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Abstract 

 This thesis describes a method for propelling devices such as video 

capsule endoscopes in either direction along the small intestines using 

electrostimulation-induced muscular contractions. When swallowed, passive 

diagnostic ‘one-shot’ devices rely on sporadic peristaltic movement, possibly 

missing vital ‘areas of interest’. This bidirectional propulsion method provides 

active control for that all-important ‘second look’.  

 Design considerations, within the dimensional constraints, required a 

device shape that would achieve maximum propulsion from safely induced 

useful contractions produced by the electrodes and encapsulated miniature 

electrostimulator. Construction materials would have to produce minimal 

friction against the mucosal surface while having the physical properties to 

facilitate construction and electrode attachment.  

 Design investigations included coefficient of friction measurements of 

different construction materials and the evaluation of different capsule and 

electrode dimensions over a range of stimulation parameters, to obtain optimal 

propulsion. A swallowable 11 mm diameter device was propelled at               

121 mm/min with stimulation parameters of 12.5 Hz, 20 ms, at 20 V in an 

anaesthetised pig. A modified passive video capsule endoscope was propelled at 

120 mm/min with stimulation parameters of 12.5 Hz, 20 ms, at 10 V in an 

unanaesthetised human volunteer. A radio-controlled capsule incorporating an 

electrostimulator, voltage converter and 3 V power supply was propelled at 60 

mm/min with stimulation parameters of 12.5 Hz, 20 ms, and 30 V in an 

anaesthetised pig.    
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 Other possible uses of electrostimulation were investigated including 

propulsion of anally administered large intestine devices and introduction of the 

intestinal mucosal surface into a biopsy chamber. Results are presented. 

 The ultimate aim of the project was to provide bidirectional propulsion 

for wireless remote controlled devices along the gastrointestinal tract utilising 

contractile force produced by electrostimulation of the intestinal wall. The 

controllability of this system could provide clinicians with a real time view of 

the entire small intestines without surgical enteroscopy. 
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1. Introduction 

 

Colorectal cancer is a leading cause of death in the Western World. 
1
 It is 

the second most common cause of death from malignant disease in England and 

Wales. 
2
 However, if caught early enough it is curable. A number of case control 

and random volunteer tests
 1-12

 have shown that there is a significant reduction 

in the risk of death from colorectal cancer when a screening programme is in 

operation.  

Typically, the first stage of such a screening programme is a faecal 

occult blood test, which is used to check stool samples for traces of blood that 

cannot be seen with the naked eye. After this, positive diagnoses are followed 

up with a colonoscopy, or a double contrast barium enema (an X-ray study 

using a thin layer of barium sulphate as well as air to aid visualisation of the 

intestinal tract) where complete colonoscopy is not possible.  

Colonoscopy is the ‘gold standard’ in clinical treatment, detecting 99% 

of polyps and cancers when compared with histology. 
3
 However, due to the 

nature of the procedure it remains technically difficult in 10-20% of cases. 
13

 It 

can be time-consuming for the attending clinician as well as daunting and 

painful for the patient. Most endoscopy units in the UK have difficulty coping 

with their current workload, 
14

 and with the introduction of colorectal cancer 

screening, waiting lists are sure to increase. 

With advancing technology, especially in the electronics industry, new 

methods of imaging the gastrointestinal tract are emerging. A number of these, 

(such as MRI or CT virtual colonoscopy) take advantage of ever-improving 



14 

 

computer technologies to produce better virtual images of the gastrointestinal 

tract. Other methods, such as video capsule endoscopy, take advantage of 

miniaturisation trends within the electronics industry to produce a wireless 

video camera, which can be used to view the entire gastrointestinal tract. 

Video capsule endoscopes such as the PILLCam capsule manufactured 

by Given Imaging Ltd (Israel) allow painless imaging of the gastrointestinal 

tract. 
15-18

 Using a 256 x 256 pixel colour CMOS imager and four white LEDs 

for illumination, approximately 50,000 images can be transmitted during an 

eight hour examination. 
19-20

 

Since gaining FDA approval in 2001, the video capsule endoscope has 

proved to be a useful diagnostic tool, out-performing ‘push enteroscopy’ in a 

study of patients with gastroscopy- and colonoscopy-negative gastrointestinal 

bleeding. 
21

 Although promising, these devices rely on natural peristalsis for 

propulsion. Their movement is therefore out of the physician’s control, which is 

not conducive to a thorough examination. 

The aims of this project are to investigate the possibility of remotely 

propelling a small device, such as a video capsule endoscope, within the 

gastrointestinal tract in such a way that it could be monitored and controlled in 

real time. Initially, the aim is to investigate if sufficient propulsion can be 

achieved, by applying electrostimulation to the mucosal membrane of the 

gastrointestinal tract in order to stimulate controlled muscular contractions, to 

propel the device in either direction with or against the natural flow. 

As the gastrointestinal tract varies in diameter a range of device sizes 

will need to be investigated with particular interest on sizes that can be 
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swallowed. Although initial investigations will be conducted using the pig 

model, the transfer of results to the human subject will be investigated. 

Depending on the success of the first phase of the project, the possibility of 

making a control system that would not require wire leads will be investigated. 

 

1.1 Guide to the Thesis 

 

When designing a device it is essential to have a sound understanding of 

the environment within which it has to operate. With this in mind, Chapter 2 

briefly describes the anatomy and configuration of the gastrointestinal tract, 

descriptions of the position and path of the tract, and its basic dimensions and 

structure. There is also a necessity to understand the extent of current 

procedures used to carry out observations in the gastrointestinal tract. Therefore, 

the final section of the chapter begins with a brief description of the history and 

development of various methods used in this field. This is then followed by a 

brief description of the current methods and procedures used for observing the 

gastrointestinal tract. The chapter concludes with a discussion on the merits and 

inadequacies of these different procedures. Due to the fact that the device uses 

electrostimulation to induce contractions in the intestinal muscle, Chapter 3 

reviews the effects of electrostimulation within the gastrointestinal tract. 

The design, construction and testing of wire connected prototype 

capsules are discussed in Chapter 4. The first section discusses the dimensional 

constraints of a swallowable device. The next section contains an investigation 

into both the static and dynamic coefficients of friction of different materials 
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with moist (intestinal) mucosal sections in order to find one that would present a 

minimal frictional resistive force within the gastrointestinal tract. The choice of 

optimal mechanical and electrical design parameters for the bidirectional driving 

device are discussed in the third section, which is followed by a discussion of 

the construction of the devices. The final section reports on the evaluation of the 

bi-directional devices within a pig model, and a human subject. 

Chapter 5 discusses the design of the electronic circuitry used for the 

internal electrostimulator. The first section describes the external Grass 

stimulator used in the preliminary studies. The second section describes the 

design and development of a miniature 3 volt powered internal stimulator 

produced to emulate the external Grass stimulator. Details are then discussed on 

the use of the internal stimulator to drive the devices within the gut, and how the 

addition of a remote control device would enable the 3 volt powered stimulator 

to manoeuvre the capsule through the gastrointestinal tract and provide the 

possibility of developing the bi-directional capsule into a powerful diagnostic 

tool. Designs of the final control and stimulation circuitry are described. The 

final sections of this chapter describe the in vivo testing of the autonomous 

capsule in pigs. 

The first section of chapter 6 describes the design requirements for a 

large intestine device. Although similar in design to the small intestine device, it 

has a larger diameter to account for the larger lumen of the large intestine. A 

description of the construction of the capsule is followed by a section describing 

a preliminary in vivo test. The second section describes the design and 

construction of a biopsy capsule are discussed. The first section describes the 

design of the biopsy chamber and the mechanics of the cutting device. This is 
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followed by a discussion of how the electrostimulation of the mucosal wall of 

the gastrointestinal tract can introduce enough tissue into the biopsy chamber 

for a sample to be taken. The final section of this chapter describes results from 

in vivo testing.  

Conclusions and final remarks including a brief summary of the major 

achievements of this thesis are presented. Potential applications for the findings 

of the thesis are discussed. Future applications are discussed. 
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2. Medical Science Background 

 

2.1 Introduction  

 

The design and construction of a medical device involves an 

understanding of a number of different scientific fields. When designing a 

device it is essential to have a knowledge of the environment in which it has to 

operate. As the device has to operate in the gastrointestinal tract an 

understanding of its anatomy and physiology is required. It is important to 

understand how observational techniques of the gastrointestinal tract have 

developed to their current stage, and to evaluate the areas where the proposed 

device may possibly enhance these present techniques of examining the lumen. 

This chapter provides some insight into these topics, and in the light of the 

environmental constraints, an evaluation of current procedures and areas where 

possible improvements may be made are discussed. 

 

2.2 Anatomy of the Gastrointestinal Tract 

 

The alimentary canal provides the pathway for the body's digestion of 

food. It is essentially a musculo-membranous tube of varying diameter that 

extends from the mouth to the anus. This tube is subdivided into a number of 

different sections and subsections. 
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Extending some ten meters, the alimentary canal proceeds from its 

commencement in the mouth through the pharynx and down the oesophagus 

into the stomach. From the stomach it continues along the small intestine and 

then the large intestine to its termination at the anus. (Fig. 2.1)  

 

Fig. 2.1 A diagram of the anatomy of the digestive system. 

 (www.encognitive.com 2012) 

 

For the purposes of this project there will be a brief discussion outlining 

the major points of the anatomy of the oesophagus, stomach, small intestine and 

http://www.encognitive.com/
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large intestine. This will include descriptions of both the position and structure 

of these sections and their subsections. A more in depth discussion of the 

anatomy outlined here can be found in Appendix B. 

The oesophagus is a two hundred millimetres long muscular tube that 

extends from the pharynx to the stomach. It is generally vertical in orientation 

with a few curves along its path. It passes down through the neck along a central 

path in front of the trachea and terminates at the cardiac orifice of the stomach. 

The stomach is situated between the oesophagus and the small intestine. 

As well as being the principal organ of the digestive system, it is also the most 

dilated part of the gastrointestinal tract. The larger end, known as the fundus, is 

directed upwards, and the smaller end faces to the right of the body. It is 

positioned in the left hypochondriac and epigastric regions, placed mainly 

behind the wall of the abdomen and under the diaphragm. 

The small intestine extends on average six metres from the pylorus (the 

narrowest part of the gastrointestinal tract with a diameter of about 11 mm) to 

the ileo-caecal valve. Gradually diminishing in size from commencement to 

termination (diameter of about 30 mm - 25 mm), the small intestine is contained 

in the central and lower portions of the abdominal cavity, surrounded by the 

large intestine. A portion of it passes below the brim of the pelvis to lie in front 

of the rectum.  

The large intestine extends from the termination of the ileum to the anus. 

It has a length of about two metres, which is roughly a fifth of the length of the 

entire intestinal tract. It is at its largest diameter at the commencement of the 

caecum (diameter about 30 mm), gradually reducing in size, until at the rectum 

a dilation of considerable size, (diameter about 60 mm), occurs just above the 
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anus. It is larger in diameter and more firmly fixed than the small intestine. The 

course of the large intestine describes an arch which surrounds the small 

intestine.  

The wall tissue of the gastrointestinal tract is mostly composed of four 

coats; the serous, muscular, areolar, and inner most mucous coat. (Fig. 2.2) 

However, the oesophagus has only three coats having no serosal coat.
 

 

Fig. 2.2 A cross-sectional diagram showing the internal structure of the wall of 

the gastrointestinal tract. (www.baileybio.com 2012) 

 

The composition of all these coats changes within the different sections 

of the gastrointestinal tract, having a variety of thicknesses and structures. The 

outermost serosal coat consists of differing thicknesses of peritoneum, which 

loosely attaches the gastrointestinal tract to other organs of the body. The 

http://www.baileybio.com/
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muscular coat consists mainly of two coats of differing thicknesses, one of 

circumferential smooth muscle cells and another of longitudinal smooth muscle 

cells. The stomach has extra oblique smooth muscle cells in the cardiac region. 

The areolar coat joins the muscular coat to the mucosal coat. The innermost 

mucosal coat varies in thickness and texture, and it aids the transport of boluses 

along the entire length of the gastrointestinal tract. The gastrointestinal tract 

follows a tortuous path through the body making it extremely difficult to view 

endoscopically.
22,23,24

  

 

2.2.1 Physiology of the Gastrointestinal Tract 

 

Gastrointestinal smooth muscle tissue is constructed from small 

mononucleate cells. They are often considered to be spindle shaped but are 

generally more irregular than that. When relaxed they are between 500 - 700 m 

in length and 5 m in diameter. They are orientated so that their long axes lie in 

a common direction. In the gastrointestinal tract there are two layers of smooth 

muscle tissue. The cells within the inner layer are aligned circumferentially 

while those within the outer layer are aligned longitudinally. 

Smooth muscle cells are many times smaller than skeletal muscle cells, 

which means they have a very much higher surface to volume ratio. This causes 

additional problems in maintaining the intercellular content. To overcome this, 

smooth muscle cells have a membrane resistance per unit area of approximately 

five times that of skeletal muscle cells. 
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The peristaltic controlled progression of the contents along the 

gastrointestinal tract performs an essential function in food digestion. Different 

patterns of gastrointestinal movements are involved in the progression of the 

contents along the digestive tract and they are the result of the interplay between 

activity of gastrointestinal smooth muscle and the enteric neural circuits.
25 

Small intestine peristaltic contractions have been categorised into phasic 

type I and tonic type III waves. Type I waves are responsible for the propulsive 

movement, and have a duration of between 2.6 and 5 seconds with an amplitude 

of between 3 and 75 mm Hg. Type III waves are responsible for the motility, 

and consist of an elevation of 30 mm Hg.  They act as a base-line on which type 

I waves are superimposed. They have a duration of between 10 seconds and a 

few minutes.
26, 

 

2.3 Pathologies of the Gastrointestinal Tract 

 

The pathologies of the gastrointestinal tract are diverse and numerous. 

They range from inflammatory diseases to tumours, which occur within the 

lumen of the tract.  This section will present an overview of the major types of 

the pathologies that can be identified by using a video capsule endoscope.  

Oesophagitis occurs in many different forms, which can be grouped into 

four main categories: reflux, columnar-lined (Barrett’s), infective, and other. 

The most common of these occurs due to reflux of material from the stomach, 

although some occur as a result of ingestion of injurious agents.
27
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Gastro-oesophageal reflux is commonplace in healthy individuals to 

some degree, occurring usually after meals and also during pregnancy, with 

heartburn occurring weekly in approximately 20% of individuals.
28,29, 30

Contact 

and injury of the oesophageal epithelium by acid, and persistent or transient loss 

of tone of the lower oesophageal sphincter is generally accepted as the major 

determinant of reflux.
31

 A number of factors influence the occurrence of 

inflammation or reflux change including the number and nature of refluxate,
32, 33

 

the efficiency of secondary peristalsis to clear the reflux material from the 

oesophagus,
34

 the resilience of the oesophageal epithelium to injury and the 

neutralising effects of bicarbonate rich saliva and secretions of the oesophageal 

glands.
35,36,

 Several grading systems exist to define the macroscopic 

appearances of reflux oesophagitis, which are observable endoscopically.
37

  

Reflux changes consist of basal cell hyperplasia occurring in a layer of 

more than 15% of the thickness of the oesophageal epithelium. This has been 

found with a random distribution over the distal 80 mm of the oesophagus.
38

 

However, these appearances can occur normally in the lower 20 mm of the 

squamous-lined oesophageal mucosa as a result of physiological reflux.
39-41 

 

 There are cases where, some individuals with reflux oesophagitis, for 

reasons which are still unknown, have part of the stratified squamous epithelium 

replaced with columnar epithelium. This condition was first described by 

Barrett,
42

 who mistakenly thought it was a consequence of a congenitally short 

oesophagus. Since its discovery, there have been a number of reports of 

dysplasia and carcinoma complicating this condition,
43-49

 with a risk of 

development of adenocarcinoma. 
48, 50-54

 Barrett’s oesophagus causes the 

mucosal lining of the lower oesophagus to be velvety red-orange in 
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appearance,
55

 and the wall is hypotonic and no longitudinal folds are present. 

(Fig. 2.3)   

 

Fig. 2.3 Barrat’s oesophagus seen as reddening from the oesophageal sphincter 

replacing normal paler oesophageal tissue. (www.patient.co.uk 2012) 

  

 The oesophagus is usually very resistant to infection. However, 

oesophagitis can occur during infectious diseases such as measles, scarlet fever, 

diphtheria, and typhoid. Candidal oesophagitis is the most common form of 

infectious oesophagitis and is characterised by creamy white patches in the 

middle or lower oesophagus. (Fig. 2.4) In chronic cases the mucosa shows 

warty lesions with central ulceration. Perforation and fistula can occasionally 

occur and oesophageal stricture can result in chronic cases.
 56, 57

  

 

http://www.patient.co.uk/
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Fig. 2.4 Candidal oesophagitis characterised by creamy white patches. 

(www.ganfyd.org 2012) 

Crohn’s oesophagitis may be the presenting feature of Crohn’s disease, and can 

occur without the presence of the intestinal disease. Its oesophageal presence is 

now well recognised and appears to be more prevalent in children than adults.
58-

61
 Depending on the stage of the disease erosive oesophagitis, with or without 

stricture formation, occurs with shallow and irregular ulcers in the mucosa, in a 

cobblestone pattern.
62

 (Fig. 2.5) 

 

 

Fig. 2.5 Crohn’s oesophagitis showing irregular ulcers in the mucosa in a 

cobblestone pattern. (1.bp.blogspot.com 2012) 

http://www.ganfyd.org/
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 Benign epithelial tumours are usually small with a warty surface and 

usually occur in the lower third of the oesophagus.
63

 These have to be 

differentiated from inflammatory polyps which are smooth in appearance and 

occur due to oesophageal reflux.
64, 65

 The only true adenomas occur with 

Barrett’s oesophagus.  

 There are 310,000 cases of oesophageal cancer per year worldwide.
66

 At 

least 90% of these are squamous carcinomas, with the rest being 

adenocarcinomas, small cell carcinomas and malignant melanomas. Squamous 

carcinomas appear in the top third of the oesophagus as exophytic, ulcerating or 

infiltrating lesions, or a combination of these and often results in an irregular, 

friable or haemorrhagic stricture.
67-69

 Nearly all adenocarcinoma of the 

oesophagus and gastro-oesophageal junction are believed to occur due to 

malignancy of Barrett’s oesophagus. The majority of these are flat, ulcerating, 

infiltrative lesions associated with stenosis of the oesophageal lumen, with a 

minority appearing polypoid and fungating.
70,71

 (Fig. 2.6) Other 

adenocarcinomas, which do not arise from Barrett’s oesophagus are uncommon. 

Adenosquamous carcinomas are uncommon aggressive tumours, which occur 

when the adenocarcinomatus and the squamous carcinomatus components are 

intermingled. Most cases are associated with Barrett’s oesophagus.
 72,73
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Fig. 2.6 Adenocarcinoma of the oesophagus (trialx.com 2012) 

 Since the first description of primary small cell carcinoma of the 

oesophagus there have been 230 reported cases.
74, 75

 In the majority of cases the 

tumours have been large and found in the lower half of the oesophagus.  

 Characteristically malignant melanoma tumours are large, polypoid and 

friable, which may or may not be pigmented, with adjacent mucosa showing 

patchy or diffuse melanosis and satellite lesions in some cases.
76-78

 These are 

more likely to develop as secondary rather than primary melanomas.
78-81

 

 Oesophageal carcinomas spread to other parts of the body using two 

major methods; directly, or through metastasis. The most common and 

extensive form of direct spread is in the wall of the viscus, particularly in the 

submucosa and submucosal lymphatics,
82,83 

However, spread along the ducts of 

the oesophageal glands is not uncommon.
84

 By the time the diagnosis of 

symptomatic oesophageal carcinoma is confirmed, metastases have occurred in 

50-80% of cases. The most common sites for metastasis are the regional lymph 

nodes. Another potentially important pathway for tumour spread is intramural 

metastasis.
85

 Visceral metastasis most commonly spreads to the lungs, liver and 

the adrenal glands, and is found in 70% of all cases.
86-89
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 Secondary tumours are rare in the oesophagus, with direct spread 

occurring usually from the stomach into the lower end of the oesophagus, and 

less commonly from the bronchus or thyroid.
89-91

 Lymphatic spread occurs from 

carcinoma of the breast,
89, 90, 92, 93

 and visceral metastasis from primary tumours 

in the testis, prostate, kidney, endometrium and pancreas.
89, 90, 94-98

  

 

Fig. 2.7 Hyperplastic polyps (gastrolab.1g.fi 2012) 

 

 Gastric adenomas are uncommon and a lot less frequent than 

hyperplastic polyps which they resemble on gross appearance. (Fig. 2.7) They 

are usually solitary and occur mainly in the antrum or on the boundary of the 

antrum and gastric body. Their importance is their significant potential for 

turning malignant. Synchronous carcinoma coexist in a significant number of 

cases of gastric adenomas so close inspection of the surrounding mucosa is 

required.
99,100
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Fig. 2.8 Gastric adenocarcinoma  (trialx.com 2012) 

 Gastric adenocarcinoma (Fig. 2.8) was reported to be the most common 

form of cancer in 1980, but by 1990 it had been surpassed by carcinoma of the 

lung.
 101, 102 

It is generally a condition that occurs in the middle aged and older 

generations. Carcinomas of the distal stomach are most common in the 

prepyloric, pyloric antrum, and lesser curvature regions. Tumours in the cardia 

region are generally of a smaller size. Gastric cancers may be ulcerating, 

nodular, fungating or infiltrative. Ulcerated malignant tumours tend to be larger 

than their benign counterparts, whereas the other tumours consist of friable 

masses, which project from a broad base into the cavity of the stomach. Many 

gastric tumours, independent of type, secrete mucin giving them a gelatinous 

appearance.
103

 

 Gastric carcinomas spread by four distinct methods: direct, lymphatic, 

haematogenous and transperitoneal spread. Gastric carcinomas are highly 

infiltrative, the majority of which infiltrate through to the subserosa. Penetration 

of the serosa may lead to direct spread to the pancreas, liver, spleen, transverse 
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colon and omentum. Lymph node metastasis is reported to have been present in 

90% of autopsies and 70% of surgical resections, although, the latter figure of 

70% may now be reduced due to lesions being discovered at an earlier stage of 

the cancer. The incidences of lymph node metastasis is related to the increase in 

depth of penetration of the tumour through the stomach wall. Metastasis through 

the blood stream occurs by invasion of the tributaries to the portal venous 

system and can affect any organ, but most commonly the liver, then the lungs, 

peritoneum, adrenal glands, skin and ovaries. The latter can also be infected 

through a transperitoneal route.
 104

 

 Crohn, Ginzberg, and Oppenheimer described the condition of regional 

enteritis, the terminal ileal presentation of Crohn’s disease, in 1932,
105

 although 

it was first described by Dalziel in 1913.
106

 Until the 1960’s it was believed that 

Crohn’s disease only affected the small intestine, but it is now known that it is 

pangastrointestinal making differentiation between it and the other major 

inflammatory bowel disease, ulcerative colitis, very important. Crohn’s disease 

can also manifest itself outside the gastrointestinal tract, in the skin, eyes and 

joints.
107-111 

The disease within the small intestine appears initially as ulceration, 

with strictures and fissures occurring as the disease progresses producing a 

cobblestone pattern within the mucosa in about a quarter of cases. (Fig. 2.9) 
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Fig. 2.9 Crohn’s disease of the small intestine. (www.medgadget.com 2012) 

 

 Epithelial tumours are rare in the small intestine in comparison with 

their occurrence in the large intestine. Although the small intestine contributes 

75% of the mucosal surface area of the gastrointestinal tract, malignancies of the 

large intestine are 50 times more numerous.
112

 The small intestine is the site of 

only 1% of all gastrointestinal carcinomas.
113, 114

 Carcinomas, lymphomas (Fig. 

2.10),  and sarcomas occur most frequently in the distal small intestine and least 

frequently in the duodenum; the opposite is true for adenomas and 

adenocarcinomas.
115, 116

 Most small intestine carcinomas are annular and 

constricting, although a minority are polypoid or fungating. 

http://www.medgadget.com/
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Fig. 2.10 Small intestine lymphoma (www.gastrointestinalatlas.com 2012) 

 The overall appearance of colorectal Crohn’s disease is fundamentally 

the same as that seen in the small intestinal disease. Adenomas are more 

common in males, but are more likely to become malignant in females.
117-119

 

Adenomas are uncommon before the age of thirty, with prevalence increasing 

with age reaching a plateau by seventy, yet adenoma frequency is less age 

dependent than carcinoma frequency.
120

 The malignancy potential of adenomas 

is determined by their size, growth pattern and grade of dysplasia. Up to 40% of 

all large intestinal cancers occur in the rectum and rectosigmoid area. The 

sigmoid colon accounts for a further 25%. Most cancers of the large intestines 

remain relatively small in comparison with tumours found in the stomach.   

 The pathologies of the gastrointestinal tract are numerous and varied. 

The anatomy of the gastrointestinal tract makes visualization of mucosal surface 

and therefore the diagnosis of these pathologies difficult. The next section 

reviews the development of gastrointestinal visualization by presenting 

descriptions of the historical and current methods. 

http://www.gastrointestinalatlas.com/
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2.4 Methods of Observing the Gastrointestinal Tract 

 

This section begins with a brief description of the development history 

of the various techniques used for the examination of the gastrointestinal tract. 

This is then followed with a review of the current methods available which 

includes a comparison of the merits and limitations of these procedures. 

 

2.4.1 Contrast Enema 

 

In the year following the discovery of X-rays by Roentgen in 1895,
121

 

attempts were made to obtain an X-ray visualization of the gastrointestinal tract 

with the use of contrast agents. Becher
122

 used a lead salt, which was 

administered orally to guinea pigs. 

During the period 1897 - 1901, Rumpel and Hilderbrand
123

 instilled air 

into the rectum several days after the oral administration of a bismuth salt. This 

research produced a visualization of the transverse colon. 

In 1904, Rieder
124

 reported that the rectal instillation of bismuth salt was 

superior to its oral administration. 

In 1910 Bachem and Guenter
125

 used a suspension of barium sulphate to 

replace bismuth subnitrate. This new suspension had similar properties to the 

bismuth subnitrate but was cheaper to produce and safer to use. The 

introduction of barium sulphate made the wide spread use of the contrast enema 

procedure possible. 



35 

 

. In 1923, Fischer
126

 performed the first double contrast enema. He 

succeeded in the visualization of the intestinal contours by using the 

administration of a barium sulphate suspension along with air, which also 

overcame the problem of interference from adjacent superimposed intestinal 

loops. In 1927, Bouwers
127

 developed the rotating anode X-ray tube  

In 1955 the convincing results produced by Andren, Frieberg and 

Welin
128

 with their refinements to the double contrast examination of the colon 

led to its acceptance as a standard method. The colon was initially filled to the 

splenic flexure, then evacuated for visualization of the mucosa and finally 

insufflated with air for double contrast visualization. This method was 

particularly good for detecting small polyps and inflammatory changes. 

In 1971, Sellink
129

 introduced the small bowel enema (enteroclysis). In 

1973, Hamelin and Hurtubise
130

 angulated the overhead tube for visualization of 

the sigmoid colon. In the following year Miller, Chemish, Skucas, Rosenak, and 

Rodda
131

 proposed the use of pharmacologically induced hypotonia of the colon 

(using glucagon), for use in double contrast enemas 

 

 

2.4.2 Endoscopy 

 

In 1806 Bozzini
132

 used a tin tube, illuminated with a candle through 

mirrors, to inspect body cavities. Sixty-two years later (1868), Kussmaul
133

 

developed the first gastroscope. It was a rigid metal tube that was inserted using 

a previously placed flexible obturator as a guide. 



36 

 

  In 1881 von Mikulicz-Radecki
134

 used a tube 65cm in length, and 13mm 

in width, with its distal quarter slightly angulated. 

In 1923 Schindler
135

 introduced gastroscopy into Europe and also the 

USA. Nine years later, Schindler
136

 constructed the flexible gastroscope. 

In 1952 Hopkins, Kapani, and van Heel
137

 suggested using flexible optic 

fibres for the sigmoidoscope. Five years later Hirschowitz, Curtiss, Wilbur 

Peters, and co-workers
138

 developed the prototype of a fibre optic gastroscope. 

Six years after this in 1963, Oshiba, Watanabe, Niwa, Kanazawe, and Tanaka
139 

constructed the prototype of a fibre optic scope.
 

 

2.5 Current Methods and Techniques of Observing the 

Gastrointestinal Tract 

 

When the purpose of designing a device is to aid observation of the 

gastrointestinal tract, it is essential that there is an understanding of the current 

methods that are being used. There are a wide range of techniques available to 

the medical profession, from contrast enema to virtual colonoscopy. 

This section discusses the variety of different tools and techniques used 

for these observations, reviewing both their merits and inadequacies as 

diagnostic tools.
140 
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2.5.1 Radiological Examination of the Colon Procedures 

 

The radiological methods for examination of the colon can be divided 

into two categories; those that involve a barium enema visualization 

procedure and those that involve an antigrade visualization procedure. 

2.5.1.1 Precursory Visualization of the Colon 

 

In preparation for a barium enema, the abdomen is flouroscopically 

screened. Radiographs are then obtained if abnormal findings are encountered 

(e.g. residual contrast medium, foreign bodies, calcifications, toxic megacolon, 

ileus, faeces, pneumoperitoneum). 
140 

2.5.1.2 Single Contrast Enema with Single Suspension 

 

The single contrast enema examination requires a fully cleansed colon. 

The cleaning of the colon is of paramount importance as any faecal residue may 

lead to diagnostic misinterpretations. Preparation of the colon consists of dietary 

restrictions, hydration, laxatives and cleansing enemas. A preparation enema is 

administered 1-2 hours before the examination to those patients who have not 

followed the usual prerequisite dietary regime. 

This technique is used in order to gain a visualization of an overall 

profile view of the large intestine and can also be used to detect possible 

obstructions.  Single contrast enema is used as the first part of a biphasic colon 

examination.
140 
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2.5.1.3 Double Contrast Enema 

 

The double contrast enema is the current standard technique for 

radiological examination of the colon. (Fig. 2.11) This method uses a thin 

barium coating of the mucous layer to outline the colon together with 

simultaneous luminal air distension to open and separate adjacent loops. The 

method requires a cleansed colon, good barium preparation, a relaxed colon, and 

a good radiographic technique. This examination requires the same type of 

preparation as that for the single contrast examination. The colon must be totally 

cleansed of faecal material. 

Colonic segments such as the caecum and the ascending colon are fully 

accessible with this procedure. There is also partial accessibility to the 

transverse colon, descending colon, and the sigmoid colon with the aid of 

palpation, (a simple technique in which a doctor presses lightly on the surface of 

the body to feel the organs or tissues underneath). 

Pathological changes are demonstrated in two projections, the 

orthograde and the tangential projections, which are used primarily in the 

visualization of diverticula, polyps, carcinomas, fistulas, and the appendix. 

Additional projections at different angles may also be used.
 

The double contrast examination has many advantages over the single 

contrast examination. The double contrast examination offers an improved 

evaluation of the mucosal surface by identifying fine ulceration, granular 

mucosal patterns, follicular hyperplasia and small polyps. Superimposition of 
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adjacent intestinal loops is less problematic as the colon is "transparent". The 

double contrast examination gives a good demonstration of impaired 

distensibility, and the evacuation reflex is also reduced.
140

  

 

 

Fig. 2.11 Double contrast radiograph of large intestine. 

(http://www9.biostr.washington.edu/hubio511/RadAbdo/frames.htm 2012) 
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2.5.1.4 Biphasic Colon Examination 

 

This examination combines both the single and double contrast 

examinations. The single contrast enema is performed first, followed by the 

double contrast enema which is performed with the instillation of air after 

evacuation of the barium salts. 

During the single contrast enema component of this biphasic 

examination, spot films of various colonic segments are obtained during the 

retrograde flow of the barium, with the patient table being rotated into a viewing 

position that excludes overlapping colon loops. Compression views of the 

caecum, a survey radiograph, and a post evacuation film are also taken. During 

the double contrast enema component of this biphasic examination the patient’s 

table is required to make three rotations.
140

  

 

 

2.5.1.5 Instant Enema 

 

This is an examination that is performed without prior preparation. It 

uses a double contrast examination for colitis and a single contrast examination 

for distal obstruction, using barium sulphate solution or water-soluble contrast 

agents. 

A preliminary radiograph of the abdomen is taken to exclude a toxic 

megacolon or perforations. Barium sulphate suspension is then administered. 

Instillation, the same as that for the double contrast examination, is undertaken 
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by initially filling the colon to the splenic flexure, followed by air insufflation, 

and drainage of the rectum. Adequate visualization of the affected colonic 

region is possible (as there is now no faecal matter present) without attempting 

to produce visualization of the remaining normal colon.
140

  

 

2.5.1.6 Air Enema 

 

The air enema examination is used in the case of acute colitis. There is 

no need to cleanse the colon before this procedure because the colon is free 

from faecal matter as a result of this condition. Air is gently insufflated into the 

patient under fluoroscopic guidance and radiographic images are taken of the 

abdomen.
140 

 

 

2.5.1.7 Water Enema 

 

A water enema is used to verify a suspected lipoma of the colon. This 

examination method, which makes use of the difference in the absorption 

energy of water and fat, manifests the lipoma as a radiolucent region. This 

method has not found widespread use with lipomas, which are usually 

diagnosed by endoscopic, CT or MRI examinations. 

The cleansing preparation for this procedure is the same as that for the 

double contrast enema examination. Retrograde filling of the colon with water is 
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performed through a rectal tube. Radiograpical images of the area under 

investigation are taken from different projections and with compression.
140 

 

 

 

2.5.1.8 Antegrade Examination of the Intestines 

 

There are two distinct procedures for performing this examination. The 

first is the small bowel series, and the second is enteroclysis. 

The small bowel series procedure consists of 800-1200 ml of barium 

suspension being administered orally. When the ileo-caecal region and the 

ascending colon have filled with barium, double contrast visualization is 

possible. Effervescent powder is administered orally and a waiting period is 

required for the gas to progress to the desired region. Air is also insufflated into 

the rectum through a rectal tube to enhance visualization. 

The enteroclysis procedure commences with the duodenum being 

intubated with a Bilbao-Dotter tube and the tip advanced to the duodeno-jejunal 

junction with a guide wire. Then an infusion of 700 ml of barium suspension is 

administered. An injection of air, or water with a 5% methylcellulose solution, 

when passed through the tube results in excellent visualization of the entire 

small intestine. Rectal insufflation of air, after the barium suspension has 

reached the ascending colon, also creates suitable conditions for a good 

visualization of the region.
140 
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2.5.2 Virtual Colonoscopy  

 

Virtual colonoscopy is a non-invasive method of examining the entire 

small and large intestines. There are two different methods of performing such 

virtual colonoscopies. The first method uses images produced from a number of 

Computer Tomographic (CT) scans, and the second method uses images 

produced from a number of Magnetic Resonance Imaging (MRI) scans.
141,142

 

 

2.5.2.1 CT Colonoscopy 

 

Effective CT colonoscopy (CTC) has grown out of the rapid increase in 

computer technology. Since 1994, when the Vining group produced the first 3D 

images of the colon, both 2D and 3D images of the colon have been of 

beneficial use in colonic diagnoses.
143,144 

This method of colorectal imaging offers rapid visualisation of the 

complete colorectal area allowing for greater patient comfort and convenience. 

There is no need for sedation of the patient or risk of perforation as the only 

invasive component of the procedure is the introduction of an enema tip for 

insufflation of the colon. A great deal of preparation is required, however, 

followed by adequate distension of the colon. This can produce discomfort for 

the patient as well as being time consuming for the attending radiologist. 

Before the screening can take place the patient has to undergo adequate 

preparation of the colon. This preparation, similar to that required for the 

contrast enema procedure, consists of two prerequisite parts. The first is that the 
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patient limits their oral intake, to clear liquids or to a low residual diet, during 

the 24 hours before screening is due to begin. The second is that the patient 

ingests a cathartic or laxative to promote the evacuation of the colonic 

content.
145, 146, 147

 

Cleansing is essential because of the detrimental effects that any faecal 

matter or excess fluid remaining in the bowel can have on the CT images. 

Faecal matter appears as areas of possible interest in the scans resulting in a 

false positive diagnosis, whereas excess fluid can obscure actual areas of 

interest, resulting in a false negative diagnosis.
 
 

Adequate distension of the colon is just as important as proper cleansing 

for the success of CT colonoscopy. Collapsed portions of the colon may cause 

some polyps to remain undetected there by leading to a false negative diagnosis, 

or they could suggest possible carcinomas, which narrow the lumen, resulting in 

a false positive diagnosis.
145,147 

When the colon has been adequately prepared and distended a number of 

CT scans of the abdomen are taken. The resulting images are used, together with 

computer software, to reconstruct a virtual colon for examination by the 

attending radiologist.
148 

The scanners can produce two-dimensional and three-dimensional 

images (Fig. 2.12) providing the opportunity for different diagnostic techniques 

to be exploited. Using this stored data and dedicated computer software, the 

virtual colonoscopies can then be regenerated at any future time. 
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Fig. 2.12 CT colonography showing both the external and internal surfaces of 

the large intestines. (http://www.mtbakerimaging.com 2012) 

 

The introduction of multidetector array computed tomography, (MDCT), 

in late 1998 provided the capability of producing thinner reconstruction scan 

widths. The scanning acquisition times were comparable to those of the single 

detector array computed tomography, (SDCT). Additionally these new systems 

produced images more rapidly than the SDCT, and consequently images of 

comparable quality could be acquired with decreased radiation dosage.
149 

 

 

 

 

 

 

 

http://www.mtbakerimaging.com/
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2.5.2.2 MRI Colonoscopy 

 

In recent years MRI colonography (Fig. 2.13), has evolved as a potential 

colorectal cancer screening strategy, but it still requires further development. 

With continued improvements in multi-slice CT colonoscopy, now enabling the 

combination of lung and colon imaging during one pause in breathing with 

automated dose optimisation, MRI colonography has largely been superseded. 

However, the main potential role for MRI colonography is still colorectal cancer 

screening, but it can also play an important role with patients who have 

undergone incomplete endoscopic colonoscopy. MRI colonography can achieve 

an examination of the entire colon in these patients.
150,151

 

 Currently MRI colonography patients undergo a bowel cleansing similar 

to that used in other methods of colonic observation.  It has been found recently 

that MRI imaging is a useful non-invasive tool when used for patients with 

Crohn's disease, as it can be used to assess disease activity. MRI colonography 

can also be used to demonstrate the nature and extent of a Crohn's disease 

stricture if the small intestine is ante-retrograde filled and distended by the 

enema. A resected ileum facilitates retrograde filling of the small intestine. 
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Fig. 2.13 MRI colonography showing exterior and interior view of large 

intestine (http://www.mr-tip.com/exam_gifs/mr_colonography_gadolinium_per_rectum_1.gif, 

http://radiology.rsna.org/content/223/1/248/F2.small.gif  2012) 

Motion artefacts can interrupt this procedure when data acquisition per 

slice takes the complete imaging time. This means that 2D and 3D gradient echo 

images are sensitive to motion artefacts. In contrast, the half-Fourier acquired, 

single-shot, turbo spin-echo/single-shot, fast spin echo (HASTE/SSFSE) 

technique allows sequences to be performed while patients are breathing, 

because of the serial acquisition nature of the device which takes fewer than 300 

ms to acquire a slice. However, natural peristaltic movement of the colon also 

produces motion artefacts. These are decreased with the use of muscle relaxants. 

152, 153 

Just as the double contrast enema procedure requires an optimally 

distended colon, the MRI colonography also requires this, in order to obtain the 

maximum mass detection. To achieve this, a positive contrast liquid or gas 

enema is usually used, although in some cases a negative contrast liquid or gas 

enema, such as water or air, can be used.  

http://www.mr-tip.com/exam_gifs/mr_colonography_gadolinium_per_rectum_1.gif
http://radiology.rsna.org/content/223/1/248/F2.small.gif
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2.5.3 Endoscopy (Push Enteroscopy) 

 

There are five types of conventional endoscopic instruments for 

inspecting the gastrointestinal tract; the proctoscope, proctosigmoidoscope, 

colonoscope, gastroscope and double-balloon enteroscope. (Fig. 2.14) 

The proctoscope is used for examinations of the anus and anal 

conditions and as part of a cancer screening program (beginning at the age of 45 

years for those deemed to be at risk). It is also used for an initial examination 

before the use of either a proctosigmoidoscope or a colonoscope. Generally, it is 

not necessary to prepare the colon, as normal bowel movement prior to the 

examination is usually adequate, but if the distal rectum is still full, a Fleet 

enema is given.
 

Proctosigmoidoscopy is performed on all patients with intestinal 

complaints and is part of the physical examination of any patient older than 35 

years. As with anal proctoscopy, proctosigmoidoscopy can be used to examine 

anal conditions such as pain, pruritus, perianal bleeding, passage of mucous, or 

haemorrhoids. It can also be used to investigate intestinal haemorrhage, positive 

guaiac test, diarrhoea or constipation.  

Colonoscopy is performed if areas of concern are radiographically found 

or suggested, or if there has been an inconclusive radiographic examination. It is 

also used as a follow-up examination of a precancerous condition, as a follow-

up of an anastomosis, or used in cases of observed bleeding. Colonoscopy is 

also a therapeutic tool, used to perform, polypectomy, coagulation of bleeding 

sites, or removal of foreign bodies.
154 
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 Proctosigmoidoscopy and colonoscopy require a similar preparation of 

the colon as that used for radiographic examinations although no dietary 

restrictions are necessary. The colon is considered to be clear when the evacuant 

is clear of faecal matter.  

                                                                                                                                                                                                    

 

Fig. 2.14 Images of a proctoscope, sigmoidoscope, colonoscope, gastroscope 

and a double balloon enteroscope.  

(http://www.rbmedical.co.uk, http://www.generalmanual.com , http://www.zgrum.com/,   

http://img.medicalexpo.com, http://www.suatozden.com/ 2012) 

 

Gastroscopy is performed by oral approach and allows a physician to 

endoscopically view the oesophagus, stomach and the proximal small intestine. 

http://www.rbmedical.co.uk/Products/GP-Products/Proctoscopes.aspx
http://img.medicalexpo.com/images_me/photo-g/video-endoscope-video-gastroscope-69587-2966395.jpg
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The procedure requires the patient to follow a controlled diet up to twenty four 

hours before the procedure.  

Total enteroscopy is performed initially using double balloon endoscopy 

by anal approach, where a tattoo is injected at the most proximal site reached by 

the endoscope.  Double balloon endoscopy is then carried out by oral approach 

to examine the remaining area. Double balloon endoscopy by oral approach is 

performed within two days after the anal approach. Before both approaches, 

intestinal looping is checked fluoroscopically. The anal approach is performed 

after bowel preparation with an oral electrolyte lavage, the same as that used for 

regular colonoscopy. The oral approach is performed after overnight fasting. 

Patients are sedated if necessary, with blood pressure, heart rate, and oxygen 

saturation monitored during the procedures.
154

  

 

2.5.4 Video Capsule Endoscopy 

 

Research and development of the video capsule endoscope was initiated 

in 1995, by Dr. Paul Swain’s (London, UK) group and Dr. Gavriel Iddan 

(Israel) both working independently. In 1996 these two groups collaborated and 

by 1999, working prototypes were produced.
155,156

 This research and 

development culminated in the introduction of the M2A video capsule 

endoscope produced by Given Imaging Ltd (Israel), and it has provided a new 

method of endoscopy, which allows painless endoscopic examination of the 

entire small intestines.
157
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 The patient is required not to eat any food for ten hours before the 

examination is to take place. The patient is then asked to wear a special belt, 

which receives and records the transmitted images, which come from the M2A. 

The M2A capsule is then swallowed with the aid of a glass of water. Video 

images and positional data are acquired as the M2A passes through the digestive 

system. This information is then transmitted via an array of sensors secured to 

the abdomen, to the DataRecorder attached to the belt worn around the patient's 

waist. The eight-hour examination can be conducted while a patient continues 

their normal daily activities. The patient returns the DataRecorder for processing 

on the RAPID workstation. The RAPID application enables the physician to 

view and analyze the Patient Rapid Report (PRR), save individual images or 

short video clips and add comments for consultation and reports.
158

 

 

 

Fig. 2.15 Images of the PillCam ESO 2, SB 2, and COLON video capsule 

endoscopes. (www.givenimaging.com 2012) 

http://www.givenimaging.com/
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Given Imaging Ltd (Israel) first received FDA approval for their M2A 

wireless video capsule endoscope in 2001, and rebranded it PillCam. Since 2005 

there have been several technological advances, both in the capsule itself and 

the associated hardware and software, that have greatly improved image quality 

and battery lifespan. Video capsule endoscope systems consist of a capsule, a 

sensing system, and a workstation. Portable external viewers for direct 

monitoring of the images received during the examinations are also available. 

Currently, capsule endoscopy systems are manufactured by four companies. 

Video capsule endoscopy devices available from Given Imaging Ltd (Israel)  

include the PillCam SB for the small intestine, the PillCam ESO for 

oesophageal imaging and PillCam COLON for the large bowel. (Fig. 2.15) 

Olympus (Japan), IntroMedic (Korea) and Chongqing Jinshan Science and 

Technology Group (China) have entered the sector and produced the 

EndoCapsule, MiRo-Cam and the OMOM respectively, all for use specifically 

in the small bowel. The different companies have approached the video capsule 

endoscope system in slightly different ways. The four capsules differ with 

regard to the type of sensor used, the capsule  dimensions, image acquisition 

frame rate, field of view, and recording duration, which can be seen in more 

detail in Table 2.1. 
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 PillCam SB2 EndoCapsul

e 

MiRo-Cam OMOM 

capsule 

Length, mm 26 26 24 27.9 

Diameter,mm 11 11 11 13 

Weight, g 3.4 3.8 3.4 6 

Frame rate, 

frames/second 

2 2 3 0.5-2 

Image sensor CMOS CCD CCD CCD 

Field of view 156° 145° 150° 140° 

Illumination 6 white LEDs 6 white 

LEDs 

6 white 

LEDs 

NA 

Antennas 

(body leads), n 

8 8 9 14 

Real-time (RT) 

view 

RT viewer VE-1 

viewer 

Miro-

Viewer 

RT 

monitoring 

Recording 

time, hours 

8 9 11 7-9 

 

Table 2.1 Comparison of available small intestine video capsule endoscopes. 

 

Video capsule endoscopes allow patients to continue daily activities 

throughout the endoscopic examination, although patients are advised not to 

undergo heavy exercise. Water can be consumed two hours after capsule 
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ingestion and food eaten after four. Patients are asked to make a record of any 

abdominal symptoms and check a blinking light on the belt pack to confirm 

signal reception. 
158

 Originally designed to image the entire gastrointestinal 

tract, video capsule endoscopes have for the first time allowed non-invasive 

visual observation of the mucosal surface of the entire small intestine. The full 

range of indications within the small intestines is becoming apparent as these 

devices get more clinical exposure. The main indications are obscure 

gastrointestinal bleeding, iron deficiency anaemia, non-stricturing small 

intestine Crohn’s disease, celiac disease, hereditary polyposis syndromes and 

small intestinal tumours.
159 

 

The major adverse event associated with video capsule endoscopy is the 

retention of the capsule due to intestinal obstructions such as stricture, stenosis, 

diverticula and fistulas. To investigate the possibility of retention, Given 

Imaging Ltd (Yoqneam, Israel) have produced a patency system consisting of a 

self-disintegrating AGILE capsule without a camera but containing a radio-

frequency identification (RFID) tag and a RFID scanner. The AGILE capsule is 

identical in size to the small-bowel PillCam. This solid, biodegradable capsule 

contains the small RFID tag (2 × 12 mm) within a radio-opaque lactose and 

barium body. This body is coated with an impermeable membrane of parylene 

except for two small windows that allow luminal fluid access to paraffin timer 

plugs to bring about disintegration of the capsule within 30 hours. The capsule 

remnants can pass through even small orifices. Detection of a radio-frequency 

signal by the scanner indicates that the capsule is still in the gastrointestinal 

tract. The radio-opaque capsule can be detected by plain abdominal X-ray.
160
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 Functional patency is verified by this test if the AGILE capsule is 

egested intact without any change in its original dimensions, irrespective of the 

time of expulsion, or, if the RFID tag is not detected when the patient is scanned 

at 32–38 hours. Patients at high risk who develop pain during the AGILE 

capsule test are not eligible for video capsule endoscopic examination.
161

 

In 2004, Given Imaging Ltd (Israel) developed the PillCam ESO as a 

non-invasive device for the examination of the oesophagus. The video capsule 

endoscope, although similar in size to the intestinal capsule, was equipped with 

a camera at each end, allowing the capture of 14 images/second, 7 from each. 

The operating time was 20 minutes. A new version, the PillCam ESO 2, was 

released in 2007. It has almost twice the field-of-view, a 50% increase in depth-

of-view, a frame rate of 15 frames/second, and better image quality with a wide 

dynamic range, and illumination that can be adjusted in real time to provide 

optimal images. 

A specific ingestion protocol is required to slow down the transit of the 

capsule in order to increase the examination duration of the oesophageal 

mucosa. Patients lie down on their right side, and following ingestion of the 

capsule, swallow sips of water every 15 seconds over 3 minutes. The main 

indications for oesophageal video capsule endoscopes are screening of Barrett’s 

oesophagus and of oesophageal varices.
162

  

A recent addition to the number of video capsule endoscopes on the 

market was the PillCam COLON capsule. The device has some technical 

aspects that are different from those of the small intestine capsule. It is 

approximately 6 mm longer and like the PillCam ESO it has dual cameras that 

enable the device to acquire video images from both ends. The optics allow 
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more than twice the coverage area than that of the small intestine capsule, and it 

has automatic light control with a video capture frame rate of four frames per 

second. After initial capsule activation and 5 minutes of image transmission, the 

capsule enters a delay mode of approximately 2 hours, after which it 

spontaneously restarts the transmission of images for approximately 10 hours. 

This enables the device to pass a long way towards the large intestine before the 

precious battery lifetime expires.
162

  

 

 

 

2.5.5 Evaluation of Current Methods of Observing the 

Gastrointestinal Tract  

 

 

For the patient, the requirement of having their gastrointestinal tract 

examined is an extremely daunting prospect, and this is understandable. 

Significant discomfort is involved in the entire procedure, from the cleansing of 

the intestines, to the actual examination of the patient. Due to the nature of most 

of the conventional methods of examination there is a requirement for totally 

clean intestines. Therefore, the patients are given a diet of low residual foods or 

clear liquids for anything up to 48 hours (for the less invasive methods), before 

the procedures take place. In addition, they then have their intestines cleansed 

with laxatives just before the procedures begin. After the preparation follows the 

examination itself, which is an intimidating experience and can also be 
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dangerous sometimes when using the more invasive techniques. Although there 

are a great number of techniques open to the medical profession for observing 

the bowels, none of them are completely satisfactory. This section, therefore, 

discusses the merits and inadequacies of these techniques, and looks to the 

future and new methods of observing the gastrointestinal tract.
143

 

 

 

2.5.5.1 Intestinal Preparation Evaluation 

 

 With the non-invasive methods such as virtual colonoscopy, it is 

essential that the entire colon is fully cleansed, dry, and distended. Faecal matter 

in small quantities can produce false positive results because it can mimic 

polyps, while in large amounts it can produce false negative results by 

obscuring polyps completely. Residual fluid can also obscure polyps thus giving 

false negative results. A poorly distended intestine, can obscure polyps and also 

appear to resemble carcinomas that narrow the lumen.
143  

Radiological screening of the gastrointestinal tract also requires 

complete cleansing of the intestines before the examination can be performed. If 

the intestines have not been cleansed properly the patient has to undergo a 

preparatory enema. A contrast medium is introduced into the intestines, which is 

then fully distended. As with virtual colonoscopy, faecal matter and inadequate 

distension can be misinterpreted by the attending radiologist. With both non-

invasive colonoscopy and radiological examinations, it is essential that the 
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patient’s intestines are not over distended, as this can lead to perforations in the 

intestinal wall. 

 Pre-procedural preparation of the intestines for video capsule endoscopy 

is a controversial issue. Some favour the bowel preparations and prokinetics.
 

However, according to data from the international conference on capsule 

endoscopy, it was suggested that there was no need for routine use of intestinal 

preparations.
163

 The manufacturers suggest patients fast overnight for at least 

twelve hours before taking the capsule. During the procedure patients can drink 

clear liquids two hours after capsule ingestion and eat a light meal a further two 

hours after that. 

 Summarizing these findings it appears that virtual colonoscopy and 

radiological screening require long preparation times and unpleasant preparation 

procedures. However, the preparation procedures for video capsule endoscopy 

are less unpleasant and less time consuming.  

 

 

 

2.5.5.2 Comparison of Small Intestinal Investigation Techniques 

 

2.5.5.2.1  Obscure Gastrointestinal Bleeding 

 

Several studies have compared video capsule endoscopy with push 

enteroscopy in the evaluation of patients with obscure gastrointestinal bleeding. 
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They have shown a significantly better diagnostic yield for video capsule 

endoscopy (63 %) compared with push enteroscopy (23 %). In a recent 

randomized study first line exploration of obscure gastrointestinal bleeding 

identified a bleeding source with video capsule endoscopy in 50% and push 

enteroscopy in 24% of patients. Furthermore, it was shown that video capsule 

endoscopy detected a source of bleeding in a greater proportion of patients (72 

%), than computed tomography angiography (24 %), or standard angiography 

(56 %) and gave positive findings in more than half of the cases that were 

negative at computed tomography or angiography. When using intraoperative 

endoscopy as a reference, video capsule endoscopy had sensitivity, specificity 

and positive and negative predictive values of 95%, 75%, 95%, and 86% 

respectively. 
164

 

Ell et al performed a study comparing video capsule endoscopy to push 

enteroscopy on 32 patients with a history of GI bleeding. The patients had been 

previously examined by a variety of imaging techniques, which failed to 

identify the source of pathology. The results of their investigation revealed that 

push enteroscopy detected a definitive source of bleeding in 28% compared with 

66% by video capsule endoscopy. The most common aetiologies encountered 

were irritable bowel syndrome, angiodysplasia and tumours.
164

 

The use of video capsule endoscopy and push enteroscopy were also 

compared in a group of 50 patients with a history of chronic gastrointestinal 

bleeding and negative screenings in the past. The results of this study also 

showed that video capsule endoscopy was found to be superior in diagnosing a 

source of bleeding located within the small intestine (68% versus 32%). The 

total diagnostic yield, which took into account pathology both within and 
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outside of the small intestine, also demonstrated the superiority of video capsule 

endoscopy over push enteroscopy (76% (38/50) versus 38% (19/50)).
165

 

The diagnosis of bleeding by video capsule endoscopy has also been 

compared with that of barium imaging. A study by Costamagna et al examined 

the use of video capsule endoscopy in a total of 20 patients with a variety of 

small intestinal diseases, including gastrointestinal bleeding, irritable bowel 

syndrome, suspected sarcoma recurrence, familial adenomatous polyposis, 

chronic diarrhoea and small bowel polyps. Several procedures, including push 

enteroscopy, gastroscopy, colonoscopy, angiography, intraoperative 

enteroscopy and radionuclide scanning, had been performed before the study. 

The diagnostic yield of video capsule endoscopy in their investigation was 45% 

(9/20), while that of barium follow through was only 20% (4/20). The most 

common sources of bleeding detected were angiodysplasias followed by 

suspected irritable bowel syndrome and polyps.
165

 

It has been shown that the diagnostic yield for video capsule endoscopy 

is higher compared with that of double-balloon enteroscopy,
 
with the agreement 

between video capsule endoscopy and double-balloon enteroscopy at about 74% 

for angioectasias, 96% for ulcerations, 94% for mucosal and sub mucosal 

polyps, and 96% for large tumours. Two studies investigated the yield and the 

outcomes of double-balloon enteroscopy following video capsule endoscopy in 

patients with obscure gastrointestinal bleeding. Patients first underwent video 

capsule endoscopy and then double-balloon enteroscopy. The overall detection 

rates for both techniques were similar. Therefore, for this condition, these two 

techniques may be considered complementary. However, double-balloon 

enteroscopy may permit endoscopic treatment of the bleeding lesion. 
164
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Video capsule endoscopy is a cost-effective investigation tool in patients 

with obscure gastrointestinal bleeding. The diagnostic yield of video capsule 

endoscopy compared with other imaging procedures has been evaluated as a 

measure of efficacy. The mean cost of a positive diagnosis with video capsule 

endoscopy was only 55% of that for other procedures.
165

  

 

2.5.5.2.2  Coeliac Disease 

 

Two studies of patients with suspected coeliac disease and positive 

coeliac serology, compared the diagnostic performance of video capsule 

endoscopy, with that of conventional upper gastrointestinal endoscopy with 

duodenal biopsies. Using duodenal histology as the gold standard, both studies 

showed that video capsule endoscopy had good sensitivity (85.0%–87.5 %) and 

specificity (90.9 % –100 %) for the diagnosis of coeliac disease. In a more 

recent study carried out in untreated patients with biopsy-proven coeliac disease, 

video capsule endoscopy had 92% sensitivity and 100% specificity for the 

detection of villus atrophy.
 164

 

In a study of 47 patients with complicated coeliac disease video capsule 

endoscopy had a high diagnostic yield, by identifying mucosal abnormalities 

and by excluding adenocarcinoma. In another study of 14 patients with 

refractory coeliac disease, video capsule endoscopy identified signs of 

ulcerative jejunoileitis or intestinal T-cell lymphoma in 2/7 patients with type II 

refractory coeliac disease. In one of these, video capsule endoscopy was the 

only method by which the diagnosis could be made.
165
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2.5.5.2.3 Small Intestinal Tumours 

 

A small series of studies showed that video capsule endoscopy is more 

effective than barium contrast radiological procedures in detecting small 

intestinal polyps in patients with familial adenomatous polyposis or Peutz–

Jeghers syndrome.
164

  

The accuracy of video capsule endoscopy has been shown to equal that 

of MRI in detecting small intestinal polyps bigger than 15 mm, but the detection 

rate for polyps 5–15 mm in size was much higher for video capsule endoscopy 

and polyps smaller than 5 mm were visualized only by video capsule 

endoscopy. However, it provided only partial views of large polyps, while MRI 

provided a better estimation of the site and the size of the detected polyps. 

Available published data suggests that now video capsule endoscopy may 

replace enteroclysis for surveillance in Peutz–Jeghers syndrome patients. Video 

capsule endoscopy is indicated in familial adenomatous polyposis patients with 

duodenal polyps, because these patients may develop small intestinal polyps.
165

 

The diagnosis of small intestinal tumours has, often been delayed when 

traditional techniques are used. The majority of patients with small intestinal 

tumours usually undergo multiple investigations prior to video capsule 

endoscopy without any definitive diagnosis. The average number of previous 

negative procedures prior to video capsule endoscopy has been reported to range 

between 3.6 and 5 per patient.
164
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Virtual colonoscopy methods suffer from movement artefacts. This 

means it is imperative that the patient lies completely still during the scanning 

procedure. As this takes a relatively long time for each position, discomfort may 

be felt by the patient during the entire procedure. Sensitivity is also an issue 

with virtual colonoscopy. Dachman
150

 wrote an article reviewing the diagnostic 

performance of virtual colonoscopy. He stated that Fletcher et al
152 

found that in 

180 high risk patients the sensitivity and specificity were 75.2% for the 

detection of polyps 10 mm or larger, and 47.2% for polyps 5-9 mm in size. He 

also stated that Rex et al
153 

in a screening population study found that CT 

colonoscopy identified 75% of patients with adenomas larger than 20 mm, 83% 

of patients with adenomas that were 10-19 mm, and 43% of patients with 

adenomas that were 6-9 mm.  

Video capsule endoscopy provides a satisfactory estimation of tumour 

location when compared with surgery or autopsy, and it appears to have an 

influential role in therapeutic screening, providing information on the location, 

dimension, and appearance of the lesion.
164

 

 

2.5.5.2.4  Crohn’s Disease 

 

The diagnostic yield of video capsule endoscopy for Crohn’s disease 

when compared with all the other available procedures showed significant 

incremental diagnostic yields for all the patients examined. Small-bowel follow 

through showed 40% (9 studies) while colonoscopy and ileoscopy 15% (4 

studies), CT enterography 38% (3 studies), push enteroscopy 38% (2 studies) 
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and magnetic resonance imaging (MRI) 22% (1 study).
 
There was no significant 

difference seen between video capsule endoscopy and alternate modalities for 

diagnosing small intestinal Crohn’s disease in patients with a suspected initial 

presentation.
164

 

Subgroup analysis of patients with established disease and suspected 

small intestinal recurrence revealed a statistically significant difference in 

diagnostic yield in favour of video capsule endoscopy compared with all the 

modalities mentioned. In a small retrospective study in known or suspected 

Crohn’s disease, the sensitivity of video capsule endoscopy for active small 

intestinal Crohn’s disease was not significantly different from computed 

tomography, ileocolonoscopy or even small-bowel follow through. However, it 

was concluded that lower specificity, and the need for preceding radiography 

due to the high frequency of retention, may limit its use as a first-line test. 

Video capsule endoscopy was found to be more effective in finding recurrences 

than colonoscopy and intubation of the neoileum after surgery for Crohn’s 

disease. Out of 24 patients retrospectively studied, recurrence was demonstrated 

in 15 (62 %) with the video capsule endoscopy and only in 6 (25 %) with 

colonoscopy. Video capsule endoscopy should also be considered in ulcerative 

colitis patients with atypical clinical features, particularly after colectomy and in 

cases of indeterminate colitis.
165

 

Several recent studies sought to compare the use of video capsule 

endoscopy to barium studies in diagnosing Crohn disease. Eliakim et al looked 

at 20 patients with a history of recurrent abdominal pain, weight loss, or chronic 

diarrhoea. Each one underwent evaluation by barium studies followed by video 

capsule endoscopy and CT enteroclysis. The diagnostic yield of video capsule 
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endoscopy was determined to be 70% and that of the radiologic procedures 

37%. Furthermore, video capsule endoscopy detected all of the lesions located 

by small bowel follow through and CT enteroclysis and detected additional 

lesions in 47% of the cases. In another study by Eliakim et al looking at 35 

patients, the diagnostic yield of video capsule endoscopy was reported to be 

77%, while that of barium and CT studies were 23% and 20%, respectively. In a 

recent retrospective study of 31 patients documented to have terminal ileac 

involvement with Crohn’s disease using colonoscopy, which included 

retrograde ileoscopy, the diagnostic yield of video capsule endoscopy was 

significantly superior to enteroclysis (89% versus 37%).
165

 

 

2.5.5.2.5  Oesophageal Investigations 

 

The main indications for oesophageal video capsule endoscopy are 

screening of Barrett’s oesophagus and of oesophageal varices. Since 2006, the 

accuracy of oesophageal video capsule endoscopy for detecting lesions related 

to gastro-oesophageal reflux has been evaluated in several studies comparing 

the diagnostic yields of video capsule endoscopy and gastroscopy. In these 

studies, oesophageal video capsule endoscopy appeared feasible, safe, well 

tolerated, and always preferred by patients to unsedated gastroscopy. However, 

the sensitivity of oesophageal video capsule endoscopy was quite variable 

between studies, ranging from 60% to 100% for Barrett’s oesophagus and from 

50% to 89% for erosive oesophagitis. In addition, in a recent study, a quite low 

diagnostic agreement was found between oesophageal video capsule endoscopy 
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and gastroscopy in a heterogeneous group of patients undergoing gastroscopy 

because of suspicion of a range of various oesophageal diseases.
164

 

A large, multicenter retrospective study compared gastroscopy and 

oesophageal video capsule endoscopy for the detection of oesophageal varices, 

and showed very good positive and negative predictive values (92% and 77%, 

respectively) and an overall fair agreement with gastroscopy. Moreover, in 

discriminating between medium/large varices requiring treatment and 

small/absent varices requiring surveillance, the positive and negative predictive 

values for video capsule endoscopy were 87% and 92%, respectively, with a 

substantial overall agreement of 91% on treatment decisions based on variceal 

size. Two recent studies have compared the cost-effectiveness of oesophageal 

video capsule endoscopy versus gastroscopy and/or systematic prescription of 

prophylaxis by beta-blocking agents. Neither of these studies demonstrated any 

advantage in using oesophageal video capsule endoscopy over the other 

approaches.
164 

Both in the screening of Barrett’s oesophagus and of oesophageal 

varices, the usefulness of oesophageal video capsule endoscopy must be 

weighed against the wide availability of gastroscopy, its good tolerability and 

relatively low cost. Moreover, gastroscopy allows a complete examination of 

the stomach and duodenum during the same procedure and also enables biopsy 

sampling to be performed. 
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2.5.5.2.6  Colon Investigations 

For colon video capsule endoscopy the recommended preparation 

regimen consists of conventional colonoscopy preparation plus ingestion of 

domperidone before capsule ingestion, and boosts of sodium phosphate purge 

and bisacodyl suppositories during the examination.
164

 

This non-invasive examination has been evaluated in two pilot studies, 

in one large European trial, and in a meta-analysis as an alternative modality for 

colon neoplasia screening. Data from these two studies suggests that the colon 

capsule was expelled within 10 hours post ingestion by 74% of patients in one 

study, and by more than 90% in the other, allowing sufficient battery lifetime 

for the examination of the entire colon in the majority of patients. However, 

intestinal cleansing is an issue. In the two pilot studies there was poor intestinal 

preparation in 1%–3% of cases, but in the large European trial the proportion of 

cases with fair to poor intestinal preparation was 29%.  No examination-related 

adverse events have been reported to date. According to the meta-analysis, the 

sensitivity and specificity of colon video capsule endoscopy for the detection of 

significant colon adenomas and carcinomas are 69% and 86%, respectively, 

suggesting that although it is a promising diagnostic tool, colon video capsule 

endoscopy requires improvements to be made before it can be used as an 

alternative to colonoscopy for colon cancer screening.
164 

Colon video capsule endoscopy might also have potential, firstly as a 

complement to incomplete colonoscopy, and secondly where conventional 

colonoscopy is either refused by patients or poses substantial risk to them. A 
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small case series did not show encouraging results for the first proposition, and 

there are no published data regarding the second.
164 

2.5.5.2.7  Technique Comparison Summary 

In comparing the techniques, it is pertinent to evaluate the advantages 

and disadvantages of using one modality over the other. Push enteroscopy 

provides excellent visualization of the mucosal surface, which often contains 

abnormalities of interest that are too subtle to be detected by radiography. 

Similarly, video capsule endoscopy allows viewing of the mucosal surface but 

accomplishes this through a less invasive process when compared with push 

enteroscopy. It is consequently the preferred examination for patients. The 

overall time to perform push enteroscopy ranges from 15–45 minutes. In 

addition, patient sedation is required, as well as recovery time to relieve the 

effects of the sedation. Small intestinal video capsule endoscopy does not 

involve patient sedation, and therefore no recovery time is needed. However, 

even though the patient can continue with normal activities, video capsule 

endoscopy takes up to 10 hours to complete.
165 

With regards to length of the small intestine that it is possible to 

investigate, push enteroscopy can visualize approximately 80–120 cm beyond 

the ligament of Treitz, while video capsule endoscopy has the potential to 

examine the entire small intestine. It is, however, important to note that failure 

of video capsule endoscopy to reach the caecum during the eight hours of 

recording has been reported in approximately 15% of patients undergoing the 

study.
165
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  Despite this statistic, multiple studies have reported video capsule 

endoscopy to be more sensitive than push enteroscopy in detecting causes of 

obscure gastrointestinal bleeding. (Table 2.2) A limitation of video capsule 

endoscopy is the inability to obtain biopsies and provide therapeutic 

intervention, a capability possessed by push enteroscopy. Potential 

complications of push enteroscopy include intestinal perforation and acute 

pancreatitis, as well as the rare occurrence of bleeding and infection. Many 

authors have described the two examinations as being complimentary to one 

another and suggest that video capsule endoscopy be the initial diagnostic 

procedure in order to select the patients most likely to benefit from the 

therapeutic capability offered by push enteroscopy studies (i.e., those patients 

with lesions identified in the proximal small intestine).
165 

Author 

 

Capsule endoscopy 

(%) 

Push enteroscopy 

(%) 

Ell (N 32) 66 28 

Mata (N 42) 74 19 

Mylonaki  (N 50) 68 32 

Saurin (N 58) 69 38 

Hartmann (N 33) 76 21 

Brown (N 32) 66 28 

Pennazio (N 100) 59 29 

Table 2.2 Comparison between the diagnostic yields of capsule endoscopy and 

push enteroscopy in studies of patients with obscure GI bleeding Diagnostic 

yield. 
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2.5.5.2.8  Limitations and Risks of Intestinal Observation Techniques 

 

While invasive methods such as colonoscopy allow the attending 

physician to see the lumen of the intestines directly in real time, there are many 

complications that can occur. Complications occur in about 3-4 per 1000 in 

diagnostic colonoscopies, and about 23 per 1000 therapeutic colonoscopies. 

Perforation can be caused by the motion of the instrument, air insufflation, or 

after a biopsy is taken from diverticula or from a diseased intramural area. 

Bleeding can be caused by mechanical contact abrasions, after biopsy, or after 

polypectomy. There is a possibility of internal explosion occurring during 

polypectomy when cauterising, in particular when methane explodes in the 

unprepared colon. Temperature elevation can increase so much that burns occur 

after polypectomy. Peritoneal irritation, meteorism, and mild ileus can occur 

after biopsy. Sometimes infections can also be transmitted during procedures. 

Also myocardial infarction, pulmonary embolism, ruptured aortic aneurysm, 

and splenic rupture can occasionally occur but they are very rare.
164

 

A disadvantage in using radiological examination techniques is the 

exposure of the patient to radiation. In addition, these types of techniques do not 

permit close examination of the mucosa and therefore have a low sensitivity for 

flat, small, infiltrative, or inflammatory lesions. In addition to this they have 

poor diagnostic sensitivity during the early stages of a disease process. Although 

the sensitivity of enteroclysis has been reported to be superior to that of small 
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bowel follow through, the procedure is relatively invasive and may require 

patient sedation.
164 

Small intestinal video capsule endoscopy has some limitations and risks, 

of which those practicing video capsule endoscopy examinations will be aware. 

MRI examination, if needed, should not be carried out before the capsule is 

expelled from the gastrointestinal tract. Video capsule endoscopy should also 

not be used in patients with swallowing disorders, due to the risk of aspiration. 

Pregnancy is regarded as a contraindication for video capsule endoscopy 

examination because of the microwaves transmitted by the capsule. However, 

there are two case reports of video capsule endoscopy examination during the 

first trimester of pregnancy. Video capsule endoscopy is not contraindicated in 

patients with a cardiac pacemaker
 
or implantable cardiac defibrillator as there is 

no interference between either of the two devices and the video capsule 

endoscope. 
165

 

Capsule retention risk is high in patients with known Crohn’s disease, 

NSAID stricture, radiation enteritis and small intestinal tumours. The capsule 

retention rate ranges from 0% to 13%. The rate of retention in patients with 

obscure gastrointestinal bleeding is 5% and in suspected Crohn’s disease 1.4%, 

and it can be as high as 8% in patients with known Crohn’s disease. 

Interestingly, no capsule retention was reported in healthy volunteers. The 

overall frequency of capsule retention is usually 1%-2%.
164 

Therefore, a novel 

method now being evaluated is the precursory use of a patency capsule, which, 

in the event that it cannot be naturally excreted, will begin to disintegrate and 

therefore avoid the need for invasive removal of the capsule. However, others 

think that the retention of the capsule in patients with Crohn’s disease should be 
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seen as potentially diagnostic in and of itself, as it most likely represents 

stricture or stenosis associated with the patient’s disease. Using radiological 

imaging as a mechanism to evaluate patients with suspected risk factors for 

capsule retention has been proposed. The theory behind this is to help identify 

strictures or other anatomical derangements that would impede the capsule’s 

course. The problem with this role for small bowel follow through is that a 

negative study does not completely exclude the presence of structural defects.
165

  

Another limitation of video capsule endoscopy that has been 

encountered is the quality of visualization provided by the capsule. Some 

studies have reported that the duodenum is not effectively visualized. Mylonaki 

et al thought that the quality of images obtained from push enteroscopy were 

superior to those of video capsule endoscopy. This was due in part to several 

factors, including the light intensity, which can be manipulated during push 

enteroscopy to match changing environmental requirements, but is fixed in 

video capsule endoscopy. However, recent improvements in technology in the 

PillCam COLON and ESO 2 have included controllable lighting and better 

image quality which may improve this situation. Likewise, the lesions that are 

discovered by video capsule endoscopy cannot be washed or examined 

repeatedly, biopsies cannot be obtained, or therapeutic intervention cannot be 

delivered, which are all possible with push enteroscopy.
165
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2.5.5.2.9  Conclusion Summary  

 

Video capsule endoscopy is a safe and well-tolerated procedure for 

patients, with very low complication rates. It outperforms most of the 

conventional methods for observing the mucosal surface of the small intestine 

showing greater sensitivity than virtual and radiological procedures, and the 

ability to see more of the small intestine than other endoscopic procedures. It 

also reduces the patient’s exposure to radiation in the case of virtual and 

radiological procedures, and sedation in the case of endoscopic procedures. 

 However, observation of the data from the procedure is a time-

consuming process, as even at the optimal review rate of fifteen images per 

second it takes over one hour to re-examine a full eight hour procedure. The 

reliable interpretation of the video capsule endoscopic procedure requires 

experienced readers with experience of reading at least 20 studies.
 164

 

Technical problems related to the battery lifetime and failure of images 

to download also occurs, with an overall technical failure rate of around 9%.
 

Incomplete study occurs due to delayed gastric emptying, previous small 

intestine surgery, hospitalisation and poor intestinal cleansing. Real time 

viewers of video capsule endoscopy may help to identify prolonged gastric 

transit in such cases. However, higher video capture rate and longer battery 

lifetime could resolve these obstacles. 

Video capsule endoscopes would benefit from a radio-controlled self 

contained propulsion system, which would allow them to be moved with or 

against the natural peristaltic flow of the small intestine, or be held in a 
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stationary position to provide clearer real time observations. This project 

investigates how electrostimulation applied to the mucosal surface of the small 

bowel via a pair of electrodes, and hence inducing adjacent circular muscle 

contraction, would be used to propel a small capsule device to travel forwards or 

backwards along the small intestines safely and painlessly. 

Such a propulsion system could enable the attending physician, while 

viewing real time images, to propel the capsules quickly through areas of non-

interest, conserving the all-important battery lifetime. It would also provide the 

physician with the resources to reverse the capsule direction and return it to re-

examine more closely areas of particular interest that had only been briefly seen, 

or were totally missed during the first transit. A propulsion system such as this 

could turn a passive diagnostic tool, which relied solely on peristalsis to propel 

it past areas of interest, into a manoeuvrable and completely active diagnostic 

tool, giving real time control to the attending physician. 

However, to produce such a propulsive device, a knowledge of its 

electrical interaction with the surrounding gastrointestinal environment is 

essential. Therefore, the next chapter begins with a review of the 

electrophysiology of the gastrointestinal tract.  
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3. Electrostimulation Considerations 

3.1 Introduction  

 

As was shown in Chapter 2, devices such as video capsule endoscopes 

would benefit from an electrostimulation propelled radio-controlled system to 

allow real-time control. Using electrostimulation of the adjacent enclosed lumen 

to propel itself along the gastrointestinal tract, the device will have to maintain 

an electrical interaction with it. Therefore, an understanding of the 

electrophysiology of the gastrointestinal tract, how current methods of 

functional electrostimulation are being used to manipulate muscle, and the 

electrical safety requirements for such devices, is essential. 

 

 

3.2 Electrophysiology of the Gastrointestinal Tract 

 

3.2.1 Cell Membranes 

 

The membrane wall of an excitable muscle cell which separates the ionic 

concentrations in the intracellular and extracellular regions, can be modelled in 

terms of the transmembrane potential difference (electrical gradient) and the 

relative ionic concentrations across the membrane.  The model considered is the 

Nernst model of the cell membrane for a single species of ion. 



76 

 

For a dilute solution of ions, in the absence of an electrical potential 

gradient across a cell membrane there would be no electrical force produced. 

The ions would then produce a force by diffusing across the membrane at a rate 

proportional to the concentration gradient. The algebraic sum of these two 

forces is known as the electrochemical potential gradient, and it is used to 

calculate the net flow of ions across the membrane. If this gradient is zero there 

is ionic equilibrium and the chemical gradient opposes the electrical gradient 

equally. This allows the membrane potential at equilibrium to be calculated for 

particular ions by equating the electrical gradient and the opposing ionic 

concentration gradient. 

The electrical gradient force is given by the following equation: 

 

Electrical gradient force = ZFE     [3.1] 

where                       Z = ion valency 

                                 F = the Faraday constant 

                                 E = potential gradient 

The concentration gradient force is given by: 

 

where                       R = gas constant  

                                 T = absolute temperature 

                                 C = ionic concentration 
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At equilibrium these forces are equal and opposite and equating [3.1] and [3.2] 

gives the Nernst Equation for E: 

 

The wall of an excitable muscle cell is made from an extremely thin 

membrane consisting of phospholipids that is waterproof and resistant to Na
+
, 

K
+
 and Ca

2+
 ion transport. However, there are proteins embedded in the 

membrane, through which ions can diffuse. These form ion selective channels 

that are species specific and can be rapidly opened or closed. This gate 

mechanism is controlled by chemical messenger molecules or by the electric 

potential difference across the region of membrane. Ion pumps within the cell 

use this to pump K
+
 into the cell while pumping Na

+
 out. 

Under resting conditions when the cell is in a non-excitable state, some 

of the channels are open and allow K
+
 that had previously been pumped into the 

cell to now move out along the chemical gradient, increasing the 

electronegativity of the inside of the cell. In contrast, most of the Na
+
 channels 

are closed during these resting conditions so that only a small amount of Na
+
 

flows into the cell to counteract its electronegativity. On its own, the relatively 

free flow of K
+
 out of the cell would continue until a potential difference of        

-90 mV was achieved in order to balance the ion concentration gradient 

established by the pumps. However, this is partially offset by the restricted flow 

of Na
+
 into the cell, creating a 'resting potential' of approximately -70 mV and 

the cell is said to be 'polarized' with respect to the surrounding extracellular 

fluid. 


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When a chemical or electrical stimulus is introduced, which is capable of 

opening the Na
+ 

channels, (i.e. it must be sufficiently positive to raise the 

potential of one area of the membrane to at least +20 mV with respect to the 

inside of the cell), positive charge flows in making the nearby membrane more 

positive, which in turn opens more channels, allowing more Na
+
 to enter. 

Spreading like an avalanche, the entire inside of the cell membrane rapidly 

becomes positive, reaching a peak potential of about +50 mV 'depolarizing' the 

cell with respect to the surrounding extracellular fluid. 

Na
+
 channels only remain open for about a millisecond and then close. 

During this time extra K
+
 channels open, allowing extra K

+
 to flow out of the 

cell, producing a negative 'refractory' period, which prevents the positive charge 

from neighbouring areas retriggering another action potential in an area that has 

just fired.
166,167 

 

3.2.2 Muscle Contraction 

 

Smooth muscle contains spindle-shaped cells, each possessing a single, 

central nucleus. Surrounding the nucleus and throughout most of the cytoplasm 

are the thick (myosin) and thin (actin) filaments. (Fig. 3.1) Tiny projections that 

originate from the myosin filament are believed to be cross bridges. The ratio of 

actin to myosin filaments, which is twice that observed in striated muscle at 

approximately 12 to 1, may provide a greater opportunity for a cross bridge to 

attach and generate force within smooth muscle. This may, in part, account for 
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the ability of smooth muscle to generate a comparable or greater force than 

striated muscle, with far less myosin. 

 

Fig. 3.1 Change in smooth muscle during contraction.  

(http://faculty.etsu.edu 2012) 

 

Differing from striated muscle, smooth muscle lacks any apparent 

organisation of the actin and myosin contractile filaments into sarcomeres. A 

similar structure may nonetheless exist in smooth muscle, composed of the actin 

filaments that are anchored to dense, amorphous bodies in the cytoplasm as well 

as dense plaques on the cell membrane. These dense areas are composed of 

actinin, a protein, also found in the Z lines of striated muscle, to which actin 

filaments are known to attach. Thus, force generated by myosin cross bridges 

attached to actin is transmitted through actin filaments to dense bodies and then 

through neighbouring contractile units terminating on the cell membrane which 

causes the cell to contract. (Fig. 3.2) 

http://faculty.etsu.edu/forsman/Histology%20of%20musclefor%20web_files/image006.jpg
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Fig. 3.2 Interaction between actin and myosin filaments during muscle 

contraction (http://www.ncbi.nlm.nih.gov  2012) 

 

Relaxed smooth muscle cells possess a smooth cell membrane 

appearance, but upon contraction, large membrane blebs (or eruptions) form as a 

result of inwardly directed contractile forces that are applied at discrete points 

on the muscle membrane. These points are presumably the dense plaques on the 

cell membrane to which the actin filaments attach. As an isolated cell shortens it 

does so in a helical manner. The contractile proteins in smooth muscle are 

helically oriented within the muscle cell. Such an arrangement of contractile 

http://www.ncbi/
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proteins could contribute to the slower shortening velocity and enhanced force-

generating ability of smooth muscle.
166,167 

3.2.3 Smooth Muscle Contraction 

 

The interaction of sliding actin and myosin filaments is similar 

in smooth muscle to that of cardiac or skeletal muscle. However, smooth muscle 

does not contain troponin, but contains the thin filament protein tropomyosin 

and other notable proteins caldesmon and calponin. Contractions are initiated by 

the calcium-activated phosphorylation of myosin. 

A nerve impulse or electrostimulation ultimately results in muscle cell 

contraction when it produces an action potential at the sarcolemma, the 

membrane that surrounds the muscle cell. This is a process of depolarizing 

the sarcolemma and extracellular Ca
2+

 entering through calcium channels, and 

intracellular Ca
2+

 release predominately from the sarcoplasmic reticulum. Ca
2+

 

release from the sarcoplasmic reticulum is from Ryanodine receptor channels by 

a redox process and Inositol triphosphate receptor channels by the second 

messenger inositol triphosphate. The intracellular Ca
2+

 binds with calmodulin, 

which then binds and activates myosin light chain kinase.  

Within a few minutes of initiation, the Ca
2+

 level markedly decreases, 

the myosin light chains' phosphorylation decreases, and energy utilization 

decreases. However, force in tonic smooth muscle is maintained. During 

contraction of muscle, rapidly cycling cross bridges form between activated 

actin and phosphorylated myosin, generating force. It is hypothesized that the 

http://en.wikipedia.org/wiki/Smooth_muscle
http://en.wikipedia.org/wiki/Sarcolemma
http://en.wikipedia.org/wiki/Calmodulin
http://en.wikipedia.org/wiki/Myosin_light-chain_kinase
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maintenance of force results from dephosphorylated "latch-bridges" that slowly 

cycle and maintain force.  

As the stimulation of the muscle cell continues, the terminal cistemae 

continue to release Ca
2+

. At the same time, however, some of the Ca
2+

 are being 

removed from the sarcoplasm by another portion of the sarcoplasmic reticulum, 

the longitudinal tubules. Once the Ca
2+

 are inside the lumen (cavity) of the 

longitudinal tubules, many of them slowly diffuse back to the terminal cistemae, 

where they are bound to a protein, calsequestrin, as a storage site. The removal 

of Ca
2+

 ions from the sarcoplasm by the sarcoplasmic reticulum requires energy. 

The breakdown of ATP is the chemical reaction that supplies the energy, and 

two Ca
2+

 ions are apparently removed from the sareoplasm for each ATP 

molecule that is split, resulting in the dissociation (release) of Ca
2+

 from the 

tropomyosin system. The tropomyosin system is then transformed back to its 

original state, preventing myosin and actin from interacting and thus causing 

relaxation of the muscle cell.
166,167 

 

3.3 Functional Electrical Stimulation 

 

This brief section has been included for completeness in order to show 

some of the extensive applications where electrostimulation is used in medicine. 

However, these application use electrostimulation parameters which are not 

directly applicable to the project. 

 Functional Electrical Stimulation (FES) can be classified into three types 

according to its specific purpose: the restoration of skeleto-motor functions; the 
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restoration of sensory functions; and the restoration of autonomic functions.
168

 

FES aims to generate movement or functions which mimic those found 

naturally. It is therefore necessary that FES is under the subject’s control and 

available when required. If successful it may be required that the system 

performs successfully for the lifetime of the patient.  This section will briefly 

describe the different uses of FES.  

 Skeleto-motor FES is used to restore a variety of motor functions with 

stimulation being applied in a number of different ways. Phrenic stimulators are 

used for ventilatory pacing. Electrodes are surgically implanted and stimulation 

is applied to the phrenic nerve in a train of stimulation pulses of increasing 

strength followed by a pause. The stimulation causes contraction of the 

diaphragm, (a purely inspiratory muscle) and the pause in stimulation allows 

expiration to occur.  

 Electrical stimulation of the nerves associated with the bladder can have 

two main purposes: to restore continence, or to achieve efficient voiding. 

Continence may be promoted by either activating the sphincter mechanism or 

by inhibiting the detrusor reflex. Efficient voiding may be achieved by 

stimulation of the conus medullarus, the sacral arterial roots, the sacral nerves or 

the detrusor muscle.
169,170,171

 

 Most of the work done with upper-limb stimulators has been to restore 

upper-limb function in patients with injuries to the cervical spinal cord. There is 

scope for restoring hand grasp function in suitable patients. These patients 

usually have voluntary control of the shoulders, elbow flexion movements and 

wrist extension. This treatment is only really suitable for patients with equal 
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damage to both arms, as they have much to gain from an implanted device 

which restores grasp in one hand.  

 Lower-limb stimulators have a range of uses for paraplegic patients, 

being used for both standing and stepping. Paraplegic standing was first 

demonstrated in 1963 using surface stimulation of the quadriceps femoris.
172

 

Several problems have to be overcome with this type of stimulation. Firstly, 

muscle training for fatigue resistance is required, after which the endurance of 

the continuously stimulated quadriceps is still limited. Secondly, the hips must 

be stabilised in extension, which is most commonly achieved by stimulating the 

gluteus maximus as well. Thirdly, control mechanisms must be introduced 

which allow safe stand up and sit down transitions.
173

 Stepping can be initiated 

by first transferring the weight onto the stance leg, and moving the centre of 

gravity forward. The swing leg must then be brought forward through a 

sequence of hip and knee flexions, followed by knee extension and ankle 

dorsiflexion. This can be achieved with surface FES activating the flexor 

withdrawal reflex, strongly stimulating the common peroneal nerve.
174

 

However, this method does not allow for a well controlled or dynamic gait.
168

  

 Foot drop, where the toe catches in the early swing stage and slaps to the 

ground on heel strike, is often a gait limiting factor in patients with stroke or 

incomplete spinal cord injuries. It may be relieved using surface FES of the 

common peroneal nerve at the fibular head. The main difficulty with this 

method is successful placement of the electrodes as they have a tendency to 

move. Also they tend to malfunction during use. Implanted electrodes can solve 

the problem of accurate electrode location.
168

 A two-channel implant achieves 



85 

 

balanced dorsiflexion by stimulating the tibialis anterior and peroneal nerves 

separately.
175

  

 FES is also used in a variety of ways for cardiac assistance. Trained 

skeletal muscle can be used, usually the latissimus dorsi, which is transplanted 

with its nerve tissue and blood vessels intact into the thoracic cavity. In a 

procedure called cardiomyoplasty, the transplanted muscle is wrapped around 

the heart in patients with progressive cardiac failure due to a dilated heart. In a 

slightly different procedure the transplanted muscle is wrapped around the 

ascending or descending aorta. A third procedure uses a skeletal muscle 

ventricle, where the muscle is fashioned into a ventricle shape forming its own 

chamber, and is then located in series or parallel with the aorta. With all these 

procedures the muscle is stimulated in time with the cardiac cycle so that 

contraction occurs with every beat or every alternate beat. These procedures 

improve cardiac output and reduce the work load on the already damaged 

heart.
168 

 FES can also be used to aid with sensory dysfunction. There are two 

types of sensory stimulator devices, cochlear and visual cortex stimulators. 

Cochlear implants have progressed considerably since their first demonstration 

with a single electrode device in 1957.
176

 Multichannel stimulators with 

multiplexed digital signals are now used in conjunction with either intracochlear 

or extracochlear electrodes to enhance performance.   
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3.3.1 Electrostimulation of Smooth Muscle 

 

The majority of the current work using electrostimulation of the bowel is 

to determine its usefulness for increasing motility, or for incontinence 

prevention procedures. There is a wide variety of different methods available. 

This section reviews some of the more relevant methods. 

Gastroparesis is a chronic disorder of gastric motility and many cases are 

unresponsive to anriemetic and prokinetic drug treatments. This has promoted a 

search for nonmedicative therapies for this challenging condition, one of which 

is the use of Gastric Electrical Stimulation (GES).
177

 Electrically stimulating the 

stomach to treat gastroparesis has been proposed by investigators for decades. 

With the development of techniques for implantable pacing devices and 

electrodes, and the promising preliminary results in chronic pacing studies, GES 

has received increasing attention recently among researchers and clinicians.
178 

  Investigations of how GES at the proximal stomach induced gastric 

relaxation, using four pairs of electrodes implanted along the greater curvature 

of the stomach in seven dogs obtained measurements randomly during control, 

proximal and distal stimulation, using stimulation parameters of 4 mA, 375 ms 

and 0.1 or 0.3 Hz.
179 

Within human subjects, the first evidence that implantable gastric 

neurostimulators, reduced nausea and vomiting, and decreased the need for 

supplemental nutrition in subjects with gastroparesis from a variety of causes 

was presented. The study used stimulation parameters of 5 mA, 330 µs, and   

0.2 Hz.
180 
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Constipation is a common coloproctologic problem that may be 

attributed to recognisable causes, one of which is colonic inertia, which is a 

disorder of colonic motility, and may be total or segmental.
 
Investigations into 

the pacing parameters required for rectal evacuation of normal and constipated 

subjects have been carried out.
181

  

Rectal electric activity was recorded before (basal activity) and during 

electric stimulation with a constant electric current of 5 mA at 200 ms. From 

this study it would appear that this method could be applied for rectal 

evacuation of patients with inertia constipation.
182

 
 

The use of electrostimulation for colonic pacing to treat patients with 

Irritable Bowel Syndrome (IBS) has also been investigated.
183 

The optimal 

parameters used for pacing were 6 mA, and 150 ms with a frequency 25% 

higher than that of the basal colonic waves. It was found that colonic pacing 

succeeded in normalizing the tachyarrhythmic pattern and relieving the 

symptoms of the IBS.
 

Although useful in providing an idea of the electrostimulation 

parameters being used within the bowels, these investigations all use 

electrostimulation to aid motility by enhancing natural peristalsis. This is not 

what the device being constructed for this project will do. It will use 

electrostimulation to produce a direct contraction of the walls of the 

gastrointestinal tract, local to the electrodes, with enough force to propel the 

device.   

A small amount of work has also been carried out into the usefulness of 

electrostimulation of the small bowel in preventing incontinence. 

Electrostimulation in some cases is used to control a neosphincter, formed from 
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a wrap of gracilis muscle around the anal canal.
184,185

 This method uses 

contraction of striated muscle to produce the neosphincter, and does not 

represent direct contraction of the smooth muscle of the bowel. 

The control of intestinal reservoirs in dogs has been investigated by 

implanting four pairs of stainless steel electrodes into the serosal surface of 

jejunum and ileum pouches. Pressures of 80 mm Hg were produced with pulses 

of 100 ms, 3 Hz, and 50 ms, 6 Hz, with currents of 10-25 mA. Pressure 

increases were also observed when using 1 ms, 330 Hz, and 1 ms, 10 Hz, 

stimulation. A constant current generator produced pouch contraction and 

reservoir emptying with stimulation at 50 ms, 6 Hz, with currents between     

15-25 mA
186

. A pressure increase of 50-80 mm Hg was induced in the jejunum 

using 50 mA, 500 S, and 910 Hz currents, with a threshold current of 25 mA. 

In long term studies, the average pressure observed in 10 trials using 25 mA, 

500 s, 910 Hz was 26 mm Hg. When using 25 mA, 200 s, 1.67 kHz, the 

average pressure was 28 mm Hg. Continued contraction was also observed 

following termination of the stimulation and produced an average pressure of  

48 mm Hg.
187

 

 Although these methods produce direct contraction of pouches within 

the bowel to aid their emptying, the electrodes used were not attached to the 

mucosal surface. This may lead to different stimulation parameters being 

required to produce a comparable pressure. Therefore, although these and the 

other methods discussed above show how electrostimulation can be used to 

provide a therapeutic tool for a variety of gastric complaints, they only give 

background knowledge of the electrical parameters that are being used to 
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manipulate the muscles of the gastrointestinal tract, and are only partially 

relevant to the project. The only publication found that was totally relevant to 

the project, described the only recorded use of electrostimulation which was 

applied directly to the mucosal surface of the small intestines and oesophagus to 

propel objects. In this paper the use of electrostimulation for the propulsion of 

five different ovoid capsules, with various diameters and taper angles, within 

the oesophagus and small intestine of pigs was investigated. The threshold for 

movement of the capsules was achieved at 12 mA, with 15 Hz, 30 ms pulses, 

and the device moved readily at 20 mA.
188

   

The initial concept of the using electrostimulation to propel a video 

capsule endoscope was adapted from devices described in the PhD thesis of 

Mosse
189

 from the Department of Medical Physics and Bioengineering at 

University College London, who investigated methods of improving 

conventional colonoscopy. He describes preliminary designs of devices using 

electrostimulation to tow the tip of a conventional colonoscope along the large 

intestines.  
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Fig. 3.3 Devices developed during the PhD of Mosse (Mosse 1999) 

 

A few experiments were conducted by Mosse using the devices shown if 

Fig. 3.3 to determine their effectiveness to aid the propulsion of an endoscope 

tip along the length of the gastrointestinal tract. Initial electrostimulation 

experiments were carried out in vitro on excised porcine colon in Kreb’s 

solution. These were followed by in vivo experiments in the oesophagus, small 

intestine and large intestine in two pigs. 

The results show that within the oesophagus smooth movement of the 

capsule was achieved with stimulation parameters of 30 V 15 Hz and 18 ms. 

Contraction but no movement was observed with the same frequency and pulse 

duration at a voltage between 20 V and 30 V, and no contraction was observed 

below 20 V. Changing the frequency to 10 Hz caused a slower trembling 

movement and 6 Hz produced a slow juddering movement with little progress. 

Within the small intestine it was found that movement could be achieved with 
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voltages as low as 12 V and a larger range of frequencies and pulse durations 

were examined. The best movement was achieved with stimulation parameters 

in the ranges of 12-30 V, 15-25 Hz and 15-30 ms. Within the large intestine the 

stimulation parameters 15 V, 15 Hz, and 30 ms were used, but the contractions 

produced completely engulfed the device, preventing movement.
189

  

 

3.4 Electrical Safety 

 

3.4.1 Introduction 

 

 When constructing electromedical equipment, patient safety is of 

paramount importance and must be the major concern. Therefore, rigorous 

examinations of any potential hazards which may be embodied in a new system 

have to be investigated, and guidelines for their avoidance have to be reported 

and discussed. 

 This section begins with a review of the current safety regulations and 

precedents, with a discussion of their relevance to the project. This is then 

followed by a discussion of the effects and potential hazards that may occur 

during electrical stimulation of a patient. This includes the effects that charge 

has on electrodes during stimulation, the effects that electrical stimulation has 

on the gastrointestinal tract and the surrounding area, and the safety issues that 

are relevant to an in vivo electrical stimulator. Finally, conclusions are 

presented. 
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3.4.2 Safety Regulations and Precedents 

 

 Safety and constructional standards are contained within documents 

produced by the European Committee for Electrotechnical Standardisation 

(CENELEC). The BS EN 60601-1 : 1990
190

 contains an extremely detailed 

general safety standard for the construction of medical electrical equipment. 

This standard discusses the safety issues for all medical electrical 

devices, which come into contact with humans. The stimulator used during the 

initial experimental stages was powered using a mains driven external power 

supply. Earth leakage currents were minimised by the use of medical grade 

isolation transformers. 

Of greater relevance to the final design is the current limit quoted for 

electrical devices positioned across the heart. This limit is very low, being only 

10 µA.  

 

3.4.3 Effects and Potential Hazards of Electrical Stimulation 

  

Currents that are passed between a pair of electrodes placed on tissue 

have at least three major effects that may be harmful to the patient. These effects 

are electrolysis, heating and neuromuscular contraction. Accidental nerve 

stimulation is considered to be the most dangerous of these, as the nervous 

system controls two vital systems; blood circulation and respiration. 

If two electrodes with an applied direct current are placed on tissue 

electrolysis occurs by the iontophoresis mechanism at the electrode tissue 
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interface. If the current is applied at 100 µA for a few minutes ulceration occurs 

beneath the electrodes. ‘Direct current’ is defined as current with a frequency of 

less than 0.1 Hz.
190

 At frequencies above this the movement of ions that occurs 

when the applied current is flowing in one direction is balanced by the 

movement of the ions when it is flowing in the other, resulting in a net effect of 

no electrolysis.  The safety limit for ‘direct current’ that flows between two 

electrodes is defined as being 10 µA.
190

 

The normal potential found across a nerve membrane is about 80 mV. In 

the frequency range of 10 Hz – 10 kHz neural stimulation can occur. If the 

potential is reversed for 20 µs or more, the neurone will be stimulated, 

propagating an action potential along the nerve fibre. If a motor nerve has been 

stimulated a muscle will be caused to contract. The major hazard with neural 

stimulation is the activation of motor nerves which could affect the skeletal or 

heart muscle, interrupting breathing or more dangerously causing fibrillation of 

the heart. 

A 100 µA current can cause ventricular fibrillation if it is applied 

directly to the ventricular wall of the heart. This is well below the pain sensation 

threshold, so fatal currents can be passed through the body without sensation. 

The current delivery directly across the heart is limited to 10 µA with a 

maximum of 50 µA for a single fault condition.
190 

At higher frequency, 10-100 kHz, the current does not stimulate neural 

tissue, but it does produce heating of the tissue. As the devices used in this work 

have operational frequencies well below those where heating becomes the 

dominant biological effect, it will not be discussed within this safety report. 
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3.4.4 The Effects that Charge has on Electrodes During 

Stimulation 

 

At low frequencies an electrode must establish ohmic contact with 

tissue. Most electrodes achieve this through an electrolyte. Much is known 

about the properties of electrode-electrolyte-tissue interfaces, but it is not 

possible to predict the electrical characteristics of such interactions with 

accuracy.  

Several charge distribution types have been proposed, with the simplest 

being that conceived by Helmholtz in 1879.
191

 It was postulated that there exists 

a layer of charge tightly bound to the electrode and a layer of opposite charge in 

the immediately adjacent electrolyte. In 1964 Parson
192

 described electrodes in 

terms of the reactions at the double layer (gap between the two layers). It was 

stated that when no net flow of charge occurs across the interface, the electrodes 

are described as ‘perfectly polarized’, whereas those electrodes which allow 

unhindered flow of charge are described as ‘perfectly non-polarizable’.  

In a conceptual sense, this electrode-electrolyte interface can be 

represented by a voltage source and a capacitor, requiring any electrical model 

of the system to include a resistance, capacitance, and a potential. Now that 

these elements have been identified, modelling the system requires calculated 

magnitudes which are dependent upon the electrode metal and its area, the 

electrolyte, the temperature, current density, and the frequency of the signal. 

With stimulating electrodes the impedance of the electrode-electrolyte 

interface can become very important due to the combined reactive and resistive 
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nature with both being dependent on current density. This along with the nature 

of the stimulator output circuitry can result in the production of different voltage 

and current waveforms. In addition, the current density distribution is often non-

uniform across the surfaces of the stimulating electrodes. 

The measurement of the capacitive and resistive nature of a single 

electrode-electrolyte interface is difficult. Warburg
193 

describes a model that 

represents the interface as a resistance and capacitance in series, whose 

magnitudes are selected to emulate the conditions produced by the variables 

described earlier. 

The impedance of the electrode-electrolyte interface decreases with an 

increase in current density. There is also a non-uniform distribution of current 

density under the electrode, being higher around the perimeter than at the centre, 

since all the current that flows to areas beyond the electrode must flow through 

the perimeter. Stimulation occurs at the regions where the current density is 

highest. Therefore the determination of the average current density of the 

stimulus by dividing the current by the electrode area is not an accurate method. 

When determining electrode properties it is also essential to know what 

type of voltage signal is being applied: DC, unidirectional pulses, and AC 

waveforms all affect the properties of the electrode-electrolyte interface. The 

type of current source is also important, as constant-current and constant-voltage 

supplies also affect the interface properties.  

The main considerations when determining the current flow using low 

current densities are the area of the electrode, the electrode-electrolyte circuit 

and the type of current source. As the current density is increased on the other 

hand, electrolysis will occur, forming gas bubbles at the surface of the 



96 

 

electrodes. The gas expelled is dependent on the electrolyte and the polarity of 

the electrode. 
194 

 

3.4.5 The Effects of Electrical Stimulation 

 

Biological tissue contains ‘free charge carriers’, so it can be 

meaningfully considered as an electrical conductor. ‘Bound charges’ also exist 

so dielectric properties are also present. In addition to these passive properties, a 

mechanism for active ion transport is present, which acts as an important 

mechanism in neural function and membrane absorption processes, such as 

those found in the gastrointestinal tract. Conductivity is the dominant factor at 

frequencies less than 100 kHz. 

There are a variety of stimulation methods, some mechanical, some 

electrical and some chemical, which can be used to stimulate tissue. The most 

controllable of these is electrical stimulation. An effective stimulation alters the 

environmental conditions to produce a characteristic and reversible response in 

the tissue.  

To stimulate a cell, it is only required that the transmembrane potential 

is reduced by a critical amount. The current delivered by the active electrodes 

reduces the transmembrane potential. The amount by which it is reduced is 

dependent on the current density. Therefore with a high enough current density 

the threshold (action) potential will be achieved.  

 When this action potential is reached, a regenerative process occurs 

within the cell. The transmembrane potential is caused to drop to zero 
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(depolarizes) by the influx of sodium ions into the cell combined with the exit of 

potassium ions, and after reversing slightly it then recovers (repolarizes) to the 

resting membrane potential. Stimulation can occur when the transmembrane 

potential is reduced by one third.  

Physiologically initiated muscular contractions occur when motor nerves 

transmit electrical signals which overcome a number of muscle fibre’s action 

potentials. When stimulating electrodes are used to stimulate muscle fibres 

directly, the induced force produced is only dependent on the number of muscle 

fibres which are stimulated past their action potentials.  Increasing the intensity 

of the stimulating current will increase the number of contracting muscle fibres 

until all the fibres within the region are stimulated. Beyond this point no more 

force can be produced. 

Intramuscular electrodes do not directly stimulate major nerve trunks, 

but they do excite peripheral local nerve fibres. Any damage to the neural tissue 

would be expected to be small, because of the physical separation between the 

electrodes and the nerves.
 194 

 

3.4.6 In Vivo Electrical Stimulator 

 

When using electrostimulation within the gastrointestinal tract one must 

investigate the effects that the stimulating current will have on the surrounding 

organs. The most important from a safety point of view is the effect this current 

will have on the heart. The oesophagus and proximal stomach lie very close to 

the heart, so much so that electrostimulation through the oesophageal wall is 
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sometimes used to pace the heart. This is called transoesophageal pacing and 

employs electrodes that are placed on the mucosal surface of the oesophagus.  

The thresholds for transoesophageal atrial pacing has been investigated 

by a number of groups. 
195,196,197 

The minimal pulse width and current required 

for capture were within, or very close to, the ranges under investigation for this 

project.  There was also no correlation between current and pulse width on the 

one hand and age, height, weight, or body surface area on the other. Likewise 

neither electrode type nor the existence of structural heart disease influenced the 

threshold required for capture.
198

 These results suggests the proposed propulsion 

device should not be used in the oesophagus. 

Another potential hazard when using electrostimulation within the 

gastrointestinal tract is inadvertently affecting the heart rate by stimulating vagal 

nerves. The vagal nerve which controls the pace of the heart remains in close 

proximity with the gastrointestinal tract as far as to the distal stomach, and in 

some cases can reach the proximal small intestine.  

Using stimulation parameters within a range similar to those proposed 

for this study it has been shown that
 
simultaneous bilateral stimulation of the 

vagus nerve in intact and sympathectomised rats of various ages significantly 

reduced heart rate. Stimulating the left cervical vagus nerve in pigs was also 

sufficient to reduce the heart rate by 20 ± 4 beats per minute.
199

 Similar results 

were found with humans, when stimulating the left vagus nerve proximal to the 

origin of the cardiac vagal bunch.
200 

This suggests that the proposed propulsion 

device should not be used in the proximal small intestine. 
 

Within the rest of the tract the safety question is: what is the stray 

current value induced in the heart by the devices when used within the small and 
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large intestines? To investigate this, a very simple finite element representation 

of the tissues was constructed by Dehghani using the TOAST software 

program.
201

 This was then used to examine the distribution of current arising 

from a locally placed stimulator. 

Initially the heart and torso were given the same electrical conductivity 

as blood, the two 1 mm
2
 electrodes of the electrostimulator were separated by 

10 mm and the device was placed 50 mm from the heart. The maximum stray 

current induced in the heart by a 15 mA flow of current between the electrodes 

was found to be 0.65 µA. The heart and torso were then given the same 

electrical conductivity as fat, and it was found that the maximum stray current 

induced in the heart was 0.07 µA. Therefore, whether the electrical conductivity 

of the heart is chosen to be that of blood (worst case) or that of fat (best case), 

the maximum stray current induced in the heart by the electrostimulator was 

calculated to be at least one order of magnitude less than the maximum current 

of 10 µA deemed to be safe.
190

  

Another concern when using electrostimulation is adverse tissue surface 

effects such as blistering and burning, which can occur due to irreversible 

faradic electrolysis between the electrode and tissue surfaces. This happens 

when the ‘reversible charge injection limit’ is exceeded. For a given electrode 

material, there is a limit to the charge which can be injected in either direction to 

produce reversible surface processes.
202

 To ensure chemical reversibility, the 

current must be reversed before the limit is reached. The main factors which 

affect this are, the electrode material and its shape and size, the electrolyte and 

the parameters of the stimulation wave form. 
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The type of cyclic waveform used with the equipment in this project is a 

monophasic pulsatile waveform, which consists of periodic trains of short 

pulses of equal amplitude interspersed with longer ‘off’ periods.  

The inverse relationship between the frequency and period is the same as 

for sinusoidal waves. However, the short pulse duration and therefore the charge 

per cycle is independent of the frequency, permitting greater control over the 

individual stimulation parameters. 

The least damaging of these waveforms are those which have no net 

direct current with charge density levels below those that cause H2, O2, or Cl2 

evolution. Any net direct current, even a few µA/cm
2
, can lead to irreversible 

electrolytic reactions. 

 Simple monophasic waveforms with single polarity deliver a direct 

current signal, resulting in water hydrolysis and both electrode and tissue 

damage. The requirement for charge retrieval can be overcome through the use 

of a series capacitor, which delivers a reverse current through the electrodes 

between pulses preventing the accumulation of charge upon the stimulating 

electrodes. 

 The safe injectable charge that an electrode can deliver is limited by the 

capacitive nature of the electrode-electrolyte interface, and its breakdown 

voltage. Beyond this voltage limit most currents produce an irreversible 

electrochemical process which is harmful to tissue. 

 In particular, a pulse generator with constant output resistance (R0) and a 

series capacitor (C), coupled to the cathode to enable the electrode potential 

between pulses to ‘slide back’, could provide a charge density per pulse within 

the region of the maximum safe possible, ~350 µC/cm
2
 pulse. The series 
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capacitor inhibits a flow of net direct current in the event of the electrode 

potential (φ) being accidentally driven beyond the safe operating range        

(φmax - φmin), thereby eliminating the danger of tissue damage from the products 

of chloride oxidation. The inclusion of such a series capacitor would therefore 

seem to be worthwhile. 

 The capacitor (C) should be sufficiently large to pass the stimulation 

pulse without excessive ‘sag’. Extensive ‘sag’ indicates a wasteful loss of 

charge and its associated large ‘overshoot’ reduces the effect of the stimulating 

charge that has been delivered.  

 However, C must be sufficiently small for the time constant CR0 to be a 

small fraction of the time interval between pulses in order to enable the 

electrode (cathode) to exhaust fully.
 202

 

However, the project stimulation device will be moving through the 

gastrointestinal tract, thus allowing any gaseous products of water electrolysis to 

readily escape from the electrode-tissue interface. Also, the device will take a 

matter of hours to pass through whole gastrointestinal tract, with intermittent 

stimulation lasting only for minutes. Therefore, the need to achieve charge 

balancing may be unnecessary.
 

 

3.5 A Model for Electrode Impedance 

 

Impedance characterization of the electrode-electrolyte interface is of 

paramount importance.  During stimulation a certain current density is necessary 

to generate activity. To supply this through a high interface impedance would 
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require a large applied electrode voltage leading to undesirable electrochemical 

reactions that may be harmful to cellular cultures. A well characterized, fully 

understood interface impedance leads to an optimized electrode-electrolyte 

interface design.
203 

Equivalent circuit models have long been used to model the interface 

impedance. The first model of the electrode-electrolyte interface was suggested 

by Helmholtz
191

 in 1879, who proposed that a double layer of charge existed at 

the interface. 

 The significance of this concept is that such a layer resembles a charged 

capacitor, thereby indicating that any model for the interface must include 

capacitance. However, direct current passes through the interface, so resistance 

must also be a component of any model. 

  In 1901 Warburg
193

 proposed that the interface could be represented by a 

polarization resistance in series with a polarization capacitor. For a low current 

density, the polarization capacitance (Cw) varies inversely with the square root 

of frequency and that the phase angle is constant, being 45 degrees. This model 

however, does not take into account the behaviour of direct current at the 

interface.  

Observing the limitations of the Warburg model, Fricke
204

 reported in 

1932 that for low current density and for a frequency range from 100-3500 Hz, 

the electrode capacitance value was Cw = k/ω
m

, and the phase angle (ϕ) 

remained constant with varying frequency and was equal to mπ/2. The value of 

k and m depend on the metal. Therefore, the reactance Xw = 1/ωCw = 1/kω
1-m

, 

and as tan ϕ = Xw/Rw, the resistance Rw = Xw/tan(mπ/2). In a series of 

experiments he found that m varied between 0.15 and 0.32. Fricke's model, like 



103 

 

Warburg's, does not consider the passage of direct current. Experimental 

findings soon revealed that the polarization capacitance exhibited a frequency 

dependency leading to the introduction of Fricke’s law, and the use of a constant 

phase angle impedance to represent the impedance of the interface capacitance.  

Physical chemists have studied the properties of the electrode-electrolyte 

interface. Zimmerman
205

 investigated the effect of temperature and electrolyte 

concentration on the capacitance and resistance of the electrode electrolyte 

interface over a frequency range from 60-4000 Hz. Measurements were made 

from 0-95°C. For a range of electrolyte concentrations, the capacitance 

increased and the resistance decreased with increasing temperature and 

concentration.  

In 1947 Randles
206

 synthesized a circuit model consisting of a double-

layer (Helmholtz) polarization capacitance (Cp) in parallel with a series 

resistance (R) and capacitance (C). This model although popular, does not 

account for the passage of direct current through the interface.  

In 1968 Geddes
207

 proposed two circuit models for the electrode-

electrolyte interface, which both contained a half-cell potential (E). In the first 

model the Warburg capacitance (Cw) is shunted by the Faradic resistance (Rf) to 

account for the direct current carrying property of the interface. The second 

model places the half-cell potential (E) in series with the Warburg components 

(Rw, Cw), and the Faradic resistance (Rf) was placed in parallel with the 

Warburg components to account for the direct current property of the interface. 

A more complex electrochemistry model was described by Sluyters-

Rehbach
208

 in1970. This model places the Warburg impedance (RwCw) and a 

resistance (Rs) in series with a parallel resistance (Rp) capacitance (Cp) circuit; 
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this combination is shunted by a capacitance (Cd). Once again however, this 

model does not account for the direct current property of the interface. 

In 1982 using low current density for a 0.085 cm
2
 electrode, Onaral

209
 

found that the resistance and capacitance components of a platinum/0.9% saline 

interface both decreased with increasing frequency from 0.001-1000 Hz. In 

general, they found that the Warburg model was a fair approximation in this 

frequency range. Their low-frequency data strongly suggested the presence of a 

resistance in parallel with the Warburg equivalent that would accommodate the 

ability of the interface to pass direct current. Of particular importance to 

biomedical applications is Schwan’s limit of linearity: the voltage at which the 

electrode system’s impedance becomes nonlinear, which is often exceeded 

during stimulation. 

  McAdams et al,
210

 extensively studied the platinum pacing electrode 

(90% platinum and 10% iridium) in physiological saline, successfully 

interpreting the frequency-dependent nonlinear interface impedance. Kovacs
211

 

has presented an equivalent circuit model based on the Randles model, with an 

additional Warburg impedance due to the diffusion of faradic current. 

In 2005, Franks et al,
203

 produced an equivalent circuit model consisting 

of an interface capacitance, shunted by a charge transfer resistance, in series 

with the solution resistance. The model parameters were fitted to the 

experimental results and confirmed with theoretical equations, validating the 

model.  

When a metallic electrode comes in contact with an electrolyte, an ion 

exchange occurs with metal ions entering solution and ions from the electrolyte 
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combining with the metallic electrode. The net result is a charge distribution 

that produces unique properties within the electrode-electrolyte interface.
212 

As discussed earlier, many models have been developed to describe the 

behaviour of the electrode-electrolyte interface. The Warburg model for low 

current density states that the capacitive reactance, namely Xc = 1/2πfC, is equal 

to R and both vary inversely as the square root of frequency (f)
193

. Expressing R 

and Xc as A/f
α
 and B/f

β
 respectively, the Warburg model states that A = B and   

α = β = 0.5. Because the phase angle ϕ is given by tan ϕ= Xc/R, the Warburg 

model states that tan ϕ = 1.0 and is constant with frequency. This means that ϕ is 

constant with frequency and is equal to π/4 radians or 45°. 

Although the Warburg equivalent is useful as a conceptual model of the 

electrode-electrolyte interface, the accuracy of this model has been questioned. 

Fricke
204

 concluded that R and Xc did not vary inversely as the square root of 

frequency. He proposed a constant-phase model in which Xc = B/f
β
 and             

ϕ = 0.5πβ. Expressing R and Xc as A/f
α
 and B/f

β
 respectively, the Fricke 

constant-phase model states that α = β and B/A = tan(0.5πβ). Schwan
213

 

examined Fricke's constant-phase model for platinum electrodes and reported 

that ϕ varied by only a factor of 2 over a 4 decade range of frequency (20 Hz to 

200 kHz). Geddes
214

 showed that β ranged from 0.38-0.78 for several common 

electrode metals. Onaral
209

 studied the platinum/0.9% saline interface and found 

that Fricke's constant-phase model was valid from 10-400 mHz and above       

10 Hz. Onaral noted that electrodes can be expected to deviate from constant-

phase behaviour toward both extremes of these frequency ranges. A discussion 

of the history and applicability of the constant-phase model was presented by 

MacDonald,
215

 who also discussed several other models for the electrode-
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electrolyte interface presenting both empirical and theoretical models of various 

complexity.  

However, as MacDonald
215

 noted, that real data are usually subject to a 

less-than-perfect fit. Therefore, it is usually easiest to fit the data with the 

simplest model and then relate the results to more complex models as necessary. 

As a result, the Ragheb model, where R = A/f
α
 and Xc = B/f

β
 was chosen 

because it is a more general representation of the electrode-electrolyte interface 

than the Warburg or Fricke models, but is simpler than many other models 

which could be used.
212 

Although the series RC equivalent is a sound basic model for the 

electrode-electrolyte interface, this equivalent does not account for the very low-

frequency behaviour of the interface as electrodes can pass direct current. 

Therefore, placement of a Faradic resistance (Rf) in parallel with the series RC 

model produces this equivalent circuit. The value of Rf is high in the low 

frequency region and is very dependent on current density, decreasing with an 

increase in current density. To give a complete model of a single electrode-

electrolyte interface, it is necessary to add the half-cell potential (E) to the 

equivalent circuit. The value of E depends on the species of metal and the 

electrolyte (species, concentration and temperature). 

However, if one focuses attention on the nature of the electrode-

electrolyte impedance at frequencies above 10 Hz and is not concerned with 

measuring DC electrode potentials, the series equivalent circuit provides a 

reasonable basis for quantitative determination of electrode polarization 

impedance over a wide frequency and current density range.
212
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The term polarization impedance is used to describe the impedance of 

the electrode-electrolyte interface because this quantity is not constant, but is 

altered by the passage of current and varies with both frequency and current 

density. Ragheb
212

 characterized the polarization impedance at the interface of 

several common metals with 0.9% saline, to provide a useful reference for 

calculating the impedance of such electrodes. 

When representing an electrode-electrolyte interface as a series RC 

circuit, it is not generally true that R and Xc both vary as 1/   as stated in the 

Warburg model. This is because the values of the constants A and B and the 

exponents α and β depend on the species of metal, concentration, and 

temperature of the electrolyte and on electrode area. 

 Although it may not be generally true that α = β as proposed in the 

Fricke constant-phase model, it is a better representation of electrode behaviour 

than the more restrictive Warburg model. Onaral
209

 suggested that Fricke's 

constant-phase rule may be valid over limited frequency ranges. The frequency 

range examined by Ragheb
212

 (100 Hz to 20 kHz) may not have been sufficient 

to allow identification of a transition between regions of constant-phase 

behaviour. Nonetheless, Fricke's additional constraint that ϕ = 0.5πβ or B/A = 

tan (0.5πβ) was not valid for the metals examined in that study.  

The exponents α and β are expected to be independent of electrode area 

because, at low current density, the manner in which R and Xc vary with 

frequency depends mainly on the electrode material, the species and 

concentration of the electrolyte, and the temperature. Therefore, a valid 

comparison between the exponents α and β determined in both the Ragheb 
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studies and the literature is possible. The constants A and B, however, reflect 

the absolute magnitudes of R and Xc and not the manner in which they change 

with frequency, therefore their values vary with electrode area, decreasing as 

area increases. 

Therefore, values of A, B, α, and β for a stainless steel electrode with 

surface area 0.005 cm
2
 in contact with physiologic 0.9% saline as presented by 

Ragheb
212

 can be used to model stainless steel electrodes of any surface area 

(S). The electrode-electrolyte impedance is given by: 

             
       [3.4] 

and because it is inversely proportional to the electrode surface area, the 

impedance of an electrode-electrolyte interface operated at low-current density 

may be calculated as: 

    
     

 
                      [3.5] 

where S is the surface area of the electrode in cm
2
 and A, B, α, and β are 

constants. 

Taking the values of A (989), B (1849), α (0.760), and β (0.734) 

presented by Ragheb
212

, and applying them along with results produced from 

the work described in the following two chapters to the above model, a range of 

electrode-electrolyte interface impedances (Z) at a stimulation frequency of  

12.5 Hz for different electrode types are shown in Table 3.1. 
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A/f 
α
 B/f 

β
 Z (k Ω) 

Capsule electrode 145.1 290.0 1.799 

11 mm bidirectional device 

electrode 145.1 290.0 1.205 

15 mm bidirectional device 

electrode 145.1 290.0 0.862 

20 mm bidirectional device 

electrode 145.1 290.0 0.504 

 

Table 3.1 Electrode-electrolyte interface impedances for a range of electrodes. 

 

Taking these values for Z, the current at the electrode-electrolyte 

interface can be determined for a given voltage. Table 3.2 shows currents for a 

range of voltages with various electrode types used during the work presented in 

the next two chapters. 

 

Z (kΩ) 

Current at 5V 

(mA) 

Current at 10 V 

(mA) 

Current at 15V 

(mA) 

Capsule electrode 1.8 2.8 5.5 8.3 

11 mm bidirectional 

device electrode 1.2 4.1 8.3 12.4 

15 mm bidirectional 

device electrode 0.9 5.8 11.6 17.4 

20 mm bidirectional 

device electrode 0.5 9.9 19.8 29.7 

Table 3.2 Impedance and current values for a range of electrodes 
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As the objective of the project was to produce a swallowable device, the 

model is now compared with the results obtained during the Human trial for 

validation. 

 

Supply 

Voltage 

(V) 

Experimental 

(measured) 

Current (mA) 

Model 

(calculated) 

Current (mA) 

Experimental 

Impedance 

(kΩ) 

Model 

Impedance 

(kΩ) 

5 2.5 2.8 2.0 1.8 

8 3.7 4.4 2.1 1.8 

10 4.9 5.5 2.0 1.8 

12 9.0 6.6 1.3 1.8 

15 12.0 8.3 1.3 1.8 

 

Table 3.3 Comparison of model and experimental data for a range of voltages. 

 

Table 3.3 shows that for 5 V, 8 V and 10 V pulses, the values of the 

current calculated with the model give a reasonable approximation to the values 

measured during the experiment.  It would seem however, that as voltage 

increases, the current calculated by the model begins to differ from those 

measured during the experiment. The parameters of the model indicate that they 

could be used in the range below 10 V to model the impedance for a stainless 

steel electrode/0.9% saline interface. 
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3.6 Aims of the Project 

 

The anatomy and many pathologies of the gastrointestinal tract offer 

many problems for diagnostic medicine. Methods of visualization of the 

gastrointestinal tract’s mucosal surface are both a daunting and sometimes 

dangerous experience for the patients. Video capsule endoscopy is a safe and 

well-tolerated procedure for patients, with very low complication rates. It 

outperforms most of the conventional methods for observing the mucosal 

surface of the small intestine. It also reduces the patient’s exposure to radiation 

in the case of virtual and radiological procedures, and sedation in the case of 

endoscopic procedures. 

 However, observation of the procedure is a time-consuming process, 

and technical problems related to the battery lifetime and failure of images to 

download also occur. However, these obstacles could be resolved. Video 

capsule endoscopes would benefit from a radio-controlled self contained 

propulsion system, which could allow them to be moved with or against the 

natural peristaltic flow of the small intestine, or held in a stationary position to 

provide clearer real time observations. 

This project investigates how electrostimulation applied to the mucosal 

surface of the small bowel through a pair of electrodes, and hence inducing 

adjacent circular muscle contraction, could be used to propel a small capsule 

device to travel forwards or backwards along the small intestines safely and 

painlessly. 
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However, it is apparent that to produce such a device, thought must be 

given to how it will interact mechanically and electrically with its surrounding 

environment. Therefore, the aim of this project is to devise a method of 

remotely propelling a small device, such as a video capsule endoscope, within 

the gastrointestinal tract which could be monitored and controlled in real time.  

As the device is to be ultimately used in a human subject the device and the 

electrodes have to be modelled within constrained anatomical and electrical 

safety parameters. 

For a human subject the maximum diameter an FDA approved capsule 

can have, to safely pass through the pylorus, is 11 mm. Electrical safety 

guidelines for devices used in medicine include the following constraints which 

apply to the electrical stimulation of tissue. If direct current (frequency less than 

0.1 Hz) is applied for a few minutes at 100 µA, ulceration occurs under the 

electrodes due to electrolysis. Within the frequency range of 10 Hz – 10 kHz, 

neural stimulation can occur if the potential is reversed for 20 µs or more, which 

could lead to fibrillation of the heart. The direct application of a direct current of 

100 µA across the heart can cause fibrillation. Therefore, the guidelines limit the 

current directly delivered across the heart to a direct current of 10 µA with a 

maximum single fault of 50 µA. At frequencies in the range 10-100 kHz the 

heating of tissue is the main concern. 

Initially for development purposes, the pig model will be used because 

the anatomy and physiology of the pig’s small intestine is similar to that of the 

human. As a starting point, the stimulating parameters in the range of 12-30V, 

15-25 Hz and 15-30 ms, found by Mosse
189

 to produce movement of a device 

along the small intestine of an anaesthetised pig by electrostimulation of the 
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adjacent mucosal membrane, will be used to replicate the results using a 

redesigned device. The second phase of the development will be to design, 

construct and test a bidirectional device capable of travelling along the small 

intestine with or against the direction of peristaltic flow. The third phase of 

development will be to investigate the effects of reducing the device diameter to 

11 mm, so that it can safely pass through the human pylorus, allowing it to 

travel along the entire gastrointestinal tract after being swallowed. The fourth 

phase will investigate stimulation parameters to determine those which produce 

optimal propulsion in the small intestines. The penultimate phase of 

development will be to design and build a miniature radio-controlled stimulation 

device based on the stimulation parameters found in the previous phase. The 

final phase of development should culminate in a device with a radio-controlled 

self-contained propulsion system which could be evaluated in a human subject.   
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4. Design, Construction and Testing of a Wire Driven 

Electrostimulation Induced Propulsion Device 

 

4.1 Objectives and Strategies  

In designing the device one must consider the environmental constraints 

within which the device must operate. The human gastrointestinal tract is a 

convoluting tube of varying diameters, which means there will be limiting 

dimensional constraints on the device diameter. At the narrowest point of 

gastrointestinal tract, the pylorus has a maximum diameter of about 11 mm, the 

maximum diameter of the small intestine is about 25 mm and the diameter of 

the large intestine ranges from about 30 mm at its narrowest to about 60 mm at 

its widest in the colon.  

There are also dimensional constraints imposed on the device length as it 

has to be short enough to pass through the gastrointestinal tract’s many tight 

loops but long enough not to tumble end over end, i.e. changing camera position 

front to back and vice versa, in the areas of interest. This has been simply 

achieved by making the video capsule endoscopes slightly longer than the 

diameter of a specific region of the gastrointestinal tract in which they are to be 

used.  Therefore, the PillCam SB capsule with a length of 27 mm has been 

successfully used to pass through and observe the small intestine, which has a 

maximum diameter of 25 mm, without tumbling. Also, the PillCam COLON 

capsule with a length of 33 mm has been successfully used to pass through and 
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observe the large intestine, which has a maximum diameter of 30 mm, without 

tumbling, which was a possibility for the PillCam SB.  

The gastrointestinal tract is essentially a tube of smooth muscle with a 

mucosal inner coating to reduce friction of the peristaltic propelled bolus. For 

the purposes of the project the natural bolus will be replaced by a device made 

from plastic. The device will need to have a smooth surface and there will be 

constraints on its diameter and length as indicated above. Initially in order to 

select an optimal material for the construction of the device, the coefficient of 

friction µ between the mucosal surface and a variety of plastics will need to be 

investigated.  

Electrostimulation is the stimulation of muscle and neural tissue by an 

external electrical source provided by the placement of electrodes. It can be used 

to activate the local adjacent smooth muscle tissue of the gastrointestinal tract 

causing it to contract in a manner that produces the propulsion to propel an 

enclosed device.  Electrostimulation of the intestinal wall has been shown to 

produce sufficient contractile force to evacuate a jejunal pouch of a dog and to 

pull an endoscope along the gastrointestinal tract. Part of the initial design 

process will be to verify Mosse’s stimulation parameters.
189 

  

The propulsive force exerted on the device produced by contraction of 

the adjacent smooth muscle tissue will depend on the force of the contraction. 

This will depend on the electrode dimensions and placement, the parameters of 

the electrical stimulation, the angle of the sloping face of the device and the 

frictional forces.  All of these will need to be investigated. 

For initial experimental investigations using the pig model, device 

dimensions required to fill enough lumen of the small intestine to ensure 
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electrical contact would need to be explored. The diameter of the capsules with 

FDA approval is limited to 11 mm to allow them to safely pass through the 

pylorus. However, access to the gastrointestinal tract is possible through the 

mouth or anus. 

 

 

 

Investigations will include: 

Selection of optimal plastic material for device construction. 

Investigate how angle of sloping face affects propulsive force in order to find 

optimal angle. 

Investigate how change in shape of bidirectional device may affect movement 

and compare movement in both directions. 

How the diameter of the device relative to the small intestine diameter may 

affect device propulsion.  

How stimulation parameters may affect device propulsion in order to find the 

optimal set. 

How the device may have to be finally adapted for human trial from the pig 

model device. 
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4.2 Introduction 

The aim of this section of the project is to produce a device which 

ultimately uses electrostimulation to propel small devices like video capsule 

endoscopes primarily along the small intestine, although some of the initial tests 

occur in the oesophagus. When designing such a device there are many issues 

which have to be taken into account. As well as the issue of electrical safety 

which was discussed in the previous chapter, there are a number of questions 

relating to the optimal dimensions of the device. There are also the questions of 

how best to convert the contraction of the intestine into a propulsive force for 

the device.  

This chapter describes the design and evaluation of physical properties 

of the device, which includes a description of the path followed in an attempt to 

obtain the optimal design. This commences with a report of the experimental 

investigations into the coefficient of friction between porcine intestinal tissue 

and a range of possible materials from which the devices could be constructed.  

Using these results, the design criteria of the device are discussed. This 

includes a description of the dimensions of the device and an investigation into 

the optimal angle design for the tapered section. 

The chapter then describes how the devices were constructed, tested and 

presents analysis of the results. The chapter concludes with a description of how 

the device was tested in vivo with a human subject and an analysis of these 

results. 
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4.3 Design Considerations 

As the device has to move as freely as possible through the 

gastrointestinal tract, the material chosen for its construction should have a low 

coefficient of friction with the mucosal lining. The material needs to be easily 

machined and work well with adhesives. The device has to gain maximum 

propulsion from the contractile force, therefore the optimal tapered angle will be 

investigated.  

4.3.1 Selection of Materials for Device Body 

Before the device can move, it must overcome static friction which is 

greater than the dynamic friction it will experience while moving. In order to 

utilize the propulsion force produced by the induced intestinal muscular 

contractions a value for both the static and dynamic coefficients of friction 

between the mucous surface of the small intestines and the capsule surface had 

to be determined. These properties were investigated for different materials 

which might be used to construct the device. The chosen materials not only 

needed to have a low coefficient of friction, but they also had to be easily 

machined. Thus, Acrylic, Delrin, and PTFE were selected for the test.  

For the simplest case shown in Fig. 4.1 the coefficient of friction is 

calculated from the limiting equilibrium equation: 

At the point of slipping,    F = N   [4.1] 

Resolving parallel to the slope,   F = Mgsin  [4.2] 

Resolving perpendicular to the slope,  N = Mgcos  [4.3] 

Substituting [4.2] and [4.3] into [4.1] gives,  Mgsin = Mgcos [4.4] 

Which simplifies to give,     = tan  [4.5] 
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Fig. 4.1 Simple force diagram to aid in the resolution of the coefficient of 

friction  = tan 

4.3.2 Equipment Used to Determine Coefficients of Friction 

The rotation equipment used to determine the coefficients of friction was 

produced by HASS Automation (Oxnard, California). A platform attached to a 

HASS SC5 rotation indexer (Fig. 4.2) could be rotated to an angle with a 

precision of 0.001°. This rotation could be continuous with a slow steady 

rotating motion, or direct to a designated angle, using the programmable 

keypad. The platform could be rotated through 360° in either a clockwise or 

anti-clockwise direction enabling measurements to be taken in both directions, 

reducing systematic errors. 

 

 

 

 

 

 

Fig. 4.2. Schematic diagram of Hass SC5 rotation indexer. 
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The rotation control was connected to a platform onto which post-

mortem porcine small intestinal tissue was securely attached. In an attempt to 

imitate the moist in vivo conditions, the small intestinal tissue was kept moist 

with normal saline solution during the experiment. The platform was initially 

levelled with a spirit level and the control unit was set to the zero degree setting 

with a spirit level. The equipment was then ready to be used to measure the 

coefficients of friction between the porcine small intestinal tissue and a range of 

different materials. 

The prepared samples of materials used were flat 60 x 100 x 30 mm 

rectangular blocks with slightly rounded edges to eliminate snags. The blocks 

weighed about 100 g, and there were supplementary loads of 100 g and 200 g 

that could be added to them. 

 

4.3.3 Measurement of the Coefficients of Friction  

To measure the coefficient of static friction for each material the 

platform was rotated from the zero degree position to an inclination angle at 

which the sample material was just about to move; the limiting equilibrium 

point. The platform was rotated in both the clockwise and anti-clockwise 

directions to eliminate any systematic error. The average values of these sets of 

angles, repeated ten times for each material, were found and then used to 

calculate the coefficient of static friction for each sample.  
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The measured coefficients of static friction were:- 

Delrin = tan (6.37) = 0.11  (SD 0.0069) (N = 10) 

Acrylic = tan (4.59) = 0.080  (SD 0.0080) (N = 10) 

PTFE = tan (2.40) = 0.042   (SD 0.0025) (N = 10)
 

 

To measure the coefficient of dynamic friction, the platform was set at 

an angle greater than the limiting equilibrium point to allow the sample to move. 

After the sample gained momentum the angle of the platform was reduced 

slowly until the sample just stopped moving. The average values of these sets of 

angles, repeated ten times for each material, were found and then used to 

calculate the coefficient of dynamic friction for each sample. 

The coefficients of dynamic friction: 

Delrin = tan (4.24) = 0.074
 

 (SD 0.0060) (N = 10)
 

Acrylic = tan (3.38) = 0.059
 
  (SD 0.0053) (N = 10) 

PTFE = tan (0.67) = 0.012   (SD 0.0021) (N = 10) 

 

 The results show that both the coefficients of static and dynamic friction 

for all the materials is low enough to produce a frictional force which will be 

negligable. Therefore, when chosing one of the materials, the major 

considerations are how easily they are to machine and how they work with 

adhesive.  Acrylic proved to be the best for both of these, so it was chosen. 
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4.3.4 Capsule Design 

At this stage, with all three materials (Acrylic, PTFE and Delrin) having 

such low coefficient of friction values, Acrylic was selected for the device 

construction because of its favourable physical properties. However the next 

consideration was to investigate how optimal propulsive movement could be 

produced from a given induced lateral contractile force and the effects that 

various coefficients of friction may have.  To address this problem, a limiting 

equilibrium equation was derived by considering the forces produced during 

intestinal contraction.   

It was assumed that the contractile force (R) would be applied to a 

tapered section with an angle ϴ (Fig. 4.3) and that the propulsive force (P) is a 

function of ϴ. 

 

P = Propulsive force   

R = Contractile force 

N = Normal force  

F = Frictional force 

 = Taper angle 

 

Fig. 4.3 Diagram representing the forces acting upon the taper at limiting 

equilibrium. 
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Resolving        for N:   

                [4.6] 

Resolving        for F:   

 F = µN         [4.7] 

Resolving      for P: 

                                     [4.8] 

 P                           [4.9] 

Equation [4.9] shows that the fraction of contractile force that is converted into 

propulsive force varies with ϴ.  As well as showing this, Fig. 4.4 also shows 

that the optimal taper angle at which maximum propulsive force occurs and the 

maximum magnitude of the propulsive force varies with µ. 

 

 

Fig. 4.4 Plot of P against ϴ representing equation [4.9] using values of µ for 

Acrylic, PTFE and Delrin. 
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Fig. 4.4 shows that the maximum force for each material occurs at a 

taper angle between 40  and 50 . To examine this in more detail, Fig. 4.5 shows 

this region of the curves in more detail. 

  

 

Fig. 4.5 Plot of P against ϴ for values of ϴ between 40  and 50  using values of 

µ for Acrylic, PTFE and Delrin. 

 

From the maximum values of the curves (Fig. 4.5) it can be seen that the 

maximum propulsive force produced for all three materials is just under half the 

contractile force, (Acrylic 47%, PTFE 49.5% and Delrin 46%). The differential 

of the resolved force P with respect to ϴ was determined and equated to zero, 

giving a value for ϴ where the maximum value of P occurs.  
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Differentiating P with respect to ϴ gives: 

  
  

  
  

 

 
                        [4.10] 

Max P occurs when  

      
  

  
         [4.11] 

 Therefore max P occurs when 

                      [4.12] 

 

The differential 
  

  
 was plotted against ϴ in order to determine the angle at 

which the maximum propulsive force occurs (Fig. 4.6 and Fig. 4.7). 

 

 

Fig. 4.6 Plot of 
  

  
 against ϴ using values of µ for Acrylic, PTFE and Delrin. 
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Fig. 4.6 shows that the angle at which the maximum propulsive force occurs, 

lies between 45  and 50  for all three materials. To examine this region more 

closely, Fig. 4.7 shows the trends between 45  and 50 .  

 

 

Fig. 4.7 Plot of 
  

  
 against ϴ between 40  and 50  using values of µ for Acrylic, 

PTFE and Delrin. 

 

From Fig. 4.7 it can be seen that the optimal taper angle for PTFE is 45.3 , 

Acrylic is 46.6  and Delrin is 47.1 . Although Acrylic produces only 95% of the 

maximum propulsive force that is achievable by PTFE, the advantages of its 

physical properties outweigh this small loss.  Therefore, Acrylic requiring a 

taper angle of 46.6  to achieve a maximum propulsive force of about 47% of the 

contractile force produced by the intestinal wall was chosen. 
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4.4 Initial Designs and Construction 

Rationale for design 

Using values compatible with those shown by Mosse
189 

in
 
the pig model of 

the oesophagus the range of stimulation parameters to be initially tested where: 

 Voltage range of 5 - 35 V in 5 V increments. (No further increase in 

speed above 30 V) 

 Frequency range 5 - 15 Hz in 5 Hz increments. (No increase in speed 

above 15 Hz) 

 Pulse duration of 20 ms 

From calculations in the previous section, it was shown that the optimal 

angle for the tapered section was 47°.  

The device was constructed in a teardrop shape with a rounded front and a 

tapered rear section (Fig. 4.8). The initial design had a maximum outer diameter 

of 15 mm and the angle of the tapered section was 47° to produce the best 

propulsion from the contractile force. Two electrodes were placed diametrically 

opposite towards the widest part of the tapered rear section to provide the 

induced forward motion. The electrodes were constructed from 2 mm brass 

screw heads soldered to 2 m long insulated wires, which passed through the 

device and out through the rear of the tapered section. 
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Fig. 4.8 Schematic diagram of unidirectional device. 

The body of the device was machined from a section of acrylic rod (a 

cylinder 50 mm long with a 15 mm diameter) using a lathe. Once the tear drop 

shape was achieved, the device was polished to remove the final rough surface. 

Two holes were then drilled in the top of the taper section using a pillar drill. 

They were diametrically opposite and perpendicular to the tapered section. The 

holes were both 2 mm in diameter and drilled so that they met on the central 

axis of the device. A third 2 mm hole was drilled along this axis from the centre 

of the rear of the tapered section to meet the other holes. This produced the 

pathway through which the wires would pass from the electrodes to the 

stimulator. Each 2 mm brass screw head was soldered to 2 m of flexible multi-

strand insulated wire which had an outer diameter of 0.5 mm. (The drag effect 

on the device movement that the trailing wires would have was considered, and 

the use of smaller diameter wire contemplated. However, the devices had to be 

robust and it was thought that wire of smaller diameter would be too fragile. It 

was therefore decided that 0.5 mm multi-strand wire would be used.) Each wire 

was fed through its corresponding hole on the tapered section and drawn 

Electrode

des 

15 mm 

mm 
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through the rear hole until the electrode had reached the device. They were then 

fixed over the top of their holes with epoxy resin.  

4.4.1 Initial Animal Tests 

 

With permission granted from the Home Office to Swain (the attending 

physician) to perform a range of experiments on pigs including 

electrophysiological work, the initial experiment was designed to verify the 

findings presented in the thesis of Mosse.
189

 It examined the stimulation 

properties required to propel the 15 mm teardrop device described previously 

along the gastrointestinal tract. A Grass SD9 stimulator, (Grass Technologies, 

West Warwick, USA) was used to supply the stimulation signal to the 2 mm 

diameter electrodes.  

The stimulator produces a square wave stimulation signal, which can have 

a three decade output voltage range from 0.1 to 100 V, a three decade frequency 

range from 0.2 Hz to 200 Hz, and a four decade range of duration from 0.02 ms 

to 200 ms. It has a maximum output impedance of 1 k, a peak output current 

of 50 mA, with a maximum power output of 2.5 W (peak). 

To prevent it from entering the trachea, the device was passed through an 

over tube into the oesophagus of an anesthetised pig with a following 

endoscope. Once the capsule had been successfully placed into the oesophagus, 

the over tube was withdrawn. The endoscope was pulled back slightly so that 

the rear of the device could be clearly seen by the camera of the endoscope. 

Once set in this position, which was the starting position for each tested 

stimulation parameter, the stimulator was activated. After the effects were 
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observed, the stimulator was deactivated and (if movement had occurred) the 

capsule was returned to the starting position. This was repeated three times over 

a number of stimulation parameters and the results are presented in Table 4.1. 

Voltage (V) Frequency (Hz) Pulse Length (ms) Contraction Movement 

5 5 20 None None 

5 10 20 None None 

5 15 20 None None 

10 5 20 None None 

10 10 20 None None 

10 15 20 None None 

15 5 20 None None 

15 10 20 Very weak None 

15 15 20 Very weak None 

20 5 20 Weak None 

20 10 20 Strong None 

20 15 20 Strong Slight, intermittent 

25 5 20 Strong Slow, intermittent 

25 10 20 Strong Slow, juddering 

25 15 20 Strong  Smooth 

30 5 20 Strong Slow juddering 

30 10 20 Strong Juddering 

30 15 20 Strong Fast, smooth 

35 5 20 Strong Slow juddering 

35 10 20 Strong Juddering 

35 15 20 Strong Fast, smooth 

Table 4.1. Initial oesophageal experiments 

The strength was judged by observing the degree of contraction caused by 

stimulation and although not quantitative, the results from this initial test 

showed that the new design performed in such a way as to concur with results 

presented by Mosse.
189

 (Table 4.2)  
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Voltage 

set  

5V  10V  20V  25V  30V  35V  

Resulting 

movement  

Nothing  Nothing  Slow 

contraction 

no movement  

Contraction 

no 

movement  

Contraction 

rapid 

movement  

As for 

30V  

 

Table 4.2 Results presented by Mosse showing the effect of varying voltage 

across the electrodes of Device E4 placed in pig oesophagus. 

 

The results show that smooth movement was produced by stimulation 

parameters of 15 Hz and 20 ms through a range of voltages from 25 V – 35 V. 

This showed close agreement with the results presented by Mosse. 

However, as one of the aims of this project was to produce a system that 

would provide propulsion of the device in either direction, a prototype 

bidirectional capsule was devised that could fulfil this criterion. 

For this design and each subsequent design change, a crude model of the 

charge density was used to determine the order of magnitude of the maximum 

charge density on the electrode. The charge density per cycle was calculated by  

                              

              
   

Some values are presented in Appendix D. 

 

4.4.2 Design and Construction of a Bidirectional Device 

 

The bidirectional device (Fig. 4.9) was designed to have a tapered section 

with the same tapered angle (ϴ = 47°) at both the front and the rear of the 

device. Unlike its unidirectional counterpart it had two pairs of electrodes. One 
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pair of electrodes was placed on the rear tapered section to provide the induced 

forward motion and a second pair of electrodes was placed on the front tapered 

section to provide the induced backward motion. The electrodes were once 

again 2 mm diameter brass screw heads and the 2 m of insulated wires 

connected to each of them passed through the capsule and out through the rear 

tapered section. 

 

 

 

 

 

 

 

 

 

Fig. 4.9 Schematic diagram of original bidirectional device 

 

The bidirectional device was initially constructed using a similar method 

to that used for the unidirectional device. The rounded section was replaced with 

another tapered section and holes for the extra electrodes were added. The hole 

from the rear of the device was drilled so that it connected to all the holes from 

the tapered sections. However, when the wires were fed into the holes it was 

extremely difficult to get them to emerge from the rear of the device. The hole 

through the centre was then increased to have a diameter of 3 mm. Although 

Electrode

s 

15 mm  



133 

 

this helped, it was not sufficient, so the construction method for the bidirectional 

device was further modified. 
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A: Wire exit hole 2 2 2 

B:  3 3 3 

C:  2 2 2 

D: Inner diameter 6 10 15 

 

Fig. 4.10 Schematic diagram of the second design of bidirectional devices 

The modified device was constructed in two halves. Each half was 

constructed from a acrylic cylinder with the same dimensions as that used for 

the unidirectional device. Once the tapered section was complete the cylinder 

was repositioned in the lathe so that a 10 mm hole could be drilled, thus making 

a hollow device when the two halves were put together. A larger 12 mm drill bit 

was used to make a 2 mm recess into one half of the the device, while the other 

had a 2 mm lip with an outer diameter of 12 mm machined into it. This 
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produced a secure way of attaching the two halves together at the end of 

construction. Once polished the 2 mm holes were drilled on the tapered section 

to accommodate the wires, with only one hole required for the wires to pass 

through the rear of the device. When the wires were passed through the device 

the electrodes were fixed in place and the integral device was sealed with epoxy 

resin. Fig. 4.10 shows a schematic drawing of the second design of the 

bidirectional devices. 

4.4.3 Initial Bidirectional Capsule In Vivo Experiment 

 

The following experiments were undertaken to determine how the 

tapered front section of the bidirectional device affected its forward progress 

compared to that of the rounded front section of the unidirectional device. The 

experiments were also used to determine if the wires would affect the reverse 

progress of the bidirectional device. Therefore, the performance of the 

bidirectional and unidirectional devices were compared. Each device was fed 

through an over tube into the oesophagus of a small anaesthetised pig with a 

following endoscope. Once in place, the overtube was removed and the 

endoscope was withdrawn slightly so as not to interfere with the device, but not 

so far that sight of it was lost. The electrodes of the device were connected to a 

Grass SD9 stimulator (Grass Technologies, West Warwick, USA) using wires. 

In a preliminary experiment, induced muscular contraction was observed 

on activation of the stimulator at 10 V, 15 Hz and 15 ms with both the 

bidirectional and unidirectional devices. Further experiments using a range of 

voltages and frequencies similar to those examined in the initial test with the 
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unidirectional capsule were then performed. The results showed that contraction 

with movement was achieved at 20 V with a frequency of 15 Hz. However, 

contraction with no movement was observed at 10 V and 15 V with a frequency 

of 15 Hz. For the unidirectional device, contraction with movement was again 

observed at 20 V with a frequency of 15 Hz. Once again, however, contraction 

with no movement was observed at 10 V and 15V. 

The tests were repeated in the small intestine of the anaesthetised pig 

during laparotomy, where an incision is made in the abdomen of the pig to 

allow direct access to the intestines. Both devices moved continuously without 

juddering with 20 V, 15 Hz and 15 ms supplied by the Grass stimulator. The 

results were similar to those found in the oesophagus. In both the oesophagus 

and in the small intestine the two devices appeared to perform as well as each 

other. With this equality of performance confirmed, further investigations used 

only the bidirectional devices. 

 

 

4.4.4 Design and Construction of Devices of Different Diameter  

 

In order to investigate how the diameter would affect the performance of 

the devices, bidirectional devices of different diameters were made to be tested 

in the pig model. Similar in design to the original, three devices with diameters 

of 11 mm, 15 mm and 20 mm were constructed with 2 mm diameter stainless 

steel electrodes (Fig. 4.10).  These devices would be used to examine how the 

difference between device diameter and lumen diameter would affect their 
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performance. The 11 mm device was of special interest as it was the only device 

which could safely pass through the pylorus, allowing it to travel the whole 

length of the gastrointestinal tract after being swallowed in the human model. 

The devices were constructed using similar methods to those used for 

the original 15 mm bidirectional device, but there were two differences to be 

taken into consideration. First the diameter changes meant that the internal 

diameters of the hollowed sections also changed. Each of the devices was 

constructed to have 5 mm thick walls with the 2 mm thick attaching lip. The 

second change to the construction method was the soldering of the stainless 

steel electrodes to the wires. As the flux within solder does not aid bonding to 

stainless steel, ortho-phosphoric acid was used as a flux. The electrodes were 

then fixed in place with epoxy resin. 

All three were tested separately in porcine small intestine during 

laparotomy. Although it was possible to fit all three devices into the small 

intestine, the 20 mm device was approaching the maximum diameter that the 

small intestine could accommodate without distension occurring. The three 

devices were tested using the same stimulation parameters that had been used in 

the initial test. Similar results were now observed for all three capsules 

regardless of size. Contraction, but with no movement, was observed when the 

stimulator produced voltages of 10 V or 15 V, and contraction with movement 

was observed when the stimulator produced a voltage of 20 V. These tests were 

performed using each pair of electrodes at separate times, producing the same 

results both for movement with and against the natural intestinal flow. 

An interesting problem was discovered during these experiments. When 

the small intestine is empty it lies flat. Consequently the 11 mm capsule which 
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did not have an outer diameter large enough to fill the cavity left voids between 

itself and the lumen of the small intestine. This meant that when the 11 mm 

capsule was placed into the small intestine at certain orientations, with the 

electrodes in these areas of non-electrical contact with the internal walls, 

induced contractions could not be produced. The 11 mm diameter capsule is of 

greatest interest if the device has to be swallowed, as it is the only device with a 

diameter small enough to pass through the pylorus safely. With this criterion in 

mind a solution to the ‘non-electrical contact’ problem had to be found.  

This left the author with an intriguing problem. The initial thought was 

to move the position of the electrodes to an orientation whereby the electrodes 

could not lose contact with the wall of the small intestines. Moving the 

electrodes closer to one another around the circumference of the device was the 

first considered as stimulation of any portion of circumference of the lumen 

would cause the circular muscle to contract. Although this would ensure one 

electrode would be in contact with the wall of the small intestine, it did not 

prevent the problem as a situation could still arise where the other electrode was 

not in contact. In fact any orientation of the 2 mm electrodes could lead to a 

situation where electrical contact between at least one of the electrodes and the 

small intestines was lost. It was at this moment the author thought of a design 

for the electrodes which would allow both of them to remain in contact with the 

small intestinal wall no matter how the device was positioned. If the electrodes 

covered almost all of the tapered section leaving only a small gap between them, 

they would remain in contact with the lumen of the small intestine no matter 

how flat it became. Resulting from this, large area electrodes were designed, 
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each to cover half of the entire tapered section except for a small insulating gap 

between them. 
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Fig. 4.11 Schematic diagrams of large electrode bidirectional device 
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The electrodes were constructed by using a lid from a cruet set. The lid 

to the salt cellar was used as it had one hole at the apex of the cone which 

allowed it to fit over the wires snugly as they left the rear of the device. The lid 

was conical in shape with a cylindrical base which was tapped so that it could 

screw onto the salt cellar. Once the tapped portion of the lid was removed the 

conical section was cut in half from apex to base to produce two large area 

electrodes. Construction of the body of the large electrode device was the same 

as that for the small electrode device apart for one small adaptation. As the 

electrodes could not protrude beyond the outer diameter of the device, the 

maximum diameter of the tapered section was reduced by a millimetre. The 

electrodes were then attached to the tapered section with an excess of epoxy 

resin, which was allowed to pass out through the gap between the electrodes. 

When set, the excess epoxy resin was filed away leaving the electrodes with the 

appearance of having been counter sunk into the device with a 2 mm insulated 

gap between them.  

This new design shown in Fig. 4.11, enabled the electrodes of the 11 mm 

diameter capsule to remain in contact with the lumen of the small intestine, 

regardless of their orientation. In a pig during laparotomy, this larger electrode 

design overcame the problems associated with the previous small electrode 

design allowing the 11 mm device to work continuously as it remained in 

electrical contact at all times. 

All the previous experiments were qualitative, based on visual 

observations to estimate how successful the stimulation had been. They showed 

that in principle a bidirectional stimulation device worked effectively.  
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With this degree of reliability, a more quantitative set of experiments 

were devised to measure how different parameters affect the speed that the 

devices travelled along the small intestine during a one minute period.  

 

4.4.5 The One Minute Tests 

 

This section describes the variety of one minute tests that were 

performed to help in the development of the final design of the bidirectional 

device. All of the following in vivo experiments described were performed in 

the small intestines of anaesthetised pigs during laparotomy. This procedure 

involved an incision in the abdomen through which loops of the small intestines 

were drawn. Once exposed, a small incision in the wall of the small intestine 

was made to allow the devices to be introduced. 

The distance the devices moved during the one minute stimulation 

period was measured. The measurements were taken between two marker points 

produced with the aid of an electric diathermy scalpel that was used to mark the 

wall of the small intestines at the start and finishing positions of the back of the 

device.  

Electrostimulation was applied for one minute and then switched off. It 

was observed that the devices continued to move for a few seconds after the 

electrostimulation was switched off. This was an interesting phenomenon and 

could have been due to the reaction time of the smooth muscle.  
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4.4.5.1 The Effect of Capsule Diameter on Movement 

 

The three devices were then used to determine quantitatively the effect 

that the diameter of the capsule had on its in vivo movement capabilities. The 

method used was to activate the stimulator for a one minute period using the 

stimulation parameters from the initial experiment that produced definite 

movement (20 V, 15 Hz, and 15 ms). The stimulator used had an output 

impedance of 1 k implying an output current of approximately 1 mA to each  

1 V output. 
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Fig. 4.12 The impact of the capsule diameter on device speed. 

 

The results from this experiment (Fig. 4.12) show that the 11 mm and  

20 mm devices moved by comparable distances 70 mm (SD 1.8) (N = 10) and 

80 mm (SD 1.6) (N = 10) respectively, while the 15 mm device movement was     
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40 mm (SD 1.8) (N = 10). Although this was a promising result from the point 

of view of constructing a device that could be swallowed (i.e. the 11 mm 

capsule), the result for the 15 mm device was surprising. It was postulated that 

again the screw electrodes may have been the cause of the problem as they may 

not have been in full contact with the tissue at all times with the 15 mm device.  

With this in mind large area electrodes were fitted to 15 mm and 20 mm 

devices. These devices were constructed using the same method as the 11 mm 

device producing counter sunk electrodes covering the whole tapered section 

with a 2 mm insulating gap between them.  The experiment to determine the 

effect of device diameter was repeated. The results from this revealed that the 

15 mm device performed  as well as the 20 mm device and just slightly better 

than the 11 mm device. 

 This was a very promising result as it showed that the performance of 

the 11 mm device with the large area electrodes was comparable to that of the 

larger diameter devices. This suggests that a device that can be swallowed could 

be propelled as effectively along the small intestines by electrostimulation as a 

larger device which fills the whole lumen. 

 

4.4.5.2 11 mm Bidirectional Device Compared with Dummy 

Video Capsule Endoscope Device 

 

Once it was determined that the 11 mm large electrode device would 

perform in a satisfactory and reliable way, the focus of the project was 

transferred to designing a video capsule endoscope that would perform with 

electrodes attached directly to it. Although the diameter of the video capsule 
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endoscope was the same, the ends of it were hemispherical and not conical. 

Therefore, a new device design (Fig. 4.13) was produced using as its framework 

a dummy copy version of an M2A passive video capsule endoscope that could 

be swallowed. This dummy version had the same dimensions as the real video 

capsule endoscope with no electronics inside, and was therefore considered to 

be a good guide to the genus of a device that could be initially swallowed and 

then propelled by electrostimulation. The performance of the dummy video 

capsule endoscope device was compared with that of the bidirectional device to 

determine how the hemispherical ends would affect movement. 

The dummy capsule device was constructed around a replica of an M2A 

capsule. Although these replicas had been made to give clinicians an idea of the 

size and weight of a video capsule endoscope, they were an ideal base on which 

to construct a device to show how a real video capsule endoscope would 

perform when compared to the 11 mm large electrode bidirectional device.   

One pair of semi-hemispherical large area stainless steel electrodes 

similar in design to those on the bidirectional device were soldered to 2 m long 

0.5 mm diameter insulated wires and attached to the rear of a dummy M2A 

capsule using epoxy resin. Once in place, insulating tape was used to hold the 

electrodes in a fixed position relative to the device until the epoxy was set. Once 

set the epoxy was filed to produce a device with counter sunk electrodes.  
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Fig. 4.13 Schematic diagram of the dummy device. 

A new set of one minute tests was carried out to determine how the 

hemispherical ended device would perform relative to the bidirectional device. 

The dummy copy was fitted with a pair of rounded large area electrodes 

attached to the rear of the capsule. This was tested against the 11 mm 

bidirectional device in a pig during laparotomy. Stimulation of 15 Hz, 20 ms 

with a voltage of 20 V was used as these parameters had been shown to give 

smooth movement in the original tests. 
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Fig. 4.14 Performance of hemispherical ended device (dummy lozenge) 

compared with bidirectional device (lozenge). 

 

The experimental results (Fig. 4.14) showed that there was very little 

difference between the performances of the two designs. Within one minute the 

bidirectional device moved 70 mm (SD 3.2) (N = 9) and the dummy capsule 

device moved 67 mm (SD 1.0) (N = 9). This result was very promising as it 

would allow electrodes to be placed directly onto functioning video capsule 

endoscopes. This would allow for their use during later experiments to show 

real time footage of what the clinician would see during stimulation. With this 

in mind future designs of the 11 mm device were constructed using dummy 

copies of the M2A video capsule endoscope device as the framework.  
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4.4.5.3 Effect Caused by Changes in Frequency on Movement 

 

The revised rounded device was then used to determine if the frequency 

parameter had any effect on its movement. After placement in the small 

intestine during laparotomy, the electrodes were activated using the Grass SD9 

stimulator for a one minute period at different frequencies. As with the earlier 

one minute tests, the distance the device travelled for each set of values over one 

minute was recorded. The voltage and pulse duration values were kept constant, 

at 20V and 20 ms respectively. 

 

Fig. 4.15 Test of the effect of frequency on duration. 

 

The results shown in Fig. 4.15 reveal that a frequency of 12.5 Hz 

produced the greatest movement of 110 mm/min (SD 2.9) (N = 6). 
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Measurements presented earlier have already established that frequencies below 

12.5 Hz could not be used because they produce judders in the muscle around 

the device.    

4.4.5.4 Effect Voltage has on Device Movement 

 

Another set of one minute tests were used to determine the effect that 

different voltage settings had on the devices movement. The method used was 

to activate the stimulator for a one minute period with different voltages, and 

record the corresponding distances travelled by the capsule. The other electrical 

parameters were kept constant (frequency 12.5 Hz, pulse duration 20 ms). 

 

Fig. 4.16 Effects on voltage. 

 

These results (Fig. 4.16) show that the maximum speed with which the 

capsule moved within the porcine small intestine was 121 mm/min (SD 1.8)  
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(N = 10), achieved at a voltage of 20 V. The speed did not increase when the 

voltage was increased to 26 V suggesting that 20 V was sufficient to activate all 

the local muscle tissue. Thus the optimal stimulation parameters which gave the 

best movement were 12.5 Hz, 20 ms, and 20 V.   

Fig. 4.17 shows the progression of the device along an exposed loop of 

small intestines. The device is circled in the initial photo and its progress can 

clearly be seen through the series of photos. The time represented by the series 

of photos is 23 seconds, during which the device travelled at least its own length 

(27 mm), suggesting a speed in this video of about 70 mm/min. 

 

Fig. 4.17 Stills from a 23 second video showing the progression of an 11 mm 

device being propelled along a loop of exposed small intestine. 
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4.4.5.5 Double Ended Video Capsule Endoscope Device 

 

The next stage in the design development was to add a pair of electrodes 

to the front of video capsule endoscope which needed to be slightly different to 

those at the rear. These electrodes had to be redesigned because the original 

design, which up until now had been used to determine optimal stimulation 

parameters, would have obscured the camera’s field of view when attached to a 

real working M2A video capsule endoscope device. The front electrodes were 

placed further back along the body of the capsule so that they did not obscure 

the camera’s field of view. This led to a gap greater than 2 mm between the 

electrodes and it was thought that this may once again produce the non contact 

problem that produced the initial need for the large area electrodes. (Fig. 4.18) 

 

 

 

 

 

 

 

 

Fig. 4.18 Double Ended video capsule endoscope 

 

The front pair of electrodes was therefore redesigned by the author to 

encircle the front end of the capsule just behind the lens. As can be seen in    

Eo grass 12.5hz 20ms

15V

a) 50mmHg

b) 50 mmHg

c) 48mmHg

20V
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Fig. 4.19. The electrodes once again had the same small insulating gap between 

them as the rear electrodes.  

 

 

 

 

Fig. 4.19 Bidirectional video capsule endoscope 

 

This front end design produced a performance which was comparable to 

that of the larger area rear design. Using a 12.5 Hz, 20 ms stimulation pulse with 

a voltage of 20 V within the small intestines the front electrodes pushed the 

device at 117 mm/min (SD 1.7) (N = 10). The rear electrodes pushed the device 

forward at 119 mm/min (SD 2.1) (N = 10). 

This design was then applied to a functioning M2A video capsule 

endoscope for testing. With a few modifications to the connecting wires, this 

design evolved into that employed for the future human experiments. For 

reasons explained in the next section the wires needed to be replaced with those 

having a greater strength and covered with additional flexible rubber tubing.  
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4.4.6 Capsule Construction from Animal to Man 

 

 Unlike the earlier tapered devices, which were constructed from 

perspex, the outer casing of the dummy M2A capsules are constructed from 

PTFE. This makes them difficult to bond electrodes to. However, epoxy resin 

was found to bond the stainless steel electrodes and the PTFE casing securely to 

the devices constructed for the earlier tests. This caused its own set of problems 

as electrodes connected to wires had a tendency to move during the curing 

process of the epoxy. This caused the electrodes attached to initial devices to be 

somewhat out of alignment when the epoxy had set. To overcome this the 

electrodes and unset wet epoxy were encased in tape which held the electrodes 

in a fixed position until the epoxy had cured. This produced devices which 

although not perfect, produced good movement in the small intestine. This 

design then evolved into a bidirectional device which used the same size 

electrodes at the front and rear. The front electrodes had to be placed further 

back along body of the capsule so that they did not obscure the camera’s field of 

view. This produced an unwanted large gap between the front electrodes, which 

was shown in section 4.4.3 to cause intermittent contractions due to the 

orientation of the electrodes relative to the lumen of the intestine. To 

compensate for this, the front electrodes were redesigned to wrap around the 

body of the capsule just behind the lens. This design allowed them to be in 

constant contact with the lumen at all times, whatever the orientation of the 

capsule. The positioning of the electrodes did not affect the performance of the 

device so that the design was adopted for the human test. 
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The successful construction of bidirectional dummy M2A devices led to 

the construction of a bidirectional functioning video capsule endoscope. The 

video capsule endoscope construction process identified two additional 

concerns. The circuit of a M2A video capsule endoscope is activated by the 

removal of a magnet which is placed within its packaging. Therefore, the 

electrodes had to be attached and taped quickly so the capsule could be 

deactivated as quickly as possible by being returned to the magnetic field. 

During construction, every effort had to be made to ensure no epoxy resin 

obscured the view of the camera.  

 

 

Fig. 4.20 Bidirectional video capsule endoscope 

 Although the design of the electrodes had been determined, the 

prototype design was far from acceptable for a human trial as the contruction 

was not up to a suitable standard. It can be seen in Fig. 4.20 that the wires from 

the front electrodes had to be incorporated within the body of the device. As it 

was not possible to pass the wires into the video capsule endoscope, they were 

taped to the exterior of the capsule using insulating tape. Once the electrodes 

were correctly positioned, a coating of epoxy resin was applied to the whole 
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body of the capsule, leaving only the lens free of resin. This was then taped to 

ensure the electrodes were held in place until the epoxy had set. When set the 

tape was removed and the resin coating was filed back to expose the electrodes. 

At the end of a human trial the device will have to be retrieved from the 

subject’s small bowel by pulling it out through the mouth, and therefore the 

wires need to be sufficiently strong. Therefore for the final design, (Fig. 4.21) 

the wires used were nylon coated steel fishing line. For an added extra safety 

precaution the wires were encased in silicone rubber tubing to prevent damage 

to the volenteer’s gastrointestinal tract during the withdral of the device.  

 

 

 

 

 

 

 

 

 

Fig. 4.21 Schematic diagram of bidirectional video capsule endoscope for the 

human test. 

 

 A device without a camera was made to be used in a preliminary set of 

animal tests.  These were performed to ensure this design and production 

method produced a device that would provide an adequet performance during 
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the human tests. Stimulation with a frequency and duration of 12.5 Hz and      

20 ms at 20 V was supplied to the electrodes. The device performed much better 

than expected during these tests, moving with a speed of 300 mm/min (SD 1.8) 

(N =10) in both directions. When compared to the results from previoius tests 

(section 4.4.5.4), the device produced over twice the speed using the same 

stimulation parameters. This was due to better construction methods which 

enclosed the wires from the front electrodes and ensured better electrode 

placement. The tissue was examined after the proceedure to look for signs of 

damage due to electrolysis from excessive charge.  None was found.  Therefore, 

two devices of this design with cameras were then constructed for the human 

tests. 

 

 

4.5 Human Subject Experiments 

 

To determine exactly how the device would function in humans, the 

final design development stage of the capsule requires that it be made suitable 

for use on a human volunteer. Ethics committee approval was granted to Swain 

to conduct four human experiments. This section begins with a description of 

the modifications made to produce the final capsule design. It continues with a 

description of the procedures used during the experiment and ends with an 

analysis of the results. 
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4.5.1 Modifications to the Capsule 

 

As discussed previously, the capsule needs to be retrieved by pulling it 

back out through the subject's mouth via the attached connecting wires. 

Therefore, the thin electrical wires used for previous devices were replaced by 

Nylon coated steel fishing wire. The electrical conductivity of the wires did not 

pose much of a problem. The resistance of the wires was in the region of a few 

tens of ohms per meter, which was insignificant compared with the output 

impedance of 1 k of the Grass stimulator. 
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Fig. 4.22 Video endoscope capsule with attached electrodes. 

 

It was also necessary that the wires were covered with a soft coating so 

that the device could be retrieved via the mouth without causing any harm to the 
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subject. With this in mind the wires were covered with flexible medical grade 

silicone rubber tubing. (Fig. 4.22) Markings were then placed at 200 mm 

intervals along the outside of the tubing so that the distance the device had 

travelled through the gastrointestinal tract would be instantly known. 

 

4.5.2 The First Human Subject Experiment 

 

During the experimental investigation it was essential to monitor the 

possible effects on the subject’s pulse rate and to test any muscular sensation 

felt when intestinal muscular contractions were induced by electrostimulation. 

The capsule was initially swallowed by the healthy consenting male volunteer 

and allowed to pass naturally through the oesophagus and stomach into the 

small intestine. Once in the small intestine the connecting wires of the device 

were connected to the Grass stimulator. The stimulator was set to the optimal 

parameters of 12.5 Hz and 20 ms. The effects of a range of voltages starting at   

2 V and increased in 2 V increments to 10 V were investigated as a cautious 

preliminary test to determine the minimum voltage which would produce 

satisfactory capsule propulsion. The effect of using alternate electrode pairs to 

induce forward and backward movement in the voltage range 0-7 V was also 

investigated. 

Before starting the experiment the volunteer used an anaesthetic spray to 

reduce their gag reflex. The spray was administered throughout the duration of 

the experiment at the request of the volunteer, as and when it became too 

uncomfortable to continue. The experiment took place partly in the preparation 
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room and partly in an X-ray suite. Within the preparation room was a computer 

running the video capsule endoscope’s real time viewer. This enabled the transit 

of the device to be observed in real-time and allow the attending clinician to 

determine when the capsule had reached the volunteer’s small intestine. The 

volunteer swallowed the device, seven minutes after which the transmitted 

images from the pill camera showed that the device had entered the stomach. 

After a further seventeen minutes the device was observed to enter the small 

intestine of the subject. 

The subject was then moved from the preparation room to an X-ray 

room with a video screening facility so that the progress of the capsule through 

the intestine could be monitored using X-ray fluoroscopy. When the subject was 

correctly positioned on the table so that fluoroscopy could take place, the 

connecting wires of the capsule were connected via a switching-box to the Grass 

stimulator.  

The switching-box had been built to facilitate an instant method of 

selecting the electrode pair which delivers the stimulation at any given time. 

This was a simple device which included a pair of input terminals and two pairs 

of output terminals. An integral double-throw switch allowed the signal from 

the input terminals to pass through either of the output terminal pairs. The 

output signal of the Grass stimulator was connected to the input terminals of the 

switching-box. The front and rear electrode were connected as pairs to the 

output terminals on the device. This allowed the direction of induced movement 

of the capsule to be selected at the flick of a switch. 

Once all the equipment was set up correctly it was tested on the subject. 

The pulse of the subject was monitored using a pulse oximeter, and verified 
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using palpation. This was required to detect any adverse effects the stimulation 

had on the subject’s pulse. The results are summarised in Table 4.3. 

 

 

 

Table 4.3. Initial human test results. 

 

Immediately the reduction of heart rate was observed the test was 

stopped. And as soon as the stimulation was stopped, the heart rate of the 

volunteer returned to normal. The volunteer reported no adverse sensations 

Pulse rate of the 

subject 

Direction of 

intended 

movement 

Time Grass voltage Observations  

Stable at 75 Forward 09:53  2 V No internal muscular 

sensation. No 

movement 

Stable at 75 Forward 09:55  4 V No internal muscular 

sensation. No 

movement 

Drops 75-69 Forward 09:55 

 

6 V No internal muscular 

sensation. No 

movement 

Drops 75-67 Forward 10:01  6 V No internal muscular 

sensation. No 

movement 

Fluctuates 75-

56-66 

Forward 10:04  0-8 V No internal muscular 

sensation. Device felt 

to move at mouth 

Drops 68-55 Forward 10:05 0-8 V No internal muscular 

sensation  

Fluctuates  

68-55-63-43 

Forward 10:10 0-10 V No internal muscular 

sensation.  

Movement observed 

10V gave many extra 

systoles 
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during the test and wished to carry on with the experiment. It was postulated 

that the reduction in heart rate had been produced by an inadvertent stimulation 

of the vagus nerve, the extremity of which can reach as far as the top of the 

small intestine. After this set of tests the subject was returned to the preparation 

room. Further tests were then performed so that pictures of the intestine taken 

by the capsule camera could be seen in real time on a monitor screen. The 

device was observed to move forward and backwards a few times, all at 0-7 V, 

with the subject in a sitting position. Again, a frequency of 12.5 Hz with signal 

pulse duration of 20 ms was used. The results are summarised in Table 4.4. 

 

Stable at 68 Forward 10:17 0-7 V No internal muscular 

sensation. 

Movement observed 

Drops 69-67 Backwards 10:20 0-7 V No internal muscular 

sensation. 

Movement observed 

Raises 63-66 Forward 10:23 0-7 V No internal muscular 

sensation.  

Movement observed 

Drops 66-50 Backwards 10:25 0-7 V No internal muscular 

sensation.  

Movement observed 

 

Table 4.4 Initial bidirectional human test results 

When the switch on the switching-box was set to the forward movement 

position, the real time viewer appeared to show forward movement. When set to 

the backwards position, the device appeared to move backwards a little, then 

forwards, and then back again, i.e. no discernible net movement was observed. 

The subject gagged during these tests from the wire pulling in his throat. At 7 V 
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there appeared to be induced movement, but the results were ambiguous, 

because there was still a marked movement of the intestine even after the 

electrode voltage was switched off. This may have been caused by continual 

peristaltic activity. 

The subject was then taken to another X-ray room, as the original X-ray 

room was occupied. This X-ray room also had video screening. The results of 

these tests are summarised in the Table 4.5.   

 

Table 4.5 Bidirectional human test results. 

 

Pulse of 

the subject 

Direction of 

intended 

movement 

Time Grass 

voltage 

Frequency Duration  Observations  

67-75-67 Forward 11:13 0-7 V 12.5 Hz 20 ms No internal muscular 

sensation. Movement 

observed 

67-70-69 Forward 11:14 0-9 V 12.5 Hz 

 

10 ms No internal muscular 

sensation. No 

movement observed 

66-74-68 Forward 11:18 0-9 V 12.5 Hz 

 

20 ms No internal muscular 

sensation. Movement 

observed 

66-74-68 Backwards 11:21 0-9 V 12.5 Hz 20 ms No internal muscular 

sensation Slight 

movement observed 

72-78-72 Forward 11:56 0-7 V 12.5 Hz 20 ms No internal muscular 

sensation. Movement 

observed 

78-74 Forward 11:58 0-10 V 12.5 Hz 20 ms. 

 

No internal muscular 

sensation. Movement 

observed 

70 Backwards 12:01 0-10 V 12.5 Hz 20 ms No internal muscular 

sensation. Slight 

movement observed 
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The capsule was then pulled back to the 800 mm distance mark so the 

device was in the small intestine approximately 300 mm from the pylorus. It 

was tested at 0-10 V in the forward direction. Intestinal contractions were 

observed with X-ray imaging. Rhythmic contractions were observed before and 

after the voltage signal was switched on. At this point the subject wished to 

terminate the testing session, as the discomfort caused by movement of the 

wires on the back of his throat had become unbearable. 

 

4.5.3 The Second Human Subject Experiment 

 

The second experiment was performed in much the same way as the 

first. The same subject volunteered to take part in this new experiment under the 

same conditions and using a video capsule endoscope device constructed to the 

same specifications as before. The difference in the two experiments was the 

way in which the second one was monitored. 

Due to the observed reduction in heart rate of the subject during the first 

trial when the electrostimulation was applied, an anaesthetist was now present in 

case fibrillation of the subject's heart was unintentionally induced. A number of 

different methods of monitoring the progress of the capsule were used. 

The X-ray video monitor and the capsule real time camera video viewer 

were only used separately during different portions the first experiment. 

However, this time they were both monitored simultaneously. In addition, the 

signal output current was measured and recorded using a computer oscilloscope. 

There were also three video cameras present. One of these was placed in a 
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position to view the entire room. A second was focused onto the monitor 

showing the real time images from the capsule, and the third was focused on the 

monitor of the computer oscilloscope that was showing the signal output 

current. 

The outputs from the three cameras together with the output from the   

X-ray video-monitoring device were connected to an adapter device that 

enabled the four distinct images to be simultaneously shown in separate quarter 

segments of a video screen. This multi-image video picture was then transferred 

to a video recorder in order to obtain a comprehensive record of the entire 

procedure. 

As with the first test, the subject swallowed the capsule, which was 

allowed to pass naturally through the oesophagus and stomach into the small 

intestine. With the presence of the real time viewer, the progress of the capsule 

could be continually monitored and timed. The capsule was observed to enter 

the small intestine about 30 minutes after it had been swallowed. 

When the capsule was observed to be inside the small intestine of the 

subject the wires from the two electrode pairs were connected to the switching-

box, which was then in turn connected to the Grass stimulator. The stimulator 

was set to 20 ms 12.5 Hz. The signal voltage was initially set at 2 V and then 

increased in steps of 1 V, so that each step could be individually tested. 

It was essential to monitor the possible effects on the subject’s pulse rate 

and to test any muscular sensation felt when intestinal muscular contractions 

were induced by electrostimulation. The front pair of electrodes was the first to 

be connected. There was no observed effect on the subject’s heart rate produced 

by the device up to a signal voltage of 15 V.  



163 

 

As there had been no detectable response to a range of signal voltages 

supplied to the front pair of electrodes, the rear pair of electrodes were switched 

on to observe any effects that might occur. However, the 15 V setting was still 

switched on and the subject felt a sharp pain causing him to sit up and bring his 

legs up. The stimulator was turned off immediately. After ensuring the subject 

was unharmed and willing to resume testing, the signal voltage was reduced to  

4 V and the experimentation was then continued. 

The signal voltage was then increased as before in 1 V steps until movement 

was observed on the X-ray monitoring screen at a signal voltage of 5 V. The 

signal voltage was then increased to 8 V, 10 V and 12 V. There were no 

observable adverse effects produced by any these signal voltages. Movement of 

the capsule was observed at all signal voltages above 5 V. The greatest 

movement observed at a signal voltage of 10 V. Fig. 4.23 shows a set of stills 

taken from a video indicating the forward movement of the device recorded 

with the four way video system described earlier. Unfortunately due to technical 

difficulties the camera videoing the room malfunctioned. The three remaining 

video feeds were: the image from the video capsule endoscope (top left), the   

X-ray image (bottom left) and the computer based oscilloscope in (top right). 

The device can be seen to move in the X-ray image, while the stimulation is 

being applied. The video feed from the capsule shows what a clinician would 

see while the device is being propelled.  
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Fig. 4.23 Stills from video showing forward propulsion along the small intestine 

of device in human subject. Each slide shows view from device camera, 

stimulation parameters and X-ray showing relative position of the device in the 

small intestine. 
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Following this, the effects of direction change were investigated. A signal 

voltage of 10 V was initially applied across the front pair of electrodes. This 

propelled the capsule against the natural flow of the small intestine. The 

switching-box was then used to apply the signal voltage to the rear pair of 

electrodes. This caused the capsule to move with the natural flow of the small 

intestine. 

Fig. 4.24 shows a selection of stills from the X-ray video of the change of 

direction experiment. Initially, the device is facing away from the observer 

when front electrodes are activated. Circled in slide 1, the device reverses 

against the natural peristaltic flow towards the reader and has turned around a 

small intestinal loop by slide 3. It can be seen to continue to reverse along the 

small intestine until slide 9 at which point stimulation was switched from the 

front electrodes to the rear electrodes producing instant direction change. The 

device can be seen in slides 10 – 12 to move in the opposite direction along the 

small intestine.   
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9      10 

 

11      12 

Fig. 4.24 Stills from X-ray video of bidirectional human test showing that the 

propelled device achieved controlled forwards and backwards motion inside the 

small intestine. 
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The current supplied by the stimulator during these tests was recorded. A 

supply voltage of 5 V supplied a current of 2.5 mA, 8 V supplied a current of 

3.7 mA, 10 V supplied a current of 4.9 mA, 12 V supplied a voltage of 9.0 mA, 

and 15 V supplied a current of 12 mA.  Good movement was observed at 10 V 

supplied at a current of 4.9 mA with no apparent improvement in performance 

when higher voltages and currents were used. 

 

4.6 Conclusions 

 

In an effort to find the most practical material for the construction of the 

device, Delrin, PTFE and Acrylic were considered.   The results show that both 

the coefficients of static and dynamic friction for all the materials is low enough 

to produce a frictional force which will be negligable. Therefore, when chosing 

one of the materials, the major considerations were how they would machine 

and how they would work with adhesive.  Acrylic proved to be the best for both 

of these so it was the material finally chosen. 

In the investigation of how the angle of the sloping face would affect the 

magnitude of the propulsive force produced by the contraction force, it was 

derived that for Acrylic, a taper angle of 47° would theoretically result in the 

maximum propulsion force.  

The device design underwent a series of radical changes. Starting off as 

a tear drop shaped single ended taper design with a diameter of 15 mm and 

small area electrodes at one end, it progressively evolved into a round-ended 
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device with a diameter of 11 mm that had a pair of larger area electrodes at both 

ends. 

Early changes to the design and construction of the bidirectional device 

enabled stimulation to induce movement in both directions along the small 

intestine. The changes in the design of the electrodes, which now covered the 

whole tapered section apart from a 2 mm insulating gap between them, 

produced an improvement in the movement performance of the 11 mm device 

by preventing the loss of electrical contact with the lumen of the small intestines 

that had occurred with the smaller area electrodes. This design was also 

incorporated into the two larger diameter devices.  Further experiments showed 

that devices with a diameter of 11 mm performed comparably to 15 mm and    

20 mm diameter capsules of similar design. This was a promising result as it 

showed that a device with a diameter that could be swallowed safely could work 

as effectively as devices with diameters large enough to fill the lumen cavity of 

the small intestine to a greater extent. 

After the tapered electrodes had proved to be successful in propelling an 

11 mm device, the use of rounded electrodes that could be attached to a video 

capsule endoscope was investigated. 

A final change to the forward electrode design, which only slightly 

affected the movement performance, allowed the capsule to incorporate a 

working camera. This final design performed well in in vivo animal experiments 

as a precursor to the in vivo human experiments. These experiments showed that 

an electrostimulation device design, similar to the design of a M2A video 

capsule endoscope which could be swallowed, worked as effectively as the 

larger diameter bidirectional devices in the pig model. 
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Although results of the experiments suggested that the design which 

gave the optimal performance was a bidirectional device with large area 

electrodes enclosing the tapered sections with taper angles of 47º, the final 

design chosen was a device with rounded end sections, based on the design of a 

M2A video capsule endoscope. Although not producing the best performance, 

the compromise in performance allowed the device to be swallowed and a M2A 

video capsule endoscope to be used in future experiments. 

The final adaptation of the device which was designed for the human 

model, was more rigorously constructed and incorporated strong wires enclosed 

in a protective silicon tube to enable the retrieval of the device from the small 

intestine through the mouth without causing injury to the volunteer.  

The final design of the device was successfully tested in vivo in an 

unanaesthetised human volunteer on two separate occasions. Both trials showed 

that the device worked successfully with speeds approximately 120 mm/min 

being observed at 10 V, 4.9 mA, with 20 ms pulse duration at l2.5 Hz.
 

The brief reduction of heart rate that occurred at the beginning of the 

first human test was not repeated at any other stage of either human test. It was 

postulated that this effect had been produced by an inadvertent stimulation of 

the vagus nerve, the extremity of which can reach as far as the top of the small 

intestine. Sitdikov et al
199

 showed that "simultaneous bilateral stimulation of the 

vagus nerve in intact and sympathectomised rats of various ages significantly 

reduced heart rate. Lewis et al
200

 found that in pigs when stimulating the left 

cervical vagus nerve, a square wave negative pulse in a 6 second train at 10 Hz, 

0.1 ms and 20 V, was sufficient to reduce the heart rate by 20 ± 4 beats per 

minute. They had similar findings in humans, when stimulating the left vagus 
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nerve proximal to the origin of the cardiac vagal bunch, with a negative square 

wave pulse in a 6 second train at 25 Hz, 0.1 ms, and 20 V, an immediate 

reduction of the heart rate occurred causing a systole. However, with the 

introduction of glycopyrrolate, a muscarinic antichologenic, they inhibited the 

effect that vagal nerve stimulation had on heart rate.   

The objective of this section of the project was to implement 

bidirectional propulsion of devices along the small intestine. This study shows 

that controlled electrostimulation of the mucosal surface of the small intestinal 

wall can be used for the propulsion and positioning of video endoscope 

capsules. The experimental results have produced a set of stimulation 

parameters for both a pig model and a human model, with which a swallowable 

device can be propelled by electrostimulation along the small intestine. The 

device underwent a series of design changes. Some of these included workable 

compromises in performance in order to forward the design towards the human 

model. It can be seen that a brief reduction of heart rate occurred at the 

beginning of the first human test and it was postulated that this effect had been 

produced by stimulation of the vagus nerve. This suggests that it may be 

inappropriate to use this stimulation device in the eosophagus or the proximal 

small intestine. In the device’s present form, wires are required to deliver the 

signal to the electrodes and to provide a means of extraction after the procedure. 

This device could be used for clinical investigations in its present form. 

However, to make this a more practical device, the wires must be removed. 

Therefore, in the next chapter a proposed solution is investigated.  
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5. The Remote Controlled Device 

5.1 Objectives and Strategies 

To build a miniature stimulator and a radio control circuit that fit inside a 

device with similar dimensions to a video capsule endoscope. The dimensional 

constraints of a swallowable device impress strict limitations on the design 

specification. The electrostimulator will need to have dimensions small enough 

to fit inside an 11 mm diameter device.  

Although initially a workable circuit could be designed and tested using 

ordinary electronic components, the final design will need to be made from 

miniaturized components and powered by miniature batteries that would run the 

device safely for many hours inside the gastrointestinal tract.  

With these constraints it will be necessary to construct a miniature 

electrostimulator that will require a low current so that it can be powered for 

hours by a miniature 3 V battery supply. The miniature elctrostimulator will 

have to produce the optimal stimulation parameters of 12.5 Hz, 20 V and 20 ms 

used in the pig model as provided by the Grass SD9 stimulator. 

5.2 Introduction 

During the experiments described in the previous chapter a Grass SD9 

medical electrostimulator was used to induce intestinal contractions to produce 

movement of the bidirectional device. Although the Grass stimulator produced 

effective results with the wired devices, a practical piece of medical equipment 

would require such devices to be completely self contained. This implies that 
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the next practical step is a device containing its own internal miniaturised 

electrostimulator, power supply and radio receiver. 

In order to design and construct a remote controlled device which 

emulates the Grass SD9’s stimulation parameters, a sound knowledge of its 

function is essential. Therefore, section 5.3 provides a description of the 

fundamental properties of the Grass SD9. 

The following section continues with a description of the development 

and testing of the initial design of the internal stimulator for a radio-controlled 

device. It includes a description of the prototype circuit designed for the 

miniaturised stimulator and details of how this stimulator performed in 

comparison with the Grass stimulator. Improvements which were introduced to 

enhance the original design are then discussed, including the necessity for the 

addition of an internal voltage converter to produce the required output signal 

voltage from a 3 volt supply.  

 Section 5.5 describes the design and construction of the circuits of the 

miniaturised stimulator to be incorporated into the radio-controlled device. 

Within this is a description of the tests designed to compare the performance of 

the radio-controlled device against that of the Grass stimulator in an 

anaesthetised animal. 

Section 5.6 introduces the concept of a wireless control system for the 

radio-controlled device to give the user full directional control along the 

intestine. This includes a discussion about the design constraints of a wireless 

system to control the miniaturised stimulator, a description of the design and 

construction of the circuit and finally testing of the circuit. This section 



175 

 

concludes with a description of the design and construction of a fully 

controllable bidirectionally propelled device.  

Sections 5.7 and 5.8 describe the in vivo tests of the wireless radio-

controlled device. This includes comparison tests using the Grass SD9 with 

wired devices. The final section presents a short summary of the work described 

in the chapter and the conclusions that have been drawn from it. 

 

5.3 The Commercial Stimulator 

 

 The Grass SD9 electrostimulator produces a square shaped pulse and can 

be used for a large variety of applications. It provides a wide range of 

parameters in terms of voltage, frequency, and pulse duration. It also allows the 

operator to perform refractory measurements with its twin pulse circuit and 

delay features. A built-in isolation circuit is included, which allows data 

recording with the stimulator at the preparation site with minimal intervention. 

This is made possible because the output voltage, which is polarity selectable, is 

not referenced to ground 

 The SD9 stimulator produces a square wave stimulation signal, which 

can have a three decade output voltage range from 0.1-100 V, a three decade 

frequency range from 0.2-200 Hz, and a four decade range of duration from 

0.02-200 ms. It has a maximum output impedance of 1000 , a peak output 

current of 50 mA, with a maximum power output of 2.5 W (peak).  

 The delay function, with a four decade range from 0.02-200 ms, allows 

the separation of the pre-stimulation and the stimulation pulses through the 



176 

 

synchronous outputs. This means that the SD9 stimulator can produce three 

different types of output stimulation pulses: single, repetitive or twin.  

The SD9 stimulator has both monophasic and biphasic outputs, and has a 

maximum mains power requirement of 30 W, with an average power 

requirement of 5 W. It has an accuracy of  5% for all the parameters except for 

the voltage, which has an accuracy of  10%. 

 

5.4 Initial Design of Electrostimulator 

 

 It can be seen from the above description that the Grass SD9 is a very 

versatile item of equipment that can be used to create a number of different 

types of electrostimulation pulses. Therefore, to create a stimulator which 

performs as well the Grass SD9 did during the experiments described in the 

previous chapter, one must first examine which functions of the device were 

used.  

Throughout the experiments, the Grass SD9 was used to produce a 

continuous set of monophasic square wave stimulation pulses. Useful parameter 

ranges were voltage: 0-50 V, frequency: 10-100 Hz and pulse width: 1-50 ms. 

Therefore, the replacement stimulator needs to be able to supply a similar range 

of parameters.  

The author initially designed a square wave electrostimulator based on a 

simple astable oscillator circuit as described in Appendix C.  This circuit 

consisted of a comparator with a only a few discrete external components. The 

comparator circuit chosen was the LM331V. However, as size was not initially 
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a consideration, one quarter of an LM339 Quad comparator was used. This chip 

consists of four independent precision voltage comparators that each have 

identical characteristics to the LM331V. The comparator was chosen because it 

has a wide supply voltage range 2–36 V, and a very low supply current drain of 

0.8 mA, which is independent of the voltage. This gave the author great 

versatility for future design changes to the circuit. A major design concern for a 

stimulator that is to be used within a capsule would be its power requirements. 

 

Fig. 5.1. Adjustable astable oscillator circuit.  

  

The dimensional constraints of a swallowable device imposed strict 

limitations on the design specifications. The electrostimmulator would need to 

have dimensions small enough to fit inside a capsule with a maximum diameter 

of 11 mm similar to the PillCam. Although initially a workable circuit could be 

constructed and tested using ordinary electronic components, the final design 

would need to be constructed from miniaturized components and powered by 
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miniature batteries that would run the device safely for many hours inside the 

gastrointestinal tract. With these constraints it was decided to construct an 

electrostimulator circuit that would require a low current and could be powered 

for hours by a miniature 3 V battery supply. Therefore, it was decided to limit 

the power supply of the stimulator circuit to 3 V. 

5.4.1 Square Wave Stimulator Construction and Initial Animal 

Test 

The initial construction of the square wave stimulator used veroboard so 

that the principle of operation could be easily tested in an animal. The board was 

populated using discrete components with the values discussed at the end of 

Appendix C, to produce the circuit shown in Fig. 5.1. The stimulator therefore 

produced a square wave with a voltage the same as the power supply voltage 

with a frequency of 15 Hz and 10 ms pulse length. 

In the preliminary experiment described in Chapter 3, it was shown that 

the bidirectional device achieved movement at 20 V with frequencies of 15 Hz. 

Contraction, but no movement, was observed at 10 V and 15 V at a frequency of 

15 Hz. The tapered device also achieved movement at 20V with frequencies of 

15 Hz and contraction, but no movement, was observed at the 10 V and 15 V. 

These two devices were also used in an initial square wave generator 

comparison test. The devices were fed through an over tube into the oesophagus 

of a pig with the help of a following endoscope. The electrodes were attached to 

the square wave generator instead of the Grass stimulator. Initially, a 3 V supply 

(two AA batteries) was attached to the wave generator. As expected, the devices 
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showed no contractions in the oesophagus with either device. However, when 

the 3 V supply was replaced with a 9 V battery contractions were observed.  

From this preliminary result it was concluded that this square wave 

stimulator generator required a supply of at least a 9 V supply to produce a 

contraction.  However, the initial experiments described in Chapter 3, showed 

that an output voltage of at least 20 V was required to produce movement with 

these devices. With the stipulation that the supply voltage could be no more than 

3 V, a stimulator would need to be designed that could produce an output signal 

of at least 20 V.  

This could be achieved by the incorporation of a DC-DC voltage 

converter or charge pump circuit. After investigating a number of alternatives, 

the LT1615 was the only voltage converter that could produce a voltage 

increase of up to 36 V from a 3 V supply in a package size appropriate to the 

dimensions of the circuit. Therefore, the LT1615 was chosen because its 

characteristics encompassed the design specification. 

5.4.2 The Addition of the Voltage Converter Circuit: The 

LT1615 

 

 The LT1615 is a micropower DC-DC step up voltage converter that can 

produce an output voltage of up to a maximum of 36 V from a 1.2 V to 15 V 

supply voltage. It has an extremely low quiescent current of 20 A when active 

and only 0.5 A in shutdown mode. The operation of the LT1615 can be best 

understood by referring to a diagram of its internal circuitry. (Fig. 5.2) 
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Fig. 5.2. Voltage converter internal circuit of the LT1615 

 

Q1 and Q2 together with resistors R3 and R4 form a band-gap reference, 

which is used to regulate the output voltage. When the voltage at the FB pin is 

slightly above 1.23 V, comparator A1 disables most of the internal circuitry. 

Output current is then provided by capacitor C2, which slowly discharges until 

the voltage at the FB pin drops below the lower hysteresis point of A1 (typical 

hysteresis voltage at the FB pin is 8 mV).  

At this low voltage state the comparator A1 then enables the internal 

circuitry once again, turning on the power switch Q3, and the current in inductor 

L1 begins ramping up. Once the Q3 switch current reaches 350 mA, the 

comparator A2 resets the one-shot, which then turns off the Q3 switch for      

400 ns.  
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The inductor L1 then delivers current to the output through diode D1. As 

the inductor current ramps down, switch Q3 then turns on again and the inductor 

current ramps back up to 350 mA, at which point the comparator A2 resets the 

one-shot, again allowing L1 to deliver current to the output. This switching 

action continues until the required output voltage is achieved (until the FB pin 

reaches 1.23 V), then the comparator A1 turns off the internal circuitry and the 

complete cycle repeats. 

 The LT1615 contains additional circuitry to provide protection during 

start-up and under short-circuit conditions. When the FB pin voltage is less than 

approximately 600 mV, the switch off time is increased to 1.5 ms and the 

current limit is reduced to around 250 mA (70% of its normal value). This 

reduces the average inductor current and helps minimise the power dissipation 

in the LT1615 power switch and in the external inductor and diode.  

It was recognised that with the shutdown facility, which has a maximum 

activation/deactivation time of 1.5 s, the DC-DC converter could easily be 

used to produce a square wave signal of the appropriate parameters and voltage. 

With this terminal connected to the output of the astable oscillator, it was found 

possible to produce the required high voltage square wave from an initial 3 V 

supply. 

 

5.4.3 Initial Animal Test 

 

 The stimulator circuit was tested to see how it performed against the 

Grass SD9 stimulator. After a set of bench tests, in which they performed 
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comparably, they were used to control a capsule in the intestine of a pig at 

laparotomy. Using a bidirectional device, each stimulator was used in turn. As 

Fig. 5.3 and Fig. 5.4 show, both the stimulators caused the device to move along 

the intestine. The Grass SD9 caused the device to move at a slightly greater 

speed than the prototype stimulator, 100 mm/min (SD 2.4) (N = 3) and            

96 mm/min (SD 1.8) (N = 3) respectively. This difference was acceptable, so a 

miniature stimulator was designed and constructed. 

 

 

 

Fig. 5.3. Grass Stimulator propelled device. 
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Fig. 5.4. Internal stimulator propelled device. 

 

5.5 Unidirectional Device 

 

The results presented in the previous section showed that the square wave 

stimulator produced propulsion of the devices which was comparable to the 

grass stimulator. Therefore, a miniature circuit was designed to fit inside an     

11 mm device.  

5.5.1 Miniature Signal Generator 

 

 The high voltage output generator was constructed by combining the 

simple astable oscillator circuit with the charge pump circuit. The LT1615    

DC-DC converter was only available in a surface mount 5-lead SOT-23 
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package. With this in mind, and to minimise the overall size, the entire circuit 

was built from surface mount components only.   

The author designed circuit boards using Easy PC, a printed circuit 

board (PCB) design package produced by Number One Systems (Gloustershire, 

UK). A template of the PCB design was printed on transparent acetate with a 

normal PC printer. The template was fixed to the photosensitive side of a single 

sided PCB which was then exposed to UV radiation. The board was then 

developed, etched and rinsed. The small size of the boards and thickness of the 

tracks made the etching process quite difficult. Once the boards were 

successfully constructed, they were populated and tested.  

After producing a square wave signal similar to that produced by the 

Grass stimulator, the PCB was redesigned to reduce its size still further. The 

first change was the use of double sided PCB. The production method was the 

same as for single sided PCB except the board had a circuit to be etched on both 

sides. With the scale of the boards being produced, the template placement was 

as important as the etching process. In the final design the dimensions of the 

template for both sides of the PCB were 6.5 mm by 6.8 mm. (Fig. 5.5)  
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Fig. 5.5. Photographs of the miniature stimulation circuits. 

5.5.1.1 Miniaturised Astable Oscillator Circuit 

 

A miniaturised version of the square wave generator described in 

Appendix C was constructed, with R1 and R2 as fixed resistors instead of 

potentiometers, due to the lack of space. The stimulator was required to produce 

a frequency of 12.5 Hz, with pulse duration of 20 ms in line with the findings of 

the one-minute tests described in Chapter 4.  

 These resistor values were calculated in a similar manner to those chosen 

for the original square wave generator, with an upper limit once again placed on 
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the value for R2 of 1 M. Using this to obtain the values for t2 of 60 ms, 

required a value of 43 nF for the capacitor C1. With the closest value for a 

commercially available capacitor being 47 nF, the calculated value for t2 was 

acceptable at approximately 65.2 ms.  

 The value for R1 was then calculated using the same method as used for 

the original square wave generator. Using the value for C1, the calculated value 

for R1 was approximately 307 k. With the closest preferred value for a resistor 

being 330 k, the calculated value for t1 was acceptable at approximately     

21.5 ms.  

 The astable oscillator produced an output signal with a frequency of 

approximately 11.5 Hz and pulse duration of approximately 21.5 ms. With both 

parameter values within 8% of the desired figures, the circuit was then 

constructed with components having the above values. 

 

5.5.1.2 Miniaturised DC-DC Voltage Converter Circuit 

 

 

 The DC-DC converter section of the square wave generator was 

constructed using an LT1615. The values of the external components of the 

circuit were selected to produce the maximum circuit output voltage. The 

capacitors within the circuit have the effect of reducing the output ripple 

voltage. The values chosen for capacitors C2 and C3 were 4.7 F and 1 F 

respectively, which were found adequate to minimise the output ripple voltage. 

The inductor within the circuit controls the current limit but has the added effect 
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of increasing the output ripple voltage. A 22 H inductor was chosen as this 

value produced only a small increase in the output ripple voltage. The resistors 

in the circuit control the peak output voltage, which was calculated using the 

equation: 
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With this in mind, the values chosen for the resistors R1 and R2 were 2 M and 

70 k respectively. This produced an acceptable output voltage with a value of 

approximately 35 V. 

 The two separate circuits were connected so that they had a common 

ground and both used the same supply voltage. The output terminal of the signal 

generator was connected to the shut down pin of the DC-DC voltage converter 

circuit. The output from the composite device was first taken from the ground 

and from the positive output of the DC-DC voltage converter section. This was 

found to produce a square wave signal between 3 V and 35 V. To avoid the 3 V 

DC voltage the output was therefore taken from the supply rail and the positive 

output of the DC-DC voltage converter, which produced a 0-32 V square wave 

signal. 

 

 

 

 

 

[5.1] 
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5.5.2 Wireless Device Construction 

 

Once the author had determined the components, both sides of the PCB 

were populated and the complete stimulator circuit was then installed inside a 

11 mm unidirectional device with the circuit output connected to the large area 

electrodes of the device. The design of the device (Fig. 5.6) was similar to that 

of the large electrode bidirectional devices described in Chapter 4. Unlike the 

bidirectional devices the device had only one pair of electrodes at the rear and a 

rounded front end. Constructed in much the same way the device consisted of 

two halves, one with a tapered end and the other rounded which when brought 

together produced a hollow device. The circuit boards and the batteries were 

housed within the hollow cavity of the device.  The circuit boards were placed 

in the cavity of the rear of the device allowing the wires for the electrodes to 

protrude through the holes on the tapered section. The electrodes were then 

soldered to the wires and bonded to the tapered section of the device with epoxy 

resin. Power for the stimulator was provided by two internal 1.5 V button cell 

batteries, which were connected to the circuit by wires attached to two small 

metal contacts and housed in the front half of the device. 
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B:  1 mm 

C:  1 mm 

D: Inner diameter 9 mm 

E: Taper depth 1 mm 
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Fig. 5.6. Schematic diagram of the wireless unidirectional device. 

 

 

5.5.2.1 Wireless Device Testing  

 

The batteries were connected to activate the stimulator and placed inside 

the wireless device and it was then closed. The first test was in the small 

intestine of a pig during laparotomy. The wireless device was compared with a 

wired version connected to the Grass SD9 stimulator. The Grass stimulator was 

set to produce the same stimulation parameters as the miniature stimulator. The 

performance of the two devices was compared.  The device attached to the 
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Grass stimulator at 12.5 Hz, 20 ms at a 20 V was tested first and showed a 

movement speed of 118 mm/min (SD = 18, N = 6). The wireless device was 

then tested. The device produced a strong contraction with movement of          

62 mm/min (SD = 1.6, N = 6).  

 Thereafter, the device was thoroughly bench tested and compared with 

the Grass stimulator. The voltage, frequency, and pulse duration of both devices 

were the same. However, when a larger load was applied corresponding to that 

of the maximum output impedance of the Grass stimulator, the resulting output 

of the Grass simulator was double that of the miniature stimulator, suggesting 

that the latter could only deliver a quarter of the power of the Grass stimulator. 

 

5.5.3 Adjustments to the Miniature Circuit 

The miniature circuit did not perform as well as was hoped during the 

animal experiment. When tested on the bench afterwards it became apparent 

that the miniature stimulator only produced a quarter of the power of the Grass 

stimulator under the same load conditions. The power required to propel the 

device in the intestines of an anaesthetised pig could be quite simply achieved 

with the introduction of a second voltage converter circuit running in parallel to 

double the current output of the signal generator. 

However, the results show that the device could travel the six metre length 

of the small intestine in about 100 minutes. This is faster than the average transit 

time of natural peristalsis, which takes 232 minutes within a range of              
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72-392 minutes.
1
 The results from Chapter 4 suggest that the power required to 

propel the device in the intestines of a human without anaesthetic using the 

Grass stimulator is only about a quarter of that required for an anaesthetised pig. 

These results show that the voltage required to propel the device in the 

unanaesthetised human volunteer was only 10 V with a current of 4.9 mA 

compared with that of 20 V with a current of 10 mA required for an 

anaesthetised pig. As halothane has been shown to reduce intestinal motility, it 

is possible that the miniature device could have given a better performance in an 

unanaesthetised pig, but as it was almost impossible to monitor the movement 

of the device in a pig that was not anaesthetised, this conclusion could not be 

verified. 

 

5.6 Wireless Device Control Unit 

 

The final stage in the construction of the fully controllable radio-

controlled device is to design and construct a wireless unit to control the 

miniature stimulation device. The circuit not only had to be able to operate 

within the intestines, but also had to be small enough to fit along with batteries 

and the stimulation circuitry inside the casing of the video endoscope.  A 

prototype control circuit (Fig. 5.7) was based on a Pericom Technology 

International (Shanghai, China) 27.145 MHz PT8A967B receiver. This option 

was chosen because of the chip size and the small number of external 
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components required to complete the circuit, allowing for ease of 

miniaturization. This device provides two channels, which were used to control 

the two pairs of stimulation electrodes. 

The PT8A976B is a CMOS receiver chip designed for use in a remote 

controlled toy. The signal received from the transmitter is amplified by a three-

stage amplifier, after which the appropriate signal is sampled, checked for 

faults, and then decoded to control the actions of the device. There is an 

oscillator circuit within the PT8A976B which requires the addition of an 

external resistor. Adjusting the value of the external resistor adjusts the 

oscillator frequency. The PT8A976B requires a power supply voltage within the 

range of 2.0-5.5 V.  

The radio-control circuit boards were designed using the same software 

package (Easy PC) that was used for the stimulator circuit. The 8 mm by 13 mm 

double sided boards were produced in the same way as the original single sided 

stimulator circuit boards. 
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Fig. 5.7. Receiver circuit for the remote device control. 
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Fig. 5.8. Transmitter circuit for the device control unit. 

 

The transmitter circuit shown in Fig 5.8 uses frequency modulation and 

transmits at 27.145 MHz.  It is coded using pulse width modulation. The 

transmitter and receiver circuits are matched by adjusting L2, a 10 turn variable 

inductor in the transmitter. 

To determine whether or not the device would work within the 

intestines, an experiment with the prototype circuit was devised on veroboard. 

The test involved placing the receiver circuit which activated LED’s within a 

water proof, transparent container, which was placed in a vessel of saline 

solution to simulate blood and body tissue. There was at least 300 mm of saline 

between the receiver and the transmitter. This was used to simulate the 

effectiveness of the receiver circuit when contained within the body. 
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Fig. 5.9. Complete radio control stimulator circuit 
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Once the circuit was shown to remotely activate a small LED whilst 

submerged within the saline, the author designed and constructed a prototype of 

a miniaturised version of the circuit which was then evaluated. The PCB was 

designed and constructed using the same method as described in section 5.4.1. 

The board was populated (Fig. 5.10) and tested using saline solution in the 

method described in the previous section. Once it had been established that the 

circuit worked successfully, the author realised that realistically due to the 

complicated nature of the design, the combining of the control circuit and the 

stimulation circuit (Fig. 5.9) at these dimensions, and its ultimate role in human 

medicine, that the device would require professional manufacture. 
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Fig. 5.10 Photographs of the miniature radio receiver circuits 

 

The author produced a design of the circuit which would be incorporated 

into the professionally manufactured device. This circuit design includes the 

addition of a switching component which would allow a user to remotely 

activate stimulation at the front or rear electrodes. This circuit design was 

incorporated into a design brief which included the authors PCB designs 

templates and component lists for each board.   

The design brief was initially sent to DCA Design International, 

(Warwick), who after learning that the devices were to be used for human trials 
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required a full liability waiver to protect them should a patient be harmed as the 

result of device failure. A risk assessment document was prepared for this 

company but an agreement with UCL on liability was not forthcoming. 

Therefore, the construction was passed to another company Paragon 

Medsystems Inc (San Diego, USA), who agreed to construct devices for both 

animal and human trials. Their initial attempt to construct the PCB did not 

succeed due to the small dimensions of the tracks, so they had to remake the 

boards. Taking advantage of this, a request for coloured LEDs to be added to the 

circuit was made. Each colour was used to indicate which set of electrodes were 

being supplied by the signal generator; that is, one colour flashed at the rate of 

the stimulation to indicate that the stimulation signal was being applied to the 

front pair of electrodes and the other to supply to the back set of electrodes. A 

third LED flashed when the device was activated. A request for the addition of a 

switch to activate the device before use was also made. As these components 

were not an integral part of the stimulation circuit, the addition was left to 

Paragon. They chose a light sensitive switch which allows the circuit to be 

activated or deactivated with a photographic flash gun. The LED’s were located 

at one end of the device so that the flashes could be seen with a following 

endoscope, thus allowing the operational state of the device to be easily 

determined.  

The wireless device produced by Paragon could only provide a 

stimulator with parameters of 15 Hz at 10 ms at 30 V. Although these were not 

the optimal parameters as described in Chapter 4, it was anticipated that the 

increase in voltage would compensate for the change in frequency and duration 

and therefore the parameters would be sufficient to produce device movement. 
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5.7 In Vivo Animal Tests of the Remote Control Device 

 

Because of the closure of the animal house at the Royal London Hospital a 

set of experiments was undertaken at the Royal Veterinary College animal 

house in Camden. The remote control device was initially tested in the 

oesophagus of an anesthetised pig. A different anaesthetic regime was used. 

Pigs were anaesthetised with a prep of 3 ml of atropine and 16 ml of ketomine, 

with 1 ml of ketomine delivered intravenously. They were then rendered 

unconscious with 4% halothane, and anaesthetised with 2% halothane. 

As the device was wireless a piece of cotton thread was attached to it so 

that it could be drawn back out of the pig at the end of the test. The device was 

placed into the oesophagus through an overtube with a following endoscope in 

an orientation such that the activation LED’s could be seen. Once in place, the 

overtube was removed and the endoscope was withdrawn slightly so the device 

could be observed without interference.  

Using the remote control the electrodes farthest from the endoscope were 

activated and an LED began to flash to indicate activation. The device was 

observed to move at a rate of approximately 30 mm/min towards the endoscope. 

The device was deactivated and the endoscope was used to reposition it. The 

other pair of the electrodes was then activated and contractions were observed 

between the device and the endoscope. When the device was deactivated the 

contractions subsided and the device was observed to have moved away from 

the endoscope at the same rate.   
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 Although in this qualitative test the device worked, it did not perform as 

well as expected. Therefore a dummy wired version was connected to the grass 

stimulator to determine how it would perform using the same stimulation 

parameters. It performed comparably to the remote control device, moving 

slowly during stimulation. The optimal stimulation parameters identified in 

Chapter 3 (12.5 Hz, 20 ms at 20 V) were then tested to see if performance was 

comparable (i.e. approximately 30 mm/min). The device once again moved 

more slowly than expected. The voltage was increased and it was found that    

30 V was required to produce movement of about 60 mm/min, about half that 

observed in earlier tests described in Chapter 4. 

 The radio-control device was also tested in the small intestine of an 

anesthetized pig during laparotomy. In a manner similar to the tests described in 

Chapter 4, the speed of the wireless device was measured by activating it for 

one minute and measuring the distance travelled. Once in place the device was 

activated and movement at a speed of 19 mm/min (SD) was observed. Like the 

oesophagus test, the device did not perform as expected due to the anaesthetic. 

Again a comparison was made with the dummy wired device with the grass 

SD9 stimulator. Using stimulation parameters of 12.5 Hz, 20 ms at 20 V the 

wired device moved with a speed of 23 mm/min (SD). The voltage was 

increased to 30 V and the wired device was observed to move at 45 mm/min 

(SD).    
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5.8  In Vivo Human Test of the Remote Control Device 

 

After the author had completed practical studies for this thesis, the 

remote controlled device was tested on a human volunteer. Swain et al. report 

the use of the radio-controlled device attached by a cord to a video capsule 

endoscope. It was reported that the device worked well in both animal and 

human trials. The device was used to pull or push a PillCam at will which 

imaged in real-time the direction and effect of the electrostimulation signal. The 

capsule-tug combination proved easy to swallow by a human volunteer. The 

device was observed functioning in the oesophagus, stomach and duodenum 

using both conventional endoscopes and the attached wireless capsule 

endoscope. 
220

  

 

5.9 Conclusion 

An initial design of a stimulator circuit was developed to produce a square 

wave electrostimulation signal from a 3 V supply. This produced an output 

voltage of up to 32 V, and required sufficiently few external components for the 

circuit to be small enough to be accommodated in a device that could be 

swallowed. 

Although the performance of the stimulator circuit did not match that of 

the Grass stimulator, it still provided propulsion for the device which would 

allow it to travel the length of the small intestine in 100 minutes. The results 
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from the human trials reported in Chapter 4 showed that a high output voltage of 

32 V is not required for the final design of the device as only 10 V was required.  

The radio-controlled device did not perform as well as the Grass 

stimulator or its non-controllable wireless counterpart in the small intestines. 

This could be as a result of two things. First, the power that is required for the 

radio-control circuit could be limiting the power available for the stimulator 

circuit. Although this was tested for, it could become more apparent as the 

batteries are used for a long time. Secondly, and perhaps more importantly, the 

anaesthetic halothane which was used during these tests is known to reduce 

intestinal motility.
216

 The initial wireless device was tested at a different animal 

house where the anaesthetic procedures were different. This could explain why 

the Grass stimulator did not perform as well under halothane as it did in the tests 

described in Chapter 4, as nitrous oxide and not halothane was used in the first 

set of experiments. This is also supported by the report of Swain et al
220

 who 

reported the device performed well in an unanaesthetised human volunteer. 

Although the radio-controlled device did not perform as well as hoped, it 

is a device that could be swallowed and move with or against the natural flow of 

the small intestine. The possible effects of the anaesthetic could explain the lack 

of speed. However, the device, performing as it did would be able to travel the 

whole length of the small intestine in either direction within 100 minutes.  

 The device was successfully tested within a human volunteer and 

performed well in the oesophagus, and intestines. Although not as rapid as had 

been hoped, the remote device has been shown to effectively move with or 
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against the natural peristaltic flow. This would therefore give an attending 

clinician real time remote control of a video capsule endoscope within the small 

intestine. This makes it the first non-invasive method of controlled video 

observation of the small intestine. 
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6. Other Possible Applications of Electrostimulation 

6.1 Introduction 

 

 Although the major focus of this thesis was to investigate the use of 

electrostimulation to propel devices such as video capsule endoscopes along the 

small intestines, this chapter will discuss other possible applications of 

electrostimulation. It will describe initial investigations into other applications 

where electrostimulation is applied to the mucosal wall of the gastrointestinal 

tract.  

As discussed in earlier chapters, electrostimulation can be used 

effectively to propel small devices along the small intestine by inducing 

contractions. Although effective here, the question arises; how well would these 

small devices perform in the large intestine? Therefore, the first section of this 

chapter investigates the different problems which are encountered when trying 

to propel small devices along the large intestine. Included are descriptions of 

initial tests of the propulsion of devices within the large intestine, and the design 

modifications and electrostimulation parameters required to produce movement. 

Following this is a discussion of how devices to be used in the large intestine 

could be developed further into a useful clinical system. 

Propulsion of capsules is not the only use for the contractions induced by 

the electrostimulation of the mucosal surface. The second section of this chapter 

investigates the use of contractions to introduce tissue into a chamber of a 

device from which a biopsy sample could be taken. Included are descriptions of 

the initial design and construction of a device with a chamber into which 
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contracting tissue could enter, testing of the device to determine stimulation 

parameters required to introduce tissue into the chamber, and a discussion of the 

possible method for taking a biopsy from the tissue within the chamber. 

Following this will be a discussion of how such a device can be developed 

further. 

6.2 Large Intestine Device 

 

As the small intestine becomes the large intestine at the ileo-caecal 

junction, the diameter of the lumen increases from 25 mm to 30 mm. From here 

the diameter decreases slightly until it reaches the colon where it increases again 

to a maximum diameter of 65 mm. The greater diameter of the large intestines 

poses a few potential problems if a small diameter device is used. Contact of 

both electrodes is required to induce a contraction, but because of the 

differences in diameter contact may be lost. Due to the differences in their 

diameters, when contraction does occur, there may not be enough force applied 

to the correct part of the device to cause it to move in the required direction. 

Therefore, dimensional modifications to the design of a small intestine device 

are required to produce an effective large intestine device. 

To evaluate a device in the large intestine, a set of simple tests was 

devised early on in the project. Following measurements using the small 

intestines of a pig, a small loop of the large intestine was exposed to allow 

testing of the bidirectional devices in the large intestines. The large intestine of a 

pig is not one of the nicest environments to work in. Pigs cannot be prepared 

before this type of experiment as they will not be starved. If a pig goes without 
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food for too long it starts to eat anything vaguely edible including flooring. 

Therefore these experiments were undertaken in unevacuated bowel.  

Three bidirectional devices with diameters of 11 mm, 15 mm and 20 mm 

described in Chapter 4 were used. Following clearance of the required part of 

the large intestine, each of the devices was introduced. Using a frequency of 

12.5 Hz, 20 ms shown in Chapter 4 to produce good movement, at a range of 

voltages, the performance of the devices was observed.  

Starting at 10 V the 11 mm device produced a slight contraction of the 

large intestine. Increasing the voltage to 15 V caused stronger contractions but 

no movement. 20 V produced strong contraction but due to the large difference 

in the diameters of the device and the large intestine, the 11 mm device 

appeared to become completely enclosed by the lumen preventing it from 

moving.  

Similarly the 15 mm device produced a slight contraction at 10 V and 

stronger contractions at 15 V. At 20 V slow movement was observed but the 

large intestine was still contracting along the body of the device as well as the 

tapered section as was desired.  

As the 20 mm device filled more of the lumen of the large intestine, less 

of it was enclosed by the contractions. This meant that it performed better than 

its smaller counterparts. Strong contraction was observed at 10 V and slow 

movement was observed at 15 V and more convincing movement was observed 

at 20 V. 

In the previous experiments conducted in the small intestine, reported in 

Chapter 4, there was a better match between the diameters of the devices and the 

lumen. Whereas in the small intestine, the contractions only occurred around the 
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tapered section of the device, in the large intestine, the contractions occurred 

over more of the device’s surface area preventing it from moving. Therefore it is 

hard to draw a comparison between the sets of results. However, at 20 V the    

20 mm devices moved convincingly in both the small and large intestines. 

The results of these large intestine tests suggest that if a device is to be 

effectively propelled along the large intestine it requires a diameter of at least  

20 mm. This diameter is nearly double the maximum 11 mm diameter allowed 

for a device which has to be swallowed. Therefore, the construction of a device 

with a fixed diameter, which could be swallowed and propelled along the whole 

of the gastrointestinal tract using electrostimulation, is not a feasible 

proposition.  

However, one can imagine a device with a diameter that could be altered 

remotely. Such a device would therefore be able to be swallowed and controlled 

within the large intestines. Due to the restricted internal volume of the device, 

the concept of a mechanically controllable variable diameter would appear to be 

impractical. During discussion with Given Imaging Ltd (Israel), it became 

apparent that there is interest in a device that could be administered anally to 

examine the large intestine only. This therefore removed the requirement for the 

large intestine device to be able to pass through the pylorus.   

The earlier large intestine tests showed the device, which was designed 

to operate solely in the large intestine, required a larger diameter than the small 

intestine device due to the bigger lumen of the large intestine. As with the 

smaller device this large device was able to travel with or against the direction 

of natural flow of the large intestine. Therefore, a possible use for this device 

could be in emergency colonoscopies, where it could be used to travel up and 
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down the large intestine allowing the attending physician to examine more 

closely areas of concern. If the rate of propulsion of the larger device is 

comparable to that of the smaller device, it would be able to travel 3 m return 

journey of the entire length of the large intestine in about 25 minutes. This time 

is comparable with conventional colonoscopy, a procedure that can take 

between 30 and 60 minutes to complete. However, this device would not pose 

any risk of perforation and would be deemed more comfortable by the patient.  

6.2.1 Design and Construction of Large Intestine Device 

 

The minimum diameter of the large intestine is where it meets the small 

intestine, which can be as small as 25 mm. Therefore, the large intestine device 

(Fig. 6.1) should have a diameter of no more than 25 mm. As with the small 

intestine devices, the large intestine device had a taper angle of 47. Therefore 

the large intestine device needed to be longer to incorporate the larger taper 

sections and the cylindrical portions of the device.  

 

 

Fig. 6.1. 25 mm large intestine devices 
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The device would therefore have two tapered sections, one at each end, 

which would each be 12.5 mm in length. The central section of the device 

would be a 50 mm long cylinder with a diameter of 25 mm. Each of the tapered 

section requires a pair of electrodes. Fig. 6.2 shows a schematic of the design of 

the large intestine device. The diagram shows the electrodes which were placed 

on the tapered section of the capsule. It also shows the 2.5 m wires which were 

used to connect the electrodes to the electrostimulator that passed through the 

rear section of the capsule. The initial design of the large intestine device was 

then constructed from Perspex, with the four large area electrodes constructed 

from stainless steel. 

 

Fig. 6.2. Schematic drawing of the large intestine device. 

  

To determine the usefulness of the large intestine device, 25 mm and   

20 mm devices were tested in the large intestines of an anesthetised pig. This 

wires 

Electrode 

 25 mm 

50 mm 

75 mm 
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test, similar to the one minute tests described in Chapter 3, measured the speed 

that the device moved. Using the Grass SD9 stimulator, the devices were 

activated for one minute and the distances they travelled along the large 

intestine were recorded.  

 

A loop of large intestine was exposed at laparotomy and a small incision 

was made in it through which the content was removed. Each device was placed 

in turn into the large intestine. Visually, the 20 mm device appeared to perform 

as it had in the previous test. It moved at a speed of 61 mm/min (SD 1.7)         

(N = 3). The larger 25 mm device performed better, and moved at a speed of   

97 mm/min (SD 1.7) (N = 3).  

 

6.2.2 Conclusion 

  

Conventional colonoscopy requires a great amount of skill and can be 

quite a dangerous procedure. It is highly challenging for a clinician to do this 

while trying to observe the lumen of the intestine at the same time. Colonoscopy 

is also a daunting prospect for some patients.  

 In contrast however, the large intestine device described in this chapter 

could use induced contractions of the intestinal walls to propel a camera along 

the large intestine in real time. This would allow the attending physician to 

concentrate solely on diagnosis, not having to worry about the risk of 

perforating the intestine. The device would provide a method of introducing a 

video capsule endoscope directly into the large intestine which is a less daunting 
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prospect than colonoscopy for the patient. At the speeds achieved 

experimentally using a 25 mm device, a video capsule endoscope could 

complete the 3 m return journey of the large intestine within 35 minutes. This is 

comparable to the time for a normal colonoscopy (30-60 minutes), and removes 

the high level of skill, risk and discomfort associated with that procedure. 

Colorectal cancer is the second leading cause of death in North America. 

However, colonoscopy is usually reserved for patients with positive results from 

screening tests or a higher than average risk of colorectal cancer, in favour of an 

occult blood test or sigmoidoscopy. This proposed device could offer a risk free 

alternative, as a viable screening procedure for colorectal cancer. It would give 

the attending physician direct visualisation of the large intestine during the 

initial screening process, reducing the overall diagnostic time, and speed up the 

initiation of the therapeutic process. 

 

6.3 Biopsy Capsule 

 

 Until now this thesis has primarily focussed on the propulsion of devices 

along different portions of the gastrointestinal tract by means of 

electrostimulation induced contraction. This section investigates the question: 

can electrostimulation cause the intestinal wall to contract sufficiently to 

produce movement of a small device, and can it also be used to contract the 

intestinal tract in such a way as to introduce a small amount of gut wall through 

an aperture on a device? One proposed use for these induced contractions is a 
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biopsy capsule, which uses electrostimulation to introduce sample tissue into a 

chamber from which a biopsy can be taken.  

One of the most important aspects of a biopsy device for use in the 

gastrointestinal tract is that it only takes a sample from the intended region. 

Therefore, a biopsy capsule casing was designed which could incorporate a 

biopsy tool within a chamber. This would eliminate interaction between the 

biopsy tool and the lumen of the intestinal tract during transit. The design had to 

also allow the tissue from an area of interest to be introduced through an 

aperture into the biopsy chamber. 

 Devices such as the Crosby capsule use suction produced by an external 

source to introduce tissue into their biopsy capsule.
217

 This is not possible in a 

wireless device, so another method would have to be found. As 

electrostimulation of the lumen of the intestinal tract has already been shown to 

produce a contraction, the casing of a biopsy capsule was designed with two 

electrodes placed around an aperture as shown in Fig. 6.4.  

However, the wall of the intestinal tract is very thin. This means that 

only a small thickness of tissue can pass into the chamber before there is a risk 

of perforation during biopsy. Therefore, a major consideration of this section is 

to determine a set of stimulation parameters that introduce a safe thickness of 

lumen into the chamber. Once the tissue is inside the chamber, there are a 

number of different methods by which a biopsy could be taken. A discussion of 

these and other uses of such a device will be included in this section. 
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6.3.1 Initial Design of the Aperture  

 

 Based on the small intestine device, an aperture was cut out of the side 

wall of a device. Electrodes were placed about the biopsy aperture, each of 

which had a wire attached for connection to an electrostimulator during testing. 

Fig. 6.3 shows a schematic drawing of the design of the biopsy capsule.  

 

 

  

 

 

 

 

 

 

Fig. 6.3. Schematic diagram of the biopsy device. 

An experiment was devised to determine whether or not tissue will be 

introduced into the aperture when stimulated. Two capsules with different sized 

apertures were used to investigated the effect of the dimensions of the aperture 

on the effectiveness of the stimulation to introduce the tissue.  

 

 

x mm 

x mm 

27 mm 

Electrode 
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Fig. 6.4 Biopsy capsule casing showing electrodes and aperture 

 

6.3.2 Stimulation Experiment to Introduce Lumen into an 

Aperture 

 

 Two 11 mm video capsule endoscope shaped capsules were used in this 

experiment. Each had a square aperture along its side wall, one measured 5 mm 

by 5 mm, and the other 7 mm by 7 mm. Around each aperture was mounted a 

pair of electrodes. These were used to induce a contraction of the small 

intestine. One end of each biopsy capsule was left open so that a conventional 

endoscope could be attached and used to observe the internal portion of the 

aperture and determine how much lumen entered during stimulation.  

 A pig was anaesthetised with a preperation of 3 ml of atropine and 16 ml 

of ketomine, with 1 ml of ketomine delivered intravenously. It was then masked 

down with 4% halothane, and anaesthetised with 2% halothane. The procedure 

was performed in the small bowel of the animal during laparotomy, where once 
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exposed, two small incisions were made in the walls of a section of the small 

intestinal wall about 300 mm apart. These allowed the introduction of the 

biopsy capsule and the conventional endoscope into the small bowel, which 

were then manoeuvred so the inside of the electrodes were supplied with a 

stimulation signal produced by a Grass SD9 medical stimulator. The biopsy 

aperture was observed with an endoscope and the depth of lumen tissue, (y mm) 

of the small intestine that entered the aperture during stimulation was estimated. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1. Depth of tissue (y) entering the aperture during stimulation 

 

  Stimulation signals of 12.5 Hz, 20 ms over a range of voltages from   

15-35 V were tested in different portions of the small intestines. The results 

summarised in Table 6.1, show that on application of the stimulation signal 

Voltage 

(V) 

Depth of Tissue (y) Entering 

the Aperture (mm) 

For 5 x 5 mm 

aperture  

(+ 0.5 mm)  

(N = 5) 

For 7 x 7 mm 

aperture 

(+ 0.5 mm)  

(N = 5 ) 

15 1 1 

20 1 2 

25 1 2 

30 1 2 

35 1 2 

y 
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tissue steadily entered the 5 mm aperture, and continued to do so until 1 mm of 

tissue was visible for all voltages in the range. However, the 7 mm device was 

too large because at voltages of 20 V and above more that 1mm of lumen tissue 

entered the aperture. 1 mm would be sufficient to take a biopsy safely without 

perforating the wall of the small intestine. 

 

6.3.3 Conclusion  

 

Electrostimulation of the intestines was used to introduce the intestinal 

wall into an aperture of a biopsy chamber. Once in the chamber a biopsy could 

be taken with a simple abrasive surface, needle or blade.  

The first and by far the simplest of these would be an abrasive surface or 

brush, which would line the walls and base of the chamber. As the tissue was 

stimulated, the intestinal wall would enter the chamber and cells would be 

removed due to friction. This type of device would be use to take a sample of 

surface cells for analysis.  

An alternative method would use a needle to perform a puncture biopsy. 

This could be done by positioning a hollow needle in the centre of the floor of 

the chamber pointing toward the aperture. Upon stimulation, the tissue would 

enter the biopsy chamber were the needle punctures the tissue, collecting a 

sample. 

A third and most complicated alternative would be to use a cutting blade 

similar to that found in a Crosby capsule. A Crosby capsule is a metallic capsule 

which uses suction to introduce the lumen of the intestine into a chamber. Inside 
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the chamber is a small sprung blade, which is released by a cord allowing a 

biopsy to be taken. Therefore, once the tissue had entered the chamber, the 

blade would have to be released electronically, possibly using a fusible link.  

The biopsy chamber is only effective if in the correct position. The 

positioning of device in the intestine is possible using electrostimulation but the 

orientation of the chamber relative to the sample area cannot be achieved this 

way. One solution would be to have multiple apertures around the device to 

allow samples of a complete circular section of the intestine to be taken.  

There would be obvious difficulties in the accurate placement of the 

biopsy chamber over the area from which the biopsy is to be extracted. The 

technologies required to allow the capsule the freedom and control of movement 

to position it correctly are complex. Therefore, the possibility of a biopsy 

capsule in the near future does not seem feasible.  
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7. Conclusions  

 

The ultimate aim of this project was to design and build a wireless 

remote controlled device that could be used to propel small video capsule 

endoscopes along gastrointestinal tract. Concentrating mainly in the region of 

the gastrointestinal tract where conventional endoscopy cannot reach without 

surgery, investigations focussed mainly on the small intestine.  

The thesis follows the evolution of the design and construction of what 

ultimately became a radio-controlled bidirectional device, which could be used 

to propel a video capsule endoscope with or against the natural peristaltic flow. 

This would give a clinician the ability to use a video capsule endoscope like a 

conventional endoscope in the most inaccessible area of the gastrointestinal 

tract. 

The thesis also reports investigations into the development of a 

bidirectional large intestine device, which when administered anally, could 

propel a video capsule endoscope the length of the large intestine at a 

comparable rate to a conventional colonoscope. The advantage being that there 

is less skill required to operate this device and it would seem to be less daunting 

to the patient. 

Finally the thesis briefly describes initial investigations into the use of 

electrostimulation to introduce tissue into a biopsy chamber.  
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7.1 Summary of Achievements 

 

Presented here is a summary of the milestones reached during the 

investigations of this thesis. 

 

7.1.1 Wired Device 

 

Early changes to the design of the small intestine device enabled 

electrical stimulation to induce movement in both directions along the small 

intestine. Once this concept of a bidirectional device had been proven to work, 

design changes led to the construction of a bidirectional wired M2A video 

capsule endoscope.  

Initially tested in vivo in the intestine of pigs, the design of the 

bidirectional M2A went through a number of changes culminating in a device 

which, not only performed well in vivo in pigs, but also performed well in vivo 

in humans. This was the first bidirectional electrostimulation propelled video 

capsule endoscope used in man. These tests were performed in a fully conscious 

human volunteer who reported no pain during normal operation of the device. 
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7.1.2 Radio-Controlled Device 

 

Early designs of a stimulator for a wireless device performed well. After 

a number of design modifications and the addition of a radio-control circuit a 

video capsule endoscope sized bidirectional radio-controlled device was tested 

in vivo in a pig. Although the device did not perform as well as the wired 

device, it would still be able to travel along the small intestine in 100 minutes. 

The device was tested in man and performed well in the small intestine of a 

human volunteer. 

 

7.1.3 Large Intestine Device 

 

Dimensional changes in design of the bidirectional device produced a 

device that could be successfully used in the large intestines. This device was 

tested in the large intestines of pigs travelling at speeds that would enable it to 

complete the 3 metre return journey along human large intestines in about       

35 minutes. This is comparable with colonoscopy procedures.  

 

7.1.4 Biopsy Device 

 

Experiments using the biopsy device showed electrostimulation could be 

applied to successfully introduce lumen tissue into an aperture from which a 

biopsy sample could be taken. The use of electrostimulation in this way could 
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allow non-invasive devices such as a video capsule endoscope to obtain biopsy 

samples. This would allow biopsies to be taken from the small intestines 

without the need for enteroscopy. However, difficulties involved in the accurate 

positioning of the aperture are very complex and may not be possible in the near 

future.  

 

7.2 Potential Applications 

 

Electrostimulation of the intestinal wall has been shown to induce 

enough contractile force to propel small devices along the gastrointestinal tract. 

The bidirectional wired devices described in Chapter 4 were fundamentally 

designed to obtain stimulation parameters for the wireless devices described in 

Chapter 5. Although the wired devices showed good movement both with and 

against the natural peristaltic flow within the oesophagus and the small intestine, 

they do not seem to have any potential applications. The main reason for this is 

the trailing wire, which when passing through the throat causes activation of the 

gag reflex. This would cause the subject great and continual discomfort for the 

duration of the procedure. 

However, anally administered devices such as the wired large intestine 

devices described in Chapter 6 do not share the impractical problem of invoking 

the gag reflex with a trailing wire. Therefore, such a device could be easily 

adapted into a practical device to carry a video capsule endoscope along the 

large intestine. Although still wired, this device seems less daunting than a     

1.6 metre colonoscope. With comparable performance to conventional 
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colonoscopy and requiring less skill to navigate, this device could be useful for 

potential large participation colorectal screening programs. 

The wireless remote control device could be incorporated into or used to 

propel video capsule endoscopes along the small intestines. Swain et al, have 

shown this in a test of the radio-controlled device in a human volunteer.
220

 This 

type of device would be the first and only video capsule endoscope which can 

be swallowed and have its progression fully controlled by the attending 

clinician. The bidirectional propulsion system would allow the clinician to use 

the device as a conventional endoscope within the whole small intestine without 

the need for surgical enteroscopy. 

 

7.3 Future Work 

Future improvements to the device would be to produce a stimulator that 

delivers safer charge injection to reduce potential tissue damage and electrode 

corrosion by investigating and selecting the optimal square balance biphasic 

waveform. The electrodes could be improved by inter-linking the electrode 

edges like the fingers of clasped hands to reduce stray currents 

A biopsy capsule could enhance the diagnostic capabilities of video 

capsule endoscopes by giving them the ability to take a sample biopsy from 

areas which the clinician has concerns about. Such a device would require a 

method to rotate the capsule to orientate the aperture.    

Since completion of the practical work described in this thesis, the radio-

controlled bidirectional device has been tested in a human volunteer. The device 
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while propelling a video capsule endoscope was reported to function in both 

directions.
220

 This is a promising start to the continuation of the author’s work. 
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Appendix A: Abstracts of the Author’s Work 

Presented at Conference. 

The abstracts presented in this appendix report the author’s work, which 

was presented at three American Society for Gastrointestinal Endoscopy’s 

‘Digestive Disease Week’ meetings.  

A1. Digestive Disease Week 2002, May 19 - 22, 2002; San Francisco, 

California
218 

A2. Digestive Disease Week 2003, May 18 - 21, 2003; Orlando; Florida
219

  

A3. Digestive Disease Week 2005, May 14 - 19, 2005; Chicago, Illinois
220 

 

A1: Remote Propulsion of Wireless Capsule Endoscopes  

Paul C. Swain, Alexander Mosse, Paul Burke, Annette Fritscher-Ravens, 

Shlomo Lewkovicz, Yehudi Kraizer, Tim Mills, London, UK; Yoqeneam, Israel 

Introduction: Wireless capsule endoscopy depends on peristalsis for propulsion. 

Peristalsis is variable and sometimes too fast and sometimes annoyingly slow. 

Pathology is sometimes seen on a single frame. Methods for moving capsule 

endoscopes remotely might allow increased control and image manipulation by 

varying the speed of the capsules which might allow sufficient control to direct 

biopsy or therapy remotely: Methods: Electro-stimulation devices were used in 

combination with wireless capsule endoscopes (modified M2A) to improve 

remote imaging of the gastrointestinal tract. The shape of the propulsion device 

was an ovoid with bipolar electrodes set at the back and front. When stimulated 

with currents of 3 to 10 milliamps, a contraction was elicited in the circular 

muscle, which exerted a force on the tapered ovoid, which propelled it forwards 

or backwards. By stimulating the electrodes on the back or the front of the 

device the wireless capsule could be propelled forward or backward remotely. 

An M2A capsule was incorporated in some devices and was tugged by others. A 

miniature circuit was designed and constructed, which allowed the necessary 

currents to be achieved by using a 3-volt battery. The devices were tested in pigs 

both at closed endoscopy and open laparotomy. Fluoroscopy, conventional 

endoscopy, visual observation at surgery, and wireless capsule imaging were 

used to monitor the movement of the devices. Results: In studies in the 

esophagus it was possible to propel a capsule endoscope down and then 

upwards repeatedly. With peristalsis the capsule acquires 1 or 2 images of the 

oesophagus before entering the oesophagus. With electrostimulation the 
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acquisition of hundreds of oesophageal images became possible and the capsule 

could be moved in either direction at a rate of 2 cm/sec. Fluoroscopy showed 

movements particularly well in the esophagus. In the small intestine of 

anaesthetized pigs, the devices moved capsules, which were either incorporated 

into an ovoid or were tugged by separate ovoids. These devices were also 

successful in the colon. Beads sewn into the intestine were used as imaging 

targets. Wireless capsule imaging was effective in recording movement of these 

devices. It was possible to advance until a bead was seen and the capsule passed 

to object and then move backward with the device until the bead came into view 

again. Conclusion: Remote controlled movement of wireless capsule 

endoscopes is feasible in the esophagus, small intestine and colon. Bidirectional 

movement allowed external manipulation of image. 

 

A2: Development and Testing of an Electrically Propelled Capsule Endoscope 

in Man 

 

Annette Fritscher-Ravens, Paul Burke, Tim Mills, C. Alexander Mosse, 

Maria Mylonaki, C. Paul Swain; London, UK 

 

Introduction: Electrostimulation can cause propulsion of ovoid objects in the 

lumen of the gastrointestinal tract. Aim: To develop and test in man a new type 

of endoscope with a propulsion system driven by electrostlmulation. 

Methods: Ovoid capsule endoscopes were modified. Four electrodes arranged in 

bipolar pairs were attached to the front and rear portions of the capsule. By 

careful attachment and subsequent polishing, it was possible to obtain 

unimpaired video images from tbe modified capsule endoscope without altering 

its geometry (11 X 27 mm). Several of these devices were constructed with 

wires to the front and back electrodes, which allowed an electrical stimulus to 

be applied to drive the capsule backwards or forwards from an external Grass 

stimulator which had been rendered electrically safe for use in man. Separate 

devices were constructed to include the circuitry necessary to drive similar 

devices without wires or external connectors, all these devices were tested in 

studies in the pig esophagus and small intestine prior to the use of identical 

devices in man. Ethical committee permission was given for testing these 

devices in a human volunteer. 

Results: Independent and wired devices were successfully tested in porcine 

experiments. It was shown that both wired and unwired devices could drive 

wireless capsule endoscopes backwards and forwards in the small intestine at 

equal rates. The same devices did not move when electrostimulation was not 

switched on in these anaesthetized animals. 

In an experiment in a human volunteer an electrostimulation capsule was 

swallowed. It reached the small intestine in 25 minutes. Electrostimulation was 

tested over a range of settings as the device travelled through the small intestine. 

The current used in these experiments was never enough to elicit conscious 

awareness or pain. At the settings used, the device was able to initiate 

contraction and accelerate the passage of the ovoid. The movements were 
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analyzed using x-ray screening and capsule image analysis. At high settings, a 

possible vagal stimulation effect may have been detected. The device was easily 

introduced and worked well in stimulating propulsive and retropulsive 

movement. It was easy to remove under screening from the middle of the small 

intestine. It did not hurt. Conclusion: A new propulsion system for capsule-type 

endoscopy and enteroscopy was successfully tested for the first time in man. 

 

A3: Radio-controlled Movement of a Robot Endoscope in the Human 

Gastrointestinal Tract 

 

Paul Swain, Tim Mills, Brian Kelleher, Loren Schmitz, Sandy Mosse, 

Paul Burke, Keitch Ikeda, Annette Fritcher-Ravens.  

 

Background: Remote controlled movement of wireless capsule 

endoscope might improve diagnosis by allowing controlled examination of 

gastrointestinal pathology and is a pre-requisite for precise therapeutic 

intervention with capsule endoscopy. Aim: To develop a radio-controlled 

electrostimulation capsule (RESC) to propel and alter the direction of movement 

of a wireless capsule endoscope and to test it in man. Methods: A radio-

controlled electrostimulation capsule measuring 11 × 33 mm was constructed. It 

featured paired bipolar electrodes inset at both ends of the capsule arranged to 

deliver sufficient current to cause circular muscular contraction in the gut to 

propel the capsule forwards and backwards. Small circuits inside the capsule 

were designed to receive commands and deliver pulses to move the capsule in 

the anesthetized pig and unanesthetized human gastrointestinal tract. 2 miniature 

batteries powered the device. Yellow, green and red LEDs indicated forwards or 

backwards electrostimulation and a strobe effect coincided with the 

electrostimulation frequency. An internal photodiode trigger was used to switch 

the device on and off. The RESC was attached to an identically sized wireless 

capsule endoscope by a short cable with the endoscope dome-window viewing 

the RESC. A command radio-control module allowed independent testing of the 

LEDs could switch the electrostimulation from forwards to backwards and 

deliver single test pulses to tissue. A go button commanded forwards or 

backwards motion. A loop aerial over the abdomen delivered radio command 

signals. Real-time image analysis software was used to acquire capsule images 

using the Given-Imaging Pill-Cam. Results: The RESC worked well in animal 

and human trials. A “tongue-test” was developed to check the LED's and 

physical effect of the electrostimulation prior to swallowing. The RESC was 

used as a tug or engine to pull or push a Pill-Cam at will. The direction and 

effect of the electrostimulation signal was imaged in real-time using the wireless 

capsule endoscope. The combination double sausage capsule-tug combination 

proved easy to swallow by a human volunteer. The RESC was observed 

functioning in the esophagus, stomach and duodenum using both conventional 

endoscopes and the attached wireless capsule endoscope. Conclusion: An 

autonomous radiocontrolled robotic capsular endoscope with forwards and 

reverse movement function was tested successfully in the porcine and human 

gastrointestinal tract. 
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Appendix B: Anatomy of the Gastrointestinal Tract 

  

A more in depth discussion of the anatomy of the oesophagus, stomach, 

small intestine and large intestine, as outlined in Chapter 2.
22,23,24

  

B1: The Oesophagus 

 

The oesophagus is a 23 cm long muscular tube that extends from the 

pharynx to the stomach. It is generally vertical in orientation with a few curves 

along its path. It passes down through the neck along a central path in front of 

the trachea. 

At the bottom of the neck it projects to the left with the thyroid gland 

and the thoracic duct. It then enters the thorax a little to the left of the median 

line, and passes behind the aortic arch. It then descends through the posterior 

mediastinum passing along the right side of the aorta almost to the Diaphragm 

where it then passes a little to the left of the front of the artery. Finally it enters 

the abdomen where it terminates at the cardiac orifice of the stomach. The 

oesophagus is the narrowest part of the alimentary canal, being most constricted 

at its commencement, and at the point where it passes through the Diaphragm 

The oesophagus consists of three coats; the external muscular coat, the 

areolar coat, and the internal mucous coat. 
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The muscular coat has two layers of smooth muscle. The external layer 

of muscle is known as longitudinal muscle because the fibres are orientated 

along the length of the oesophagus. The internal layer of muscle is known as 

circular muscle because the fibres are orientated around the circumference of the 

oesophagus. 

The areolar coat loosely connects the external muscular coat to the 

internal mucous coat. 

The mucous coat is relatively thick and has a reddish colour above and 

pale below. It forms longitudinal folds, which disappear with distension of the 

oesophageal tube. On the inner surface there are minute papillae and it is 

completely covered with a thick layer of stratified pavement epithelium. 

Between the mucous membrane and the areolar coat lies a layer of 

longitudinally arranged non-striped muscle fibres, known as the muscularis 

mucousa. At the top of the oesophagus only a few bundles, if any, are apparent, 

whereas towards the bottom of the oesophagus there is a considerable layer. 
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B2: The Stomach 

 

The stomach is situated between the oesophagus and the small intestine. 

As well as being the principal organ of the digestive system, it is also the most 

dilated part of the gastrointestinal tract. The larger end, known as the fundus, is 

directed upwards and the smaller end faces to the right of the body. It is 

positioned in the left hypochondriac and epigastric regions, placed mainly 

behind the wall of the abdomen and under the Diaphragm. 

The size of the stomach varies considerably from person to person. 

Along its greatest length, when slightly distended the stomach measures         

25-30 cm, and at its widest part, has a diameter of 10-12 cm. The distance 

between the two orifices of the stomach, the cardiac orifice at the terminus of 

the oesophagus and the pyloric orifice at the commencement of the small 

intestine, is 7-15 cm. 

Between the anterior and posterior walls the stomach measures about     

8 cm, and it has a capacity of about 3-4.5 litres. At the pyloric valve the orifice 

is reduced to about 1.5 cm in diameter. 

The stomach wall is composed of four coats; the serous, muscular, 

areolar, and mucous. 

The serous coat, derived from the peritoneum, covers most of the surface 

of the stomach except for the greater and lesser curvature regions, at the 

attachment points to the greater and lesser omenta, and near the cardiac orifice 

on the posterior surface. 
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The muscular coat, which lies directly beneath the serous coat, has three 

fibre layers; longitudinal, circular, and oblique. 

The longitudinal fibres are continuous with the fibres of the oesophagus. 

Covering the stomach sparsely, they are distributed most distinctively along the 

curvatures, especially the lesser, with a thin distribution over the surfaces. At 

the pyloric orifice, they once again become more densely distributed and are 

continuous with the fibres of the small intestine. 

The circular fibres are situated beneath the longitudinal fibres in a 

uniformly distributed layer covering the entire stomach. Most abundant at the 

pylorus, they collect together to form a circular ring, which together with a fold 

of mucous membrane over its surface forms the pyloric valve. 

The oblique fibres are mainly situated in the cardiac region of the 

stomach. Found on both surfaces the fibres form a thick uniform layer around 

the cardiac orifice. 
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The areolar coat connects loosely the external muscular coat to the 

internal mucous coat. 
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The mucous membrane is thick with a smooth soft and velvety surface. 

It is thin in the cardiac region and thicker in the pyloric region. During the 

contracted state a number of longitudinal folds are formed, with greatest 

intensity at the lesser end of the stomach, and along the greatest curvature. 

These folds disappear when the stomach becomes distended. 
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B3: The Small Intestine 

 

The small intestine extends on average 6 m from the pylorus to the ileo-

caecal valve. Gradually diminishing in size from commencement to termination, 

the small intestine is contained in the central and lower portions of the 

abdominal cavity, surrounded by the large intestine. A portion of it passes below 

the brim of the pelvis to lie in front of the rectum. The small intestine is divided 

into three sections. 

The duodenum is about 25 cm in length, making it the shortest and also 

the widest part of the small intestine. It is roughly U-shaped with its two 

extremities being positioned at about the same height. The position of the 

pylorus is dependent on how distended the stomach is. This then alters the 

position of the right proximal end of the duodenum, while the other end remains 

fixed. Whatever position it is in it reaches the underside of the liver, where it 

curves sharply and descends along the right side of the vertebral column to the 

fourth lumbar vertebra. Curving again it passes across the spine, where it then 

begins to ascend along the left side of the vertebral column to the second lumbar 

vertebra terminating at the commencement of the jejunum. Here it turns 

abruptly forming the duodeno-jejunal angle. 

The jejunum and ileum make up the remainder of the small intestine in 

the ratio of two to three. There is no distinguishable interchange between these 

two parts, but gradual changes occur along their length, such that there are 

marked differences observed at either end. The jejunum is thicker, more 

vascular, and wider than the ileum with a diameter of approximately 4 cm. The 
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ileum on the other hand is less thick, vascular, or wide, with a diameter of about 

3 cm. It follows a path with a large number of coils and convolutions in it. The 

jejunum mostly occupies the umbilical and left iliac regions whereas the ileum 

occupies mainly the umbilical, hypogastric, right iliac, and pelvic regions, and 

terminates in the right iliac fossa. 
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Occasionally, connected to the lower part of the ileum about 1 m from 

its terminus, there may be found a blind diverticulum. It is connected at one end 

to the lumen of the intestine and the other end can be connected to either the 



238 

 

abdomen wall, some other part of the intestine or nothing at all. This is known 

as Meckel's diverticulum, and is the remains of the duct for communication 

between the umbilical vesicle and the alimentary canal during early foetal life. 

The wall of the small intestine, like the stomach, consists of four coats; 

the serous, muscular, areolar, and mucous. 

Derived from the peritoneum the serous coat almost completely 

surrounds the first ascending portion of the duodenum at the pyloric end. This 

reduces to just covering the front of the duodenum along the rest of the first 

ascending portion and the second descending portion except where it is carried 

off by the transverse colon. 

The third portion of the duodenum lies completely behind the 

peritoneum. The rest of the small intestine is once again surrounded by the 

peritoneum. 

The muscular coat consists of two layers. The longitudinal (external) 

layer is comprised of longitudinal fibres that are thinly scattered over the surface 

of the intestines, more distinctively along its free border. The circular (internal) 

layer is comprised of circular fibres that surround the entire cylinder of the small 

intestine. 
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The thickness of the muscular coat is greater at the top the small 

intestine, reducing towards its termination. 

The areolar coat loosely connects the muscular coat and the mucous 

coat. 

The mucous membrane is thick and highly vascular at the pyloric end of 

the small intestine becoming paler and thinner toward its termination 
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B4: The Large Intestine 

 

The large intestine extends from the termination of the ileum to the anus. 

It has a length of about 1.5 m, which is roughly a fifth of the length of the entire 

intestinal tract. It is at its largest at the commencement of the caecum, gradually 

reducing in size, until at the rectum a dilation of considerable size occurs just 

above the anus. It is larger and more firmly fixed than the small intestine. In its 

course the large intestine describes an arch which surrounds the small intestine. 

The large intestine is formed from three sections, the caecum, colon and rectum. 

The caecum is a large blind pouch, which is situated below the ileo-

caecal valve and forms the commencement of the large intestine. With its blind 

end facing downwards and its open end facing upwards into the colon, the 

caecum is positioned immediately behind the abdominal wall, situated in the 

right iliac fossa above the outer half of the Poupart's ligament. 

The ileo-caecal valve is formed from two segments, the colic, (upper), 

and the cecal, (lower). The upper, following a convex path nearly horizontal in 

direction, connects the point of junction of the ileum and the colon, whereas the 

lower, which is more concave and longer, connects to the point of junction of 

the ileum and caecum.  

The colon consists of four parts. These are the ascending, transverse, 

descending, and the sigmoid flexure. 

Although continuous from the caecum, the ascending colon is slightly 

smaller in size. From its commencement at the ileo-caecal valve the ascending 

colon passes up to the base of the right lobe of the liver, on the right of the gall 
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bladder. Here lodged in the impressio colica, it bends abruptly inwards to the 

left to form the hepatic flexure. 

The longest part of the large intestines, the transverse colon, passes from 

right to left across the abdomen into the left hypochondriac region. Here it 

curves beneath the lower end of the spleen forming the splenic flexure. 

Passing downward through the left hypochondriac, the descending colon 

continues its downward path through the lumbar regions along the outer border 

of the left kidney. On reaching the lower end of the kidney, it turns inwards 

towards the Psoas muscle, along which it descends to the crest of the ileum 

where it terminates in the sigmoid flexure. 
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As the narrowest part of the colon, the sigmoid flexure is situated in the 

left iliac fossa. Commencing at the termination of the descending colon, it 
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initially curves forwards, downwards, and inwards for about 5 cm, where it then 

forms a loop, which varies in length and position and terminates in the rectum at 

the brim of the true pelvis opposite the left sarco-iliac symphysis. 

As the terminal part of the large intestine, the rectum extends from the 

sigmoid flexure to the anus. From the point of commencement the first part of 

the rectum passes downwards, backwards, and to the right to the level of the 

third sacral vertebrate. The second part of the rectum curves forwards and 

continues downwards to about 3 cm in front of the coccyx. From here the third 

part of rectum, also known as the anal canal, passes downwards and backwards 

to its termination at the anus. 

The large intestine is composed of four coats; the serous, muscular, 

areolar, and mucous. 

The serous coat is again formed from the peritoneum. The caecum is 

completely covered, except in a few cases where the upper posterior surface is 

uncovered. The ascending and descending colon are coated only on the front 

and sides with variable amounts of the posterior surface remaining uncovered. 

The transverse colon is completely covered except in the areas corresponding to 

the attachment of the great omentum and transverse mesocolon. The sigmoid 

flexure is completely covered apart from the area of connection with the 

sigmoid mesocolon. Similarly the upper part of the rectum is also completely 

covered except for the area of connection to the mesorectum. The middle 

section of the rectum has only covering on its anterior surface with a light 

covering on the sides towards the top. The third section of the rectum is devoid 

of any serous covering. 
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The muscular coat, as in the small intestine, consists of two layers of 

fibres. The outer longitudinal fibres do not form a uniform layer over the entire 

large intestine. In the caecum and colon the fibres are especially collected into 

three flat longitudinal bands, each about 1 cm in width. These bands, nearly one 

half shorter than the other coats of the large intestine, produce the characteristic 

sacculi. In the sigmoid flexure the fibres become more scattered. Towards the 

bottom of the sigmoid flexure and continuing on to the rectum, the fibres spread 

out to form a layer of complete cover, which is slightly thicker on the anterior 

and posterior surfaces. 

Two bands of plain muscular tissue (retro-coccygeal muscles) arise from 

the second and third coccygeal vertebrae and blend with the longitudinal fibres 

on the posterior surface of the final part of the rectum. 

The circular fibres form a thin layer over the caecum and colon. In the 

rectum they are more thickly layered, especially at the lower end where the 

fibres become the internal anal sphincter. 

The areolar coat connects the muscular and mucous layers closely 

together. 
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In the caecum and colon, the mucous membrane is pale and smooth with 

no villi and it follows the folds of the sacculi. In the rectum it is much thicker, 

darker, and more vascular. 
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Appendix C: LM339 as an Astable Oscillator 

  

Within this appendix is included a description of the operating 

parameters of the LM339 comparator when it is to be used as an astable 

oscillator. Included are circuit diagrams and equations the author found useful 

when designing the square wave generator described in Chapter 5. 

 

The LM339 comparator can be used as the basis of an astable oscillator, 

that is as a square wave signal generator. It forms the core of the simple RC 

frequency circuit shown in Fig.C.1. Components R4 and C1 determine the 

frequency of the output while the resistors R1, R2 and R3 are used to form a 

hysteresis loop. The frequency maximum is limited by the large signal 

propagation delay of the comparator together with the capacitive loading 

through the output, which also reduces the output slew rate.  

Taking the voltage at the positive input as VA1 

 

When R1 = R2 = R3 

then 
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When the circuit is activated C1 charges up through R4 until it is charged 

to a potential value equal to VA1. This causes the comparator output to switch to 

low. With the output voltage V0 = GND the value of VA is reduced by the 

hysteresis network to: 

 

With the above resistor values C1 now discharges towards ground 

through R4. This causes the output to return to its original high state when the 

voltage across C1 has discharged to the VA2 value.  

 

 

Fig C.1. Astable oscillator circuit. 
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By providing separate charge and discharge paths for the capacitor C1 

the circuit can be modified to produce an adjustable duty cycle pulse generator 

as shown in Fig. C.2. This is achieved by replacing R4 with two variable 

resistor/diode pathways; R1, D1 and R2, D2. One path, (R1, D1), charges the 

capacitor and sets the pulse width duration i.e. the time from t0 to t1. The other 

path, (R2, D2), discharges the capacitor and sets the time between the pulses, i.e. 

from t1 to t2. 

 

 

 

Fig. C.2. Adjustable astable oscillator cicuit. 
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The pulse duration width and the time between pulses can be calculated 

from: 

 

 

Where 

 

and 

 

 

The value for t1 is obtained from: 

 

The value for t2 is obtained from: 

 

 This is an over simplified representation since a slight adjustment to the 

Vmax value is required due to a diode voltage drop reducing the value to: 
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Therefore, 

 

and 

 

A pulse generator used to drive the current through the tissue is required 

to produce a square wave pulse within the frequency range 10-100 Hz, with a 

duration range of 10–20 ms. To produce a device with an adjustable range of 

parameters, variable resistors VR1 and VR2 were included in the circuit. The 

optimum values of these components as well as that of the capacitor C1 were 

calculated using the following equations obtained by rearranging the earlier 

equations: 
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In order to produce the required range of frequency and duration 

parameters for the stimulation, the t0-t1and t1-t2 values need to have a range of 

values of 10–20 ms and 10–100 ms respectively. In order to produce the 

maximum value of 100 ms for t2, a value of 72 nF for the capacitor C1 is 

required, when the potentiometer VR2 is set to its maximum of 1 M. The 

closest available value was 82 nF, which allows a maximum value for t2 of 

approximately 114 ms.  

To find the maximum value of VR1, the calculated value for C1 was used 

with the required maximum value for t1. This gave a maximum value for the 

potentiometer VR1 of 176 k. The closest available value to this is a 250 k 

potentiometer, which gives a maximum value of approximately 28 ms for t1.  

The values for the other resistors in the circuit were 1 M except for the 

step up resistor, which has a value of 15 k. Ordinary silicon signal diodes were 

used. 
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Appendix D: Charge Density on the Electrode 

A crude model of the charge density was used to determine the order of 

magnitude of the maximum charge density on the electrode for four the different 

electrode types used for different devices during the project. The charge density 

per cycle was calculated by  
                              

              
   

 

 

Stimulation Parameters and Radius Electrode Type

Charge Density (A/cm²)
pulse duration (ms) current (mA) radius (mm) screw cone hemi lens

20 5 4.5 0.00015719 0.0002223 0.00015719 0.000354

20 5 5.5 0.000105226 0.000148813 0.000105226 0.000289

20 5 6.5 7.53396E-05 0.000106546 7.53396E-05 0.000245

20 5 7.5 5.65884E-05 8.00281E-05 5.65884E-05 0.000212

20 5 8.5 4.40567E-05 6.23056E-05 4.40567E-05 0.000187

20 10 4.5 0.00031438 0.000444601 0.00031438 0.000707

20 10 5.5 0.000210453 0.000297625 0.000210453 0.000579

20 10 6.5 0.000150679 0.000213093 0.000150679 0.00049

20 10 7.5 0.000113177 0.000160056 0.000113177 0.000424

20 10 8.5 8.81135E-05 0.000124611 8.81135E-05 0.000374

20 15 4.5 0.00047157 0.000666901 0.00047157 0.001061

20 15 5.5 0.000315679 0.000446438 0.000315679 0.000868

20 15 6.5 0.000226019 0.000319639 0.000226019 0.000735

20 15 7.5 0.000169765 0.000240084 0.000169765 0.000637

20 15 8.5 0.00013217 0.000186917 0.00013217 0.000562

20 20 4.5 0.00062876 0.000889201 0.00062876 0.001415

20 20 5.5 0.000420906 0.00059525 0.000420906 0.001157

20 20 6.5 0.000301358 0.000426185 0.000301358 0.000979

20 20 7.5 0.000226354 0.000320112 0.000226354 0.000849

20 20 8.5 0.000176227 0.000249223 0.000176227 0.000749

10 10 2 0.000795775 0.001125395 0.000795775 0.000796

20 15 1 0.009549297 0.013504745 0.009549297 0.004775

10 20 4.5 0.00031438 0.000444601 0.00031438 0.000707

10 20 5.5 0.000210453 0.000297625 0.000210453 0.000579

 

Table D.1. Charge density on the electrode. 
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