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‘‘Just as every human undertaking pursues certain objectives,

so also the mathematical research requires its problems. It is

by the solution of problems that the investigator tests the

temper of his steel; he finds new methods and new outlooks, and

gains a wider and freer horizon.’’

David Hilbert, 1900
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Abstract

This Thesis deals with the following type of problems, which we denote par-

tition problems,

Given a set X in IRd, is there a way to partition X such that the convex

hulls of all parts satisfy certain combinatorial properties?

We focus on the following two kinds of partition problems.

• Tverberg type partitions. In this setting, one of the properties we

ask the sets to satisfy is that their convex hulls all intersect.

• Ham sandwich type partitions. In this setting, one of the proper-

ties we ask the sets to satisfy is that the interior of their convex hulls

are pairwise disjoint.

The names for these types of partitions come from the quintessential

theorem from each type, namely Tverberg’s theorem and the ham sandwich

theorem. We present a generalisation and a variation of each of these classic

results.

The generalisation of the ham sandwich theorem extends the classic result

to partitions into any arbitrary number of parts. This is presented in chapter

2. Then, in chapter 3, variations of the ham sandwich Theorem are studied

when we search for partitions such that every hyperplane avoids an arbitrary

number of sections. These results appear in two papers, [39, 35].

The generalisation of Tverberg’s theorem consists of adding a condition

of tolerance to the partition. Namely, that we may remove an arbitrary

number of points and the partition still is Tverberg type. This is presented in

chapter 4. Then, in chapter 5, “colourful” variations of Tverberg’s Theorem

are studied along their applications to some purely combinatorial problems.

These results appear in two papers, [41, 40].
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Chapter 1

Introduction

This chapter contains an introduction to the necessary machinery to tackle

the problems contained in the Thesis. It will also settle the notation for the

forthcoming chapters. The expert reader may prefer to skip it.

1.1 Combinatorial geometry

Given n points a1, a2, . . . , an ∈ IRd and y ∈ IRd, we say that y is a convex

combination of the ai if y can be written as a linear combination of the ai

using non-negative coefficients that sum to 1. We say that y is a non-negative

combination of the ai if y can be written as a linear combination of the ai

using non-negative coefficients.

Given a set A ⊂ IRd, we define the convex hull of A, denoted by 〈A〉, as

the set of all convex combinations of finite sets of points of A. We define

the convex cone of A, denoted by 〈A〉cone, as the set of all non-negative

combinations of finite sets of points of A.

We say that A is convex if A = 〈A〉. It should be noted that the convex

hull and the convex cone of any set are convex.

It is known that the intersection structure of families of convex sets is

incredibly rich (see [15], for example), and a plethora of results deal with

10
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this subject. Thus, it is natural to ask the following kind of questions.

Given a set X in IRd, is there a way to partition X such that the convex

hulls of each part satisfy certain combinatorial properties?

We refer to this as a partition problem. We distinguis two kinds of parti-

tion problems. Namely,

• Tverberg type partitions. In this setting, one of the properties we

ask the sets to satisfy is that their convex hulls all intersect.

• Ham sandwich type partitions. In this setting, one of the proper-

ties we ask the sets to satisfy is that the interiors of their convex hulls

are pairwise disjoint.

The names for these types of partitions come from the quintessential

theorem from each type, namely Tverberg’s theorem and the ham sand-

wich theorem. The first example of a Tverberg type result is due to Radon.

Namely,

Theorem 1.1.1 (Radon, 1921 [33]). Given a set S of d + 2 points in IRd,

there is a partition of S into two sets A1 and A2 such that

〈A1〉 ∩ 〈A2〉 6= ∅.

It should be noted that Radon stated this as a lemma in [33], where the

focus of the paper was to prove Helly’s theorem characterising intersecting

families of convex sets in IRd. This is why Radon’s theorem is often referred

to as Radon’s lemma. Even though the proof of this theorem requires only

basic linear algebra and may seem conspicuous at first sight, it has been the

basis for a wide number of generalisations.
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One natural way to generalise this theorem is asking to partition S into

any number, say k, of parts. Tverberg’s theorem gives the number of points

necessary for this to happen. Namely,

Theorem 1.1.2 (Tverberg, 1966 [42]). Given a set S of (k − 1)(d+ 1) + 1

points in IRd, there is a partition of S into k sets A1, A2, . . . , Ak such that

k
⋂

i=1

〈Ai〉 6= ∅.

Figure 1.1: Example of Tverberg partition for 10 points in the plane, i.e. the
case d = 2, k = 4

We call a partition of this type a Tverberg partition, or Radon partition

if k = 2. It should be noted that the number (k − 1)(d + 1) + 1 is optimal.

The sudden scaling of difficulty from Radon’s to Tverberg’s theorem is made

evident by the 45 year gap between them. Tverberg’s proof of his own theo-

rem involves moving points of an arbitrary configuration continuously and

swapping points in the partition as problems appear. However, this proof

method is difficult to generalise and can be heavily case-based. We refer to

this as Tverberg’s method. A simpler proof of Tverberg’s theorem was found

by Karanbir Sarkaria [38] using, in part, a clever linear-algebraic trick. We

refer to it as Sarkaria’s method. Since we will use it extensively in the chap-

ters dealing with Tverberg type partitions, we present a detailed sketch of

his proof in the next section.
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1.2 Sarkaria’s method

Given a set X ⊂ IRd, we say that X captures the origin if 0 ∈ 〈X〉. The main

idea behind Sarkaria’s proof of Tverberg’s theorem is to make a transforma-

tion to represent the set of points in IRd in a space IRn of higher dimension, so

that a Tverberg partition in IRd corresponds to a set in IRn capturing the ori-

gin. Then, we can use the following colourful generalisation of Carathéodory’s

theorem to finish.

Theorem 1.2.1 (Bárány, 1982 [5]). Let F1,F2, . . . ,Fd+1 be families of points

in IRd. If each Fi captures the origin, we can find points x1 ∈ F1, x2 ∈

F2, . . . , xd+1 ∈ Fd+1 such that the set {x1, x2, . . . , xd+1} captures the origin.

Carathéodory’s classic theorem is the case F1 = F2 = . . . = Fd+1. This

is called a colourful version since the families F1, . . . ,Fd+1 are usually called

colour classes.

In order to motivate the constructions that are going to follow, let us prove

the case k = 2 of Tverberg’s theorem. Given any d+2 points a1, a2, . . . , ad+2

in IRd, we first lift them to IRd+1 by defining bi = (ai, 1) ∈ IRd+1 for each i.

Since we have d+ 2 points in IRd+1, there is a non-trivial linear combination

of them that gives 0. Namely, there are coefficients β1, β2, . . . , βd+2, not all

equal to zero such that
∑d+2

i=1 βibi = 0. Since the last coordinate of each bi is

1, the sum of these coefficients must be zero. Consider A the set of indices i

such that βi is non-negative and B the set of indices i such that βi is negative.

Then,
∑

i∈A

βiai =
∑

i∈B

(−βi)ai

∑

i∈A

βi =
∑

i∈B

(−βi)

Using the second equation, we can make the first one into an equality of

convex combinations, as we wanted.

If one wants to extend this argument, ideally we would like to have co-
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efficients of k types, not only positive and negative. It turns out that this

is possible via a tensor product, using a special set of k points in IRk−1 to

represent the types of coefficients. One should note that Sarkaria’s original

argument used number fields, and the simplified version presented below is

due to Bárány and Onn [8].

Given x = (x1, x2, . . . , xn) ∈ IRn and y = (y1, y2, . . . , ym) ∈ IRm, we

consider x⊗y the tensor product of x and y as a vector in IRn×m with entries

(x⊗ y)(i,j) = xiyj .

Note that ⊗ : IRn × IRm → IRn×m is bilinear. We are now ready to prove

Tverberg’s theorem.

Sarkaria’s proof. Let n = (k − 1)(d+ 1) and a1, a2, . . . , an+1 be n+ 1 points

in IRd. Consider bi = (ai, 1) ∈ IRd+1 for all i. Let u1, u2, . . . , uk ∈ IRk−1

be the k vertices of a regular simplex centred at the origin. These k points

will be used to parametrise the partition of the points in IRd. Note that for

coefficients γ1, γ2, . . . , γk ∈ IR,
∑

i γiui = 0 if and only if γ1 = γ2 = . . . = γk.

Consider the points bi ⊗ uj ∈ IRn.

b1 ⊗ u1

b1 ⊗ u2

...

b1 ⊗ uk

b2 ⊗ u1

b2 ⊗ u2

...

b2 ⊗ uk

· · ·

· · ·

· · ·

bn+1 ⊗ u1

bn+1 ⊗ u2

...

bn+1 ⊗ uk

Figure 1.2: Points in Sarkaria’s transformation.

Note that the n+ 1 families Fi = {bi ⊗ uj : 1 ≤ j ≤ k} (the columns in

the diagram above) each capture the origin in IRn. Thus, there are indices
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j1, j2, . . . , jn+1 such that the set X = {b1 ⊗ uj1, b2 ⊗ uj2, . . . , bn+1 ⊗ ujn+1}

captures the origin. It remains to prove that these points induce the Tverberg

partition we seek. For this purpose, consider the sets

I1 = {i : ji = 1}, I2 = {i : ji = 2}, . . . , Ik = {i : ji = k}

Since X captures the origin, there are coefficients β1, β2, . . . , βn+1 of a convex

combination such that
n+1
∑

i=1

βi(bi ⊗ uji) = 0.

Factoring each ui we obtain

(

∑

i∈I1

βibi

)

⊗ u1 +

(

∑

i∈I2

βibi

)

⊗ u2 + . . .+

(

∑

i∈Ik

βibi

)

⊗ uk = 0.

Note that the need for equal coefficients in any linear combination of the ui

that gives 0 is carried through the tensor product, giving us

∑

i∈I1

βibi =
∑

i∈I2

βibi = . . . =
∑

i∈Ik

βibi.

Using the fact that the last coordinate of each bi is 1 it is easy to see that, if

αi = kβi, then, for each j, the elements of the set Γj = {αi : i ∈ Ij} are the

coefficients of a convex combination, and

∑

i∈I1

αiai =
∑

i∈I2

αiai = . . . =
∑

i∈Ik

αiai.

Thus the sets Aj = {ai : i ∈ Ij} for 1 ≤ j ≤ k form the Tverberg partition

we seek.

Note that for the case k = 2, the proof above reduces to the simple argu-

ment explained in the beginning of the section. The colourful Carathéodory

theorem with sets of size k > 2 is playing the role of basic linear algebra in
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this setting.

If we follow blindly the same method without the lift ai 7→ bi, we obtain

the following corollary

Corollary 1.2.2. Let n = d(k−1) and a1, a2, . . . , an+1 be n+1 points in IRd.

Then, there is a partition I1, I2, . . . , Ik of {1, 2, . . . , n + 1} and non-negative

coefficients α1, α2, . . . , αn+1, not all zero, such that

∑

i∈I1

αiai =
∑

i∈I2

αiai = . . . =
∑

i∈Ik

αiai.

1.3 Ham-Sandwich type partitions

Contrary to Tverberg type partitions, given a set X in IRd, finding ham-

sandwich type partitions of X is trivial. This can be done, for example, by

splitting the set using a hyperplane, and then successively partition each part

with the same method.

This gives us a lot of freedom to choose the partition. Thus, in order

to obtain more interesting results regarding ham-sandwich type partitions,

stronger conditions need to be imposed on the resulting partition. For exam-

ple, finding a ham-sandwich type partition of a set of red and green points

in IR2 such that every set has the same number of red and green points is

interesting.

In this type of problems, the sets to be partitioned usually fall into one

of two categories. That is, it is customary to talk about partitioning finite

sets of points, or partitioning a finite measure in IRd with some kind of

smoothness condition. This does not cause a lack of generality, as standard

approximation arguments show that (almost always) these kinds of partition

problems are closely related and can be derived from each other. Since the

proof methods are topological, in order for the underlying functions to be

continuous, the finite sets of points are required to be in general position and
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the measures are required to be absolutely continuous with respect to the

Lebesgue measure in IRd, among other properties.

In this thesis we deal with the case of partitioning measures in IRd. Since

additional conditions on the measures can vary from theorem to theorem,

it is common to denote the set of desired measures as nice measures and

specify the exact conditions needed for that theorem if the possibility of

confusion arises. We will use the term AAH measures for the set of measures

used in chapter 2 (since they satisfy properties mentioned in a paper by

Aurenhammer, Aronov and Hoffman [3] and the term YY measures for the

set of measures used in chapter 3 (since they satisfy properties mentioned in

a paper by Yao and Yao [46].

To be precise, in ham sandwich partion problems we are given one or

more nice measures in IRd and we wish to partition IRd into pairwise interior-

disjoint convex sets C1, C2, . . . , Ck that satisfy certain properties. This can

be seen, for example, in the classic ham-sandwich theorem. In this case, a

nice measure µ refers to a probability measure in IRd such that µ(H) = 0 for

every hyperplane H .

Theorem 1.3.1 (Ham-sandwich theorem). Given d nice measures µ1, µ2, . . . , µd

in IRd, there is a hyperplane H such that its two half-spaces H+ and H− sat-

isfy

µi(H
+) = µi(H

−) =
1

2

for all i.

One should note that the number of measures cannot be increased, as

d+ 1 measures concentrated each near a vertex of a non-degenerate simplex

in IRd cannot be simultaneously split by half by a single hyperplane. There

is a standard way to approach ham sandwich partition problems, explained

in the next section.
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1.4 Test map scheme

The test map scheme is a systematic way to approach ham-sandwich type

partition problems. For an elaborate description of this method and a broad

list of examples, we recommend [29]. The idea is to reduce this kind of

problems to purely topological ones, which can then (hopefully) be solved

using machinery in this field. The procedure is the following

• First, parametrise the space of partitions with a space X .

• Secondly, consider a space Y of (other) parameters of the partitions

considered in X . The parameters in Y are usually related to the way

the partition splits the measures. This induces naturally a continuous

function f : X −→ Y .

• Ideally, f should satisfy a certain set of properties ψ. These properties

are related to the symmetries of the problem and the parametrisations

that were used. Then, given a property τ on the partition, proving that

there is always a partition in X satisfying τ is reduced to proving that

for every function f : X −→ Y satisfying ψ, there is a point x0 ∈ X

such that f(x0) ∈ Y0, where Y0 ⊂ Y depends on τ . Equivalently, it

is standard to prove the non-existence of maps f : X −→ Y \ Y0 that

satisfy ψ.

One should note that the test map scheme can also be applied to Tverberg

type partition problems, as explained in [13]. As stated above, the properties

ψ that the function should satisfy are usually related to symmetries of the

problem, and often translate to the function behaving nicely with group

actions (as explained in the next section).

To show this method concretely, let us prove the ham sandwich Theorem

(Theorem 1.3.1). For this, the topological tool we need is one of the equivalent

formulations of the well-known Borsuk-Ulam theorem. Namely, define the
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sphere of dimension n as

SSn = {x ∈ IRn+1 : ||x|| = 1}.

Then,

Theorem 1.4.1 (Borsuk-Ulam theorem). For every continuous function f :

SSn −→ IRn such that f(x) = −f(−x) for all x ∈ SSn, there is an x0 ∈ SSn such

that f(x0) = 0.

Proof of Theorem 1.3.1. Given a half-space H+ in IRd, it is of the form {x ∈

IRd : x · c ≥ t} for some non-zero vector c ∈ IRd and some t ∈ IR. This is

equivalent to {x ∈ IRd : (x, 1) · (c,−t) ≥ 0}. Moreover, we can normalise

(c,−t) so that it lies on SSd. By associating H+ ↔ v = (c,−t)
||(c,−t)||

, the set of

half-spaces in IRd is parametrised as SSd minus the north and south poles.

We can include these two points, which would correspond to all of IRd and

the empty set, respectively (see figure 1.3). These can be thought as the

half-spaces determined by the hyperplane at infinity.

Note that two antipodal points in SSd correspond to two complementary

half-spaces. With this parametrisation in mind, it makes sense to evaluate a

measure in IRd for points x ∈ SSd, as µ(x). Consider the function

f : SSd −→ IRd

x 7→

(

µ1(x)−
1

2
, µ2(x)−

1

2
, . . . , µd(x)−

1

2

)

Note that the condition on the measures imply that f is continuous.

Moreover, since µi(x) + µi(−x) = 1 for all x, f(x) = −f(−x). Thus, there

is an x0 such that f(x0) = 0. One should note as well that x0 cannot be the

south pole nor the north pole, so it does represent a half-space of IRd. The

pair of antipodal points {x0,−x0} represents the hyperplane we seek.
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Figure 1.3: Given a half-space H+ ⊂ IRd, the figure shows how it can be
represented by a vector v = (c,−t)

||(c,−t)||
∈ SSd. If IRd is embedded in IRd+1 as the

set of vectors whose last coordinate is 1, consider H to be the hyperplane
that results from extending the hyperplane in IRd supporting H+ through the
origin in IRd+1. Then v ∈ SSd is the vector orthogonal to H pointing towards
the side of H that contains H+. The operation can be reversed, and given
v ∈ SSd, one can obtain H+.

1.5 Borsuk-Ulam type theorems

In the test map scheme, problems are usually reduced to topological state-

ments similar to the Borsuk-Ulam theorem. In this section we mention a

nice generalisation of the Borsuk-Ulam theorem by Dold, which we will use

to prove Theorem 2.1.2. For the proof of Theorem 3.0.4, we will prove a

different Borsuk-Ulam type theorem, adapted to that specific case.

Given a topological space X and a group G, we say that G acts on X or

that there is an action of G in X if there is a continuous function

G×X −→ X

(g, x) 7→ gx
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such that for every g, h ∈ G, x ∈ X , g(hx) = (gh)x and ex = x if e is the

neutral element in G. If the topology of G is not specified, we assume it has

the discrete topology. In this thesis we will only use spaces with actions of

the discrete cyclic group with k elements, denoted by Zk.

We say that the action of G in X is free or that X is a G-space if, for

all x ∈ X , the equation gx = x implies g = e. For example, if we consider

Z2 = {−1, 1} with multiplication, we have that SSn is a free Z2-space with

the natural action

(1)x 7→ x

(−1)x 7→ −x

Given two spaces X , Y with an action of G, we say that a function

f : X −→ Y is equivariant if f(gx) = gf(x) for all x ∈ X , g ∈ G.

Given a topological space X , we say that X is n-connected if every con-

tinuous function f : SSn → X can be extended to a continuous function

f ∗ : Bn+1 → X , where Bn+1 is the ball of dimension n + 1 (with SSn as

boundary); namely

Bn+1 = {x ∈ IRn+1 : ||x|| ≤ 1}.

Note that 0-connectedness simply means connectedness. One can think of n-

connectedness as a higher dimensional version of connectedness. For example,

SSn is a space that is (n− 1)-connected but is not n-connected. Then Dold’s

theorem says

Theorem 1.5.1 (Dold, 1983 [14]). Let G be a finite group, |G| > 1, X be

an n-connected G-space and Y be a (paracompact) G-space of dimension at

most n. Then there is no equivariant function f : X −→ Y .

Note that the case X = SSn+1, Y = SSn with their natural Z2-action is

one of the many equivalent forms of the Borsuk-Ulam theorem. Namely,
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that there is no antipodal mapping from SSn+1 to SSn (see [29], for example).

The advantage of Dold’s theorem is that it is not specific to two spaces, and

gives us the non-existence of equivariant functions by checking two simple

properties of X and Y . One could intuitively think that the reason for Dold’s

theorem to work is that X is too thick to be arranged properly into Y (by

properly we mean respecting the group action).

The need for free actions in this kind of theorems is necessary for the

topological machinery to work, and often translates to apparently artificial

conditions on ham-sandwich type theorems (or topological versions of Tver-

berg type theorems) such as some parameters being prime numbers or prime

powers. When such conditions appear, the question of whether they are

actually necessary is, more often than not, unresolved.



Chapter 2

Ham sandwich type partitions

2.1 Balanced convex partitions

The ham sandwich theorem (Theorem 1.3.1) shows that given any d nice

measures in IRd, there is always a hyperplane that splits them by half simul-

taneously. The main goal of the following sections is to prove an extension

of the ham sandwich theorem where we want to split the measures into more

than 2 sections. The contents of this chapter can be found in [39].

In IR2, it was shown that given two measures µ1 and µ2, if one wants

to divide them simultaneously into more than two parts, it is possible to do

so with convex sections. This was done by Sakai [36] for measures and by

Bespamyatnikh, Kirkpatrick and Snoeyink [9] for finite families of points.

Namely,

Theorem 2.1.1 (Bespamyatnikh et al. 2000 [9], Sakai 2002 [36]). Given a

positive integer k and two nice probability measures µ1, µ2 of IR2, there is

a partition of IR2 into k pairwise interior-disjoint convex sets C1, C2, . . . , Ck

such that

µi(Cj) =
1

k
for all i, j.

Sakai’s conditions on the measures were that they had to be absolutely

23
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continuous with respect to the Lebesgue measure in IR2 and that there had

to be a bounded set B such that the measures vanished outside of B.

Imre Bárány conjectured that this should hold for d measures in IRd. In

this section we give an affirmative answer to his conjecture. Namely, we

prove the following theorem.

Theorem 2.1.2 (Soberón , 2012 [39]). Let k and d be positive integers. Let

µ1, µ2, . . . , µd be AAH measures in IRd such that µi(IR
d) = k for all i. Then,

there is a convex partition of IRd into sets C1, C2, . . . , Ck such that µi(Cj) = 1

for all i, j.

The conditions we need on the measures are the same as the ones required

in section 2.2. That is, we say that a measure µ in IRd is an AAH measure

if it is absolutely continuous with respect to the Lebesgue measure in IRd,

there is a bounded convex set K such that µ vanishes outside of K and µ

has positive value on every open set in K. Note that if A is a convex set of

positive measure on µ, then the restriction µ|A is also a nice measure.

This result was proven independently by R.N. Karasev [25] using stronger

topological methods. We prove this theorem using the test map scheme and

Dold’s generalisation of the Borsuk-Ulam theorem, presented in section 1.5.

In order to parametrise the convex partitions of IRd, power diagrams are used

(defined in the next section). However, a simple approach of this kind gives

a base space which lacks the necessary connectedness to use Dold’s theorem.

This is because the construction of the power diagrams forces the sites to be

different points in IRd. In order to fix this problem, we use power diagrams to

parametrise the set of convex partitions of IRd into at most k parts, instead

of only the convex partitions with exactly k parts. This is done in section

2.3, when we allow the points in the configuration space to coincide.
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2.2 Power diagrams

Power diagrams are a family of partitions of IRd into pairwise interior-disjoint

convex sets which admit a nice parametrisation. They generalise Voronoi

diagrams, and we will use them in the construction of the configuration space

for the test map scheme to prove Theorem 2.1.2.

Given k different points x1, x2, . . . , xk in IRd (which we refer to as sites),

the Voronoi diagram of S = (x1, x2, . . . , xk) is a partition of IRd into k convex

sets C1, C2, . . . , Ck defined by

Ci = {x ∈ IRd : d(x, xi) ≤ d(x, xj) for all 1 ≤ j ≤ k}

That is, the points of Ci are those that are closer to xi than to any other

site.

Figure 2.1: Voronoi diagram of a set of 15 points in IR2
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This definition can be extended if we allow the sections Ci to grow or

shrink according to some functions. This is parametrised by a weight vector

w = (w1, w2, . . . , wk) ∈ IRk. Using these numbers, we can define the power

functions hi(x) = d(x, xi)
2 − wi for all i. Then, the power diagram C(S, w)

is a partition of IRd into k sets C1, C2, . . . , Ck defined by

Ci = {x ∈ IRd : hi(x) ≤ hj(x) for all 1 ≤ j ≤ k}.

Note that if w = (0, 0, . . . , 0), then C(S, w) is the Voronoi diagram of S.

It may happen that some Ci are empty. Each Ci is the intersection of the

half-spaces

Hi,j = {x ∈ IRd : hi(x) ≤ hj(x)} = {x ∈ IRd : d(x, xi)
2−d(x, xj)

2 ≤ wi−wj}.

This implies that each Ci is convex. Moreover, the hyperplane Hi,j is orthog-

onal to the line xi − xj and its position depends entirely on wi − wj. Thus,

if v0 = (1, 1, . . . , 1) ∈ IRd, then C(S, w) = C(S, w + αv0) for all α ∈ IR.

Power diagrams are simple enough to be determined by a set of different

sites and a weight vector, but rich enough to split measures into sets of

pre-described sizes. Namely,

Theorem 2.2.1 (Aronov, Aurenhammer and Hoffman, 1998 [3]). Let µ be an

AAH measure in IRd, S a set of k different sites and c = (c1, c2, . . . , ck) ∈ IRk

such that ci ≥ 0 for all i and
∑

i ci = µ(IRd). Then there is a weight vector

w ∈ IRk such that for the power diagram C(S, w) we have that µ(Ci) = ci for

all i.

In this theorem, the conditions we need on the measure µ are that it is

absolutely continuous with respect to the Lebesgue measure in IRd and there

is a bounded convex set K such that µ vanishes outside of K and has positive

value on every open set in K. In the original paper, the conditions actually

were that K was a hypercube, but the proof follows the same way in any

convex set.
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A vector c as above is called a capacity vector. Note that since translations

of w by scalar multiplications of v0 do not change the partition, we may

suppose that the dot product w · c is 0. With this type of conditions, the

theorem above can be improved.

Proposition 2.2.2 (Aronov and Hubard, 2010 [2]). The weight vector found

in 2.2.1 is unique up to translations of scalar multiplications of v0. Moreover,

if a condition such as c · w = 0 has been imposed, then w = w(S) is a

continuous function of S.

The non-vanishing condition of the measure is essential for the uniqueness.

This proposition is what makes the functions used in section 2.1 to be well

defined and continuous.

Given a measure µ in IRd, a capacity vector c = (c1, c2, . . . , ck) and a

power diagram C(S, w) where the dimension of w and c coincide, we say that

the parts of C(S, w) agree with c if and only if µ(Ci) = ci for all 1 ≤ i ≤ k.

2.3 Configuration space for merging power

diagrams

We are interested in analysing the behaviour of power diagrams if we allow

the sites to coincide. Namely, consider the problem of having a measure in

IRd and a capacity vector c = (c1, c2, . . . , ck). If we are given k different sites,

we know by Theorem 2.2.1 that we can choose weights to partition µ with

parts of sizes according to c. Namely, we can think as the sites representing

the sections of a partition, and the weight vector simply represents how to

go from one to the other. However, if some sites coincide, then even the

definition of power diagrams gives nothing. In this case, we will consider this

repeated point to represent a large section with capacity equal to the sum

of the capacities associated to it. The purpose of this section is to define
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properly these partitions and to show some of their properties that will allow

us to prove Theorem 2.1.2.

The following lemma is necessary to show that the functions used in the

main proof are continuous. Let µ be an AAH probability measure in IRd and

let c = (c1, c2, . . . , ck) be a capacity vector with positive entries. Given an

ordered set S of k different sites in IRd, denote by w(S) = (w1, w2, . . . , wk) the

weight vector such that the parts of the partition C(S, w(S)) agree with the

capacity vector and w(S) · c = 0. Using this notation we have the following

Lemma 2.3.1. Let S be an ordered set of k points in IRd that move contin-

uously during the time interval [0, 1]. Suppose that no pair of points of S co-

incide during the time interval [0, 1); and that there are two points x1, x2 ∈ S

such that x1 = x2 at time 1. Then there is a real number w′ such that w1

and w2 tend to w as the time t tends to 1.

Another way to state this is that if two points have the same limit, their

weights also have the same limit. We will also show that this limit is related

to another power diagram. Note that even though we are supposing that w1

and w2 coincide at time 1, this does not exclude the possibility that other

pairs of points of S have the same limit as the time t approaches 1.

Proof. Suppose that w1 and w2 have limits w′
1 and w

′
2 as t tends to 1, respec-

tively. We first show that these limits coincide. If this is not true, suppose

that w′
1 > w′

2. As they are the limits of w1 and w2, we may suppose that

w1 > w2 without loss of generality. Denote by y the point where the hy-

perplane H1,2 = {x : d(x, x1)
2 − d(x, x2)

2 = w1 − w2} intersects the line

through x1 and x2; and define u := d(y, x2), v := d(x1, x2). Since w1 > w2,

d(y, x1) = u+ v. Thus w1 − w2 = (u+ v)2 − u2 = v(2u+ v). Since w1 − w2

has a positive limit and v −→ 0, we have that u −→ ∞. If p is the limit

of x1 and x2, this means that the distance d(p, C2) tends to infinity, and so

does the distance d(0, C2). However, this is impossible since µ(C2) = c2 > 0

for all t ∈ [0, 1).
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Now it only remains to show that these limits exist. Using the same

argument and w · c = 0, we can deduce that the weight vector is bounded.

Thus, we only need to show that if any sequence of values of w converges as

the time tends to 1, it does so to the same limit. Let w(1), w(2), w(3), . . . be

such a sequence, with limit w′. We replace S, c, w′ by S̃, c̃, w̃ in the following

way

• S̃ is obtained by replacing all the points in S converging to q by a single

copy of q, for all q ∈ IRd;

• c̃ is obtained by replacing the capacities of all the points in S converging

to q by a single copy of their sum, for all q ∈ IRd;

• w̃ is obtained by replacing all the weights in w′ corresponding to to

points in S converging to q by a single copy of that number (we already

showed all these weights must have the same limit), for all q ∈ IRd.

It is clear that the parts of the power diagram C(S̃, w̃) have measures that

agree with c̃ and w̃ · c̃ = 0. Thus there is only one possible value for w̃, which

implies that there is only one possible value for w′, as we wanted.

The proof of this lemma not only shows that weights have the same limit if

the corresponding sites do, but that if we think that when sites come together

their sections merge, then the weights vectors behave as expected. To state

this formally, we need to define a function f that represents the weight vectors

even when sites coincide. We will say that this function represents a merging

power diagram. Consider Y ≡ IRkd to be the set of vectors (y1, y2, . . . , yk)

such that yi ∈ IRd and µ an AAH measure in IRd.

Given a capacity vector (c1, c2, . . . , ck) such that all the ci are positive,

let us define a function f : Y −→ IRk in the following way. For y ∈ Y , let

S(y) = (s1, s2, . . . , st) be the t-tuple of different points in y. For 1 ≤ i ≤ r,

define

Ai = {j : yj = si}
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to index the elements of y that are equal to each element in S(y). Define

c(y) = (γ1, γ2, . . . , γt), where

γi =
∑

j∈Ai

cj.

Denote by Sf(y) = (w1, w2, . . . , wt) the weight vector such that the measure

of the parts of C(S(y), Sf(y)) agrees with c(y) and Sf(y) · c(y) = 0. Finally

define f(y) = (α1, α2, . . . , αk) where αj = wi if and only if j ∈ Ai.

There is another way to describe this function. First, note that

S :
(

IRd
)k

→
(

IRd
)t
is induced by some function τ : {1, 2, . . . , n} → {1, 2, . . . , t}.

Namely, if (y1, y2, . . . , yk) 7→ (s1, s2, . . . , st), we have that yi = sj if and only

if τ(i) = j. Then, f(y) is constructed so that it follows this same relation

with Sf(y). This is perhaps easier to represent with a commutative diagram,

as the one below.

y ∈

(

IRd

)k

S(y) ∈
(

IRd

)t

f(y) ∈ IRk

Sf(y) ∈ IRt

power diagram

merging power diagram

S S∗

Figure 2.2: S and S∗ are induced in the same way by τ , and f is constructed
so that the diagram commutes. Note as well that t depends on y.

From the proof of Lemma 2.3.1, we obtain the following corollary,

Corollary 2.3.2. Let µ be a AAH measure in IRd, and c be a capacity vector.

If f is the function representing the merging power diagram for µ and c, then

f is continuous and, for all y ∈ Y , f(y) · c = 0. Note that the dimension of

f(y) is, by construction, the same as that of c.



CHAPTER 2. HAM SANDWICH TYPE PARTITIONS 31

2.4 Proof of Theorem 2.1.2

Using Corollary 2.3.2, we are now ready to prove the following lemma, which

is the core of the proof of Theorem 2.1.2.

Lemma 2.4.1 (Lemma 1 in [39]). Let p, d be positive integers such that p

is prime. Let µ1, µ2, . . . , µd be AAH measures in IRd such that µi(IR
d) = p

for all i. Then, there is an integer 2 ≤ r ≤ p and a partition of IRd in r

convex parts C1, C2, . . . , Cr such that µi(Cj) = µi′(Cj) for all i, i′, j and all

these measures are positive integers.

Proof. Let X be the set of all ordered p-tuples of vectors in IRd such that

not all the vectors are equal. Let c0 ∈ IRp be the vector with all entries equal

to 1. For 1 ≤ i ≤ d, let gi be the function associated with µi and c0 as in

Corollary 2.3.2 (with k = p) and fi be the restriction of gi to X . Note that

since f(x) · c0 = 0, we have that fi : X −→ IRp−1 →֒ IRp, where we are

considering

IRp−1 = {(z1, z2, . . . , zp) : z1 + z2 + . . .+ zp = 0}.

By Corollary 2.3.2, all the functions fi are continuous. Moreover, if we con-

sider the actions of Zp in IRp−1 andX where σ(z1, z2, . . . , zp) = (z2, z3, . . . , zp, z1)

and σ(x1, x2, . . . , xp) = (x2, x3, . . . , xp, x1) for a generator σ ∈ Zp, we have

that each fi is equivariant.

Consider the function f defined as

f : X −→
(

IRp−1
)d−1

f = (f1 − f2, f1 − f3, . . . , f1 − fd).

We show that there is an x ∈ X such that f(x) = 0. If there is no such
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x, we can reduce the dimension of the target space by defining

g : X −→ SS(p−1)(d−1)−1

x 7→
f(x)

||f(x)||
.

Note that both f and g are equivariant. Moreover, since p is prime, the

actions of Zp are free on X and SS(p−1)(d−1)−1. However, X is IRpd with a hole

of dimension d, so its connectedness is reduced by d+ 1. Thus, it is at least

[(pd− 1)− (d+ 1)]-connected. Since (pd− 1)− (d+ 1) ≥ (p− 1)(d− 1)− 1,

this contradicts Dold’s theorem.

Thus, there must be an x such that f(x) = 0. In this case the weight

vector associated to x by the definition of each fi must be the same, so the

partition induced by it is the one we wanted.

Lemma 2.4.2. Given positive integers a and b, if the conclusion for Theorem

2.1.2 holds for k = a and k = b, then it does so for k = ab.

Proof. Suppose we have d AAH measure µ1, µ2, . . . , µd in IRd such that

µi(IR
d) = ab for all 1 ≤ i ≤ d. Since Theorem 2.1.2 is true for k = b we can

find a partition of IRd into pairwise interior-disjoint convex sets C1, C2, . . . , Cb

such that µi(Cj) = a for all 1 ≤ i ≤ d, 1 ≤ j ≤ b. For 1 ≤ j ≤ b, µi|Cj
is an

AAH measure in IRd. Thus we can use the fact that Theorem 2.1.2 holds for

k = a to obtain a partition of IRd into pairwise interior-disjoint convex sets

Cj,1, Cj,2, . . . , Cj,a such that µi|Cj
(Cj,h) = 1 for 1 ≤ h ≤ a. Consider the sets

Dj,h = Cj ∩ Cj,h. These sets satisfy that µi(Dj,h) = µi|Cj
(Cj,h) = 1 and they

form a partition of IRd into ab pairwise interior-disjoint convex sets. Thus

Theorem 2.1.2 holds for k = ab.

Using these two lemmas we can now prove Theorem 2.1.2.

Proof of Theorem 2.1.2. We use strong induction on k. If k = 1, then C1 =

IRd is the partition we want. Suppose now that k > 1 and the statement

holds for all 1 ≤ k′ < k. There are two cases
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• If k is not prime, then k = ab for some positive integers a, b such that

k > a and k > b. Applying Lemma 2.4.2 we are done.

• If k is prime, using Lemma 2.4.1 there is an integer 2 ≤ r ≤ k and a

partition of IRd into pairwise interior-disjoint convex sets C1, C2, . . . , Cr

such that µi(Cj) depends only on j and is a positive integer for all j. We

can apply the same argument of the proof of Lemma 2.4.2 to subdivide

each Cj and obtain the desired partition.

Using standard approximation arguments, we can make one of the mea-

sures a Dirac measure centred at the origin. This gives the following corollary:

Corollary 2.4.3 (Theorem 2.1.2 for spheres, [39]). Given a positive integer k

and µ1, µ2, . . . , µd AAH measures in SSd such that µ(SSd) = k for all 1 ≤ i ≤ d,

there is a convex cone partition C1, C2, . . . , Ck of IRd+1 with apices at the

origin such that µj(Ci) = 1 for all i, j

The equivalence of Theorem 2.1.2 and its version for spheres was proven

by Imre Bárány.

One should note that the last inequality of Lemma 2.4.1 translates to

p ≥ 2, so there is some degree of freedom in the proof. A similar thing

happens in Sakai’s proof of the version in IR2, where he uses similar partitions

into either 2 or 3 pieces. When the partitions have to be in 3 pieces, he can

impose further conditions on the shape of the parts. However, it is unclear

if these additional degrees of freedom can be used to obtain a meaningful

improvement of the main result.

2.5 An application to sets of fixed measure

It should be noted that the number of measures in the ham sandwich theorem

and Theorem 2.1.2 cannot be increased. However, if instead of asking for a
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partition of IRd where the sets have equal measure we look for one convex set

of equal pre-described size in each measure, positive results can be obtained.

This was shown by Arseniy Akopyan and Roman N. Karasev in the following

theorem

Theorem 2.5.1 (Akopyan and Karasev, 2012 [26]). Let x = 1
n
, where n is

a positive integer and µ1, µ2, . . . , µd+1 be d + 1 AAH probability measures in

IRd. Then there is a convex set K ⊂ IRd such that µi(K) = x for all i.

Here we present a proof of this result using Theorem 2.1.2. It should be

noted that Akopyan and Karasev also showed that if x is not of the form 1
n
,

then this result does not hold. The proof below is joint work with Edgardo

Roldán-Pensado.

Proof. Let f : IRd+1 −→ IR be a strictly convex function. We can lift IRd to

IRd+1 by mapping x 7→ (x, f(x)), denote by p this lifting. Note that given a

hyperplane H in IRd+1 and H+ one of its half-spaces, then p−1(H+) is convex

if H+ contains infinite rays in the direction (0, 0, . . . , 0,−1). Thus, if we have

a power diagram in IRd+1 with sites x1, x2, . . . , xk and parts C1, C2, . . . , Ck, if

xj is the site with the smallest (d+1)-th coordinate, then p−1(Cj) is convex.

Using p, we can also lift the measures µ1, µ2, . . . , µd+1 to IRd+1. We may

now apply Theorem 2.1.2 to obtain a partition of IRd into n sets C1, C2, . . . , Cn

of equal measure in each µi. Moreover, this partition comes from the iteration

of power diagrams. Since in each power diagram at least one section projects

back to IRd to a convex set, we know that there is a j0 such that Cj0 must

project back to a convex set. p−1(Cj0) is the set we were looking for.

The case with d measures is also interesting, as the condition x = 1
n
for

some positive integer n seems unnecessary. Namely, we have the following

problem by Jorge Urrutia and Ruy Fábila-Monroy.

Problem 2.5.2 (Fábila-Monroy, Urrutia [17]). Given d nice measures in

IRd, and a real number x ∈ (0, 1/2], show that there is a convex set K in IRd

such that µi(K) = x for all i.
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This is solved completely only for d = 2 by a result by Blagojević and

Dimitrijević Blagojević [10].



Chapter 3

Partitions avoiding hyperplanes

The contents of this chapter are part of a joint work with Edgardo Roldán-

Pensado, and can be found in [35]. Searching for a ham-sandwich partition

of a measure in IRd where no hyperplane intersects all the parts is an inter-

esting problem by itself. However, this problem has also a motivation from

computational geometry.

This is in the setting of geometric queries. In a geometric range query

problem, we are given a family C of n sets in IRd. Then, we are given a point

p ∈ IRd, and we want to know how many sets of C contain p. Moreover, if

we suppose that checking whether p ∈ C or p 6∈ C takes unit time for all

sets C ⊂ IRd, then we are interested in knowing how fast we can obtain the

answer.

Of course, in this setting we can check every set in C individually and

obtain an answer in time n. However, if the family C is fixed and a large

number of points p are going to be sampled, a faster way to obtain the answer

is desirable. If we analyse C, it may be possible to obtain a way to solve the

query using less than n operations. This is called pre-processing C. This is

only possible if C has a nice intersection structure.

Yao and Yao showed that such a solution could be found if C is a family

of half-spaces [46]. The number of operations needed is O(nα(d)), where

36
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α(d) = log2(2
d−1)

d
< 1. One should note that many geometric queries can

be reduced to this case, so this gave fast solutions to many problems in

computational geometry.

To solve this problem, Yao and Yao worked on the dual version, in which

C is a set of points, P is a half-space, and we want to know how many points

of C are contained in P . In order to answer this question efficiently, they used

iterations of partitions of C where no hyperplane intersected all sections. The

following theorem was the core of their construction.

Theorem 3.0.3 (Yao and Yao, 1985 [46]). Given a YY measure µ in IRd,

there is a partition of IRd into 2d pairwise interior-disjoint convex sets of

equal µ-measure such that every hyperplane in IRd avoids the interior of at

least one section.

In this section by a YY measure µ in IRd we mean a finite measure

absolutely continuous to the Lebesgue measure such that there is a closed

ball B around 0 with µ(B) = µ(IRd).

We are interested in extending this theorem. Namely, we are interested

in finding partitions where each hyperplane avoids the interior of more than

one section.

Let Nd(k) be the smallest positive integer such that for every YY measure

µ in IRd there is a partition of IRd into Nd(k) pairwise interior-disjoint convex

sets of equal µ-measure such that every hyperplane in IRd avoids the interior

of at least k sections. Theorem 3.0.3 can be restated as Nd(1) ≤ 2d.

In the next sections we will study the behaviour of Nd(k), showing the

following two main results.

Theorem 3.0.4. Nd(2) ≤ 3 · 2d−1

Theorem 3.0.5. Nd(1) ≥ 2(d−2)/2 for all d.

The question whether Nd(1) was polynomial was asked by Boris Bukh,

and the theorem above gives a negative answer. Even if the convex sets
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are allowed to overlap, as long as the sum of their measures is at most 1,

an exponential number of parts is needed. This is shown in Theorem 3.0.7

below.

Besides geometric queries, theorem of partitions avoiding hyperplanes can

be applied to the following problem by Imre Bárány.

Problem 3.0.6 (The (α, β) problem). Given a fixed positive integer d, de-

termine all pairs (α, β) ∈ IR2
+ such that for any finite set X of points in IRd

and any finite set Y of hyperplanes in IRd, there are subsets A ⊂ X, B ⊂ Y

such that

• |A| ≥ α|X|,

• |B| ≥ β|Y | and

• no hyperplane in B lies between any pair of points in A.

Even though Theorem 3.0.5 can be proved without making reference to

problem 3.0.6, the bounds obtained for this problem imply the lower bound

for the Yao-Yao theorem. Moreover, working with the (α, β) problem makes

the arguments needed more natural.

We can extend the notion of Nd(k) and avoid the need for the convex sets

to form a partition of IRd. Namely, consider Md(k, α) the smallest positive

integer such that for every YY measure in IRd there is a family A ofMd(k, α)

convex sets, each of measure at least α, such that every hyperplane avoids

the interior of at least k elements of A. With this in mind, we immediately

have

Nd(k) ≥ Md

(

k,
1

Nd(k)

)

.

Lower bounds forMd(k, α) can be obtained in terms of the areas of spher-

ical caps. For this, consider SSd with its usual probability measure. Denote

by hd(t) the measure of a spherical cap in SSd with central angle t. Then,

Theorem 3.0.7. Let µ be a YY measure in IRd, α a positive real number

and A a family of convex sets in IRd such that the following properties hold
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• For all A ∈ A, we have µ(A) ≥ α,

• Every hyperplane in IRd avoids the interior of at least one set in A

• The sum of the measure of all sets in A is at most 1.

Then α = Ω(2−d/2). More precisely,

1

α
≥

1

2

[

hd

(π

4

)]−1

≥
1

2
· 2d/2.

This implies Theorem 3.0.5, setting α = 1
Nd(1)

. The conditions of the

theorem above can be restated as 1 ≥ α ·Md(1, α).

3.1 Behaviour of Nd(k)

The core of this section is the following theorem.

Theorem 3.1.1 ([46]). Given a positive integer d, the following holds

lim
k→∞

Nd(k)

k
= 1

In order to prove this, we need the following two lemmas

Lemma 3.1.2. Nd(a+ b) ≤ Nd(a) +Nd(b)

Proof. Given a YY measure µ, consider a hyperplane H that divides it in

proportions Nd(a) : Nd(b). We can find a partition of one side into Nd(a)

convex sets of equal µ-measure such that every hyperplane avoids at least

a of them. We can find a partition of the other side into Nd(b) convex sets

of equal µ-measure such that every hyperplane avoids at least b of them.

This gives a partition of IRd into Nd(a) +Nd(b) convex sets with the desired

properties.

Lemma 3.1.3. Nd(a)Nd(b) ≥ Nd(aNd(b) + bNd(a)− ab)
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Proof. Given µ a YY measure in IRd, partition IRd into Nd(a) convex sets

of equal µ-measure such that every hyperplane avoids at least a of them.

Then, partition each section into Nd(b) convex sets of equal µ-measure such

that every hyperplane avoids at least b of them. This gives a partition of

IRd into Nd(a)Nd(b) convex sets of equal µ-measure such that every hyper-

plane intersects at most (Nd(a)− a)(Nd(b)− b) of them, showing the desired

inequality.

Now we are ready to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Note that Nd(k) ≥ k+ d, as through every d points

in IRd there is a hyperplane. Thus, lim infk→∞
Nd(k)

k
≥ 1.

If we start iterating Yao-Yao partitions in Lemma 3.1.3, we obtain that,

for each n,

2dn ≥ Nd(2
dn − (2d − 1)n).

Using that limn→∞ (2d − 1)n/(2d)n = 0, we obtain that the sequence kn =

2dn − (2d − 1)n satisfies lim supn→∞
Nd(kn)

kn
≤ 1. Using Fekete’s lemma for

subadditive sequences, we obtain the desired result.

In lower dimensions, the behaviour of Nd(k) and Md(k, α) is easier to

describe. For example, in the plane we have the following result

Lemma 3.1.4. Let p ≤ q be non-negative integers, then M2(q − p, p
2q
) ≤ 2q.

Proof. We will construct a family of 2q convex sets of IR2 such that the

boundaries are contained in the union of q lines ℓ1, ℓ2, . . . , ℓq and every point

of IRd is covered p times. If this is achieved, note that whenever a given

line intersects an ℓi, it enters a new region. Thus, the line starts in points

contained in p regions, it cannot intersect more than p+q sets in the partition,

giving the desired result. First, we fix a parameter t ≥ 0, and we construct

the lines ℓi inductively. In the construction they will be oriented halving

lines. Thus, each ℓi will have a right side, which we denote ℓ+i , and a left

side ℓ−i and µ(ℓ+i ) = µ(ℓ−i ). We choose ℓ1 be an oriented halving line (i.e. a



CHAPTER 3. PARTITIONS AVOIDING HYPERPLANES 41

line that splits IR2 into two parts of equal µ-measure). Once that ℓi has been

constructed, let ℓi+1 be the oriented halving line such that the regions

Ai =ℓ
+
i+1 ∩ ℓ

−
i

Aq+i =ℓ
−
i+1 ∩ ℓ

+
i

have µ-measure p
2q

+ t, for i = 1, . . . , q (see Fig. 3.1(a)). If t = 0 then the

sum of the measures of these regions up to i = q is p, but the regions may

overlap and not cover almost every point of IR2 at least p times. Let t be

the smallest real number such that almost every point of IR2 is covered at

least p times. For this choice of t, the non-oriented lines determined by ℓ1

and ℓq+1 are equal. Thus, we have a construction induced by q lines as we

wanted.

ℓ1
ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓi+1 Ai

Aq+i

ℓi

(a) (b)

Figure 3.1: Regions for Lemma 3.1.4 and Lemma 3.1.5.

In order to obtain bounds for N2(k) with this method, one has to take

additional considerations in the construction. This is done in the following

way

Lemma 3.1.5. N2(k) ≤ 2k + 2.

Proof. This is similar to the proof above with p = 1 and q = k + 1, but this
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time we define the lines ℓi such that the regions

Ai =ℓ
+
i+1 ∩ ℓ

−
i \
⋃

j<i

Aj

Aq+i =ℓ
−
i+1 ∩ ℓ

+
i \
⋃

j<i

Aq+j

have µ-measure 1
2k+2

. To see that it is possible to find such ℓi, consider µi

the measure µ restricted to IR2\
⋃

j<i (Aj ∪Aq+j). Note that ℓi−1 is a halving

line of µi, so we need li to be a halving line of µi such that µi(Ai) =
1

2k+2
.

This implies that µi(Aq+i) =
1

2k+2
. Since µ and µi coincide in Ai and Aq+i,

we obtain the desired line.

We end up with something like Fig. 3.1(b). This is a partition as, once

again, ℓ1 and ℓq+1 are equal as non-oriented lines. Since IR2\
⋃

j<iAj consists

of two convex components of equal µ-measure for all i, every Ai is convex.

The same argument as above shows that every line avoids at least k regions.

3.2 The (α, β) problem

In some sense, the (α, β) problem deals with how well behaved are the sets of

points in IRd with respect to hyperplanes. The way we stated this problem in

the previous section, it seems not to be self-dual. That is, there is no reason

for the pair (β, α) to work if (α, β) does. This is why it is convenient to use

the following reformulation of it

Problem 3.0.6 ((α, β) problem, second version). Find all pairs (α, β) ∈ IR2
+

such that for any two YY probability measures µ1, µ2 in SSd, there are subsets

A,B ⊂ SSd such that µ1(A) ≥ α, µ2(B) ≥ β and either

• a · b ≥ 0 for all a ∈ A, b ∈ B or

• a · b ≤ 0 for all a ∈ A, b ∈ B.
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Proof of equivalence between the two versions. Consider C′
d the set of valid

pairs for the first version of the (α, β) problem and Cd the set of points for the

second version. We show that (α, β) ∈ C′
d if and only if (α

2
, β
2
) ∈ Cd. Consider

the embedding IRd →֒ IRd+1 that maps x 7→ (x, 1). Then, projecting from

the origin, we can assign to every a ∈ IRd a pair of points in SSd

a 7→

{

(a, 1)

||(a, 1)||
,−

(a, 1)

||(a, 1)||

}

.

To every hyperplane H+ in IRd defined by H = {x ∈ IRd : x · x0 = λ} we can

assign two antipodal points in SSd in the following way

H 7→

{

(x0,−λ)

||(x0,−λ)||
,

−(x0,−λ)

||(x0,−λ)||

}

.

Note that (x0,−λ) is never the 0 vector. With his in mind, given a set X of

points in IRd and a set Y of hyperplanes in IRd, we can assign to X the finite

measure µ1 in SSd induced by the pairs of points assigned to X and to Y the

finite measure induced by the pairs of points assigned to the hyperplanes in

Y . We may normalise both measures so that µ1(SS
d) = µ2(SS

d) = 1. Note that

good sets with these measures for the second problem correspond to good sets

for the first problem, but each a factor of 2 involved. Note that every pair of

YY centrally symmetric measures µ1, µ2 can be approximated by finite ones.

Also, the pair (α, β) works in the second version of the problem for µ1 and

µ2 if and only if it works for the centrally symmetric measures µ′
1, µ

′
2, where

µ′
i(X) =

µi(X) + µi(−X)

2
.

With this association we obtain that if (α, β) ∈ C′
d, then (α

2
, β
2
) ∈ Cd. The

other inclusion can be proved the same way, since finite measures can also

be approximated by YY measures.

From now on we continue to use Cd to denote the set of pairs (α, β) that
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work in the second version of problem 3.0.6. Consider as well Md the usual

probability measure in SSd and hd(t) the M
d-measure of a spherical cap in SSd

with central angle t. That is, the set of points at spherical distance at most

t from a certain fixed point p ∈ SSd (the center of the cap). For example, we

consider a half-sphere as a spherical cap with central angle π
2
, and not π.

With this in mind, we can prove the following result.

Proposition 3.2.1. The set Cd lies below or on the curve

{(

hd(t), hd

(π

2
− t
))

: 0 ≤ t ≤
π

2

}

.

In order to prove this, for a set A ⊂ SSd consider the sets A⊥ and Aǫ

defined as

A⊥ = {x ∈ SSd : x · a = 0 for some a ∈ A}

Aǫ = {x ∈ SSd : arccos(x · a) < ǫ for some a ∈ A}

That is, Aǫ is the set of points that are at distance at most ǫ in the SSd

metric. Using this notation, we have the following result

Theorem 3.2.2 (T. Figiel, J. Lindenstrauss, and V. Milman [18]). Given

A ⊂ SSd such that Md(A) = hd(t) for some t, then for all ǫ > 0, we have that

Md(Aǫ) ≥ hd(t+ ǫ)

Using this we can prove 3.2.1.

Proof of Proposition 3.2.1. Consider µ1 and µ2 to be Md. If ǫ = π
2
and A

is connected, then SSd\Aǫ is one of the two connected components of SSd\A⊥.

This implies that if A,B ⊂ SSd are such that a · b ≥ 0 for all a ∈ A, b ∈ B and

Md(A) = hd(t), then

Md(B) ≤ 1−Md(Aǫ) = 1− hd

(π

2
+ t
)

= hd

(π

2
− t
)

.
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Since Md is symmetric, the case a · b ≤ 0 is analogous.

The Yao Yao partition type problems are closely related to the (α, β)

problem, as the first version of the problem suggests. This is made clear

using the following lemma

Lemma 3.2.3. Let 0 ≤ ρ ≤ 1. Suppose that for any YY measure µ in SSd

we can find a family F of subsets of SSd and a probability measure µF on F

such that the following properties hold

• µ(A) ≥ α for all A ∈ F , and

• for every b ∈ SSd, the set Fb = {A ∈ F : A∩{b}⊥ 6= ∅} is µF -measurable

and µF (Fb) ≤ ρ.

Then (α, 1−ρ
2
) ∈ Cd.

Proof. Let µ1 and µ2 be YY measures. Given α and ρ, construct F as above

for µ = µ1. Then, by Fubini’s theorem,

∫

F

µ2(A
⊥)dµF =

∫

F

∫

SSd
χ(A⊥)dµ2dµF

=

∫

SSd

∫

F

χ(Fb)dµFdµ2

=

∫

SSd
µF (Fb)dµ2 ≤ ρ

Thus, there must be at least one A0 ∈ F such that µ2(A
⊥
0 ) ≤ ρ. Thus

one of there must be a B0 such that the sign of a · b is constant for all a ∈ A0,

b ∈ B0 and µ(B0) ≥
1−ρ
2
, as we wanted.

Using this, we can prove the following theorem

Theorem 3.2.4. If α > 0, then

(

α

2
,

k

2Md(k, α)

)

∈ Cd.
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Proof. Let µ be a YY measure in SSd. Consider IRd embedded in IRd+1 as

a hyperplane not containing the origin. Then, using a radial projection, we

obtain a YY measure µ′ in IRd, so we may find Md(k, α) convex sets of µ′-

measure at least α such that every hyperplane in IRd avoids at least k of them.

If we pull them back to SSd via the radial projection, we obtain a family F of

2Md(k, α) sets of measure at least α
2
each. Also, note that every great circle

intersects at most 2Md(k, α) − 2k of them. The great circle that is parallel

to the hyperplane representing IRd causes no problems. By choosing µF to

be the uniform probability measure on them and applying Lemma 3.2.3, we

are done.

If we set α = 1
Nd(k)

, we obtain the following corollary

Corollary 3.2.5.
(

1

2Nd(k)
,

k

2Nd(k)

)

∈ Cd.

We are now ready to prove Theorem 3.0.7

Proof of Theorem 3.0.7. Suppose that 1 ≥ α ·Md(1, α). Then, by Theorem

3.2.4 we have that
(

α
2
, α
2

)

∈ Cd. However, by proposition 3.2.1 we have that

this must be at most
(

hd
(

π
4

)

, hd
(

π
4

))

. Showing that hd
(

π
4

)

≤ 2−d/2 is a

standard calculation, see the proof of Lemma 2.2 in [4] for details.

Applying the results obtained for Nd(k), we can show the following.

Corollary 3.2.6. For any two non-negative integers k1 and k2, not both

equal to 0, we have

1

2

(

(

1

2d

)k1 ( 1

3 · 2d−1

)k2

, 1−

(

1−
1

2d

)k1 (

1−
1

3 · 2d−2

)k2
)

∈ Cd.

This is done by iterating Lemma 3.1.3 to the results on Nd(1) and Nd(2)

and applying Corollary 3.2.5. In particular, we obtain that
(

1
2d+1 ,

1
2d+1

)

∈ Cd

and
(

1
3·2d

, 1
3·2d−1

)

∈ Cd. The fact that
(

1
2d+1 ,

1
2d+1

)

∈ Cd was obtained earlier
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in [1] using a similar method. In Fig. 3.2 there are plots of these points

together with the bound obtained in Proposition 3.2.1 in dimensions 2 and

3.

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

Figure 3.2: Bounds for C2 and C3.

Corollary 3.2.7. There are pairs (α, β) ∈ Cd arbitrarily close to (0, 1
2
).

The drawback of this corollary is that the sequences of pairs we can ob-

tain that converge to (0, 1
2
) come from using iterations of Yao-Yao’s theorem

and/or Theorem 3.0.4. These sequences are extremely close to the x-axis if

d is large. We can obtain better sequences of pairs that converge to (0, 1
2
) if

we impose additional conditions to one of the measures.

Let Cd(∆) be the set of pairs (α, β) such that, for any two YY measures

µ1, µ2 in SSd such that µ1 is the integral of a Lipschitz function f with Lip(f) ≤

∆, we can find two sets A,B ⊂ SSd with µ1(A) ≥ α, µ2(B) ≥ β such that for

all a ∈ A, b ∈ B, the sign of a · b is the same.

Theorem 3.2.8. For all 0 < λ ≤ 1, and 0 < r < 1−λ
∆

,

(

λhd(r), hd−1

[

π

2
−

(

sin(r)

sin(1−λ
∆

− r)

)])
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Note that if r is close to 0, then these pairs are similar to
(

λhd(r), hd−1

(

π
2
− cr

))

for a fixed constant c. This is similar to proposition 3.2.1, but changing the

dimension of the second term.

The idea of the proof is to find a smaller SSd−1 where f is large, and then

construct sets that can be used in Lemma 3.2.3. Since f is large, bounding

their µ1-measure is easy, and the only problem is choosing the family of sets

so that every hyperplane avoids many of them. If instead of the construction

used in the proof we find sets that are close to a hypercube, then we obtain

pairs that behave like ( c1
md−1 ,

1
2
− c2d

m
). These are worse than the ones presented

in the theorem above, but are easier to understand.

Proof of Theorem 3.2.8. Since µ1(SS
d) = 1, there must be a point x0 ∈ SSd

such that f(x0) ≥ 1. Consider R = min(1−λ
∆
, π
2
). Since Lip(f) ≤ ∆, it follow

that f(x) ≥ λ for all x ∈ SSd at distance at most R from x0. Consider r ≤
R
4
.

Given two points x, y ∈ SSd, denote by distSSd(x, y) their distance in the sphere.

Namely, the angle they sustain at the origin. For each x ∈ SSd, define

S(x, r) = {y ∈ SSd : distSSd(x, y) ≤ r}.

We construct the family F as follows (see figure 3.3 below)

F = {S(x, r) : dist(x, x0) = R− r}.

We can note that

• Each set in F has measure at least λhd(r)

• S(x, r) is the intersection of SSd with a ball with centre x and radius

sin(r).

• The locus of the centers of the balls in F is S(x0, R−r); the intersection

of SSd with a ball with centre x0 and radius sin(R− r).
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R− r
x0

r

Figure 3.3: Construction of sets for the proof of Theorem 3.2.8.

Consider µF the usual probability measure on S(x0, R− r). Then, every

hyperplane intersects a subset of F of size at most

1− 2hd−1

(

π

2
− 2 arcsin

(

sin(r)

sin(R− r)

))

.

Then, the same argument for Lemma 3.2.3 finishes the proof.

3.3 The Yao-Yao partition theorem

The next 3 sections deal with the proof of Theorem 3.0.4, via the test map

scheme. We first give a detailed sketch of the original proof by Yao and Yao

of their partition theorem, since it will be important in our constructions.

Then, in section 3.4 we prove the topological result that will be used in the

main proof. Finally, in section 3.5, we give the geometric construction that

reduces the problem to topology.

Thus, we now show Yao and Yao’s proof of the following theorem.

Theorem 3.0.3 (Yao and Yao, 1985 [46]). Given a YY measure µ in IRd,

there is a partition of IRd into 2d pairwise interior-disjoint convex sets of equal
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µ-measure such that no hyperplane intersects the interior of all of them.

Sketch of proof of Theorem 3.0.3. Consider O(d) the space of all orthonor-

mal (ordered) bases u1, u2, . . . , ud of IRd. Note that if we consider the ui as

rows of a d×d matrix, O(d) is identified with the set of matrices U such that

UTU = I. Consider SO(d) ⊂ O(d) those bases that correspond to matrices

of determinant 1.

Given a basis u1, u2, . . . , ud an orthonormal basis of IRd and a hyperplane

H orthogonal to u1, we can define its two half-spaces as

H+ = {x+ tu1 : x ∈ H, t > 0}

H− = {x+ tu1 : x ∈ H, t < 0}

Given a normal vector v not orthogonal to u1, it induces a projection

pv : IR
d → H

x+ tv 7→ x for all x ∈ H, t ∈ IR

Using pv, we can project the measure µ restricted to H+ and H− to H

to obtain two YY measures, µ+
v and µ−

v respectively, in H .

We define a centre c ∈ IRd which depends on µ and u1, u2, . . . , ud induc-

tively on d in the following way

• If d = 1, then c is the midpoint of the closed interval of points that

divides IR1 into two part of equal µ-measure

• If d > 1, consider H the hyperplane orthogonal to u1 that divides IRd

into two parts of equal µ-measure (if there is more than one option,

choose the central hyperplane of this set). If there is a normal vector

v (not orthogonal to u1) such that µ+
v and µ−

v have the same center c

using the basis (u2, u3, . . . , ud) in H , we define c as the center for µ and

u1, u2, . . . , ud.
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Yao and Yao showed that in the second step, this vector v always existed.

For this they used that if c+ and c− are the centres of µ+
v , µ

−
v respectively,

then the function v 7→ c+ − c− can be extended continuously to SSd−1 and

is antipodal. Thus, using the Borsuk-Ulam theorem, they could prove the

existence of v. Moreover, using the centre c, one can define inductively on

the dimension the partition we seek in the following way

• For d = 1, the partition is given by c.

• For d > 1, consider H , v and c as in the construction of the centre c.

Then, we have two partitions, P+ and P−, of H into 2d−1 parts each

induced by µ+
v and µ−

v , respectively. We pull P+ back to H+ using pv

and we pull P− back to H− using pv. This gives the partition we seek.

Note that, by induction, all the parts are convex cones with c as apex. It

is then showed that if we consider l the line with direction v through c, if

a hyperplane Y intersect l in H+ it avoids the interior of at least one of

the sections of the partition in H− and if it intersects l in H− it avoids the

interior of at least one of the sections in H+, proving the theorem.

One should note that c, v are unique (v up to a multiplication of −1,

but we can fix v · u1 > 0) and vary continuously as the basis u1, u2, . . . , ud

does.

3.4 Borsuk-Ulam type theorems via homo-

topy

In order to prove Borsuk-Ulam type theorems, one usually has to use tools

from topology. The information regarding the existence of equivariant con-

tinuous maps between two spaces is completely determined by the existence

of sections of some fibre bundles, which in turn can be determined by their

characteristic classes. Which characteristic classes actually carry this infor-



CHAPTER 3. PARTITIONS AVOIDING HYPERPLANES 52

mation and how to compute them are part of what is known as obstruction

theory.

However, some results of this kind can be proved without relying on the

higher-end topological techniques. For example, Dold’s generalisation of the

Borsuk-Ulam theorem (presented in section 1.5) can be shown using only the

topological degree of a map.

The method we use to prove the topological result of this section is based

on a geometric proof of the Borsuk-Ulam theorem by Bárány, which is very

intuitive. This proof is completely contained in section 2.2 of [29]. The

method we follow is also used and expanded in [32].

We first explain the proof method and then how the spaces and group

actions we are using fit this scheme.

Consider two spaces X and Y of dimension n, each with an action of a

finite group G. Moreover, suppose the action of G in X is free. Let y0 be a

special point of Y , which is fixed by the action of G in Y . We want to show

that for every equivariant map f : X → Y there is a point x0 ∈ X such that

f(x0) = y0.

We will prove this by contradiction, supposing that f sends no points of

X to y0. The key point of the proof is to find a special function f0 such

that there is an odd number of G-orbits of points of X sent to y0 by f0. Let

I be the interval [0, 1] and suppose that there is an equivariant homotopy

F : X × I → Y between f0 and f .

Consider the preimage F−1(y0). If F is generic enough, the co-dimension

of this space in X × I should be the same as the co-dimension of {y0} in Y .

That is, F−1(y0) should be a set of paths and cycles. Note that the paths

need to have their endpoints at the extreme copies of X , namely X × {0}

and X × {1}. Since the action of G in X is free, this implies that the parity

of the number of G-orbits of points of X that are sent to y0 should be the

same in f , and f0. This is the contradiction we wanted, as it is 0 in f and

odd in f0 (see figure 3.4).
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Figure 3.4: The figure above shows why the equivariant homotopy preserves
the parity of the number of orbits of preimages of y0 in f and f0. This is
based on the figure of page 31 of [29]. Note that every such path or cycle is
repeated according to the group action.

If Y is a vector space and the action of G is nice enough (namely, multi-

plying by any element of G is a linear function), then one natural candidate

for F is simply

F : X × I → Y

(x, t) 7→ tf0(x) + (1− t)f(x)

This function may fail to be generic enough for our purposes. However,

finding an generic equivariant function H : X × I → Y that approximates F

may yield the contradiction we seek. The existence of H depends on further
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properties of X, Y and f0, but we will mention what is needed in the proof

at the end of the section.

Let us then construct the spaces and group actions we will need. For our

construction, we will parametrise a family of partitions with O(d), the space

of orthonormal basis of IRd. Note that there is a natural action of (Z2)
d in

O(d). Given u ∈ O(d) and g ∈ (Z2)
d, gu is the result of changing the sign of

some elements of u, according the coordinates of g.

The target space (what we usually denote as Y ) will be of the form

IRd1 × IRd2 × . . . × IRdn for some di, so it is convenient to settle some op-

erations on these spaces. Given d1, d2, . . . , dn positive integers, consider

x = (x1, x2, . . . , xn) ∈ IRd1 × IRd2 × . . .× IRdn . For i = 1, 2, . . . , n, we define

the function

gi : IR
d1 × IRd2 × . . .× IRdn → IRd1 × IRd2 × . . .× IRdn

as the result of changing the sign of xi. We will use this notation regardless

of the values d1, d2, . . . , dn, unless there is need to specify. We denote by x
(j)
i

the j-th coordinate of xi ∈ IRdi.

Given v = (v1, v2, . . . , vd−1) ∈ IRd−1 × IRd−2 × · · · × IR1, we define v(j) ∈

IRd−j as (v
(j)
1 , . . . , v

(j)
d−j). Thus, we can consider vT ∈ IRd−1 × · · · × IR1 as

vT = (v(1), . . . , v(d−1)).

An easier way to visualise this last construction is to consider a (d− 1)×

(d − 1) matrix V induced by v in the following way. In the k-th row write

the coordinates of vk followed by k − 1 signs “×”,

V =

















v1 v
(1)
1 v

(2)
1 · · · v

(d−2)
1 v

(d−1)
1

v2 v
(1)
2 v

(2)
2 · · · v

(d−2)
2 ×

...
...

...
. . .

...
...

vd−2 v
(1)
d−2 v

(2)
d−2 · · · × ×

vd−1 v
(1)
d−1 × · · · × ×

















.
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Then vT is the set of vectors induced in the same way by the transpose V T

of V , namely

V T =



















v(1) v
(1)
1 v

(1)
2 · · · v

(1)
d−2 v

(1)
d−1

v(2) v
(2)
1 v

(2)
2 · · · v

(2)
d−2 ×

...
...

...
. . .

...
...

v(d−2) v
(d−2)
1 v

(d−2)
2 · · · × ×

v(d−1) v
(d−1)
1 × · · · × ×



















.

Note that gi(v
T )T is the result in changing the i-th coordinate of every

vector in v.

The main result of this section is the following

Lemma 3.4.1. Given f : O(d) → IRd−1 × IRd−2 × · · · × IR1 such that for all

u ∈ O(d)

• f(g1(u)) = g2(f(u)),

• f(g2(u)) = gd−1(f(u)
T )T and

• f(gi+2(u)) = gi(f(u)
T )T for i = 1, 2, . . . , d− 2.

there is a u0 ∈ O(d) such that f(u0) = 0.

Proof. Suppose that the lemma does not hold, and let f be a function with

the properties above a no zeros. Note that if we consider g1, g2, . . . , gd as

generators of the group Z
d
2, it defines a natural action of this group on O(d).

We may define an action of Zd
2 on IRd−1 × IRd−2 × · · · × IR1 so that f is

equivariant. Note that in this case, the elements g1 ◦ gd, g2 ◦ gd, . . . , gd−1 ◦ gd

define a free action of Zd−1
2 in SO(d). We can define analogously an action

of Zd−1
2 in IRd−1 × IRd−2 × · · · × IR1 so that f1 = f |SO(d) is equivariant. Note

that the dimension of SO(d) and IRd−1 × IRd−2 × · · · × IR1 is the same.
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With this action in mind, we will construct an equivariant function f0

between these two spaces that has exactly one (Z2)
d−1-orbit of zeros.

Namely, let f0 be the function defined as

f0 : SO(d) → IRd−1 × IRd−2 × · · · × IR1

w 7→ (v1, v2, . . . , vd−1)

where

v1 =
(

w
(1)
3 , . . . , w

(1)
d , w

(1)
2

)

,

v2 = w
(1)
1

(

w
(2)
3 , . . . , w

(2)
d

)

,

vi+2 =
(

w
(i+2)
3 , . . . , w

(i+2)
d−i

)

for i = 1, 2, . . . , d− 2

Note that f0 is equivariant under the group actions defined above. Moreover,

if f(w) is 0, then wi has to be either the i-th element of the canonical basis

or its negative if i = 1, 2, and wi has to be the (d + 3 − i)-th element of

the canonical basis if 3 ≤ i ≤ d. Thus f0 has exactly 2d−1 zeros in SO(d).

Moreover, 0 is a regular value of f0.

Let F be the equivariant homotopy between f0 and f1, defined as

F : SO(d)× I → IRd−1 × IRd−2 × · · · × IR1

u 7→ tf1(u) + (1− t)f0(u)

If F is not generic enough, it may be perturbed slightly to a function H

that satisfies the following,

• H is an equivariant homotopy between two (equivariant) functions f ′
1

and f ′
0 on the same spaces as f1 and f0,

• zero is a regular value of H ,

• f ′
1 has no zeros,
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• f ′
0 has exactly one orbit of zeros (it is essential that zero is a regular

value of f0 to be able to guarantee this).

Then, using H we may obtain a contradiction as described by the method at

the beginning of the section, which completes the proof.

Approximating F by generic functions as above is a standard technique

in differential geometry.

3.5 Proof of Theorem 3.0.4

We are now ready to prove Theorem 3.0.4.

Proof of Theorem 3.0.4. Let µ be a YYmeasure on IRd. Let u = (u1, u2, . . . , ud)

be an orthonormal basis of IRd. Given a hyperplane H orthogonal to u1, we

can define denote its open half-spaces by

H+ = {h + tu1 : h ∈ H, t > 0}

H− = {h + tu1 : h ∈ H, t < 0}

let H1, H2 be hyperplanes orthogonal to u1, so that they divide IRd into

three regions, A = H+
1 , B = H−

1 ∩ H+
2 and C = H−

2 , of equal µ-measure.

Consider the measures µ1 = µ|A∪B and µ2 = µ|B∪C . Note that H1 splits µ1

by half and H2 splits µ2 by half.

Thus, if we follow the proof of Theorem 3.0.3 explained in section 3.3,

there is a Yao-Yao center O1 ∈ H1 and a projection vector v1 in SSd−1, not

orthogonal to u1, that induce a Yao-Yao partition P1 for µ1. Moreover, if

we impose the condition u1 · v1 < 0, then O1 and v1 are unique. The same

happens for µ2 and H2, where we can find O2 ∈ H2 and v2 ∈ SSd−1 with

u1 · v2 > 0 that induce a Yao-Yao partition P2 for µ2 (See figure 3.5).

If the vectors v1, v2 and O1 − O2 are parallel, then we can construct the

partition we seek. For this, consider P the partition of IRd that consists of
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the following sections

• the parts of P1 contained in A,

• the intersections of B with the parts of P1 contained in B ∪ C and

• the parts of P2 contained in C.

Consider l the line through O1 and O2 and H an arbitrary hyperplane.

Since l is parallel to v1 and v2, depending on whether H intersects l in A,

B, or C, then it avoids at least one section of P in B and C, A and C

or A and B, respectively. This follows from the fact that P1 and P2 were

Yao-Yao partitions. The only case that needs a closer analysis is to see that

if H intersects l in C, it does avoid a part of P in B. However, since the

partition in B is symmetric with respect to the midpoint of O1O2, this case

is equivalent to the one when H intersect l in A, which is covered by the fact

that P1 is a Yao-Yao partition. If H does not intersect l, then it avoids one

section of P in each of A, B and C. Thus, it suffices to find an orthogonal

basis u so that O1 −O2, v1 and v2 are parallel.

Denote by J1 the flat of codimension 2, orthogonal to u1 and u2 through

O1. Note that J1 ⊂ H1. The half-hyperplane {j + tv1 : j ∈ J1, t > 0}

splits B into two sets of equal µ1-measure. The flat J2 ⊂ H2, parallel to J1

through O2, satisfies that the half-hyperplane {j + tv2 : j ∈ J2, t > 0} splits

B into two sets of equal µ2-measure. Note that since µ1 and µ2 are the same

measure in B, these two sets intersect in a (d− 2)-flat J .

Consider r1 : IRd → H1 the projection such that r1(O2) = O1, and con-

sider r2 : H1 → IRd−1 the projection such that r2(O1) = 0. Their composition

r = r2 ◦ r1 : IRd → IRd−1 satisfies r(O1) = r(O2) = 0. We may consider

(u2, u3, . . . , ud) the basis for IRd−1. Since J is orthogonal to u2, so is r(J).

Thus, there is a λ ∈ IR such that r(J) = {x ∈ IRd−1 : x · u2 = λ}. Let

x ∈ IRd−2 and y ∈ IRd−2 be the last d − 2 coordinates of r(v1) and r(v2)

respectively.
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Figure 3.5: Construction of the partition (figure from [35])

Consider h(u) = (x, y, λ) ∈ IRd−2 × IRd−2 × IR. If h(u) = 0, then v1, v2

and O1 −O2 are parallel, as we wanted.

Note that the map h satisfies the following

• h(g1(u)) = (y, x, λ), as changing the sign of u1 exchanges the roles of

H1, H2.

• h(g2(u)) = (x, y,−λ), by the definition of λ, and

• h(gi+2(u) = (gi(x), gi(y), λ) for i = 1, 2, . . . , d − 2, as x, y were formed

by the last d− 2 coordinates of the projections of v1, v2 using the basis

(u2, u3, . . . , ud).

Consider the function f defined as

f : O(d) → IRd−1 × IRd−2 × · · · × IR1

u 7→ ((x+ y, λ), x− y, 0, . . . , 0)

Note that finding a zero of f is equivalent to finding a zero of h. Given
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v ∈ IRd−1 × IRd−2 × · · · × IR1 recall the definition of vT at the beginning of

the section. With this notation, the conditions of h translate to

• f(g1(u)) = g2(f(u)),

• f(g2(u)) = gd−1(f(u)
T )T and

• f(gi+2(u)) = gi(f(u)
T )T for i = 1, 2, . . . , d− 2.

Using Lemma 3.4.1, we are done.



Chapter 4

Tverberg type partitions

The next two chapters will deal with Tverberg type partitions. The core of

the proofs are based on a deeper analysis of Sarkaria’s proof of Tverberg’s

theorem, explained in section 1.2.

Namely, we will rely on the following two simple observations about this

proof (using the notation of section 1.2).

• An action of Zk can be defined on the set {bi ⊗ uj : 1 ≤ i ≤ n +

1, 1 ≤ j ≤ k}. Moreover, that action sends sets capturing the origin

to sets capturing the origin, which the colourful Carathéodory theorem

ignores.

• If additional structure is added to the partition, the lift ai 7→ bi can be

avoided.

The contents of this chapter are contained in [41].

4.1 Partitions with tolerance

In this chapter we will prove a version of Tverberg’s theorem with tolerance.

We say that a property P is true in a set X with tolerance r if P is true in

X even if we remove any r points of X . For example, captures the origin, or

61
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the convex hull of the red points of X and the convex hull of the blue points

of X intersect are examples of properties that may be true with a certain

tolerance. The first theorem with tolerance is due to David Larman. While

working on a problem of McMullen about sending arbitrary sets of points

to convex position via projective transformations, he showed the following

equivalent result.

Theorem 4.1.1 (Larman, 1972 [27]). Let d ≥ 1 be an integer. Given a set

A of 2d + 3 points in IRd, there is a partition of A into two sets A1 and A2

such that for any x ∈ A,

〈A1\{x}〉 ∩ 〈A2\{x}〉 6= ∅.

Figure 4.1: An example of a Radon partition with tolerance 1 in the plane.
Note that with any 6 points in the figure such partitions do not exist.

This is what we call a Radon theorem with tolerance 1. One should

note that the theorem is trivial with 2d + 4 points, as one can split the set

into two sets of d + 2 points each and find a Radon partition on each side

(A,B) and (A′, B′). The partition (A∪A′, B ∪B′) clearly satisfies Larman’s

condition, as removing one point can only break one of the two original Radon

partitions. However, with 2d+3 we are gaining meaningful information about

the intersection of the convex hulls of sets of points.

The number 2d + 3 is known to be optimal for d ≤ 4 [20]. Currently
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the best lower bound in general is 3 + ⌈5d
3
⌉ by Ramirez-Alfonśın [34]. The

condition d ≥ 1 is a strange necessity. In the case d = 0, IRd is a single

point. Given 3 copies of that point, in any partition of them into two parts

there is one part with at most one point. Removing that point shows that

the conclusion of the theorem is false.

This result was generalised by Natalia Garćıa-Coĺın as part of her PhD

thesis at UCL for any tolerance (under David Larman’s supervision). Namely

Theorem 4.1.2 (Garćıa-Coĺın, 2007 [21]). Let d ≥ 1 be an integer. Given

A set A of (r + 1)(d+ 1) + 1 points in IRd, there is a partition of them into

two sets A1 and A2 such that for any set C ⊂ A of r points,

〈A1\C〉 ∩ 〈A2\C〉 6= ∅

This is what we would call a Radon with tolerance r. Note that the case

r = 0 is Radon’s theorem and the case r = 1 is Larman’s result. Again, for

any value of r ≥ 1, the condition d ≥ 1 is necessary. For r > 1, Garćıa-Coĺın

showed as well that in any dimension 2d + r + 3 points may be necessary

for the theorem to hold [21]. She conjectured a version of her result for

Tverberg partitions. This was answered affirmatively in a joint paper with

Ricardo Strausz [41] and is presented in the next section.

One should note that Garćıa-Coĺın’s proof of her conjecture is similar to

Tverberg’s proof of his own theorem. Namely, she proved that a special set

of (r+1)(d+1)+1 points had a Radon partition with tolerance r, and then

moved the points continuously. If the partition stopped working, she showed

that at that moment one could swap points in the partition to avoid any

problems. This way one could reach any configuration of points and have

a Radon partition with tolerance r. The proof of the generalisation of her

conjecture for Tverberg partitions is based on Sarkaria’s proof of Tverberg’s

theorem, presented in section 1.2.

One should note that there are version of other results in combinatorial
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geometry with tolerance. This includes classic results like Helly’s theorem

and Carathéodory’s theorem (see [31] and the references therein).

4.2 Tverberg with tolerance

Given a set X , we denote by
(

X
r

)

the family of subsets of X of size r. Using

this notation,

Theorem 4.2.1 (Soberón, Strausz 2012 [41]). Let r, k, d be non-negative

integers with d ≥ 1. Given a set A of (r+ 1)(k− 1)(d+1) + 1 points in IRd,

there is a partition of S into k sets A1, A2, . . . , Ak such that for any C ∈
(

S
r

)

,

k
⋂

i=1

〈Ai\C〉 6= ∅

In order to prove Theorem 4.2.1, we shall prove a version of the colourful

Carathéodory theorem with tolerance. Groups action are essential for this to

work. Note that the result would be trivial with (r + 1) [(k − 1)(d+ 1) + 1]

points.

Let A′ ⊂ IRd be a set of points and G a group such that there is a group

action of G in A′. Given A ⊂ A′ we say that the group action of G is

compatible with A if the following two conditions are met

• If B ⊂ A′ captures the origin, then gB captures the origin for any

g ∈ G

• Given a point a ∈ A, then Ga captures the origin.

These conditions allow us to extend the colourful Carathéodory theorem

to a version with tolerance, stated below. It should be noted that the original

proof of the theorem by Bárány is metric, and the proof we present here

follows the same line of thought.
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Lemma 4.2.2 (Colourful Carathéodory with tolerance). Let m ≥ 1 and

r ≥ 0 be integers, A ⊂ IRm a set of n = (r + 1)m + 1 points a1, a2, . . . am

and G a group with |G| ≤ m. If there is a set A′ such that A ⊂ A′ ⊂ IRd

and an action of G in A′ which is compatible with A, then for each ai there

is a gi ∈ G such that the set {g1a1, g2a2, . . . , gnan} captures the origin with

tolerance r.

Proof. We proceed by induction on r. For r = 0, this lemma is a direct con-

sequence of the colourful Carathéodory theorem, taking Ga1, Ga2, . . . , Gan

as the colour classes.

Suppose the lemma is true for r − 1 but not for r, and we look for a

contradiction. Let {h1, h2, . . . , ht} be the elements of G with t ≤ m. Given

any vector α = (g1, g2, . . . , gn) ∈ Gn, let α ·A = {g1a1, g2a2, . . . , gnan}. Since

we are supposing that the lemma is false, for any α there is a subset C ⊂ α·A

of r points such that (α ·A)\C does not capture the origin. For each α, let

P (α) = max
|C|=r

dist (〈(α · A)\C〉, 0) .

Observe that P (α) > 0 for all α.

Let α0 be a vector in G
n such that P (α0) is minimal, and let C0 ⊂ α0 ·A be

a set of r points such that realises this distance, namely dist (〈(α0 · A)\C0〉, 0) =

P (α0). If p0 is the point of 〈(α0 · A)\C0〉 closest to the origin, p0 must be

in a face of 〈(α0 · A)\C0〉. Note that this face is contained in a flat of co-

dimension at least 1. Thus, there is a set X ⊂ (α0 · A)\C0 of at most m

points such that p0 is in the relative interior of 〈X〉. Let B = (α0 ·A)\X and

H be a hyperplane that contains X and leaves the origin in one of its open

half-spaces H−.

By induction, since the action of G is compatible with B and B has at

least mr + 1 points, there is a vector β of G|B| such that β · B captures the

origin with tolerance r − 1. Since Gx captures the origin for all x ∈ B, for

each b ∈ B there must be a g ∈ G such that gb ∈ H−. Consider the sets
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(h1β) ·B, (h2β) ·B, . . ., (htβ) ·B. Among them, there must be at least mr+1

points in H−. Since t ≤ m, we can use the pigeonhole principle to find a

g ∈ G such that (gβ) · B contains at least ⌈mr+1
t

⌉ ≥ r + 1 points in H−.

Let α1 be the vector in Gn that results in changing in α0 the elements

corresponding to B for those of (gβ) ·B. We claim that P (α1) < P (α0).

For this we have to show that for any subset C ⊂ α1 · A of r points, we

have that

dist(〈α1 ·A\C〉, 0) < P (α0).

There are two cases we need to analyse.

• If among these points there are at most r − 1 points of (gβ) · B, then

(α1 · A)\C captures the origin, so the distance above is 0.

• If C ⊂ (gβ) · B, then there is a point x ∈ H− ∩ (gβ) · B that is not

in C. It follows that 〈X ∪ x〉 is closer to the origin than 〈X〉, so the

distance above is smaller than P (α0).

Thus P (α1) < P (α0), contradicting the minimality of P (α0).

If we ignore the condition on the group actions, the result no longer holds.

In fact, a direct version of the colourful Carathéodory theorem with tolerance

only holds with the trivial number of colour classes. Namely,

Claim 4.2.3. Let n = (r+1)(d+1). Given n sets F1,F2, . . . ,Fn in IRd such

that each captures the origin, it is possible to find elements x1 ∈ F1, . . . , xn ∈

Fn such that the set {x1, . . . , xn} captures the origin with tolerance r. More-

over, the value of n is optimal.

Proof. The case n = (r + 1)(d + 1) is a direct consequence of the colourful

Carathéodory theorem. Let us construct a counter-example for

n < (r + 1)(d+ 1).

Let S be a non-degenerate simplex in IRd that captures the origin. Con-

sider F1,F2, . . . ,Fn all equal to the set of vertices of S. In any colourful
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choice of points of the Fi, there is one vertex of S that was chosen at most r

times. Removing all the copies of this vertex leaves us with a set that does

not capture the origin.

Proof of Theorem 4.2.1. Let m = (k − 1)(d + 1), and a1, a2, . . . , a(r+1)m+1

be (r + 1)m + 1 points in IRd. Consider the points bi = (ai, 1) ∈ IRd+1

for all i. Let u1, u2, . . . , uk ∈ IRk−1 be the k vertices of a regular simplex

centred at the origin. Consider the sets A′ = {bi ⊗ uj : for all i, j} and

A = {bi ⊗ u1 : for all i} in IRm.

Let σ be a generator of the group Zk. Note that there is an action of

Zk in A′ given by σ(bi ⊗ uj) = bi ⊗ uj+1. Moreover, this action is com-

patible with A. Since d ≥ 1, we have that k ≤ m. Thus, we can ap-

ply Lemma 4.2.2 and obtain indices j1, j2, . . . , j(r+1)n+1 such that the set

{b1 ⊗ uj1, b2 ⊗ uj2, . . . , b(r+1)n+1 ⊗ uj(r+1)n+1
} captures the origin with toler-

ance r. The last arguments are analogous to those in the proof of Tverberg’s

theorem in section 1.2.

If we avoid using the inclusion IRd →֒ IRd+1 we obtain a (slightly more

general) version of this theorem for convex cones. Namely

Corollary 4.2.4. Let r, k, d be non-negative integers with d ≥ 2 and n =

(r + 1)(k − 1)d. Given a set A of n + 1 points a1, a2, . . . , an+1 in IRd, there

is a partition I1, I2, . . . , Ik of {1, 2, . . . , n + 1} into k sets such that for any

C ∈
(

S
r

)

, there are non-negative coefficients α1, α2, . . . , αn+1, not all zero,

such that
∑

i∈I1

αiai =
∑

i∈I2

αiai = . . . =
∑

i∈Ik

αiai.

The following lower bound comes from a simple example.

Claim 4.2.5. Given r, d, k non-negative integers, there is a set A of

k(⌊d
2
⌋+ r+1)− 1 points in IRd such that for every partition of A into k sets

A1, A2, . . . , Ak, there is a subset C ∈
(

A
r

)

such that

∩k
i=1〈Ai\C〉 = ∅.
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Proof. Let A be a set of k(⌊d
2
⌋ + r + 1) − 1 points in the moment curve

γ = {(t, t2, . . . , td) : t ∈ IR}. It is known that every finite subset of γ is the

set vertices of a ⌊d
2
⌋-neighbourly polytope. That is, they are a set of points

such that any ⌊d
2
⌋ of them can be separated from the rest using a hyperplane.

If Ai is the smallest section of the partition, it must have at most ⌊d
2
⌋ + r

points. If we remove any r of them, the points left in Ai can be separated

from the rest of A by a hyperplane, so the intersection of the convex hulls of

each part is empty.

If k = 2, this is equal to d+2r if d is odd and d+2r+1 if d is even. This

improves Garćıa-Coĺın’s bound of 2d+ r+3 if r ≥ d+3. We conjecture that

Theorem 4.2.1 is optimal. Namely,

Conjecture 4.2.6. Given r, k, d non-negative integers with d ≥ 1, there is

a set A of (r + 1)(k − 1)(d + 1) points in IRd such that for any partition

A1, A2, . . . , Ak of A into k parts, there is a set C ∈
(

A
r

)

such that

k
⋂

i=1

〈Ai\C〉 = ∅.



Chapter 5

Colourful Tverberg Partitions

Another way to generalise Radon’s theorem is via colourful partitions. In

this setting additional structure is given to the original set of points, and we

ask that the resulting Radon or Tverberg partition satisfies certain properties

regarding this structure. Namely, we are dealing with the following problem

Conjecture 5.0.7 (Colourful Tverberg, [7]). Given F1, F2, . . . , Fd+1 sets of

k points each of IRd, we can partition their union into k sets A1, A2, . . . , Ak

such that |Ai ∩ Fj| = 1 for each i, j and

k
⋂

i=1

〈Ai〉 6= ∅.

We refer to F1, F2, . . . , Fd+1 as the colour classes. We call a family of

pairwise-disjoint subsets A1, A2, . . . , Ak of their union satisfying |Ai∩Fj| = 1

a colourful k-partition. Even in the case when the Fj have more than k points

each we will denote this a k-partition, even though it is not a partition per

se.

The contents of this chapter deal with variations of the conjecture above,

and have been accepted in [40]. Conjecture 5.0.7 was made by Bárány and

Larman [7]. The case d = 2, k = 3 was solved previously by Bárány, Füredi

69
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Figure 5.1: A colourful Tverberg partition for the case d = 2, k = 3.

and Lovász [6]. In [7] the authors proved the case d = 2 and any k and

presented Lovász proof of the case k = 2 and any d (also known as the

coloured Radon theorem). The proof of the case d = 2, any k is much like

Tverberg’s proof of his own theorem or Garćıa-Coĺın’s proof of the Radon

theorem with tolerance. Again, points are moved continuously and it is shown

that the points may be swapped in the partition to avoid the condition from

breaking. The colourful Tverberg theorem was proved for the case when k+1

is prime by Blagojević, Matschke and Ziegler with topological methods [12],

[11].

Historically, when the conjecture was made, it was asked if the was a

number t = t(k, d) such that for any d + 1 families F1,F2, . . . ,Fd+1 of t

points each in IRd, one could find a coulourful k-partition A1, A2, . . . , Ak

such that the convex hulls of the parts intersect. The colourful Tverberg

theorem is equivalent to showing that t(k, d) = k. The first general bound

on t was given by Vrećica and Živaljević. They showed that if k was prime,

then t(k, d) ≤ 2k − 1 [47]. This implies the bound t(k, d) ≤ 4k − 3 for all

values of k. One should note that the result by Blagojević, Matschke and

Ziegler mentioned above improves this bound to t(k, d) ≤ 2k−2 for all values

of k.
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With the exception of the proof for d = 2 by Bárány and Larman, all

advances have been using topological methods. There is a proof of the Blago-

jević, Matschke, Ziegler result that does not use topology [30]. However, it

follows the scheme of the simplified topological proofs of this result, in which

only the computation of the degree of a map is needed [12, 44].

In the next sections we show two proofs of the coloured Radon theorem,

and then a version of the coloured Tverberg theorem where convex combina-

tions have equal coefficients. The proofs in both sections are non-topological.

5.1 Two proofs of colourful Radon

We present here two non-topological proof of the colourful Radon theorem.

We refer to Lovász’s original proof as the first proof, and to the proofs below

as second and third. Lovász’s proof consists of lifting of the pairs of points

to IRd+1 and then applying the Borsuk-Ulam theorem on an octahedron.

Second proof of colourful Radon. Denote the elements of each pair Fi = {xi, yi}

arbitrarily. Then the d+1 vectors xi−yi are linearly dependent. This means

that there is a linear combination
∑d+1

i=1 αi(xi − yi) = 0 such that not all the

coefficients are 0. We may relabel the points so that no αi is negative. Using

a scalar multiplication we may also assume that they have sum 1. Thus,

d+1
∑

i=1

αixi =

d+1
∑

i=1

αiyi.

This convex combination gives the result.

This proof avoids the topological arguments and gives an algorithmic way

to find the colourful Radon partition in polynomial time, as it reduces the

problem of finding a colourful Radon partition to finding a linear dependence.

It not only shows that the partition exists, but that we may use the same

coefficients in A1 and A2 to find a point of intersection of their convex hulls.
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This fact can also be deduced from Lovász’s topological proof, as the images

of antipodal points in the construction used in his proof have this property.

This will be exploited in the following section, where a colourful Tverberg

theorem with equal coefficients is proved.

For the third proof we use the Gale transform. As described verbatim in

[40],

The Gale transform of a set of n points a1, a2, . . . , an in IRd that are not

all contained in a hyperplane is a set of n points b1, b2, . . . , bn in IRn−d−1 such

that the following two conditions hold

•
∑

i bi = 0 and

• for every two disjoint subsets X, Y ⊂ [n], the convex hull of the sets

{ai : i ∈ X} and {ai : i ∈ Y } intersect if and only if there is a

hyperplane H through the origin in IRn−d−1 that leaves {bi : i ∈ X}

in one (closed) side, {bi : i ∈ Y } in the other (closed) side and goes

through every other bi.

Third proof of colourful Radon. Let F1, F2, . . . , Fd+1 be the sets of pairs and

denote by F their union. Without loss of generality we can suppose that they

are in general position. If we consider J the Gale transform of F , we have

that J is a set of d + 1 pairs of points in IRd+1. Denote by J1, J2, . . . , Jd+1

these pairs. We need to find a hyperplane H that splits each Ji and contains

the origin. Consider mi the midpoint of each Ji. Since the points in J sum

0, the sum of all the mi is 0 as well. Thus the hyperplane that goes through

m1, m2, . . . , md+1 contains the origin and splits each pair.

Note that the equal coefficients can also be deduced using this proof. This

is because every linear function f : IRd+1 → IR that has H as kernel gives

antipodal values to the elements of each Ji (since it goes through mi). Due

to the Gale transform properties, this translates to equal coefficients in the
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convex combinations that give the same point. The assumption of general

position does not bring problems for this conclusion.

5.2 Colourful Tverberg with equal coefficients

Given d+1 families F1, F2, . . . , Fn of points in IRd, each with at least k points,

and A1, A2, . . . , Ak a colourful partition of them we can denote the elements

of each Ai by Ai = {xij : xij ∈ Fj}. If we can find coefficients α1, α2, . . . , αn

of a convex combination such that

n
∑

j=1

αjx
1
j =

n
∑

j=1

αjx
2
j = . . . =

n
∑

j=1

αjx
n
j ,

we say that the convex hulls of A1, A2, . . . , Ak intersect with equal coefficients.

Asking for intersection with equal coefficients in conjecture 5.0.7 is too

much, even if the colour classes are allowed to have more than k points.

However, if the number of colour classes is increased, then such a theorem

can be proved. The theorem below shows the minimum number of colour

classes needed for this.

Theorem 5.2.1 (Colourful Tverberg with equal coefficients, [40]). Consider

F1, F2, . . . , Fn families of t points of IRd each, with t ≥ k. If n = (k−1)d+1

and t = k, there is a colourful k-partition A1, A2, . . . , Ak of them such that

their convex hulls intersect with equal coefficients. If n ≤ (k−1)d, there may

not be such colourful partitions, regardless of the value of t.

It should be noted that the theorem above, even though it is a variation

of the colourful Tverberg theorem (which is actually a conjecture), is actually

a generalisation of Tverberg’s theorem (Theorem 1.1.2). This is made clear

in the next proof.

Proof that Theorem 5.2.1 implies Theorem 1.1.2. Suppose that Theorem 5.2.1

is true. Let n = (k − 1)(d + 1) + 1, and A = {a1, a2, . . . , an} be a set of n
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points in IRd. Consider the points bi = (ai, 1) ∈ IRd+1, for all i. Consider

Fi = {bi, 0, 0, . . . , 0} ⊂ IRd+1. That is, the multiset of points made of bi

and k − 1 copies of the 0 vector in IRd+1. We can apply Theorem 5.2.1

to the families F1, F2, . . . , Fn to obtain a colourful partition B1, B2, . . . , Bk

where the convex hulls of the parts intersect with equal coefficient. Note

that a colourful partition of F1, F2, . . . , Fn induces a partitions of A into k

sets, A1, A2, . . . , Ak. Moreover, since the 0 vectors are unimportant, we may

assign the coefficient used for a certain Fi to the respective ai. Since the last

coordinate of the bi is 1, this implies that the sum of the coefficients assigned

to A1, A2, . . . , Ak is equal. Thus, we have obtain a Tverberg partition.

In order to prove Theorem 5.2.1, we first need to represent the colourful

partitions of the Fj as vectors of injective functions. This can be done in the

following way.

Given F1, F2, . . . , Fn families of t points each in IRd, we can denote their

elements by

Fj = {z1j , z
2
j , . . . , z

t
j}.

By Σk,t we refer to the set of injective functions from [k] = {1, 2, . . . , k} to [t].

We can assign a vector (σ1, σ2, . . . , σn) in (Σk,t)
n to a colourful k-partition

(A1, A2, . . . , Ak) if we consider

σj(i) = m if and only if xij = zmj .

This is equivalent to

Ai = {z
σj(i)
j : 1 ≤ j ≤ n}

The vector (σ1, σ2, . . . , σn) is called the function representation of the parti-

tion (A1, A2, . . . , Ak).

One way to visualise this is the following. We first write the elements of

each Fj k times in k rows. From the first row we can choose the elements of

A1, from the second row we can choose the elements of A2, and so on. Then
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we can see the function representation of (A1, A2, . . . , Ak), as in the following

diagram of [40].

z11
z11
z11

z11

z12
z21
z21

z21

z31
z31
z31

...

z31

. . .

. . .

. . .

. . .

zt1
zt1
zt1

zt1

σ1(1) = 2, σ1(2) = t,

σ1(3) = 3, . . . , σ1(k) = 1

F1

z12
z12
z12

z12

z22
z22
z22

z22

z32
z32
z32

z32

. . .

. . .

. . .

. . .

...

zt2
zt2
zt2

zt2

σ2(1) = 3, σ2(2) = 2,

σ2(3) = t, . . . , σ2(k) = 1

· · ·

F2

z1n
z1n
z1n

z1n

z2n
z2n
z2n

z2n

z3n
z3n
z3n

z3n

. . .

. . .

. . .

. . .

...

ztn
ztn
ztn

ztn

σn(1) = 1, σn(2) = 3,

σn(3) = t, . . . , σn(k) = 2

Fn

A1

A2

A3

Ak

Figure 5.2: Representation of colourful partitions as vectors of injective func-
tions.

Let u1, u2, . . . , uk be the vertices of a regular simplex in IRk−1 centred

at the origin. We use them to represent the distribution of the partition

following the Sarkaria method.

Definition 5.2.2. Given σ ∈ Σk,t and Fj = {z1j , z
2
j , . . . , z

t
j} a family of t

points of IRd, we define Fj(σ) ∈ IR(k−1)d as

Fj(σ) =
k
∑

i=1

ui ⊗ z
σ(i)
j .

Note that this construction gives us points in IRd(k−1), unlike the usual

Sarkaria argument that gives points in IR(d+1)(k−1). It is the additional struc-

ture of the partition that allows us to work in a lower-dimensional space.

The following lemma relates the previous definition to the intersection with

equal coefficients
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Lemma 5.2.3 (Lemma 6 in [40]). Let F1, F2, . . . , Fn be sets of t points each

in IRd and (A1, A2, . . . , Ak) be a colourful k-partition of them. Then for

coefficients α1, α2, . . . , αn we have that
∑n

j=1 αjx
i
j is the same point for all

i if and only if
∑n

j=1 αjFj(σj) = 0, where (σ1, σ2, . . . , σn) is the function

representation of (A1, A2, . . . , Ak).

Proof. Note that it is enough to show this for d = 1, as the argument can

be repeated for each coordinate in IRd. Thus ui ⊗ zmj becomes simply zmj ui.

If we expand
∑n

j=1 αjFj(σj) and factor ui, we obtain that its coefficient is
∑n

j=1 αjz
σj (i)
j . Since a linear combination of u1, u2, . . . , uk is 0 if and only if

all the coefficients are equal, we obtain the desired result.

We are now ready to prove theorem 5.2.1.

Proof of theorem 5.2.1. Suppose n = (k−1)d+1 and t = k. Each of the sets

Fj(Σk,k) captures the origin. We thus have n sets, each of which captures the

origin in IRn−1, so by the colourful version of Carathéodory’s theorem, we can

find n permutations σ1, σ2, . . . , σn such that the set {F1(σ1), F2(σ2), . . . , Fn(σn)}

captures the origin. By Lemma 5.2.3 this is the permutation representation

of the colourful partition we seek. Consider the case n ≤ (k−1)d and suppose

σ1 is given. Note that by an appropriate choice of F1, F1(σ1) can be any point

of IR(k − 1)d. Suppose we are given F2, F3, . . . , Fn and want to know what

sets F1 would make the conclusion of the theorem true. Note that for any co-

lourful partition (A1, A2, . . . , Ak) there is a permutation we can apply to each

colour class such that in its function representation σ1 becomes the identity.

If we can find σ2, σ3, . . . , σn in Σk,t such that {F1(σ1), F2(σ2), . . . , Fn(σn)}

capture the origin, then F1(σ1) must be in the subspace of dimension at

most n− 1 generated by F2(σ2), F3(σ3), . . . , Fn(σn). Since a finite number of

subspaces of positive co-dimension cannot cover IRd(k−1), there are choices of

F1 that do not satisfy the theorem, as we wanted.

The last argument also shows that if n ≤ (k − 1)d the points of each Fj

are randomly distributed according to a (possibly different) measure where
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hyperplanes have measure 0, then the probability that there is a colourful

k-partition (A1, A2, . . . , Ak) of them such that the convex hulls intersect with

equal coefficients is 0.

5.3 Number of partitions and tolerance

One interesting aspect of Tverberg’s theorem is that even though we know

that for (k−1)(d+1)+1 points there are Tverberg partitions, little is known

about how many of them we can find. It is conjecture that for any set of

(k−1)(d+1)+1 points there are always at least (k−1)!d Tverberg partitions,

but this is still an open problem. This conjecture is usually referred to as the

Dutch cheese conjecture or Sierksma’s conjecture. Lower bounds have been

obtained with topological methods if k is a prime power [22], [45], which

are around
√

(k − 1)!d. Apart from the trivial d = 1 or k = 2 cases, the

only completely solved case for this conjecture is (d, k) = (2, 3) [23], with a

positive answer.

A deeper analysis of the proof of Theorem 5.2.1 shows that there are

many such coloured partitions.

Proposition 5.3.1. Let n = (k − 1)d + 1 and F1, F2, . . . , Fn be families

of k points each in IRd. Then there are at least (k − 1)!d(k−1) colourful k-

partitions of them (A1, A2, . . . , Ak) such that their convex hulls intersect with

equal coefficients.

Proof. In the proof of Theorem 5.2.1, the fact that each Fj(Σk,k) captured

the origin was necessary for the proof. However, we can find small subsets of

Fj(Σk,k) that also capture the origin. For example, given β a cycle of length

k, the set Fj(β, β
2, . . . , βk) also captures the origin. If we fix the order of F1

and assign a cyclic order to each Fj , j > 1 (with a cyclic order we mean an

order up to iterated applications of β), we can use these sets to find a good

colourful partition. However, for each way to assign cyclic orders we obtain

a different partition, so there are at least (k − 1)!d(k−1) partitions.
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We do not know if this number of partitions is optimal. In order for the

result above to imply Sierksma’s conjecture (using that Theorem 5.2.1 implies

Tverberg’s theorem), we would need to show there are at least (k − 1)!kd−1

good partitions. This is what we conjecture to be optimal. However, we have

nothing other than personal intuition to support this fact.

Note that there is an action of Σk,k in Fj(Σk,k) given by σFj(τ) 7→ Fj(στ).

If we let β be a cycle of length k, the subgroup {β, β2, . . . , βk} is isomorphic

to Zk, and thus gives us an action of Zk in Fj(Σk,k). This group action allows

us to prove a version of Theorem 5.2.1 with tolerance. Namely,

Theorem 5.3.2. Let d ≥ 2, n = (r + 1)(k − 1)d + 1 and F1, F2, . . . , Fn

be families of k points each in IRd. Then we can find a colourful k-partition

(A1, A2, . . . , Ak) of them such that for any set C of r colour classes, the convex

hulls of A1\C,A2\C, . . . , Ak\C intersect with equal coefficients. Moreover,

there are at least (k − 1)!(r+1)(k−1)d such colourful k-partitions.

Proof. Note that the sets F1(Σk,k), F2(Σk,k), . . . , Fn(Σk,k) with their action of

Zk satisfy the conditions of Lemma 4.2.2. Combining this with Lemma 5.2.3

we obtain the result. For the number of partitions, an argument analogous

to the proof of proposition 5.3.1 gives the result.

5.4 Variations of colourful Radon

We follow the idea in the third proof of colourful Radon (presented in section

5.1) in order to obtain variations of this theorem. Namely,

Theorem 5.4.1. Given a set A of k + d + 2 points in IRd each of which

has one of k possible colours, we can find two subsets A1, A2 such that they

both have the same number of points of each colour and their convex hulls

intersect.

Note that this theorem does not imply the colourful Radon theorem.

When k = d+2 or k = d+1 we can obtain results which are slightly weaker
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than colourful Radon. This is because in this setting the precise structure of

each colour class is ignored.

Proof. We may suppose without loss of generality that A is in general po-

sition. Consider B ⊂ IRk+1 the Gale transform of A. Consider each set of

points as a measure, and a Dirac measure concentrated in the origin. Since

we have k + 1 measures in IRk+1, we can use the ham sandwich theorem for

finite sets of points to find a hyperplane that splits them by half simultane-

ously. This hyperplane goes through the origin and thus induces the partition

we need.

Corollary 5.4.2. Given d+ 3 points in IRd, there are two disjoint subset A

and B of the same size such that their convex hulls intersect.

This corollary is already known, the earliest references we could find to

it are [19] and [24]. We mention it since it would be interesting to find an

analogous statement for Tverberg partitions. This has been asked earlier by

Eckhoff [16]. Namely, finding the smallest n = n(d, k) such that for every

set of n points in IRd we can find k pairwise disjoint subsets of the same

size whose convex hulls intersect. A direct application of Carathéodory’s

Theorem gives an upper bound, so we obtain (k − 1)(d+ 1) < n ≤ k(d+ 1).

A result by Sarkaria (Theorem 1.3 in [37]) implies that if k is prime, n(d, k) ≤

(k − 1)(d+ 2) + 1. This improves the trivial upper bound if k is prime and

k ≤ d+ 1. Eckhoff conjectured n(d, k) = (k − 1)(d+ 1) + 2.

5.5 Families of sets with equal unions

Given a set X of n elements and a family F of non-empty subsets of X , if F

is large enough, then many subfamilies of F have the same union. A theorem

of Lindström makes this clear.

Theorem 5.5.1 (Lindström, 1972 [28]). Let X be a set of n element and F

a family of non-empty subsets of X. If |F| > n(k − 1), then we can find k
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disjoint subsets I1, I2, . . . , Ik of F such that

⋃

I1 =
⋃

I2 = . . . =
⋃

Ik.

This result was also proved by Tverberg using his theorem on intersection

of convex hulls [43]. Here we prove variations of this theorem using the

Tverberg-type results contained in the last two chapters. First, let us show

a version of Lindström’s theorem with tolerance.

Theorem 5.5.2 (Lindström with tolerance). Let X be a set of n ≥ 2 ele-

ments and F a family of non-empty subsets of X. If |F| > n(k − 1)(r + 1),

then we can find k disjoint subfamilies I1, I2, . . . , Ik of F such that for any

C ∈
(

F
r

)

there are families Ui ⊂ Ii\C for i = 1, 2, . . . , k that satisfy

⋃

U1 =
⋃

U2 = . . . =
⋃

Uk.

Proof. Assign to each F ∈ F its incidence vector vF ∈ IRn. Denote by v(F)

the image of F under this function. We can normalise the vector vF to obtain

uF = 1
|F |
vF (note that the non-emptiness of F is essential for this step). The

family u(F) is a family of at least n(k − 1)(r + 1) + 1 points in a flat H of

dimension n − 1. Then, we can apply Theorem 4.2.1 to obtain a partition

I1, I2, . . . , Ik of F . Given C ∈
(

F
r

)

, we know that there is a v ∈ H that is

contained in the convex hull of each u(Ii\C). Note that v 6= 0, as H does

not contain the origin. For each i we know that there is a linear combination

of the elements of u(Ii\C) using only non-negative coefficients that gives v.

Let Ui be the subfamily of those sets in Ii\C whose incidence vector used

positive coefficients. Clearly, the union of the sets in Ui is the set of non-zero

entries of v.

Note that reducing the dimension toH may not be necessary, as Corollary

4.2.5 gives the result directly. However, this reduction is necessary when we

apply the colourful versions of Tverberg’s theorem instead of Theorem 4.2.1.
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Since the proof of the following results is analogous to the one above, we

omit them and only mention which version of Tverberg’s theorem gives the

result.

Using Theorem 5.2.1, we obtain the following,

Proposition 5.5.3 (Colourful Lindström). Let X be a set of of n elements,

m > (k − 1)(n − 1) and F1,F2, . . . ,Fm be families of k subsets of X each.

Then, we can find a non-empty subset I of [m] such that there is a colourful

partition of the families Fi with i ∈ I into families I1, I2, . . . , Ik such that

⋃

I1 =
⋃

I2 = . . . =
⋃

Ik.

Note that if we used the classic colourful Tverberg we would not obtain

this. The condition of equal coefficients allows us to say that if a family Ii

has a set of some Fj, then all the families I1, I2, . . . , Ik have each a set of Fj.

Of course, this can be generalised to a theorem with tolerance using Theorem

5.3.2.

Theorem 5.5.4 (Colourful Lindström with tolerance). Let X be a set of

n ≥ 2 elements, m > (r + 1)(k − 1)(n − 1) and F1,F2, . . . ,Fm be families

of k subsets of X each. Then, there is a colourful partition of the families

Fi with into families I1, I2, . . . , Ik such that, for all C ∈
(

[m]
r

)

, there is a

U ⊂ [m]\C such that the families Ui = Ii ∩ (∪j∈UFj) satisfy

⋃

U1 =
⋃

U2 = . . . =
⋃

Uk.
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[44] S. T. Vrećica and R. T. Živaljević, Chessboard complexes indomitable,

Journal of Combinatorial Theory, Series A 118 (2011), no. 7, 2157–2166.
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