1/S phase (Panasyuk et al 2009).

Downstream signalling is effected by mTORβ when it forms complexes with the

Rictor and Raptor proteins. In vitro, mTORβ has also been shown to phosphorylate

several mTORα substrates such as S6K1, PKB/AKT and 4EBP1 (Panasyuk et al

2009). Moreover, it has been demonstrated that overexpression of mTORβ transforms

immortal cells and causes tumour formation in nude mice (Panasyuk et al 2009).  It is

thought that modulation of cell proliferation via the mTOR signalling pathway could

be achieved through mTORβ, which behaves as a protooncogene. Thus, mTORβ has

the potential to be used as a target for anti-cancer therapies.

Fig. 1.3, Comparison of the mTORα and mTORβ proteins: The domains have
been colour coded in both proteins, so common domains share the same coloration.

mTOR
 HEAT        HEAT   FAT      FRB    KD

1

mTOR


2549a
a

1 706a
a

FIT FATC
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Comparative Modelling of mTOR

At present, no crystal structures exist for either the full-length mTOR protein or for its

kinase domain. In the interim, before the acquisition of crystallographic data, in silico

models may help us to develop more potent and effective mTOR inhibitors. In 2009,

Sturgill and Hall used homology modelling to produce a model of TOR’s catalytic

region from its FAT domain to near the end of the FATC domain (Sturgill & Hall

2009). In human TOR, this corresponded to amino acid residues 1906-2526. The

model was based on PI3KCγ’s crystal structure and is shown in Fig. 1.4. The creation

of this model allowed visualisation of the ATP-binding pocket, and use of molecular

docking software (MGL tools 1.6.0 with AutoGrid4 and AutoDock4 (Scripps))

revealed how ATP binds to mTOR. Furthermore, the model also showed that

activating mutations in TOR are located in the catalytic, helical and FIT domains.

Interestingly, oncogenic mutations in PI3KCα were also centred in the helical and

catalytic domains, as well as in helix kα11 of the C-terminus. Helix kα11 corresponds

to part of the FIT domain in TOR. The location of mutations in similar regions in the

two proteins provided further evidence that they also shared structural similarities.

Crucially, the model shed new light on potential mechanisms for the regulation of

TOR.
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Fig. 1.4, The model of TOR’s catalytic portion generated by using PI3KCγ as the
homologue. The different domains have been highlighted and clearly labelled.  The γ-
PO4 of ATP is visible in the ATP-binding pocket of TOR’s catalytic domain. (Sturgill
& Hall 2009)



Structural and Functional Analysis of mTORβ

26

Overview of the mTOR Complexes

mTOR is known to nucleate at least two distinct protein complexes, which have been

denoted mTORC1 and mTORC2. Both mTORC1 and mTORC2 share common

subunits (mTOR, mLST8/GβL and deptor), but are differentiated by unique

components. Rapamycin in complex with the immunophilin FKBP12 is capable of

inhibiting mTORC1 by binding to the FRB domain of the mTOR subunit (Loewith et

al. 2002). In contrast to mTORC1, mTORC2 does not directly bind FKBP12-

rapamycin. The activity of the complex is unaffected by acute treatment with

rapamycin. Nevertheless, in approximately 20% of cancer cell lines, the assembly of

mTORC2 is disrupted by prolonged exposure to rapamycin. This has the consequence

of diminishing the cellular quantities of functional mTORC2. Why this phenomenon

is only observed in a subset of cancerous cell lines remains to be elucidated.

mTORC1 is sensitive to intracellular and extracellular signals such as the

cell’s energy status, growth factors and nutrients. When these are present in

abundance, mTORC1 stimulates anabolic and inhibits catabolic cellular processes.

However, when the cell is subjected to stress signals or starvation, mTORC1 activity

is curtailed. This ensures that biosynthetic rates in the cell are maintained at a level

that corresponds to a limited supply of raw materials for cell growth (Dunlop & Tee

2009), (Ma & Blenis 2009), (Reiling & Sabatini 2006). mTORC1 is known to play a

pivotal role in the regulation of protein synthesis via its downstream substrates 4E-

BP1 and S6K1. It has also been shown that mTORC1 stimulates the biogenesis of

ribosomes by augmenting the transcription of ribosomal RNAs and proteins. The

result is that the cell’s protein biosynthetic capacity is markedly increased (Inoki et al.

2005). Moreover, diminished mTORC1 signalling has the effect of promoting

macroautophagy. This is a process whereby certain intracellular components are
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degraded to yield amino acids and other biological materials for the continuation of

anabolic activities such as energy production and protein synthesis. In effect, it is a

mechanism that enables the cell to survive when faced with a dearth of nutrition. The

function of several transcription factors that are involved in mitochondrial metabolism

and lipid synthesis are also modulated by mTORC1.

The modulation of actin cytoskeleton organisation was the first cellular

function that was attributed to mTORC2. It has now come to light that mTORC2 is

also involved in the control of cell cycle progression and cell size (Rosner et al. 2009).

It is currently known that mTORC2 phosphorylates and activates three substrates;

protein kinase C (PKC), serum- and glucocorticoid-regulated kinase (SGK) and Akt.

These three proteins are all members of the AGC kinase family and regulate

anabolism, cell cycle progression and cell survival (Facchinetti et al. 2008), (Garcia-

Martinez & Alessi 2008), (Ikenoue et al. 2008), (Sarbassov et al. 2005). From a

therapeutic perspective, the study of Akt is particularly important due to its

involvement in cancer and diabetes. However, when compared with mTORC1, our

knowledge of mTORC2 signalling pales in comparison. This is largely due to the lack

of mTORC2 inhibitors, especially its indifference to the classical mTOR inhibitor

rapamycin. A diagram illustrating the different cellular functions that are regulated by

mTORC1 and mTORC2 is shown in Fig. 1.5.
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Fig. 1.5, Cellular functions regulated by mTORC1 and mTORC2. The mTOR
kinase nucleates two distinct protein complexes termed mTORC1 and mTORC2.
mTORC1 responds to amino acids, stress, oxygen, energy and growth factors and is
acutely sensitive to rapamycin. It promotes cell growth by inducing and inhibiting
anabolic and catabolic processes, respectively, and also drives cell-cycle progression.
mTORC2 responds to growth factors and regulates cell survival and metabolism, as
well as the cytoskeleton. mTORC2 is insensitive to acute rapamycin treatment but
chronic exposure to the drug can disrupt its structure. (Laplante & Sabatini 2012)
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The Structure of mTORC1

mTORC1 is composed of at least 5 different protein subunits. These include mTOR,

which acts as the catalytic subunit of the complex; proline-rich AKT substrate 40kDa

(PRAS40); regulatory-associated protein of mTOR (Raptor); mammalian lethal with

Sec13 protein 8 (mLST8, aka GβL); and DEP-domain-containing mTOR-interacting

protein (Deptor) (Peterson et al. 2009). mTOR, Raptor and mLST8 are indispensable

for mTORC1 to mediate its cellular functions (Loewith et al. 2002), (Kim et al. 2002),

(Kim et al. 2003). Unfortunately, the precise function(s) of most of the component

proteins remains an unknown quantity. In 2007, the cryo-EM structure of yeast TOR

in complex with KOG1, which is the yeast counterpart of Raptor was elucidated. The

25Å structure showed that TOR’s N-terminal HEAT repeats form a curved tubular-

shaped domain that interacts with KOG1’s WD40 repeat domain in the C-terminus. In

addition, KOG1’s N-terminus is in the vicinity of TOR’s kinase domain. It is thought

that due to its propinquity to the catalytic region, KOG1’s functions could be to

recruit and present substrates to the kinase domain (Adami et al. 2007). A cryo-EM

structure for mTORC1 has also been obtained. This model showed that mTORC1

exists as an obligate dimer that has a rhomboid shape and an aperture in its centre

(Yip et al. 2010). See Figs 1.6 and 1.7.
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Fig. 1.6, Cryo-EM structure of mTORC1. The proposed locations of the N- and C-
termini of mTOR have been marked and the purple star is the expected location of the
kinase domain. The black lines I and II demarcate the two interaction faces formed by
each mTOR molecule with the two raptor subunits. Antibody labelling was used to
determine the positions of mLST8 and PRAS40 (green asterisk). (Yip et al. 2010)
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Fig. 1.7, Cryo-EM Reconstruction of mTORC1 filtered to 26Å, with the main
structural features denoted. The protein has been shown from different angles and
the locations of PRAS40, mLST8 and raptor have been marked. The scale bar
represents 5nm. (Yip et al. 2010)
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Raptor

Raptor behaves as an adaptor protein in mTORC1 by firstly binding and then

presenting substrates to mTOR (Hara et al. 2002), (Kim et al. 2002). It has a MW of

~150kDa and its structural composition consists of an N-terminal RNC (raptor N-

terminal conserved) domain adjacent to a set of three HEAT repeats and seven WD-

40 repeats in the protein’s C-terminus (Kim et al. 2002), (Kim et al. 2003).

mLST8

mLST8 has been shown to form an association with mTOR’s kinase domain and to

promote the kinase activity of mTOR (Kim et al. 2003). Nonetheless, it does not

appear to be essential for the association of Raptor with mTOR (Guertin et al. 2006).

The protein has a MW of 36-kDa and consists of seven WD40 repeats.

PRAS40 and Deptor

Both Deptor and PRAS40 have been defined as negative modulators of mTORC1

(Peterson et al. 2009), (Sancak et al. 2007), (Vander et al. 2007). Recruitment of

PRAS40 and Deptor to mTORC1 stimulates mTORC1’s inhibition. It is thought that

PRAS40 modulates mTORC1 kinase activity by directly preventing the binding of

substrates (Wang et al. 2007). Activation of mTORC1 results in it phosphorylating

PRAS40 and Deptor. The physical interaction between mTORC1, PRAS40 and

Deptor is then weakened, which serves to augment mTORC1 signalling to an even

higher degree (Peterson et al. 2009), (Wang et al. 2007).
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The Structure of mTORC2

In addition to mTOR, Deptor and mLST8 which are also possessed by mTORC1,

mTORC2 also contains rapamycin-insensitive companion of mTOR (Rictor); protein

observed with Rictor-1 (Protor-1) and mammalian stress-activated protein kinase

interacting protein (mSIN1). A body of results supports the hypothesis that Rictor and

mSIN1 exert a stabilising influence on one another, thereby creating the basis for

mTORC2’s structural foundation (Frias et al. 2006), (Jacinto et al. 2006). Protor-1 and

Rictor also interact, but the significance of this association in unclear (Thedieck et al.

2007),. Mirroring its role in mTORC1, Deptor also regulates mTORC2 by exerting an

inhibitory affect on its activity (Peterson et al. 2009). To date, Deptor is the only

endogenous mTORC2 inhibitor that is known to exist. mLST8 is critical for the

viability of mTORC2, since knockout of the protein gravely reduced the activity and

stability of the complex (Guertin et al. 2006). A diagram showing the various proteins

contained in mTORC1 and mTORC2 is shown in Fig. 1.8. A schematic showing the

different mTOR complex components is displayed in Fig. 1.9.
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PRAS40

Protor1

Fig. 1.8, The core components of the mTOR Complexes: The two distinct mTOR
complexes are depicted. mTORC1 and mTORC2 both contain mTOR, Deptor and
mLST8. The other proteins are unique to one of the complexes. mTORC1 possesses
Raptor and PRAS40 exclusively, whereas Rictor, SIN1 and Protor1 are exclusive to
mTORC2. Deptor is an inhibitor for both of the complexes. mLST8 binds to the
kinase domain of both complexes, and appears to have an critical role in their
assembly. Raptor functions as a scaffolding protein that links mTOR’s kinase domain
to mTORC1 substrates, which stimulates mTORC1 signalling. PRAS40 has been
characterised as both a competitive mTORC1 substrate and a mTORC1 inhibitor. The
function of Protor1 remains uncertain, but it has been shown that Rictor and mSIN1
promote the assembly and signalling of mTORC2. Rapamycin binds to its
intracellular receptor FKBP12 and the complex formed interacts with the FRB
domain in mTOR. The activity of mTORC1 is inhibited by rapamycin, whereas
mTORC2 is only inhibited by prolonged treatment with high concentrations of
rapamycin. (Modified from Bhaskar & Hay 2007)
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Fig. 1.9, Schematic of mTOR complex components. HEAT: a protein-protein
interaction structure of two tandem anti-parallel α-helices found in huntingtin,
elongation factor 3, PR65/A and TOR;; FAT: a domain structure shared by FRAP,
ATM, and TRRAP, all of which are PIKK family members; FRB:
FKBP12/rapamycin binding domain; FATC: FAT C-terminus; RNC: Raptor N-
terminal conserved domain; WD40: about 40 amino acids with conserved W and D
forming four anti-parallel beta strands; CRIM: conserved region in the middle; RBD:
Ras binding domain. (Yang & Guan 2007)
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mTORC1 Signalling

Role in protein synthesis

Prior to division, a cell must double in size and mass. This process necessitates an

augmentation in protein synthesis, which is dependent on a sufficient supply of

nutrients and the presence of growth factors. G protein-coupled receptors and receptor

Tyrosine kinases are activated by these extracellular signals. These in turn actuate key

signal transduction pathways such as the Ras-ERK (extracellular signal-regulated

kinase) pathway and the phosphoinositide 3-kinase (PI3K)-AKT pathway. mTORC1

signalling is then promoted by these upstream signal transduction networks. The

contribution that mTORC1 makes to the increase in protein synthesis is two-fold. In

the short-term (minutes) it activates translation, and on a longer time scale (hours) it

augments the cell’s overall translational capacity by augmenting the levels of certain

translational components and ribosomes.

mRNA translation is traditionally divided into the three stages of initiation,

elongation and termination. mTORC1 is currently known to regulate the initiation and

elongation phases of protein synthesis. Of critical importance is the control of

initiation since it is the rate-limiting step in the creation of new proteins. Initiation is

modulated by mTORC1 via its two downstream substrates 4E-BP1 and S6K1 (Hay &

Sonenberg 2004a), (Tee & Blenis 2005). Both S6K1 and 4E-BP1 contain TOS (TOR-

signalling) motifs which bind to raptor, resulting in their recruitment to mTORC1

(Nojima et al. 2003;Schalm et al. 2003). In 4E-BP1 the TOS motif is located in the

extreme C-terminus and consists of the sequence FEMDI (Phe-Glu-Met-Asp-Ile). The

TOS sequence in S6K1 is situated in its N-terminus and is composed of the residues

FDIDL (Phe-Asp-Ile-Asp-Leu) (Schalm et al. 2002). In vivo, this motif has been
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shown to be required for the phosphorylation of these proteins by mTORC1 (Schalm

& Blenis 2002).

When the cell is in a quiescent state, 4E-BP1 competes with the translation

initiation factor eIF4G for an overlapping binding site on eIF4E. The association of

4E-BP1 with eIF4E prevents it from interacting with eIF4G and forming the eIF4F

initiation complex. Contained within the initiation complex are eIF4E, eIF4G and

crucially, the RNA helicase eIF4A. It is thought that eIF4A unravels secondary

structure in 5’-UTRs (5’-untranslated regions) of mRNAs in order to permit the

ribosome’s 40S subunit and other accessory proteins to scan the mRNA and to find

the start codon. This unravelling action is critically important for the translation of

mRNAs that possess considerable secondary structure in their 5’-UTR regions. In

essence, hypophosphorylated 4EBP-1 binds to eIF4E preventing it from forming the

initiation complex, which inhibits translation. However, activated mTORC1

phosphorylates 4E-BP1 in a hierarchical manner on at least four of its numerous

phosphorylation sites. In human 4E-BP1, the residues of interest are Thr37, Thr46,

Thr70 and Ser65. Thr37 and Thr46 must be phosphorylated prior to the

phosphorylation of Thr70 and Ser65 (Proud 2006a). Please see Fig. 1.10 below for an

illustration. The addition of phosphate groups to Thr37/Thr46 is totally independent

of the TOS motif, but requires the 4E-BP1’s N-terminal RAIP motif (Arg-Ala-Ile-Pro)

(Wang et al. 2005), (Tee and Proud 2002). Phosphorylation of Thr70 and Ser65 leads

to the dissociation of 4E-BP1 from eIF4E. This results in the binding of eIF4G to

eIF4E and the creation of functional initiation complexes, thereby priming translation

(Fig. 1.11).



Structural and Functional Analysis of mTORβ

38

Fig. 1.10, Hierarchical phosphorylation of 4E-BP1 by mTORC1 results in release
from eIF4E. Phosphorylation at four sites on 4E-BP1 occurs sequentially. mTORC1
directly phosphorylates the ‘priming’ sites Thr 37 and Thr 46, and then
phosphorylates THr70 and Ser65. (Hay & Sonenberg 2004b)

Fig. 1.11, Regulation of cap-dependent translation initiation by mTORC1 via 4E-
BP. Hypophosphorylated 4E-binding proteins bind tightly to eIF4E, preventing it
from interacting with eIF4G and thus inhibiting translation. When nutrients are
abundant, mTORC1 phosphorylates 4E-BPs in a hierarchical manner, releasing the
4E-BP from eIF4E. This results in the recruitment of eIF4G to the 5’ cap and allows
translation initiation to proceed. (Ma & Blenis 2009)
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S6K1 is a member of the AGC family of protein kinases and must be phoshporylated

at two sites in order to be fully activated. These include Thr229 in the kinase

domain’s activation loop and Thr389 in the C-terminal’s hydrophobic motif.

mTORC1 firstly phosphorylates S6K1 on Thr389, which produces a docking site for

phosphoinositide-dependent kinase 1 (PDK1). PDK1 then phosphorylates Thr229

which activates S6K1. This allows S6K1 to phosphorylate eIF4B on Ser422, resulting

in its recruitment to the translation pre-initiation complex (Holz et al. 2005). eIF4B is

a cofactor that significantly enhances the helicase activity of eIF4A when

phosphorylated on its Ser422 residue (Hershey 1991). This has the consequence of

greatly improving the efficiency and rapidity of translation initiation (Fig. 1.12).

Furthermore, the protein Programmed cell death 4 (PDCD4) binds to eIF4A and is

postulated to suppress eIF4A’s helicase action (Yang et al. 2003). Upon stimulation

with growth factors, S6K1 is able to phosphorylate PDCD4 on Ser67, resulting in its

degradation through the ubiquitin ligase β-TrCP (Dorrello et al. 2006). As such, the

phosphorylation of PDCD4 by S6K1 prevents PDCD4 from inhibiting eIF4A’s

helicase function. Moreover, the scaffold protein SKAR has been shown to associate

with the activated form of S6K1, and recruits active S6K1 to newly formed mRNAs,

where it augments the translational yield (Ma et al. 2008). In addition, Ribosomal

protein S6 (rpS6 or just S6) is a component of the small (40S) ribosomal subunit and

is phosphorylated by S6K1 when the environmental conditions favour cell growth and

proliferation. Nevertheless, the phosphorylation of S6 is markedly disrupted by

rapamycin, which insinuates that this could involve mTOR.
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Fig. 1.12, Phosphorylation of S6K1 by mTORC1 augments the efficiency and
rapidity of translation initiation. Growth factors and nutrients activate mTORC1
which then phosphorylates S6K1 on Thr389. This allows PDK1 to phosphorylate
S6K1 on Thr229, which fully activates the protein. S6K1 then phosphorylates eIF4B
on Ser422. eIF4B then associates with the eIF3 complex to facilitate cap-dependent
translation initiation. (Peterson & Sabatini 2005)
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Translation elongation is also regulated by mTORC1 via modulation of the

phosphorylation status of eEF2 (eukaryotic elongation factor 2). The customary

function of eEF2 is to assist in the translocation stage of elongation when it is

dephosphorylated and active. However, eEF2 is inactivated by the addition of a

phosphate group at its Thr56 residue by eEF2 kinase. eEF2 kinase is itself subject to

regulation by phoshporylation on at least three in inhibitory sites (Ser76, Ser359 and

Ser366 in human eEF2 kinase) by mTORC1 (Proud 2006b). Ser366 is phosphorylated

by S6K but the precise mechanism whereby mTORC1 mediates phosphorylation of

the other two residues is currently unknown. Consequently, mTORC1 signalling

dephosphorylates and activates eEF2 in part by inhibiting eEF2 kinase by

phosphorylation. Unphosphorylated and active eEF2 is then able to actuate the

elongation apparatus.

Ribosomes are composed of approximately 85-90 distinct proteins (r proteins)

and ribosomal RNAs (rRNAs). Translation of the r proteins is subject to regulation by

mTOR. Furthermore, rDNA transcription which takes places in the nucleolus, and is

primarily catalysed by RNA polymerase I (PolI), is also regulated by mTOR. It has

been shown that mTOR is requisite for rDNA transcription activation (Hannan et al.

2003). The phosphorylation and function of UBF (upstream binding factor), which is

an rDNA transcription factor is also positively modulated by mTOR. In the set of

experiments conducted by Hannan et al. it was observed that S6K1 plays a key role in

mediating the interaction between mTOR and its regulation of UBF an rDNA

transcription. PolI transcription is also controlled by mTOR via its modulation of TIF-

1A activity (Mayer et al. 2004). TIF-1A is a regulatory factor that is sensitive to the

availability of growth factors and nutrients. When rapamycin is administered to cells,
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TIF-1A is translocated into the cytoplasm, which has the consequence of inhibiting

the formation of the transcription initiation complex.

Control of Autophagy

When cells are subjected to environmental stressors such as starvation and hypoxia,

intracellular organelles are sequestered within autophagosomes and delivered to the

lysosome (vacuole) for degradation. The subsequent release of biological material in

the form of amino acids and other nutrients provides the raw material to sustain

anabolic cellular functions such as energy production and protein synthesis, which are

required for cell survival. It has been demonstrated that inhibition of mTORC1

augments autophagy, but activation of mTORC1 diminishes this process (Codogno &

Meijer 2005). The regulation of autophagy by mTORC1 has been shown to be

insensitive to treatment with rapamycin (Mayer, Zhao, Yuan, & Grummt

2004;Thoreen et al. 2009). Moreover, work conducted in the past couple of years by

three different groups has shown that mTORC1 modulates autophagy via control of a

protein complex comprising focal adhesion kinase family-interacting protein of

200kDa (FIP200), autophagy-related gene 13 (ATG13) and unc-51 like kinase 1

(ULK1) (Ganley et al. 2009;Hosokawa et al. 2009;Jung et al. 2009). These

experiments demonstrated that mTORC1 suppresses autophagy by the

phosphorylation and repression of ATG13 and ULK1. Furthermore, mTORC1 also

regulates the movement of nutrient transporters, which stimulates the uptake of

nutrients including amino acids, iron, lipoprotein and glucose (Edinger and Thompson

2002).
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Regulation of Lipid Synthesis

The biosynthesis of lipids is of paramount importance for the preservation of cellular

homeostasis. The lipids that cells produce (sphingolipids, glycerolipids, fatty acids,

phospholipids and cholesterol) are utilised for various purposes. These include acting

as an energy reserve and playing the role of signalling molecules. Additional

functions include serving as the building blocks for the biosynthesis of membranes

and providing the precursor molecules for the creation of numerous cellular products.

When errors occur in the processing or synthesis of lipids, several diseases can arise

such as type 2 diabetes and cancer.

Growth factors activate Rsk, Erk and Akt which leads to the phosphorylation

and inactivation of TSC1/2, the upstream negative regulator of mTORC1. The

subsequent activation of mTORC1, not only by the inhibition of TSC1/2, but also by

the phosphorylation of PRAS40 by Akt, leads to the cleavage of SREBP-1. SREPBP-

1 is a simple helix-loop-helix transcription factor that modulates lipid production by

regulating the expression of genes necessary for the generation of phosholipid, fatty

acid, triglyceride and cholesterol. mTORC1 mediated cleavage of SREBP-1 results in

the protein’s translocation from the ER where it is synthesised, to the nucleus where it

is able to act as a transcription factor. Once in the nucleus, SREBP-1 is able to induce

the expression of several genes that are required for lipogenesis. Fatty acid synthase

(FASN), glucokinase (GK) and acetyl-CoA carboxylase represent an eclectic

selection of these genes.

The biological process of adipogenesis consists of the creation of mature

adipocytes from adipose precursor cells. The adipogenic cascade involves

CCAAT/enhancer binding protein-β (C/EBP-β) and C/EBP-δ, which stimulate the

expression of C/EBP-α. C/EBP-α then engenders the expression of peroxisome
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proliferator-activated receptor-γ (PPAR-γ). PPAR-γ is a nuclear receptor. Stimulation

of PPAR-γ activity results in dramatic alterations in gene expression, which causes

the promotion of fatty acid uptake, production, esterification and deposition in the

newly formed adipocyte. There is a strong body of evidence suggesting that mTORC1

regulates adipogenesis by the activation of PPAR-γ. It is thought that mTORC1

mediates control of PPAR-γ via several mechanisms. When mTORC1 is active, it

triggers the phosphorylation of the 4E-BP proteins, which causes the release of eIF4E.

This results in the translation of C/EBP-α and –δ, which are key players in the

adipogenic signalling pathway. The expression of C/EBP-α and PPAR-γ is driven by

C/EBP-δ, which also initiates the activation of a feed-forward loop in which the

expression of the transcription factors PPAR-γ and C/EBP-α is induced in a reciprocal

fashion. When sufficient quantities of PPAR-γ have been produced, it will instigate

the expression of a plethora of lipogenic genes as aforementioned. Furthermore, the

cleaving of SREBP-1 by mTORC1 not only results in the synthesis of triglycerides,

but also promotes the generation of PPAR-γ’s endogenous ligands. This represents an

additional way by which mTORC1 may contribute to the stimulation of adipogenesis.

In addition, Lipin-1, which is a phosphatidic phosphatase, has been demonstrated to

possess an important function in adipogenesis. It serves as a coactivator for PPAR-γ

and promotes the production of triglycerides. Rapamycin diminishes the

phosphorylation of Lipin-1 (Huffman et al. 2002), but it is currently unknown whether

it is a substrate for mTORC1 or mTORC2. A diagram illustrating the regulation of

lipid synthesis by mTORC1 is shown in Fig. 1.13.
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Fig. 1.13, Regulation of lipid synthesis by mTORC1. The presence of growth
factors results in the inactivation of TSC1/2, and the activation of mTORC1.
mTORC1 then mediates the cleavage of the transcription factor SREPBP-1, resulting
in its translocation to the nucleus. Here, SREPBP-1 induces the expression of several
genes that are required by lipogenesis. mTORC1 activates PPARγ via several
mechanisms, which results in the expression of a plethora of lipogenic genes.
(Laplante & Sabatini 2012)
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Modulation of mitochondrial metabolism and biogenesis

mTORC1 regulates mitochondrial metabolism and biogenesis. When mTORC1 is

inhibited with rapamycin, the cellular ATP levels, oxygen consumption and

mitochondrial membrane potential are all diminished. Moreover, these changes

induce a profound alteration in the mitochondrial phosphoproteome (Schieke et al.

2006). Work conducted in the past few years has demonstrated that mitochondrial

DNA copy number and the expression of numerous genes that encode proteins

involved in oxidative metabolism are reduced by rapamycin. Nevertheless, they are

augmented by mutations that stimulate the mTORC1 pathway (Chen et al.

2008;Cunningham et al. 2007). Furthermore, when Raptor was conditionally deleted

in mouse skeletal muscle, it was observed that there was a reduction in the expression

of the genes that are involved in mitochondrial biogenesis (Bentzinger et al. 2008). It

has also been noted that mTORC1 regulates the PPARγ coactivator 1’s (PGC1-α)

transcriptional activity. PGC1-α is a nuclear cofactor that plays a critical role in

oxidative metabolism and mitochondrial metabolism by directly changing its physical

association with yin-yang 1 (YY1), which is another transcription factor

(Cunningham et al. 2007).
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Regulation of mTORC1

Overview

mTORC1 regulates numerous cellular processes that stimulate cell growth by

integrating four major signals. These are nutrients, energy status, growth factors and

stress. The appropriate downstream response is then initiated by mTORC1 to preserve

homeostasis within the cell. The tuberous sclerosis complex (TSC) is one of the

principal sensors involved in the modulation of mTORC1 activity. TSC is a

heterodimer that is composed of TSC1 (aka harmatin) and TSC2 (aka tuberin).

TSC1/2 acts as a GTPase-activating protein (GAP) for the small Ras-related GTPase

Rheb (Ras homologue enriched in brain). Rheb is activated by the addition of GTP,

and interacts directly with mTORC1, promoting its activity (Long et al. 2005),

(Sancak et al. 2007). TSC1/2’s GTPase activity is specific for Rheb, and it inhibits

mTORC1 signalling by converting Rheb into its inactive GDP-bound state (Inoki et al.

2003).

The effect of growth factors

Eukaryotes are reliant on long-range communication for the coordination of nutrient

distribution and the concomitant growth of cells. When the organism is well fed, the

concentrations of growth factors in the plasma will be sustained at a relatively high

level. This leads to the promotion of anabolic processes such as nutrient storage, lipid

biosynthesis and translation via stimulation of mTORC1 activity.

The quantities of growth factors circulating in the bloodstream are detected by

mTORC1 through its connection to the PI3K pathway and the TSC1/2 complex. The

binding of insulin or insulin-like growth factors to their cognate receptors results in

the recruitment and phosphorylation of insulin receptor substrate 1 (IRS1). PI3K is
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then recruited and binds to IRS1, where it converts phopsphatidylinositol-4,5-

phosphate (PIP2) in the cell membrane to phosphatidylinositol-3,4,5-phosphate (PIP3).

Akt and PDK1 are then both recruited to the membrane, where Akt is phosphorylated

and activated by PDK1. Akt in conjunction with other kinases such as p90 RSK1 and

MAPK that are downstream of growth factor signalling then phosphorylates TSC2

(Ballif et al. 2005), (Li et al. 2003), (Potter, Pedraza, & Xu 2002), (Roux et al. 2004),

(Roux et al. 2004;Tee et al. 2003). The consequence is the inactivation of the TSC1/2

complex and the activation of mTORC1. Furthermore, two other pathways are

currently known to regulate mTORC1 in response to growth factors. Extracellular

signal-regulated kinase (ERK), which is part of the (MEK)-ERK axis inhibits TSC2

by phosphorylation (Ma et al. 2005). The Wnt pathway, which regulates cell growth

and proliferation in adults, has also been shown to play a role in the modulation of

mTORC1 activity (Castilho et al. 2009;Inoki et al. 2006), (Inoki et al. 2006).

Glycogen synthase kinase 3β negatively regulates mTORC1 by phosphorylating

TSC2. By its inhibition of GSK3β, Wnt mediates the activation of mTORC1.

Mechanisms also exist whereby mTORC1 is regulated by growth factors

independently of TSC. For example, when Akt is activated by growth factors it

phosphorylates PRAS40 at Ser247 leading to its inactivation. This results in the

disruption of its inhibitory action on mTORC1 (Inoki et al. 2006;Oshiro et al. 2007),

(Sancak et al. 2007), (Thedieck et al. 2007), (Vander et al. 2007), (Wang et al. 2007),

(Wang et al. 2008).

Curiously enough, the activation of mTORC1 by growth factors also results in

the attenuation of growth factor signalling by means of the ‘negative feedback loop’.

Nevertheless, in stark contrast to conventional feedback loops where inhibition is only

initiated upon attainment of a certain threshold, mTORC1 appears to repress growth
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factor signalling pathways in an incremental and continuous manner. It is thought that

more than one mechanism is involved in the actuation of the feedback loop. When

S6K1 is active, it phosphorylates IRS1, which diminishes its expression and activity.

This impairs its binding to the insulin receptor, which leads to the promotion of

IRS1’s degradation and a decline in the quantities of its mRNA (Harrington et al.

2004), (Sancak et al. 2007), (Shah and Hunter 2006), (Tremblay et al. 2007).

Moreover, activated S6K1 is also capable of suppressing the function of other growth

factor receptors that are not dependent on IRS1. An example is platelet-derived

growth factor receptor (PDGFR), which demonstrates that IRS1 is not the sole target

in feedback inhibition (Zhang et al. 2003). It has also been shown that mTORC1 can

directly interact with IRS1 through Raptor. The result is the phosphorylation of IRS1

at residues that hinders its binding to PI3K (Tzatsos 2009).
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The role of amino acids

Amino acids stimulate mTORC1 activity. Furthermore, it has been shown that

arginine, and the branched chain amino acids leucine and isoleucine are particularly

important in the promotion of mTORC1 function (Hara et al. 1998). Studies that were

conducted more than ten years ago demonstrated that withdrawal of amino acids from

cultured cells resulted in the inhibition of mTORC1 activity. No other known

activating stimuli could force a resumption of mTORC1 signalling (Hara et al.

1998;Sancak et al. 2008;Wang et al. 1998). The level of amino acids can be detected

within the cell instead of at the plasma membrane in mammals (Christie et al. 2002).

As such, amino acid transporters, such as SLC7A5 have been shown to play an

important role in the mTORC1 pathway. SLC7A5, which is a bidirectional transporter,

imports Leucine into the cell via the concomitant efflux of glutamine (Nicklin et al.

2009).

However, the mechanisms by which amino acids activate mTORC1 signalling

once inside the cell are only beginning to be revealed. Nonetheless, it is known that

the stimulation of mTORC1 by amino acids is dependent on both Rag (Kim et al.

2008), (Sancak et al. 2008) and the Ras-like GTPase Rheb (Garami et al. 2003),

(Inoki et al. 2003a), which both directly bind to mTORC1. In addition, Rag brings

about the localisation of mTORC1 to the lysosomal membrane (Kim et al. 2008),

(Sancak et al. 2008). There are four Rag GTPases; RagA, RagB, RagC and RagD.

The heterodimeric Rag GTPase complex is formed by the binding of either RagA or

RagB to either RagC or RagD, and appears to be constitutively located on lysosomal

membranes. As individual components, the Rag GTPases are functionally redundant.

Furthermore, lysosomal membranes possess a multi-subunit complex that is

composed of p18, p14 and MP1, that is known as the Ragulator (Sancak et al. 2010).
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This complex plays the part of a scaffold protein for Rag. When cells are starved of

amino acids, RagC/D is bound to GTP, whereas RagA/B is bound to GDP.

Nonetheless, amino acid stimulation of the cells results in the switching of the bound

guanine nucleotides, via an unknown mechanism. RagA/B now binds GTP and

RagC/D binds GDP, resulting in the activation of Rag. Activated Rag then interacts

with Raptor and acts as a docking site for mTORC1 on the lysosome’s surface

(Sancak et al. 2008). Rheb-GTP, which exists in a lysosomal pool, then activates

mTORC1 through an unknown mechanism. Moreover, since Rheb is required for the

promotion of mTORC1 activity by all upstream inputs, it is speculated that the amino

acid dependent targeting of mTORC1 to lysosomal membranes is a prerequisite for

the stimulation of mTORC1 by all other signals (Sancak et al. 2008;Sancak et al.

2010). Other potential modulators of amino acid signalling to mTOR include the class

III PI3K mVps34 (Byfield et al. 2005;Nobukuni et al. 2005) and the Ste20-related

kinase MAP4K3 (Findlay et al. 2007). Unfortunately, the precise mechanisms by

which these proteins regulate mTORC1 remain to be elucidated.
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The importance of Energy Status

mTORC1 is sensitive to the energy level within the cell via AMP-activated protein

kinase (AMPK) (Hardie 2007). Energy deficiency, as signified by a high AMP/ATP

ratio activates AMPK, which then phosphorylates TSC2. This augments TSC2’s GAP

activity towards Rheb, which inhibits mTORC1 (Inoki, Zhu, & Guan 2003).

Furthermore, AMPK can diminish mTORC1 signalling when energy is insufficient by

directly phosphorylating Raptor (Gwinn et al. 2008). Furthermore, LKB1, which is a

tumour suppressor, has been shown to be an upstream kinase for AMPK. This implies

that LKB1 could form part of the TSC-mTORC1 signal transduction network.

Moreover, it was demonstrated that LKB1 mutant cells possessed vastly increased

mTORC1 signalling (Corradetti et al. 2004;Shaw et al. 2004).

The impact of stress and miscellaneous cellular signals

Hypoxia inhibits mTORC1 signalling via several mechanisms (Wouters &

Koritzinsky 2008). Oxygen deprivation results in a decline in the level of cellular

ATP by causing the inhibition of metabolic processes such as oxidative

phosphorylation. The subsequent elevation of the AMP:ATP ratio activates AMPK,

which dampens mTORC1 signalling through the promotion of TSC2 activation and

the phosphorylation of raptor (Arsham et al. 2003), (Liu et al. 2006). TSC1/2 can also

be activated by hypoxia via transcriptional regulation of the protein DNA damage

response 1 (REDD1) (Brugarolas et al. 2004), (Reiling & Hafen 2004). REDD1 is a

cytoplasmic protein that is 232 amino acids long. In addition it is thought to belong to

a signal transduction pathway that is parallel to PI3K and AMPK (Sofer et al. 2005).

Furthermore, it was observed that REDD1 inhibited mTORC1 signalling by liberating

TSC2 from its growth-factor induced binding to 14-3-3 proteins and stabilising the



Structural and Functional Analysis of mTORβ

53

association of TSC1 and TSC2 (DeYoung et al. 2008), (Vega-Rubin-de-Celis et al.

2010). A variety of other cellular stressors such as cigarette smoke, oxidising agents

and DNA damage also induce REDD1 (Ellisen et al. 2002; Wang et al. 2003;Yoshida

et al. 2010). Moreover, signalling in the mTORC1 pathway is diminished during

hypoxia by another two proteins; BCL2/adenovirus E1B 19 kDa protein-interacting

protein 3 (BNIP3) and promyelocytic leukemia (PML) tumour suppressor. These

proteins mediate mTORC1 inhibition by preventing mTORC1 from interacting with

Rheb (Bernardi et al. 2006;Ellisen et al. 2002;Li et al. 2007).

When a cell’s DNA is damaged, one of two paths can be taken. If the DNA

damage is reversible, then cellular repair processes will be initiated. However, if the

situation is irrevocable, then apoptosis will be activated (Ciccia & Elledge 2010).

Furthermore, there is increasing realisation of the role that mTORC1 inhibition plays

in DNA repair (Ellisen et al. 2002;Ghosh et al. 2006). The tumour suppressor protein

p53 is a keystone in the regulation of DNA damage responses (Riley et al. 2008);

(Vousden & Ryan 2009). When p53 is activated by DNA damage, it negatively

modulates mTORC1 signalling by augmenting the transcription of TSC2, phosphatase

and tensin homologue deleted on chromosome 10 (PTEN) and REDD1, which have

all been implicated in the inhibition of mTORC1 activity (Ellisen et al. 2002; Feng et

al. 2005; Stambolic et al. 2001). In addition, p53 also augments the expression of the

genes for Sestrin1 and Sestrin2. These proteins are able to suppress mTORC1 through

AMPK-dependent modulation of TSC1/2 (Budanov & Karin 2008); Feng et al. 2005).

There is also limited evidence which insinuates that p53 induces a rapid decline in the

initiation of translation, in part by controlling the phosphorylation of 4E-BP1 and S6K

(Horton et al. 2002). Taken together, these findings suggest that p53 activation due to
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genotoxic stress suppresses mTORC1 function in a multi-faceted manner (Ellisen, et

al. 2002; Feng et al. 2005; Stambolic et al. 2001).

IκB kinase β (IKKβ) is one of the foremost activators of the proinflammatory

NF-κB signal transduction network. When stimulated by inflammatory cytokines such

as TNFα, IKKβ phosphorylates TSC1 causing its destabilisation (Lee et al. 2007).

This results in mTORC1 activation. The link between inflammation and the

promotion of mTORC1 function is speculated to be significant in insulin resistance

(Lee et al. 2008) and tumour angiogenesis (Lee et al. 2007).

Finally, numerous labs have demonstrated that overexpression of PA-

producing enzymes (i.e. PLD1 and PLD2), or exogenous PA markedly amplifies

mTORC1 signalling (Foster 2007). It is thought that PA achieves this by either

stabilising mTORC1 complexes, or by facilitating their assembly (Toschi et al. 2009).
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mTORC2 Signalling-Overview

When compared with mTORC1, very little is known about the regulation and

functions of mTORC2. This is largely due to the present lack of mTORC2 inhibitors.

Nevertheless, it has been shown that mTORC2 plays a pivotal role in several cellular

processes such as cell survival, metabolism, proliferation and the organisation of the

cytoskeleton.

mTORC2’s involvement in cell survival, metabolism and proliferation

Activation of AKT is of crucial importance in the positive modulation of cellular

survival, metabolism and proliferation via the phosphorylation of numerous effector

proteins (Manning & Cantley 2007). AKT is fully activated when it is phosphorylated

at two sites, namely Ser308 by the action of phosphoinositide-dependent kinase 1

(PDK1), and Ser473 by mTORC2 (Sarbassov et al. 2005). When mTORC2 is

depleted, AKT is inhibited. This leads to a diminution in the phosphorylation of

forkhead box protein O1 (FoxO1) and FoxO3a, which are both transcription factors

that regulate the expression of genes concerned with metabolism, stress resistance,

cell-cycle arrest and apoptosis (Calnan & Brunet 2008). Diminished phosphorylation

of these proteins inactivates them. Work done in the past few years has also shown

that serum- and glucocorticoid-induced protein kinase 1 (SGK1) is modulated by

mTORC2 (Garcia-Martinez & Alessi 2008). Unlike AKT, which still functions at a

minimal level when mTORC2 is deactivated, the activity of SGK1 is completely

abolished. Moreover, AKT and SGK1 phosphorylate FoxO1 and FoxO3a on common

residues. Therefore, it is plausible that the absence of SGK1 activity in cells that lack

mTORC2 leads to the inhibition of FoxO1 and FoxO3a phosphorylation.
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Control of Cytoskeletal Organisation

Recent work has shown that mTORC2 regulates the organisation of the actin

cytoskeleton by various means. These include enhancing the phosphorylation of

protein kinase Cα (PKCα) as well as phosphorylating paxillin and relocating it to

focal adhesions. The addition of GTP to RhoA and Rac1 has also shown to  be

important in the control of the actin cytoskeleton by mTORC2 (Jacinto et al. 2004),

(Sarbassov et al. 2004), but the precise mechanisms by which mTORC2 controls these

processes is still unknown.

Signalling upstream of mTORC2

Unfortunately, the upstream molecular events that lead to the activation of mTORC2

are not fully defined. However, upon growth factor stimulation, mTORC2 kinase

activity is elevated, and it phosphorylates AKT in its C-terminal hydrophobic motif at

residue Ser473 (Guertin & Sabatini 2007). In addition, in vitro tests have

demonstrated that in order for AKT to be fully activated, it must be phosphorylated at

both Ser473 and at Thr308. However, the phosphorylation of the Thr308 residue by

PDK1 is not dependent on Ser473 phosphorylation (Biondi et al. 2001), (Collins et al.

2003). In addition, the mTORC2 component mSIN1 possesses a pleckstrin homology

domain at its C-terminus. As such, it is speculated that mSIN1 may mediate the

shuttling of mTORC2 to the membrane. Here, it would be able to interact with AKT

via its PH domain and phosphorylate it at Ser473 (Schroder et al. 2007). In Fig. 1.14,

a diagram showing a simplified version of the mTOR signalling network has been

provided.
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Figure 1.14: The mTOR signaling network. This is a simplified representation of
the mTOR signalling pathway that demonstrates how the mTORC1 and mTORC2
complexes regulate growth and metabolism in the cell. Amino acids (purple)
positively modulate the rapamycin-sensitive mTORC1 through the Rag GTPases.
Growth factors (green) regulate mTORC1 activity in a positive manner via the Akt-
PI3K pathway. Growth factors also stimulate mTORC2 function via an unknown
pathway that involves the TSC complex. Low energy status (yellow) inhibits
mTORC1 through AMPK. The mTORC substrates have been coloured grey. (Polak &
Hall 2009)
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mTOR as a Therapeutic Target

Due to the key role mTOR plays in the regulation of cellular growth and proliferation,

mTOR is under intense investigation as a therapeutic target primarily for cancer. The

earliest clinical trials involved the use of the classical mTOR inhibitor rapamycin.

However, the results were disappointing because rapamycin proved to be of limited

efficacy in the treatment of certain types of cancer. Research has shown that some of

the key problems stem from its inability to directly inhibit mTORC2, the inhibition of

the negative feedback loop upon mTORC1 inactivation and its poor solubility in

water (Napoli & Taylor 2001). In order to remedy the problem of insolubility,

rapalogues such as Temsirolimus and Everolimus were developed. Despite their

modifications, these drugs are still capable of mimicking the inhibitory action of the

FKBP12-rapamycin complex on mTOR. Their potency is currently being assessed in

ongoing clinical tests.

The indifference that mTORC2 displayed towards rapamycin treatment also

spurred the development of ATP-competitive inhibitors. These target mTOR’s

catalytic site and inhibit all mTORC1 and mTORC2 functions. Examples include

Torin (Thoreen et al. 2009), P30 (Feldman et al. 2009), WAY-600 (Yu et al. 2009)and

Ku-0063794 (Garcia-Martinez et al. 2009). The effect of inhibiting all mTOR

functions on cell viability requires further investigation.

Attempts have been made to circumvent the issue of feedback inhibition by

using dual PI3K-mTOR inhibitor strategies. So far inhibitors such as NVP-BEZ235

have been proven to possess superior anti-proliferative abilities when compared with

rapalogues such as Everolimus in 21 different cancer cell lines (Serra et al. 2008).

However, although inhibition of both mTOR and PI3K proved to be an effective

treatment in tumours that displayed hyperactive PI3K signalling (Brachmann et al.
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2009), it was ineffective when faced with hyperactivation of K-Ras. It appears that in

the case of Ras-driven tumorigenesis, the simultaneous inhibition of mTOR, PI3K and

Ras’s downstream mediators is necessary (Engelman et al. 2008), (Ihle et al.

2009;Torbett et al. 2008). However, the potential toxicity of this approach has not yet

been critically evaluated (Adami et al. 2007).

Mutations in mTOR

In 2010, Sato et al mined the COSMIC library (Catalogue of Somatic Mutations in

Cancer) provided by the Sanger Institute. This database contains a huge quantity of

information pertaining to somatic mutations in human cancers. The results of the

search showed that 10 mutations in the mTOR gene have currently been identified

from 750 cancer samples. Two of these mutations were silent mutations that did not

alter the amino acid sequence. Another generated a stop codon that resulted in the

production of a truncated mTOR protein that lacked a kinase domain. The mutation

M135T was identified twice. The 6 different mutations that resulted in a change in

amino acid are shown in Fig. 1.15. Of particular interest were the mutations that were

located in the kinase domain or its vicinity. These were S2215Y, P2476L and R2505P

respectively.
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Fig 1.15, The locations of the 6 mutations identified in mTOR. Each of these 6
mutations results in a change in amino acid. The tissue type in which each of the
mutations was found has also been indicated. (Sato et al. 2010)
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Aims of this Study

Several years ago, an isoform of mTOR was discovered in the Gout lab, which was

called mTORβ. The initial set of experiments performed revealed some key findings;

the protein was able to form the mTORC1 and mTORC2 complexes and was a proto-

oncogene. However, in order to further our understanding of the function and

regulation of this novel protein, it was decided to gain insight into its structure.

Therefore, the first part of my PhD studies involved comparative modelling of

mTORβ’s kinase domain. The effect of mutations on the kinase activity of mTORβ

towards several mTOR substrates was then assessed in mammalian cells. Finally, a

mTOR/TAP-tag fusion protein was generated. Had time permitted, this would have

been used to search for novel mTORβ binding partners.
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Chapter 2

Materials and Methods
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Chapter 2: Materials and Methods

2.1) Materials

2.1.1 Common Chemicals and Reagents

All the general purpose chemicals were acquired from Sigma-Aldrich, Thermo Fisher

Scientific UK limited, BDH Biosciences unless otherwise specified. General cell

culture reagents were purchased from PAA Laboratories GmbH. Pre-stained protein

molecular weight markers, restriction enzymes and DNA markers were obtained from

Fermentas.

2.1.2 Antibodies

Horseradish peroxidase-linked (HRP) secondary antibodies (anti-rabbit and anti-

mouse) were purchased from Promega. Antibodies against actin, myc and EE were

generated in the lab by former students for other purposes. Anti-Akt (#9272), anti

Phospho-Akt (#4051), anti 4E-BP1 (#9452) and anti Phospho-4E-BP1 (#2855) were

obtained from Cell Signalling. Anti-S6K1 (ab32359) and anti-S6K1 (phosphpoT389)

(ab2571) were acquired from Abcam. Anti-Phospho-mTOR (Ser2448) (09-213) and

anti-mTOR (07-231) antibodies were obtained from Millipore.

2.1.3 Mammalian cells

HEK293 cells were obtained from the American Type Culture Collection (ATCC).

2.1.4 Plasmids and Primers

The pCeMM-NTAP(GS) plasmid was obtained courtesy of Dr Tilmann Burckstummer

from the Research Centre for Molecular Medicine of the Austrian Academy of Sciences. All

other plasmids were obtained from Invitrogen. Primers were ordered from MWG Operon.
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2.2 Experimental Methods

2.2.1 Nucleic Acid Manipulation

2.2.1.1 Digestion of DNA with specific restriction enzymes

All restriction endonucleases were acquired from Fermentas and digests were carried

out in the manufacturer’s recommended digestion buffer. 5 units of restriction enzyme

were used to digest 1μg of DNA in a total volume of 20μL.  The reaction mixtures

were placed in an incubator at 37°C for 1hr.

2.2.1.2 Electrophoresis of DNA and purification from an agarose gel

DNA fragments were visualised by separation on an agarose based gel. 0.75% w/v

agarose gels were used throughout this thesis for DNA purification and analysis. The

required weight of agarose was added to TAE buffer (1mM EDTA, 40mM Tris-

Acetate, pH 7.0) and heated in order to dissolve the agarose. After cooling the

solution to approximately 50°C, Gel-Red dye supplied by Biotium was added in a

10,000x dilution. The liquid agarose solution was then poured into a mould containing

a well-forming comb and left at room temperature so that it could solidify. 6 x DNA

loading buffer supplied by Fermentas was mixed with the DNA samples and they

were loaded into the wells in the gel. The samples were then electrophoresed at 100V

in TAE buffer to achieve separation. 1kb Gene Ruler standard molecular weight

markers from Fermentas were utilised on the gel to ascertain the sizes of the various

fragments. After electrophoresis, the DNA was observed by exposing the gel to long-

wave UV light. Purification of the requisite DNA fragments from the gel was

performed by excising the bands of interest and using manufacturer’s gel extraction

kits to obtain the DNA.
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2.2.1.3 DNA Ligation

A rapid DNA ligation kit from Fermentas was used to ligate DNA fragments to

linearised vector. In order to reduce the risk of self-ligation of the plasmids, at least a

1:3 molar ratio of vector:insert was utilised in the ligation reactions. The reactions

were conducted at room temperature using 1μL of T4 DNA Ligase and 5μL of Rapid

Ligation Buffer in a total reaction volume of 20μL. The reaction mixture was stored

in the fridge until it was used for transformation.

2.2.1.4 Transformation and Growth of Bacteria

E.Coli XL-1 competent cells (obtained from Stratagene) that were stored at -80°C

were thawed on ice and 50μL of bacterial suspension was mixed with 5μL of ligated

plasmid reaction mix in 14mL BD Falcon polypropylene round-bottomed tubes. The

mixture was then incubated on ice for 30 minutes. The cells were then subjected to

heat-shock in a water bath at 42°C for 45 seconds, and then placed on ice for 2

minutes. 1mL of preheated LB media (42°C) was then added to the bacterial

suspension and the tubes were incubated at 37°C for 1 hour with shaking at 225rpm.

50μL of this cellular suspension was then added to 200μL of LB media and spread on

a selective agar plate. The plate was then placed overnight in an incubator at 37°C.

Amplification of positively transformed bacteria was achieved by inoculating a

bacterial colony from a selective agar plate into the requisite volume of LB media

with antibiotic. The tubes were then placed in a shaker at 37°C overnight with shaking

at 225rpm.
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2.2.1.5 Purification of Plasmid DNA

Plasmid DNA was purified from bacterial suspension using the Promega PureYield

Plasmid Miniprep System. In essence, cells in 3mL of bacterial culture were lysed by

the addition of lysis buffer. The mixture was then neutralised with neutralisation

solution. The bacterial cultures were then centrifuged at 13,000rpm for 3 minutes and

the supernatant was transferred to a Minicolumn which would bind the plasmid DNA.

The minicolumns were then washed and centrifuged to remove contaminants, and the

DNA was eluted with water. The purity and concentration of the purified plasmid

DNA was analysed by loading onto an agarose gel alongside a MW marker (1kb

GeneRuler, Fermentas).

2.2.1.6 PCR Site-Directed Mutagenesis

Unfortunately, mTORβWT was not cloned into the pcDNA3.1(+) vector using the

XhoI and NotI restriction enzymes. Therefore, it was not possible to excise it from its

original vector and directly clone it into the TAP-tag plasmid pCeMM-NTAP(GS). As

a result, primers were designed that would allow the XhoI and NotI restriction

sequences to be artificially introduced at the N and C termini of mTORβ respectively

by PCR. PCR reactions were carried out under different experimental conditions in

order to find the set of conditions that would generate the most PCR product. The

variables involved performing reactions either with or without DMSO. Furthermore,

for the PCR reactions that were performed with DMSO, three different annealing

temperatures were utilised. The PCR product would then be cloned into the pCeMM-

NTAP(GS) TAP tag vector.

PCR site-directed mutagenesis was also used to introduce the S2215Y and

12del mutations into mTORβ DNA. Forward and reverse oligonucleotide primers
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were designed for the S2215Y mutation and for the 12del mutation. Stratagene’s

QuikChange Site-Directed Mutagenesis Kit was used to create the required mutations

in the mTORα and mTORβ plasmids. The manufacturer’s manual can be viewed via

the following link:

http://www.genomics.agilent.com/files/Manual/200516.pdf

However, some modifications were made to the PCR reaction mixture on p10 of the

protocol. These included using 50ng of the mTORβ/pCDNA3.1(+) dsDNA template,

and an oligonucleotide primer concentration of 50ng/μL.

For the PCR reactions with 5% DMSO the following reaction volumes and conditions

were used:

Reaction Mixture (For 5% DMSO rxns):

Component Amount per reaction
dH2O 31μL
10x PfuUltra2 Reaction Buffer 5μL
50% DMSO 5μL
dNTP mix (2mM each dNTP) 5μL
DNA template (mTORB/pcDNA3.1(+)) (25ng/μL) 1μL
Primer #1 (10μM) 1μL
Primer #2 (10μM) 1μL
PfuUltra 2 fusion HS DNA Polymerase 1μL
Total Rxn Volume 50μL

PCR Cycling Parameters (For 5% DMSO rxns):

Segment No. of Cycles Temperature (°C) Duration
1 1 98°C 2mins

98°C 20s
60/62/64°C 20s2 30 cycles
72°C 1min

3 1 72°C 3mins
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For the PCR reactions without DMSO the following reaction volumes and conditions

were used:

Reaction Mixture (No DMSO):

Component Amount per reaction
dH2O 36μL
10x PfuUltra2 Reaction Buffer 5μL
dNTP mix (2mM each dNTP) 5μL
DNA template (mTORB/pcDNA3.1(+)) (25ng/μL) 1μL
Primer #1 (10μM) 1μL
Primer #2 (10μM) 1μL
PfuUltra 2 fusion HS DNA Polymerase 1μL
Total Rxn Volume 50μL

PCR Cycling Parameters (No DMSO):

Segment No. of Cycles Temperature (°C) Duration
1 1 95°C 2mins

95°C 20s
62°C 20s2 30 cycles
72°C 60s (15s per kb for targets > 1kb)

3 1 72°C 3mins

2.2.1.7 Purification of PCR product using Ethanol Precipitation

1/10 volume of 3M sodium acetate and 2 volumes of 100% ice-cold ethanol were

added to the PCR product sample tubes. The tubes were then cooled on dry ice for

20mins. The tubes were then centrifuged at max speed for 10mins. The supernatant

was decanted and the pellet was carefully washed with 100μL of 75% ice-cold ethanol.

The pellet was then dried by aspiration and the DNA was dissolved in 20μL of ddH2O.
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2.2.2 Mammalian Cell Culture and Methodology

2.2.2.1 Maintenance of Cell Lines

HEK293 cells were maintained in Dulbecco’s Modified Eagle’s medium (DMEM

from PAA) supplemented with 10% v/v foetal bovine serum (FBS from Hyclone) and

1% penicillin/streptomycin v/v antibiotics. Cells were grown in 37C̊ humidified

incubators at 10% CO2. When cells had reached 60-80% confluency, they were

passaged. The medium was aspirated and the cells were washed with 1 x Dulbecco’s

phosphate buffered saline (PBS from PAA). The cells were then detached from the

plates by the addition of trypsin-EDTA (supplied by PAA). The plates were then

placed in the incubators at 37C̊ for 1-2 minutes in order to fully detach the cells. Fresh

medium was then added to neutralise the trypsin and the cellular suspension was

pipetted up and down continuously to break up any clumps of cells. The volume of

cellular suspension required to achieve a desired ratio was then added into new plates

containing fresh medium. Subculturing was conducted in a laminar flow hood, which

was totally sterile with media and reagents that had been previously pre-warmed to

37C̊.

2.2.2.2 Transient Transfection of HEK293 with plasmid DNA

When a 10cm plate had reached 80% confluency it was split (1/3) into three new

10cm plates with 8mL of fresh DMEM complete medium. 24hrs later, the media was

aspirated and 10mL of new DMEM complete medium was added to each plate. 10μg

of plasmid DNA was then mixed with 200μL of sterile 150mM NaCl. The DNA and

NaCl were mixed very well by pipette action. 35μL of Exgen500 transfection reagent

supplied by Fermentas was then added and the solution was immediately mixed by

pipette action for 10secs. The tubes were then incubated at room temperature for
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10mins before being added drop wise to the previously prepared plates of HEK293

cells with refreshed medium. The transfected cells were then placed in an incubator at

37C̊ for 48 hours before being they were frozen at -80C̊ or used for analysis.

2.2.2.3 Serum and Nutrient Starvation of cells and subsequent Stimulation

24hrs after transient transfection, the complete DMEM medium was aspirated and

was replaced with serum-free DMEM medium. The cells were then incubated at 37°C

overnight in this medium. The next morning, the serum-free media was removed and

the PBS was introduced into the plates. The cells were then incubated at 37°C for 1hr

to achieve nutrient starvation. At this point, the cells were either frozen at -80°C or

used for analysis.

In the latter set of experiments involving starvation followed by stimulation,

the conditions were altered slightly, but the methods employed were identical. Firstly,

the duration of serum starvation was extended to 24 hours. In addition, the cells were

subjected to nutrient deprivation for 3 hours rather than one. Stimulation was effected

by removing the PBS and incubating the cells in DMEM complete medium for 1hr at

37°C. The cells were then utilised for analysis for frozen at -80°C.

2.2.3 Isolation and analysis of proteins from HEK293 cells

2.2.3.1 Isolation of protein in total cell lysate from cultured HEK239 cells

The plates were removed from the incubator and the medium was aspirated. The cells

were washed with ice-cold PBS and placed on ice. The PBS was then aspirated and

the cells were lysed on ice with ice-cold lysis buffer (150mM NaCl, 1% Triton X-100,

50mM NaF, 20mM Tris-HCl pH 7.5 and Roche Protease inhibitor cocktail) for 20

minutes. The cell lysates were scraped from the plates and were placed in
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microcentrifuge tubes. The tubes were then centrifuged at maximum speed

(14,000rpm at 4°C) for 20mins in order to pellet the insoluble fraction. The

supernatants were then transferred to new tubes and the protein concentration of each

sample was ascertained by the Bradford assay.

2.2.3.2 Measuring Protein Concentration

The Bradford Assay was utilised to measure the protein concentration in each

sample’s soluble fraction. Bio-Rad Protein Assay Reagent was diluted 5x with ddH2O

to generate the working solution. Samples were made up by adding 1μL of each

sample to 1mL of diluted reagent solution. Measurements were made with a Bio-

photometer (supplied by Eppendorf) at an absorbance of 595nm utilising lcm plastic

cuvettes. The photometer generates results in the form of a curve on a graph of

concentration against absorbance. In addition, all measurements are calculated based

on standards provided in the preset.

2.2.3.3 Affinity Purification

Affinity purification was utilised to purify mTORβ/pCeMM-NTAP(GS) from the

soluble fraction of transiently transfected HEK293 cells. For each sample, 50μL of

Millipore PureProteome Protein G magnetic bead suspension was pipetted into a new

microcentrifuge tube. The tube was then placed in a magnetic rack and the storage

buffer was carefully removed with a pipette. 500μL of PBS containing 0.1% Tween

20 was then added to the beads and the tubes were vortexed vigorously for 20secs.

The tubes were then replaced in the magnetic stand and the PBS was removed with a

pipette. The soluble fractions of the HEK293 total cell lysates were then added to the

tubes. The tubes were then placed on a loop at 4°C for 2hrs. At the end of this time
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the tubes were placed in the magnetic rack and the beads were washed 3x with 500μL

PBS containing 0.1% Tween 20 per wash. 50μL Laemmli sample buffer was then

added to each sample tube, and the samples were mixed by vortexing. The tubes were

then boiled in a heat block at 100°C for 8mins and then centrifuged at 13,300rpm in a

desktop microcentrifuge for 10secs to collect any condensation. The samples were

then loaded onto a SDS-PAGE gel and electrophoresed, or frozen at -20°C for later

use.

2.2.3.4 Immunoprecipitation

Immunoprecipitation of particular proteins was achieved by using antibodies that

were specific for the protein of interest. Antibody was added to Protein A sepharose

beads followed by the total cell lysate in a microcentrifuge tube. The sample tubes

were then placed on a rotating wheel for 2hrs at 4°C. Following incubation on the

wheel, the tubes were washed 3x with extraction buffer containing protease inhibitors.

15μL of 2xSDS loading buffer was then added to the beads, and the mixture was

boiled for 8mins. The tubes were then centrifuged at max speed for 10secs in a

desktop centrifuge to collect condensation. The liquid component was then loaded

onto a SDS-PAGE gel.

2.2.3.5 SDS-PAGE

When one boils a protein sample with Laemmlli sample buffer, the SDS detergent

present in the buffer binds to the proteins. This results in the linearisation of the

protein as well as the formation of a uniform negative charge across the length of the

protein. Consequently, the protein samples can be separated by an electric current on

the basis of size. During electrophoresis, movement of the larger proteins is physically
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retarded by the matrix, whilst smaller proteins meet with less opposition and move

further more quickly. This has the effect of separation by size.

5x Laemmlli sample buffer (10%SDS, 250mM Tris pH6.8, 50% glycerol,

0.5% bromophenol blue, 50mM DTT) was added to protein samples in order to obtain

a final concentration of 1x. The samples were then boiled for 8 minutes in a heat

block at 100°C and centrifuged briefly at 3,000rpm before they were loaded onto the

polyacrylamide gel. 1mm thick NuPAGE 10% Bis-Tris gel with 10 wells were used in

conjunction with Invitrogen’s XCell SureLock Mini-Cell system. 20μL of sample was

loaded into each well as required. The gel was run with 1x MOPS SDS running buffer

(50mM MOPS, 50mM Tris Base, 0.1% SDS, 1mM EDTA, pH7.7) for 50mins at a

constant voltage of 200V.

2.2.3.6 Western Blotting

After separation of the proteins by size on a SDS-PAGE gel using electrophoresis, the

proteins were transferred from the gels using semi-dry transfer. The Trans-BlotTM

system (Biorad) was utilised to perform the semi-dry transfer. Once the gel cassette

was opened, superfluous parts of the gel were cut off and the gel was placed on a

sheet of PVDF membrane. The membrane and gel were sandwiched between four

sheets of pre-soaked 3MM filter paper and air bubbles were removed. Transfer was

then conducted at a constant current of 0.3mA for 1 hour.

Following transfer, membranes were washed with TBST (10mM Tris-HCl

pH7.5, 150mM NaCl, 0.1% Tween 20) before they were blocked for 1 hour in TBST

containing 5% (w/v) non-fat dried milk powder. Blocking seeks to minimise non-

specific binding of the antibodies to the membrane. Primary antibodies were diluted

according to the manufacturer’s guidelines in TBST containing 2% BSA and 0.02%
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sodium azide. The membranes were then incubated with the primary antibody

solutions overnight at 4°C. The following morning, the membranes were washed 3

times for 10mins per wash in fresh TBST buffer. The membranes were then incubated

for 1 hour at room temperature with the relevant HRP-linked secondary antibody,

which was diluted in TBST with 5% milk powder. TBST was then used to wash the

membranes 3 times, 10mins per wash prior to development by enhanced

chemiluminescence (ECL).

Equal volumes of ECL solution 1 (coumaric acid, luminol, 50mM Tris-HCl)

and ECL solution 2 (0.02% H2O2, 50mM Tris-HCl) were mixed and incubated with

the membrane for 1 and a half minutes at room temperature. The membrane was then

encased in Saran wrap and excess ECL solution was removed by blotting. The bands

were then visualised by exposing the membrane to an X-ray film in a dark room for

different durations.

2.2.3.7 Table of all antibodies used

Antibody Product Code Manufacturer/Source Dilution used
Anti-Actin - Produced by former student 1 to 1000
Anti-Myc - Produced by former student 1 to 1000
Anti-EE - Produced by former student 1 to 1000
Anti-Akt #9272 Cell Signalling 1 to 1000
Anti-PAkt #4051 Cell Signalling 1 to 1000
Anti-4E-BP1 #9452 Cell Signalling 1 to 1000
Anti-P4E-BP1 #2855 Cell Signalling 1 to 1000
Anti-S6K1 ab32359 Abcam 1 to 1000
Anti-S6K1 (Phospho T389) ab2571 Abcam 1 to 1000
Anti-PmTOR (Ser2448) 09-213 Millipore 1 to 1000
Anti-mTOR 07-231 Millipore 1 to 1000
Anti-Rabbit Secondary AB W4011 Promega 1 to 5000
Anti-Mouse Secondary AB W4021 Promega 1 to 5000
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2.3 Bioinformatics methods

2.3.1 Comparative Modelling

The basis of comparative modelling rests on the principle that the crystal or NMR

structure of a protein can be used as a template to model another homologous protein.

The Protein Data Bank was searched using BLAST (Altschul et al. 1997) with the

amino acid sequence of mTOR’s kinase domain. The search produced a list of

proteins that shared a significant degree of sequence similarity with mTOR’s kinase

domain. From the list, the protein that had the best combination of percentage

sequence identity, e-value and query coverage was selected to be the template protein.

This was the crystal structure of PI3Kδ (PDB Cod e: 2X38) (Berndt et al. 2010) .

The alignment produced by BLAST between mTOR’s kinase domain and

PI3Kδ was then annotated with PI3Kδ’s secondary structure. This was obtained from

DSSP (Kabsch & Sander 1983) on the EBI website. The initial BLAST alignment was

then manually amended to produce a more likely structural alignment; for example

moving indels in the middle of secondary structure elements into adjacent loop

regions. The individual amendments are described in detail in results chapter 1.

BLAST did not align the entire length of mTOR’s kinase domain with PI3Kδ.

The alignment was therefore extended to include the C-terminal and N-terminal

regions that had initially been omitted. This was done by firstly converting the mTOR

sequence into PIR format. Then, PI3Kδ’s kinase domain was edited out of the PDB

file (2X38) and the sequence was extracted in PIR format. The two sequences were

then aligned in their entirety using Andrew Martin’s Needleman and Wunsch

(Needleman & Wunsch 1970) alignment program (nw). The terminal regions not

present in the initial BLAST alignment were extracted from this new alignment and

appended to the amended BLAST alignment.
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A linker region joins the FRB and Kinase domains in mTORβ. The alignment

between mTOR’s linker and PI3Kγ  in (Sturgill & Hall 2009) was copied. This was

then annotated with PI3Kγ’s secondary structure, which was obtained from DSSP at

the EBI website. The position of one indel in the sequence alignment was altered in

order to improve the alignment in structural terms.

Dr Andrew Martin’s ProFit programme (Martin and Porter,

http://www.bioinf.org.uk/software/profit/) was used to superimpose PI3Kδ onto

PI3Kγ using the McLachlan algorithm, (McLachlan, 1982). This provided a reference

point from which one could later position mTORβ’s FRB, Kinase and linker domains

relative to each other in a multiple alignment. Using the text editor Emacs, the PDB

files for PI3Kδ (2X38), (Berndt et al. 2010)  and PI3Kγ (1E8X), (Walker et al. 2000)

were both trimmed down to their kinase domains. Starting from a sequence alignment,

ProFit was used in iterative mode to align the two structures allowing Cα pairs to be

considered if they were up to 10Å apart. This created a structural alignment,

superimposing the structure for PI3Kδ onto the structure for PI3Kγ.

A multiple alignment was then generated between mTOR, FRB and PI3Kγ

and PI3Kδ in PIR format (see Fig. 11 in results chapter 1). A MODELLER control

file was created to read the sequence alignment file and use PDB files for PI3Kδ

(2X38_A), PI3Kγ (1E8X_A)  and FRB (2GAQ_A) in standard homology modelling

mode. MODELLER (Sali & Overington 1994) was then run to produce a 3D model of

mTOR’s kinase domain and the structure was viewed using RASMOL (Sayle &

Milner-White 1995).
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Chapter 3: Results

Comparative Modelling of
mTORβ’s kinase domain
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Chapter 3: Comparative Modelling of mTORβ’s
kinase domain

3.0) Introduction

To date no 3D structures of mTOR or its kinase domain have been generated by either

X-ray crystallography or NMR. However, cryo-EM structures of mTORC1 (Yip et al.

2010) as well as TOR and its complex with KOG1 (Adami et al. 2007) have been

elucidated. Although models produced utilising these methods can be more accurate,

the time and expense that are required by these techniques has led to the use of in

silico techniques. A model for the catalytic region of TOR has already been generated

by the comparative modelling approach using PI3Kγ as the homologue (Sturgill &

Hall 2009). The principle of homology modelling is based on the idea that a protein of

known structure can be used as the template to produce a model for a homologous

protein. The accuracy of the resultant 3D structure generated increases with the higher

degree of sequence similarity between the two proteins. Comparative modelling was

used to generate a model of mTOR’s kinase domain using PI3Kδ as the template. A

BLAST search of the PDB showed that PI3Kδ’s kinase domain possessed 28%

sequence identity with the kinase domain of mTOR, whereas PI3Kγ only shared 21%.

Therefore, using PI3Kδ (2X38)  as the template should result in a more accurate

model. A NMR structure of mTOR’s FRB domain already exists (Leone et al. 2006).

Rapamycin and rapalogues, which mimic its inhibitory action, bind to mTOR via the

FRB domain when in complex with FKBP12. The goal was to produce a model of

mTOR’s kinase domain and then to link this with the NMR model of the FRB domain.

The model produced would potentially help us to understand possible mechanisms by

which rapamycin and ATP-competitive inhibitors act on mTOR. Aside from gaining

experience and knowledge of molecular modelling using bioinformatics, it was also
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hoped that the model would provide useful insights into the mechanisms of mTOR

regulation and would help mTOR inhibitor studies in the group.

Results

3.1) Protein BLAST of PDB and annotation of alignment with secondary
structure

A protein BLAST search of the PDB was performed using the amino acid sequence of

mTORβ’s kinase domain as the query sequence. From the list of proteins generated, it

was observed that PI3Kδ (2X38), (Berndt et al. 2010) was the best homologue for

mTOR’s kinase domain. This was due to the fact that it possessed the highest

percentage sequence identity (28%). PI3Kδ also had an E-value of 3x10-12, and an e-

value ≤ 0.02 implies that the sequences are probably homologous. Therefore it is very

likely that PI3Kδ is a homologue for mTOR’s kinase domain. The alignment between

PI3Kδ and mTOR Kinase produced by BLAST was annotated with PI3Kδ’s

secondary structure. The secondary structure data for PI3Kδ were obtained from

DSSP (Kabsch & Sander 1983) on the EBI website. This can be seen in Fig. 3.1.
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mTORβ  23   GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG  82
GS G+  + + K  +DLRQD   +Q+  L++ L   +   LR    +  Y  +P    +G

PI3Kδ  769  GSAGNVGI-IFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLR----MTPYGCLPTGDRTG  823
2° Struc ####.EEE-EEEE##..HHHHHHHHHHHHHHHHHHH##....----.....EEEEE..EE

mTORβ  83   LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTA  142
LI  V H DT+            I LN  +     MA                      A

PI3Kδ  824 LIEVVLHSDTI----------ANIQLNKSN-----MAA-------------------TAA  849
2° Struc    EEE...#EEEH----------HHHH#..##-----###-------------------..#

mTORβ  143  GDDLAKLLWLKSPSSEVWFDRR-TNYTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKIL  201
+  A L WLKS +     DR +T S A   +  Y+LG+GDRH  N+M+ R SG++

PI3Kδ  850  FNKDALLNWLKSKNPGEALDRAIEEFTLSCAGYCVATYVLGIGDRHSDNIMI-RESGQLF  908
2° Struc ####HHHHHHHHH#.##HHHHHHHHHHHHHHHHHHHHHHH#.....###EEE-E###.EE

mTORβ  202  HIDFGDCFEVAMTREKFP---EKIPFRLTRMLTNAMEVTGLDGN-----YRITCHTVMEV  253
HIDFG    +   + KF    E++PF LT    + ++    + +     +R  C     +

PI3Kδ  909  HIDFGHF--LGNFKTKFGINRERVPFILTYDFVHVIQQGKTNNSEKFERFRGYCERAYTI  966
2° Struc    E......--##..!!!!!!!!!.......HHHHHHH###.#..HHHHHHHHHHHHHHHHH

mTORβ  254  LREH  257
LR H

PI3Kδ  967  LRRH  970

2° Struc HHH#

Legend  (The same legend has been used in all the following figures)

E = extended strand, participates in β-ladder

H = 4-helix (α-helix)

- = insertion in mTORβ with respect to PI3Kδ

. = no secondary structure has been defined at this location (i.e. coil)

# = secondary structure other than an alpha-helix or extended strand (i.e. 3-helix (G),
bend (S) or residue in isolated β-bridge (B))

! = region of unknown amino acid sequence

+ = conservative substitution

2° Struc = Protein secondary structure annotation

Fig. 3.1, BLAST alignment between mTORβ Kinase and PI3Kδ. PI3Kδ has been
annotated with its secondary structure, which was obtained from the DSSP in the EBI
website.
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3.2) Amending the BLAST alignment between mTORβ Kinase and PI3Kδ to
produce a structural alignment

The sequence alignment produced by BLAST between mTORβ kinase and PI3Kδ

was manually amended. This sought to achieve a far more plausible structural

alignment between the two proteins which would ultimately result in a more accurate

model. The reason(s) behind each of the changes are described below:

(a) The presence of an indel in the middle of the beta strand that stretched from

residues 774-780 in the PI3Kδ line was not structurally viable, so it was moved to the

start of the N-terminus. It was not moved into the loop region in the C-terminal

direction because it would have been undesirable to disrupt the relatively higher

sequence identity between the two proteins in that region. See Fig. 3.2A and 3.2B.

(b) The position of the insertion was checked in Ramsol, and it was decided that the 4

indels (b) should be shifted one position to the right by moving M810 in PI3Kδ’s

sequence one place to the left. This sought to minimise structural clashes (i.e.

insertion clashing with other secondary structure elements). See Fig. 3.3A and 3.3B.

(c) The BLAST alignment positioned loop regions of 5 and 19 residues in length

either side of the undefined, small piece of secondary structure defined by the 3

residues MAA (PI3Kδ line, residues 844-846). It was thought to be far more logical to

coalesce these loop regions since they will be poorly modelled anyway. See Fig. 3.4A

and 3.4B.
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(d) The indel in the middle of the beta strand at position 901 in PI3Kδ’s sequence was

moved one position to the right into the adjacent loop region, where indels are usually

found. See Fig. 3.5A and 3.5B.

(e) The deleted residues (238-242) in the mTORβ line (951-955 in PI3Kδ line) were

moved 7 residue positions to the left. This was prudent in terms of a structural

alignment because it was far better to have a deletion in a loop region rather than in an

α-helix.  The N242 amino acid was connected to the Y243 residue, which is part of an

α-helix. This was because it was structurally unfavourable to have a single residue

long piece of α-helix existing in isolation. See Fig. 3.6A and 3.6B.
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mTORβ  23   GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG  82
GS G+  + + K  +DLRQD   +Q+  L++ L   +   LR    +  Y  +P    +G

PI3Kδ  769  GSAGNVGI-IFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLR----MTPYGCLPTGDRTG  823
2° Struc ####.EEE-EEEE##..HHHHHHHHHHHHHHHHHHH##....----.....EEEEE..EE

(a)

mTORβ  83   LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTA  142
LI  V H DT+            I LN +     MA                      A

PI3Kδ  824  LIEVVLHSDTI----------ANIQLNKSN-----MAA-------------------TAA  849
2° Struc    EEE...#EEEH----------HHHH#..##-----###-------------------..#

mTORβ  143  GDDLAKLLWLKSPSSEVWFDRR-TNYTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKIL  201
+  A L WLKS +     DR    +T S A   +  Y+LG+GDRH  N+M+ R SG++

PI3Kδ  850  FNKDALLNWLKSKNPGEALDRAIEEFTLSCAGYCVATYVLGIGDRHSDNIMI-RESGQLF  908
2° Struc    ####HHHHHHHHH#.##HHHHHHHHHHHHHHHHHHHHHHH#.....###EEE-E###.EE

mTORβ  202  HIDFGDCFEVAMTREKFP---EKIPFRLTRMLTNAMEVTGLDGN-----YRITCHTVMEV  253
HIDFG    +   + KF    E++PF LT    + ++    + +     +R  C     +

PI3Kδ  909  HIDFGHF--LGNFKTKFGINRERVPFILTYDFVHVIQQGKTNNSEKFERFRGYCERAYTI  966
2° Struc    E......--##..!!!!!!!!!.......HHHHHHH###.#..HHHHHHHHHHHHHHHHH

mTORβ  254  LREH  257
LR H

PI3Kδ  967  LRRH  970

2° Struc HHH#

Fig. 3.2A, Location of first change to the initial BLAST alignment. The initial
position of the indel (a) has been highlighted yellow.

mTORβ 23   GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG  82
++ + + + K  +DLRQD   +Q+  L++ L   +   LR    +  Y  +P    +G

PI3Kδ 769 -GSAGNVGIIFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLRM----TPYGCLPTGDRTG  823
2°Struc 769 -####.EEEEEEE##..HHHHHHHHHHHHHHHHHHH##.....----....EEEEE..EE  823

(a) (b)

mTORβ 83   LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTA  142
LI  V H DT             I LN  + ++ A

PI3Kδ 824  LIEVVLHSDTI----------ANIQLNKSNMAA------------------------TAA  849
2°Struc 824  EEE...#EEEH----------HHHH#..#####------------------------..#  849

(c)

mTORβ 143  GDDLAKLLWLKSPSSEVWFDRR-TNYTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKIL  201
+  A L WLKS +     DR    +T S A   +  Y+LG+GDRH  N+M+   SG++

PI3Kδ 850  FNKDALLNWLKSKNPGEALDRAIEEFTLSCAGYCVATYVLGIGDRHSDNIMIR-ESGQLF  908
2°Struc 850  ####HHHHHHHHH#.##HHHHHHHHHHHHHHHHHHHHHHH#.....###EEEE-###.EE  908

(d)
(e)

mTORβ 202  HIDFGDCFEVAMTREKFP---EKIPFRLTRMLTNAME-----VTGLDGNYRITCHTVMEV  253
HIDFG    +   + KF    E++PF LT  + ++  +     +R  C     +

PI3Kδ 909  HIDFGHF--LGNFKTKFGINRERVPFILTYDFVHVIQQGKTNNSEKFERFRGYCERAYTI  966
2°Struc 909  E......--##..!!!!!!!!!.......HHHHHHH###.#..HHHHHHHHHHHHHHHHH  966

mTORβ 254  LREH  257
LR H

PI3Kδ 967  LRRH  970
2°Struc 967  HHH#  970

Fig. 3.2B, Amended BLAST alignment between mTORβ Kinase and PI3Kδ. The
indel that has been shifted from its original position has been highlighted blue in
PI3Kδ and red in the secondary structure annotation line. The change of interest has
been marked (a).
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mTORβ  23   GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG  82
GS G+  + + K  +DLRQD   +Q+  L++ L   +   LR    +  Y  +P    +G

PI3Kδ  769  GSAGNVGI-IFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLR----MTPYGCLPTGDRTG  823
2° Struc ####.EEE-EEEE##..HHHHHHHHHHHHHHHHHHH##....----.....EEEEE..EE

(b)

mTORβ  83   LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTA  142
LI  V H DT+            I LN  +     MA                      A

PI3Kδ  824  LIEVVLHSDTI----------ANIQLNKSN-----MAA-------------------TAA  849
2° Struc    EEE...#EEEH----------HHHH#..##-----###-------------------..#

mTORβ  143  GDDLAKLLWLKSPSSEVWFDRR-TNYTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKIL  201
+  A L WLKS +     DR    +T S A   +  Y+LG+GDRH  N+M+ R SG++

PI3Kδ  850 FNKDALLNWLKSKNPGEALDRAIEEFTLSCAGYCVATYVLGIGDRHSDNIMI-RESGQLF  908
2° Struc    ####HHHHHHHHH#.##HHHHHHHHHHHHHHHHHHHHHHH#.....###EEE-E###.EE

mTORβ  202  HIDFGDCFEVAMTREKFP---EKIPFRLTRMLTNAMEVTGLDGN-----YRITCHTVMEV  253
HIDFG    +   + KF    E++PF LT    + ++    + +     +R  C     +

PI3Kδ  909  HIDFGHF--LGNFKTKFGINRERVPFILTYDFVHVIQQGKTNNSEKFERFRGYCERAYTI  966
2° Struc    E......--##..!!!!!!!!!.......HHHHHHH###.#..HHHHHHHHHHHHHHHHH

mTORβ  254  LREH  257
LR H

PI3Kδ  967  LRRH  970

2° Struc HHH#

Fig. 3.3A, Location of second change to the initial BLAST alignment. The initial
positions of the indels and M810 residue (b) have been highlighted yellow.

mTORβ 23   GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG  82
++ + + + K  +DLRQD   +Q+  L++ L   +   LR   Y  +P    +G

PI3Kδ 769 -GSAGNVGIIFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLRM----TPYGCLPTGDRTG  823
2°Struc 769 -####.EEEEEEE##..HHHHHHHHHHHHHHHHHHH##.....----....EEEEE..EE  823

(a) (b)

mTORβ 83   LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTA  142
LI  V H DT      I LN  + ++ A

PI3Kδ 824  LIEVVLHSDTI----------ANIQLNKSNMAA------------------------TAA  849
2°Struc 824  EEE...#EEEH----------HHHH#..#####------------------------..#  849

(c)

mTORβ 143  GDDLAKLLWLKSPSSEVWFDRR-TNYTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKIL  201
+  A L WLKS +     DR    +T S A   +  Y+LG+GDRH  N+M+   SG++

PI3Kδ 850  FNKDALLNWLKSKNPGEALDRAIEEFTLSCAGYCVATYVLGIGDRHSDNIMIR-ESGQLF  908
2°Struc 850  ####HHHHHHHHH#.##HHHHHHHHHHHHHHHHHHHHHHH#.....###EEEE-###.EE  908

(d)
(e)

mTORβ 202  HIDFGDCFEVAMTREKFP---EKIPFRLTRMLTNAME-----VTGLDGNYRITCHTVMEV  253
HIDFG    +   + KF    E++PF LT    + ++  +     +R  C     +

PI3Kδ 909  HIDFGHF--LGNFKTKFGINRERVPFILTYDFVHVIQQGKTNNSEKFERFRGYCERAYTI  966
2°Struc 909  E......--##..!!!!!!!!!.......HHHHHHH###.#..HHHHHHHHHHHHHHHHH  966

mTORβ 254  LREH  257
LR H

PI3Kδ 967  LRRH  970
2°Struc 967  HHH#  970

Fig. 3.3B, Amended BLAST alignment between mTORβ Kinase and PI3Kδ. The
indels and residue that have been shifted from their original positions have been
highlighted blue in PI3Kδ and red in the secondary structure annotation line. The
change of interest has been marked (b).
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mTORβ  23   GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG  82
GS G+  + + K  +DLRQD   +Q+ L++ L   +   LR    +  Y  +P    +G

PI3Kδ  769  GSAGNVGI-IFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLR----MTPYGCLPTGDRTG  823
2° Struc    ####.EEE-EEEE##..HHHHHHHHHHHHHHHHHHH##....----.....EEEEE..EE

mTORβ  83   LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTA  142
LI  V H DT+            I LN  +     MA                      A

PI3Kδ  824  LIEVVLHSDTI----------ANIQLNKSN-----MAA-------------------TAA  849
2° Struc    EEE...#EEEH----------HHHH#..##-----###-------------------..#

(c)

mTORβ  143  GDDLAKLLWLKSPSSEVWFDRR-TNYTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKIL  201
+  A L WLKS +     DR    +T S A   +  Y+LG+GDRH  N+M+ R SG++

PI3Kδ  850  FNKDALLNWLKSKNPGEALDRAIEEFTLSCAGYCVATYVLGIGDRHSDNIMI-RESGQLF  908
2° Struc    ####HHHHHHHHH#.##HHHHHHHHHHHHHHHHHHHHHHH#.....###EEE-E###.EE

mTORβ  202  HIDFGDCFEVAMTREKFP---EKIPFRLTRMLTNAMEVTGLDGN-----YRITCHTVMEV  253
            HIDFG    +   + KF    E++PF LT    + ++    + +     +R  C     +
PI3Kδ  909  HIDFGHF--LGNFKTKFGINRERVPFILTYDFVHVIQQGKTNNSEKFERFRGYCERAYTI  966
2° Struc    E......--##..!!!!!!!!!.......HHHHHHH###.#..HHHHHHHHHHHHHHHHH

mTORβ  254  LREH  257
LR H

PI3Kδ  967  LRRH  970

2° Struc HHH#

Fig. 3.4A, Location of third change to the initial BLAST alignment. The initial
position of the indels and MAA residues (c) have been highlighted yellow.

mTORβ 23   GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG  82
++ + + + K  +DLRQD   +Q+  L++ L   +   LR    +  Y  +P    +G

PI3Kδ 769 -GSAGNVGIIFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLRM----TPYGCLPTGDRTG  823
2°Struc 769 -####.EEEEEEE##..HHHHHHHHHHHHHHHHHHH##.....----....EEEEE..EE  823

(a) (b)

mTORβ 83   LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTA  142
LI  V H DT             I LN  + ++ A

PI3Kδ 824  LIEVVLHSDTI----------ANIQLNKSNMAA------------------------TAA  849
2°Struc 824  EEE...#EEEH----------HHHH#..#####------------------------..#  849

(c)

mTORβ 143  GDDLAKLLWLKSPSSEVWFDRR-TNYTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKIL  201
+  A L WLKS +     DR    +T S A   +  Y+LG+GDRH  N+M+   SG++

PI3Kδ 850  FNKDALLNWLKSKNPGEALDRAIEEFTLSCAGYCVATYVLGIGDRHSDNIMIR-ESGQLF  908
2°Struc 850  ####HHHHHHHHH#.##HHHHHHHHHHHHHHHHHHHHHHH#.....###EEEE-###.EE  908

(d)
(e)

mTORβ 202  HIDFGDCFEVAMTREKFP---EKIPFRLTRMLTNAME-----VTGLDGNYRITCHTVMEV  253
HIDFG    +   + KF    E++PF LT    + ++  +  +R  C     +

PI3Kδ 909  HIDFGHF--LGNFKTKFGINRERVPFILTYDFVHVIQQGKTNNSEKFERFRGYCERAYTI  966
2°Struc 909  E......--##..!!!!!!!!!.......HHHHHHH###.#..HHHHHHHHHHHHHHHHH  966

mTORβ 254  LREH  257
LR H

PI3Kδ 967  LRRH  970
2°Struc 967  HHH# 970

Fig. 3.4B, Amended BLAST alignment between mTORβ Kinase and PI3Kδ. The
indels and residues that have been shifted from their original positions have been
highlighted blue in PI3Kδ and red in the secondary structure annotation line. The
change of interest has been marked (c).
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mTORβ  23   GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG  82
GS G+  + + K  +DLRQD   +Q+  L++ L   +   LR    +  Y  +P    +G

PI3Kδ  769 GSAGNVGI-IFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLR----MTPYGCLPTGDRTG  823
2° Struc    ####.EEE-EEEE##..HHHHHHHHHHHHHHHHHHH##....----.....EEEEE..EE

mTORβ  83   LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTA  142
LI  V H DT+            I LN  +     MA                      A

PI3Kδ  824  LIEVVLHSDTI----------ANIQLNKSN-----MAA-------------------TAA  849
2° Struc    EEE...#EEEH----------HHHH#..##-----###-------------------..#

mTORβ  143  GDDLAKLLWLKSPSSEVWFDRR-TNYTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKIL  201
+  A L WLKS +     DR    +T S A   +  Y+LG+GDRH  N+M+ R SG++

PI3Kδ  850  FNKDALLNWLKSKNPGEALDRAIEEFTLSCAGYCVATYVLGIGDRHSDNIMI-RESGQLF  908
2° Struc ####HHHHHHHHH#.##HHHHHHHHHHHHHHHHHHHHHHH#.....###EEE-E###.EE

(d)

mTORβ  202  HIDFGDCFEVAMTREKFP---EKIPFRLTRMLTNAMEVTGLDGN-----YRITCHTVMEV 253
HIDFG    +   + KF    E++PF LT    + ++    + +     +R  C     +

PI3Kδ  909  HIDFGHF--LGNFKTKFGINRERVPFILTYDFVHVIQQGKTNNSEKFERFRGYCERAYTI  966
2° Struc    E......--##..!!!!!!!!!.......HHHHHHH###.#..HHHHHHHHHHHHHHHHH

mTORβ  254  LREH  257
LR H

PI3Kδ  967  LRRH  970

2° Struc HHH#

Fig. 3.5A, Location of fourth change to the initial BLAST alignment. The initial
position of the indel at position 901 in PI3Kδ’s sequence (d) has been highlighted
yellow.

mTORβ 23   GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG  82
++ + + + K  +DLRQD   +Q+  L++ L   +   LR    +  Y  +P    +G

PI3Kδ 769 -GSAGNVGIIFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLRM----TPYGCLPTGDRTG  823
2°Struc 769 -####.EEEEEEE##..HHHHHHHHHHHHHHHHHHH##.....----....EEEEE..EE  823

(a) (b)

mTORβ 83   LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTA  142
LI  V H DT             I LN  + ++ A

PI3Kδ 824  LIEVVLHSDTI----------ANIQLNKSNMAA------------------------TAA  849
2°Struc 824  EEE...#EEEH----------HHHH#..#####------------------------..#  849

(c)

mTORβ 143  GDDLAKLLWLKSPSSEVWFDRR-TNYTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKIL  201
+  A L WLKS +     DR    +T S A   +  Y+LG+GDRH  N+M+   SG++

PI3Kδ 850  FNKDALLNWLKSKNPGEALDRAIEEFTLSCAGYCVATYVLGIGDRHSDNIMIR-ESGQLF  908
2°Struc 850  ####HHHHHHHHH#.##HHHHHHHHHHHHHHHHHHHHHHH#.....###EEEE-###.EE  908

(d)
(e)

mTORβ 202  HIDFGDCFEVAMTREKFP---EKIPFRLTRMLTNAME-----VTGLDGNYRITCHTVMEV  253
HIDFG    +   + KF    E++PF LT    + ++  +     +R  C     +

PI3Kδ 909  HIDFGHF--LGNFKTKFGINRERVPFILTYDFVHVIQQGKTNNSEKFERFRGYCERAYTI  966
2°Struc 909  E......--##--!!!!!!!!!.......HHHHHHH###.#..HHHHHHHHHHHHHHHHH  966

mTORβ 254  LREH  257
LR H

PI3Kδ 967  LRRH  970
2°Struc 967  HHH#  970

Fig. 3.5B, Amended BLAST alignment between mTORβ Kinase and PI3Kδ. The
indels that was shifted from its original positions has been highlighted blue in PI3Kδ
and red in the secondary structure annotation line. The change of interest has been
marked (d).
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mTORβ  23   GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG  82
GS G+  + + K  +DLRQD   +Q+  L++ L   +   LR    +  Y  +P    +G

PI3Kδ  769  GSAGNVGI-IFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLR----MTPYGCLPTGDRTG  823
2° Struc    ####.EEE-EEEE##..HHHHHHHHHHHHHHHHHHH##....----.....EEEEE..EE

mTORβ  83   LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTA  142
            LI  V H DT+            I LN  +     MA                    A
PI3Kδ  824  LIEVVLHSDTI----------ANIQLNKSN-----MAA-------------------TAA  849
2° Struc    EEE...#EEEH----------HHHH#..##-----###-------------------..#

mTORβ  143  GDDLAKLLWLKSPSSEVWFDRR-TNYTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKIL  201
             +  A L WLKS +     DR    +T S A   +  Y+LG+GDRH  N+M+ R SG++
PI3Kδ  850  FNKDALLNWLKSKNPGEALDRAIEEFTLSCAGYCVATYVLGIGDRHSDNIMI-RESGQLF  908
2° Struc    ####HHHHHHHHH#.##HHHHHHHHHHHHHHHHHHHHHHH#.....###EEE-E###.EE

(e)
mTORβ  202  HIDFGDCFEVAMTREKFP---EKIPFRLTRMLTNAMEVTGLDGN-----YRITCHTVMEV  253

HIDFG    +   + KF    E++PF LT    + ++    + +     +R  C     +
PI3Kδ  909  HIDFGHF--LGNFKTKFGINRERVPFILTYDFVHVIQQGKTNNSEKFERFRGYCERAYTI  966
2° Struc    E......--##..!!!!!!!!!.......HHHHHHH###.#..HHHHHHHHHHHHHHHHH

mTORβ  254  LREH  257
LR H

PI3Kδ  967  LRRH  970

2° Struc HHH#

Fig. 3.6A, Location of fifth change to the initial BLAST alignment. The initial
positions of the deletions and N amino acid residues have been highlighted yellow (e).

mTORβ 23   GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG  82
++ + + + K  +DLRQD   +Q+  L++ L   +   LR    +  Y  +P    +G

PI3Kδ 769 -GSAGNVGIIFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLRM----TPYGCLPTGDRTG  823
2°Struc 769 -####.EEEEEEE##..HHHHHHHHHHHHHHHHHHH##.....----....EEEEE..EE  823

(a) (b)

mTORβ 83   LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTA  142
LI  V H DT             I LN  + ++ A

PI3Kδ 824  LIEVVLHSDTI----------ANIQLNKSNMAA------------------------TAA  849
2°Struc 824  EEE...#EEEH----------HHHH#..#####------------------------..#  849

(c)

mTORβ 143  GDDLAKLLWLKSPSSEVWFDRR-TNYTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKIL  201
+  A L WLKS +     DR    +T S A   +  Y+LG+GDRH  N+M+   SG++

PI3Kδ 850  FNKDALLNWLKSKNPGEALDRAIEEFTLSCAGYCVATYVLGIGDRHSDNIMIR-ESGQLF  908
2°Struc 850  ####HHHHHHHHH#.##HHHHHHHHHHHHHHHHHHHHHHH#.....###EEEE-###.EE  908

(d)
(e)

mTORβ 202  HIDFGDCFEVAMTREKFP---EKIPFRLTRMLTNAME-----VTGLDGNYRITCHTVMEV  253
HIDFG    +   + KF    E++PF LT    + ++  +     +R  C     +

PI3Kδ 909  HIDFGHF--LGNFKTKFGINRERVPFILTYDFVHVIQQGKTNNSEKFERFRGYCERAYTI  966
2°Struc 909  E......--##--!!!!!!!!!.......HHHHHHH###.#..HHHHHHHHHHHHHHHHH  966

mTORβ 254  LREH  257
LR H

PI3Kδ 967  LRRH  970
2°Struc 967  HHH#  970

Fig. 3.6B, Amended BLAST alignment between mTORβ Kinase and PI3Kδ. The
deletions and N residue that were shifted from their original positions have been
coloured red in the mTORβ line. The change of interest has been marked (e).
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Change Identity Similarity
WT 28% 14%
a 27% 16%
b 27% 15%
c 27% 15%
d 26% 16%
e 26% 16%

Fig. 3.7, A table showing changes in percentage identity and similarity between
the amino acids in the alignment between mTORβ and PI3Kδ after each
alteration in the alignment was made.

3.3) Extending the alignment produced by BLAST between mTORβ Kinase and
PI3Kδ

The alignment produced between PI3Kδ and mTORβ Kinase produced by BLAST

did not cover the whole length of the mTORβ Kinase domain. Residues were omitted

and were not aligned at both the C-terminus and the N-terminus. Therefore, it was

necessary to extend this alignment to encompass the full length of mTORβ’s kinase

domain. To do this, the mTOR sequence was firstly converted into PIR format. Then,

PI3Kδ’s kinase domain was edited out of the PDB file (2X38) and the sequence was

extracted in PIR format. The two sequences were then aligned in their entirety using

Andrew Martin’s Needleman and Wunsch (Needleman & Wunsch 1970) (nw) align

program. The terminal regions not present in the alignment shown in Fig. 3.2B were

extracted from this new alignment and appended to the original alignment shown in

Fig. 3.2B. The full, extended alignment is shown in Fig. 3.8A, and the additional N-

terminal and C-terminal alignments that were appended to the BLAST alignment in

Fig. 3.2B are shown in Fig. 3.8B.
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PI3Kδ Kinase is sequence in top line (blue), and mTORβ Kinase is sequence in second line
(pink)

STHHMKVLMKQGEALSKLKALNDFVKVSSQKTTKPQTKEMMHMCMRQETYMEALSHLQSPLDPSTLLEEVCVEQCTFMDS
-----------------------------------------------------------------------------IQS

KMKPLWIMYSSEEA------ GSAGN-VGIIFKNGDDLRQDMLTLQMIQLMDVLWKQEGLDLR----MTPYGCLPTGDRTG
IAPSLQVITSKQRPRKLTLM GSNGHEFVFLLKGHEDLRQDERVMQLFGLVNTLLANDPTSLRKNLSIQRYAVIPLSTNSG

LIEVVLHSDTIA----------NIQLNKSN---MAATAAFNKDALLN---------------------WLKSKNPGEALD
LIGWVPHCDTLHALIRDYREKKKILLNIEHRIMLRMAPDYDHLTLMQKVEVFEHAVNNTAGDDLAKLLWLKSPSSEVWFD

RAIEEFTLSCAGYCVATYVLGIGDRHSDNIMI-RESGQLFHIDFGH-F-LGNFRVPFI--LTYDFVHVIQQGKTNNSEKF
RRTN-YTRSLAVMSMVGYILGLGDRHPSNLMLDRLSGKILHIDFGDCFEVAMTREKFPEKIPFRLTRMLTNAMEVTGLD-

ERFRGYCERAYTILRRH GLLFLHLFALMRAAGLPELSCSKDIQYLKDSLALGKTEEEALKHFRVKFNEALRESW
GNYRITCHTVMEVLREH KDSVMAVLEAFVYDPLLNWRL------------------------------------

Fig. 3.8A, Full alignment between mTOR Kinase and PI3Kδ. This was generated
using Dr Andrew Martin’s Needleman and Wunsch program. The alignment upstream
of the first solid dark blue line represents the extended N-terminal region that was
manually appended to the initial alignment produced by BLAST between PI3Kδ and
mTOR’s Kinase domain. The alignment downstream of the second solid dark blue
line adds the C-terminal portion of mTOR’s kinase domain that was omitted by the
BLAST programme. The alignment in between the two dark blue lines shows the
amended BLAST alignment shown in Fig. 3.2B.

Additional N-terminal alignment between PI3Kδ Kinase and mTORβ Kinase

mTORβ ------------------------------------------------------------

PI3Kδ   675 STHHMKVLMKQGEALSKLKALNDFVKVSSQKTTKPQTKEMMHMCMRQETYMEALSHLQSP  734
2°Struc 675 .HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH..HHHHHHHHHHHH..HHHHHHH..EEE.  675

mTORβ   1 -----------------IQSIAPSLQVITSKQRPRKLTLM                       23
                             ++S +++L ++ S++
PI3Kδ   735 LDPSTLLEEVCVEQCTFMDSKMKPLWIMYSSEEA------                      768
2°Struc 735 .EEEEEE.EE.....EE.......EEEEEE..........                      768

Additional C-terminal alignment betweeen PI3Kδ Kinase and mTORβ Kinase

mTORβ   259 KDSVMAVLEAFVYDPLLNWRL------------------------------------   279
                + +  +     L + +
PI3Kδ   971 GLLFLHLFALMRAAGLPELSCSKDIQYLKDSLALGKTEEEALKHFRVKFNEALRESW  1027
2°Struc 971 HHHHHHHHHHH..........HHHHHHHHHH......HHHHHHHHHHHHHHHHHH..

Fig. 3.8B, The additional alignments that were generated between mTOR’s
kinase domain and PI3Kδ by Andrew Martin’s Needleman and Wunsch align
program.  For the sake of clarity, the extended alignments at the N and C termini
have been shown below separately.
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3.4) Aligning the linker between mTOR’s Kinase and FRB domains with PI3Kγ

A linker region joins the FRB and Kinase domains in mTORβ. The alignment

between mTOR’s linker and PI3Kγ  in Mike Hall’s paper (Sturgill & Hall 2009) was

copied. This was then annotated with PI3Kγ’s secondary structure, which was

obtained from DSSP at EBI’s website. The position of one indel in the sequence

alignment was altered in order to improve the alignment in structural terms. This can

be seen in Figs. 3.9 and 3.10. PI3Kγ (Walker et al. 2000) was used as the homologue

to model the linker.

Target Strand (mTORα)
(mTORα is sequence on top line and spans residues 2109-2159, i.e. 51 residues)

RRISKQLPQLTSLELQYVSPKLLMCRDLELAVPGTYD-PNQPIIRIQSIAP-S
 +  +  +   S ++     K  +++  +L +P ++  P +P++++  ++  +
IKSLSAEKYDVSSQVISQL-KQKLENLQNLNLPQSFRVPYDPGLKAGALVIEK
HHH.........HHHHHHH-HHHHHHHH.......EEE..EEEEEEEEE....

Parent Strand (PI3Kγ)

(PI3Kγ is sequence on bottom line and spans residues 749-800, i.e. 52 residues)

Fig. 3.9, Initial alignment of mTOR’s Linker with PI3Kγ. The red indel is its
initial position prior to amendment.

Target Strand (mTORα)

(mTORα is the sequence on the top line and spans residues 2109-2159, i.e. 51
residues)

RRISKQLPQLTSLELQYVSPKLLMCRDLELAVPGTYD-PNQPIIRIQSIAP-S
 +  +  +   S +    + K  +++  +L +P ++  P +P++++  ++  +
IKSLSAEKYDVS-SQVISQLKQKLENLQNLNLPQSFRVPYDPGLKAGALVIEK
HHH.........-HHHHHHHHHHHHHHH.......EEE..EEEEEEEEE....

Parent Strand (PI3Kγ)

(PI3Kγ is the sequence on the bottom line and spans residues 749-800, i.e. 52 residues)

Fig. 3.10, Amended alignment between mTOR’s Linker and PI3Kγ. The indel that
has been highlighted red was moved from the middle of the helix in Mike Hall’s
alignment to the N-terminal loop region.
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3.5) Fitting PI3Kδ Kinase onto PI3Kγ

Dr Andrew Martin’s ProFit programme (Martin, A.C.R. and Porter, C.T.,

http://www.bioinf.org.uk/software/profit/) was used to superimpose PI3Kδ onto

PI3Kγ using the McLachlan algorithm, (McLachlan, A.D., 1982). This provided a

reference point from which one could later position mTORβ’s FRB, Kinase and linker

domains relative to each other in a multiple alignment. Using the text editor Emacs,

the PDB files for PI3Kδ (2X38), (Berndt et al. 2010) and PI3Kγ (1E8X), (Walker et al.

2000) were both trimmed down to their kinase domains. ProFit was then used to align

the two structures so that no pair of aligned Cα atoms was more than 10Å apart. The

program created a structural alignment, whereby the structure for PI3Kδ was super-

imposed onto the structure for PI3Kγ.

3.6) Producing the multiple alignment between mTOR, FRB, PI3Kδ and PI3Kγ

The alignment between PI3Kγ and PI3Kδ was merged with the alignment between

PI3Kδ and mTOR. The alignment between the Linker and PI3Kγ was also introduced

into mTOR’s alignment (See Figs. 3.9 and 3.10 above). Since PI3Kγ does not have a

FRB domain, it could not be used as a homologue to model the position of the FRB

domain relative to the kinase domain. This problem was circumvented by retaining 6

residues from PI3Kγ’s helical domain to the N-terminus of PI3Kγ’s linker. The other

94 residues that were originally aligned with FRB in Hall and Sturgill’s paper were

then shifted in the C-terminal direction by 94 residue positions. 94 gaps were inserted

in the place of the helical residues. The FRB domain would then be aligned with the

start of this gap region. MODELLER would effectively see the 6-residues from

PI3Kγ’s helical domain as a structural anchor, and would join the FRB domain to the

linker. This would avoid FRB being fitted onto PI3Kγ’s helical domain. The 94

residue gap was maintained throughout the 4 sequences in the alignment. A simple
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block diagram illustrating how the different domains and proteins were aligned can be

seen in Fig. 3.11. The sequences were aligned in PIR format. The final alignment can

be seen in Fig. 3.12 and Fig. 3.13.

Fig. 3.11, Diagram showing the alignment of the different proteins in the final
multiple alignment. mTOR’s kinase domain was aligned and modelled on PI3Kδ’s
kinase domain. mTOR’s linker was aligned and modelled using the corresponding
sequence in PI3Kγ. A NMR structure for mTOR’s FRB domain has already been
elucidated. It was appended to the N-terminus of PI3Kγ’s linker via the 6 residue long
‘structural anchor’.

mTOR FRB to Kinase

PI3Kδ
(2X38) Kinase

A
nchor

LinkerPI3Kγ
(1E8X) KinaseHelical

FRBFRB
(2GAQ)
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>P1;MTORBP
sequence::::::mTORBetaFRB_to_Kinase:HUMAN::
------------------------------------------------------------
----------------------------------ELIRVAILWHEMWHEGLEEASRLYFG
ERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYMKSGNVKDLTQA
WDLYYHVFRRISKQLPQLTSLELQYVSPKLLMCRDLELAVPGT-----------YD-PNQ
PIIRIQSIAPSLQVITSK--QRPRKLTLMGSNGHEFVFLLKGHEDLRQDERVMQLFGLVN
TLLANDPTSLRKNLSIQRYAVIPLSTNSGLIGWVPHCDTLHALIRDYREKKKILLNIEHR
IMLRMAPDYDHLTLMQKVEVFEHAVNNTAGDDLAKLLWLKSPSS-EVWFDRR-TNYTRSL
AVMSMVGYILGLGDRHPSNLMLDRLSGKILHIDFGDCFEVAMTREKFP---EKIPFRLTR
MLTNAME-----VTGLDGNYRITCHTVMEVLREHKDSVMAVLEAFVYDPLLNWRL*

>P1;2X38_A
structureX:2X38:742:A:991:A:PI3KDelta Kinase:MOUSE:2.20:0.240
------------------------------------------------------------
------------------------------------------------------------
------------------------------------------------------------
------------------------------------------------------EEVCVE
QCTFMDSKMKPLWIMYSS--EEA-------GSAGNVGIIFKNGDDLRQDMLTLQMIQLMD
VLWKQEGLDLRM----TPYGCLPTGDRTGLIEVVLHSDTI----------ANIQLNKSNM
AA------------------------TAAFNKDALLNWLKSKNP-GEALDRAIEEFTLSC
AGYCVATYVLGIGDRHSDNIMIR-ESGQLFHIDFGHF--LGNF---------RVPFILTY
DFVHVIQQGKTNNSEKFERFRGYCERAYTILRRHGLLFLHLFALMRAAGLPELSC*

>P1;1E8X_A
structureX:1E8X:655:A:1044:A:PI3KGamma from FRB to
Kinase:WILDBOAR:2.20:0.255
DVLHYLLQLVQAVKFEPYHDSALARFLLKRGLRNKRIGHFLFWFLRSEIAQSRHYQQRFA
VILEAYLRGCGTAMLHDFTQQVQVIDMLQKVTID--------------------------
------------------------------------------------------------
--------IKSLSAEKYDVS-SQVISQLKQKLENLQNLNLPQSFRVPYDPGLKAGALVIE
KCKVMASKKKPLWLEFKCADP-------TALSNETIGIIFKHGDDLRQDMLILQILRIME
SIWETESLDLCL----LPYGCISTGDKIGMIEIVKDATTI----------AKIQ--QSTV
GN------------------------TGAFKDEVLSHWLKEKCPIEEKFQAAVERFVYSC
AGYCVATFVLGIGDRHNDNIMIS-ETGNLFHIDFGH-----------------VPFVLTP
DFLFVMGTSGKKTSLHFQKFQDVCVKAYLALRHHTNLLIILFSMMLMTGMPQLTS*

>P1;2GAQ_A
structureN:2GAQ:1:A:100:A:NMR Structure of mTOR's FRB
domain:HUMAN:HUMAN:0.00:0.00
------------------------------------------------------------
----------------------------------ELIRVAILWHEMWHEGLEEASRLYFG
ERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYMKSGNVKDLTQA
WDLYYHVFRRISKQ----------------------------------------------
------------------------------------------------------------
------------------------------------------------------------
------------------------------------------------------------
------------------------------------------------------------
-------------------------------------------------------*

Fig. 3.12, Final Multiple Alignment between mTOR, FRB, PI3Kγ and PI3Kδ in
PIR format.
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------------------------------------------------------------ mTORBeta

------------------------------------------------------------ PI3KDelta

DVLHYLLQLVQAVKFEPYHDSALARFLLKRGLRNKRIGHFLFWFLRSEIAQSRHYQQRFA PI3KGamma

------------------------------------------------------------ FRB

----------------------------------ELIRVAILWHEMWHEGLEEASRLYFG mTORBeta

------------------------------------------------------------ PI3KDelta

VILEAYLRGCGTAMLHDFTQQVQVIDMLQKVTID-------------------------- PI3KGamma

----------------------------------ELIRVAILWHEMWHEGLEEASRLYFG FRB

ERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYMKSGNVKDLTQA mTORBeta

------------------------------------------------------------ PI3KDelta

------------------------------------------------------------ PI3KGamma

ERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYMKSGNVKDLTQA FRB

WDLYYHVFRRISKQLPQLTSLELQYVSPKLLMCRDLELAVPGT-----------YD-PNQ mTORBeta

------------------------------------------------------EEVCVE PI3KDelta

--------IKSLSAEKYDVS-SQVISQLKQKLENLQNLNLPQSFRVPYDPGLKAGALVIE PI3KGamma

WDLYYHVFRRISKQ---------------------------------------------- FRB

PIIRIQSIAPSLQVITSK--QRPRKLTLMGSNGHEFVFLLKGHEDLRQDERVMQLFGLVN mTORBeta

QCTFMDSKMKPLWIMYSS--EEA-------GSAGNVGIIFKNGDDLRQDMLTLQMIQLMD PI3KDelta

KCKVMASKKKPLWLEFKCADP-------TALSNETIGIIFKHGDDLRQDMLILQILRIME PI3KGamma

------------------------------------------------------------ FRB

TLLANDPTSLRKNLSIQRYAVIPLSTNSGLIGWVPHCDTLHALIRDYREKKKILLNIEHR mTORBeta

VLWKQEGLDLRM----TPYGCLPTGDRTGLIEVVLHSDTI----------ANIQLNKSNM PI3KDelta

SIWETESLDLCL----LPYGCISTGDKIGMIEIVKDATTI----------AKIQ--QSTV PI3KGamma

------------------------------------------------------------ FRB

IMLRMAPDYDHLTLMQKVEVFEHAVNNTAGDDLAKLLWLKSPSS-EVWFDRR-TNYTRSL mTORBeta

AA------------------------TAAFNKDALLNWLKSKNP-GEALDRAIEEFTLSC PI3KDelta

GN------------------------TGAFKDEVLSHWLKEKCPIEEKFQAAVERFVYSC PI3KGamma

------------------------------------------------------------ FRB

AVMSMVGYILGLGDRHPSNLMLDRLSGKILHIDFGDCFEVAMTREKFP---EKIPFRLTR mTORBeta

AGYCVATYVLGIGDRHSDNIMIR-ESGQLFHIDFGHF--LGNF---------RVPFILTY PI3KDelta

AGYCVATFVLGIGDRHNDNIMIS-ETGNLFHIDFGH-----------------VPFVLTP PI3KGamma

------------------------------------------------------------ FRB

MLTNAME-----VTGLDGNYRITCHTVMEVLREHKDSVMAVLEAFVYDPLLNWRL*     mTORBeta

DFVHVIQQGKTNNSEKFERFRGYCERAYTILRRHGLLFLHLFALMRAAGLPELSC*     PI3KDelta

DFLFVMGTSGKKTSLHFQKFQDVCVKAYLALRHHTNLLIILFSMMLMTGMPQLTS*     PI3KGamma

-------------------------------------------------------*     FRB

Fig 3.13, Final Multiple Alignment between mTOR, FRB, PI3Kγ and PI3Kδ in
block  format.
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3.7) Modelling the final alignment

The multiple alignment (Fig. 3.12) took into account the fit that had been made

between PI3Kδ and PI3Kγ, as well ensuring that the alignment between PI3Kδ and

mTOR Kinase was preserved. MODELLER (Sali et al. 1995) was then used to

generate a model. The key residues in the ATP binding pocket of the kinase domain,

and the rapamycin binding residues in the FRB domain were then highlighted in the

models produced images of the models in Rasmol (Sayle & Milner-White 1995) can

be seen in Figs. 3.14-3.16.

Red Backbone = FRB domain

Yellow Backbone = Rapamycin Binding residues

Green Backbone = Linker

Blue Backbone = Kinase domain

Orange Backbone = Key residues in ATP binding pocket

Fig. 3.14, Cα trace of the model with domains and key residues highlighted.
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Red Spheres = FRB domain

Yellow Spheres = Rapamycin Binding residues

Green Spheres = Linker

Blue Spheres = Kinase domain

Orange Spheres = Key residues in ATP binding pocket

Fig. 3.15, Space-Filling view of the model centred on FRB’s rapamycin binding
residues.
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Red Spheres = FRB domain

Yellow Spheres = Rapamycin Binding residues

Green Spheres = Linker

Blue Spheres = Kinase domain

Orange Spheres = Key residues in ATP binding pocket

Fig. 3.16, Space-Filling view of the model centred on the key residues in the
Kinase domain’s ATP binding pocket.
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3.8) Discussion

A 3D model of mTOR from the FRB domain to the end of the kinase domain was

produced using comparative modelling. Key residues in the model were highlighted to

facilitate easy visualisation of the regions to which ATP or inhibitors would bind. A

major benefit that resulted from the project compared with Hall’s model was that a

model had been generated that would enable myself and other members of the group

to gain insight into potential mechanisms for the inhibition of mTOR.
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Chapter 4: Results

mTOR mutant studies
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Chapter 4: mTOR mutant studies

4.0) Introduction

An alternatively spliced form of mTOR was recently discovered in the Gout lab by

Alexander Zhyvoloup. This isoform was found in the cell lysate of HEK293 cells.

Analysis of the protein revealed that in contrast to the full-length wild-type mTOR, 12

amino acids were absent in this isoform’s kinase domain. This mutation removes the

entire kbeta5 strand from the catalytic site, which includes the critical Lys2187

residue. This amino acid is thought to interact with the α-phosphate of ATP.

Consequently, it is thought that the 12del mutation disrupts mTOR activity.

Furthermore, a Japanese lab recently created a point mutation (S2215Y) in mTORα’s

kinase domain (Sato et al. 2010). Figs. 4.1-4.3 illustrate the locations of these

mutations. Experiments showed that this alteration conferred constitutive activation

on mTORα, even under conditions of nutrient deprivation (Sato et al. 2010). We were

interested to see what potential effects these mutations could have on mTORβ activity.

Therefore, site-directed mutagenesis was utilised to introduce these mutations

into the DNA sequences of mTORβWT. This resulted in the creation of two different

types of mutant for mTORβ. The S2215Y point mutant was named ‘S2215Y’, and the

alternatively spliced form was denoted ‘12del’ in all future work. Sequence analysis

of the DNA was then performed in order to verify that the mutations were present.

HEK293 cells were then transiently transfected with the appropriate plasmid DNA

and Western blots were carried out to confirm expression of the proteins in the

mammalian cells. Immunoprecipitation was also performed in order to purify the

mTOR proteins from the HEK293 total cell lysates.

The effects of the mutations on mTORβ activity were then explored by

assessing the phosphorylation status of 4E-BP1, S6K1 and Akt with Western blots.
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4E-BP1 and S6K1 are known as substrates for mTORC1, whereas Akt has been

shown to be a phosphorylation target for mTORC2. In order to assess whether the

S2215Y point mutation also conferred constitutive activation on mTORβ, the

HEK293 cells were subjected to serum and nutrient starvation as has been performed

by Sato et al with mTORαS2215Y (Sato et al. 2010). Moreover, we also wished to

observe whether stimulation of HEK293 cells that had been starved would restore

phosphorylation of 4E-BP1, which would be indicative of mTORC1 activity.

Fig. 4.1, Locations of the mutations in mTORβ. mTORα shares the same C-
terminal region as mTORβ, so the position of the ‘12del’ mutation will be at the same
position in mTORα. The 12aa deletion is near the junction of the FRB and the Kinase
domains. It is thought to be an alternatively spliced form of mTOR. The S2215Y
point mutation was identified by searching the COSMIC database of somatic
mutations. It has been shown to confer constitutive activation on mTOR even under
conditions of nutrient deprivation.



Structural and Functional Analysis of mTORβ

102

Red Spheres = FRB domain

Yellow Spheres = Rapamycin Binding residues

Green Spheres = Linker

Blue Spheres = Kinase domain

Orange Spheres = Key residues in ATP binding pocket

Purple Spheres = 12del mutation

Pink Spheres = S2215Y mutation

Fig. 4.2, Space-filled model of mTOR, from the N-terminus of the FRB domain
to the C-terminus of the Kinase domain, showing the locations of the 12del and
S2215Y mutations.
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Red Backbone = FRB domain

Yellow Backbone = Rapamycin Binding residues

Green Backbone = Linker

Blue Backbone = Kinase domain

Orange Backbone = Key residues in ATP binding pocket

Purple Backbone = 12del mutation

Pink Backbone = S2215Y mutation

Fig. 4.3, Backbone model of mTOR, from the N-terminus of the FRB domain to
the C-terminus of the Kinase domain showing the locations of the 12del and
S2215Y mutations.
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4.1) Agarose gel analysis of mutant mTORα and mTORβ mutant DNA

PCR site-directed mutagenesis was used to create the S2215Y and 12del mutations in

the mTORα and mTORβ containing plasmids. The mutant DNA was then amplified

and restriction analysis was performed on an agarose gel with Pvu2. This can be seen

in Fig. 4.4.

Fig. 4.4, Agarose gel of mTORβWT-myc/pcDNA3.1(+), mTORβS2215Y-
myc/pcDNA3.1(+) and mTOR12del-myc/pcDNA3.1(+) plasmids digested with
Pvu2. The plasmids were electrophoresed on a 0.75% agarose gel.

Digestion of the three plasmids with their respective inserts should result in an

identical pattern of bands for the WT and S2215Y point mutant. However, restriction

of the 12del mutant would produce the same set of fragments as the WT, with the

exception of a 505bp band in lieu of the WT’s 536bp band. Samples 1,3 and 4 of the

S2215Y mutants all possessed the same fragments as the mTORβWT, so they were

sent for sequence analysis. Similarly, the three 12del mutant samples that have been
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marked with red arrows all contain the critical 505bp band, indicative of a 12aa

deletion. These three samples were also dispatched for sequence analysis.

4.2) DNA sequence analysis of the mutant mTORβ DNA

Samples of the mTORβS2215Y, mTORβ12del and mTORα12del plasmids were sent

to GATC Biotech for DNA sequence analysis. Chromatograms showing the locations

of the S2215Y and 12del mutations are shown in Fig. 4.5 and Fig. 4.6. In Fig. 4.6, a

sequence alignment between mTORβWT and mTORβ12del in which the location of

the 12del deletion has been highlighted has also been included.

Fig. 4.5, Chromatogram showing mTORβS2215Y point mutation. Here one can
clearly see that the S2215Y point mutation (TCT to TAT) has been successfully
created in the mTORβWT-myc/pcDNA3.1(+) plasmid after mutagenesis.

Point mutation
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A)

Clustalw alignment between mTORβWT and mTORβ12del mutant DNA after
sequence analysis

mTORBΔ12 GCCCCGGAAATTGACACTTATGGGC----------------------------------- 656
mTORBWT           GCCCCGGAAATTGACACTTATGGGCAGCAACGGACATGAGTTTGTTTTCCTTCTAAAAGG 1980

*************************

mTORBΔ12 -CATGAAGATCTGCGCCAGGATGAGCGTGTGATGCAGCTCTTCGGCCTGGTTAACACCCT 715
mTORBWT CCATGAAGATCTGCGCCAGGATGAGCGTGTGATGCAGCTCTTCGGCCTGGTTAACACCCT 2040

***********************************************************

B)

Fig. 4.6, Sequencing of the mTORβ12del mutation. (A) Sequence alignment
highlighting the deletion. (B) Chromatogram and sequence indicating the site of the
deletion.

36 NTs
deleted here
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4.3) Western Blot to confirm expression of the mTORβ proteins

HEK293 cells were defrosted and grown to a suitable confluency as described in the

Materials and Methods chapter. The cells were then transiently transfected with either

mTORβWTβ-myc/pcDNA3.1(+), mTORβS2215Y-myc/pcDNA3.1(+), mTORβ12del-

myc/pcDNA3.1(+) or empty pcDNA3.1(+) vector respectively. After 24hrs the cells

were lysed and the samples were loaded on a Bis-Tris gel. The proteins were then

detected by Western Blot analysis (Fig. 4.7) using anti-myc tag antibodies.

Fig. 4.7, Western Blot confirming expression of the mTORβWT and mutant
proteins in transiently transfected HEK293 cells. Φ denotes HEK293 cells
transiently transfected with empty pcDNA3.1(+) vector. The mTORβ proteins were
detected and non-specific binding was detected in the negative control lane Φ.

βWT βSS215Yβ12del Φ

80kDa

60kDa
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4.4) Immunoprecipitation of the mTORβ proteins

HEK293 cells that had been transiently transfected in the same manner as outlined in

section 2.3 above were also lysed, and the mTORβ proteins were purified by

immunoprecipitation using an anti-myc tag antibody. The protein samples purified by

immunoprecipitation were then detected by Western blotting using an anti-myc tag

primary antibody (Fig. 4.8).

Fig. 4.8, mTORβ proteins purified by immunoprecipitation from transiently
transfected HEK293 cell lysate and then detected by Western Blotting. Φ denotes
HEK293 cells transiently transfected with empty pcDNA3.1(+) vector.

80kDa

Φ βWT βS2215Y Β12del
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4.5) pAkt and Akt Western Blots

HEK293 cells were co-transfected with either empty pcDNA3.1(+) vector or with

pcDNA3.1(+) containing a mTORβ insert and Akt-WT-EE/pCMV3. The cells were

co-transfected with Akt-WT-EE/pCMV3 to increase the levels of Akt expressed in the

cell. This would augment the level of substrate that would be available for mTORβ

proteins to phosphorylate. Consequently, it would be easier to detect P-Akt and Akt

via Western Blotting and to observe whether mTORC2 activity was present.

Following serum and nutrient starvation, the cells were then lysed and Akt, PAkt and

the mTORβ proteins were detected by Western blotting. See Fig. 4.9. As expected, no

proteins were visible in the negative control lane and all mTOR proteins were

detected in Fig. 4.9A. Proteins were detected with Anti-myc antibody. Contrary to

expectation, PAkt was present in all the sample lanes in Fig. 4.9B. In the similar

experiment conducted with mTORα proteins by Sato et al (Sato, Nakashima, Guo,

Coffman, & Tamanoi 2010), the intensity of the PAkt bands for all samples were

negligible. Significant levels of Akt proteins were visible in all sample lanes in Fig.

4.9C, which demonstrated that high levels of Akt protein were expressed by the

HEK293 cells. In HEK293 cells which have been starved, little or no phosphorylation

of Akt should have occurred, since mTORC2 activity would be inhibited. A possible

explanation was that the cells were not starved for long enough to diminish mTORC2

activity.
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A)

B)

C)

Fig. 4.9, Western Blots showing detection of mTORβ (A), P-Akt (B) and Akt (C)
proteins respectively in HEK293 cells co-transfected with either empty
pcDNA3.1(+)  vector or with pcDNA3.1 containing a mTORβ insert and Akt-
WT-EE/pCMV3. In all figures Φ denotes HEK293 cells transiently transfected with
empty pcDNA3.1 (+) vector and was the negative control.
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4.6) pS6K1 and S6K1 Western Blots

HEK293 cells were co-transfected with either empty pcDNA3.1(+) vector or with

pcDNA3.1(+) containing a mTORβ insert and S6K1-EE/pcDNA3.1(+). Following

serum and nutrient starvation, the cells were then lysed and P-S6K1 and the mTORβ

proteins were detected by Western blotting. In order to ensure that equal quantities of

sample had been loaded onto each gel a Western Blot to detect the levels of actin was

also performed. The Western Blots to detect the various proteins can be seen in Fig.

4.10. In Fig. 4.10A, the mTOR proteins were all expressed, and no myc-tagged

proteins were detected in the negative control lane as was expected. Proteins were

detected with Anti-myc antibody. The level of actin visible was similar in each of the

sample lanes in Fig. 4.10B. This was evidence that equal quantities of sample had

been loaded into each well in the gel. Anti-Actin antibody was used to detect the

proteins. Surprisingly, P-S6K1 was discernible with every sample in Fig. 4.10C. This

was clear proof of the existence of mTORC1 activity in the starved HEK 293 cells.

Nutrient deprivation has been shown to diminish phosphorylation of S6K1 by

mTORC1, so this result was unanticipated. The PS6K1 present in the negative control

lane (Φ) could only be attributed to endogenous mTORC1. A potential explanation

was that the cells were not sufficiently starved to curtail protein synthesis, and as a

result mTORC1 activity was not diminished. Almost no S6K1-EE tagged protein was

detected in Fig. 4.10D with anti EE-tag antibody. A possible reason for these results

was that mTORC1 was active and phosphorylated almost all the cellular S6K1 to P-

S6K1, leaving little to be detected.
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A)

B)

C)

αW
T

β12del

βS
2215Y

ΦβW
T

80KDa

170KDa

ΦβW
T

βS
2215Y

αW
T

β12del

Actin
(42KDa)

ΦβW
T

βS
2215Y

αW
T

β12del

pS6K1
(Thr389)70KD

a



Structural and Functional Analysis of mTORβ

113

D)

Fig. 4.10, Western Blots showing detection of the mTOR (A), actin (B), pS6K1 (C)
and S6K1 (D) proteins in HEK293 cells co-transfected with either empty
pcDNA3.1(+)  vector or with pcDNA3.1 containing a mTORβ insert and S6K1-
EE/pcDNA3.1(+). In all figures Φ denotes HEK293 cells transiently transfected with
empty pcDNA3.1(+) vector and was the negative control.

4.7) p4E-BP1 and 4E-BP1 Western Blots (Starvation only)

HEK293 cells were transiently transfected with empty pcDNA3.1(+) vector and

pcDNA3.1(+) vector containing a mTORβ insert. Following serum and nutrient

starvation, the cells were lysed and Western blots were performed. The mTORβ

proteins, p4E-BP1 and 4E-BP1 were probed for with the appropriate antibodies. The

blots are shown in Fig. 4.11. As one can see in Fig. 4.11A, the mTORβ proteins were

all well expressed, and no myc-tagged proteins was visible in the negative control

lane as expected. The mTORβ proteins were detected using Anti-myc antibodies. In

Fig. 4.11B, phosphorylated 4E-BP1 was present in significant quantities in every

sample lane, demonstrating the existence of mTORC1 activity. This was totally

contrary to expectations, since cells subjected to nutritional deprivation would not

have the resources to continue protein synthesis. A potential explanation could be that

the antibody that was used to detect P4E-BP1 was exceptionally efficient and was

capable of detecting truly minute quantities of phosphorylated protein. p4E-BP1 was
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detected using anti phospho-4E-BP1 (Thr37/46) antibody. Large quantities of 4E-BP1

were detected in every sample lane in Fig. 4.11C using anti 4E-BP1 antibody. In cells

that had been starved one, would expect to see very low levels of mTORC1 activity,

hence the level of P4E-BP1 protein should be low and the amount of 4E-BP1 protein

should be high. Therefore, this result conformed to expectations.
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A)

B)

C)

Fig. 4.11, Western Blots showing expression of the mTORβ (A), p4E-BP1
(Thr37/46) (B) and 4E-BP1 (C) proteins in HEK293 cells transiently transfected
with pcDNA3.1(+) containing a mTORβ insert or empty pcDNA3.1(+) plasmid.
In all figures Φ denotes HEK293 cells transiently transfected with empty pcDNA3.1
vector and was the negative control.
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4.8) p4E-BP1 and 4E-BP1 Western Blots (Starvation followed by stimulation of
negative control)

The Western Blots outlined in section 2.7 were repeated with the exception that

HEK293 cells were serum starved for 24 hours rather than merely overnight.

Furthermore, nutrient starvation was carried out for 3 hours instead of 1 hour as had

been done with all previous experiments. HEK293 cells that had been transiently

transfected with an empty pcDNA3.1(+) plasmid were also stimulated for 1 hour with

complete media after being subjected to the same starvation conditions as the other

cells. This additional stimulated negative control was then loaded on the gels

alongside the standard negative control. There were two reasons for the variation in

experimental conditions. Firstly, we wanted to observe the effects of increasing the

duration of starvation upon mTORC1 activity, and secondly we wished to see whether

stimulation of cells would restore the levels of P4E-BP1. Western Blots to detect the

levels of mTORβ proteins, endogenous P4E-BP1 and 4E-BP1 were carried out and

the results can be seen in Fig. 4.12. As can be seen in Fig. 4.12A, expression of all the

mTORβ proteins was strong and no myc-tagged proteins were detected in any of the

negative control lanes as expected. The mTORβ proteins were detected using anti-

myc antibodies. In Fig. 4.12B above, starving the cells for a longer period resulted in

a drastic reduction in the levels of P4E-BP1 in all samples apart from the stimulated

negative control cells. These results suggested that prolonged starvation was

necessary in order to inhibit mTORC1 activity. Another conclusion was the S2215Y

point mutation did not confer constitutive activation on mTORβ. Stimulation of the

cells dramatically elevated the levels of P4E-BP1, as can be seen in the Φ (stimulated)

lane. In Fig. 4.12C, all of the cells that had been starved without subsequent

stimulation, 4E-BP1 was present. However, in the case of the Φ (stimulated) sample,
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almost no 4E-BP1 was visible. This demonstrated that stimulation after starvation

rapidly restored mTORC1 activity, which phosphorylated large quantities of

endogenous 4E-BP1.
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C)

Fig. 4.12, Western Blots showing expression of the mTORβ proteins (A),
detection of endogenous p4E-BP1 (B) and 4E-BP1 in HEK293 cells transiently
transfected with pcDNA3.1(+) containing a mTORβ insert or empty
pCDNA3.1(+) vector. In all figures Φ (starved) denotes HEK293 cells transfected
with empty pcDNA3.1 vector that were starved and not stimulated. The Φ (stimulated)
sample consisted of HEK293 cells that had been transfected with empty pcDNA3.1(+)
vector, starved and then stimulated with complete media.
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4.9) Discussion

It was clear that the S2215Y and 12del mutations did not confer constitutive

activation on mTORβ. The most conclusive result that led to this conclusion is shown

in Fig 4.12. Under conditions of extended starvation, the HEK293 cells that had been

transiently transfected with the mTORβ mutant plasmids in Fig 4.12A did not display

high levels of P4E-BP1, which would be indicative of mTORC1 activity.  This led to

the suggestion that they were not oncogenic mutations, since hyperactive mTOR

signalling has been shown to be a hallmark of cancer. The 12del mutation results in

the deletion of the critical Lys2187 residue, which is thought to contact the α-

phosphate of ATP. Therefore, it was expected that the 12del mutation would inhibit

mTOR activity.

The results in Fig 4.12 also demonstrated that the extended starvation

conditions employed were required to bring about inhibition of mTORC1 activity. It

would be interesting to repeat the Western blots shown in Figs 4.9 and 4.10 to assess

the effect on Akt and S6K1 phosphorylation after prolonged starvation.
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Chapter 5: Results

Creating a mTORβ-
TapTag construct
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Chapter 5: Creating a mTORβ-TapTag construct

5.0) Introduction

The tandem affinity purification (TAP) method allows one to purify protein

complexes from endogenous sources. The system was developed by Rigaut et al.

(Rigaut et al. 1999) and was initially utilised in yeast cells. Subsequently, it was

discovered that the technique could also be used with mammalian tissues. The

principle behind the TAP methodology involves the fusion of the TAP tag to the N or

C terminus of the protein of interest. The construct is then introduced into the

organism or host cell. Cellular extracts are then prepared and the fusion protein and

any potential binding partners are purified in two specific purification/elution stages.

If one desires to characterise protein complexes, then the proteins recovered must be

concentrated and fractionated on a denaturing gel prior to elucidation by mass

spectrometry. Furthermore, since the TAP technique is relatively gentle, damage to

the proteins during purification is highly unlikely. Consequently, the purified proteins

can be tested for their activities in various assays or utilised in structural studies (Puig

et al. 2001). The high yield and simplicity of the TAP method makes it a very

attractive tool to use for protein purification and elucidation of their functions. A

diagram showing the classical TAP tag is shown in Fig. 5.1.

Over the years, numerous modifications and improvements to the first TAP

tag have been made. These adaptations have principally been introduced in order to

improve the recovery of protein complexes in mammalian systems. The TAP tag that

I used was a GS-TAP tag (Fig. 5.2). This was fused to the N-terminus of the mTORβ

protein. The advantages offered by the GS-TAP tag over the ProtA and CBP TAP tag

combination include higher yield of bait protein (mTORβ) and fewer contaminants.

An overview of the tandem affinity purification process using the GS-TAP tag is
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shown in Fig. 5.3. Unfortunately, there was insufficient time to carry out purifications

of the fusion protein from HEK293 cells, but the recombinant protein was created.

This will allow future students to continue the work that I have started.

Fig. 5.1, Schematic showing the original TAP tag. The classical TAP tag consists of
CBP and ProtA with a TEV protease cleavage site in the intervening region. As
shown below, the TAP-tag construct can be fused either N or C terminally to the
protein of interest. (Taken from (Li 2011))

Fig. 5.2, Schematic of the GS-TAP tag fused to the N-terminus of mTOR. The
protein A modules have been replaced with 2 protein G modules and the calmodulin
binding peptide has been replaced by a streptavidin binding peptide. A TEV protease
cleavage site is situated in between the protein G modules and the streptavidin
binding peptide. The GS-TAP tag offers superior recovery of bait protein with fewer
associated contaminants compared to the protein A/CBP TAP tag depicted in Fig. 5.1.

Protein G Protein G TEV SBP mTORβ
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Fig. 5.3, Overview of the tandem affinity purification procedure using a GS-TAP
tag. The tandem-affinity-purification (TAP) tag is composed of three components: a
streptavidin-binding peptide, a tobacco etch virus (TEV) protease cleavage site and
Protein G as immunoglobulin G (IgG)-binding domains. Cells or organisms are
produced that contain TAP-tagged protein(s). Cells expressing the fusion protein are
lysed and TAP is performed. The first column contains IgG beads. TEV protease
cleavage releases SBP-mTORβWT. An additional round of binding is performed on a
second column that consists of Streptavidin-binding peptide beads. The native
complex is then eluted.
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Results

5.1) Using PCR to introduce XhoI and NotI restrictions sites into
mTORβWT/pcDNA3.1(+)

mTORβWT was not cloned into the pcDNA3.1(+) vector using the XhoI and NotI

restriction enzymes. Therefore, it was not possible to excise it from its original vector

and directly clone it into the TAP-tag plasmid pCeMM-NTAP(GS), which contained

XhoI and NotI restriction sequences. As a result, primers were designed that would

allow the XhoI and NotI restriction sequences to be artificially introduced at the N

and C termini of mTORβ respectively by PCR. See the materials and methods chapter

for details of the PCR reaction conditions utilised. After PCR amplification had been

performed, the PCR reaction mixtures were analysed on an agarose gel. This can be

seen in Fig. 5.4. The PCR product was successfully produced in all cases. Addition of

DMSO appeared to increase the production of high MW impurities, but also

diminished the presence of lower MW contaminants. DMSO also had the effect of

decreasing the yield of PCR product. The samples in lanes 2 and 3 were purified using

ethanol precipitation and the other PCR reaction mixtures were frozen.
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Fig. 5.4, The PCR reaction mixtures were analysed on a 0.75% agarose gel. A
range of reaction conditions were used in order to ascertain those that would produce
the most PCR product. MW was the Fermentas Generuler DNA ladder used to
ascertain the size of the fragments. The samples in lane 1-4 were PCR reaction
mixtures, where PCR was performed at 62°C. Samples 5-6 were PCR reaction
mixtures containing DMSO, where reactions were carried out at 60°C. Samples 7-8
were PCR reaction mixtures with DMSO, and PCR was conducted at 62°C. Samples
9-10 were PCR reaction mixtures containing DMSO, and PCR was performed at 64°C.
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5.2) Agarose gel analysis of XhoI and NotI restriction of pCeMM-NTAP(GS) and
mTORB PCR product

The PCR products that had been purified by ethanol precipitation and the TAP tag

plasmid (pCeMM-NTAP(GS)) were restricted with XhoI and NotI enzymes. This

resulted in the linearisation of the plasmid and digestion of the ends of the linear PCR

product. In order to confirm that the digested DNA was of the correct size and of

good quality, the DNA was analysed on an agarose gel. The result is shown in Fig.

5.5. The vectors were linearised successfully as can be seen in the agarose gel and the

DNA fragments were all of the expected size. The agarose gel was placed on a UV

light box and the relevant bands were excised from the gel. Promega’s Wizard SV gel

and PCR clean-up system was utilised to purify the gel fragments. From the gel, it

was estimated that the concentration of the PCR product in lane 2 was 20ng/μL and in

lane 3 was 8ng/μL.
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Fig. 5.5, pCeMM-NTAP(GS) and PCR product (mTORβ/pcDNA3.1(+) with
XhoI and NotI restriction sequences) were linearised by restriction with XhoI
and NotI. The digested DNA was run on a 0.75% agarose gel. MW was the
Fermentas Generuler DNA ladder used to ascertain the size of the fragments. Lane 1
contained a DNA Quantity Marker (0.1μg/μL), which was used to deduce the DNA
concentration of the other samples. Lanes 2 and 3 were linearsied mTORβPCR
products Clones 1 and 2 respectively. The sample in lane 4 was the linearised
pCeMM-NTAP(GS) vector.
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5.3) Ligation of mTORβ to pCeMM-NTAP(GS), amplification and agarose gel
analysis

After the DNA fragments had been purified from the agarose gel, the mTORβ PCR

product was ligated to the pCeMM-NTAP(GS) vector. The ligated DNA was then

transformed into E.coli XL-10 competent cells. After growth on selective agar plates,

colonies were seeded into LB with selective antibiotics and then purified with a mini-

prep kit. The DNA obtained was restricted with XhoI and NotI and analysed on an

agarose gel, shown in Fig. 5.6.

Fig. 5.6, 0.75% Agarose gel analysis of XhoI/NotI digestion of mTORB/pCeMM-
NTAP(GS) Clone 1 and pCeMM-NTAP(GS). MW was the Fermentas Generuler
DNA ladder used to ascertain the size of the fragments. Lane 1 contained linearised
mTORβ/pCeMM-NTAP(GS) Clone 1. Lane 2 contained linearised pCeMM-
NTAP(GS). Digestion of the recombinant DNA product produced by DNA ligation
resulted in the generation of the linearised mTORβWT insert and pCeMM-NTAP(GS)
vector. This was proof that the cloning had been successfully performed.
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5.4) Expression of mTORβ/pCeMM-NTAP(GS) in HEK293 cells

HEK293 cells were then transiently transfected with mTORβ/pCeMM-NTAP(GS)

Clones 1 and 2, pCeMM-NTAP(GS) and mTORβ/pcDNA3.1(+) when they had

reached a suitable confluency. After 72 hours the cells were lysed and the total cell

lysates were mixed with SDS and run on a protein polyacrylamide gel. mTORα,

mTORβ and mTORβ/pCeMM-NTAP(GS) were then detected on a Western blot using

an anti Phospho-mTOR S2448 antibody. This can be seen in Fig. 5.7. mTORα and

mTORβ were detected in all sample lanes as expected since both proteins are

endogenous and possess a S2448 phosphorylation site. The mTORβ/NTAP(GS)

protein was also present in lanes 3 and 4, which were cell lysates from HEK293 cells

transiently transfected with Clones 1 and 2 respectively. This proved that transfection

had been successful and that the HEK293 cells were capable of expressing the fusion

protein.

Fig. 5.7, Western blot of total cell lysate of HEK293 cells transiently transfected
with mTORβ/pcDNA3.1(+), pCeMM-NTAP(GS) and mTORβ/pCeMM-
NTAP(GS) clones 1 and 2. The primary AB used was anti Phospho-mTOR S2448.
Akt phosphorylates mTORα and mTORβ at S2448. The sample in lane 1 was
mTORβ/pcDNA3.1(+) and lane 2 contained pCeMM-NTAP(GS). Lanes 3 and 4 were
mTORβ/pCeMM-NTAP(GS) Clones 1 and 2 respectively.
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5.5) Affinity purification of mTORβ/NTAP(GS) with Protein G Sepharose beads
and Western Blotting

Affinity purification with Protein G sepharose beads was performed with the soluble

fractions of HEK293 total cell lysates. The HEK293 cells were transiently transfected

in the same manner outlined in section 5.4. Proteins were detected with Western

Blotting. For the first blot, an anti phospho-mTOR S2448 mTOR primary antibody

was used, and for the second blot an anti mTOR C-terminal primary antibody was

utilised. The blots are shown in Fig. 5.8. In Fig. 5.8(A), large quantities of

mTORβ/NTAP(GS) were purified using protein G sepharose beads in lanes 3 and 4,

demonstrating that the affinity purification was successful and that the fusion protein

was expressed. No protein of similar MW was detected in lanes 1 and 2, proving that

the 100kDa protein in lanes 3 and 4 was not merely the result of non specific binding.

Far more fusion protein was visible compared to mTORβ, which again showed that

affinity purification was effective. In Fig. 5.8(B) even larger quantities of

mTORβ/NTAP(GS) were detected using anti mTOR C-terminal primary antibody.

This blot also demonstrated that affinity purification with Protein G sepharose beads

was successful and that the fusion protein was expressed in transiently transfected

HEK293 cells.



Structural and Functional Analysis of mTORβ

131

A)

B)

Fig. 5.8, Affinity purification of mTORβ/NTAP(GS) Protein G Sepharose beads
and subsequent Western blots using Anti-Phospho-mTOR S2448 (A) and anti-
mTOR C-terminal (B) primary ABs to detect mTORβ/NTAP(GS) fusion protein
in transiently transfected HEK293 cells. (A) Lanes 1 and 2 contained
mTORβ/pCeMM-NTAP(GS) clones 1 and 2. Lanes 3 and 4 contained pCeMM-
NTAP(GS) and mTORβ-myc/pcDNA3.1(+) respectively. (B) Lane 1 contained
mTORβ/pCeMM-NTAP(GS) Clone 1. Lanes 2 and 3 were pCeMM-NTAP(GS) and
mTORβ-myc/pcDNA3.1(+) respectively.
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5.6 Discussion

The full coding sequence of mTORβ was successfully cloned into the pCeMM-

NTAP(GS) vector, with the N-terminal TAP-tag positioned at the N-terminus of

mTORβ. Expression of the fusion protein in transiently transfected HEK293 cells was

also confirmed. Affinity purification with Protein G sepharose beads appeared to be

efficient, owing to the copious amounts of proteins that could be detected by Western

blotting. Future work would involve testing whether known mTORβ binding partners

such as Rictor and Raptor, (Panasyuk et al. 2009) can be efficiently co-purified using

the mTORβ/NTAP(GS) fusion protein that has been created. It is my hope that new

binding partners are subsequently discovered and their functions in the mTOR

signalling pathway elucidated.
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Chapter 6

General Discussion
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Chapter 6: General Discussion

Advances in the understanding of mTOR function have been hampered by the lack of

a mTOR crystal structure. The principal problem encountered has been the difficulty

in obtaining sufficient quantities of soluble protein for crystallisation studies. In order

to overcome this challenge it was decided to make a departure from conventional

practice. Instead of expressing mTOR protein in mammalian cells which has been the

accepted methodology, insect cells were transfected. In addition, insect cells were co-

transfected with plasmids containing Rictor and Raptor. It was hoped that co-

expression of either Rictor or Raptor with mTOR would increase its solubility, and

hence the quantity of protein that would be available for crystallographic analysis.

With regard to the first objective, we were not disappointed. Rictor, Raptor and

mTOR were all successfully purified from cellular lysates using immunoprecipitation

and Western Blotting confirmed their expression. However, solubilising adequate

mTOR protein still proved to be elusive. Although the results from this work have not

been presented in this thesis, they did influence the direction of my subsequent studies.

Consequently, it was decided to model the Kinase domain of mTORβ using in silico

methods. This approach would be rapid, cheap and offer a reasonably accurate model

of mTORβ’s active region.

A 3D model of mTOR’s kinase domain, with the FRB domain positioned in

an adjacent location was created using the technique of comparative modelling. This

model allowed us to visualise the ATP binding pocket of mTOR. Furthermore, the

model also allowed me to visualise the location of the S2215Y and 12del mutations in

mTOR with respect to the catalytic pocket. Hence the model could be used as a tool to

understand experimental results. However, the additional experiments that have been
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proposed in the discussion for chapter 4 would most certainly be necessary before

sufficient data had been generated to propose potential regulatory mechanisms. Time

did not permit me to model the full length mTOR protein or any of the proteins that

are components of the mTOR complexes. Provided that suitable homologue proteins

exist for each domain, it would be useful to model both mTORα and mTORβ in their

entirety. This would potentially give us greater insight into the protein’s function and

inhibition. Molecular docking studies with FKBP12-rapamycin, rapalogues and ATP-

competitive inhibitors also offer scope for future work. A full-length mTOR model

might also be useful for understanding the interaction of novel mTORβ binding

partners with mTORβ, if any should be discovered in the future using the mTORβ-

NTAP(GS) fusion protein that I have created.

The S2215Y and 12del mutations were also introduced into mTORβ. The

point mutation S2215Y has been shown to convey constitutive activation on mTORα.

In contrast the 12del mutation removes the entire kbeta5 strand from the catalytic site,

which includes the critical Lys2187 residue. This amino acid is thought to interact

with the α-phosphate of ATP. Consequently, it is thought that the 12del mutation

disrupts mTOR activity. The effects that these mutations had on the phosphorylation

of the mTOR substrates Akt, S6K1 and 4E-BP1 following starvation was assessed. It

was shown that under the initial starvation conditions employed (overnight serum

starvation and 1hr nutrient starvation), mTOR activity was unimpaired. However,

when the HEK293 cells were starved for an extended period (24hr serum starvation

and 3hr nutrient starvation) and then stimulated (incubation in complete medium for

1hr), the results conformed to expectations. Augmenting the duration of starvation

had the desired effect of inhibiting mTOR activity. This also lent further weight to my

previous supposition that the original starvation conditions employed were
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insufficient to inhibit mTOR activity. Stimulation fully restored mTORC1 activity, as

shown by the detection of P-4E-BP1 in cells transiently transfected with just empty

vector. It would also be interesting to assess the effect that stimulation would have on

cells that were transfected with mTORβWT and the mTORβ mutant plasmids. Also of

interest, would be to repeat the experiments with the addition of a sample of cells that

had been transfected with a plasmid containing mTORαS2215Y. Isolation of the

mutant and WT proteins by immunoprecipitation followed by in vitro kinase assays

would also be informative. The benefit of conducting these experiments would be that

any mTOR activity present could only be attributed to the purified protein. A

disadvantage would be that intracellular mTOR complex components that are

requisite for mTOR activity may be lost in the immunoprecipitation.

A mTORβ-NTAP(GS) fusion protein was also successfully created.

Unfortunately, there was not enough time for me to perform a preliminary tandem

affinity purification. Nevertheless, the student that continues my work will be able to

use the bait protein that I have generated to search for novel mTORβ binding partners.
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