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Abstract

Engaging in the philosophical debate surrounding proper classes is a tough task. The

waters are both muddy and treacherous. In particular, there is no full and rigorous

analysis of the logical geography of the area; what one should accept if one makes

certain assumptions about ontology. The water would be substantially cleaned up (if

not made any less treacherous) by a thorough and comprehensive treatment of just

this.

This thesis can be seen as one part of a comprehensive study. The methodology

is to precisely state some ontological assumptions, and then to examine how one

should characterise proper classes given these assumptions. In Chapter 1 I outline

the paradoxes I will be considering and the assumptions I am making. I suggest

that a better philosophical understanding of ontology would allow us to motivate a

solution to the paradoxes. In Chapter 2 I consider (and reject) just such an ontological

thesis; the conception that proper classes are ontologically ‘heavyweight’. In Chapter

3 I examine some views that attempt to characterise proper classes using modal

resources. I then give reasons as to why I find these standpoints unsatisfactory.

Chapter 4 provides an analysis and defence of the stance that proper classes are

artefacts of plural reference.

The thesis of this work is that if one holds a certain kind of realism about math-

ematical ontology, then (under the Iterative Conception of set) proper classes do not

exist. However, reference to proper classes can be understood as plural reference to

some sets.
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Chapter 1

Introduction

1.1 Classes and Paradox.

Firstly, what do I mean by class1? We shall see that the notion is more complex

than one might immediately expect. Here, however, is a pre-theoretically plausible

definition:

Definition. A is a class iff A is a collection of 0 or more2 objects such

that for any object x it is definite whether or not x is a member of A34.

The notion of ‘definite’ given above is one that will recur throughout this thesis.

It will therefore serve to be precise about what I mean by the term.

Definition. A proposition P is definite iff there is a fact of the matter

whether or not P .

So, if for any object x it is definite whether or not x is a member of a class Y ,

then there is a fact of the matter whether or not x is a member of Y .

1I use the term class rather than set as I shall reserve ‘set’ for those classes that form sets under
the Iterative Conception of set.

2I use the locution ‘0 or more’ to respect the fact that I consider the empty class to be a class.
3This definition is largely inspired by Cantor; see [Cantor, 1883].
4A note on terminology; I use the upper-case letters from the start of the English alphabet (‘A’,

‘B’, ‘C’ etc.) to represent classes, and the lower-case letters from the end of the English alphabet
(‘x’, ‘y’, ‘z’ etc.) to denote objects (including sets). The difference between sets and classes will be
explained later. The use of the upper-case letters ‘X’, ‘Y ’, ‘Z’ etc. is reserved for second-order logic,
with the exception of ‘P ’ which denotes a proposition.
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Given the metamathematical use to which we can put reasoning about classes5,

we should have cause for concern if our class-theoretical thinking turned out to be

inconsistent. As is well known, ‘näıve’ formulations of class theory have just this fatal

flaw.

1.2 The Paradoxes.

I will examine the following paradoxes:

• 1.2.1 Russell’s Paradox.

• 1.2.2 Cantor’s Paradox.

• 1.2.3 The Burali-Forti Paradox.

1.2.1 Russell’s Paradox.

Russell’s Paradox has received a great deal of attention6. This is partly due to its

historical significance, the paradox was what infamously brought down Frege’s original

system. However, it is also because the derivation of the contradiction is quite simple

and elegant.

It will serve first to introduce some notation:

Notation. By ‘{x : φ(x)}’ I mean the ‘class’ of all x such that φ(x).

The paradox stems from considering the predicate ‘x is not a member of itself’

(in modern notation ‘x /∈ x’). If such a predicate succeeds in defining a class of all

objects that are not members of themselves (call it ‘R’) we would have a class such

that (∀x)(x ∈ R↔ x /∈ x). Assuming that R is an object, we may substitute ‘R’ for

‘x’ in ‘(∀x)(x ∈ R↔ x /∈ x)’. Then we get;

5For excellent reviews of a fraction of its uses see [Giaquinto, 2002] and [Fraenkel et al., 1973].
6Including from Russell himself. The following quotation speaks volumes about the difficulties

he experienced while trying to solve his own paradox (among others); “I was trying hard to solve
the contradictions mentioned above. Every morning I would sit down before a blank sheet of paper.
Throughout the day, with a brief interval for lunch, I would stare at the blank sheet. Often when
evening came it was still empty.....It was clear to me that I could not get on without solving the
contradictions, and I was determined that no difficulty should turn me aside from the completion
of Principia Mathematica, but it seemed quite likely that the whole of the rest of my life might be
consumed in looking at that blank sheet of paper.” ([Russell, 1967], p151).
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R ∈ R↔ R /∈ R

which is clearly a contradiction.

It is possible to restate the paradox informally. Assuming that R exists, we may

ask whether or not it is a member of itself, i.e. is it the case that R ∈ R? If it is

a member of itself, then it is in the class of all non-self-membered objects (i.e. R),

and hence it is not a member of itself. If, on the other hand, it is not a member of

itself, it will be a member of the class of all non-self-membered objects i.e. itself, and

thus R will be self-membered. Hence R is a member of itself if and only if it is not a

member of itself.

1.2.2 Cantor’s Paradox.

Cantor’s paradox is, like Russell’s paradox, a very clear and straightforward piece of

reasoning. Central to the paradox is the notion of cardinality :

Definition. Two classes A and B have the same cardinality (number of

members) iff there is a bijection between them.

Definition. A bijection between class A and class B is a function with

the following three properties:

• i) Total-the function maps every member of A to a member of B.

• ii) Injective-the function maps no two members of A to the same

member of B.

• iii) Surjective-every member of B is in the range of the function.

Definition. Class A has a greater cardinality than class B iff:

• i) there is no bijection between A and B

• ii) there is a bijection between B and a proper subclass of A.

To generate this paradox, one must consider the class of all classes. If one examines

the cardinality of this class (the ‘Universal class’) and compares it to the cardinality

of the class of all subclasses of the Universal class, then one is lead to contradiction.

9



Let the cardinality of the Universal class be denoted by ‘|U |’. Now consider the

power class (i.e. class of all subclasses) of U denoted by ‘P(U)’. Further, Cantor’s

Theorem states that for any class A that is a class of all subclasses of some class B, A

must have greater cardinality than B. Therefore |P(U)| is a greater cardinality than

|U |. However, P(U) is a class containing only subclasses of the class of all classes. As

every subclass is also a class, P(U) only has classes as members. Therefore, everything

in P(U) is also in U . Thus P(U) cannot be any more numerous than U . Now we

have a contradiction; |P(U)| both is and is not a greater cardinality that |U |.

1.2.3 The Burali-Forti Paradox.

The Burali-Forti paradox is another paradox that has had great historical significance.

Moreover, the concept used to generate the paradox (that of ordinal) is precise and

very mathematically important.

Before going through the paradoxical reasoning, it will be useful to introduce some

additional terminology:

Definition. A class A is said to be well-ordered by relation R iff

1. For any two elements a and b of class A, the following holds:

(a) Trichotomy-Exclusively either i) aR b, ii) bR a, or iii) b = a.

(b) Transitivity-If aR b and bR c, then aR c.

2. Any non-empty subclass of A has an R-least member.

Definition. An ordinal is the order-type of a class well-ordered under a

relation R.

Definition. A function f(x) is an isomorphism from class A under rela-

tion Q, to class B under relation R iff it is a bijection from A to B such

that for any a1, a2 ∈ A, a1Qa2 implies that f(a1)Rf(a2).

Definition. A section of a class A well-ordered by relation R is a class S

such that for some member x of A, S is the class of all R-predecessors of x

in A (i.e. S is a section of A iff for some x ∈ A, S = {y : y ∈ A ∧ y Rx}).
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Now, consider the class of all ordinals (denoted by ‘Ω’). It can be shown that Ω

is well-ordered by the following relation. For any order-types α and β, where α is the

order-type of a class X well-ordered by relation R1, and β is the order-type of class

Y well-ordered by relation R2, let R be a relation such that;

αRβ ↔df [there is an isomorphism from X under R1 to a proper initial

segment of Y under R2]

It is easy to prove that such a relation would well-order Ω (assuming such a class

exists). Thus Ω has its own order-type, to be denoted by ‘ord(Ω)’.

However, it is a theorem that every section of a well-ordered class is well-ordered.

Therefore, the section of ordinals less than ord(Ω) has a certain ordinal; let it be

the denotation of ‘ord(S)’. It is also a theorem that every ordinal α is the ordinal

of the section of all ordinals less than α. Therefore, ord(S) = ord(Ω), and hence

¬ord(S)Rord(Ω) (by the exclusivity of 1. (a) in the definition of well-ordering).

It is also a theorem that for any section C of a class A well ordered by R, it is

the case that ord(C)Rord(A). Therefore, ord(S)Rord(Ω). Thus we have a contra-

diction; it is both the case that ¬ord(S)Rord(Ω) and ord(S)Rord(Ω)7.

There are many variants and other kinds of class paradoxes, but the three just

outlined are fairly representative of what sort of reasoning is involved in generating a

class paradox and are those that feature most widely in the literature. I will, therefore,

restrict myself to only considering these three.

1.2.4 Attacking the Paradoxes.

In order to see what a solution must achieve, it will be instructive to understand why

the class paradoxes are so serious, and in what sense they are ‘paradoxes’.

The sense in which the class paradoxes are ‘paradoxes’ is simple enough; they

all proceed from (pre-theoretically) plausible assumptions, via seemingly legitimate

reasoning to patently false conclusions (contradictions). The reason they present such

a threat to our class-theoretic reasoning is that initial investigation reveals no clear

fallacy; there is no assumption or inferential step that is obviously faulty.

7The derivation of a contradiction on the assumption that there is a class of all ordinals can also
be produced using the von Neumann representation of ordinals used in modern Set Theory.
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I will now consider what we can expect from a satisfactory solution, and the

methodological routes available for blocking the paradoxical reasoning.

1.2.4.1 What Constitutes a Satisfactory Solution?

It is not enough to merely ban the paradoxical reasoning from our class theory on

pain of paradox. Such reasoning would be, as Michael Dummett puts it, to merely

“wield the big stick” ([Dummett, 1994], p26). Pointing to the problem as evidence

for one’s solution is not to explain the problem.

In order to be satisfactory, a solution must do more. In order to truly understand

the paradoxes, we must be sensitive to the features of the mathematical structure

about which we are reasoning, and the sense in which we have failed to accurately

describe that structure. Therefore, I see four obvious constraints on a satisfactory

solution:

1. Precision-A solution must be precise in that it must identify in which respect

our thinking is faulty.

2. Motivation-Not only must a solution identify which part of our thinking is faulty,

it must also motivate this choice of error. Independent reasons must be given

regarding the piece of reasoning selected as defective. As such a solution cannot

merely be an ad hoc ban on the paradoxical reasoning.

3. Diagnosis-A solution should also diagnose why we have fallen into error in the

first place. In this way a solution should reveal a pathological element; it should

explain why the faulty reasoning initially seemed so appealing.

4. No Overkill -A solution must also avoid overkill ([Kirkham, 1995], p273)8. It

must be minimal in the sense that it should not prohibit accepted and valid

forms of reasoning.

With these constraints9 on possible solutions in place, what are the basic method-

ological options for locating the error in the paradoxes?

8While Kirkham is considering paradoxes of truth rather than class paradoxes, this nonetheless
seems like a reasonable constraint to put on a solution to any kind of paradox, including the class
paradoxes.

9I am by no means claiming that this list is exhaustive of good-making features of responses to
paradox. Nor do I claim that they are sufficient for a solution to be satisfactory. Indeed we shall
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1.2.4.2 Locating the Error.

I see two main ways of solving any paradox:

1. Deny that the conclusion is actually untrue.

2. Attack a principle used in the derivation of the paradoxes.

(1.) is a route that some have taken (e.g. [Priest, 2002]). It is, however, a very tough

bullet to bite. There is little that could be more puzzling or mysterious than the

hypothesis that a contradiction is true. Almost any other revisionary claim seems to

be more intelligible than the claim that there are true contradictions. In this way,

such solutions seem themselves to be paradoxical; the medicine is just as bad as the

disease.

(2.) seems a more plausible avenue of inquiry. It is noticeable that all the class

paradoxes listed require a principle that if a predicate is precise, there exists a class of

all objects that satisfy the predicate. Not only this, but these classes must be objects

about which one may ask questions of membership, and to which one may apply

operations (for example, when one takes all subclasses in Cantor’s Paradox). Let us

now make a distinction; let a set be a definite collection of objects that is itself an

object distinct from its elements. Let a class be a definite collection of objects that

may or may not be an object. It is clear that the derivation of the class paradoxes

require us to be able to reason with classes as objects (i.e. sets) and so ask whether

they are members et cetera. In the case of the Russell paradox, one requires a principle

that implies the existence of a set of all objects that satisfy the condition φ(x) such

that φ(x) ↔df x /∈ x. Similar considerations apply in the case of the Burali-Forti

paradox (φ(x)↔df x = Ord(A) for some A), and Cantor’s paradox (φ(x)↔df x is a

set).

Such a principle is known as the Comprehension Principle and can be formalised

as follows:

[COMP] (∃C)(∀x)(x ∈ C ↔ φ(x))

see that there are some solutions to the class paradoxes that fare quite well with respect to these
constraints, but are unsatisfactory for other reasons. This list of desiderata is useful, however, for
seeing what is good about various responses, and why. For this reason, I will apply them when giving
a critical analysis of each proposal I consider.
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This states that for any condition φ(x) there is a set C such that x ∈ C ↔ φ(x).

This principle is not explicit in the above presentation of the paradoxes, but is tacitly

assumed. At the very least this tacit assumption of [COMP] requires justification.

Reasons must be provided for holding that given any precise predicate there is a set

of all objects that satisfy it. If one were to deny this principle, one would not be able

to justifiably assume the existence of the Russell set, set of all ordinals, or universal

set in deriving the contradictions.

We might then seek to restore the consistency of our class theory by denying

[COMP]. However, we should keep in mind the above constraints; it would be easy to

block the paradoxical reasoning with no justification. Further, [COMP] responds to a

strong intuition about sets, specifically that we define sets by using conditions. Any

class theory that denies [COMP] will want to provide a way of preserving part of this

intuition. Indeed, one may modify [COMP] in several ways to restore consistency.

How do we choose between the options available? A methodological route one might

take in order to avoid falling foul of the above desiderata is to try and motivate a

solution from ontology. If we can understand the nature of sets, then it will be easier

to see which of the alternatives available we should endorse. This is the methodology

that I will adopt throughout the rest of this thesis.

A comprehensive study of how ontology affects the solutions available is desirable.

Unfortunately, space does not permit a full examination of every ontological stand-

point. I will, therefore, restrict myself to a critique based on two assumptions about

ontology.

1.3 Assumptions of the Thesis.

1.3.1 The Iterative Conception of Set.

The first assumption concerns what sets exist within the universe of Set Theory. The

modern conception of set is the Iterative Conception of set. In this structure we begin

from a base of atomic objects (urelemente), and proceed in a series of stages by taking

repeated applications of the ‘set of’ operation.

The conception is succinctly expressed by Shoenfield thus:

14



“Sets are formed in stages. For each stage S there are certain stages which

are before S. At each stage S, each collection consisting of sets formed at

stages before S is formed into a set. There are no sets other than the sets

which are formed at the stages.” ([Shoenfield, 1977], p323)

We can see, therefore, that the Iterative Conception of set can be represented as

a hierarchy. Starting with a definite collection of non-sets as urelemente, the sets are

built up in stages by constructing all the sets one can from objects available at earlier

stages. Thus a set x is in a stage S if and only if each member of x is in a stage

before S. The stages are cumulative in that every stage contains all the objects from

previous stages in addition to the sets formed at that stage.

However, we may disagree on what urelemente there are. This is not a problem10

for the investigation of Set Theory; there are some sets that will be in the hierarchy

no matter what urelemente are taken. These sets are the pure sets:

Definition. A set is pure iff all its elements are pure.

Now, as the Iterative Conception begins with a definite collection of urelemente,

we stipulate that this collection must be a set. It is reasonable, if we have a set,

to apply [COMP] restricted to that set. Such a principle is Zermelo’s Principle of

Separation (or Aussonderung):

[SEP] (∀x)(∃y)(∀z)[z ∈ y ↔ (z ∈ x ∧ φ(x))]

Let φ be some condition. This axiom schema states that for any set x there is a set

y of just the elements within x that satisfy φ. We are then guaranteed the existence

of the empty set by taking the set of all non-self-identical urelemente. The empty set

is vacuously pure (as it has no members). Thus the pure sets are those sets which

are constructed from the empty set. Since the paradoxes can be constructed with

attention restricted to the pure sets, I will (for reasons of simplicity) be primarily

concerned with the pure sets. From this point on I will refer to the universe of pure

10Though there are interesting differences (both philosophical and technical) between theories that
admit urelemente and those that do not. Considerations of space prevent an account of such issues
here.
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sets as the Cumulative Hierarchy11. We can pictorially represent the Cumulative

Hierarchy in the following way:

Figure 1.1: An initial segment of the Cumulative Hierarchy.

Assuming that we accept that we may use the sequence of ordinals in our reason-

ing12, we can then index the stages as folows:

Figure 1.2: Indexing the stages.

11It should be noted that it is possible to define a non-well-founded (and hence non-identical to
the Cumulative Hierarchy) structure that is defined in an iterative manner. See [Forster, 2008] for
such an example. For the sake of simplicity, however, I will assume that the Cumulative Hierarchy is
the intended structure defined by the Iterative Conception, and will not consider ‘deviant’ iterative
structures.

12I shall use the lower-case Greek letters (‘α’, ‘β’, ‘γ’ etc.) to denote ordinals.
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Here we can see that for any stage Vα there is a further stage Vα+1 such that

Vα+1 = V α ∪ P(V α). Next, assume that there is a set of all natural numbers,

denoted by ‘ω’. It is clear that ω is well-ordered by the less-than relation on the

natural numbers. Thus ω has an ordinal. Therefore, there is a stage Vω such that:

Vω = ∪Vn,n∈N

Then once more we can proceed as follows:

Vω+1 = Vω ∪ P(Vω)

At stages indexed by a limit ordinal (an ordinal that is neither zero nor the suc-

cessor of any ordinal) take the union of all previous stages thus:

Vλ = ∪Vβ,β<λ

A fuller pictorial representation of the Cumulative Hierarchy is, therefore, the

following13:

Figure 1.3: The Cumulative Hierarchy

13Obviously, there will be many more sets formed at Vω+1 than I can write down. The represen-
tation is useful for seeing the rough structure of the Cumulative Hierarchy.
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The Iterative Conception is appealing both technically and philosophically. From

a technical perspective, any theory that describes the sets as given to us by the

Iterative Conception will not allow the paradoxical reasoning. For the conditions

used in deriving all the paradoxes I have considered share the following property:

Definition. A condition φ is extendible iff for any set x of φs in the

Cumulative Hierarchy, there is a y in the Cumulative Hierarchy such that

φ(y) and y is not in x.

One can see then that the paradoxical classes do not appear as sets at any point

in the Cumulative Hierarchy. For if we take any set of φs present at some Vα of

the Cumulative Hierarchy, then we can use the above extendibility property of the

condition φ involved to show that there is some φ not in that collection. Therefore, the

collection of all φs has not been formed at that stage. If we think that the Iterative

Conception describes all sets, then the derivation of the paradoxes is blocked.

Let us see how the contradictions are prevented with respect to each collection.

In the case of Cantor’s paradox, for any Vα the set of all sets that exist at Vα will not

include some sets from other Vβ>α. Thus the Universal class will never appear as a

set.

The Russell class also never appears as a set. One can see that any set on the

Iterative Conception will satisfy the predicate ‘x 6∈ x’. To see this, assume that there

is an x such that x ∈ x, first formed at Vα. However, for any y in the Cumulative

Hierarchy y ∈ x implies that y was formed at some Vβ<α. Given then that x ∈ x,

it must be the case that x was first formed at some Vβ<α. But this contradicts our

assumption that x was first formed at Vα. Thus the following is the case on the

Iterative Conception:

(∀x)x 6∈ x

As for any Vα there will always be non-self-membered sets at other Vβ>α, the

Russell class can never appear as a set.

The Burali-Forti paradox is slightly more complicated. What, after all, is an or-

dinal? It is normal in Set Theory to represent ordinals by sets (known as ordinal
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numbers). As long as it holds that for any well-ordered set x there is an ordinal num-

ber that is order-isomorphic to x, we can mimic our reasoning about ordinals with

our reasoning about the ordinal numbers. Clearly, there will be different well-ordered

sets that one might choose to do this job. I shall use the popular von Neumann rep-

resentation of ordinals and let ‘rep(α)’ abbreviate ‘the von Neumann representation

of α’14:

Definition rep(0) = ∅.

Definition. rep(α+ 1) = rep(α) ∪ {rep(α)}.

Definition. For any limit ordinal λ, rep(λ) = ∪β<λrep(β).

Definition. The well-ordering relation on the ordinals is represented by

∈ on the ordinal numbers.

From this point on, by ‘the ordinal number of α’ I mean ‘the von Neumann

representation of α’ (i.e. ‘rep(α)’). One can see that for any ordinal α, rep(α) will

occur at Vα+1. This can be shown by the process of transfinite induction. If we show

the following three things:

(i) The ordinal number of 0 appears first at V1.

(ii) If α is an ordinal and α + 1 its successor, then if the ordinal number

of α appears first at Vα+1 then the ordinal number of α + 1 appears at

Vα+2 (i.e. V(α+1)+1).

(iii) For any limit ordinal λ, if the ordinal numbers of all β < λ are first

formed at stage Vβ+1, then the ordinal number of λ appears first at Vλ+1.

Then as all ordinals are either 0, a successor, or the limit of a sequence of succes-

sors, then showing these three things is sufficient to show that for any ordinal α, its

ordinal number is formed at Vα+1.

(i) The fact that the ordinal number of 0 appears first at V1 is immediate.

14My choice of the von Neumann ordinal numbers reflects ease of use and the fact that it is the
canonical representation.
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(ii) Assume that the ordinal number of α is first formed at Vα+1. Then for

every member x of rep(α), x is is first formed at some Vβ<(α+1). Therefore,

every member x of rep(α) exists at Vα+1. Given that every member of

rep(α) exists at Vα+1, and that rep(α) is first formed at Vα+1, and further

that rep(α+ 1) =df rep(α) ∪ {rep(α)}, then rep(α+ 1) is first formed at

Vα+2.

(iii) Let λ be the ordinal number of any limit ordinal. Assume that for all

β < λ, rep(β) is first formed at Vβ+1, but that rep(λ) is not first formed

at Vλ+1. Then either:

a) rep(λ) is first formed after Vλ+1.

or b) rep(λ) is first formed before Vλ+1.

a) ex hypothesi the ordinal number of each β < λ is first formed at Vβ+1.

As λ is a limit ordinal, for all β < λ, β + 1 < λ. Since i) we have just

shown that for all β < λ, β + 1 < λ, ii) the ordinal numbers of all β < λ

are formed at Vβ+1, and we already know that iii) Vλ =df ∪ζ<λVζ , then

Vλ contains all rep(β), β < λ. But rep(λ) is defined as ∪β<λrep(β) and

so (if rep(λ) has not already been formed) rep(λ) will be formed at Vλ+1.

So rep(λ) must exist at some Vα≤(λ+1).

b) assume then that rep(λ) is formed at some Vβ<(λ+1). Clearly rep(λ)

cannot be formed at any Vζ<λ as then it would be the case that i)

ex hypothesi rep(ζ) is formed at Vζ+1, ii) ex hypothesi ζ < λ and so

rep(ζ) ∈ rep(λ), and iii) rep(ζ) is first formed after rep(λ) is first formed

and so rep(ζ) 6∈ rep(λ). Therefore; (∗) rep(λ) is formed at Vλ. However,

as λ is a limit ordinal and any stage indexed by a limit ordinal is defined

as Vλ =df ∪ζ<λVζ , no new sets are formed at Vλ (the ones that already

exist are merely collected into a single stage) contradicting (∗).

Thus, for any ordinal α, the ordinal number of α is formed at Vα+1.

�

Given this fact, it is clear that the class of all ordinal numbers never occurs as a set

in the Cumulative Hierarchy. This is because for any set x of ordinal numbers in some
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Vα, there will be ordinal numbers not in x first formed at all Vβ>α. Therefore, the

assumption that there is a set of all ordinals contravenes the Iterative Conception of

set; there is no faithful representation of the ordinals that would allow the collection

of all representatives to appear in the Cumulative Hierarchy.

Further, the Iterative Conception has philosophical merit. The collection forming

practice represented by the structure is a natural one. For example, often mathemat-

ical inquiry begins by considering a domain of objects (for simplicity let us consider

the natural numbers). We then might notice that certain natural numbers stand in

certain relations to one another. 16 is the square of 4 would be one such relation be-

tween two numbers. We then want to consider all objects that stand in this relation

to one another. We can represent such relations as sets of ordered pairs. Thus we

may examine the function f(x) = x2 as a single object, represented by a collection of

ordered pairs15. However, then we might want to look at collections of these functions

that share a common property, such as the class of all exponentiation functions on

the natural numbers. So we collect these collections of ordered pairs into different col-

lections. Now, we may want to consider functions on functions, such as the function

f(x) that given a representation of a function g(x) will output the representation of

the function gg(x). Again we may want to collect these together into functions that

share common properties, or define functions on these objects. Thus we see how given

a starting collection of objects, we examine collections of these objects, and then col-

lections of these collections and so on. Such a process of mathematical development

and collection forming is exactly to what the Iterative Conception responds.

Perhaps then, by respecting our collection forming practice in describing the uni-

verse of sets, we motivate the rejection of the status of the paradoxical collections as

sets. It seems that it would be desirable if the Iterative Conception was an accurate

characterisation of the universe of Set Theory. I will, therefore, make the following

ontological assumption:

Assumption. The Cumulative Hierarchy, as described by the Iterative

Conception of set, contains all the (pure) sets that exist.

15If one is unhappy with the notion of ordered pair as a primitive, it is normal in modern Set
Theory to use the Kuratowski representation of ordered pair. We may represent the ordered pair
< x, y > by the set {{x}, {x, y}}.
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This tells us what sets exist. However, there is a second substantial ontologi-

cal question left unanswered; what is the nature of the existence of the Cumulative

Hierarchy and the sets it contains?

1.3.2 Monist Realism.

I will assume the following view that provides an answer to the previous question:

Assumption. (Monist Realism)-The Cumulative Hierarchy has the fol-

lowing properties:

1. The sets are objects.

2. The Cumulative Hierarchy is a ‘complete’ abstract structure; for ev-

ery ordinal α, Vα exists. No new Vα are being created.

3. For any object x, it is definite whether or not x occurs in the Cumu-

lative Hierarchy.

4. There is only one Cumulative Hierarchy of pure sets (although iso-

morphic copies of it may exist within universes of sets with different

urelemente).

5. There is just one interpretation of the Cumulative Hierarchy. Our

quantifiers are not ambiguous; it is possible to quantify over all sets.

What then is the sense in which the Cumulative Hierarchy of pure sets is a ‘com-

plete’ structure? Under Monist Realism every stage Vα of the Cumulative Hierarchy

exists as part of an abstract, unchanging, mathematical structure. The sets which

form the stages are in turn eternal mathematical objects. No sets ever ‘come into

being’. While the Cumulative Hierarchy is explained using the metaphor of forma-

tion, it is not undergoing constant construction, it is rather (to put it metaphorically)

‘finished’ (and always was). Moreover, there is no way in which the universe could be

extended by adding more (pure) sets.

This conception of the Cumulative Hierarchy has some nice features. It is con-

ceptually and intuitively simple. When we reason about sets, we are reasoning about

objects that are part of a structure based on our normal collection forming practice.
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This conceptual simplicity makes the semantics for our theories much easier. A

constructivist, for example, will have to explain why we believe our set theoretic

statements to be true, even if the domain of objects over which she is quantifying is

constantly changing. If the Cumulative Hierarchy was undergoing constant genesis

then reference to sets would be different on different occasions. One might think that

this might have semantic implications, for example the statement (∃x)|x| ≥ |ω| could

have different truth conditions depending on whether or not we have constructed Vω.

The statement will be false (on a normal understanding) before the construction of

Vω, and true after. Similar problems apply for someone who thinks that the range of

set-theoretic quantifiers is ambiguous. There is no such problem with Monist Realism.

The nominalist about sets also has a great deal of work to do in their semantics,

as they have no objects with which they can substantiate their set theoretic claims.

Monist Realism allows us to easily ground the truth of statements we make about

objects within the Cumulative Hierarchy.

Thus Monist Realism seems to be a desirable view about the ontology of Set

Theory. However, it seems that a puzzle remains for a Monist Realist who subscribes

to the Iterative Conception of set.

1.4 A Puzzle for the Two Assumptions.

Let us pause for a moment. We have seen that the Iterative Conception is a plausible

theory about the nature of the set-theoretic universe; one that seems to provide a basis

for rejecting the paradoxes. Monist Realism, it would seem, is a desirable view about

ontology. A natural question to ask at this point is the following; ‘How compatible are

the two assumptions about ontology?’. I suggest that there is an important problem

left unsolved by a combination of these standpoints.

Whence then the puzzle? The argument is a simple one. If the Cumulative

Hierarchy exists in the manner just described, then for any precise predicate it is

definite whether or not it is satisfied by any particular set. Therefore there seems to

be a definite collection of just the objects satisfying that predicate.

For example, take the following perfectly precise set-theoretical predicate; ‘x is an
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ordinal number’. The predicate is perfectly precise in the sense that for any object

presented, there is a fact of the matter whether or not it satisfies that predicate.

Further, it is definite what the Cumulative Hierarchy contains. Therefore, ‘the ordinal

numbers’ picks out a definite range of sets within the Cumulative Hierarchy. Thus

‘the ordinal numbers’ has definite membership and hence is a class. But the class

of all ordinal numbers does not appear at any Vα. Indeed, if the class of all ordinal

numbers did appear at some Vα, the Iterative Conception would be inconsistent. I

will call classes of this sort proper classes.

Definition. A class A is a proper class iff A is a class with definite

membership that does not appear as a set in the Cumulative Hierarchy.

The problem then presented is the following. There are classes that do not appear

in the Cumulative Hierarchy. We lack a philosophical explanation of the ontological

nature of these classes. The issue is pressing; under Monist Realism the cogency of

the Iterative Conception depends on a satisfactory account. So then, given the two

assumptions, how should a Monist Realist characterise proper classes?
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Chapter 2

Heavyweight Proper Classes

In this Chapter I analyse the view that proper classes are ontologically ‘heavyweight’

objects. On this conception, proper classes are collections that are also abstract

objects over and above their elements.

• In 2.1 I explain the view to be discussed and present some of its positive features.

I suggest that, as it stands, a substantial philosophical question is not answered;

‘Why are proper classes not sets?’.

• In 2.2 I examine what form a satisfactory explanation of why proper classes are

not sets should take. I suggest that an explanation should provide us with the

resources for blocking the paradoxes. I note one way to do this, by justifying

the principle that proper classes cannot be members of other class-like entities.

I then consider three explanations for why proper classes are not sets that could

be used to motivate the principle that proper classes are not members:

[NMH]-The Non-Member Hypothesis: Proper classes fail to form sets

because they ‘cannot be members’.

[LSH]-The Limitation of Size Hypothesis: Proper classes fail to form

sets because they are ‘too big’.

[OHH]-The Occurrence in the Hierarchy Hypothesis: Proper classes

fail to form sets because they do not occur at any stage of the Cumu-

lative Hierarchy.
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• I give a critical evaluation of these explanations. I present some good features

of each, but argue that [NMH] and [LSH] are unsatisfactory explanations. I

then argue that [OHH] is a satisfactory explanation, but cannot be appealed to

by the heavyweight theorist.

• In 2.3 I conclude that the Heavyweight Theorist has no satisfactory answer as

to why proper classes fail to form sets.

I shall show that the Heavyweight View, while initially appealing, is untenable for

a Monist Realist.

2.1 The Heavyweight View.

2.1.1 What is the Heavyweight View?

It was seen in the last Chapter that if we wish to hold Monist Realism true, we need

to give a characterisation of proper classes. A natural starting point is to note some

salient features of proper classes.

As argued earlier, the Monist Realist must assert that proper classes have definite

membership. Further, it would seem that we are able to reason meaningfully about

proper classes and also use talk of proper classes in our discourse about sets. Here

are two such examples:

(Example 1) The use of proper classes within Set Theory.

Much work into the theory of large cardinals makes use of proper classes. For

example, a measurable cardinal can be defined as the critical point of a non-trivial

elementary embedding from the universe into a transitive class M1. Here, both M

and V are proper classes, and any ordered pairs that could represent this mapping

would also be a proper class.

(Example 2) The meaningfulness of proper class talk.

1There are other equivalent definitions of a measurable cardinal available (see [Kanamori, 2003],
p26 onwards). However, often definitions which have apparent reference to proper classes are used,
and it is not obvious that this use is eliminable (see [Uzquiano, 2003] for an argument to this effect).
A theory that can account for this use in a simple way would, therefore, be preferable to one that
cannot.
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I can make assertions about proper classes that seem to be truth evaluable. For

example, I might say “The class of all sets is the same class as the class of all non-self-

membered sets”. It would seem that this statement is false just in case there is a self-

membered set, and true otherwise (hence it is true under the Iterative Conception).

Here I seem to have talked about a proper class and said something meaningful.

These examples might2 lead one to believe that we have another notion of col-

lection besides that of set. Maybe the sets are not the only collections that exist.

Maybe proper classes are another kind of object-like collection, about which we may

construct a mathematical theory. If one has such inclinations one might hold the

Heavyweight View:

[Heavyweight View] Proper classes are collections with definite member-

ship that are objects distinct from their elements, but that are not sets.

Often, proponents of the Heavyweight View will talk of the proper classes being

‘above’ the Cumulative Hierarchy. This should be regarded as loose talk; a heavy-

weight theorist is not necessarily committed to the view that proper classes reside in

a ‘domain’ or ‘stage’ beyond all the stages of the Cumulative Hierarchy.

Thus one admits into the ontology of set theory two different kinds of objects;

proper classes and sets. Theoretically this is cashed out in different ways; Gödel,

for example, makes do with only variables for ‘class’, but has a sethood predicate

[Gödel, 1940]. Bernays on the other hand has two different kinds of variable; set

variables and class variables [Bernays, 1958]. Such considerations are clearly irrelevant

to ontology; howsoever one chooses to describe the situation the relevant ontology is

the same.

However, different heavyweight theories postulate the existence of different classes.

As proper classes are different kinds of things from sets there is no obstacle to holding

[COMP] as a principle about classes (here, for the sake of convenience and clarity,

the class membership relation is given by ‘η’ in order to distinguish it from the set

membership relation represented by ‘∈’):

2I say ‘might’, because it is not established that the examples entail the Heavyweight View.
Indeed it is my opinion that they do not. Examples such are these, however, allow one to see the
initial motivation for the Heavyweight View.
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[COMPη] ∃A∀x(xηA↔ φ(x))

In the system V NBG (originally proposed by von Neumann3 and subsequently

refined by Bernays4 and Gödel5) only predicative conditions are allowed in [COMPη].

An impredicative condition is one that has a quantifier whose range includes the class

being defined in the defining condition. An example of impredicative definition is that

of greatest lower bound (or infimum) of a set:

inf(S) =df (ιx)(∀y ∈ S)(x ≤ y) ∧ (∀z)[(∀y ∈ S)(z ≤ y)→ z ≤ x]

Here we see that inf(S) itself must fall within the range of the quantifier ‘(∀z)’.

The point can be put informally as follows. The above sentence states that the

greatest lower bound of a set S is a lower bound x of S such that for any lower bound

z of S z is less than or equal to x. In the previous sentence the phrase “for any lower

bound z of S” quantifies over all lower bounds of S of which x (the object being

defined) is one. Hence the definition is impredicative.

Other theories allow for impredicative conditions in [COMPη]. Morse-Kelley set

theory (MK) is just such a theory. Because V NBG restricts [COMPη] to predicative

conditions where MK does not, MK will posit the existence of more classes than

V NBG.

While this is indeed a substantial theoretical difference, it is not important for my

discussion. The fact that MK posits the existence of more proper classes than V NBG

does not change the fact that both theories posit the existence of proper classes. In

both theories the Russell class, Universal class, and class of all ordinal numbers exist.

This is also the case with other heavyweight theories (such as Ackermann’s system6).

These are the collections for which we are seeking an explanation.

We now have a precise statement of the Heavyweight View, and have identified

an extraneous ontological question that should not distract us from the key tenets of

the proposal:

3A noticeable theoretical difference between von Neumann’s original system and the developments
made by Bernays and Gödel is the use of the notion of ‘function’ as primitive rather than those of
‘set’ and/or ‘class’. This fact has no ontological import; there is a total one-to-one correspondence
between functions and classes, and the distinction between classes which are sets and proper classes
is exactly matched by a distinction among functions.

4In a 1931 letter to Gödel and later in his [Bernays, 1958].
5See [Gödel, 1940].
6Ackermann Set Theory, however, has other interesting features that will be discussed later.
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1. Proper classes have definite membership.

2. Proper classes are objects distinct from their elements.

3. Proper classes are a different kind of object from sets.

I will now examine some positive features of the Heavyweight View. Despite these

good aspects of the view I will suggest that the heavyweight theorist must give an

explanation of why proper classes are not sets.

2.1.2 Positive Remarks about the Heavyweight View.

Though I plan to argue against the Heavyweight View, it could be argued that it

fares quite well with respect to the criteria outlined in Chapter 1.

It is possible for the heavyweight theorist to provide a diagnosis. To begin with,

we think that we only have one notion of ‘collection’. It turns out that we have at

least two, one of ‘set’ and one of ‘proper class’. Proper classes are similar to sets;

they depend for their identity on their members, they have definite membership, and

they are abstract objects. It is understandable then, that we might mistake one for

another in our näıve reasoning about classes.

The overkill constraint is also respected. We may continue to talk about proper

classes in the way we intuitively think that we do; by referring to a particular kind of

collection. In this way it nicely meshes with Monist Realism; the puzzle of Chapter

1 seems to indicate that there are precise collections which are not sets. For the

heavyweight theorist these are proper classes which exist and about which we may

talk in a singular manner.

The Heavyweight View seems to provide an ontological basis for much of our

reasoning about large cardinals. For example, embeddings from the universe into

other proper classes can be represented as proper classes of ordered pairs. In order

to be philosophically satisfied (if these grounds were not present) one would have to

explain why our (very precise) talk about such things as embeddings was mere façon

de parler. This is a problem the heavyweight theorist does not encounter.

The Heavyweight View is also able to identify [COMP] as illegitimate when as-

sumed to only apply to sets. Thus it is precise. Recall [COMP]:
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[COMP] (∃C)(∀x)(x ∈ C ↔ φ(x))

One might think that ‘(∃C)’ only ranges over sets. If so, this would imply that

there is a set of all sets. This is false for the heavyweight theorist; the class of all

sets is a proper class and hence a completely different kind of object from any set.

There are proper classes, and so the existential quantifier may assert the existence of

a proper class rather than a set. In this way the Heavyweight View is precise in that

it identifies [COMP] as the guilty principle when used as a principle only about sets.

While no motivation for rejecting [COMP] as a principle only about sets has yet been

provided, the Heavyweight View allows for such motivating reasons. This will now

be given fuller consideration.

2.1.3 A Problem for The Heavyweight View; Why are Proper

Classes not Sets?

A weak objection to the Heavyweight View would be the following. The Heavyweight

View does not present a particularly ontologically parsimonious view of the set the-

oretic universe. In addition to (the already very extensive) universe of sets, we are

postulating the existence of more objects. The objection is weak for the following

reason. Set Theory is not particularly concerned with ontological parsimony of this

kind. Indeed it seems to run counter to the whole investigative process of the large

cardinal discussion; the existence of new sets is postulated, and then the consequences

of this drawn out. Generally speaking, the existence of additional entities is not of

particular theoretical concern within such a vast ontology.

However, one might press a similar thought. Under the Heavyweight View we

postulate the existence of an additional ontological kind of object. This is significant

in the way that postulating the existence of more sets is not. Postulating a distinct

kind of entity adds another layer of complexity to one’s theory. If this complexity

turns out to be redundant, the Heavyweight View would be unappealing.

It is, at this stage of the dialectic, perfectly open to the heavyweight theorist

to point out that the existence of proper classes as heavyweight objects is not a

redundant hypothesis. They would point to the motivation for holding their view;
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the facts that there are precise conditions that seem to define non-set collections

within the hierarchy, and that we require an explanation for our reasoning about

large cardinal hypotheses.

However, if one is postulating the existence of objects of a different kind, one

should have an account of why this kind of object is different from objects of other

kinds. Let us pause briefly to compare the ontological nature of proper classes on the

Heavyweight View with that of sets. It seems that proper classes and sets are very

similar. Both proper classes and sets are objects. Further, both kinds of object have

definite membership.

The resemblance between proper classes and sets is uncomfortable. The heavy-

weight theorist should not be satisfied with an arbitrary distinction between objects

of the same kind. An adequate explanation of the difference between proper classes

and sets is, therefore, particularly pressing.

I see three main ways a heavyweight theorist might explain why proper classes are

not sets:

[NMH]-Proper classes are not sets because they cannot be members.

[LSH]-Proper classes are not sets because they are ‘too big’.

[OHH]-Proper classes are not sets because they do not occur at any stage

of the Cumulative Hierarchy.

I shall argue that any of the three explanations provides the heavyweight theo-

rist with the resources to block the paradoxes. However, I will show that none of

these is an acceptable explanation for the heavyweight theorist. [NMH] and [LSH]

are unsatisfactory explanations in themselves. [OHH], on the other hand, is a good

explanation. However, it cannot be appealed to by the heavyweight theorist.
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2.2 Explaining why Proper Classes are not Sets.

2.2.1 What a Satisfactory Explanation of why Proper Classes

are not Sets Should Achieve.

Before I examine the above hypotheses, we should examine what an explanation

should achieve. For there is a difference between an explanation and a true principle.

To see the difference, suppose that I am teaching an elementary school student how

to differentiate equations. I require an explanation for why some solutions for the

value of the differential are correct, and why some are faulty. Now, unfortunately my

student repeatedly forgets that the differential of a constant with respect to x is zero.

I try to explain why she is wrong. There are a number of ways I could do this. One is

to point out that substitution of values gives her inaccurate results for the gradients

of tangents. This (in a sense) provides her with a reason why her method is wrong;

it gets the wrong answers. However, there is a deeper sense in which she is wrong,

the sense in which her reasoning does not respect the operation being performed

when finding the differential of an equation. To explain this sense would require an

explanation of how modern calculus uses the notion of the value of a function as it

approaches a limit in order to find the derivative of the function.

What can be seen from this example? In the first case we have a true principle

in the sense that the principle in play will not get a prediction wrong. If one gets

erroneous values when applying the equation one has obtained from differentiation

then the solution is incorrect (unless we are being truly obtuse and cannot compute

values correctly). In the other case, however, we are giving an explanation for why

differentiating a constant with respect to x should always be zero. It tells us why

the equation we have found is incorrect; the reasons given are descriptive of the

mathematical structure under consideration.

To make an analogy with the class paradoxes, it may very well be the case that

will we find true principles that hold of proper classes but not of sets (or vice versa).

These principles may be very useful in our reasoning; they will tell us for a particular

given collection whether or not it is a set or a proper class. However, in order to be

philosophically satisfied, we require explanation for why proper classes are not sets.
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Such criteria will also need to respect the constraints outlined in Chapter 1.

Further, we require explanations that allow us to block the paradoxes. Merely

given the statement that proper classes are a different kind of object from sets does

not make it clear how the paradoxes should be prevented. One principle that would

allow us to block the paradoxes would be the Non-member Principle ([NMP]):

[NMP] Proper classes are not members of class-like entities.

Let us now examine how each paradox is blocked using [NMP].

Russell’s paradox depends on asking whether or not R is a member of itself. By

[NMP], proper classes are not the sort of things that can be members, thus we can say

that R is not a member of itself. There is no class of all classes that are not members

of themselves; such an object would depend on having proper classes as members.

However, there is a (proper) class of all sets that are not members of themselves.

The Burali-Forti paradox is solved using slightly different terminology between

different authors, but nonetheless still admits of a solution. The following is Gödel’s

solution from [Gödel, 1940]. For Gödel an ordinal is a transitive class well-ordered

by the membership relation. He makes a distinction, however, between ordinals and

ordinal numbers; the latter are also sets. Thus there is a class of all ordinal numbers,

to be denoted by ‘On’. On is indeed well-ordered, and hence is an ordinal. It is not,

however, an ordinal number. There is no class of all ordinals.

Why is there no class of all ordinals? To do so would presuppose that On could

be a member of something (as it is an ordinal). Hence a class of all ordinals would

violate [NMP].

Cantor’s paradox is also answered. The operation of taking all subclasses of a

class is clearly an inappropriate operation for proper classes. This is because every

class is a subclass of itself (and hence a member of the class of all its subclasses).

To allow such an operation for proper classes would thus allow a proper class A to

be a member of another class (namely the class of all subclasses of A). Thus [NMP]

prohibits the taking of all subclasses of a proper class. In this way the paradox cannot

get off the ground; there is no class of all subclasses of U .

Thus we see (on the assumption of [NMP]) that we must be careful which condi-
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tions we allow into [COMPη]. For some conditions (such as ‘x a non-self-membered

class’, ‘x is an ordinal’, or ‘x is a class’) are not satisfactory conditions for proving

the existence of classes (even proper classes). If we could justify [NMP] we would also

provide motivation for rejecting [COMP] as a principle only about sets. If it were a

principle only about sets, then proper classes would be sets and hence members of

sets, thus violating [NMP].

Let us take stock. We have seen that the heavyweight theorist requires an expla-

nation for why proper classes are not sets. Further, an explanation that motivated

the acceptance of [NMP] would provide the heavyweight theorist with the resources

she needs to block the paradoxes. I shall examine three putative explanations that

might be put to this task. All, I shall argue, are of no use to the heavyweight theorist.

2.2.2 The Non-member Hypothesis.

Given the use to which we can put [NMP], maybe the heavyweight theorist should

appeal to this as explanation for the difference between proper classes and sets. I will

call this view the Non-Member Hypothesis ([NMH]):

[NMH] Proper classes are not sets because proper classes (unlike sets)

cannot be members.

This explanation of why proper classes are not sets would clearly allow us to assert

that proper classes are not members. [NMP] would be immediate; inferred from the

very explanatory feature of the difference between proper classes and sets.

It should be noted that the phrase ‘cannot be members’ is ambiguous. Does it

mean that proper classes cannot be members of sets, or classes in general? The method

by which the class paradoxes are blocked ([NMP]) involves the fact that proper classes

cannot be members of other proper classes. There (2.2.1) it was noted that one must

be careful to not use conditions in [COMP] that would make proper classes members,

even of other proper classes. For example, ‘x is a non-self-membered class’ was just

such a condition. It is thus clear that to be effective [NMH] must state that proper

classes are not members of classes of all kinds. With this in mind, let us see if [NMH]

is a satisfactory explanation.
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2.2.2.1 Positive Remarks about [NMH].

It would be highly desirable for [NMH] to be a satisfactory explanation for why proper

classes are not sets for the heavyweight theorist. If it were a good explanation, then

the method for preventing the paradoxes and explanation for why proper classes are

not sets would perfectly mesh.

Further, [NMH] is precise; it tells us clearly which part of our reasoning was

faulty. As noted earlier in 2.2.1, we might mistakenly allow conditions that allow

proper classes to be members into [COMPη]. This can be identified as the faulty step

in the derivation of the paradoxes.

A diagnosis can also be given by the [NMH] theorist. Pre-theoretically, it is unclear

why we should expect proper classes not to be members of sets. After all they are

precise mathematical objects. Given this, why should they not be members?

2.2.2.2 Why [NMH] is Unsatisfactory.

This, however, points the way to an objection to [NMH]. What is the structural feature

of proper classes that prevents them being members (aside from paradox)? Proper

classes are precise objects with definite membership. Why then should they not be

members? We would like our class theory to be the most comprehensive theory of

collections possible. Given this we require reasons why there are objects that cannot

be taken as members of classes. [NMH] seems to not be a basic explanation, but

rather demands justification. It seems ad hoc, a putative explanation designed merely

to allow us to block the paradoxes. If [NMP] is true, then we want to know why proper

classes cannot be members.

The situation is made worse by the fact that having proper classes be members

is not in itself the root of the contradiction. For there are systems that allow proper

classes to be members of other classes but are consistent relative to ZFC (and hence

also V NBG7). Ackermann’s A, for example, is a system that allows a proper class

to be a member of another proper class, and is a conservative extension of ZFC

([Fraenkel et al., 1973], p153). Given that it is possible to develop such systems, it

7This is because V NBG is a conservative extension of ZFC, i.e. all theorems of V NBG in the
language of ZFC are theorems of ZFC.
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seems unlikely that proper classes being members is in itself the cause of the paradoxes.

For these reasons, [NMH] is poorly motivated. There seems to be no good reason

to accept why proper classes cannot be members. In fact, there is pressure to accept

the converse. We want our class theory to be the most comprehensive account of

collections possible. Given that proper classes are (on the Heavyweight View) precise

objects, we should be able to talk about collections thereof. Further to this, we can

construct consistent systems where proper classes are members. [NMH] thus fails as

an explanation for why proper classes are not sets.

2.2.3 The Limitation of Size Hypothesis.

It seems then we not only require an explanation of why proper classes are not sets,

but also principled reasons for rejecting the idea that proper classes can be members

of other classes. The Limitation of Size Hypothesis attempts to provide the ground

for [NMP].

One may state the Limitation of Size Hypothesis as follows:

[LSH] Proper classes are not sets because proper classes are ‘too big’.

If [LSH] were true, one could motivate [NMP]. If the reason that proper classes

are not sets is that they are too big then it is plausible that a class could not contain

a proper class. For, if a proper class is too big to be a set then one might think that

it is also too big to be contained within a class.

What is meant by ‘too big’? This, as we shall see, is a hard question to answer.

However, one might think that it is somehow part of the Iterative Conception that it

only allows sets of a certain size. All the (pure) sets that exist are constructed out ∅,

the power set operation, and the process of taking unions at limits. We might expect

then that something larger than anything that occurs at any Vα cannot be a set8.

This is, as it stands, still quite inexact. However, it can be made more precise.

First, let ‘Set(A)’ stand for ‘A is a set’ and ‘A ≈ B’ stand for ‘A and B may be

correlated one-to-one’. One may then formulate [LSH] in the following way:

8I put aside for the moment questions about whether inaccessible cardinals (that cannot be
reached in this manner) are sets. However, this fact about defining stronger axioms of infinity will
become important later in evaluating [LSH].
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[LSHF ] (∀A)(Set(A)→ ¬A ≈ On)

This states that if A is a set it is not possible to correlate A one-to-one with the

ordinal numbers. Hence, if one can correlate A one-to-one with the ordinal numbers,

then A is not a set (and thus A is a proper class).

We now have a precise formulation of [LSH]. One must now ask whether or not it

is satisfactory as an explanation for why proper classes are not sets.

2.2.3.1 Positive Remarks about [LSH].

It should be noted that [LSH] provides a perfectly precise criterion for when an object

is a proper class. [LSHF ] is true; a class forms a set unless one can map the class

onto the ordinal numbers.

Therefore, theories that use [LSH] are precise. Firstly, as noted earlier (2.2.2),

[COMP] violates [NMP]. As [NMP] is supported by [LSH], it seems then that [LSH]

implies the falsity of [COMP]. However, [LSH] is also precise in the sense that it

identifies the use of [COMP] as a principle only about sets as erroneous; a class

defined by a condition φ(x) can be of any size. Furthermore, [LSHF ] provides us with

a true principle about proper classes and sets.

There is also a diagnosis available. It is not obvious why considerations of size

would be relevant to whether or not a given class is a set. One notion of size, the

concept of cardinality, can be quite unusual (especially in the infinite case). Consider

the proof that the set of rational numbers is equinumerous with the set of natural

numbers. Such a result is, pre-theoretically, quite unexpected. After all, there are

infinitely many rational numbers between the natural numbers 0 and 1! Now, one

may not ascribe cardinality to proper classes. Rather, proper classes ‘transcend’ all

cardinality. What is meant by this? It can be elucidated by means of an analogy with

the real line. Consider the question ‘What is the length of the real line?’. It seems

this question has no answer. One should say instead that the real line ‘transcends’ all

length; it is so indefinitely long that one cannot ascribe to it a length. This parallels

proper classes and cardinality; they are so indefinitely large that they cannot be

given a cardinality. The notion of a one-to-one mapping is central, however, both

to cardinality and to [LSHF ]. This makes it plausible that in a similar way, both
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cardinality results (such as the fact that N ≈ Q) and results involving [LSHF ] (for

example; the class of all non-self-membered sets is not a set) might be surprising and

unexpected.

Despite these good features of [LSH], it is unsatisfactory. It fails as an explanation

because it is poorly motivated. Moreover, there is a worry that it violates overkill

that (when scrutinised closely) reveals a circularity within [LSH].

2.2.3.2 Why [LSH] is Unsatisfactory.

I will examine the charge of overkill first. If we think that the explanation for why

proper classes are not sets is [LSH], we should have an account of why each of the

axioms that describes the universe of sets does not produce sets that are ‘too large’.

One of these axioms will be the Axiom of Power Set.

[POWER] ∀x∃y∀z(z ∈ y ↔ z ⊆ x)

As we can see [POWER] asserts that there is a set of all subsets of a given set.

There are reasons to want [POWER] as part of our theory, of which I will now survey

some9.

Firstly, it merely seems intuitive to say that we can take the set of subsets of a

given set. If we have the set in question, then we have the elements that make up the

set, and hence one might think we have the set of all possible combinations of such

elements.

Mere intuition, however, is not enough. Nonetheless, it seems that the notion

of Power Set is somehow ‘written into’ the Cumulative Hierarchy. Recall how the

Cumulative Hierarchy was defined in Chapter 1; for any Vα there is a stage Vα+1

such that Vα+1 = Vα ∪ P(Vα). In order to know about the sets at any Vα+1 we must

effectively consider all subcollections of Vα. The Power Set operation is thus integral

to our understanding of the Cumulative Hierarchy.

Further, there is a sizeable amount of mathematical pressure to want [POWER].

As Hallett, notes, the power set of any set x represents the set of all extensions of

9There are many more reasons that have been discussed in the literature (see [Hallett, 1984] for
discussion). As my project is not to justify the Power Set Axiom, I have not given it a thorough
treatment. It is necessary to see, however, that it is a highly desirable principle to have in one’s
theory, and one that responds to the Iterative Conception.
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properties on x ([Hallett, 1984], p206). [POWER] is also very useful in other branches

of mathematics; in probability theory, for example, the power set of the sample space

is the set of all possible events.

Given that it is desirable to adopt [POWER], how can the [LSH] theorist argue

that we should indeed use it as an axiom?

It is clear that power sets will be ‘small’ in the finite case. I suggest, however,

that it is very unclear how someone who holds [LSH] can argue that power sets are

small in the infinite case, even for the smallest infinite set.

This set is ω; the set of all natural numbers. Let ‘P(ω)’ denote its power set. Let

us take one measure of set size; cardinality. What can we say about the cardinality

of such a class? Is it ‘small’?

The fact of the matter is, we have little idea of the cardinality of P(ω). One thing

we do know (by Cantor’s theorem) is that it must be strictly greater than |ω|.

That is, however, pretty much all we know about it. Thanks to the work of Gödel

and Cohen ([Gödel, 1940], [Cohen, 1963]), we know that the cardinality of P(ω) is

independent of the axioms of ZFC10. It is impossible to prove, from axioms that

arise naturally out of the Iterative Conception, exactly what the cardinality of P(ω)

is.

The [LSH] theorist may respond that P(ω) is in fact ‘small’, citing the fact that

its cardinality is strictly smaller than |P(P(ω))|. This is, however, no response; it

is precisely the nature of the set P(ω) that under scrutiny. This argument requires

P(ω) to be a set (and hence the sort of thing to which we may apply the power set

operation) in order to be effective.

A different response available to the [LSH] theorist is that we cannot map a sub-

class of P(ω) onto the ordinals and thus it is small. This is an acceptable response to

the problem of the cardinality of P(ω) only if one thinks that not being able to map a

class one-to-one with the ordinal numbers is an acceptable measure of set ‘smallness’.

I think that there is good evidence to suggest that the [LSH] theorist’s appeal to the

ordinal numbers as the ‘measuring stick’ of class size is not satisfactory. Indeed it

seems to point to a deep philosophical circularity.

10Due to the fact that V NBG is a conservative extension of ZFC, this will mean that the cardi-
nality of P(ω) is also independent of the axioms of V NBG.
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Using [LSHF ], how does one show that a class fails to form a set? One must show

that one can map a subset of the class onto the ordinals. One may then conclude

that the class is at least as big as the ordinals and (as the ordinals are a proper class)

the class in question cannot be a set. So far so good. But what reason can the [LSH]

theorist give for why the ordinal numbers do not form a set? They might simply say

that the ordinal numbers are ‘too big’. But how do we know that they are ‘too big’?

One could note that one can map the ordinal numbers one-to-one with the ordinal

numbers. But this is obviously circular! The only other option seems to be to point to

the fact that paradox would ensue if we did not assume them to be ‘too big’. But this

is clearly no response if [LSH] is to provide an explanation. [LSH] theory operates by

taking a class that one assumes to be too big, and then showing that other classes are

too big in relation to this class. But to do so, as Linnebo notes, is merely to “move

in a tiny circle” ([Linnebo, 2010], p154).

Given that it is (at the very least) dubious whether or not [LSH] can avoid overkill,

let us examine its motivation.

It seems to me that [LSH] fundamentally mistakes the nature of sets. Why should

we think that considerations of size have bearing on whether or not a class is a set?

Sets are abstract objects, some of which are extremely large. Why should they

reach a certain point and then ‘overflow’? For any set in the Cumulative Hierarchy

there is always another set of greater cardinality. Paradoxes arise because we näıvely

hold two or more contradictory principles about a notion. It must be that when we

assume that a proper class is a set we have inadvertently accepted a proposition that

entails the negation of one we already hold. It is hard to see, once we accept the

varying cardinalities and sheer enormity of the transfinite sets, how it should be the

size of proper classes that is the root of the contradiction.

This point is backed up by current work in Set Theory. It is a fact of set theo-

retical practice that where set theorists can they have defined larger and larger sets.

This is done by extending the standard axioms of ZFC by so called ‘large cardinal

axioms’ that assert the existence of very large sets. Such practice can be done (we

think consistently), against the backdrop of the Cumulative Hierarchy. Large car-

dinal axioms effectively operate like the Axiom of Infinity that asserts the existence
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of the first infinite set, ω. They simply posit that other (stronger) kinds of infinite

set exist, and the Cumulative Hierarchy can then proceed from these objects. If size

considerations were somehow ‘written into’ the Iterative Conception, one would think

that this would not be possible. Given that we can define sets of larger and larger

size, it seems arbitrary to insist that size is the key difference between sets and proper

classes.

[LSH] then, while associated with a true principle, is not explanatory. It seems

unable to account for [POWER], looks unavoidably circular, and fails to chime with

our basic notion of set. The heavyweight theorist should, therefore, look elsewhere in

drawing the distinction between proper classes and sets.

2.2.4 The Occurrence in the Hierarchy Hypothesis.

However, examination of [LSH] reveals a different explanation one might give for why

proper classes do not form sets.

While [LSH] was seen to be unsatisfactory, one can learn a great deal from the

way it was expressed by its original proponents.

Bar-Hillel, Fraenkel, and Levy express the view as follows:

“...we do not admit very comprehensive sets in order to avoid the anti-

monies” ([Fraenkel et al., 1973], p135)

Fraenkel himself (in [Fraenkel, 1927]) states that (if we use his axioms):

“...the scope of the new set is never boundless” (p116)

and also

“...in this way, the possibility that a set could be constituted by the com-

pletely limitless assignment of elements is avoided from the beginning”

(p118)

When expressing [LSH], its advocates used words such as ‘bound’, ‘limit’, and

‘extent’. There is a sense in which the fact that proper classes not being sets is bound

up with such notions. The reason proper classes are not sets is that (owing to the
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extendible nature of the conditions by which they are defined) they do not appear at

any Vα. This was noted to be a structural feature of the Iterative Conception.

Perhaps then the heavyweight theorist should make us of this fact and appeal to

the following explanation for why proper classes are not sets:

[OHH] Proper classes are not sets because sets occur at some Vα of the

Cumulative Hierarchy whereas proper classes do not appear at any Vα.

We might motivate [NMP] from [OHH] as follows. In order to be a member of

either a set or a proper class, an object must appear in the Cumulative Hierarchy.

Proper classes themselves, however, appear at no Vα. Thus they cannot be members

of either sets or proper classes.

I shall argue that [OHH] is indeed a good explanation. It is, however, one to which

the heavyweight theorist cannot appeal.

2.2.4.1 Positive Remarks about [OHH].

[OHH] is precise. Assuming the adequacy of [OHH] as an explanation, because [OHH]

supports [NMP] it will imply that using conditions that would allow proper classes to

be members in [COMP] is illegitimate. However, we can also see that [COMP] is not

a correct principle to tell us what sets exist. Any sets that exist occur at some Vα

and so are not defined by extendible conditions. [COMP], however, admits extendible

conditions and so (if assumed to be a principle only about sets) will prove the existence

of such sets. Thus [OHH] shows that using [COMP] as a principle that applies only to

sets, combined with the Iterative Conception, is equivalent to accepting that certain

sets both do and do not exist.

Moreover, [OHH] is clearly well motivated. For it responds exactly to a structural

feature of the Cumulative Hierarchy in relation to the extendibility property of certain

conditions that was noted in Chapter 1. In this way, it is obtained directly from our

notion of set given by the Iterative Conception.

[OHH] further provides a diagnosis. It is not obvious that for certain conditions

there will be no set of all its satisfiers in the Cumulative Hierarchy. This only becomes

apparent when we closely examine the nature of the Cumulative Hierarchy, and the
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fact that certain conditions have an extendibility property that will prevent a set of

all their satisfiers occurring at some Vα.

Moreover [OHH] does not violate overkill. It is a controversial issue what large

cardinal sets exist. Such an issue in itself deserves a good deal of philosophical consid-

eration. Unfortunately I lack the space to examine the question closely here. However,

if a particular large cardinal set exists it can be introduced into the Cumulative Hi-

erarchy and the resulting structure researched without problem11. The process is not

much different from the way in which the Axiom of Infinity asserts the existence of the

first infinite set, ω. Disagreements on what large cardinal sets exist will be reflected

in a disagreement as to the extent of the Cumulative Hierarchy. If one thinks that a

certain set exists, then there is a stage of the Cumulative Hierarchy that contains it.

Thus the Cumulative Hierarchy does not prohibit reasoning about such sets, provided

justification can be given for their existence.

2.2.4.2 Why the Heavyweight Theorist Cannot Appeal to [OHH].

We have seen then, that [OHH] is a satisfactory explanation for the difference between

proper classes and sets. This is not the end of the story, however; one must also show

that one’s theory is able to use [OHH]. It is my contention that the heavyweight

theorist cannot use [OHH].

Recall the failure of [NMH]. It was seen there (2.2.2.2) that, given the fact that

proper classes are precise objects, they should be members of other classes.

Thus proper classes should be members of non-set classes12. Following Fraenkel,

Bar-Hillel, and Levy I will call such things hyper-classes13 ([Fraenkel et al., 1973],

p142). Every class is a hyper-class. Further, hyper-classes have definite membership.

Given that the heavyweight theorist accepts that proper classes are objects, it seems

that they should also accept that hyper-classes are objects. This is because there is no

reason for hyper-classes to not be objects that would not also apply to proper classes.

11Providing, of course, that the relevant large cardinal axiom is consistent.
12As the focus of this thesis is philosophical, I will put aside the technical problem of how to block

the paradoxes with proper classes as members. There are systems (such as Ackermann’s theory)
that block the paradoxes but allow proper classes as members.

13One might, instead of defining a new kind of class, simply say that proper classes are members
of other proper classes. The difference is purely one of nomenclature; I use the term ‘hyper-class’
simply to mark the fact that we have moved on from the picture where proper classes could not be
members (and hence could not have proper classes as members).
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The claim that they should not be objects as they have proper classes as members is

clearly not going to work. The above arguments show that proper classes (under the

Heavyweight View) are objects in a similar manner to sets (except that they do not

appear at any Vα of the Cumulative Hierarchy). Given the similarity between proper

classes and hyper-classes, the heavyweight theorist should accept that hyper-classes

are also a kind of object. Therefore, any hyper-classes can be a member of some other

hyper-class14.

Let hyper-classes be denoted by the letters ‘A’, ‘B’, ‘C’ and so on. Let the hyper-

class membership relation be represented by ‘A’. Immediately we may want to for-

mulate some plausible principles about hyper-classes. A natural principle to adopt

might be the following:

[H-COMP] (∃A)(∀B)[B A A↔ φ(B)]

Of course, [H-COMP] is going to be inconsistent. If we let φ ↔df B 6A B we will

get exactly parallel reasoning to the original Russell paradox about sets:

We have:

(∀B)[B A {A : A 6A A} ↔ B 6A B] (by [H-COMP].)

Therefore:

{A : A 6A A} A {A : A 6A A} ↔ {A : A 6A A} 6A {A : A 6A A}] (by

substituting {A : A 6A A} for B bound by universal quantifier)

�

Thus we have a problem; our näıve hyper-class theory is inconsistent. However,

hyper-classes are just another object-like collection with definite membership. Not

only this, proper classes seem to be ‘formed’ in a similar manner to sets. To see

this, consider any Vα of the Cumulative Hierarchy. What is the relation of sets

formed at Vα+1 to Vα? The sets formed at Vα+1 are subcollections of Vα that are

not members of Vα. Now let the Cumulative Hierarchy be denoted by ‘V ’. Proper

14At this point, I depart from Bar-Hillel, Fraenkel, and Levy’s exposition of the hyper-class struc-
ture. This is because Fraenkel et al do not draw out the philosophical consequences (i.e. that
hyper-classes are objects that can be members) of holding both that proper classes are objects with
definite membership, and that hyper-classes have definite membership.
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classes are subcollections of V that are not members of V . Thus proper classes bear

the same relation to V as sets formed at Vα+1 bear to Vα. One might argue then that

hyper-classes should (like sets) obey our principles of collection forming. In order to

maintain cohesion with our basic notion of collection, the hyper-classes should be part

of a hierarchical structure extending the original Cumulative Hierarchy. Thus, while

the Cumulative Hierarchy contains stages, the stages of the hyper-class structure are

distinct from these stages . I shall, therefore, use a different symbol to represent

the stages the hyper-class structure. Let the stages of the hyper-class structure be

indexed by ordinals and denoted by ‘Vα’ (as opposed to the Vα of the Cumulative

Hierarchy). We may then define the hyper-class structure as follows:

Let V0 contain all hyper-classes that are either a pure set or a proper class

containing only pure sets15.

For any ordinal number α let Vα+1 = Vα ∪ P(Vα)

For limit ordinal λ there is a Vλ such that Vλ = ∪Vβ,β<λ.

This structure I shall refer to as ‘V’ (a pictorial representation of V is provided in

Figure 2.1 at the end of this Chapter). The heavyweight theorist might thus claim

that she has a satisfactory way of allowing proper classes to be members of other class-

like objects while maintaining cohesion with our collection forming practice. She can

hold on to [OHH] as a principle about the Cumulative Hierarchy, while allowing that

proper classes appear in stages of V.

If she were to claim this, however, she would be wrong. I see two objections to

the theory. One of the criticisms is weak, the other fatal.

Firstly, one might quite simply find the picture intuitively distasteful. It seems

that we are replicating a cumulative structure on top of our first Cumulative Hierarchy.

The hyper-classes that occur as part of V look very similar to the sets of V . Are we

not just replicating the same structure again?

The obvious response is to deny that V and V are the same structure. No hyper-

class within the Cumulative Hierarchy contains a hyper-class one may map one-to-one

15Once again, the restriction to pure sets and proper classes containing pure sets is merely a
matter of simplicity. One could quite easily extend the structure to include hyper-classes that
contain urelemente.
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with the ordinals. V does contain such a hyper-class. At no point in V do we get

classes that contain a proper class and a set. In V we have many such things, for

example {∅, On} will be a hyper-class.

However, there is a very strong objection to the structure V. Any theory of proper

classes should be able to solve the paradoxes and the puzzle for Monist Realism set

out in Chapter 1. Anyone who holds Monist Realism and uses the structure V, should

hold the following:

(Monist Realism)V The structure V has the following properties:

1. The hyper-classes are objects.

2. V is a ‘complete’ abstract structure; for every ordinal α, Vα exists.

No new Vα are being created.

3. For any object x, it is definite whether or not x occurs in V.

4. There is only one V (although isomorphic copies of it may exist within

universes of sets with different urelemente).

5. There is just one interpretation of V. Our quantifiers are not am-

biguous; it is possible to quantify over all hyper-classes.

Now, consider the following definitions used to define the concept hyper-ordinal.

I shall use the capital Greek letters ‘Γ’, ‘∆’, ‘Λ’ etc. to represent hyper-ordinals; a

certain kind of hyper-class:

Definition. (1) {0n} is a hyper-ordinal.

Definition. (2) If Γ is a hyper-ordinal then so is Γ ∪ {Γ}.

Definition. (3) Λ is a hyper-ordinal if for some limit ordinal λ:

Λ = ∪{Γ : ∃β < λ, Γ is a hyper-ordinal in Vβ}.

Definition. (4) Nothing but the hyper-classes satisfying one of the above

clauses count as hyper-ordinals16.

16The term ‘hyper-ordinal’ was chosen as the construction of the hyper-ordinals in V clearly mimics
the construction of the von Neumann ordinal numbers in V . There are some disanalogies, however.
For example, the hyper-ordinals are not transitive hyper-classes; there are members of a member of
{0n} that are not members of {0n}. To see this, observe that all the von Neumann ordinal numbers
are members of On, but not members of {0n}.
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Now we may prove a result about hyper-ordinals:

Theorem. The hyper-ordinals do not appear as a hyper-class at any Vα

of V.

Proof. To prove this, it will be sufficient to prove that for any ordinal α

indexing Vα there are hyper-ordinals outside Vα. This will ensure that all

the hyper-ordinals are never all present at some particular Vα, and thus

there is no hyper-class of all hyper-ordinals formed at any Vα+1.

We use transfinite induction on the ordinals.

(i) We first must show that there are hyper-ordinals outside V0. It is clear

that there are hyper-ordinals outside V0 (e.g. {On}).

(ii) We must then show that if α indexes Vα and there are hyper-ordinals

outside Vα, then there are hyper-ordinals outside Vα+1. Assume then that

α indexes Vα and that there are hyper-ordinals outside Vα. Then there

are are hyper-ordinals in some Vβ>α that are not in Vα. If this is the case,

then either:

a) There are hyper-ordinals in Vα+1 that are not in Vα.

or b) There are hyper-ordinals in Vγ>(α+1) that are not in Vα.

(ii)b) If there are hyper-ordinals at some Vγ>(α+1) there are hyper-ordinals

outside Vα+1.

(ii)a) Therefore, assume that there are hyper-ordinals at Vα+1. Let Γ be

one. But then (by the definition of hyper-ordinals) Γ∪{Γ} is also a hyper-

ordinal. Since (by assumption) Γ is not in Vα, Γ ∪ {Γ} is first formed at

Vα+2. Hence there are hyper-ordinals outside Vα+1.

(iii) Finally, let λ be a limit ordinal indexing some Vλ of V. Assume that

for all β < λ there is a hyper-ordinal outside Vβ . Now (by Definition 3)

the hyper-class Λ = ∪{Γ : ∃β < λ, Γ is a hyper-ordinal in Vβ}, is a hyper-

ordinal. Further, for any hyper-ordinal Γ formed at a Vβ , where β < λ,

there is a hyper-ordinal outside Vβ at Vβ+1, namely Γ∪{Γ}17. Moreover, as

17Though we already have the fact that there is a hyper-ordinal outside Vβ (by assumption) it is
useful to see that at every Vβ there is a new hyper-ordinal formed at each Vβ+1.
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λ is a limit ordinal (and hence not a successor), for any β < λ, (β+1) < λ.

Therefore, as

Λ = ∪{Γ : ∃β < λ, Γ is a hyper-ordinal in Vβ}

Λ cannot appear at any Vβ<λ for the reason that there will be a hyper-

ordinal ∆ in the hyper-ordinal Λ such that ∆ is outside Vβ . In addition,

Vλ is (by definition) ∪Vβ,β<λ. Thus, no new hyper-classes are formed at

Vλ. Hence, Λ must be formed at some Vα, α > λ. Therefore, there are

hyper-ordinals outside Vλ.

Thus we have shown that (i) There are hyper-ordinals outside V0, (ii)

If α is an ordinal indexing Vα and there are hyper-ordinals outside Vα

then there are hyper-ordinals outside Vα+1, and (iii) If λ is a limit ordinal

indexing Vλ, and for every β < λ there are hyper-ordinals outside Vβ , then

there are hyper-ordinals outside Vλ. By transfinite induction then, there

are hyper-ordinals outside Vα for all α. Hence there is no hyper-class of

all hyper-ordinals, as all the hyper-ordinals do not appear at any Vα to

then appear as a hyper-class at Vα+1.

�

But now we have an analogous problem to the one that faced the heavyweight

theorist about the original Cumulative Hierarchy. The predicate ‘A is a hyper-ordinal’

is definite; for any hyper-class A there is a fact of the matter whether or not it is a

hyper-ordinal. Further, it is definite what hyper-classes occur in V. Thus we have a

condition with a definite range of satisfiers (so in some sense a ‘collection’), that is not

a hyper-class. What then is the ontological nature of this collection of hyper-classes?

Given that when a virtually identical puzzle was presented about sets in Chap-

ter 1, and the heavyweight theorist responded to it by postulating the existence of

heavyweight proper classes, we can expect a similar response. Similarly, we can then

expect an analogous principle to [OHH] to be appealed to to explain the difference

between these ‘collections’ and hyper-classes. Let us pause briefly in order to clear

up nomenclature with respect to hyper-classes:

Definition. Let a 0-hyper-class be any hyper-class that occurs first in
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the Cumulative Hierarchy V (i.e. the sets).

Definition. Let a 1-hyper-class be any hyper-class that occurs first in V.

We can then restate [OHH] as follows:

[OHH]1 The difference between 0-hyper-classes and 1-hyper-classes is that

0-hyper-classes appear in the 0-hyper-class structure where 1-hyper-classes

do not.

To deal with the non-hyper-class forming collections, the heavyweight theorist is

forced to introduce the following objects:

Definition. Let a 2-hyper-class be a collection of hyper-classes that does

not appear in V.

Once again, the heavyweight theorist will want to develop plausible principles

about this kind of object. Again, they will be driven to defining a new, ‘2-hyper-

class’ structure that extends V. And once again, they will need to give an ontological

characterisation of these 2-hyper-classes as follows:

[OHH]2 The difference between 1-hyper-classes and 2-hyper-classes is that

1-hyper-classes appear in the 1-hyper-class structure where 2-hyper-classes

do not.

Yet again, I will be able to define some extendible condition for this kind of object

that will raise a similar puzzle to the one outlined in Chapter 1. The heavyweight

theorist will then be forced to move to 3-hyper-classes, with a corresponding [OHH]3

for the 3-hyper-class structure. Should we continue and move to 4-hyper-classes? n-

hyper-classes for any natural number n? Even given this, one will always be able to

define some extendible condition that is definite, but does not occur in any structure.

Should we move to α-hyper-classes for any ordinal α?

One can do this, all the while pushing the puzzle back further. I think it is time

to review, however, the situation in which the heavyweight theorist now finds herself.

There are three problems with her position.
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First, the game being played is no longer convincing. Proper classes were mo-

tivated as a way of dealing with collections that (if assumed to be sets) produce

paradoxes. It is now obvious that the heavyweight theorist’s principles have forced

her to merely move the puzzle of Chapter 1 further and further back. There is no

solution to the puzzle here, just a reallocation to a different order of class.

Second, we should carefully scrutinise what our theory of classes is for. It seemed

to be a formalisation of our notion of collection. It might be plausible that there is

more than one notion of ‘collection’ we use in our reasoning18. It is not plausible that

we have infinitely many notions of collection packed into our more general concept of

collection.

The heavyweight theorist might retreat and point out that any collection I point

to will at least appear in some α-hyper-class structure, even if it is an (α+ 1)-hyper-

class structure of α-hyper-classes. This, however, points to the third problem for the

heavyweight theorist. There are extendible conditions such that the relevant collection

of all satisfiers never appears in any α-hyper-class hierarchy. The condition ‘x = x’,

when applied to any α-hyper-class will have a definite range of satisfiers that is not

an α-hyper-class. But consider all α-hyper-class hierarchies. Within these hierarchies

there is still a definite range of objects that satisfy ‘x = x’ (i.e. everything). This

definite range of objects does not form an α-hyper-class of any kind. In the end,

the Heavyweight theorist will always be unable to give an account of certain definite

collections of objects.

2.2.4.3 Conclusion about [OHH].

We have seen that [OHH] is a good explanation for why proper classes are not sets.

However, we have seen that the heavyweight theorist cannot appeal to [OHH]. Any

attempt to do so would (using other principles she holds), result in a proliferation of

hierarchies. This merely shifts the puzzle higher and higher. Furthermore, it seems

to splinter our seemingly simple notion of collection into infinitely many different

notions. Finally, in the end, the Heavyweight View is still unable to account for

certain definite collections.

18I shall argue later that this is indeed the case.
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2.3 Conclusions.

Let us take stock. We have seen that the Heavyweight View, while it is appealing

at first, does not in itself provide an explanation for why proper classes are not sets.

Further, the putative explanations considered are not satisfactory for the heavyweight

theorist. [NMH] and [LSH] are deeply flawed as explanations. [OHH], on the other

hand, could not be appealed to by the heavyweight theorist. However, during our

discussion we did identify [OHH] as an adequate explanation for why proper classes

are not sets; proper classes (unlike sets) do not appear at any Vα of the Cumulative

Hierarchy. It would be sensible, therefore, to examine proposals that make use of this

fact.
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Figure 2.1: The structure V.
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Chapter 3

Modal Views of Proper

Classes.

We saw in the last Chapter that there were significant problems with taking proper

classes to be heavyweight objects. An obvious route to take then is to deny the

objecthood of proper classes. However, merely stating this attitude does not yet

explain why proper classes can figure meaningfully in our discourse.

In this Chapter, I examine two accounts that deny the objecthood of proper classes

that may be extracted from the work of Charles Parsons1. My strategy is as follows:

• In 3.1 I examine some excerpts from Parsons’ (and related authors’) writings. I

draw out the features of proper classes presented by these texts.

• In 3.2 I examine and reject one view of proper classes that may be extracted

from the above writings; ‘The Modal Function View’. I argue that a basic notion

of the view is problematic.

• In 3.3 I analyse a different account about proper classes that one might hold

based on the passages of section 3.1; ‘The Projection View’. I reject it for the

reason that it cannot explain one of the notions central to its expression.

1His view is largely developed in several papers in his Mathematics in Philosophy: Selected Essays,
Cornell University Press, 1983.
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I will show that none of the accounts I consider are satisfactory from the perspec-

tive of a Monist Realist.

3.1 What Parsons Said.

A substantial problem when trying to give an exegesis of Parsons’ view of proper

classes is that the exposition of his ideas is not clear. This is partly due to the

fact that his view is partially articulated across several papers2. However, it is also

because the main aim of the paper in which his most detailed discussion of proper

classes occurs (‘What is the Iterative Conception of Set’) does not have as its main aim

a characterisation of proper classes. Rather, Parsons sought to give an explanation of

the Iterative Conception of Set, without using the metaphor of construction in stages.

Thus his remarks on proper classes are something of a side note. The views

he expresses there are by no means developed. Nonetheless, Parsons’ account may

provide the Monist Realist with the resources she needs to characterise proper classes.

For this reason, I will not give a detailed exegesis of Parsons. Rather I will select

some passages from his papers, and state what features of proper classes we may

extract from these. I will then draw out and evaluate two characterisations of proper

classes one might give based on some of these features.

We saw in the last Chapter that we require an account of proper classes on which

proper classes are not heavyweight objects. Parsons’ view provides just such a char-

acterisation. He says the following:

(A) “...we should think of predicates whose ‘extensions’ are proper classes

as really not having fixed extensions.” ([Parsons, 1977], p291)

I take an extension to be a heavyweight object3. Here we see Parsons arguing that

if the objects that satisfy a predicate do not form a set, then the predicate does not

actually have an extension (in the normal sense of ‘extension’).

Parsons’ account provides the resources for a modal characterisation of proper

classes. The point is put in his article ‘What Is the Iterative Conception of Set?’ in

2See [Parsons, 1974b], [Parsons, 1974a], [Parsons, 1977] and [Parsons, 1983b].
3If an extension is not a heavyweight object, then the term ‘extension’ is at least misleading and

at most incoherent.
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the following way:

(B) “Indeed Reinhardt has suggested that proper classes differ from sets

in that under counterfactual conditions they might have had different

elements” ([Parsons, 1977], p286)

The Reinhardt paper indicated is ‘Remarks on Reflection Principles, Large Car-

dinals, and Elementary Embeddings’ and contains the following on proper classes:

(C) “A proper class P may...be distinguished from a set x in the follow-

ing way...if there were more ordinals...x would have the same members,

whereas P would necessarily have new elements. We could say that the

extension of x is fixed but that of P depends on what sets exist. Roughly,

x is its extension, whereas P has more to it than that” ([Reinhardt, 1974],

p196).

What can we glean from these two passages? (B) states that the difference be-

tween proper classes and sets is that if A is a proper classes then in some non-actual

circumstance A would have members it does not actually have or A would lack mem-

bers it actually has. Sets on the other hand have the same members in every possible

circumstance, both actual and non-actual.

The distinguishing feature of proper classes is put in a slightly different way in

(C). This claims that if A is a proper class, then if there were more ordinals, A would

have member(s) it does not actually have. However, if A is a set, then if there were

more ordinals, A would have just the members it actually has.

Parsons thus argues that set membership is rigid where proper class membership

is not rigid4. (B) and (C) put this point slightly differently. (B) suggests that proper

4We might formalise this notion of rigidity as follows:

(R ∈) x ∈ y → �(x ∈ y)

(R 6∈) x 6∈ y → �(x 6∈ y)

However, as Parsons points out ([Parsons, 1983b], p298-301; [Parsons, 1977], p286-287) the status
of the existence of proper classes is at issue. He therefore proposes an existence dependent treatment
of rigidity which he formalises by the following three principles:

(E0 ∈) x ∈ y → E(x) ∧ E(y)

(R0 ∈) x ∈ y → �(E(y)→ x ∈ y)

(R0 6∈) x 6∈ y ∧ E(y)→ �(x 6∈ y)
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classes in some possible world might have different members. (C), on the other hand,

states that if there were more ordinals a proper class would have more members.

Central to (B) and (C) is a notion of modality. This will be very important for

the discussion of Parsons’ view. A modal notion one might use is that of intensions.

Parsons says the following:

(D) “Reinhardt himself suggests...a class x is an intension..” ([Parsons, 1977],

p287)

Parsons (as he endorses Reinhardt’s characterisation of proper classes5) is commit-

ted to proper classes being intensional. Exactly what is meant by ‘intensional’ is not

entirely clear. Carnap, when introducing the notion of intension said the following:

4-14. The extension of a predicator (of degree one) is the corresponding

class.

4-15. The intension of a predicator (of degree one) is the corresponding

property. ([Carnap, 1947], p19).

So, the statement that proper classes are intensional could be interpreted as saying

that proper classes are properties. However, it seems that we want to say that proper

classes are extensional, in the sense that if they have the same members then they are

the same class. In this way we are able to say that the Russell Class and Universal

Class are the same class6. It is also clear that the property of being non-self-membered

is quite a different property from the property of being self-identical. Thus it does

not seem right to say that proper classes are properties, it seems to imply that two

proper class that we take to be the same are in fact not the same.

I do not think that Parsons provides a fully clear account of how to interpret these principles.
I will, therefore, leave ‘rigidity of membership’ as an unformalised notion. The core idea is simple
enough; sets have the same members in every possible world, proper classes could have different
members in some possible world.

5See, for example, the following passage from [Parsons, 1977] (p286): “I am endorsing this sugges-
tion [i.e. Reinhardt’s Proposal] as an explication of the intuitions about ‘inconsistent multiplicities’
[i.e. proper classes]”.

6Indeed Parsons refers to proper classes as ‘attributes’ at certain points (see [Parsons, 1983b],
p304). He also explored the idea that proper classes do not obey [EXT] but rather the following
principle he calls ‘intensionality’:

�(∀z)(z ∈ x↔ z ∈ y)→ x = y

As I think it fairly clear that proper classes are not properties I will not consider this further here.
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We therefore require a different way of spelling out what is meant by saying that

proper classes are intensional. Further, any characterisation should make sense of the

definite membership of proper classes. I will now examine two ways one might make

this claim more precise; the Modal Function View and the Projection View.

3.2 Proper Classes as Modal Functions.

3.2.1 The Modal Function View Explained.

We require a way of making the claim that proper classes are intensional more precise.

In possible world semantics, intensions are represented as functions from possible

worlds w to subclasses of the domains of the w. Maybe then we can transform this

semantic claim into a metaphysical one.

First, however, we must make sense of what is meant by ‘possible world’. We

might think of possible worlds as way the Cumulative Hierarchy might have been.

Each of these universes has different contents7. If we examine (B) we see that Parsons

suggests that a proper class (in some universe) might have had different elements. Let

‘V’ represent an arbitrary universe of Set Theory. One could hold the following view

about proper classes:

[Proper Classes as Modal Functions]

(1) For any condition φ there is a function fφ from all universes such that

for any universe V, fφ(V) = the class of all φs in V.

(2) The class of φs is a proper class iff there are distinct universes V′ and

V′′ such that fφ(V′) 6= fφ(V′′) (i.e. there are two universes where φ has

different elements.)

(3) If the class of φs is a proper class, then the class of φs is the function

fφ.

7A natural way to explain this notion further would be through an examination of (C). There
Reinhardt argued that if there were more ordinals a proper class would have different members.
Under the Iterative Conception there is a stage Vα for every ordinal α. Therefore, if there had been
more ordinals, there would have been more Vα and hence the universe would have been larger. As
I do want want to commit to these universes being extensions of one another I will not assume that
this is the case for this view.
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3.2.2 Evaluation of the Modal Function View.

I will argue that the Modal Function View is problematic for the reason that it raises

more problems than it answers. However, let us first note some positive features of

the view.

3.2.2.1 Initial Positive Remarks.

The Modal Function View has some points to its credit. It is precise in that it

identifies [COMP] as the guilty principle when only about sets. For [COMP] implies

that proper classes are in fact objects. This is not the case, proper classes turn out

to be functions from different universes of Set Theory to subclasses of those worlds.

Thus (as proper classes are functions from worlds rather than objects in those worlds)

they may not be substituted for an object variable in the paradoxical reasoning.

For this reason a diagnosis is also given for why we fell into error. It is not appar-

ent, when we examine Set Theory, why there should be different possible universes of

sets, or indeed why certain classes are functions from those universes to subclasses of

their domains rather than sets.

3.2.2.2 Why the Modal Function View Fails.

The Modal Function View is unsatisfying as a philosophical standpoint. As stated,

it does not actually provide us with a characterisation of the things for which we

are seeking explanation. We want to know what the φs that do not form a set at

this world are. These are the proper classes in which we are interested; the actual

proper classes. But it is simply a fact that these are not functions from universes to

subclasses of universes.

This worry can be made more precise as follows. Let the actual world be denoted

by V . Let φ be some condition such that there is no set of all φ in V . We want to

know what the class of actual φs is, namely fφ(V ). It is this that is the proper class,

not fφ as a whole.

The modal function theorist can, however, modify their view to accommodate this

problem by dropping (3) in their view (the proposition that a proper class is the entire

function) and modifying (2). Their view would then read as follows:
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[Proper Classes as Modal Functions]′

(1) For any condition φ there is a function fφ from all universes such that

for any universe V, fφ(V) = the class of all φs in V.

(2) The class of φs, namely fφ(V ), is a proper class iff there is some V

distinct from V such that fφ(V) 6= fφ(V ) (i.e. there is some universe

distinct from V where φ has different elements.)

This modification would certainly avoid the above complaint. It attempts to

provide a characterisation of the objects we are interested in, namely the φs in the

Cumulative Hierarchy.

However, the view is still unsatisfactory. For it seems that there are insurmount-

able problems for a view that posits the existence of these functions. Take any fφ

used in the explanation of proper classes. It is clear that every V is a member of the

domain of fφ (to be denoted by ‘dom(fφ)’). Now we can see that dom(fφ) cannot be

in any V. To see this, assume that dom(fφ) is in some V. Then it is the case that

dom(fφ) is a member of V is a member of dom(fφ). Thus V is a non-well-founded

universe of sets. But then, as every universe of sets is (on the Iterative Conception)

well-founded, V is not a universe of Set Theory at all. Thus the domain of fφ does

not exist in any V. But then fφ does not exist in any V; fφ requires its domain to

exist in order for it to exist. This result is paradoxical; how could anything (especially

something doing significant explanatory work) not exist in any universe8?

It seems then, that the Modal Function View is unsatisfactory. An attempt to

identify proper classes with functions does not give us a characterisation of the objects

for which we required an explanation. While the view can be modified to avoid this

problem, it turns out that the functions to which the view appeals are themselves

paradoxical9.

8Indeed, there is substantial pressure to think that a function should exist in the actual universe.
For, in what sense is the statement “For any condition φ there is a function fφ from all universes
such that for any universe V, fφ(V) = the class of all φs in V” true if the function in question does
not exist at the actual universe?

9Parsons was well aware of the fact that such an explanation of proper classes was unsatisfactory.
See, for example, the following passage from [Parsons, 1977] ”It seems that we cannot consider a
proper class as given by an intension that is definite in the sense of, say, possible world semantics
as a function from possible worlds to extensions.” (p290).
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3.3 The Projection View.

3.3.1 The Projection View Explained.

So, proper classes cannot be ‘intensional’ in the sense of functions from possible

universes to subclasses of the domains of those worlds. Indeed we do not need to talk

about functions in order to understand the central claims of (B) and (C). The point

there is that proper classes are able to change members dependent on what ordinals

exist. This might lead us to the following view:

[The Projection View] What makes the class of all φs a proper class (rather

than a set) is that for some non-actual universe V, the class of φs in V

is different from the class of φs in V . One class has members the other

lacks.

How would this work? An understanding of what is meant can be arrived at from

examining the model theory of Set Theory. A model can be thought of as a domain

of objects, the functions that exist on the domain, and the relations that hold on the

objects within the model. Let us examine some models and observe a phenomenon

about what happens when some objects within a model do not form a set within that

model.

For example take the model Hω0 . This model has as its domain the hereditarily

finite sets, where a set is hereditarily finite iff it is either the empty set or a finite

set {a1, a2, ..., ak}, where a1, ..., ak are all hereditarily finite. The only relation on the

model is the standard interpretation of ‘∈’. Now, consider the property of being a

von Neumann ordinal number. Present in this structure are the von Neumann rep-

resentations of all the finite ordinals. Thus, we may identify what objects constitute

‘the ordinal numbers’ in this model. As the model only includes the hereditarily finite

sets, it does not include the set of all finite ordinals. In fact the negation of the axiom

of infinity is satisfied on this model10. Thus, from the viewpoint of the model, the

ordinal number of ω0 is a proper class. Now consider the model Hω1 . This is the set

10It may be objected here that for this reason Hω0 does not satisfy full ZFC, and hence does
not satisfy the Iterative Conception. Thus it is not a possible world of Set Theory. While this is
true, Hω0 is still a structure that provides a nice analogy with what the Projection theorist argues
happens in the case of the actual Cumulative Hierarchy.
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of hereditarily countable sets, where a set is hereditarily countable iff it is a countable

set of hereditarily countable sets. On this model the ordinal number of ω0 will be

a set. However, the ordinal number of ω1 will not be a set, but will appear to be

a proper class ‘from the perspective of the model’. Again, if we consider different

models, ‘the ordinal numbers’ will be different. Indeed, if we consider models that

extend one another, at each successive expansion of a model what appeared to be the

proper class of all ordinal numbers will be a set at the next model. The condition ‘x

is a von Neumann ordinal number’, however, is consistent across the models.

Maybe then the Cumulative Hierarchy bears a similar relation to the non-actual

Vs as a model bears to an extension of that model. Thus the objects that satisfy the

condition ‘x is an ordinal number’ can be different depending on what ordinals exist.

The actual Cumulative Hierarchy contains all ordinal numbers of actual ordinals. If

there had been more ordinals, however, there would have been more ordinal num-

bers at stages beyond those contained in the actual Cumulative Hierarchy. Thus, in

projected universes the ordinal numbers would have more members.

Moreover, the objects that constitute the ordinal numbers in the actual Cumula-

tive Hierarchy would form a possible set in an extended hierarchy. Given that every

ordinal number is formed at some Vα of the Cumulative Hierarchy, if there are Vβ ,

β > α then these objects will constitute a set at some successor stage Vβ . There are

just such Vβ in some of the Vs.

We should be careful, here, however. For all I have said, it is not necessarily the

case for two distinct universes V′ and V′′ that either V′′ extends V′ or vice versa11.

The core idea is that for paradoxical conditions φ, the satisfiers of φ can be different

objects depending on what ordinals there are (and hence what is contained within

the hierarchy).

3.3.2 Evaluation of the Projection View.

I think, however, that this view of proper classes is problematic. It is especially

clear that the view is wholly untenable for a Monist Realist. Nonetheless, let us first

11It should be noted, however, that implicit in both [Parsons, 1974b] and [Reinhardt, 1974] is a
view on which possible universes are indeed extensions of one another.
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examine some positive features of the account.

3.3.2.1 Initial Positive Remarks.

The Projection View is precise in identifying [COMP] as the erroneous principle and

attempts to motivate this choice of error. Sets and proper classes are very different

kinds of thing on the Projection View; the condition which defines a proper class

might have had different satisfiers. Hence [COMP] is unsatisfactory; proper classes

are very different objects and proper class variables should not be substitutable for

set variables in our reasoning.

In this way a diagnosis is also provided. For there is a sense in which the φs in V

might constitute a set. This is because in some of the V there is a possible set with

just those objects as members. It so happens that the Cumulative Hierarchy has the

length it actually has, and so these things do not constitute a set. All it took, however,

was for there to be enough ordinals, and then the class in question would have been

a set. Since we do not know exactly what ordinals exist, it is understandable that we

might get the length of iteration wrong, and think that a possible set is an actual set.

The solution also avoids overkill. Firstly, although [COMP] is shown to be faulty,

one can preserve the intuition of plausibility of [COMP] without inconsistency. We

can replace [COMP] with a similar modal principle:

[COMP♦] ♦(∃x)(∀y)[y ∈ x↔ φ(y)]

Such an axiom states that for any condition φ evaluated at world V, there is a

possible world at which all the φs (in V) are collected into a set.

Further, in this way the projection theorist is able to incorporate much talk about

large cardinals as talk about possible objects. For example, by considering counterfac-

tual projections of the actual universe of sets, the objects that constitute the ordinal

numbers of all actual ordinals in a larger universe form a set that is a measurable

cardinal ([Parsons, 1977], p288)12.

12This is true given some assumptions about the actual universe. See [Reinhardt, 1974] for full
technical details.
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3.3.2.2 Why the Projection View is Unsatisfactory.

Despite these considerations the Projection View is highly problematic for a Monist

Realist. This is because it is impossible for the Monist Realist to make sense of the

modality in play.

In giving an exposition of the modality, it was said that if there were more ordinals

proper classes would have more members. But what is the content of the phrase “if

there were more ordinals”? What modality is in play here?

Clearly, it is implausible to view the modality as either physical or metaphysical;

mathematics is invariant over such possibilities. One might try to argue that meta-

physical modality does in fact have a part to play; one might say that it is a contingent

matter what urelemente exist. This is no response. The pure sets will be the same in

universes with different urelemente (as they are all constructed from the empty set).

Thus, allowing what the urelemente are to be a contingent matter will have no effect

on what pure sets exist. As noted in Chapter 1, the paradoxes that I am considering

are ones reproducible in the pure sets. Further, as the projection theorist requires

there be more ordinals at different worlds, there must be additional pure sets in those

worlds representing those possible ordinals. Therefore, the modality cannot be either

physical or metaphysical.

Given that the modality in question is not clearly a familiar notion such as phys-

ical or metaphysical modality, the projection theorist is still faced with the task of

explaining to what their notion of modality responds. It is not philosophically satis-

factory to appeal to a technical notion without some account of what that technical

notion formalises.

One might try to elucidate the modality in terms of supposition. We might say

that the content of the statement that there could have been more ordinals should

be understood as the statement that we can suppose that more ordinals exist (even

if they do not). This seems to be a phenomenon that appears in some other areas

of mathematics. For example, consider the introduction of i as a solution to the

equation x2 = −1. Now, one might think that i nonetheless does not exist. It is not

an actual mathematical object, but rather produces a nice formal theory with some

interesting uses. Further, expansion can give us plausible results about the ‘actual’
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structure we are considering; the real numbers. As the real numbers are embedded in

the complex numbers, universal theorems about the complex numbers restricted to

the reals and with no imaginary part are theorems about real numbers. Maybe this

is how to understand the modality; we suppose there are more ordinals, and see what

conclusions we can draw from this fact. As V is part of all V that are extensions of

V we can learn about V from studying the V even though they do not exist.

There is, however, a substantial disanalogy between the ‘supposition’ in the com-

plex numbers and in the possible sets. In the case of the complex numbers, we have

an explanation of our reasoning concerning complex numbers through understanding

complex arithmetic and analysis as based on a plane rather than a line. The reals

then are just one line within this plane. In this way our original supposition is shown

to have an intelligible interpretation. This is precisely what has not yet been given

for the Projection View. Merely stating that we can suppose that there are more

ordinals is not enough, we must understand to what this supposition amounts.

Providing such an interpretation will be an impossible task for the Monist Realist.

The universe exists and is ‘finished’. It describes all the sets there are, and could ever

be (for a given initial starting set of urelemente). It is a principle of Monist Realism

that the universe cannot be extended in any way. To say ‘there could have been more

ordinals’ is false; if there were more ordinals, there would be more Vα indexed by

those ordinals, and so we would have extended the Cumulative Hierarchy.

Maybe then the projection theorist, rather than saying that there could have been

more ordinals (and hence extensions of the Cumulative Hierarchy), should say that

there could be universes smaller than the actual Cumulative Hierarchy. Using this,

they could still explain the non-rigidity of proper class membership by arguing that

in a universe containing less, proper classes would have different members.

I see three ways that we might explicate the idea of ‘smaller’ universes.

1. A smaller universe is a Vλ for some limit ordinal λ that, together with ∈ inter-

preted as membership restricted to Vλ, is a model of Set Theory.

2. A smaller universe is a model of Set Theory with a domain that contains all

the ordinals, but which is narrower than the universe, with ∈ interpreted as
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membership restricted to that domain (An example of this sort would be the

Constructible Hierarchy ‘L’13).

3. A smaller universe is a model with both the above two properties (i.e. A model

of Set Theory that has as its domain a proper subset of some Vλ for limit λ with

∈ interpreted as membership restricted to that domain).

However, none of these suggestions is going to work with the Projection View.

For, given any of the above three characterisations, objects that are uncontroversially

sets will turn out to be proper classes.

Let us first consider the cases of both (1) and (3). Take some Vλ as the domain

of the sub-universe in question. Let κ be the successor of λ. Now consider the class

of all ordinal numbers of ordinals less than κ. This will contain the ordinal number

of λ (as λ < κ). However, the class of ordinal numbers of ordinals less than κ in Vλ

does not contain the ordinal number of λ (as rep(λ) is not yet formed at Vλ). Hence,

if the Projection View is correct and we use either (1) or (3), the class of ordinals less

than κ is a proper class. This is false, it is clearly a set.

In the case of (2), let us consider the class of sets of natural numbers. Suppose that

(as many believe) that not every set of natural numbers is constructible. Therefore,

the class of natural numbers has members in V that it lacks in L. Thus, under the

Projection View using (3), the class of sets of natural numbers is a proper class.

Again, however, this class is uncontroversially a set.

Thus the Projection View fails. It quite simply cannot give an account of the

modality central to its exposition under Monist Realism.

3.4 Conclusions.

There is a thought that we might be able to characterise proper classes using modal

resources. However, using functions from possible worlds to subclasses of domains is

unsatisfactory; the functions are themselves paradoxical. Instead we might explain

13L is a sub-universe of the Cumulative Hierarchy where, instead of including all subsets of Vα
as sets at Vα+1, we instead only include sets that are first-order definable by a formula that only
contains parameters from the previous stages and has its quantifiers restricted to those stages.
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proper classes as defined by conditions that change satisfiers in different possible uni-

verses. However, it was seen that there is no satisfactory way to understand the notion

of ‘possible world’ used. For this reason, the Modal Views that I have considered are

not a satisfactory characterisation of proper classes for a Monist Realist.
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Chapter 4

The Plural Account of Proper

Classes.

In this chapter I examine the view that proper classes are merely ‘some things’. Proper

classes do not exist. Instead reference to proper classes is loose talk and should be

understood via plural reference to some objects. My strategy is as follows:

• In 4.1 I outline the Plural Account.

• In 4.2 I give an evaluation of the view and defend it against some objections:

– 4.2.1-I discuss some positive aspects of the account.

– 4.2.2-I reject an objection to the plural theorist that plural reference cannot

capture the whole of class theory.

– 4.2.3-I discuss and argue against Linnebo’s criticism that there is a collapse

of pluralities to sets.

– 4.2.4-I develop an objection to the Plural Account based on superplural

quantification. I argue that it is a challenge that can be overcome.

• In 4.3 I conclude that the plural account is a satisfactory account for the Monist

Realist.
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4.1 What is the Plural Account?

We saw in Chapter 2 that the heavyweight theorist was unable to give an account

of why proper classes are not sets. The best explanation for this fact ([OHH]) could

not be appealed to for the reason that proper classes, as precise objects, were the sort

of things that should be members of other kinds of class (hyper-classes). This, we

saw, resulted in further problems being developed for these α-hyper-class hierarchies.

In the last Chapter, we examined some weakenings of the Heavyweight View. On

these views proper classes were not objects, but rather were explained using modal

resources. However, these were also seen to be unsatisfactory. It seems then that

we require a way of referring to many things at once that does not presuppose the

objecthood of a collection distinct from the elements, but also does not make use of

the modality of the previous Chapter. Do we have such a notion?

4.1.1 Plural Reference.

Indeed it does seem that we have a way of referring to many things without pre-

supposing the existence of a collection as an object distinct from the things. Such a

notion is the notion of plural reference.

If one examines natural language, it appears that we are able to refer to more than

one object at once using a single referring term. For example if I say “The smarties

in this bag are green.” I appear to be making reference to precisely the smarties in

the bag (of which there are more than one1). Such a phenomenon I will call plural

reference. Plural reference is most easily seen with the use of words like ‘some’, ‘most’

and combinations of names (as in ‘Russell and Whitehead’)2.

Now, for many examples of plural reference one may give an equivalent sentence

in singular terms. For example, the smarties example above one might paraphrase in

the following way (with quantification restricted to the contents of the bag):

∀(x)[Smartie(x)→ Green(x)]

1It should be noted that this sentence does admit of a first-order paraphrase. This is simply an
introductory example to show that pre-theoretically one might think that there is a device that is
present in natural language that allows us to refer plurally.

2There are other examples suggested in the literature, for example music groups. See
[Uzquiano, 2011] for a review.
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Such a statement simply says that anything that is a smartie is green, and makes

no mention of plural reference. One might be tempted to think then that we can deal

with all apparent occurrences of plural reference in a singular (and hence first-order)

manner. One could simply use singular reference to refer to urelemente and sets, and

when one needs to refer to many things use the relevant set and membership relation

to do the work of plural reference. It seems, however, that plural reference cannot be

fully captured by singular reference.

There are a number of reasons why one might think this. For starters, one might

think that it is simply intuitive that we are able to refer to more than one thing

without referring to anything over and above those things. We often refer to more

than one object with a single phrase, with the set of those things seeming to play no

role. As Boolos remarked “It is haywire to think that when you have some Cheerios

you are eating a set” ([Boolos, 1984], p448). Statements made about some objects

seem to be about the objects in question, not any set of them.

We should not be content with mere intuition, however. Thankfully, there are

other cases that are more convincing. For example, if I say “Matthew, Steve, James,

and Tim carried the boat to the pontoon.” I am not saying anything about the set

of Matthew, Steve, James and Tim. It is also true that no individual one of them

carried the boat to the pontoon; they carried it together. Further, the claim that

“Matthew, Steve, James, and Tim carried the boat to the pontoon.” does not admit

of an obvious paraphrase using quantification or conjunction. The sentence “Each of

Matthew, Steve, James and Tim carried the boat down to the pontoon.” should be

subject to quantifier elimination and so it should be true that Matthew carried the

boat to the pontoon. This, taken literally, is false; he helped to carry the boat to

the pontoon, but did not (by himself) carry it to the pontoon. Similarly if we take

the conjunction “Matthew carried the boat down to the pontoon and Steve carried

the boat down to the pontoon and....” it should be true that each of the conjuncts is

true. For exactly the same reason, this is false.

Further, there are some legitimate, grammatical sentences of English that do not

admit of a first-order paraphrase. The most famous example is probably the Geach-

Kaplan sentence:
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(GK) Some critics admire only one another.

Such a sentence was shown by David Kaplan to be non-first-orderisable. While

the legitimacy of this statement can disputed3, it is nonetheless easy to generate other

statements that do not admit of a first-order paraphrase. A selection of these were

reviewed by Boolos in his seminal paper “To Be is to be the Value of a Variable (or

to be Some Values of Some Variables)” [Boolos, 1984]. For example:

(G) There are some gunslingers each of whom has shot the right foot of

at least one of the others.

Is most naturally formalised in second order logic as:

(Gi) (∃X)((∃x)X(x)∧ (∀x)[X(x)→ (∃y)(X(y)∧ (y 6= x∧ ShotRF(xy)))])

If we were to substitute ‘x = y+1’ for ‘ShotRF(xy)’ we get a sentence that is true in

all nonstandard models of arithmetic, but not in the standard model ([Boolos, 1984],

p435)4.

While (Gi) is formulated in second order logic, this should not detract from the

plural nature of the natural language sentence (G). Second order logic was merely

used to show its non-first-orderisability. Further, Boolos showed that it is possible to

give an interpretation of monadic second-order logic in plural logic. This work has

been extended by Hewitt to a plural interpretation of full second-order logic5.

I take the above examples to show that plural reference is a feature of thought.

Further, it is accompanied by a precise formal logic, which makes its use appropriate

within Set Theory. While a full defence of plural logic is pertinent, my focus is to

see whether or not Set Theory can make use of these plural resources. Therefore,

from this point on, I shall assume plural reference and its logic. How then might we

use plural reference within Set Theory? How could plural reference contribute to an

understanding of ‘proper class’ talk?

3This is a fact that Boolos acknowledged in [Boolos, 1984].
4To see why, observe that a nonstandard model permits infinite descending successor chains. The

above sentence implies that there is some non-empty X such that if X(x) then X(x − 1). This is
false on the standard model, as if X(0) then X(0 − 1) which is false; there is no predecessor of 0.
However, in a non-standard model there can be infinite descending successor chains, and so if X(x)
holds of a non-standard number with infinitely many predecessors the sentence can be made true.

5See [Hewitt, 2012].
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4.1.2 Use within Set Theory.

Plural reference comes complete with its own precise logic where we standardly use

double lower-case letters (such as ‘xx’) as variables for plural terms and ‘x ≺ xx’ to

mean ‘x is one of the xx’. Often, a variable ‘xx’ is referred to as ‘a plurality’. Such

locutions should be regarded as loose talk. The use of a plural reference term does

not presuppose the existence of a collection as an object over and above the objects

referred to by use of the plural term. Such talk is acceptable only when it is shorthand

for a paraphrase in only plural terms (and even then is misleading). I will try and

avoid lapses into such ‘singularism’ where possible, and flag that I am using a singular

term in a loose fashion where a plural paraphrase would be particularly clumsy.

The fact that plural reference does not presuppose the existence of a collection over

and above the objects to which one refers suggests a way out of the paradoxes. We

have seen in previous chapters that part of the problem with viewing proper classes

as abstract objects is that it is not clear why such collections would not be sets. If we

instead view proper classes not as set-like collections, but artefacts of plural reference

to sets, the paradoxes would dissolve.

We then have a system where the inconsistent [COMP] is replaced by a similar

principle about plural reference:

[P-COMP] (∃x)φ(x)→ (∃xx)(∀y)[y ≺ xx↔ φ(y)]6

This states that for any (nonempty) condition φ there are some things that sat-

isfy φ. [P-COMP] (at least in some form7) certainly has intuitive pull, if we have a

condition such that it is definite for any object whether or not it satisfies that con-

dition, then it seems that there are some things that satisfy that condition. Further,

[P-COMP] allows us to talk about proper classes without having them be objects.

Let us now examine how the paradoxes are avoided.

6It is noticeable that this differs from the set-theoretic comprehension axiom in that it has an
antecedent stating that there is something that satisfies φ. This is because plural logic does not
(normally) admit an empty plurality, a fact which will be discussed later. It should also be noted
here that I assume a single object does constitute ‘some things’. To see this, consider the sentence
“The students who take this course will benefit from it.”. Here ‘the students’ is a plural reference
term, but the sentence is true if just one student takes the course and benefits from it.

7There are those who think that it is not correct in its full generality. See, for example,
[Linnebo, 2010].
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Reference to the Russell class should be understood as plural reference to all

the non-self-membered objects. If I say ‘the Russell class exists’, what I should be

understood as saying is that ‘there are some things such that they are not members

of themselves’. This is clearly true for a Monist Realist on the Iterative Conception.

The Russell paradox would be avoided, as substitution of R for x in

‘(∀x)(x ∈ R↔ x 6∈ x)’ would be illegitimate. R is merely a plural term, as this is not

a singular referring term it cannot be substituted for a singular variable.

Similarly reference to the Universal class should be understood as plural reference

to all the sets. The statement of the existence of the Universal class should be

understood as a statement that ‘there are some sets that are self-identical’. Again,

if Monist Realism is true this seems obvious. The paradox is avoided, as we cannot

talk about the power-set of some sets. There is no singular set to which the Power

Set operation can be applied8.

The Burali-Forti paradox is also given an account. Reference to the proper class

of all ordinal numbers should be understood merely as reference to the well-ordered

von Neumann ordinal numbers. However, assuming that if we have some things we

can apply ordering techniques to them, the von Neumann ordinal numbers can be

well-ordered by the membership relation. They are collectively transitive and well

ordered in the sense that (a) For any transitive well-ordered sets x, y, Trichotomy

holds for the relation ∈, (b) the ∈ relation is transitive for any sets within the von

Neumann ordinal numbers, (c) if there are some transitive well-ordered sets there will

be an ∈-least set, and (d) if x is a transitive well-ordered set that is one of the ordinal

numbers then every member of x is a transitive well ordered set. Thus these things

do have an order-type; there is a certain structure placed on them by the membership

relation.

It seems then that in order to prevent paradox we must deny that there is a

representation (i.e. ordinal number) that corresponds to the order-type that the

ordinals exemplify collectively. Should this bother us? I do not think it should. I

see no good reason to accept that the von Neumann representation of ordinals should

provide anything other than a partial representation of order-type.

8One can, however, modify this Cantorian argument slightly. This reformulation of the problem
will be considered in 4.2.4.

72



The situation is parallelled with respect to cardinality and proper classes. In 2.2.3

it was noted that proper classes may always be mapped one-to-one. Thus [LSHF ] was

seen to be a true principle about proper classes. Thus proper classes have ‘cardinality’

of a sort. Strictly speaking, however, proper classes do not exist and ‘transcend’

cardinality. It is true, nonetheless, that if we have some things that do not form a

set then they may be mapped one-to-one with some other things that do not form

a set. However, it is uncontroversial in this case that there is no set taken as the

canonical representation of this ‘cardinality’. This is the same with order-type; there

are cases where some things may exhibit an order-type, but nonetheless there is no

representation of this order-type.

4.2 Evaluation of the Plural Account.

4.2.1 Positive Remarks about the Plural Account.

The Plural Account has a number of good features. Firstly, it is precise and provides

diagnosis. [COMP] is satisfactory when used to prove the existence of some things

all of which satisfy a condition, but its use is fallacious if used to prove the existence

of a set of those things. It is not clear, before we realise that there are cases where

for some things xx there is no set of the xx, why proper classes are not sets. The

success of the use of Set Theory to represent other cases of plural reference (such as

reference to ‘the natural numbers’, or ‘the real numbers’) leads us to think that for

any case of plural reference there is a corresponding set. This turns out to be false.

The motivation for such a response is also clear. As shown in the previous section,

plural reference is a well-established feature of natural language with a precise formal

analysis. It is another way to talk about many things collectively other than by

referring in a singular manner to the set of those things. We can see this with respect

to the puzzle of Chapter 1. There it was noted that we lacked an explanation of the

fact that it is definite for any object x within the Cumulative Hierarchy whether or

not x satisfies a particular paradoxical condition. Therefore, there seem to be some

objects such that each definitely satisfies the condition. This talk of “some objects”

is quite naturally understood in plural terms.
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The Plural Account also fares very well with respect to overkill. Firstly, it pre-

serves the thought that [COMP] has some intuitive plausibility. As noted above, for

any condition φ there are some objects within the Cumulative Hierarchy that each

satisfy φ.

Further, the plural response is able to account for our talk of large cardinals. We

can ground our talk of embeddings by referring plurally to some ordered pairs, even

if there is no set of those pairs9.

We are also able to make true statements concerning proper classes. If I wish to say

that the Russell class and Universal class are the same class, without problematically

committing myself to the objecthood of the paradoxical classes, I can do so by stating

that anything that is one of the non-self-membered things is also one of the sets.

It seems then that the plural response is in a fairly strong position. It is, however,

not without its dissenters. I will now examine some objections one might raise against

the Plural Account. All, I shall argue, are answerable.

4.2.2 The Empty Set.

One might argue the following. After discovering the paradoxes, we think that our

class-theoretical discourse extends our talk of sets. There are some classes that are

not sets, but all sets are classes. This is a fact that an account of classes should

incorporate. If one thinks that our class talk is characterised by plural reference,

then for any class there are some things that are in that class. This is not the case,

however, there is one very important set (and hence class) for which there are not

some things that are its members; namely ∅. There is no empty plurality; ‘plurality’

is merely loose talk to refer to some things, and in the case of the members of ∅ there

are no things to which we may refer. As there is no ‘empty plurality’ to correspond

to the empty set, plural talk is not a satisfactory way of interpreting class talk; it

cannot account for all classes.

I regard this as no objection. The reason we originally got into trouble with

the class paradoxes was because imprecision in the notion of class resulted in us

9A fuller exposition of the relationship between plural quantification over sets and large cardinal
hypotheses is available in [Uzquiano, 2003].
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equivocating between plural reference to sets and singular reference to a set of sets.

The term, ‘class’ can be understood as talk that may be characterised as singular

reference to a set or plural reference to some sets. All that is required for it to be

legitimate to use the term ‘class’ is definite membership. In some cases ‘class’ can

be understood in either plural terms or singular terms (such as when I refer to the

class of all natural numbers). Other times reference must be understood plurally

(such as when one (misleadingly) refers to the ‘class’ of ordinal numbers). And at

other times, reference to a class must be understood only through singular reference

(such as when I refer to the empty class). This account would actually explain rather

nicely a pedagogical phenomenon; the bafflement of many students at the notion of

the empty set. Such bafflement can be understood as conflation of the notions of ‘set’

and ‘plurality’ due to pre-theoretic contact with both notions through reference to

many objects.

4.2.3 Collapse.

One might want to contend instead, that pluralities do in fact always have a corre-

sponding heavyweight object. One could do this by arguing that the semantics for

plurals nearly always rely on set-theoretic resources. Often, plurals are analysed in

our semantics as sets, so why should we not think that they just are sets?

This is a very weak objection. Just because our formal semantics nearly al-

ways uses sets does not mean that the objects in question are sets. Benacerraf

showed as much for natural numbers in his seminal ‘What numbers could not be’

[Benacerraf, 1965]. Our formal semantics may simply be inadequate, and only a par-

tial articulation. Alternatively, it might be a notational systematisation, useful for

formalising our plural talk but merely a heuristic with no ontological import. Either

way, there are many things that we analyse in our semantics as sets, that are not

actually sets.

However, there is a stronger argument that some things always have a correspond-

ing heavyweight object. The argument proceeds via an appeal to Extensionality as

definitional of set. The Axiom of Extensionality may be stated as follows:
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[EXT] (∀x)(∀y)[x = y ↔ (∀z)(z ∈ x↔ z ∈ y)]

This states that two sets x and y are identical iff they have exactly the same

members. It is then argued that it is sufficient for some things to be a set that they

have definite membership and satisfy an extensionality axiom. As has been noted,

proper classes on the Plural Account have definite membership (it is definite, for any

object x whether or not it is one of some things that do not form a set). Now, there

is no identity relation for some things (some things, after all, are not an object and

hence cannot be identical to anything). However, there is a sameness relation between

some things xx and some things yy. Let this relation be denoted by ‘≡’. It seems

clear that we should take as an axiom the principle that some things xx are the same

things as some things yy iff every thing that is one of the xx is one of the yy. This

is an extensionality axiom of sorts for our logic of plurals, and may be formalised as

follows:

[P-EXT] (∀xx)(∀yy)[xx ≡ yy ↔ (∀z)(z ≺ xx↔ z ≺ yy)]

Thus as the logic of plurals contains an axiom of extensionality and for some things

xx it is definite for any object x whether or not x ≺ xx; every plurality is a set. The

argument is nicely summed up by by Linnebo as follows.

“The semantics of plural logic ensures that a plurality consists of a de-

terminate range of objects. But a set is completely characterized by its

elements. A plurality thus provides the resources for a complete and pre-

cise characterization of a set. So what could prevent us from collecting

the given plurality into a set?” ([Linnebo, 2010], p149)

The thought is the following. Sets are completely characterised by their elements.

This is what is meant by Extensionality, the core notion of set. When we refer to

some things, it is a definite whether or not an object is one of those things. Therefore,

if we simply substitute ‘is a member of y’ for ‘is one of the xx’ , we have a complete

characterisation of the membership relation of a set. Hence some things must always

form a set. The principle that some things always form a set I shall call (following

Linnebo) [COLLAPSE]. One can formalise [COLLAPSE] as follows:
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[COLLAPSE] (∀xx)(∃y)(∀x)(x ≺ xx↔ x ∈ y)10

It is obvious that [COLLAPSE] combined with [P-COMP] is inconsistent (Just

use x 6∈ x for φ in [P-COMP] then use [COLLAPSE] to get the Russell set). Linnebo

suggests that we reject [P-COMP]11, and hence that reference to proper classes should

be characterised as plural reference to sets12.

The challenge is a serious one. For [COLLAPSE] appears to be plausible. To

begin with, it seems pre-theoretically intuitive; sets are definite collections of objects,

and for any things xx it is definite whether or not some object x is one of the xx. Why

should all xx not then have a corresponding set? Further, [COLLAPSE] is motivated

by one of the core principles of Set Theory; sets depend for their identity on their

members. If there is a fact of the matter for any object x whether or not it is one of

the xx, it looks like it should be easy to characterise the membership relation for a

set.

Further, [COLLAPSE] seems to be a principle at play in our conception of the

original definition of the Cumulative Hierarchy. A guiding principle there was that at

each Vα+1 we formed sets of every subclass of Vα. Whenever we have some things at

a Vα that are not all members of some set at Vα, then the set of those things will be

first formed at Vα+1. This ‘process’ responds to the same intuition as [COLLAPSE];

if we have some things at some Vα, their set is formed at Vα+1.

It seems then that the plural theorist must provide compelling reasons why it is

not the case that some things always form a set.

Linnebo argues that anyone who rejects [COLLAPSE] must accept [LSH] as their

explanation for why it is not the case that some things always form a set. If true, this

would be devastating for the plural theorist; I argued earlier [LSH] cannot explain

why for some things there is not always a set of those things.

Linnebo argues from two principles. The first is a plural version of Replacement

that states that if there is a function that maps some things xx onto some things yy,

and xx form a set, then yy too form a set.

10My formulation differs very slightly from Linnebo’s (he abbreviates the formal statement of some
things forming a set). It is easy to see the two formulations are equivalent.

11Though he still preserves a modified version of [P-COMP]. See [Linnebo, 2010].
12It would also seem that in order to accept this, Linnebo rejects Monist Realism.

77



The second is the principle of Cardinal Comparability [CC] which states that for

any two pluralities xx and yy either the xx are fewer than the yy or the xx are at

least as many as the yy. Linnebo uses these two principles to reach the conclusion13

that the plural theorist who wishes to deny [COLLAPSE] must accept:

[P-LSH] Some things form a set iff they are fewer than the ordinals.

Thus the plural theorist is committed to [LSH] and hence their position must be

false.

Is this the case? The plural theorist should accept both premises. Further they

should accept [P-LSH]14. This is, however, not a reductio of their position.

Earlier, I remarked that [LSH] is true insofar as it is true that if there is a one-to-

one mapping between a class A and the ordinal numbers then A is not a set. I argued,

however, that it was not a satisfactory explanation for why A is not a set. One can

have a correct method for determining when someone has got the wrong answer for

the differential of a function in that the result fails to predict the correct value for

the gradient of the tangent at a point. This is not an explanation that responds to

the structure at play, and the notion of taking the limit of a function as it approaches

a point. I submit that the plural theorist can accept [P-LSH], but merely as a true

principle about when some things form a set, rather than an explanation for why

they do not form a set.

One can object to Linnebo as follows. We should attend to the following part of

Linnebo’s argument:

“A plurality thus provides the resources for a complete and precise char-

acterization of a set. So what could prevent us from collecting the given

plurality into a set?” ([Linnebo, 2010], p149)

It is true that a ‘plurality’ (to use Linnebo’s term) provides the resources for a

complete and precise characterisation of a set in the following sense. If we have a

non-empty set, there will be some things that are just the things within that set. We

are able to characterise certain sets by plural reference to their elements.

13See the Appendix to [Linnebo, 2010] for the proof.
14Indeed, the most obvious justification for the axiom of Replacement comes from an understanding

of limitation of size, so it is hardly surprising that Replacement should imply [LSH].
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However, it is not the case that for any things xx there is a set of those things.

Why not? What the plural theorist needs is a satisfactory explanation for the fact

that some things do not form sets. As noted in Chapter 2, [OHH] was just such an

explanation. Thus the plural theorist may say the following; some things form a set

just in case at some Vα they are all present. This was considered in the heavyweight

case. It was argued, however, that the heavyweight theorist could not appeal to

[OHH] and fully solve the puzzle of Chapter 1. This was due to the fact that proper

classes were precise objects that thus should be able to be members of classes.

This is not a problem for the plural theorist. Some things are not an object over

and above those things. Those that criticise the Plural Account (such as Linnebo)

would agree with this. Where Linnebo would disagree, however, is that he would

argue that there is always a set that has just those objects as members. At this point,

however, the plural theorist may say that she has very good reason to deny that for

any things there is always a corresponding set of those things; owing to the extendible

condition used in the case of proper classes it is not the case that for any things there

is some Vα containing those things. Thus the plural theorist has good reason to reject

[COLLAPSE].

4.2.4 Superplurals.

A different way one could attempt to develop a puzzle for the plural theorist would

be to appeal to additional resources. One could try to develop a puzzle through

superplural reference. If we think that considerations of natural language are relevant

to questions of reference it seems legitimate to appeal to languages other than English

when trying to determine questions of reference.

Linnebo says the following with respect to Icelandic:

“In Icelandic, for instance, the number words have plural forms which

count, not individual objects, but pluralities of objects that form natural

groups. Here is an example:

‘einn skór’ means one shoe

‘einir skór’ means one pair of shoes
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‘tvennir skór’ means two pairs of shoes” [Linnebo, 2012]

Assuming that when I refer to a pair of shoes I am referring to nothing over and

above the shoes (one right and one left), it seems that we are able (in Icelandic)

not just to count some things, but to count ways in which some things might be

organised. We plurally refer to some things organised in a particular way. This I shall

call superplural reference or 2-plural reference.

Aside from natural organisation on some things (such as pairs of shoes), Linnebo

notes that there appears to be a difference between how some things may be presented.

If we let ‘O’ represent a Cheerio for the moment, eight Cheerios may be presented in

the following way:

OOOOOOOO

However, the same eight Cheerios could also be presented as follows:

OO OO OO OO

There seems to be a substantial difference here. The first is plural reference to

eight Cheerios. The latter is 2-plural reference to eight Cheerios arranged into pairs

of Cheerios. There is no commitment to anything above the eight cheerios other than

“an additional layer of structure” ([Linnebo, 2003], p87).

There are also examples from English, such as the following:

“imagine a video game in which any finite number n of teams can play

against each other in an n-way competition. Then consider the sentences:

(9a) These people and those people play against each other.

(9b) These people, those people and these other people play

against each other.” ([Linnebo and Nicolas, 2008], p193)

In this situation, it seems that the predicate ‘are playing against each other’ is

being satisfied by some people organised into teams. The extra articulation of the

structure (into teams) is relevant, and is not being captured by simple plural reference.

One might question whether the Icelandic and English examples are actually in-

dicative of superplural reference. Hanoch Ben-Yami, for instance, rejects that the
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examples show superplural reference. He then gives his own account of how one may

account for such cases without making use of superplural reference ([Ben-Yami, U]).

While superplural reference certainly is controversial, I take the above examples

to show that it is at least plausible that such a phenomenon exists. Certainly we

require an account of why some things may be arranged in different ways. Further, I

will argue that even if we grant superplural reference (for the sake of argument) this

does not create a problem for the Monist Realist. For these reasons I will assume that

superplural reference is a legitimate form of reference.

If we accept 2-plural reference, it seems we can develop the articulation of structure

further. Consider the eight Cheerios from earlier:

(i) OOOOOOOO

A case of 2-plural reference would be the following:

(ii) OO OO OO OO

However, we can organise the same eight Cheerios as follows:

(iii) OO OO OO OO

If we had sixteen Cheerios, they might be structured in the following manner:

(iv) OO OO OO OO OO OO OO OO

What is happening here? (iii) is plural reference to eight Cheerios arranged as

a pair of pairs of pairs. We seemed to have pushed reference to another level of

structure. Let this be 3-plural reference. (iv) Is plural reference to sixteen Cheerios

arranged as a pair of pairs of pairs of pairs. The level of structure has been given at

another level, hence this is 4-plural reference.

If one accepts that we may push the level if plural reference higher, there seems

to be no barrier to having n-plural reference for all n ∈ N. If we look at the above

examples, we can see that for any case of n-plural reference, we can construct (n+1)-

plural reference by referring plurally to n-plural reference.

Now, consider the following ω long sequence. For the sake of argument let there

be ω many cheerios. Let (n) be shorthand for the contents of the nth row. Let us

examine the following column of Cheerios:
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1st Row. The first 2 Cheerios arranged as follows: OO

2nd Row. The next 22 Cheerios arranged as follows: (1) (1)

3rd Row. The next 23 Cheerios arranged as follows: (2) (2)

4th Row. The next 24 Cheerios arranged as follows: (3) (3)

.

.

.

n+1st Row. The next 2(n+1) Cheerios following the first 2+22+23+...+2n

Cheerios arranged as follows: (n) (n)

.

.

.

This will provide an example of ω-plural reference. Given even more Cheerios, we

could then push reference higher as before to yield (ω + 1)-plural reference. Given

that we can provide an intuitive picture of ω-plural reference, do we have any reason

to suspect that we could not provide a picture of λ-plural reference for any limit

ordinal λ? While I have not given an explicit definition of λ-plural reference the

above picture suggests that one should be available15. Further, substantial technical

advancements have been made in extending superplural reference. n-plural quantifi-

cation is formally equivalent to Simple Type Theory ([Linnebo, 2003], [Hazen, 1997]).

This can then be extended into the transfinite and given a plural interpretation (see

[Linnebo and Rayo, F], Appendix A for a full exposition).

There are two challenges raised by α-plural reference. I shall argue that both can

be answered by the α-plural theorist.

15One suggestion that might be given further consideration is as follows. For limit λ, plural
reference to |λ| things is λ-plural reference iff those things are arranged into parts such that for each
β < λ there is a part so arranged that reference to the things in that part as arranged is β-plural
reference. Many thanks to Marcus Giaquinto for this suggestion.
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4.2.4.1 Preserving our Notion of Collection.

An argument against the α-plural theorist might run as follows. When analysing the

Heavyweight View, it was seen that α-hyper-class structures splintered our notion of

‘collection’ into infinitely many different notions of collection. In the case of α-plural

reference do we have a parallel problem? Each kind of α-plural reference is a different

way of referring to many things. We seem to have ‘set’, ‘1-plural reference’, ‘2-plural

reference’ etc. Is there a problem here?

The α-plural theorist does not split our notion of ‘collection’ into infinitely many

notions. The problem with the Heavyweight View was that each kind of (α + 1)-

hyper-class had to be a different kind of collection-like object from α-hyper-classes.

In the plural case, however, the interpretation is not of different kinds of ‘collection’.

Strictly speaking α-plural reference is not a notion of ‘collection’. It is rather a way

of referring to many things arranged a certain way; there is no ‘collection’ to figure

as an object. That ways of referring should be infinitely many is far more plausible

than the view that we have infinitely many notions of collection.

4.2.4.2 Puzzles for the α-plural Theorist.

A good objection to the α-plural theorist would be to generate puzzles analogous to

the puzzles developed in Chapter 1. The α-plural theorist would then find herself in

a similar position to the heavyweight theorist; unable to account for certain features

within the Cumulative Hierarchy.

It is improbable that it is possible to generate outright contradictions using α-

plural theory. As noted earlier, a theory with n-plural quantification is technically

equivalent to Simple Type Theory16. This in turn can be extended to the trans-

finite case17. The fact that any theory using α-plural reference must respect type

considerations will mean that it is unlikely to be outrightly inconsistent as a result

of the α-plural reference. Despite this fact, we might wonder if the α-plural theorist

faces puzzles in the sense that there are important phenomena for which their theory

cannot account.

16See [Rayo, 2006] for an argument to this effect.
17See [Linnebo and Rayo, F].
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Can we construct such puzzles? Essentially the same methodology as the original

puzzle in Chapter 1 is not available in the context of α-plural reference. This is

because (unlike the Heavyweight View) the α-plural reference to some things is very

different from singular reference to a set. There are no direct analogs of the predicates

‘x is a member of itself’, ‘x is an ordinal number’, and ‘x is a set’ in the α-plural case.

Such predicates do not even apply to α-plural reference; what is denoted by α-plural

reference is not a single object18.

Indeed it is possible to construct a Cantorian style puzzle for the α-plural theorist.

Consider everything, including sets, and forms of α-plural reference etc. There are

fewer of these than cases of α-plural reference to at least one of them (by Cantor’s

Theorem). So there are more cases of α-plural reference to at least one thing than

there are things. But each case of α-plural reference to at least one thing is itself a

thing. Therefore, there are not more cases of referring α-plurally to at least one thing

than there are things. Thus we seem to have contradiction.

There are two ways to respond to the above ‘paradox’. The first is to note that

this ‘paradox’ is informal, it cannot be formulated in the system outlined above as it

contravenes type restrictions. When I say “there are more cases of α-plural reference”,

“each case of α-plural reference” I am quantifying over all types of α-plural reference.

This is not allowed by a system that incorporates type considerations. Nonetheless

it might by argued that this presents an informal puzzle; why should we not be able

to quantify over all levels of α-plural reference? I shall argue that the Monist Realist

can answer this question.

It should first be noted that the Monist Realist may perfectly well accept absolute

generality about sets and objects while denying that we can quantify over all levels of

α-plural reference. As I have argued, α-plural reference is not a kind of object. Thus

while the Monist Realist must accept that we can quantify over all objects; she need

not accept absolute generality with respect to levels of α-plural reference.

Further, it is plausible that we should not be able to quantify over all instances of

α-plural reference. α-plural reference is articulation of structure. If we are analysing

a statement about α-plural reference, a natural question to ask is the following: “At

18Though obviously a single object may be what constitutes the objects involved in a case of
α-plural reference.
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what level of structure is the statement operating?”. To take a simple example,

consider four cheerios organised like this:

(a) OOOO

and like this:

(b) OO OO

Now are (a) and (b) ‘the same’? This question seems to be ambiguous. This is

because from a 1-plural perspective they are the same; they comprise the same objects.

However on a 2-plural level they are different; the arrangement of the objects in (b)

is different from the one in (a).

Thus we see that for any question about α-plural reference it is legitimate to ask at

what level it is directed. The earlier Cantorian argument is directed at no particular

level of α-plural quantification. It is thus not a well formed argument.

Thus we see how α-plural reference allows the plural theorist to hold onto Monist

Realism, whilst being able to deny a certain kind of absolute generality. Thus they

do not have similar puzzles to the one outlined in Chapter 1 to answer, they have

principled reasons to argue that it is not possible to quantify over all α-plural levels.

One might, however, feel a Gödelian objection that the statement “It is not pos-

sible to quantify over ALL levels of α-plural reference.” is self-undermining. For, in

order to make that statement I must violate it. It is indeed impossible to precisely

state the position that it is not possible to quantify over all levels of α-plural reference.

However, the above example shows that the standpoint is indeed correct, even if not

stateable.

However, this worry about how to state the position about quantification over

levels of α-plural reference might push us to consider alternative ways to reject the

Cantorian argument. Indeed, I think there is another response available.

The Cantorian argument rests on the use of the term ‘everything’. This is most

naturally understood as employing the condition ‘x is a thing’ where ‘thing’ ranges

over objects, kinds of α-plural reference etc. We must then consider all ‘things’. But

we must remember, the ‘paradox’ will only have force if ‘x is a thing’ is definite. That
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was why the puzzle of Chapter 1 was so forceful, we had conditions that had definite

satisfiers. Is the condition ‘x is a thing’ definite?

I think there is reason to suppose that it is not. For the meaning of ‘thing’ cannot

be ‘object’. α-plural reference is not an object, it is merely some things organised a

certain way. As I have argued, there is not always an object that corresponds to a

case of α-plural reference. In what sense then is a case of α-plural reference a ‘thing’?

The term ‘thing’ seems to have no clear meaning, and thus the claim that ‘x is a

thing’ is a definite condition may be resisted.

4.3 Conclusions.

The Plural Account represents a satisfactory characterisation of proper classes for

the Monist Realist. Though it has received a forceful attack from Linnebo using

[COLLAPSE], the nature of proper classes on the Plural Account allows the plural

theorist to appeal to [OHH] and reject [COLLAPSE].

A consideration of superplural reference motivates the acceptance of α-plural ref-

erence for any ordinal α. The interpretation of this phenomenon as ever deeper

articulation of structure on some things allows the plural theorist to reject the claims

that she either separates our notion of collection into infinitely many notions or that

it is possible to generate a puzzle by quantifying over all α-plural levels of reference.

Thus the Monist Realist has a satisfactory account proper classes on the Iterative

Conception of set; reference to proper classes is to be understood as merely reference

to some sets.
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Chapter 5

Conclusion

A combination of Iterative Conception of Set and Monist Realism present us with a

puzzle. There are conditions φ such that it is definite for any object x whether or not

φ(x) but no set of all φ appears in the Cumulative Hierarchy.

Studying the view that proper classes are objects distinct from their elements

reveals a problem; what is the difference between sets and proper classes? It was

then seen that [OHH] is the best explanation for why proper classes are not sets.

However, the use of [OHH] alongside the Heavyweight View resulted in a proliferation

of different cumulative structures. This, it was argued, is unsatisfactory.

Explaining proper classes in terms of modal resources proved to be fruitless. The

first view examined explained proper classes in terms of functions from possible uni-

verses of Set Theory to subclasses of the domains of those universes. The functions

appealed to by this view were shown to be in themselves paradoxical. A different

explanation of proper classes in virtue of the non-rigidity of their defining conditions

was also shown to be unsatisfactory. There it was seen that the Monist Realist cannot

appeal to any mathematical modality.

A promising solution is to deny the existence of proper classes but to account for

our talk of proper classes through using the resources of plural reference. This view

was seen to respond well to Linnebo’s criticism that there is a collapse of pluralities to

sets, for the reason that (as proper classes are not precise objects) the plural theorist

is able to appeal to [OHH]. Further examination of the view in relation to superplural
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reference lead to the plural theorist being pushed to α-plural quantification for any

ordinal α. A Cantorian puzzle was then presented for this view. However, it was

shown that the puzzle could be resisted, either by denying that it is possible to

quantify over all levels of α-plural reference, or by rejecting the condition ‘x is a

thing’ as definite.

I conclude that if one accepts Monist Realism and the Iterative Conception of

Set then one should deny the existence of proper classes, but account for our talk of

proper classes through plural reference.
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