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Abstract 

CoA is well established as a metabolic cofactor in numerous oxidative and biosynthetic 

pathways.  The levels of CoA usually remain within a tight range, however these have been 

shown to change in response to nutritional state, fibrate drugs and several pathological 

conditions.  Although the mechanisms that alter CoA levels are not fully understood, the 

fluctuations in CoA can influence the cellular processes it regulates.  The regulatory roles of 

CoA have mainly been studied in the context of feedback/ feed forward regulation of 

metabolic pathways or enzymes, yet very little is known about its role as a regulator of 

cellular function.  In addition to its action as a cofactor, a few reports have indicated that 

CoA binds to and regulates proteins through allosteric and covalent modification, 

suggesting wider regulatory roles for CoA.  The aim of this thesis was therefore to gain a 

greater understanding of the function of CoA as a regulator of cellular processes.   

Initially, conditions for extracting and measuring CoA levels in cultured cells were 

developed and optimised.  CoA levels were much lower in cultured HepG2 cells compared 

to liver and did not respond in the same way when treated with extracellular stimuli.  A 2-

fold increase in CoA levels, through over-expression of the enzyme PanK1β, did result in the 

novel finding that CoA has a negative effect on cell growth.  This was accompanied by 

increased acetylation of a large number of proteins and also an increase in lactate 

production.  In addition, affinity purification with CoA Sepharose, followed by mass 

spectrometry, pulled down several proteins, previously unknown to bind to CoA, which 

regulate a wide range of cellular processes.  Together, the data from this thesis has 

provided a greater insight into the wider role of CoA as a regulator of cellular function.   
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Chapter 1: General Introduction 

1.1 General Introduction 

Amino acids, carbohydrates and lipids are essential for maintaining life in all 

organisms.  Metabolic reactions either use these organic compounds as structural 

components to build cells and tissues, or to break them down for use as a source of energy.   

Most of these compounds require activation to Coenzyme A thioesters to participate in 

these metabolic reactions. 

1.2 Coenzyme A 

1.2.1 Coenzymes 

Coenzymes are small, organic compounds that are often regarded as cofactors, 

which are non-protein compounds that bind to proteins in order to assist in biochemical 

transformations.  They are often vitamins, or vitamin derivatives, and generally conjugate 

loosely with the enzyme’s active site.  Coenzymes which bind tightly are regarded as 

prosthetic groups of the enzyme.  Coenzymes usually function as activated carriers, aiding 

in the transfer of electrons, specific atoms, or functional groups.  Table 1.1 gives an 

overview on some of the more common coenzymes (Friedman 1995; Palmer 1995).  This 

thesis focuses on Coenzyme A (CoA). 

1.2.2 Coenzyme A  

The existence of CoA was first described by Fritz Lipmann in 1945, during his 

studies on acetyl transfer in mammals (Lipmann 1945).  Lipmann noticed that 
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Coenzyme Abbreviation Vitamin Entity 

transferred 

Metabolic Role 

Nicotine 

adenine 

dinucleotide 

(phosphate) 

NAD(P)
+
 Niacin Electron 

(hydrogen atom) 

Numerous oxidation-reduction 

reactions 

Flavin 

Mononucleotide 

FMN 

Riboflavin 

(vitamin B
2
) 

Electron 

(hydrogen atom) 

Oxidative deamination of amino 

acids, β-Oxidation of amino acids, 

Oxidative phosphorylation, Purine 

catabolism 

Flavin-Adenine 

Dinucleotide 

FAD 

Thiamine 

pyrophosphate 

TPP Thiamine 

(vitamin B
1
) 

aldehydes Decarboxylation of α-keto acids and 

α-keto sugars, Transketolase 

reaction 

Coenzyme A CoA Pantothenic 

Acid 

(vitamin B
5
) 

Activated acyl 

groups 

Multitude of reactions involving 

Acyl group transfer 

Coenzyme Q 

(ubiquinone) 

CoQ Not a 

vitamin 

Electron 

(hydrogen atom) 

  

Pyridoxal 

Phosphate 

- Pyridoxine 

(vitamin B
6
) 

Amino groups Transfer of amino groups, 

Decarboxylate amino acids 

Biotin - Biotin Carbon dioxide Carry activated CO
2
 

Tetrahydrofolic 

Acid 

THFA Folic Acid One-carbon 

groups 

Carry activated one-carbon groups 

Coenzyme B
12

 

(cobalamin 

derivatives) 

- Vitamin B
12

 One-carbon 

groups 

Carry activated one-carbon groups 

Table 1.1: Common coenzymes 
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acetylation was dependent on a heat-stable factor, which was present in boiled extracts of 

all organs, and could not be replaced by any other known cofactor.  Lipmann suspected he 

had found a new coenzyme, and eventually managed to purify the coenzyme from pork 

liver, where he found it to be active in choline acetylation with dialyzed brain extracts 

(Lipmann 1946). He named the factor coenzyme A, in which “A” stood for “activation of 

acetate.” 

1.2.3 CoA structure 

The structure of CoA was determined by subjecting the molecule to a variety of 

selective enzymatic degradation studies and analysing the products.  The molecule consists 

of 3’ phosphoadenosine, coupled through the 5’ link of the ribose to pantothenate (vitamin 

B5) via a pyrophosphate linkage.  The carboxy end of the pantothenate is linked to β-

mercaptoethylamine via a peptide linkage (Figure 1.1).  The free sulfhydryl (SH) group at 

the end of the CoA molecule is extremely reactive and has enormous potential to be 

oxidised to disulphides during reactions involving other thiols (Srinivas and Mamidi 2003). 

1.2.4 CoA derivatives 

In addition to its free form (CoASH), CoA can readily form thioesters through its 

reactive sulfhydryl group (Figure 1.2).  The most abundant thioester of CoA is acetyl CoA.  

Other acyl CoA esters consist of various length carbon chains extended from acetyl CoA, 

including malonyl CoA, succinyl CoA, and long chain fatty acyl CoA (e.g. palmitoyl CoA).  

Many CoA esters have specific biological functions (e.g. membrane trafficking and 

modulation of ion channel activities) and consequently their levels are tightly regulated 

through processes such as gene expression (Black et al. 2000; Pfanner 1989; Rohács et al. 

2003). 
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Figure 1.1: The CoA molecule is composed of a phosphoadenosine residue (green), linked via a pyrophosphate 
group to a pantothenic acid residue (blue) and a β-mercaptoethylamine moiety (pink). 

 

Figure 1.2: Different forms of CoA.  In addition to the free CoA-SH form, CoA can also be found as Acetyl 
CoA, which can be extended to Acyl CoA, with carbon chains of varying length represented by R, and HMG 
CoA.  Images adapted from Chemspider: http://tinyurl.com/2waxjyr 

http://tinyurl.com/2waxjyr
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1.3 Cellular Functions of CoA 

1.3.1 Overview of CoA in metabolism 

CoA and its thioesters are essential cofactors in over 100 reactions in intermediary 

metabolism.   It plays a central role in the oxidation of all the major energy producing 

carbon substrates, as well as numerous synthetic reactions.  In addition to forming thiol 

esters with carboxylic acids, the reactive SH group of CoA can also activate carbonyl groups.  

Furthermore, the 4’-phosphopantetheine (4’PP) component of the CoA molecule has been 

identified as a cofactor in many biosynthetic processes, such as biosynthesis of fatty acids, 

polyketides and peptides (Kleinkauf 2000).  The ratio of free CoASH to acyl-CoA is 

consequently extremely important in controlling the rate of significant metabolic pathways 

(Robishaw and Neely 1985).   

1.3.2 The role of CoA in energy generation 

In nearly all organisms, most carbohydrates are broken down to and absorbed as 

glucose, which is then metabolised into CO2, generating energy in the form of ATP during 

the process.  Glycolysis involves the breakdown of glucose (C6) into two molecules of 

pyruvate (C3).  Other sugars, such as fructose and galactose are funnelled into the 

glycolytic pathway at different stages, but still result in the formation of pyruvate.  

Pyruvate enters the citric acid cycle through its transformation to acetyl CoA.   

Proteins are broken down to amino acids during digestion and once the α-amino 

group has been removed by the deamination reaction, the carbon skeleton of some amino 

acids can be degraded to acetyl CoA.  This can occur directly or via pyruvate or acetoacetyl 

CoA.  Amino acids that are not broken down into acetyl CoA are degraded to other 

intermediates in the citric acid cycle, including succinyl CoA and methylmalonyl CoA. 
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Acetyl CoA is the final product for oxidation of almost all the major carbon 

substrates (Figure 1.3).  It is formed inside the mitochondria by the irreversible oxidative 

decarboxylation of pyruvate, by pyruvate dehydrogenase, where CoA is chemically linked 

to the acetyl group of pyruvate (2C) in the presence of NAD+.  This acetyl group is combined 

with oxaloacetate (4C) to form citrate (6C), regenerating free CoASH.  Citrate is converted 

back to oxaloacetate via a series of chemical transformations, which make up the citric acid 

cycle (Figure 1.4).  This process generates ATP as well as reduced cofactors (NADH, FADH2), 

which are used in the electron transport chain to produce more ATP.  The two carbons 

added through acetyl CoA in the citric acid cycle are released as two molecules of CO2.  As 

well as for the formation of acetyl CoA, CoA is required by α-ketoglutarate, an intermediate 

in the citric acid cycle, in the formation of succinate via succinyl-CoA (Stryer 2002).   

1.3.3 The role of CoA in Fatty Acid Oxidation 

Fatty acids play a number of important physiological roles, for example they are 

components of biological membranes in the form of phospholipids and glycolipids; they are 

often used to covalently modify proteins in order to target them to membrane locations; 

and they can serve as hormones  (e.g. prostaglandins) and intracellular messengers (e.g. 

DAG).  Fatty acids also act as energy stores and fatty acid oxidation is required for 

peripheral tissues to access the lipid energy stored in adipose tissue.  The process involves 

three steps; mobilisation of triacylglycerols (TAG) to fatty acids and glycerol, activation of 

fatty acids by CoA, and oxidation of the fatty acid to acetyl CoA (which is then processed in 

the citric acid cycle).  In the activation step, CoA uses ATP to form a thioester linkage with 

the carboxyl group of the fatty acid.  This reaction occurs on the outer mitochondrial 

membrane and is catalysed by acyl CoA synthetase.  These long chain acyl-CoA molecules 

are transported across the inner mitochondrial membrane to the mitochondrial matrix via 

the carnitine cycle.  In the oxidation step, acyl-CoA is degraded in a recurring four-step  
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Figure 1.3: Acetyl CoA is a central metabolite in metabolism. 
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Figure 1.4: Acetyl CoA is essential for progress in the citric acid cycle.  Acetyl CoA enters the citric acid cycle 
after the acetyl group of pyruvate from glycolysis is linked to CoA.  The intermediates in the cycle are labelled in 
purple.  The products of the cycle are labelled in purple.  The products of the cycle are the four reduced 
electron carriers, in red and ATP.  Image taken from Biology 230, 
https://wikispaces.psu.edu/display/230/Glycolysis%2C+Fermentation+and+the+Citric+Acid+Cycle 
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reaction, where the acyl-CoA is shortened by two carbon atoms at the end of each cycle 

(Figure 1.5).  CoA is required again in the final thiolysis step of this pathway, which is 

mediated by β-ketothiolase.  Acetyl CoA is the final product, however NADH and FADH2 are 

also created.  Acetyl CoA enters the citric acid cycle, whereas NADH and FADH2 feed into 

the respiratory chain (Stryer 2002). 

1.3.4 The role of CoA in Biosynthetic pathways 

CoA functions as an essential cofactor in the multistep processes that lead to the 

formation of complex metabolites.  These reactions usually require the assistance of a 

carrier protein, which along with CoA, help to stabilise the acyl groups.  This method 

enables the formation of complex biosynthetic components by keeping intermediates 

within the carrier protein complexes until the final product is formed.  Products are 

released from the carrier protein complex by the action of thioesterases (Kleinkauf 2000). 

Mammals are able to make fatty acids de novo, although most are obtained 

through diet.  Fatty acids are linked to CoA in order to alter the length of their carbon 

chains, or to alter the level of unsaturation by adding or removing double bonds (Sugiura 

1995).  If the energy demands of the cell are low yet nutrients are readily available, excess 

acetyl CoA is used for the synthesis of fatty acids.  Fatty acid synthesis takes place in the 

cytosol, whereas acetyl CoA generated from oxidative metabolism is located in the 

mitochondria.  Acetyl CoA cannot permeate the inner mitochondrial membrane, so acetyl 

CoA is condensed into citrate which is transported into the cytosol and converted back into 

acetyl CoA through the action of ATP citrate lyase (ACL).  Acetyl CoA is then committed into 

the fatty acid synthesis pathway once it is converted into malonyl CoA through the action 

of acetyl CoA carboxylase (ACC), which is an essential regulatory enzyme for fatty acid 

metabolism (Kim et al. 1989).  Malonyl CoA, as well as the intermediates in fatty acid 

synthesis is linked to an acyl carrier protein (ACP).  De novo fatty acid synthesis starts with  
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Figure 1.5:  The role of CoA in Fatty acid oxidation. The breakdown of fatty acids occurs in three sterps. 1) 
Triacylglycerol is broken down into fatty acids and glycerol. 2) Free fatty acids are activated by CoA through the 
action of the enzyme Acyl CoA Synthase (ACS).  The fatty acyl CoA is then converted into fatty acyl carnitine by 
carnitine acyltransferase 1 (CAT-1), also known as carnitine palmitoyltransferase 1 (CPT-1), and then shuttled 
across the inner mitochondrial membrane via the carnitine transporter.  On the mitochondrial matrix side of 
the membrane, fatty acyl carnitine is converted back into fatty acyl CoA by carnitine acyltransferase 2 (CAT-2), 
or carnitine palmitoyltransferase 2 (CPT-2).  This is known as the carnitine cycle.  3)  Fatty acyl CoA is oxidised in 
the mitochondrial matrix in multiple rounds, removing Acetyl CoA until the fatty acid is depleted (β-oxidation). 
Fatty acids with 10 carbons or less can freely diffuse through the inner mitochondrial membrane.  
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acetyl-ACP, which is formed from acetyl CoA using acetyl transacylase.  Malonyl-ACP adds 

two carbon units in each four-step elongation cycle to the lengthening acyl-ACP chain, 

which occurs on the enzyme Fatty Acid Synthase (FAS) (Figure 1.6).  This continues until 16-

carbon palmitoyl-ACP is formed, as the 1st enzyme in the elongation cycle can no longer 

accept molecules of this size.  Palmitoyl-ACP is hydrolysed by a thioesterase, releasing ACP 

and palmitate.  Synthesis of fatty acids with a carbon chain longer than C16 palmitate is 

mediated by enzymes located on the cytosolic side of the smooth endoplasmic reticulum.  

Malonyl CoA is used as the two carbon donor and the fatty acid is elongated as its CoA 

derivative.   

Polyketides are compounds made up of alternating carbonyl and methylene 

groups.  They are synthesised in a similar process to fatty acids by polyketide synthases, 

which contain multiple enzymatic domains.  Acetyl CoA, malonyl CoA or methylmalonyl 

CoA is loaded onto the ACP domain on the starter molecule and the growing chain is 

transferred along thiol groups of the elongation domains via trans-acylation reactions.  

Products are released at the end by hydrolysis.  Polyketides form a vital class of naturally 

occurring compounds that are often used in industry, and include rapamycin (inhibitor of 

the mammalian target of rapamycin), several antibiotics (tetracycline, erythromycin, 

macrolides), anti-cholesterol drugs (lovastatin) and anti-cancer drugs (epothilone) (Koehn 

2005; Wawrik et al. 2005). 

Cholesterol modulates the fluidity of cellular membranes and is a precursor of 

many steroid hormones.  The committed step in cholesterol synthesis is the formation of 

mevalonate from the reduction of HMG CoA by HMG CoA reductase.  HMG CoA results 

from the combination of acetyl CoA and acetoacetyl CoA.  Mevalonate is converted into 3-

isopentenyl pyrophosphate (IPP) in a series of three reactions involving ATP and six 

molecules of IPP are combined in several condensation reactions to produce a C30  
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Figure 1.6: Fatty Acid synthesis. Image taken from: 
http://www.agron.iastate.edu/courses/agron317/Lipid_Inhibitors.htm  
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molecule called squalene.  Cholesterol is then formed from the cyclisation of squalene in a 

multistep process involving O2 and NADPH.   

1.4 Regulation of Proteins and Cellular processes by CoA and 

CoA thioesters 

1.4.1 The role of CoA in the regulation of cellular processes 

CoA can regulate proteins and processes through a number of mechanisms.  These 

include the availability of CoA as a substrate or cofactor; the regulation of proteins 

allosterically or through other non-covalent mechanisms; and covalently through forming 

di-sulphide bonds with its SH group and by transferring acyl groups. 

1.4.2 Availability as a cofactor or substrate 

 The rate of some biochemical reactions in the cell is dependent on the supply of 

CoASH or CoA thioesters.  This is related to the Km for the enzyme.  If the Km is well below 

the range of concentration in which fluctuations in CoASH or CoA thioesters occur, then the 

rate of the reaction catalysed by the enzyme is unlikely to be affected by any changes in 

CoASH or CoA thioester levels.  Examples of reactions affected by CoASH/CoA ester supply 

are presented below. 

Substrate availability of CoASH has the potential to regulate fatty acid oxidation at 

the point of fatty acid activation.  Acyl CoA Synthase (ACS) activates fatty acids to fatty acyl 

CoA, enabling transport across the mitochondrial membrane.  The cytosolic concentration 

of CoASH is equal to or less than the Km of ACS, therefore the rate at which ACS activates 

fatty acids could depend on CoASH availability (Oram et al. 1975).  Inhibition of ACS activity 

with troglitazone in hepatocytes affects the flux through fatty acid oxidation, further 
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supporting the notion that fatty acid oxidation could be regulated at this point (Fulgencio 

et al. 1996). 

The enzyme ACC catalyses the rate-limiting step in fatty acid synthesis involving the 

conversion of acetyl CoA to malonyl CoA.  Although its enzymatic activity is well known to 

be regulated allosterically by citrate (activator) and palmitoyl CoA (inhibitor), ACC could 

also potentially be regulated by substrate availability of acetyl CoA.  Regulation by 

substrate availability is thought to occur in the liver (Km=25 μM), adipose tissue (Km=67 

μM), heart (Km=117 μM) and skeletal muscle (Km=109 μM) since the Km of ACC for acetyl 

CoA in these tissues is similar to or higher than the concentration of acetyl CoA present in 

the cytosol (Saddik et al. 1993; Tong 2005). 

1.4.3 Regulation through non-covalent interaction 

1.4.3.1 Balance between CoASH/CoA thioesters 

Acetyl CoA is a product of the reaction mediated by PDH.  When fatty acids are 

oxidised as the primary fuel, it is essential that the activity of PDH is reduced to conserve 

carbohydrate reserves.  Therefore the activity of PDH is tightly controlled.  The increased 

use of fatty acids for metabolism is registered through increases in the mitochondrial acetyl 

CoA to CoASH ratio (as well as the NADH to NAD+ ratio), which enhance PDHK catalysed 

inactivation of PDH.  The mammalian PDH complex consists of three enzymes, pyruvate 

dehydrogenase (E1), dihydrolipoamide transacetylase (E2) and dihydrolipoamide 

dehydrogenase (E3).  PDHK is thought to associate with the PDH complex through the E2 

core, and requires its lipoyl prosthetic group.  Stimulation of the kinase activity of PDHK 

results from reduction (E3 reaction) and acetylation (E2 reaction) of the lipoamide domains 

of the E2 oligomer, consequently favouring a high acetyl CoA/ CoA ratio (Figure 1.7).  PDHK 

has four isoforms (1-4) and acetyl CoA was shown to stimulate isoforms 1 and 2 by nearly 

200 and 300% respectively, in the presence of NADH (Bowker-Kinley et al. 1998; Stryer  
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Figure 1.7:  Summary of molecular mechanisms regulating PDK2 activity.  E2 and E3 reactions are acting in the 
reverse directions to make reduced and reductively acetylated L2, resulting in the stimulation of PDK2.  Taken 
from Roche and Hiromasa (2007). 
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2002).  Activated PDHK, then phosphorylates the pyruvate dehydrogenase component (E1), 

consequently inactivating PDH.  Increased levels of CoASH have been shown to reverse the 

activation of PDHK by acetyl CoA in rat liver and heart mitochondria (Batenburg and Olson 

1976; Hansford 1976; Kerbey et al. 1976; Roche and Hiromasa 2007). 

1.4.3.2 Allosteric and other non-covalent interactions 

Allosteric regulation by CoA has been implicated for the enzymes Pantothenate 

Kinase (PanK).  PanK mediates the first step in CoA biosynthesis and is feedback inhibited 

by CoA and is competitive with respect to ATP.  Structural studies involving E. coli PanK 

indicate that CoA occupies the ATP active site in a bent conformation.  Although both CoA 

and ATP both have a similar adenine base structure, they bind to the active site in different 

orientations to each other.  Both molecules do however occupy a portion of the same 

space where they interact with a lysine residue of bPanK to neutralise the charge on their 

respective phosphodiesters.  CoA also forms tight interactions with the side chains of 

several aromatic residues, which might explain why other CoA esters do not inhibit PanK as 

strongly (Yun et al. 2000). 

As mentioned in Section 1.4.3.1, PDHK negatively regulates pyruvate 

dehydrogenase.  There have been several reports stating that CoASH directly inhibits PDHK 

activity (Bao et al. 2004; Pettit et al. 1975).  Conversely, CoASH has also been shown to 

increase the activity of PDHK, potentially by forming interactions with the enzyme through 

its thiol group.  This stimulates PDH phosphorylation and consequent inactivation, 

preventing the conversion of pyruvate into acetyl CoA (Siess and Wieland 1982). 

ADP/ATP exchange across the inner mitochondrial membrane is an important 

process which CoASH regulates in a non-covalent manner.  This process is carried out by 

adenine nucleotide translocator (ANT) and is generally accepted to be the overall rate-

limiting step in energy metabolism.  Incubation of rat liver mitochondria with CoASH 
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resulted in the increased exchange of ATP by ANT, indicating that CoASH facilitates the 

interaction with ATP.  Molecular docking simulation implied that CoASH binds 

independently of the ATP binding site, possibly through the accessory site of ANT.  CoASH 

was also shown to increase ATP exchange in ANT isolated from mitochondria in heart, 

skeletal muscle and brain (Cione et al. 2010). 

Acetyl CoA also has been shown to act as a positive allosteric regulator of pyruvate 

carboxylase (PC) in many species.  PC mediates the carboxylation of pyruvate to 

oxaloacetate, which can be used to replenish the citric acid cycle, or alternatively is a 

substrate for several biosynthetic pathways (e.g. gluconeogenesis, adipogenesis, glutamine 

synthesis in astrocytes and insulin secretion).   Binding of acetyl CoA in the allosteric 

domain of PC results in conformational changes, which enhance the rate of carboxylation 

of biotin (the moiety involved in the transfer of the carboxyl group) (Jitrapakdee et al. 

2008).      

The citric acid cycle is regulated through feedback mechanisms at several points to 

ensure the amount of products (ATP, NADH, FADH2, biosynthetic precursors) meet the 

metabolic requirements of the cell.  Α-ketoglutarate dehydrogenase is one of the control 

points within the citric acid cycle, and an inverse relationship between α-ketoglutarate 

accumulation and succinyl CoA indicated that succinyl CoA inhibited this enzyme.  

Inhibition of α-ketoglutarate dehydrogenase by succinyl CoA in rat and guinea pig liver 

mitochondria is independent of NAD+: NADH ratio, and competitive with CoASH, with a Ki 

of 6.9 µM (LaNoue et al. 1972; Smith et al. 1974; Stryer 2002).  

Feedback regulation mechanisms involving the CoA ester, malonyl CoA, take place 

in fatty acid metabolism.  It is important that fatty acid synthesis and degradation are 

reciprocally regulated in lipogenic tissues such as liver, so that both processes are not 

active at the same time.  In skeletal and cardiac muscle, malonyl CoA acts as a signalling 
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molecule to control fatty acid oxidation.  Malonyl CoA is rapidly turned over in mammalian 

cells, where it is formed through the carboxylation of acetyl CoA by ACC and broken down 

back to acetyl CoA by malonyl CoA decarboxylase (MCD).  Production of malonyl CoA by 

ACC is a highly regulated step in fatty acid synthesis, and malonyl CoA was shown to be a 

potent inhibitor of carnitine palmitoyl transferase 1 (CPT1) at concentrations typical of 

those measured in rat liver (K0.5 ~ 1-2 µM).  CPT1 transports fatty acyl CoA across the 

mitochondrial outer membrane into the mitochondrial matrix, and is often referred to as 

the “rate-limiting step” of fatty acid oxidation.  High levels of malonyl CoA therefore 

stimulate fatty acid synthesis and inhibit fatty acid oxidation (Saggerson 2008). 

Malonyl CoA inhibits CPT1 by binding to two sites within the catalytic domain.  One 

site has low affinity for malonyl CoA, where it competes with fatty acyl CoA, and the other 

site has high affinity for malonyl CoA.  The N-terminal region of CPT1 is important for 

maintaining the structure of the high affinity malonyl CoA binding site.  Desensitisation of 

liver CPT1 to malonyl CoA occurs during fasting and diabetes, and corresponds with 

increased fluidity of the membrane.  In addition to the outer mitochondrial membrane, 

CPT1 inhibitable malonyl CoA has been detected in liver microsomal and peroxisomal 

fractions.  CPT1, which is not inhibited by malonyl CoA was also detected in hepatic 

endoplasmic reticulum lumen and peroxisomal matrix fractions (Saggerson 2008).  

Furthermore, malonyl CoA has been implicated as a signal in glucose mediated insulin 

secretion in β-islet cells, whereby glucose metabolism results in an increase in malonyl CoA 

and consequently increases cytosolic levels of fatty acyl CoA, which is a coupling factor for 

insulin secretion (Herrero et al. 2005; Roduit et al. 2004). 

Long chain acyl-CoA esters have been implicated in the regulation of a large 

number of proteins, including enzymes involved in energy metabolism (e.g. ANT, 

glucokinase, PDH), lipid metabolism (e.g. ACC, LKB1 (AMP activated kinase kinase), CPT1, 
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HMG CoA reductase, hormone sensitive lipase), Signal transduction (e.g. Protein Kinase C 

subtypes, ion channels/pumps), as well as cellular processes such as membrane fusion and 

gene regulation.  Most of the reported effects of long chain fatty acyl CoAs were obtained 

by direct addition of acyl CoA to the system in question, without the presence of acyl CoA 

binding protein (ACBP).  ACBP is a cytosolic protein present in a wide range of tissues and 

has been found in all eukaryotes tested.  It binds medium and long chain acyl CoA esters 

with a Kd of about 0.5 nM.  ACBP protects acyl CoA against hydrolysis and there is strong 

evidence that it also participates in acyl CoA transport.  Furthermore, ACBP sequesters acyl 

CoA and has been shown to reduce the inhibitory effect of long chain acyl CoA on ACC and 

ANT in vitro.  Sensitive methods for estimating the distribution of acyl CoA esters in 

different compartments are not currently available and the actual free concentration of 

cytosolic long chain CoA is not known for any tissue.  Fatty acid synthesis still occurs even 

though long chain fatty acyl CoA inhibits ACC (Ki is equal to 5.5 nM), implying that liver 

cytosolic long chain acyl CoA is below 5.5 nM under normal conditions.  If this is the case, 

the physiological role of long chain acyl CoA would be limited to ACC, LKB1 and the E. coli 

transcription factor FadR, which all have Kis in the nanomolar range, whereas all other 

mentioned proteins require µM concentrations before an effect is seen.  ACBP is not found 

in the mitochondria and peroxisomes in yeast, so it is possible that the free concentration 

of long chain acyl CoA could increase to levels that could inhibit fatty acid oxidation, ANT, 

PDH and the citrate transporter.  Acyl CoA hydrolyases present in these compartments 

could still prevent regulation of these proteins by acyl CoAs from occurring.  ACBPs also 

could potentially donate long chain acyl CoAs directly to proteins for the regulation of 

specific processes (Faergeman and Knudsen 1997).   
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1.4.4 Regulation through covalent modifications 

CoASH has been shown to modify a number of proteins in vitro, including the 

mutant β-subunit of F1-ATPase of E. coli (Odaka et al. 1993) and flavodoxin of K. 

pneumonia (Thorneley et al. 1992).  To date, the only examples for in vivo covalent 

modifications of proteins by CoASH have been described in studies in Huth’s laboratory 

(Huth et al. 1996; Huth et al. 2002; Schwerdt et al. 1991; Schwerdt and Huth 1993).  

Immunological and radiochemical evidence was provided for the novel post translational 

modification of several rat liver mitochondrial proteins (acetyl CoA acetyltransferase, 3-

oxoacyl-CoA thiolase) by CoASH.  This was demonstrated through immunoblotting total 

cellular lysates and purified enzymes with affinity purified anti-CoA antibodies.  They 

proposed that CoASH modification may control the selective degradation of several 

mitochondrial proteins by protecting them from degradation, however no further studies 

on other cellular proteins or CoA’s role in cellular processes have been carried out.  It is 

important to note that during sample preparation, no alkylating agent was used to block 

the thiol group, therefore it is possible that CoASH modification may have occurred during 

sample preparation due to the presence of reactive oxygen species released in the 

mitochondria. 

As well as CoASH, cysteine residues also contain this highly reactive thiol group and 

consequently have been conserved in the active sites of several proteins, including 

enzymes involved in both central and peripheral metabolism, signal transduction and even 

enzymes of protein catabolism (Cotgreave and Gerdes 1998).  The thiol group enables 

cysteine to form intra-molecular or intermolecular disulphide bonds with other proteins, or 

with glutathione (γ-glutamyl-L-cysteine-glycine), which is the most prominent low-

molecular weight thiol in most eukaryotic and prokaryotic cells.  Glutathione plays an 

essential role during conditions of oxidative stress through detoxifying reactive oxygen 
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species as well as transmitting redox signals.  S-glutathionylation of a number of proteins 

undergoing oxidative stress has been observed, including protein chaperones, cytoskeletal 

proteins, cell cycle regulators and enzymes in intermediary metabolism (Lind et al. 2002)   

Sulfhydryl modifications often cause significant conformational changes to the protein, 

altering its structural and catalytic properties.  This can either lead to the activation or 

inactivation of the respective protein’s function and ultimately triggers downstream 

processes (Leichert et al. 2005). The reactive thiol group on CoASH could potentially modify 

proteins with a conserved cysteine by reversible covalent modification, and possibly 

regulate a number of cellular processes in this way. 

If covalent modification of proteins by CoASH is physiological, CoASH has to 

compete with glutathione, which is present in much higher concentrations in the cytosol 

(Hwang 1992).  This suggests that proteins modified by CoASH need to contain a binding 

site that can specifically recognise CoASH, or there is a specific enzyme that transfers and 

attaches CoASH via a disulphide linkage to a particular protein.  Indeed, in vitro 

experiments indicated that some enzymes, including phosphofructokinase and fructose 

1,6-bisphosphate, showed preference for CoASH over glutathione for modulation of the 

enzyme activity (Gilbert 1982; Horecker 1969). 

During protein synthesis many polypeptides undergo post-translational 

modifications (including phosphorylation, methylation and ubiquitination), which are 

common mechanisms for controlling the behaviour of the protein.  These modifications can 

regulate the protein’s catalytic properties, their ability to interact with other proteins, alter 

their localisation, or target them for degradation.  Acetyl CoA is required for the acetyl CoA 

dependent acetylation of histones and non-histone proteins (e.g. transcription factors).  

These acetylation reactions are mediated by a family of enzymes called acetyltransferases 

and the removal of the acetyl group is controlled by deacetylases.  Histone 
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acetyltransferases (HATs) catalyse the transfer of acetyl CoA onto the lysine residues of 

histone proteins.  The primary effect of acetylation is to neutralise the positive charge on 

the lysine, consequently altering the biochemical properties of the protein.  As the 

acetylation modification is specific to lysine residues, it has great regulatory potential with 

the ability to interfere with cellular functions that rely on other lysine modifications, such 

as methylation and ubiquitination.  Also, lysine acetylation also creates a platform that 

either enables the formation of new protein-protein interactions or prevents specific 

partners from binding.  It is also important to note that acetylation can also occur on the N-

terminal α amine of proteins through the action of N-acetyltransferases (Sadoul et al. 

2008). 

Palmitoylation is a reversible covalent attachment of the long chain fatty acids, 

such as palmitate, to cysteine, and occasionally threonine and serine residues of proteins.  

Addition of palmitate increases the hydrophobicity of proteins and facilitates membrane 

interactions and membrane targeting.  In addition, palmitoylation has been shown to play a 

role in trafficking proteins between different subcellular compartments, modulate protein: 

protein interactions and also enzymatic activity through altering the binding capacity of 

proteins, consequently affecting numerous signalling pathways.  The reversible 

modification of proteins by palmitoylation is regulated through the actions of 

acyltransferases and acylthioesterases (Resh 2006).  

Myristoylation is an irreversible covalent attachment of the 14-carbon saturated 

fatty acid, myristate, usually onto the N-terminal glycine of a protein via an amide bond.  

The substrate for the transfer of myristate is myristoyl CoA.  This modification can occur co-

translationally as well as post-translationally, and is important in many signalling cascades 

(Farazi et al. 2001). 
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Succinylation of lysine residues is a post-translational modification that occurs on a 

large number of cellular proteins and has been evolutionary conserved.  It has been 

proposed that succinyl CoA is the cofactor for this reaction, however the enzyme mediating 

this reaction is currently unknown.  Succinylation of a lysine residue completely reverses 

the charge from positive to negative and also adds a much larger structural moiety than 

acetylation or methylation.  Succinylation is therefore likely to lead to significant changes in 

the protein’s structure and function.  Due to the abundance of lysine succinylation 

detected in whole cell lysates when using western blot analysis with an anti-succinyl lysine 

antibody, alongside its induced chemical changes, it has been predicted that lysine 

succinylation could have important cellular functions (Zhang et al. 2011).  Indeed, succinyl 

CoA has been implicated in the succinylation of ox liver mitochondrial HMG-CoA synthase, 

an important enzyme in the mevalonate and ketogenesis pathways.  Succinyl CoA 

inactivated the enzyme through succinylation, probably through a covalent thioester 

linkage at the same cysteine residue that is acetylated in the normal enzymatic reaction 

(Lowe 1985). 

1.5 Control of CoA levels 

The level of CoA depends on three factors; the rate at which CoA is synthesised; 

the rate at which it is degraded; and the rate at which it is converted into CoA derivatives.  

1.5.1 CoA Biosynthetic Pathway 

Biosynthesis of CoA is conserved in prokaryotes and eukaryotes and involves five 

enzymatic steps.  CoA is derived from three substrates; pantothenate (vitamin B5), cysteine 

and ATP.  Prokaryotes, fungi and plants are able to synthesise pantothenate, however 

animals must obtain it from their diet (Smith and Song 1996). There is no evidence for any 

CoA transport between cells and it is assumed that the CoA biosynthetic pathway is 
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sufficient to generate an independent pool of CoA (Robishaw and Neely 1985).  The cloning 

of the E. coli genes encoding the proteins involved in CoA biosynthesis was completed in 

2001 (Kupke et al. 2000; Strauss et al. 2001), and the mammalian genes were cloned by 

2002 by several groups. 

In the first step of CoA biosynthesis, pantothenate is phosphorylated to form 4’-

phosphopantothenate.  This step is mediated by PanK and is rate-limiting.  Unlike the other 

enzymes in the biosynthetic pathway, the bacterial and eukaryotic versions of the PanK 

enzyme appear to be unrelated (Calder et al. 1999).  PanK, therefore served as a prime 

target for the identification of novel antibacterial drugs (Gerdes et al. 2002).  

Phosphopantothenoylcysteine synthetase (PPCS) conjugates cysteine with the product of 

the first reaction to form 4’-phosphopantothenoylcysteine, which is then decarboxylated 

by phosphopantothenoyl cysteine decarboxylase (PPCDC).  The 4’-phosphopantetheine 

produced is adenylated by phosphopantetheine adenylyltransferase (PPAT), forming 

dephospho-CoA.  Dephospho-CoA is then phosphorylated by dephospho-CoA kinase (DPCK) 

to produce CoA as a final product (Figure 1.8).  The bacterial equivalents of these enzymes 

are often labelled CoaA-E.  The activities of PPAT and DPCK are associated with two 

different enzymes in prokaryotes and plants but are fused as a bifunctional enzyme, also 

termed CoA synthase (CoASy), in mammals (Zhyvoloup et al. 2002). 

The two rate-limiting steps of the CoA biosynthetic pathway were determined by 

metabolic labelling experiments in E. coli and mammalian COS-7 cells (Jackowski and Rock 

1981; Rock et al. 2000). The data demonstrated that both pantothenate and 4’-PP could 

accumulate in significant amounts under limiting conditions for CoA biosynthesis, indicating 

that PanK and PPAT activities were rate-limiting (Jackowski and Rock 1984; Rock et al. 

2000). Similar studies in perfused rat hearts showed an accumulation of just pantothenate 

in normal conditions, and only during artificial stimulation of CoA Synthesis was an increase  
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Figure 1.8: CoA Biosynthetic Pathway 
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in 4’PP also seen (Robishaw et al. 1982; Robishaw and Neely 1984).  In Arabidopsis 

thaliana, over-expression of a mutant form of PPAT resulted in 60-80% reduction in CoA 

levels, whereas over-expression of PPAT resulted in a 1.6 fold increase in free CoASH + 

acetyl CoA levels (Rubio 2008). PanK is consequently widely accepted as the rate-limiting 

enzyme in CoA biosynthesis in all organisms, however the rate-limiting activity of CoASy 

may not be as widespread.   

1.5.2 Regulatory enzymes in CoA Biosynthesis: Pantothenate Kinase 

PanK is the primary regulatory enzyme in the CoA biosynthetic pathway for both 

bacteria and mammals, and consequently is the most widely studied of the CoA 

biosynthetic enzymes (Jackowski & Rock 1981; Robishaw et al. 1982).  It is feedback 

regulated through inhibition by CoASH and/or CoA thioesters and is consequently the main 

control point of CoA synthesis in response to the cell’s metabolic demand.  Bacterial PanK is 

competitively inhibited by CoASH and its thioesters binding to the ATP site, with free 

CoASH acting as the most potent inhibitor.  Thus, in bacteria the CoA biosynthetic activity is 

also linked to the energy state of the cell (Rock et al. 2000).  In mammalian cells, feedback 

regulation of PanK is more complex due to its multiple isoforms, which are encoded by four 

genes in humans and mice, some of which express splicing variants (Zhang et al. 2005). 

PanK1 has 1α and 1β isoforms; PanK2 has 3 isoforms; PanK3 and PanK4 have one isoform 

known to date.  The various isoforms of PanK have different enzymatic qualities and 

different isoforms are expressed by different tissues.   All the PanK isoforms share a >80% 

identical common catalytic core attached to various unrelated extensions.  PanK1α and 

PanK2 possess long N-terminal extensions (100-200 amino acids), whereas the N-terminal 

extensions for PanK1β and PanK3 are only a few amino acids long.  PanK4 has a long C-

terminal extension, however its function is unknown.   
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The catalytic core is intrinsically insensitive to inhibition by free CoASH and is 

weakly inhibited by acetyl CoA, however, the addition of the long N-terminal chain in the 

PanK1α isoform results in inhibition by free CoASH and long-chain acyl-CoA and further 

increases the inhibition by acetyl CoA and malonyl CoA.  Similarly, PanK2 is very sensitive to 

inhibition by acetyl CoA, long chain acyl-CoA and malonyl CoA, but less sensitive to free 

CoASH.  The N-terminal extension of PanK2 also directs it to the mitochondria, while 

PanK1α and PanK1β and PanK3 are located in the cytoplasm.  PanK3 is more sensitive to 

CoA thioester regulation than the PanK1 isoforms, with acetyl CoA and palmitoyl CoA 

acting as the main regulators.  The variation in PanK3’s regulatory pattern compared to 

PanK1β is due to differences in their amino termini.  It is thought that the ranging 

sensitivities of the various PanK isoforms to feedback inhibition by CoA thioesters allows 

CoA biosynthesis to receive regulatory signals from different branches of intermediary 

metabolism (Leonardi et al. 2005; Leonardi et al. 2007; Zhang et al. 2005). 

In addition to feedback inhibition, PanK can also be regulated by gene expression in 

mammalian cells to modify long-term CoA levels in response to diet and disease.  The 

mechanisms by which these responses are governed are largely unknown.  Tissues that 

have high levels of PanK expression or in conditions where over-expression of PanK has 

been enforced, correspond with high intracellular CoA levels (Leonardi et al. 2007; 

Ramaswamy et al. 2004; Rock et al. 2000).  This implies that pantothenate supply and 

transport would also play a role in determining cellular CoA concentration.  Pantothenate 

deficiency has not been reported in humans, presumably due to its ubiquitous nature 

(Leonardi et al. 2005).   

One of few known mechanisms underlying the regulation of PanK1 expression is 

through the peroxisome proliferator activated receptor transcription factor α (PPARα).  

PPARα-regulated PanK1 expression is consistent with the requirement to increase the 
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availability of CoA to support the accelerated processing of its thioesters through the fatty 

acid oxidation pathway.  Analysis of the PanK1α promoter sequence reveals the presence 

of binding sites for transcription factors involved in the regulation of carbohydrate and lipid 

metabolism. 

1.5.3 Regulatory enzymes in CoA Biosynthesis: CoA Synthase 

The secondary rate-limiting step of CoA biosynthesis is mediated by the PPAT 

activity of CoASy, although this enzyme has not been studied to the same extent as PanK.  

CoASy was first identified in mammals in 1983 from pig liver extract (Worrall 1983), 

however it was not until 2002 that the gene was cloned  (Aghajanian and Worrall 2002; 

Daugherty et al. 2002; Zhyvoloup et al. 2002).   

Fluorescent microscopy of GFP-tagged CoASy indicated that CoASy localises on the 

outer mitochondrial membrane, whereas the other enzymes in the pathway are located in 

the cytosol.  Additionally, subcellular fractionation studies revealed that CoASy was 

associated in the mitochondrial fractions.  It appears to have a mitochondrial localisation 

signal in its N-terminal sequence since CoASy missing the N-terminal region mislocates to 

the cytosol (Zhyvoloup et al. 2003).  Furthermore, both activities of CoASy are potently 

activated by phosphatidylcholine and phosphatidylethanolamine, which are the main 

components of the outer mitochondrial membrane (Zhyvoloup et al. 2003).    

There is some evidence that CoASy is feedback inhibited either by CoA or its 

thioesters, yet to date very little direct assessment on CoASy regulation has been carried 

out (Izard 2003). Members of our group have further revealed interactions between CoASy 

and members of the mTOR (mammalian target of rapamycin) and PI3 Kinase (PI3K) 

pathways, providing a link between signalling pathways and energy metabolism.   
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mTOR is a central mediator of metabolism and growth, integrating various 

metabolic signals exerted by hormonal and stress factors, nutrient availability, and energy 

status.  The mTOR pathway regulates a range of physiological functions including gene 

transcription, protein metabolism, cell cycle and cytoskeletal organisation.  PI3K signalling 

also influences a wide range of cellular functions including cell growth, differentiation and 

survival, glucose metabolism and cytoskeletal organization (Sarbassov et al. 2005). 

CoASy was shown to interact with the ribosomal protein S6 Kinase 1 (S6K1) in a 

yeast two-hybrid screen (Nemazanyy et al. 2004; Zhyvoloup et al. 2002).  S6K is activated in 

response to mitogenic stimuli and nutrients via the PI3K and mTOR pathways.  CoASy was 

not found to be a substrate of S6K.  CoASy also appears to form a direct in vitro complex 

with the regulatory p85α domain of PI3K.  This complex formation involves both SH2 and 

SH3 domains of p85α and only forms once CoASy tyrosines have been phosphorylated.   

Further in vivo interactions were shown through siRNA mediated knockdown of CoASy, 

which brought about changes in the phosphorylation patterns of the immediate 

downstream targets of PI3K, PDK1 and PKB (Breus et al. 2009;  Nemazanyy et al. 2004).  

What's more, small fractions of S6K1, mTOR and both regulatory and catalytic subunits of 

PI3K were identified in the mitochondrial fraction.  As CoASy is located on the outer 

mitochondrial membrane, this leads to speculation that CoASy may form a binding 

platform for the formation of a multi-enzyme complex, which may include these signalling 

molecules (Breus et al. 2009; Nemazanyy et al. 2004). 

1.5.4 Degradation of CoA 

Although the CoA degradation pathway has been determined to be nearly the 

reverse of the biosynthetic pathway, actual measurements of CoA turnover rates have not 

been done.  This is because degradation of CoA proceeds so slowly, consequently making it 

difficult to study.  How CoA is actually degraded in vivo is still under question, since the 
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majority of CoA is mitochondrial, whereas the first enzyme in the degradative pathway is 

lysosomal.  The inner mitochondrial membrane appears to be impermeable to CoA, so how 

CoA comes into contact with the lysosomal enzymes is difficult to explain.  It is also 

important to note that CoA-degrading enzymes have low substrate specificities, therefore it 

is unlikely that degradation of CoA is that important in the regulation of CoA levels 

(Robishaw and Neely 1985).   

In peroxisomes, CoA is broken down into 4’-PP and ADP by the nudix (nucleoside 

diphosphate linked to another moiety X) hydrolases (Nudts).  Nudt7 and Nudt19 are the 

two nudix hydrolases which are active on CoASH or CoA derivatives.  During fasting, an 

increase in CoA levels in liver correlates with down regulation of Nudt7 expression, 

suggesting that Nudt7 plays a central role in CoA homeostasis (Leonardi et al. 2010; Reilly 

2008). 

An alternative to direct CoA degradation can occur through the transfer of the 

4’phosphopantetheine moiety of CoA to carrier proteins such as the fatty acid synthase 

(FAS), mediated by 4’phosphopantetheinyl transferase.  The phosphopantetheinyl 

prosthetic group is then able to re-enter the CoA biosynthetic pathway or exit from the cell 

and consequently can regulate intracellular CoA concentration (Joshi et al. 2003).   

1.5.5 Conversion of CoASH to other esters 

Total tissue levels of CoA normally remain fairly constant, although the distribution 

of free CoASH and its acyl esters may vary over a wide range.  The ratio of CoASH: acyl CoA 

is important in the control of a number of key metabolic reactions.  For example, treatment 

of hearts with high levels of fatty acids, pyruvate or ketone bodies, alters the composition 

of CoA from 80% free CoASH to 80% acyl esters, primarily acetyl CoA (Olson 1978; Oram 

1973). 
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1.5.6 Compartmentalisation of CoA 

Intracellular CoA is segregated in pools within eukaryotic cells, limited by the 

membranes of the mitochondria and peroxisomes.   Cytosolic concentrations of CoA in 

mammalian tissues range from 0.02-0.14 mM and processes such as lipid synthesis, 

microsomal fatty acid oxidation, protein modifications and membrane trafficking (fatty acid 

synthesis) are affected by these concentrations.  Mitochondrial CoA levels are much higher, 

ranging from 2.2 to over 5 mM and mediate processes such as mitochondrial fatty acids 

oxidation, the citric acid cycle, and mitochondrial fatty acid synthesis.  Peroxisomes also 

contain a large proportion of CoA (0.7 mM) where it plays a major role in very long chain 

fatty acid oxidation.  The transfer of CoA activated acyl moieties across organelle 

membranes is achieved through the carnitine system.  The method of free CoASH transport 

into mitochondria and peroxisomes has not fully been characterised, however, although it 

is believed to be a specific, energy dependent uptake process which is sensitive to the 

electrochemical and pH gradient across the mitochondrial membrane (Tahiliani and Neely 

1987).  The exchange between these compartments appears to be very slow (Idell-Wenger 

et al. 1978).  The intracellular distribution of CoA in tissues such as heart and liver are 

thought to be important in determining whether fatty acids are oxidised in the 

mitochondria or converted into lipids in the cytosol (Idell-Wenger and Neely 1978). 

1.6 CoA homeostasis 

CoASH, acetyl CoA and other acyl-CoA esters play important roles in numerous 

biosynthetic, degradative and energy yielding processes, therefore it is essential that their 

levels and ratio in cellular compartments are tightly regulated.   
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1.6.1 Basal levels of CoA 

CoA is present in every mammalian tissue that has been studied and levels of CoA 

differ corresponding to the metabolic activity of the tissue.  In rats, liver contains the 

highest levels of CoA, ranging from 22 to 368 nmol/g tissue (Tahiliani 1991; Tokutake et al. 

2010).  Heart/cardiac muscle, which carries out a high rate of substrate oxidation to meet 

energy requirements, contains the next most abundant levels (approximately 100 nmol/g 

tissue), followed by kidney, testes, diaphragm, adrenal and gastrocnemius muscle/white 

skeletal muscle in that order (Leonardi et al. 2005; Reibel et al. 1982; Tahiliani 1991).  

1.6.2 Physiological changes in CoA levels 

CoA levels in animal tissue, particularly liver, have been shown to change in 

response to various extracellular stimuli, including hormones, nutrients and cellular 

metabolites.  Insulin, glucose, fatty acids, pyruvate and ketone bodies reduce the level of 

CoA, whereas glucocorticoids and glucagon increase CoA levels.  Fibrate drugs (bezafibrate, 

clofibrate), and diet (starving) can also increase CoA levels, whereas feeding reduces CoA 

levels (Brass et al. 1990; Corkey et al. 1988; Halvorsen and Skrede 1982; Mcallister et al. 

1988; Rapp 1973; Reibel et al. 1981a; Robishaw et al. 1982; Smith and Savage 1980; Smith 

1978; Smith et al. 1978; Voltti et al. 1979). In these studies, it is not known in which cellular 

compartments these changes occur.  If they occur in the cytosol (where the level of CoA is 

normally very low), significant effects on fatty acid metabolism among other pathways 

utilising CoA, and cytosolic proteins that CoA potentially regulates, might be expected.   

1.6.3 Pathological conditions which change CoA levels 

Deregulation of CoA homeostasis can be seen in a number of pathological 

conditions.  CoA levels are particularly high in diseases such as diabetes and Vitamin B12 

deficiency, whereas the levels are abnormally low in certain tumours, Reye syndrome, and 

medium chain acyl-CoA dehydrogenase deficiency (Brass et al. 1990; Corkey et al. 1988; 
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Halvorsen & Skrede 1982; Mcallister et al. 1988; Rapp 1973; Reibel et al. 1981a; Robishaw 

et al. 1982; Smith & Savage 1980; Smith 1978; Smith et al. 1978; Voltti et al. 1979).  Most of 

the data regarding CoA levels is not recent, yet the mechanisms behind how CoA levels are 

changed still have not been characterised.    

More recently, genetic analysis linked the neurological disorder, Hallervorden-

Spatz syndrome or Pantothenate Kinase-associated neurodegeneration (PKAN) to 

mutations in the human PanK2 gene.  PKAN patients accumulate iron in the globus pallidus 

of the brain and symptoms include progressive rigidity, frequent intellectual disability and 

convulsions. This is thought to be because the deficient PanK2 no longer produces 

phosphopantothenate, which usually condenses with cysteine, resulting in the 

accumulation of cysteine.  In the presence of iron, cysteine is hypothesised to undergo auto 

oxidation, which results in the production of reactive oxygen species and leads to 

neurodegeneration (Zhou et al. 2001).  

To obtain a better understanding of the cellular alterations that occur during the 

onset and progression of the disease, PanK2 knockout mice were generated (Kuo et al. 

2005).  These studies did not show any neurological abnormalities, and it was later 

discovered that murine and human PanK2 have different subcellular localisation patterns 

and expression levels in the brain (Kuo et al. 2005; Leonardi et al. 2007).  Further genetic 

studies involving Drosophila melanogaster were carried out, where hypomorphic mutant 

alleles of the enzymes dPanK, dPPCS, dPPAT-DPCK of the CoA biosynthetic pathway were 

created (Bosveld et al. 2008).  The main phenotype of mutant flies was abnormal 

locomotor function, which was progressive with time and exemplified by abnormal wing 

position, reduced flight performance, and impaired ability to climb against gravity.  It was 

also observed that mutant flies also had a reduced life span, altered lipid homeostasis and 

elevated DNA damage since they were hypersensitive to infra-red radiation.  Also, dPPCS 
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and dPanK/fbl, but not PPAT-DPCK mutants were hypersensitive to cysteine, which was 

consistent with the previous hypothesis. Additionally, it was proposed that changes in lipid 

homeostasis, resulting from the inhibition of CoA biosynthesis, would disrupt the integrity 

of membranes.  This would consequently disrupt the integrity of tissues, including the 

central nervous system, leading to neurodegeneration.  It was also thought that altered 

membrane lipid composition might disturb the dynamic interplay between cytoskeletal 

components, membrane structures and lipid signalling, causing division errors during 

central nervous system development and impaired DNA integrity (Bosveld et al. 2008).  

1.7 Aim of thesis  

Although cellular CoA levels are normally kept within a narrow range, they have 

been shown to change under various conditions such as nutritional state as well as in 

pathological conditions.  These changes in CoA levels can influence cellular processes 

regulated by CoA through the mechanisms discussed in section 1.4.  Regulatory roles of 

CoA have mainly been studied previously in the context of feedback/feedforward 

regulation of metabolic pathways or enzymes by free CoASH, CoA thioesters or by changes 

in the CoASH: acetyl CoA ratio in the mitochondria.  There have been a few reports 

suggesting other pathways and processes, such as cell growth, may be regulated by 

changes in CoASH and/or CoA thioesters, as well as reports of enzymes which are regulated 

directly by CoASH through allosteric or covalent interaction, suggesting wider regulatory 

roles of CoA (Huth et al. 1988, 1991, 2002; Thorneley et al. 1992; Odaka et al. 1993; 

Charlier et al. 1997; Cai et al. 2011).  

Abnormal CoA levels are observed in a number of diseases, however the role of 

CoA in the pathogenesis of these diseases has not been studied in detail.  The aim of this 

thesis is to gain a greater understanding of the function of CoA as a regulator of cellular 
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processes.  For this, it is necessary to develop methods to reliably and routinely measure 

CoA levels in tissues and cells (Chapter 3).  Chapter 4 will use a “top down approach” to 

focus on understanding how cellular CoA levels are regulated and identify cellular 

processes and pathways which are influenced by changes in CoA levels.  In Chapter 5 a 

“bottom-up” approach shall be used to identify individual proteins directly interact with 

CoA and establish how they are regulated. 
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Chapter 2: Materials and Methods  

2.1 Materials 

2.1.1 Common chemicals and Reagents  

All the general purpose chemicals were purchased from Sigma-Aldrich, Thermo 

Fisher Scientific UK limited, BDH AnalaR®, and Melford Laboratories Ltd. UK unless 

otherwise stated. General cell culture reagents were purchased from PAA Laboratories 

GmbH. Cell inhibitors were purchased from Calbiochem and LC Laboratories. Enzymes were 

purchased from Sigma-Aldrich. Pre-stained protein molecular weight markers, DNA 

markers and restriction enzymes were obtained from Fermentas.  

2.1.2 Antibodies and sera 

Antibodies against CoA Synthase and S6K were previously generated in the 

laboratory for other applications.  Anti-PanK1 was acquired from AbCam® (ab69354).  

Antibodies against PKB, phospho-PKB, AMPK, phospho-AMPK and acetyl lysine were from 

Cell Signalling Technology.  Anti-phospho S6K was acquired from Millipore and anti-β-actin 

from Sigma-Aldrich.  Horseradish peroxidase-linked (HRP) secondary antibodies (anti-rabbit 

and anti-mouse) were purchased from Promega.  

2.1.3 Mammalian cells 

Hek293 (human kidney embryonic cells) and HepG2 (hepatocellular carcinoma) 

were obtained from the American Type Culture Collection (ATCC).  MEF, K562 and MOLT 

cells lines were a gift from Professor M. O’Hare. 
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2.1.4 Plasmids and Primers 

The Pet28a plasmid containing PanK1β insert was obtained from Addgene (plasmid 

#25517), pet30a and pcDNA3.1(+) plasmids were purchased from Invitrogen and Novagen 

respectively.  Amplification primers used in this thesis were ordered from MWG. 

2.2 Nucleic Acid Manipulation 

2.2.1 Polymerise Chain Reaction 

 The polymerase chain reaction (PCR) was used to amplify specific DNA sequences 

from DNA templates, using specific DNA primer oligonucleotides.  PCR was performed using 

2.5 ng DNA template in a 25 μL total volume containing 0.2 mM dNTPs, 2 μM of each 

primer, and 0.5 U Phusion DNA polymerase (Thermo Scientific) in Phusion 1x HF reaction 

buffer as supplied.  The reaction was carried out for 30 cycles, consisting of a denaturing 

stage (98°C for 30s), a primer annealing stage (56-59°C for 30s), and finally a polymerase 

extension stage (72°C for 1 min).  After completion of the cycling amplification, a final 

extension stage (72°C for 3 mins) was applied.  Reactions were carried out in a thermal 

cycler (Labnet Multigene II).   

2.2.1.1 Primer Design 

 Primers were designed using the known DNA sequence of the template (PanK1β 

sequence from ADDGENE), with restriction enzyme sites created at the ends of primers to 

facilitate subsequent subcloning of fragments.  Additional bases missing from the PanK1β 

template supplied were also included in the primer design.   Annealing temperature (Tm) 

was calculated using the equation Tm (°C) = 2(A+T) + 4(C+G).  The primers used in this study, 

written 5’ to 3’ are shown below (Figure 2.1).  To check primers were correctly designed 

and also whether DNA had been correctly inserted into a vector, 10-50 ng/μL DNA samples 

in 30 μL H2O were sent off for sequencing analysis at GATC-biotech.   
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Figure 2.1: PCR primers for PanK1β. 

 

2.2.2 DNA Digestion using Specific Restriction Endonucleases 

 Typically, 1 μg DNA was digested with 4 U of restriction enzyme in the appropriate 

1X buffer as recommended by the manufacturer in a total volume of 20 μL for 1 hr at 37°C.  

Resultant restricted DNA fragments were then separated and analysed by DNA gel 

electrophoresis and gel purified when necessary.   

2.2.3 DNA Electropheresis and Purification of DNA Fragments 

 DNA separation through an agarose-based gel can be used to allow visualisation 

and analysis of DNA fragments.  The elecropheretic mobility of DNA molecules depends 

upon their size and the concentration of agarose gel used.  Here, 0.9% agarose gels were 

used for DNA analysis and purification.  The appropriate weight of agarose was added to 

TAE buffer (40 mM Tris-Acetate, 1 mM EDTA, pH 7.0) and heated to allow the agarose to 

dissolve.  The solution was cooled to approximately 60°C and 1X gel red dye (DNA 

visualisation) or 1X gel green dye (gel purification) was added.  The melted agarose solution 

was poured into a mould with a well-forming comb inserted, and allowed to solidify at 

room temperature.  DNA samples were mixed with 6X DNA loading buffer (Fermentas), 

loaded into the wells and separation was achieved by electrophoresis in TAE buffer at a 

constant voltage of 100 V.  Standard molecular weight markers (1 kb Gene Ruler, 

PanK1β (forward): 5’GATCAGAATTCACCATGAAGCTTATAAATGGCAAAAAGCAAACATTCCCATGGTTTGGCATGGAC3’ 

PanK1β (reverse): 5’ACTCGGCGGCCGCTACTTGTCATCAGTCATTTTGAACAGTT3’ 

 

EcoRI 

NotI 

Added sequence 

 

 

Added sequence 
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Fermentas) were applied alongside the samples to determine relative sample DNA sizes.  

DNA was visualised and photographed under exposure to long-wave UV light.   

 When required, samples run in agarose containing gel green dye could be purified 

using the Wizard DNA Cleanup system (Promega) according to kit instructions.   

2.2.4 DNA Ligation 

 The Fermentas T4 DNA ligase kit was used to clone DNA fragments into linearised 

plasmids.  To ensure the DNA insert was ligated, and to minimise vector self-ligation, a 1:3 

molar ratio of vector: insert was used.  Conversion of molar to mass ratios was calculated 

using the following equation: 

 
                                

                 
                 

      

      
            

The reaction was carried out in the presence of 1 μL T4 DNA ligase, 1X ligation buffer in a 

total volume of 20 μL at room temperature for 15 mins.   

2.2.5 Transformation and Growth of Bacteria 

 XL10-Gold E. coli competent cells, initially stored at -70°C were thawed on ice and 

50 μL bacterial suspension was mixed with 1 μL ligation mixture.  After 20 mins incubation 

on ice, the cells were induced to take up the ligated plasmid DNA by heat shock treatment 

at 42°C for 45 s, followed by immediate cooling on ice for 3 mins.  1 mL of warm SOC (Super 

Optimal broth with Catabolite repression) medium was added to the bacteria, which were 

allowed to recover for 1 hr at 37°C in a shaking incubator (200 RPM).   Bacterial cells were 

either taken directly from the SOC medium (5– 100 μL) or were collected by centrifugation 

at 3000 RPM for 5 mins and resuspended in 100 μL SOC medium were spread onto 

prewarmed Luria Bertani (LB) agar plates containing the appropriate selection antibiotic.  

Plates were incubated overnight at 37°C.   
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2.2.5.1 Preparing Chemical Competent Cells 

 To prepare chemically competent cells, a single colony of a bacterial strain was 

incubated overnight in 2 mL LB medium with shaking (225 RPM).  The overnight culture was 

diluted 1:100 by inoculating 2 mL with 200 mL LB supplemented with 20 mM MgSO4.  Cells 

were grown in a 1 L flask at 37°C with shaking until the OD600 reached between 0.4 and 0.6.  

The cells were pelleted by centrifugation at 4000 RPM for 5 mins at 4°C.  The cell pellet was 

gently resuspended in 80 mL ice-cold TFB1 (30 mM potassium acetate, 50 mM MnCl2, 100 

mM KCl, 10 mM CaCl2, 15% (v/v) glycerol).  The resuspended cells were incubated on ice for 

5 mins before repelleting by centrifugation at 4000 RPM for 5 mins, 4°C.  The bacterial cells 

were then resuspended in 8 mL ice-cold TFB2 (10 mM NaMOPs, pH 7.0, 75 mM CaCl2, 10 

mM KCl, 15% (v/v) glycerol).  Cells were incubated on ice for 15 mins before snap-freezing 

on dry ice in pre-chilled microcentrifuge tubes and storing at -70°C.   

2.2.6 Purification of Plasmid DNA 

 Plasmid DNA was purified from bacterial cultures using the QIAprep miniprep kit 

(Qiagen).  The procedure is based on alkaline lysis of the bacterial cells, followed by 

adsorption of DNA onto silica in the presence of high salt. Briefly, a bacterial pellet from a 3 

mL overnight culture of XL10 E. coli was resuspended in the suspension buffer P1 provided.  

The suspension was subsequently lysed and neutralised with buffers P2 and N3 

respectively.  The lysed mixture was centrifuged and the supernatant containing the 

circular plasmid DNA was collected and transferred to a QIAprep spin column.  Further 

centrifugation through the column results in the plasmid DNA binding to the column.  The 

plasmid DNA was then washed by centrifugation with PB and PE buffers and eluted using 

ddH2O.  The purified plasmid DNA was checked for purity and concentration by loading 

onto a DNA agarose gel alongside a comparative DNA ladder (1 kb GeneRuler, Fermentas) 



A Study of Coenzyme A Metabolism and Function in Mammalian Cells 

 

 

62 

as well as a plasmid with a known DNA concentration.  DNA concentration was also 

determined by nanodrop analysis.   

2.3 Mammalian Cell Culture and Methodology 

2.3.1 Maintenance of Cell lines 

Cell lines (Hek293 and HepG2) were cultured in Dubecco’s Modified Eagles Medium 

(DMEM) with high glucose (obtained from PAA).  All media were supplemented with 

filtered foetal bovine serum (FBS) (10% v/v) (Hyclone), 2 mM L-glutamine, 50 U/mL 

penicillin and 0.25 μg/mL streptomycin (PAA).  Cells were grown in humidified 37˚C 

incubators at 10% CO2 to a confluency of 70-80%.  The media was removed and the cells 

were washed once in pre-warmed sterile Dubecco’s phosphate buffered saline (PBS), and 

then pre-warmed sterile Trypsin-EDTA was added. Cells were incubated at 37˚C in Trypsin-

EDTA until cells began to detach from the plastic plate.  Typically this takes 1-2 mins, 

however it can vary between cell lines.  Cells were re-suspended in fresh DMEM to 

neutralise the trypsin and pipetted up and down to disperse any clumps of cells.  The 

resulting cell suspension was diluted at the desired ratio (usually 1:10) into new plates, 

which contained fresh medium.  Subculturing procedures were carried out in a laminar flow 

hood in a sterile environment using media/reagents that were all pre-warmed to 37°C. 

2.3.2 Freezing Cell lines 

Healthy cells of a low passage number (passage 2-5) were grown to about 80% 

confluency in DMEM, supplemented with 10% FBS and 5% penicillin/streptomycin at 37˚C, 

10% CO2.  After media was removed, the cells were washed with PBS and treated with 

Trypsin-EDTA as described for the maintenance of cell lines.  Cells were resuspended in 

fresh DMEM and spun for 5 mins at 1000 RPM.  The medium was removed and cells were 

re-suspended in 90% FBS, 10% Dimethyl Sulphoxide (DMSO).  The cell suspension was 
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placed in freezing vials and stored at -80˚C overnight in a box containing isopropanol, which 

allows the vials containing the cells to slowly come to temperature, preventing cell death.  

Cells were then placed in liquid nitrogen storage tanks for future use. 

2.3.3 Defrosting Cell lines 

To maintain cell lines, the vial containing cells was thawed quickly in a 37˚C water 

bath.  The outside of the vial was decontaminated with 70% ethanol just before cells were 

completely thawed, and the contents were transferred to DMEM.  The cells were spun at 

1000 RPM for 5 mins and the pellet of cells were re-suspended in fresh DMEM and 

transferred to a new plate, which also contained fresh DMEM.  The cells were incubated in 

a humidified, 37˚C, 10% CO2 incubator and checked daily until they reached 80-90% 

confluence (2-3 days).  The cells were further maintained, or harvested for subsequent 

experiments. 

2.3.4 Cell counting 

DMEM was removed from plated cells, which were then washed with 1X PBS and 

trypsin as described for maintenance of cell lines (2.2.1.1).  Un-detached cells were mixed 

with DMEM and spun at 1000 RPM for 5 mins. The cell pellet was re-suspended in fresh 

PBS, a 2 µL aliquot of which was added to a vial containing 10 mL CASYTON Buffer solution 

(Innovatis).  The cells were thoroughly mixed with the buffer and then analysed using the 

CASY Model TT cell counter (Innovatis), which relies on electronic pulse area analysis for 

measurements.  The CASY machine enables the measurement of total and viable cell 

numbers, cell size, percentage viability and cell aggregation factors.   

2.3.5 Inducible gene expression in cell lines 

Inducible cell lines were generated using the Invitrogen T-REX system.  Parental 

Hek293 cells which stably express the tetracycline (tet) repressor were purchased from 
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Clonetech, whereas Hek293 cell lines over-expressing CoA Synthase wild type (CoASy WT) 

and a CoA Synthase that had been mutated at position 203 from Histidine to Alanine 

(CoASy*203) were previously generated in the laboratory.  To induce protein expression, a 

final concentration of 5 mg/µl tetracycline was added to cells in DMEM once they had 

reached a confluency of 50% and cells were incubated for 24 hrs at 37˚C, 10% CO2. 

2.3.6 Transient transfection 

 24 hrs prior to transfection, HepG2 or Hek293 cells were seeded into 6 cm plates 

containing fresh DMEM (+ 10% FBS) with a starting confluency of 25%.  After 24 hrs 

incubation at 37°C, 10% CO2, medium was removed and replaced with fresh DMEM (+ 10% 

FBS) prior to the addition of the transfection mixture.  5 μg of the required DNA was added 

to 200 μL sterile 150 mM NaCl solultion.  16.5 μL of ExGen500 reagent (Fermentas) was 

subsequently added and the mixture was immediately mixed for 10 s.  The resultant 

transfection mixture was incubated at room temperature for 10 mins, followed by drop-

wise addition to the appropriate plates of cells.  Transfected cells were incubated for a 

further 24 hrs at 37°C, 10% CO2 before analysis. 

2.3.7 Generation of Stable cell lines 

 Stable cell lines were generated using the pcDNA3.1™(+) vector, which contains a 

neomycin (Geneticin®) resistance gene for selection.  The gene of interest was cloned into 

pcDNA3.1(+) and the resulting vector constructs were used for transfection into HepG2 and 

Hek293 cells.  24 hrs after transfection, cells were washed and fresh medium was added.  

48 hrs after transfection, cells were split so that the cells were no more than 25% confluent 

into 6 well plates containing fresh medium supplemented with 800 μg/mL Geneticin®.  

Selective medium was replaced every 3-4 days of exponential growth to remove dead cells 

and to provide fresh media to encourage positively-selected cell growth.  Once non-

transfected control cells were completely dead, the resultant cells that survived selection 
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were amplified in media supplemented with 200 μg/mL Geneticin®, and checked for 

protein over-expression. 

2.3.8 Serum deprivation and stimulation of cells 

Hek293 cells were starved at approximately 70% confluency using DMEM high 

glucose medium with L-glutamine and penicillin/streptomycin (5% v/v), but without FBS for 

24 hrs. Serum stimulation is achieved by the addition of 10% fetal bovine serum for 1-6 hrs 

followed by harvesting the cells. 

2.3.9 Treatment of Cells with Extracellular Stimuli 

In this thesis, HepG2 and Hek293 cells were treated with a number of extracellular 

stimuli including nutrients, hormones, cell signalling inhibitors and cell permeable peptides.  

All incubations were carried out in 6 or 10 cm tissue culture plates at 37°C, 10% CO2.  

HepG2 cells grown to 70% confluency were used for nutrient studies with glucose and fatty 

acids.  Before nutrient treatment, cells were incubated for 16 hrs in DMEM, containing 5 

mM glucose and 1% BSA.  HepG2 cells were then stimulated with glucose concentrations 

ranging from 0-20 mM, 0.5 mM palmitate, 1 mM carnitine or 0.5 mM palmitate + 1 mM 

carnitine for either 6 or 24 hrs.  For insulin studies, HepG2 and Hek293 cell lines at 60-70% 

confluency were starved of FBS for 24 hrs, and then stimulated with 10 nM (HepG2) or 100 

nM (Hek293) insulin for times ranging between 1 and 24 hrs.  In studies involving cell 

signalling inhibitors and other small molecule treatments, after reaching a confluency of 

60-70%, HepG2 or Hek293 cells were incubated in DMEM + 10% FBS in the presence 100 

nM Rapamycin, 2.5 µM PP242, 50 µM LY294002, 20 µM PD98059, 0.5 mM Bezafibrate, or 

100 µM pantethine for 24 hrs at 37˚C, 10% CO2.  All these small molecular compounds were 

made up fresh in DMSO, immediately before treatment.  For studies involving 

pantothenate and Hopantenate (Hopan), HepG2 cells were seeded at a confluency of 30% 

and incubated for 4 hrs in DMEM.  DMEM was then removed and cells were washed with 



A Study of Coenzyme A Metabolism and Function in Mammalian Cells 

 

 

66 

PBS before incubating cells in pantothenate free DMEM with 0, 1 or 16 µM pantothenate 

+/- 200 μM Hopan, for 48 hrs.  For studies with cell penetrating peptides, HepG2 cells were 

grown to 70% confluency, and then washed in PBS.  Cells were subsequently incubated in 

FBS free DMEM with 10 µM of the TAT peptide, or poly-arginine for 1 hr.   

2.3.10 Growth Assay 

Growth analysis was carried out for HepG2 cells in pantothenate free media; 

Hek293 cells incubated with the HDAC inhibitor, trichostatin A (TSA) (0.1-2 μM); and 

Hek293 cells over-expressing PanK1β.  Cells were seeded into 96 well plates at either 100 

cells/well (pantothenate free media) or 2000 cells/well (all treatments) in 100 μL medium 

and the number of viable cells was measured using the CellTitre-Blue® Viability Assay 

(Promega).  This assay uses the indicator dye resazurin to measure the metabolic capability 

of cells.  Viable cells retain the ability to reduce resazurin into resorufin, which is highly 

fluorescent at 579Ex/584Em.  20 μL of the CellTitre-Blue® reagent was added to the medium 

and incubated for 2 hrs at 37°C, 10% CO2 before analysis using the Pherastar plate reader 

system with a 560Ex/590Em filter set (BMG Labtech). 

2.4 CoA Isolation 

2.4.1 Harvesting Mammalian cells 

Harvesting of Hek293 and HepG2 cells took place once cells reached a confluency 

of about 90% or after the required treatment time.  Growth medium was removed from 

the cells, while plates were on ice and immediately 5-10 mL ice cold PBS was carefully 

added to wash the cells and remove any residual growth medium.  As soon as PBS was 

removed, 0.5 mL ice cold 5% Perchloric Acid (PCA) (VWR) was added to the plate of cells on 

ice and cells were detached by scraping.  It is important to lyse the cells in 5% PCA as 

quickly as possible to reduce any changes in CoASH: CoA ester levels that may occur due to 
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the stressful change of conditions.  The lysate was pipetted up and down several times to 

disperse any clumps of cells.  Lysates were transferred into a pre-chilled 1.5 mL tube and 

kept on ice before collection for CoASH extraction.  Alternatively for protein analysis, see 

section 2.7.1. 

2.4.2 CoA extraction 

Lysed cells were centrifuged at 4˚C for 5 mins, 13 000 RPM.  The supernatant 

containing CoASH and short chain acyl CoA esters was transferred into a pre-weighed 

mirocentrifuge tube and placed on ice.  The PCA pellet containing DNA and long chain acyl-

CoA was weighed for later standardisation.  0.1 mL 1M Triethylamine (TEA)/mL PCA extract 

was added before neutralising the sample with 1M potassium carbonate (K2CO3) to pH 6.5.  

The extract was spun for 5 mins, 10000 RPM and the supernatant was transferred into a 

fresh, pre-weighed microcentrifuge tube.  The PCA extract was then concentrated for about 

1.5 hrs using a speed vac concentrator, until 100-200 μL remained.  The cell extract was 

then analysed by the enzymatic recycling assay (section 2.5.1) or HPLC (section 2.5.2).   

2.4.3 Alkaline Hydrolysis 

In order to measure total CoA esters present in a cell sample, alkaline hydrolysis of 

the acid soluble supernatant (short chain CoA esters) or the acid precipitated pellet (long 

chain acyl CoA esters) was carried out.  For analysis of short chain esters, 50 μL of the 

supernatant collected from PCA treatment of cells was mixed with 50 μL KOH to give a final 

concentration of 0.2 M.  The rest of the supernatant was analysed normally for CoASH and 

acetyl CoA.  Acid soluble KOH treated extracts were then incubated at 30°C for 30 mins 

before cooling on ice and neutralising with 10 μL 10% PCA. The extract was spun for 10 

mins at 13000 RPM and the pH of the supernatant was adjusted to pH 6.5, followed by 

sample concentration as described in section 2.4.2.  Long chain acyl CoA esters were 

analysed by washing the PCA pellet once with 2% PCA and once with 0.2 mL H2O. The pellet 
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was then resuspended in 90 µl 0.5 M KOH + 5 mM DTT and incubated at room temperature 

for 15 min. The CoA released from this hydrolysis procedure was analysed by the recycling 

assay following neutralisation with 100 mM TEA and 2M HCl. 

2.4.4 N-ethylmaleimide treatment  

Treatment of neutralised PCA extracts with N-ethylmaleimide (NEM) enables 

CoASH and acetyl CoA to be measured separately using the recycling assay (section 2.5.1).  

NEM reacts with the sulfhydryl group of CoASH, so that acetyl CoA alone is determined.  

Neutralised cell extracts were divided in two so half could be used to measure combined 

CoASH and acetyl CoA and the other half for the measurement of just acetyl CoA.  Free 

CoASH can be calculated from the difference between these two measurements.  For acetyl 

CoA determination, the extract was incubated with 8 mM NEM for 5 mins, 30°C.  Excess 

NEM was removed following a further incubation of the mixture with 8 mM DTT for 5 mins, 

30°C.  The NEM treated extract was then analysed by the recycling assay (section 2.5.1).   

2.5 CoA analysis 

2.5.1 Recycling Assay 

The concentration of CoA in tissue and cultured cell extracts can be determined using 

the following enzymatic assay where CoASH is recycled through two enzyme catalysed 

reactions, originally described by Allred and Guy (Allred and Guy 1969).  The rate of NADH 

formation produced during this reaction is proportional to CoA concentration in both its 

free and acetylated form.  CoASH is recycled through the following reaction sequence: 

1) Acetyl phosphate + CoASH   acetyl CoA + phosphate  

2) Acetyl CoA + oxaloacetate   citrate + CoASH  

3) Malate + NAD+     oxaloacetate + NADH Malate Dehydrogenase 

Phosphotransacetylase 

Citrate Synthase 
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Reaction 1 is catalysed by phosphotransacetylase, reaction 2 is catalysed by citrate 

synthase and reaction 3 is catalysed by malate dehydrogenase.  The overall reaction is 

shown below: 

Malate + acetyl phosphate + NAD+     citrate + phosphate + NADH 

When all the necessary substrates and enzymes are supplied in excess, the rate of 

the over-all reaction is limited by the CoASH concentration.  NADH production can be 

measured spectrophotometrically.  The analysis of CoA by the recycling assay was carried 

out using a 96-well plate reader (Magellan), with a final reaction volume of 200 µL.  

Solutions of reagents were combined in a premix, just prior to use in the proportions 

shown in Table 2.1.  

Component Amount per reaction (200 µl reaction volume) 

Tris Buffer (1M, pH 7.2) 60 µl 

Potassium Chloride (1M) 12 µl 

Malate (0.2M) 12 µl 

Acetyl Phosphate (0.08M) 12 µl 

NAD+ (0.2M) 12 µl 

Malate dehydrogenase 1 unit 

Citrate synthase 2 units 

Table 2.1: Components of the recycling assay 

  50 μL PCA cell extracts were combined with 4 mM DTT to prevent the oxidation 

CoASH into dimers, or to form heterodimeric complexes with other thiols, such as 

glutathione.  50 μL CoASH standards ranging from 0-200 pmol were made up in a final 

concentration of 4 mM DTT to ensure all components of the assay were working correctly.  

The extract/standards were combined with 110 µl of the premix in a 96-well plate and 

incubated for 5 mins at 30˚C.  40 μL Phosphotransacetylase (3.5 units/reaction) that had 

(CoASH + acetyl CoA) 
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also been pre-incubated at 30˚C was added to start the reaction.  The change in NADH 

(Δ340) was measured for 10 mins at 30°C.  As the light path travels through the reaction 

solution, it is essential that the reaction volume is the same in each well.   

2.5.2 HPLC 

High performance liquid chromatography (HPLC) is a form of chromatography used 

to separate, identify and quantify compounds based on their different polarities and 

interactions with the stationary phase.  During this process, a solvent (mobile phase) is 

forced through a column (stationary phase) under high pressure.   

CoA and acetyl CoA were measured by reverse phase HPLC.  The HPLC system used 

consisted of Jasco PU-980 pump and UV-975 UV/visible detector.  The column used was a 

100 X 4.60 mm Kinetex C18 column (Phenomenex), with a silica particle size of 2.6 µM and 

100 Å pore size. The column temperature was maintained at 40°C using a column heater. 

The mobile phase initially consisted of 150 mM NaH2PO4 and 8.5% methanol filtered and 

degassed through a 0.22 μM filter and the flow rate was 1 mL/min.  Following a 20 min 

isocratic run under these conditions, methanol was gradually increased to 30% and flow 

reduced to 0.5 mL/min over 5 min. This was followed by a linear gradient back to the initial 

conditions over 5 min and the column was reequilibrated under initial conditions for 11 

min.  Each run lasted for 41 min and CoASH and CoA esters were detected by absorbance at 

254 nm which are emitted as a series of peaks.  The elution profile was stored and 

processed using Bowing software.  Amounts of CoA compounds were determined by the 

comparison of peak areas with those of standards. 

2.5.2.1 Sample preparation 

50 μL neutralised PCA extract was incubated with 10 mM TCEP (tris(2-

carboxyethyl)phosphine) for 10 mins, 30°C, to prevent the oxidation of CoASH (for 

example, to glutathione CoA).  Before injection, the total volume was adjusted to 100 μL 
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(for a 50 µL injection) with HPLC quality H2O, 1.5M NaH2PO4 (sodium phosphate), and 

methanol so that the concentration of NaH2PO4/methanol is the same as that of the mobile 

phase (150 mM NaH2PO4 in 8.5% methanol).   

2.5.2.2 Standard preparation 

It is important to run standards of CoASH/acetyl CoA to determine the correct 

peaks for CoASH and acetyl CoA.  Standards were made up as shown in Table 2.2:  

Component Volume required (µL) 

HPLC quality H2O 61.5 

TCEP (100 mM)  10 

20 µM CoA/acetyl CoASH standard 5 (each) 

1 M NaH2PO4 10 

Methanol 8.5 

Table 2.2: Standard preparation for HPLC 

Once prepared, 100 µL of the sample or standard was injected into the HPLC 

machine for a 50 µL injection volume and a flow rate of 1 mL/min.  The peaks formed on 

the chromatogram were integrated to calculate the amount of CoASH/acetyl CoA present 

in the sample. 

2.6 CoA binding Partners 

2.6.1 CoA Sepharose preparation 

CoA Sepharose is prepared by covalently coupling CoA to sepharose previously 

activated with cyanogen bromide (CNBr) (Sigma).  The sepharose beads were treated with 

1 mM HCl and allowed to swell for 15 mins, before being washed twice with 1 mM HCl and 

100 mM phosphate buffer (pH 6). The washed beads were then incubated with 100 mM 

phosphate buffer, pH 6, containing 6 mM CoA for 3 hrs at room temperature with gentle 
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mixing.  After washing once with 100 mM phosphate buffer followed by 100 mM Tris/HCl, 

pH 6.8, the beads were incubated with 100 mM Tris/HCl, pH 6.8, for 2 hrs at room 

temperature to block unreacted CNBr.  Beads were stored as a 50:50 mix in storage buffer 

(50 mM Tris/HCl pH 5.6, 250 mM NaCl, 10 mM DTT) at 4˚C until required for affinity binding 

analysis. 

2.6.2 Determination of coupling efficiency by Ellman’s test 

Small samples from the beginning and end of the CoA coupling reaction (2.6.1) 

were incubated with 5, 5’-dithiobis (2-nitrobenzoate) (DTNB) reagent (0.1 mM DTNB + 100 

mM Tris/HCl pH 8 + 2.5 mM sodium acetate) in a 96 well microtitre plate for 30 mins at 

room temperature.  During this reaction, DTNB readily undergoes thiol-disulphide 

exchange with free thiols to produce 2-nitro-5-thiobenzoate, which absorbs light at 412 

nm.  The coupling efficiency of CoA was calculated by reading the absorbance at 412 nm to 

determine the amount of CoASH that was still present in the solution after the coupling 

reaction. 

2.6.3 Preparation of Rat Liver homogenates 

Frozen, powdered liver was homogenised in 1 mL/0.1 g liver tissue ice cold 

Homogenisation Buffer (50 mM Tris/HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 50 

mM NaF, 5 mM Na4P2O7, 10% glycerol, 1 mM DTT, 1 mM benzamidine, 1 mM PMSF and 0.2 

µl/mL protease inhibitor cocktail (Sigma P8340)) using a tissue disintegrator (Ultra Turrax).  

Triton X-100 (final concentration of 1%) was added to the homogenate and this was left on 

ice for 30 mins.  The homogenate was centrifuged for 10 mins, 13000 RPM, 0˚C, and the 

supernatant was collected for analysis of CoA binding proteins.   
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2.6.4 Preparation of mammalian cell lysates 

Cells (Hek293/HepG2) were washed twice with ice-cold PBS and extracted with ice 

cold Homogenisation Buffer and 1% Triton X-100. Cells were scraped from the dishes and 

transferred to micro centrifuge tubes. Tubes were incubated on ice for 30 mins prior to 

centrifugation at 13,000 g at 4°C for 20 mins to remove insoluble material. Supernatants 

were transferred into fresh tubes and the total protein concentrations of the lysates were 

determined by Bradford protein assay (2.7.2). 

2.6.5 Affinity binding with CoA Sepharose 

Cell lysates/liver homogenate (200 µL) containing approximately 0.6 mg protein 

were incubated with either 200 µL CoA coupled Sepharose beads or control beads (CNBr 

Sepharose blocked with Tris) for 2 hrs at 4˚C with gentle mixing.  For experiments 

determining the orientation of CoA binding, de-sulpho CoA, or CoA pre-treated with NEM 

or maleimide were coupled to Sepharose.  Beads were washed once and then incubated 

with Homogenisation Buffer containing 1% Triton X-100 for 15 mins at 4˚C with gentle 

mixing.  After washing twice with 50 mM Hepes pH 7.4 and 1 mM DTT, 1X SDS loading 

buffer was added to the beads to release bound proteins. The mixture was heated for 10 

mins at 99˚C before proteins were separated on 4-12% Bis-Tris gel (2.2.5.3).  For more 

specific analysis of CoA binding proteins, proteins were eluted with increasing 

concentrations of CoA (10, 50, 100 mM) and increasing concentrations of LiCl (30, 50, 300 

mM) as a control, before resolving proteins by SDS-PAGE analysis.  In experiments 

investigating CoA binding to the Sepharose, CoA Sepharose beads were pre-treated with 

100 mM maleimide before resolving proteins by SDS-PAGE analysis.  When checking the 

specificity of proteins binding to CoA Sepharose, proteins were eluted with 100 mM CoA, 

ADP or pantothenate before resolving by SDS-PAGE analysis.  Following SDS-PAGE analysis, 

proteins were visualised by silver or Coomassie staining (2.7.4).   
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Proteins from liver lysate that were to be analysed by mass spectrometry were 

eluted from Tris and CoA Sepharose with 100 mM CoA, boiled in SDS loading buffer, 

resolved by SDS-PAGE analysis and Coomassie-stained. Each-lane was sliced into 30 pieces 

and then digested with trypsin.  The identity of the proteins in these samples was analysed 

by mass-spectrometry in collaboration with N. Totty, Cancer Research UK. 

CoA binding assays were also carried out with the individual proteins, lactate 

dehydrogenase (LDH), aldolase and glucose-6-phosphate dehydrogenase (G6PDH).  20 µL 

CoA and Tris Sepharose beads were washed in 1 mL TBS (50 mM Tris HCl pH 7.5, 150 mM 

NaCl) before incubating with 0.5 mL TBS containing 50 μg LDH, aldolase or G6PDH for 2 hrs, 

4°C with mixing.  Beads were washed again in TBS and proteins that bound to the beads 

were released by boiling in SDS loading buffer.  Proteins were resolved by SDS-PAGE 

analysis and Coomassie staining.   

2.7 Isolation and Analysis of Cellular Protein 

2.7.1 Preparation of mammalian cell lysates 

Cells were washed twice with ice-cold PBS and extracted with EB buffer (20 mM 

Tris HCl pH 7.5, 1% Triton X-100, 150 mM NaCl, 5 mM EDTA, 50 mM NaF, EDTA-free 

protease inhibitor cocktail (Roche)).  Cells were scraped from the dishes and transferred to 

micro centrifuge tubes.  Tubes were incubated on ice for 30 mins prior to centrifugation at 

13,000 g at 4°C for 20 mins to remove insoluble material.  Supernatants were transferred 

into fresh tubes and the total protein concentrations of the lysates were determined by 

Bradford protein assay (section 2.7.2). 
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2.7.2 Determination of protein concentration in solution 

The total protein concentration in cell lysates was determined using the Coomassie 

(Bradford) protein reagent (Pierce).  The reagent was diluted 1:1 with ddH2O to give the 

working solution.  Samples were made up by adding 1 μL of each lysate sample to 1 mL of 

reagent solution and standards were prepared by diluting appropriate amounts of 2 mg/mL 

BSA (Pierce) to give a range from 0.5 – 8 μg/mL.  All absorbance measurements were taken 

on an Eppendorf BioPhotometer at 595 nm using plastic 1 mL cuvettes. 

2.7.3 SDS-PAGE 

Cellular proteins were resolved using a modification of the discontinuous SDS-PAGE 

(Sodium dodecyl sulphate polyacrylamide gel electrophoresis) system, described by 

Laemmli (Laemmli 1970).  When proteins are denatured in SDS (an anionic detergent) they 

become coated in detergent molecules resulting in a uniform negative charge to mass 

ratio.  This allows separation of the denatured proteins based solely upon their size, as 

charge differences present in the native state are negated.  In SDS-PAGE, a potential is 

applied across a polyacrylamide gel.  As the proteins migrate from the cathode to the 

anode, the larger proteins are impeded by the matrix, while smaller proteins are able to 

move more easily through the gel. 

In this study, mini-PROTEAN® TGX™ (Tris-Glycine eXtended) precast gels were used 

to resolve proteins.  These gels retain Laemmli-like separation characteristics, however 

have an increased gel matrix stability.  Gels with 4-20% polyacrylamide concentration were 

typically used and were run using the Mini-PROTEAN Tetra Cell electrophoresis system 

(BioRad).  

2.7.3.1 Protein sample preparation 

Samples were prepared for SDS-PAGE analysis by adding the appropriate amount 

of 5X Laemmli sample buffer (250 mM Tris pH 6.8, 50% glycerol, 0.5% bromophenol blue, 
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500 mM DTT, 10% SDS) to a final concentration of 1X.  All samples were boiled for 5 mins at 

99°C and briefly centrifuged at room temperature prior to loading onto the polyacrylamide 

gel. 

2.7.3.2 Gel Electropheresis 

Samples were loaded into the appropriate wells of the mini-PROTEAN precast gels 

using a Hamilton syringe (Hamilton, Reno, Nevada). Gels were run in 1X Tris/glycine/SDS 

buffer (25 mM Tris, 192 mM glycine, 0.1% [w/v] SDS) at 300 V constant voltage until the 

dye reached the end of the gel.  Ice packs were added to the running buffer in the tank to 

prevent the temperature rising due to the high voltage.  Visualisation and analysis of 

separated proteins were performed as described below. 

2.7.4 Visualization of proteins 

2.7.4.1 Coomassie Stain  

Following electrophoresis, gels were stained by immersion in Coomassie Blue stain 

(0.5% (w/v) Coomassie brilliant blue R-250, 50% (v/v) methanol and 10% (v/v) acetic acid) 

with gentle agitation for 20 min, followed by de-staining in 20% (v/v) methanol, 10% (v/v) 

acetic acid for several hrs. The gel was then dried under vacuum at 80°C for 1 hr. 

Coomassie brilliant blue binds to proteins stoichiometrically, so this staining method is 

preferable when relative amounts of protein are to be determined by densitometry.  

2.7.4.2 Silver staining 

When more sensitive staining was required, gels were silver stained using a silver 

staining kit from Fermentas (PageSilver).  The gel was first fixed in a fixative solution (50% 

ethanol, 10% acetic acid) for 10 mins.  The fixed gel was washed two times in 30% ethanol 

for 10 mins, followed by two washing cycles with ddH2O for 20 s.  The gel was agitated with 

sensitizing solution (0.4% sensitizer concentrate) for 1 min, and after the sensitizing 
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solution was removed, it was washed twice in ddH2O for 20 s.  The gel was stained with 

staining solution (4% stainer, 0.054% formaldehyde) for 20 mins and after two wash cycles 

with ddH2O, developing solution (10% sensitizer concentrate, 10% developing reagent, 

0.027% formaldehyde) was added.  The gel was left to develop for 4 mins, or until the 

required intensity of bands was reached.  Staining was stopped by the addition of stopping 

solution (8% stop reagent), with gentle agitation for 5 mins.  After the stopping solution 

was discarded, the gel was stored in ddH2O. 

2.7.5 Immunoblot analysis (Western Blot) 

2.7.5.1 Transfer to Nitrocellulose membrane 

After separation using SDS-PAGE, proteins were transferred to nitrocellulose 

membranes using the Trans-Blot® Turbo™ transfer system (BioRad) for analysis by western 

blotting. Pre-cut Trans-Blot Turbo transfer packs containing filter paper, transfer buffer and 

a nitrocellulose membrane were generally used in this study. The gel was removed from 

the cast and briefly rinsed in H2O before placing in between the turbo transfer pack, 

directly above the membrane.  This stack was placed onto the Trans-Blot® Turbo™ transfer 

system with the membrane closest to the anode (bottom).  Air bubbles were expelled by 

rolling over the stack with a blot roller.  The transfer process was run constantly at 1.3 A for 

7 mins. 

2.7.5.2 Immunoblotting of transferred membranes 

Membranes with transferred proteins were washed briefly in TBST (10 mM Tris-HCl 

pH 7.5, 150 mM NaCl, 0.1% Tween 20) before incubation in Western blocking buffer (TBST 

containing 5% (w/v) non-fat dried milk powder or 5% BSA for phosphospecific antibodies) 

for 45 mins at room temperature to avoid non-specific binding of antibodies to the 

membrane.  Membranes were washed 4 times for 5 mins in TBST before probing overnight 

at 4°C with the appropriate primary antibody diluted (as recommended by manufacturer) 
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in primary antibody buffer (2% BSA and 0.02% sodium azide). The membrane was 

transferred to fresh TBST buffer and washed 3 times for 10 mins. The membranes were 

then probed with the appropriate diluted HRP-linked secondary antibody in TBST, 5% milk 

for 1 hr at room temperature and were then washed 3 times for 10 mins before 

development by enhanced chemiluminescence (ECL). 

2.7.5.3 Developing Immunoblots 

An equal volume of ECL reagent 1 (50 mM Tris-HCl pH 8.5, 1% luminol, 0.44% 

coumaric acid) and ECL reagent 2 (50 mM Tris-HCl pH 8.5, 0.02% H2O2) were mixed and 

incubated with the membrane for 1 min at room temperature.  Excess ECL reagent was 

removed by blotting and the membrane wrapped in Saran wrap. Bands were detected 

using the Fujifilm LAS-1000 imaging system and densitometric analysis was performed 

using the Quantity One™ image processing software (BioRad). In some instances Immobilon 

western chemiluminescent HRP substrate (Millipore) was used to increase the sensitivity. 

This required extensive washing before development to reduce background staining and 

was incubated with the membrane for 5 mins. 

2.7.6 Stripping and re-probing western blots 

In some instances, membranes were required for re-probing with a different 

antibody. Antibodies were first stripped from the membrane by incubating in freshly 

prepared Stripping buffer (62.5 mM Tris-HCl, pH 6.7; 2% SDS; 100 mM 2-mercaptoethanol) 

at 50°C for 30 mins. Extensive washes in TBST buffer were required before blocking and 

then re-blotting with another primary antibody. 

2.7.7 LDH assay 

 The LDH assay was carried out as a measure of standardisation and also when 

determining the effect of CoA on the activity of LDH.  For standardisation studies 190 μL 
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reaction mix (65 mM Tris HCl, pH 7.5, 10 mM NADH, 40 mM pyruvate) was incubated with 

10 μL of lysed sample (see 2.7.1) for 10 mins, 25°C and ΔA340 was measured 

spectrophotometrically using a 96-well plate reader (Magellan).  For experiments investing 

LDH activity with CoA, 170 μL reaction mixture was incubated with 20 μL CoA (10, 50 or 100 

μM) for 5 mins at 25°C to achieve temperature equilibrium.  The solution was then quickly 

mixed with 10 μL LDH in Tris HCl, pH 7.5 (0.5 U) and ΔA340 was measured for 10 mins using 

a 96-well plate reader (Magellan).   

2.7.8 G-6-PDH assay 

To determine the effect of CoA on G-6-PDH activity, 170 μL of the reaction mix (50 

mM Tris HCl, pH 7.5, 2 mM glucose-6-phosphate, 0.5 mM NADP, 10 mM MgCl2) was 

incubated with 10 μL G-6-PDH (0.0175 U) alone or in the presence of 20 μL CoA (5, 50 or 

500 μM).  The reaction was started with the quick mixing of G-6-PDH with the rest of the 

components of the assay and ΔA340 was measured for 10 mins at 25°C using a 96-well plate 

reader (Magellan). 

2.8 Metabolic Studies 

Metabolic studies were carried out in HepG2 cells that had reached a confluency of 

50%.  Culture medium was removed and cells were washed in PBS.  Glucose oxidation was 

measured by incubating cells for 0-120 mins at 37°C in 1.5 mL PBS containing 1.3 mM CaCl2, 

1.3 mM MgSO4, 5 mM glucose, 2% BSA and D-[14C(U)] glucose (5 μL/mL)(0.1 μCi/mL) 

(PerkinElmer).  After the required incubation time, the incubation medium was acidified 

with a final concentration of 5% PCA to release [14C]CO2, which was trapped through 

further incubation with 0.5 mL benzethonium hydroxide for 1 hr at 37°C in a sealed 

container.  [14C]CO2 containing benzethonium hydroxide was mixed with 10 mL Ecoscint A 

and [14C]CO2 was analysed by scintillation counting.   
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Palmitate oxidation was measured following incubation of cells for 0-120 mins at 

37°C in 1.5 mL PBS containing 1.3 mM CaCl2, 1.3 mM MgSO4, 5 mM glucose, 1% BSA, 0.1 

mM [9,10 – 3H] palmitate bound to 10% BSA (1 μCi/mL) (PerkinElmer).  After the required 

incubation time, the incubation medium was acidified with a final concentration of 5% PCA 

and 3H2O produced from palmitate oxidation was measured following extraction with 

organic solvents.  Initially the acidified incubation medium was mixed with 1.88 mL 

chloroform: methanol (1:2 v/v), followed by 0.625 mL chloroform and 0.625 mL 2M HCl, 

which was then mixed by vortexing.  The upper aqueous phase was collected after 

centrifuging for 5 mins at 4000 RPM, and treated with 0.3 mL chloroform, 0.3 mL methanol 

and 0.27 mL 2M KCl: 2M HCl.  The mixture was centrifuged again for 5 mins at 4000 RPM 

and 1 mL of the aqueous phase was added to 10 mL Ecoscint A for analysis by scintillation 

counting.  

Lactate production was measured by incubating cells in 1.5 mL PBS containing 1.3 

mM CaCl2, 1.3 mM MgSO4, and 5 mM glucose for 0-6 hrs.  Cells were lysed by adding a final 

concentration of 5% PCA to the incubation media at the required time point.  The lysed 

extracts were neutralised with K2CO3 before incubating 50 μL with 130 μL of the reaction 

mix (0.65 M glycine, 0.25 M hydrazine, 5 mM EDTA) for 5 mins, 30°C.  20 μL LDH (2U/mL) 

was added to start the reaction and the total difference in 340 nm absorbance was 

measured when the reaction was complete.   

2.9 Statistical Analysis 

 Statistical comparisons were performed by Student’s t-test (using Microsoft Excel).  

Values were expressed as mean ± standard error of the mean (SEM).  n designates the 

number of independent experiments.  
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Chapter 3: Developing methods for 
measuring CoA in mammalian 
tissues and cultured cells 

3.1 Introduction 

Due to the functional imperative of CoA and its acyl derivatives in many metabolic 

processes, a large number of methods have been developed to separate, detect and 

quantify these molecules from biological samples.  Enzymatic assays were the first methods 

used to measure tissue contents of CoA and its derivatives.  Several non-enzymatic 

methods were also available, including adenine absorption, polarography and Ellman’s 

reagent, however these were generally non-specific (Stadtman 1957; Ellman 1959; 

Weitzman 1966).  Initially, end point enzymatic assays were commonly preferred as they 

were simple, convenient and the enzymes were often commercially available.  They 

involved measuring the equilibrium concentration of a final product in a reaction that 

required CoA.  Examples include spectrophotometric or fluorometric measurement of 

sorboyl CoA using purified acyl CoA synthetase, of NAD+ production following reactions 

involving ATP citrate lyase and malate dehydrogenase, of NAD+ production following the 

reaction involving 3-hydroxyacyl CoA dehydrogenase and by following the molar extinction 

change of Phosphotransacetylase (Bergmeyer 1963; Michal and Bergmeyer 1963; Pearson 

1967).  The main issue with these stoichiometric assays was the sensitivity, which often was 

in the range of μmoles, whereas CoA levels in most tissues are in the nanomolar range.  

Catalytic enzymatic reactions tend to be more sensitive, in which the rate of the formation 

of a product is measured spectrophotometrically or fluorometrically.  Reactions involving 

arsenolysis of acetyl phosphate by phosphotransacetylase, acetylation of arylamine by 

arylamine acetyltransferase and oxidation of 2-oxoglutarate by oxoglutarate 
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dehydrogenase with succinyl CoA breakdown are examples of catalytic methods (Stadtman 

et al. 1951; Von Korff 1953; Bergmeyer 1963; Garland 1964).  Although the sensitivity is 

improved with the latter approaches, there are still some shortcomings with regards to 

specificity, sensitivity and linearity.  These issues have greatly been improved with 

enzymatic recycling methods, where CoASH is continuously cycled around several 

enzymatic reactions; the product formed for a given quantity of CoASH is larger than in 

equilibrium methods and becomes greater as the reaction time increases (Allred and Guy 

1969; Kato 1975). 

A general issue when measuring CoA levels using chemical or enzymatic assays is 

that these methods are indirect and assay components can potentially be affected by 

unknown compounds present in the CoA sample extract.  Alternative chemical methods 

were consequently developed for direct measurement of CoA and it was found that high-

performance liquid chromatography (HPLC) was a very useful analytical tool.  Furthermore, 

HPLC enables the measurement of a much wider range of CoA compounds than previously 

possible by enzymatic assays.  In the appropriate conditions, CoA is retained on a strong 

anionic exchange resin, which makes up the stationary phase of the HPLC column.  The 

negative charge on CoA enables it to bind to the stationary phase and different compounds 

bind with different strengths, allowing separation and measurement of these components.  

A mobile phase is pumped through the column along with all the analytes within the 

sample, which are then detected according to a characteristic retention time.  HPLC of acyl 

CoA compounds was first described by Baker and Schooley, where reverse phase paired-ion 

chromatography was used to separate acyl CoA thioesters of different length chains (Baker 

1979).  Subsequently, HPLC methods were developed to measure free CoASH in biological 

samples (Ingebretsen and Farstad 1980).   
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HPLC can be coupled to different detection methods for the analysis of CoA.  HPLC 

coupled to spectrophotometric detectors which measure UV or fluorometric absorption of 

the CoA adenine moiety are commonly used methods for measuring CoASH and CoA esters 

(King and Reiss 1985; Patel and Walt 1987; Valentin and Steinbüchel 1994).  

Spectrophotometric detection cannot provide molecular mass or structural information 

that can positively identify CoASH or its thioesters, and also is restricted by the availability 

of pure standards.  Methods coupling mass spectrometry to HPLC have been reported and 

overcome the limitations of HPLC coupled to UV/fluorometric detection and have very high 

specificity and selectivity.  Mass spectrometry involves the ionization of chemicals, often 

through continuous fast atom bombardment with an electron beam, generating charged 

molecules which can be identified by measuring their mass-to-charge ratio.  Although 

effective, this method depends on complex dedicated instrumentation, which is expensive, 

unreliable and requires expertise.  HPLC coupled to radioactive CoA is another technique 

that has been used to measure CoASH and its thioesters.  This approach removes the 3’ 

phosphate from CoA and replaces it with 33P by initially treating with phosphatase and then 

with DPCK and [γ-33P]ATP.  The resulting 33P-labelled CoA compounds are then separated by 

HPLC and quantitated by scintillation counting.  Radioactive labelling only occurs on CoA 

and its esters due to the specificity of DPCK.  Other than the fact radioactivity is used in this 

method, the main drawback of this procedure is that it relies on the activities of the 

phosphatase and DPCK enzymes where sample components could potentially affect their 

enzymatic activity. 

3.2 Detection Methods 

Methods for CoA extraction and measurement in tissues are well-established.  

However, there are a limited number of studies reporting CoA levels in cultured cells.  

Therefore, the first objective was to establish a reliable method for measuring the levels of 
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CoASH and CoA esters in cultured cells.  The process by which CoA levels are determined 

from cultured cells occurs in several steps (Figure 3.1).  The detection methods which have 

been explored here are an enzymatic recycling assay (Allred and Guy 1969), HPLC (Corkey 

et al. 1981) and mass spectrometry.    

3.2.1 Recycling Assay 

The recycling assay is a well-established enzymatic method for measuring CoA in 

tissues (Allred & Guy 1969).  The reactions are as follows: 

Acetyl phosphate + CoASH    acetyl CoA + phosphate 

Acetyl CoA+ oxaloacetate    citrate + CoASH  

Malate + NAD+      oxaloacetate + NADH 

CoASH is recycled and consequently amplified through two enzyme-catalysed 

reactions.  The rate of NADH formation is proportional to CoA concentration, in both its 

free and acetylated form (Figure 3.2).  Of the enzymatic assays reported, this assay was the 

most sensitive and since all the required enzymes were commercially available, it appeared 

to be a convenient method to use.  To further increase sensitivity, 96 well plates and a 

plate reader was utilised.   

3.2.1.1 Reaction time 

It is necessary to measure the change in A340 over a time period where it is 

increasing linearly so that an accurate rate of the reaction can be determined.  CoA 

standards in the range expected to be present in cell extracts (20-80 pmol) were incubated 

with all of the components of the recycling assay for an hr.  A reaction time of 10 mins was 

decided upon, since this was a time period over which even the higher concentrations of 

CoA were linear, yet at the same time enough data points would be collected for  

Malate Dehydrogenase 

Phosphotransacetylase 

Citrate Synthase 
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Figure 3.1 Overview of CoA measurement in cultured cells. 
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Figure 3.2: Overview of the recycling assay.  CoA is recycled through two enzyme-catalysed reactions so that 
the rate of NADH formation is proportional to CoA concentration, in both its free and acetylated form.  NADH 
concentration is calculated using its extinction coefficient of 6220 M
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sufficient amplification of the signal (Figure 3.3).  For higher CoA concentrations, under the 

conditions used, it is likely that the rate of reaction is limited by citrate synthase activity 

(Allred and Guy 1969). 

3.2.1.2 Measuring CoASH and acetyl CoA separately 

The most abundant form of the CoA thioesters reported in tissue extracts is acetyl 

CoA.  The recycling assay measures the combined concentration of CoASH and acetyl CoA, 

however it is also possible to measure CoASH and acetyl CoA separately.  This is achieved 

by incubating the sample with NEM; an alkene which is reactive towards thiols, which as a 

result removes any free CoASH present.  To check whether acetyl CoA could be detected 

separately and accurately, 100 pmol CoASH and acetyl CoA standard in 1 mM DTT was 

incubated with 8 mM NEM, followed by 8 mM DTT to react with the excess NEM, before 

measuring ΔNADH by the recycling assay.  The total value for combined CoASH and acetyl 

CoA was also measured so that free CoASH could be calculated by subtracting the acetyl 

CoA value from the total CoA value.  As expected, all the acetyl CoA was fully recovered, 

while hardly any free CoASH could be detected by the recycling assay after NEM treatment 

(Table 3.1).  This indicates that, in these conditions, all the free CoASH reacts with the NEM 

and it is therefore possible to measure free CoASH and acetyl CoA separately.  Experiments 

with standards show that the recycling assay can measure CoA accurately and reliably in 

the picomolar range expected of cultured cell extracts (Figure 3.4). 

3.2.2 HPLC 

The HPLC method used here was developed from Corkey et al. (1981) (Corkey et al. 

1981), and uses a C18 Kinetex column and sodium phosphate/methanol elution.  CoASH 

and acetyl CoA were detected at an absorbance of 254 nm.  A high concentration of sodium 

phosphate was used to separate other UV absorbing compounds, such as adenine  
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Figure 3.3: Determining the optimal assay time. A) CoA standards ranging from 20-80 pmol in 1 mM DTT were 
incubated with all of the components of the recycling assay for 60 mins at 30˚C.  The NADH produced during 
the reaction was measured spectrophotometrically using a 96-well plate reader. B) ΔNADH values for the 10 
min time point were taken for CoA standards ranging from 20-80 pmol.   
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Treatment Sample 
pmol in final 

sample 
% recovery 

None Total CoA + acetyl CoA (3) 197.1 ± 12.8 98.5 ± 6.4 

NEM 
treated 

Acetyl CoA (3)  108.9 ± 5.7 108.9 ± 5.7 

CoA (3) 2.9 ± 0.6 2.9 ± 0.6 

 

Table 3.1: Percentage recovery after NEM treatment of CoA standards.  100 pmol standards of CoA and acetyl 
CoA in 1 mM DTT were incubated with 8 mM N-ethylmaleimide (NEM) for 5 mins at 30˚С, followed by 8 mM 
DTT for 5 mins at 30˚С.  Total CoA represents 100 pmol CoA and acetyl CoA standards that were not incubated 
with NEM or further DTT.  Free CoA was calculated by subtracting the value obtained for acetyl CoA (incubated 
with NEM) from the total CoA value.  The number of repeats is shown in parentheses. 

 

    

Figure 3.4: CoA standard curve measured by the recycling assay.  Known CoA standards ranging from 20-
80 pmol were incubated for 10 mins at 30˚C, with all of the components of the recycling assay and 1 mM 
DTT with a final reaction volume of 200 µL.  NADH produced during the reaction was measured 
spectrophotometrically using a 96-well plate reader. 
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nucleotides, from CoASH and its derivatives (Figure 3.5).  Isocratic rather than a gradient 

elution conditions were also used to ensure a stable baseline and increase the sensitivity of 

the method.  This makes it possible to measure very small concentrations of compounds 

(detection limit of 5 pmol) (Figure 3.6).  CoASH and acetyl CoA levels can be measured with 

standards (Figure 3.7A), in tissues such as liver (Figure 3.7B), kidney (Figure 3.7C), brain 

(Figure 3.7D) as well as in HepG2 cell and Hek293 extracts (Figure 3.7E, Figure 3.8).   

The CoASH/acetyl CoA peaks were determined in cell extracts by comparing 

retention time with authentic CoASH/acetyl CoA standards.  Internal standards were also 

used to identify CoASH and acetyl CoA peaks by adding a known concentration of 

CoASH/acetyl CoA immediately prior to analysing the sample (Figure 3.8).  This was 

compared with the same sample that had H2O added instead of the CoASH/acetyl CoA 

standard.  The identification of a particular compound is often more accurate with internal 

standards, since the peaks of external standards do not always correspond exactly with the 

relevant peaks in the samples.  This is because the retention time of a compound can be 

affected by the sample environment.   

To ensure there were no co-eluting peaks with the acetyl CoA peak, HepG2 PCA 

extracts were incubated in alkaline conditions (0.2 M KOH) for 30 mins at 30°C to hydrolyse 

CoA thioester bonds.  Complete disappearance of the acetyl CoA peak (as well as the 

succinyl CoA and HMG CoA peaks) indicated it was completely hydrolysed to CoASH in 

these conditions, corresponding with an increase in the CoASH peak (Figure 3.9).  No other 

peaks remained after alkaline hydrolysis confirming that nothing elutes at the same time as 

acetyl CoA.  It is not possible to tell whether this is the case for CoASH, and this method 

might lead to the over-estimation of CoASH levels.  However, it is unlikely that there is 

anything contaminating the CoA peak, since both recycling assay and HPLC methods give  
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Figure 3.5: Chromatogram of CoASH and CoA esters.  50 pmol malonyl CoA, CoASH, succinyl CoA, HMG CoA 
and acetyl CoA standards were measured by HPLC using the conditions described in section 2.5.2.1. 
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Figure 3.6: CoA standard curve measured by HPLC.  Known CoA standards ranging from 20-80 pmol were 
measured by HPLC using the conditions described in section 2.5.2.1.  
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Figure 3.7: HPLC chromatograms of tissue and cultured cell PCA extracts.  50 pmol CoA/acetyl CoA standards 
(A), liver extract (B), kidney extract (C), brain extract (D), and HepG2 extract (E) were measured by HPLC. 
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Figure 3.8: Chromatogram of cultured cell extracts alone or in the presence of internal standards.  A) HepG2 
extract with or without an added 200 pmol CoA/ 200 pmol acetyl CoA was measured by HPLC analysis.  B) 
Hek293 extract with or without an added 30 pmol CoA/ 30 pmol acetyl CoA was measured by HPLC analysis. 
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Figure 3.9: KOH treatment hydrolyses CoA thioesters to CoA in HepG2 cells.  HepG2 PCA extracts were 
incubated with 0.2 M KOH for 30 mins, 30°C before HPLC analysis. 
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almost identical CoASH values for the same sample.  Alkaline hydrolysis can also be used to 

determine the total acid soluble and acid insoluble CoA esters in a sample extract.  

3.2.3 Mass Spectrometry 

Mass spectrometry is a widely used technique for identifying and quantifying CoA 

thioesters.  Here, mass spectrometry was performed with an ESI-dual hexapole MicroTOF 

mass spectrometer (Bruker-Daltonics).  The spectrometer was operated in positive ion 

mode using Bruker-Daltonics “MicroTOF Control v1.1” software, with the following data 

collection parameters: capillary voltage, 4.5 kV; nebulizer, 0.8 Bar; dry gas, 4.0 l/min; dry 

temperature, 200˚C; capillary exit, 150 V; hexapole 1, 21 V; hexapole 2, 20.6 V.  The mass 

spectrometer was programmed to collect data from a single full-scan MS (m/z 50-3000) 

scan event.  M/z data was deconvoluted to yield molecular mass values, using Bruker-

Daltonics “Data Analysis v.3.3” software. 

The detection limit for CoA was approximately 100 pmol and the CoA lithium ions 

present made it difficult to calculate the total amount of free CoASH (Figure 3.10).  When 

Hek293 cell PCA extracts were analysed by mass spectrometry, the intensity of the CoASH 

peak was 1000 times lower than that of the standard, and consequently difficult to detect 

above the baseline noise (Figure 3.11).  This suggests that the levels of CoASH in cultured 

cells are too low to measure CoA accurately by mass spectrometry.  The recycling assay and 

HPLC were therefore chosen as the main methods to measure CoA levels in future 

experiments.   

3.3 Sample preparation 

When preparing a sample for CoA analysis, it is essential that the method used ensures 

that 1) The CoA level in the sample is above the detection limit of the analysis method; 2) CoA 

esters are preserved; 3) oxidation is avoided; 4) maximum recovery of CoA is achieved. 
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Figure 3.10: Mass spectrum of 100 pmol free CoASH standard (m/z 768).  CoA was mixed with 50% acetonitrile 
and 0.05% formic acid before analysis.  The other peaks correspond to (Li

+
)1 , (m/z 774) and (Li

+
)2 (m/z 780) as 

indicated, or various contaminants of the CoA standard powder.  The y axis is relative abundance.   

 

Figure 3.11: Hek293 mass spectrum.  Hek293 cells were treated with 0.1% trifluoroacetic acid (TFA) before 
mixing with 50% acetonitrile and 0.05% formic acid for mass spectrometry analysis.  The protonated CoA 
species (m/z 766, 767, 768) and lithium ions (m/z 780, 785) are indicated within the red circles.  The intensity 
readings are 1000 times lower for protonated species of CoA compared to standard CoA readings. 
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3.3.1 Deproteinisation 

Extraction with trichloroacetic acid (TCA) [10% (w/v), final concentration], followed 

by removal of excess TCA with ether, is often used to prepare acid-soluble acyl-CoA 

compounds (Corkey 1988), however here the results indicate that this method degrades 

CoA (Figure 3.12A).   This degradation is not seen with perchloric acid (PCA) [5% (w/v), final 

concentration] extraction of CoASH and its esters, followed by careful neutralisation with 

1M K2CO3 (Figure 3.12B, Figure 3.13).   

3.3.2 Preserving CoA esters 

CoA esters rapidly break down at pH values of 8-9 and free CoASH is often a 

product.  To prevent free CoASH levels from being altered during the extraction procedure, 

it is desirable to adjust the pH of solutions containing CoA esters so the conditions maintain 

free CoASH levels (Figure 3.13). 

3.3.2.1 The effect of pH on the recycling assay 

Due to the various enzymes involved in the enzymatic assay, it is necessary to 

adjust the pH of the PCA extracts near physiological pH (around pH 6-7).  During the 

extraction procedure, the PCA extract was neutralised with K2CO3.  As the volume of the 

extract is too small to allow the pH to be measured using a pH meter, 0.5 µl aliquots of the 

extract were used to measure the pH using indicator paper.  This method can occasionally 

result in slight variations in pH, so it was necessary to test whether the recycling assay is 

affected by small pH fluctuations.  There appeared to be little difference between the 

standards at various pHs ranging from pH 5 to pH 7 (Figure 3.14), especially over the 

expected range of CoA levels in cultured cell extracts (20-100 pmol).  This indicates that 

small fluctuations in pH that may have occured during the neutralisation step do not affect 

the assay, possibly because they were cancelled out by the Tris buffer in the reaction 

mixture. 
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Figure 3.12: HPLC profiles of CoA/ acetyl CoA standards extracted with A) 10% TCA (final concentration) or B) 
5% PCA (final concentration). Extracts were analysed by HPLC. 
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Figure 3.13: Stability of CoA/ acetyl CoA in neutralised PCA.  The CoA/ acetyl CoA peak areas for 10 pmol CoA/ 
Acetyl CoA standards made up in H2O or extraction buffer (5% PCA, neutralised with K2CO3). The standards 
were analysed by HPLC. 

 

Figure 3.14: The effect of pH on the recycling assay.  CoA standards ranging from 20-500 pmol were incubated 
with H2O alone (control) or 5% perchloric acid that had been adjusted to pH 5.5, 6.0, 6.5 or 7.0, together with all 
of the components of the recycling assay and 1 mM DTT for 10 mins at 30˚C. NADH produced during the 
reaction was measured spectrophotometrically using a 96-well plate reader. 
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3.3.2.2 Compatibility with the Recycling Assay 

As the recycling assay is an indirect method for measuring CoA, it is important to 

know whether the extraction procedure affects the assay in any way.  When comparing the 

ΔNADH of increasing CoA standards (20-80 pmol) in water with HepG2 extracts, the 

increase in ΔNADH was slightly reduced for standards in the presence of cell extracts 

(Figure 3.15).  This suggests that a component of the extraction buffer inhibits the activity 

of at least one of the enzymes in the recycling assay, or alternatively quenches the NADH 

absorbance.  The increase in ΔNADH was still linear, so it is possible to measure CoA levels 

in cultured cell extracts accurately, providing an internal standard is used to correct for the 

ΔNADH decrease.   

3.3.3 Concentration 

Cell samples were initially collected by trypsinisation and then lysed with a 

relatively small volume of PCA (150 µl) to release CoASH and its short chain esters into 

solution.  The main issue with this method is that there is a significant amount of time (~5-

10 mins) from when the DMEM is removed to when the cells were lysed. Cells potentially 

become stressed without DMEM and during trypsinisation and this may cause an unwanted 

change in the ratio of CoASH: CoA esters.   

The extraction method was consequently modified, so that the time between 

DMEM removal and PCA addition was kept as short as possible.  This was achieved by 

adding PCA directly to the plate, after washing cells with PBS, and then scraping and 

collecting the cell lysates.  The combined values for CoASH and acetyl CoA were very similar 

for both trypsinisation and scraping (Figure 3.16).  This suggests that no significant loss of 

CoASH/acetyl CoA occurs during scraping.  However, it is important to note that scraping 

dilutes the sample, making it even more difficult to accurately detect CoASH by the  
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Figure 3.15: The effect of PCA cell extracts on the recycling assay:  Known CoA standards ranging from 20-80 
pmol were incubated for 10 mins at 30˚C, with all of the components of the recycling assay, 1 mM DTT and 
either H2O or HepG2 extracts, with a final reaction volume of 200 µL. HepG2 cells were extracted as described 
in Chapter 2.  NADH produced during the reaction was measured spectrophotometrically using a 96-well plate 
reader. 
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Figure 3.16: CoA levels in cultured cells collected by different methods. Combined CoA + acetyl CoA levels 
were measured in HepG2 (A) and Hek293 (B) extracts which were either trypsinised before PCA extraction or 
PCA was added directly to the cell culture plates and cells were collected by scraping. Extracts were measured 
by HPLC.  
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recycling assay or HPLC.  Therefore it is necessary to concentrate the extract before 

analysis.   

Lyophilisation is a well-documented method for concentrating samples, however 

during this process degradation, especially of acetyl CoA occurs (Figure 3.17).  A speed vac 

concentrator is used to partially, but not completely reduce the extract volume. 

3.3.4 Reducing Agent 

The underestimation of free CoASH due to its oxidation to form glutathione CoA, 

CoA dimers, or other mixed dimers is a potential problem when measuring CoA levels.  

Dithiothreitol (DTT) or β-mercaptoethanol are the traditional reducing agents of choice for 

the recycling assay, however they cannot be used for HPLC as their peaks interfere with the 

CoASH peak.   TCEP (tris(2-carboxyethyl)phosphine) is another effective reducing agent that 

is structurally very different from DTT and β-mercaptoethanol and has a very low 

absorbance at 254 nm.  It was therefore used to reduce CoASH during HPLC instead. 

Ideally the extraction procedure should be kept as similar as possible for all the 

methods used to measure CoA levels, so CoASH standards in the presence of TCEP were 

compared to standards in DTT using the recycling assay.  TCEP drastically reduces the 

change in NADH absorbance in the recycling assay, especially at the range of CoA levels 

present in cell extracts (20-100 pmol) (Figure 3.18).  Consequently, it is not possible to use 

the same reducing agent for both methods of CoA detection. 

3.4 Standardisation 

Traditionally, CoA levels in tissues are standardised per gram wet weight.  

Standardising CoA levels using PCA pellet weight was found to be the most convenient for 

cultured cells with the extraction method used here, since other methods of  
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Figure 3.17: Lyophilisation affects % recovery of CoA and acetyl CoA.  A known concentration of CoA/ acetyl 
CoA was added to liver tissue extracted with 7.5% PCA (0.5 mL/ 100 mg liver), then neutralised to a pH of 6.5.  
Tissue extracts were incubated with 10 mM TCEP (10 mins, 30˚C), and then made up to a final volume of 90 µL 
in mobile phase, with an injection volume 50 µL and analysed by HPLC straight away or after 2 hours 
lyophilisation.  The amount of known CoA/ acetyl CoA recovered was measured by comparing with the same 
liver extract containing no additional CoA/ acetyl CoA.   

 

Figure 3.18: The effect of TCEP on the recycling assay.  Known CoA standards ranging from 20-500 pmol were 
incubated for 10 mins at 30˚C with all the components of the recycling assay and either 1 mM DTT or TCEP.  The 
final reaction volume was 200 µL and NADH produced during the reaction was measured 
spectrophotometrically using a 96-well plate reader. 
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standardisation (e.g. protein, wet weight, and cell number) require a second culture plate 

in which it cannot be guaranteed that cells will grow in the same way.  The relationship 

between PCA pellet weight, wet weight, protein, and LDH content was established using 

increasing volumes of trypsinised cultured cells and this allowed CoA levels in cultured cells 

to be expressed using different standardisation methods (Figure 3.19). 

3.5 Percentage recovery 

Method development studies show that the best extraction conditions for CoASH 

and CoA thioesters in cultured cells are with 5% PCA, followed by neutralisation with 1M 

K2CO3 (to pH 6).  Samples should then be concentrated partially, using the speed vac 

concentrator.  TCEP is the reducing agent of choice for HPLC, whereas DTT is used for the 

recycling assay.  To examine the reliability of this extraction method, recovery experiments 

of standard CoASH or acetyl CoA added to HepG2 PCA extracts before neutralisation and 

concentration were analysed using both detection methods.  Under the extraction 

conditions described, percentage recovery was nearly 100%, indicating that there was no 

oxidation or degradation of CoASH/acetyl CoA (Figure 3.20).  It is also important to note 

that CoA levels measured by the recycling assay and HPLC are similar (Chapter 4), further 

supporting the reliability of these methods.  
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Figure 3.19: Methods of standardisation. Trypsinised HepG2 cells were pooled then divided into 2, 4 and 6 mL 
samples.  200 μL aliquots were lysed in buffer containing 1% trition, then used to measure A) LDH activity 
(spectrophotometric assay) B) protein concentration (Bradford assay) C) wet weight D) PCA pellet weight.  E) 
Conversion table for all methods of standardisation.  Cell number was calculated using measurements against 
LDH activity.  
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Figure 3.20: Percentage recovery of CoA and acetyl CoA in cell extracts is good.  HepG2 cells grown in 10 cm 
plates were extracted with 5% PCA and 200 pmol of CoASH and acetyl CoA were added to the extracts before 
neutralisation and concentration. % recovery of added standards were analysed by HPLC and the recycling 
assay. 
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Chapter 4: Studying the role of Coenzyme A as 

a potential regulator of cellular function 

4.1 Introduction 

The levels of CoA and its thioesters vary over a wide range among different animal 

tissues, depending on the tissue’s metabolic activity.  Intracellular CoA levels also have 

been shown to change in response to a number of extracellular stimuli including nutrients, 

hormones, fasting and fibrate drugs (Berge 1983; Brass et al. 1990; Finlayson 1983; Horie et 

al. 1986; Kerbey 1977; Mcallister et al. 1988; Rapp 1973; Reibel et al. 1981a; Reibel et al. 

1981b; Reibel et al. 1983; Robishaw et al. 1982; Shibata et al. 1983; Smith and Savage 

1980).  A study involving PanK1-/- knockout mice demonstrated that an increase in CoASH 

during fasting is required for the metabolic transition from the fed to the fasted state 

(Leonardi et al. 2010).  Processes such as fatty acid oxidation and gluconeogenesis were 

impaired as a result of the lower levels of CoASH, illustrating the importance of CoASH as 

an essential cofactor.  Apart from acting as a cofactor, CoASH and its thioesters are also 

known to bind non-covalently and regulate the activities of enzymes.  At present, the 

established regulatory roles of CoASH and CoA thioesters appears to be mainly limited to 

feed forward/feedback regulation of metabolic enzymes as exemplified by the regulation of 

PDH and PanK.  However, it is likely that changes in cellular CoA levels under various 

conditions can have wider regulatory consequences than currently recognised.  Indeed, 

there are reports of processes other than metabolic pathways potentially regulated by 

CoASH and its thioesters.  For example S-thiolation by CoASH has been implicated as a 

possible mechanism for degradation (Huth et al. 1996; Huth et al. 2002; Schwerdt et al. 

1991; Schwerdt and Huth 1993); possible changes in acetylation and succinylation following 
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changes in CoASH levels both have the potential to regulate multiple cellular proteins and 

processes; and long chain acyl CoAs have been suggested to regulate signal transduction 

pathways, membrane fusion as well as gene regulation (Faergeman & Knudsen 1997).  

Alterations in CoA levels have also been observed in several pathological conditions such as 

diabetes, cancer, cardiac hypertrophy, Reye syndrome, MCAD deficiency and vitamin B12 

deficiency (Brass et al. 1990; Kerbey 1977; Mcallister et al. 1988; Rapp 1973; Reibel et al. 

1981a; Reibel et al. 1981b; Reibel et al. 1983).  It is not known whether these alterations in 

CoA levels are due to the metabolic abnormalities associated with the pathologies, or 

whether abnormal CoA levels contribute to the pathologies.  It is therefore important to 

gain a better understanding of the role of CoA as a regulator of cellular processes and 

consequences of altered CoA levels. 

Little is known about how changes in CoA are brought about.  Potential 

mechanisms are through alterations in biosynthesis and degradation of CoA.  Most studies 

of CoA biosynthesis in the literature focus on PanK, which is the primary rate-limiting 

enzyme in the CoA biosynthetic pathway.  The phosphopantetheine adenylyltransferase 

(PPAT) activity of CoASy (step 4) is thought to act as a secondary rate-limiting point during 

CoA biosynthesis, exemplified by the fact the 4’phosphopantetheine pool is almost as high 

as the pantothenate pool  (Jackowski and Rock 1981; Jackowski and Rock 1984).  Although 

CoASy has not been studied to the same degree as PanK, a few potential mechanisms for 

its regulation have been determined.  CoASy activity appears to be inhibited through 

phosphorylation on its tyrosine residues and activated by phosphatidylcholine and 

phosphatidylethanolamine, which are the main phospholipids in the outer mitochondrial 

membrane where CoASy is localised (Breus et al. 2010; Zhyvoloup et al. 2003). There is also 

some evidence that CoASy is feedback inhibited either by CoA or its thioesters (Ivey 2004).  

Furthermore, interactions between CoASy and p85α subunit of PI3K as well as S6K1 have 
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previously been shown in this laboratory (Breus et al. 2009; Nemazanyy et al. 2004). 

Whether these signalling pathways regulate CoA biosynthesis in vivo is not known. 

Cultured mammalian cells are used in a diverse range of biological research.  Most 

studies on CoA metabolism and function have used freshly isolated organs/primary cells or 

whole animals.  Surprisingly, very few studies on CoA function have used cell lines.  Isolated 

cells are well suited for experimentally modulating intracellular CoA levels and studying its 

effect on cellular processes, as well as studying signalling pathways regulating CoA 

metabolism.  In addition, long term effects such as growth can be studied in cell lines as 

opposed to freshly isolated primary cells which do not last for more than a few days.   

Therefore, the first objective of this chapter is to characterise cell lines in terms of 

CoA metabolism and to assess the suitability of cultured cell lines as a model for studying 

the regulatory function of CoA.  Secondly, the effects of mTOR and PI3K signalling on the 

levels of CoA shall be determined.  The final objective is to establish a method to 

experimentally modulate CoA levels and consequently investigate the effects of these 

changes on cellular function. 

4.2 Results 

4.2.1 Levels of CoA in Tissues and Cultured cells 

CoASH and acetyl CoA levels were measured in PCA extracts of freeze clamped 

adult rat tissues: liver, kidney, heart and brain as well as in various cultured cell lines 

including Hek293 and HepG2 by the enzymatic recycling assay and HPLC (Table 4.1, Figure 

4.1).  Tissue CoA levels were standardised against wet weight, which is the most commonly 

used standardisation method in previously published reports.  Cultured cells are normally 

standardised against the weight of the pellet precipitated after cells were lysed in PCA.   
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Tissue/ Cell 
Type 

Additional 
information 

Method of 
detection 

nmol/g wet weight 
pmol/mg PCA pellet 

weighta 
nmol/g proteinb pmol/106 cellsc 

Reference 

CoA Acetyl CoA CoA Acetyl CoA CoA Acetyl CoA CoA Acetyl CoA 

Rat                       

Liver (4) Fed ad libitum HPLC 62.3 27.9         560.9 250.8 This Study 

Liver (3) Fed ad libitum Recycling Assay 144.2 
    

1297.8 This Study 

Liver (7) balanced diet Enzymatic assay 368               
Tubbs and Garland 

(1964) 

Liver (8)/(6) Fed Recycling Assay 135 38             Allred & Guy (1969) 

Liver (6) fed Enzymatic assay 44.7 35.6             
Kondrup & Grunnet 

(1972) 

Liver (6) re-fed Enzymatic assay 95.0 30.0             Guynn et al. (1972) 

Liver (5) solid chow Enzymatic assay 49.8 37.6             Savolainen et al. (1976) 

Liver (5) fasted 
Enzymatic assay 
(fluorometric) 

117               Smith (1978) 

Liver (16) fed Recycling Assay 110.0 70.0             Brass&Hoppel (1980) 

Liver (12) starved HPLC 56.1 100.5             King & Reiss (1984) 

Liver (6)   HPLC 70.3 35.6             Hosokawa et al. (1985) 

Liver (5) fed HPLC 127.1 23.1             Corkey et al. (1988) 

Liver (3)   HPLC 76.5 27.7             Demoz et al. (1995) 

Liver (5)   HPLC 135               Jenniskens et al. (2002) 

Liver (3)   Acyl-CoA cycling 22.3 7.2             Tokutake et al. (2010) 

Liver (6) 
High 
carbohydrate diet  

Acyl-CoA cycling 97.1 5             Tokutake et al. (2012) 

Kidney (2) Fed ad libitum HPLC 43.5 6.3         391.6 57.1 This Study 

Kidney (1) Fed ad libitum Recycling Assay 63.2     
 

  568.8 This Study 

Kidney (5)   Recycling Assay 68 11             Allred & Guy (1969) 

Kidney (3)   Acyl-CoA cycling 1.9 5.1             Tokutake et al. (2010) 

Kidney (6) 
High 
carbohydrate diet  

Acyl-CoA cycling 0.5 2.9             Tokutake et al. (2012) 
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Tissue/ Cell 
Type 

Additional 
information 

Method of 
detection 

nmol/g wet weight 
pmol/mg PCA pellet 

weighta 
nmol/g proteinb pmol/106 cellsc 

Reference 

CoA Acetyl CoA CoA Acetyl CoA CoA Acetyl CoA CoA Acetyl CoA 

Heart (1) Fed ad libitum HPLC 13.8 50.8         124.3 457.3 This Study 

Heart (1) Fed ad libitum Recycling Assay 71.9       647.1 This Study 

Heart (5)   Recycling Assay 61 38             Allred & Guy (1969) 

Heart (3)    Acyl-CoA cycling 11.0 5.6             Tokutake et al. (2010) 

Heart (6) 
High 
carbohydrate diet  

Acyl-CoA cycling 13.7 6.8             Tokutake et al. (2012) 

Brain (2) Fed ad libitum HPLC 7.5 2.2         67.3 19.6 This Study 

Brain (1) Fed ad libitum Recycling Assay 20.7     
 

  186.6 This Study 

Brain (5)   Recycling Assay 23 8             Allred & Guy (1969) 

Brain (7)   HPLC 68.7 7.6             Deutsch et al. (2002) 

Cerebral 
Cortex (3) 

Fasted, Male Acyl-CoA cycling 1.5 1.9             Tokutake et al. (2010) 

Cerebral 
Cortex (3) 

High 
carbohydrate diet  

Acyl-CoA cycling 0.6 2.1             Tokutake et al. (2012) 

Skeletal 
muscle (5) 

 HPLC 4               Jenniskens et al. (2002) 

Skeletal 
muscle (3) 

 Acyl-CoA cycling 1.6 1.5             Tokutake et al. (2010) 

Skeletal 
muscle (6) 

High 
carbohydrate diet  

Acyl-CoA cycling 3.4 1.8             Tokutake et al. (2012) 

Lung (5)   Recycling Assay 22.0 3.0             Allred & Guy (1969) 

Lung (5)   HPLC 10.0               Jenniskens et al. (2002) 

Spleen (5)   Recycling Assay 14.0 7.0             Allred & Guy (1969) 

Spleen (3)   Acyl-CoA cycling 4.5 2.4             Tokutake et al. (2010) 

Spleen (6) 
High 
carbohydrate diet  

Acyl-CoA cycling 2.2 1.2             Tokutake et al. (2012) 

Testes (5)   Recycling Assay 19.0 5.0             Allred & Guy (1969) 
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Tissue/ Cell 
Type 

Additional 
information 

Method of 
detection 

nmol/g wet weight 
pmol/mg PCA pellet 

weighta 
nmol/g proteinb pmol/106 cellsc 

Reference 

CoA Acetyl CoA CoA Acetyl CoA CoA Acetyl CoA CoA Acetyl CoA 

Perirenal 
adipose 
tissue (3) 

 Acyl-CoA cycling 0.2 1.2             Tokutake et al. (2010) 

Perirenal 
adipose 
tissue (6) 

High 
carbohydrate diet  

Acyl-CoA cycling 0.4 0.2             Tokutake et al. (2012) 

Brown 
adipose 
tissue (3) 

 Acyl-CoA cycling 7.9 5.9             Tokutake et al. (2010) 

Brown 
adipose 
tissue (6) 

High 
carbohydrate diet  

Acyl-CoA cycling 36.4 13.1             Tokutake et al. (2012) 

Epididymal 
adipose 
tissue (3) 

 Acyl-CoA cycling 0.1 0.6             Tokutake et al. (2010) 

Epididymal 
adipose 
tissue (6) 

High 
carbohydrate diet  

Acyl-CoA cycling 0.6 0.3             Tokutake et al. (2012) 

Mouse                        

Liver (6)   Enzymatic assay 77.3 75.6             McAllister et al. (1988) 

Liver (3)   HPLC/MS 65.6 78.8             Gao et al. (2007) 

Liver (4)   Enzymatic Assay 75.0               Zhang et al. (2007) 

Heart (3)   HPLC/MS 37.0 29.8             Gao et al. (2007) 

Heart (4)   Enzymatic Assay 18.0               Zhang et al. (2007) 

Muscle (3)   HPLC/MS 8.5 3.3             Gao et al. (2007) 

Kidney (4)   Enzymatic Assay 4.0               Zhang et al. (2007) 

Brain (4)   Enzymatic Assay 0.5               Zhang et al. (2007) 

Human                       

Liver (5)   HPLC 154.0 43.0             Corkey et al. (1988) 
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Tissue/ Cell 
Type 

Additional 
information 

Method of 
detection 

nmol/g wet weight 
pmol/mg PCA pellet 

weighta 
nmol/g proteinb pmol/106 cellsc 

Reference 

CoA Acetyl CoA CoA Acetyl CoA CoA Acetyl CoA CoA Acetyl CoA 

Cultured Cells                       

HepG2 (25)   HPLC 2.6 3.3 6.9 8.9 34.7 44.6 23.1 29.7 This Study 

HepG2 (27)   Recycling Assay 1.9 3.9 5.1 10.5 25.4 52.4 16.9 34.9 This Study 

HepG2   
Fluorometric 

Assay 
            59.6   Palekar (2000) 

Rat 
Hepatocytes 
(2) 

 HPLC 35.9 34.8             King et al. (1988) 

Hek293 (6)   HPLC 2.1 3.8 5.6 10.3 27.8 51.7 18.5 34.5 This Study 

Hek293 (24)   Recycling Assay 1.8 3.5 4.8 9.6 24.1 47.8 16.1 31.9 This Study 

MEF (4)   HPLC 1.7 3.5 4.6 9.4         This Study 

MOLT (3)   HPLC 11.8 0.0 31.8 0.0         This Study 

K562 (4)   HPLC 6.7 0.0 18.1 0.0         This Study 

pancreatic β 
cells (6) 

 HPLC         106.0 135.0     Corkey et al. (1989) 

Hepa 1c1c7 
cells  

liquid 
chromatography/ 

electrospray 
ionization mass 
spectrometry 

300.0 450.0     
 

   Basu et al.  (2011) 

 

 

Table 4.1: Summary of CoA and acetyl CoA levels in tissues and cultured cells.  CoA and acetyl CoA levels in various tissues and cultured cells, measured by the method stated have been 
compared. The number of samples is shown in parentheses. 

abc
 CoA levels were measured in this chapter in pmol/mg pellet.  CoA levels were converted into nmol/mg wet weight

a
, nmol/g 

protein
b
, pmol/10

6
 cells

c
 using linear regression values obtained from samples standardised by all methods.  
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Figure 4.1: Summary of Total CoA levels measured.  CoASH + acetyl CoA levels were measured in rat tissue and 
cell extracts by the enzymatic recycling assay (A) or HPLC (B).  The number of samples (from independent 
experiments) is shown in parentheses. 
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This pellet contains acid insoluble components of the cell including denatured protein and 

long chain fatty acyl-CoA thioesters.  Preliminary experiments using HepG2 and Hek293 

cells showed a good linear correlation between cell number, PCA pellet weight, cell wet 

weight, protein concentration and LDH content.  This enables CoA levels in cultured cells to 

be expressed using different standardisation methods and allows comparison against 

literature values.   

There have been a large number of studies reporting CoA levels in tissues.  

However there are limited reports in cultured cells (Table 4.1).  Reported values for CoA 

vary to quite an extent for a given tissue.  For example in the reports mentioned here, free 

CoASH levels in rat liver range from 22.3 - 135 nmol/g wet weight (acetyl CoA: 5-100.5 

nmol/g wet weight).  This is likely to be due to differences in the conditions used.  CoA 

levels in adult rat tissues obtained during this study generally fell between the ranges 

observed previously (Table 4.1, Figure 4.1).  When measuring by HPLC, levels of CoASH 

were highest in liver (CoASH: 62.3 nmol/g wet weight, acetyl CoA: 27.9 nmol/g wet weight), 

followed by kidney (CoASH: 43.5 nmol/g wet weight, acetyl CoA: 6.3 nmol/g wet weight), 

heart (CoASH: 13.8 nmol/g wet weight, acetyl CoA: 50.8 nmol/g wet weight) and brain 

(CoASH: 7.5 nmol/g wet weight, acetyl CoA: 2.2 nmol/g wet weight).  Similarly, when 

combined levels of CoASH + acetyl CoA were measured by the recycling assay the highest 

CoA levels were seen in liver (144.2 nmol/g wet weight), followed by heart (71.9 nmol/g 

wet weight), kidney (63.2 nmol/g wet weight), and brain (20.7 nmol/g wet weight).  The 

differences in CoA levels obtained by the two analytical methods were probably due to the 

fact the tissues used for each method were from different rats and a low sample number 

was used.  It is unlikely that the differences are due to difference in the two analytical 

methods because when the same sample of powdered tissue was analysed by both 

methods, very similar results were achieved.  In this study, the focus was on the two cell 

n=4 

A 
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lines HepG2 and Hek293.  Liver tissue is known to have the largest concentration of CoA 

among tissues due to its high metabolic activity, and its CoA level is the most responsive to 

changes in metabolic state.  HepG2 cells are a human liver carcinoma cell line which retain 

some of the characteristics of liver in vivo (Brandon et al. 2006; Chen et al. 2002; Feng et al. 

2001; Murakami 2002).  Hek293 is derived from human embryonic kidney cells and is also 

used here due to its ease of maintenance and genetic manipulation.  However, it is 

important to note that because they are experimentally transformed, they are not 

representative of kidney cell function (Graham et al. 1977; Shaw et al. 2002).  When 

measuring by HPLC, HepG2 CoASH levels were 6.93 ± 1.0  pmol/mg PCA pellet (2.57 nmol/g 

wet weight) and acetyl CoA levels were 8.91 ± 0.95 pmol/mg PCA pellet (3.30 nmol/g wet 

weight) (n=25).  Recycling assay values were comparable, with CoASH levels of 5.08 ± 0.61 

pmol/mg PCA pellet (1.88 nmol/g wet weight) and acetyl CoA levels of 10.48 ± 1.22 

pmol/mg PCA pellet (3.88 nmol/g wet weight ) (n=27).  Hek293 CoA levels were also in the 

same range, with CoASH and acetyl CoA levels of 5.55 ± 1.2 pmol/mg PCA pellet (2.06 

nmol/g wet weight) and 10.34 ± 2.26 pmol/mg PCA pellet (3.83 nmol/g wet weight), 

respectively, when measured by HPLC (n=6); and CoASH and acetyl CoA levels of 4.82 ± 

0.67 pmol/mg PCA pellet (1.79 nmol/g wet weight) and 9.56 ± 0.77 pmol/mg PCA pellet 

(3.54 nmol/g wet weight), respectively, when measured by the recycling assay (n=24).   

Notably, CoASH and acetyl CoA levels were much lower in both HepG2 and Hek293 

cells compared to liver.  The possibility was considered that this large difference may be 

due to the method of standardisation.  It was observed protein amount per gram of wet 

weight of liver is four fold higher than in HepG2 cells.  This may suggest that there are more 

liver cells/g wet weight compared to cultured cells, although the high protein concentration 

in liver may also be due to blood proteins, since these are not removed during the freeze 

clamping process used to collect liver samples.  Assuming liver contains approximately 
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15x107 hepatocytes per g tissue wet weight (Carthew et al. 1997), liver contains 

approximately 500 pmol CoASH/106 cells. This is still over 20-fold higher than the CoASH 

level in HepG2 cells expressed per 106 cells (approximately 20 pmol/106 cells) (Palekar 

2000).  Therefore, the contrast between liver and HepG2 cells does not appear to be due to 

the method of standardisation.  The difference in CoA levels between HepG2 cells and liver 

tissue is also unlikely to be due to the fact that the tissues are from rat, as opposed to the 

cells which were derived from humans, since CoA levels reported in human liver tissue is 

very similar to, if not higher than levels reported in rat liver (Table 4.1).  Finally, the 

variation in CoA levels between liver and cultured cells is not due to sample preparation 

and analytical methods, since percentage recovery experiments in Chapter 3 determined 

that CoA was not lost during the extraction procedure.  The only other study reporting 

CoASH levels in HepG2 cells found was by Palekar (2000), who reported CoASH levels of 

59.6 pmol/106 cells.  Although this is 2.5 times higher than what was determined in this 

study, it is still 10 fold less than in liver.  CoASH and acetyl CoA were also measured by HPLC 

in other cultured cells including mouse embryonic fibroblasts (MEF), and the human 

leukaemia cell lines MOLT and K562.  Similarly to HepG2 and Hek293, the CoASH levels 

were lower than in liver in these cultured cells (15-30 pmol/mg PCA pellet).    

4.2.2 Characterisation of CoA levels under different conditions in 

cultured cells 

CoA levels are known to change in tissues in response to a number of extracellular 

stimuli.  Cultured cells were treated with various stimuli to determine the conditions under 

which CoA levels change and also how responsive these cells are to the conditions tested.    

4.2.2.1 The effect of FBS 

Initially, to characterise how cultured cells behave, HepG2 and Hek293 cells were 

starved of FBS for 24 hrs followed by 10% FBS stimulation in Dubecco’s Modified Eagle 
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Medium (DMEM) for time points ranging between 1 and 6 hrs (Figure 4.2).  Starvation and 

serum stimulation does not significantly affect CoA levels in HepG2 cells.  In Hek293 cells, 

FBS stimulation for 1 hr increases free CoASH levels, which then return to basal levels after 

6 hrs.  This is also seen as a significant decrease in combined CoASH + acetyl CoA levels.  

These results suggest that growth factor signalling pathways do not regulate CoA levels in 

HepG2 cells.  The increase in CoA levels in Hek293 cells might indicate an increase in CoA 

biosynthesis, or more likely an increase in the conversion of acetyl CoA to CoASH, which 

can be seen between FBS starved conditions and 1 hr FBS stimulation, although is not 

statistically significant.  FBS contains many components, including nutrients and mitogenic 

stimuli that may affect CoA levels in different directions, so it is difficult to interpret the 

exact cause for the fluctuations in CoA levels.  Tissue specific differences between Hek293 

and HepG2 cells may account for the different responses. 

4.2.2.2 The effect of Glucose and Insulin 

Studies with radioactive [14C]pantothenate indicate that CoA synthesis in rat liver 

and perfused heart is inhibited following 1 hr incubation with glucose at the first step of the 

biosynthesis pathway, PanK, due to an increase in the accumulation of  [14C]pantothenate.  

Incubation for 1 hr with insulin in the presence of glucose further inhibits the rate of 

pantothenate phosphorylation, whereas insulin on its own does not show any inhibition, 

indicating that insulin does not inhibit PanK directly (Robishaw et al. 1982; Smith 1978).  

Furthermore, the levels of CoA are reduced in liver and hepatocytes in the presence of 

insulin and cytosolic CoA levels are increased 150% in diabetic hearts (mitochondrial 30%) 

(Neely et al. 1982; Reibel et al. 1981a; Reibel et al. 1981b; Smith and Savage 1980). The 

mechanism by which insulin regulates CoA levels is still unclear, although it is thought it 

may be due to its action on carbohydrate metabolism. 
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Figure 4.2: The effect of FBS starvation and stimulation on CoA levels in HepG2 and Hek293 cells.  HepG2 (A) 
and Hek293 (B) cells were incubated in FBS free DMEM for 24 hours at 37˚C, 10% CO2, then stimulated with 
10% FBS for either 1 or 6 hours.  Control cells were incubated in DMEM + 10% FBS.  CoA levels were measured 
in cell extracts and quantified by the recycling assay.  Free CoA levels were calculated from the difference 
between total and acetyl CoA. p<0.05 (*); p <0.001 (**) 
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To determine whether CoA levels would decrease specifically upon glucose and 

insulin stimulation, HepG2 cells were incubated in serum and nutrient free medium, and 

then stimulated with increasing concentrations of glucose (0-25 mM), with or without 

insulin.  The expected decrease in CoA levels in HepG2 cells was not observed upon 

treatment with different concentrations of glucose for 16 hrs (Figure 4.3).  A possible 

decrease in free CoASH levels occurred with 10 nM insulin treatment in HepG2 cells after 1 

hr, however this was not statistically significant and after 6 hrs there was no difference 

compared to the control (Figure 4.4A) 100 nM Insulin had no effect on CoA levels in Hek293 

cells despite the activation of the insulin signalling pathway as indicated by the 

phosphorylation of its downstream target, Protein Kinase B (PKB) (Figure 4.4B&C).  

4.2.2.3 The effect of Fatty Acids 

Recent data in the literature demonstrates significantly lower CoA levels in rat liver as well 

as cerebellum, medulla oblongata and skeletal muscle in rats fed a high fat diet compared 

to rats fed a high protein or high carbohydrate diet (Tokutake et al. 2010).  CoASH and 

acetyl CoA levels were evaluated by HPLC after incubating HepG2 cells with the long chain 

fatty acid, 0.5 mM palmitate (C16) bound to 1% BSA and 1 mM carnitine for 6 or 24 hrs in 

FBS-free DMEM with 5 mM glucose.  Carnitine is required for the transport of fatty acyl 

CoA across the inner mitochondrial membrane into the mitochondria.  It is added to ensure 

there is sufficient carnitine to transport fatty acids into the mitochondria, because 

regulation of CoA levels by fatty acids might require β-oxidation in the mitochondrial 

matrix.  There was no effect on CoA levels after 6 hrs incubation with palmitate, although 

after 24 hrs there was a statistically significant decrease in combined CoASH + acetyl CoA  
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Figure 4.3: The effect of Glucose on CoA levels in HepG2 cells. HepG2 cells were incubated in FBS-free DMEM 
with low glucose (5 mM) and 1% BSA for 24 hours at 37˚C, 10% CO2.  Cells were then stimulated for 24 hours 
with concentrations of glucose ranging from 0-20 mM. 
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Figure 4.4: The effect of insulin on CoA levels. HepG2 (A) and Hek293 (B) cells were incubated in FBS free 
DMEM for 24 hours at 37˚C, 10% CO2, then stimulated with 10 nM (HepG2)/ 100 nM (Hek293) Insulin for the 
various time points indicated. CoA levels were measured in cell PCA extracts, which were quantified by the 
recycling assay.  Free CoA levels were calculated from the difference between total and acetyl CoA. C) Western 
blot analysis of phospho-S473 PKB indicated insulin signalling was activated by 100 nM Insulin stimulation in 
Hek293 cells. 
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levels (Figure 4.5A).  This decrease was likely to be due to a decrease in free CoASH as there 

were no significant changes in acetyl CoA levels (Figure 4.5B&C).    

4.2.3 The effect of signalling pathway inhibitors 

Association of CoASy with S6K and p85α subunit of PI3K provides a potential link 

between CoA biosynthesis and the mTOR and PI3K signalling pathways.   No changes in 

CoASy activity were observed in vitro in previous studies from the association of CoASy and 

S6K, however it is possible that components upstream or downstream of S6K might 

regulate CoASy in vivo.  Indeed, mTOR, p85α and p110α subunits of PI3K were also 

detected in the mitochondrial fraction and p85α associates with CoASy on the outer 

mitochondrial membrane in Hek293 cells (Breus et al. 2009; Nemazanyy et al. 2004).  mTOR 

is a key regulator of cellular growth, which requires the synthesis of fatty acids for 

membranes.  As CoA is an important factor in fatty acid synthesis, mTOR signalling may be 

accompanied by changes in CoA levels.   

4.2.3.1 Regulation of CoA levels via the mTOR pathway 

To establish whether mTOR signalling regulates CoA levels, HepG2 cells were 

treated with 100 nM rapamycin (mTOR inhibitor) for 24 hrs in DMEM containing FBS.   The 

fluctuations in CoASH and acetyl CoA levels detected by HPLC upon rapamycin treatment 

were not statistically significant (Figure 4.6A).  PP242 is another mTOR inhibitor, which is 

selective and ATP competitive.  Treatment with 2.5 μM PP242 did not appear to cause any 

changes to CoASH or acetyl CoA levels in either Hek293 or HepG2 cells after analysis by the 

recycling assay (Figure 4.6B&C).  Both these inhibitors effectively decreased mTOR activity, 

as indicated by the markedly reduced phosphorylation at the mTOR target site (threonine 

389) of S6K (Figure 4.6D).  These data indicate that mTOR signalling does not affect CoA 

levels over a 24 hr treatment in cultured HepG2 or Hek293 cells.  

  



A Study of Coenzyme A Metabolism and Function in Mammalian Cells 

 

 

128 

 

 

 

 

Figure 4.5: The effect of Fatty Acids on CoA levels in HepG2 cells. HepG2 cells were incubated in DMEM + 5 
mM glucose, 1% BSA for 16 hours at 37°C, 10% CO2. Cells were then incubated with 0.5 mM palmitate, 1 mM 
carnitine or 0.5 mM palmitate + 1 mM carnitine for either 6 or 24 hours at 37°C, 10% CO2.  Combined CoA + 
acetyl CoA (A), free CoASH (B) and acetyl CoA (C) levels were then measured in PCA extracts by HPLC. p<0.05 
(*). 
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Figure 4.6: The effect of mTOR signalling on CoA levels. HepG2 or Hek293 cells were incubated in DMEM + 10% 
FBS in the presence 100 nM Rapamycin (mTOR inhibitor) (A), or 2.5 µM PP242 (mTOR inhibitor) (B&C) for 24 
hours at 37˚C, 10% CO2. CoASH + acetyl CoA as well as free CoA and acetyl CoA were quantified in PCA cell 
extracts using HPLC (A) or the recycling assay (B&C). D) Western blot analysis of mTOR activity, exemplified by 
S6K phosphorylation after 100 nM rapamycin or 2.5 µM PP242 treatment in HepG2 cells.  
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4.2.3.2 Regulation of CoA levels via the PI3K pathway 

To ascertain whether PI3K signalling affects CoA levels through its association with 

CoASy, HepG2 cells were treated with 50 µM LY294002 (generic inhibitor of PI3 kinase) for 

24 hrs in the presence of 10% FBS.  Even with a high concentration of the inhibitor, there 

was not a statistically significant change in CoA levels when measured by the recycling 

assay (Figure 4.7).  This implies that CoA levels are not affected by PI3K signalling in HepG2 

cells. 

4.2.3.3 Regulation of CoA levels via the MAPK pathway 

Mitogen-activated protein kinase (MAPK) signalling can also regulate cell growth 

and proliferation.  Cells undergoing these processes require more energy and substrates, so 

consequently would have an increased metabolism.  To find out whether MAPK signalling 

affects CoA levels, HepG2 cells were treated with 20 μM PD98059 (inhibitor of MEK1 and 

MEK2).  Very little change was observed in CoASH and acetyl CoA levels after analysis by 

HPLC (Figure 4.8).  It is therefore unlikely that CoA levels in HepG2 cells are affected by 

MAPK signalling.   

4.2.4 Manipulation of cellular CoA levels to identify cellular 

functions affected by changes in CoA 

Several different methods were explored to modulate intracellular CoA levels in 

order to study the role of CoA as a regulator of cellular function. 

4.2.4.1 Regulation of CoA levels by Bezafibrate 

Fibrate drugs are agonists for the peroxisome proliferator activator (PPAR) 

receptor, which generally results in expression of genes involved in fatty acid metabolism.  

CoA levels have been shown to increase upon treatment with fibrates in both tissues (liver, 

kidney, heart, skeletal muscle) (Halvorsen 1983; Horie et al. 1986; Voltti et al. 1979) and 

cultured cells (HepG2) (Ramaswamy et al. 2004).  It has been previously confirmed that  
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Figure 4.7: The effect of a PI3K signalling on CoA levels. HepG2 cells were incubated in DMEM, 10% FBS in the 
presence of 50 µM LY294002 (PI3K inhibitor), for 24 hours at 37˚C, 10% CO2.  CoASH + acetyl CoA as well as free 
CoA and acetyl CoA were quantified in PCA cell extracts using the recycling assay. Free CoA levels were 
calculated from the difference between total and acetyl CoA.  

 

 

 

Figure 4.8: The effect of MAPK signalling on CoA levels. HepG2 cells were incubated in DMEM, 10% FBS in the 
presence of 20 µM PD98059 (MAPK inhibitor), for 24 hours at 37˚C, 10% CO2.  CoASH + acetyl CoA as well as 
free CoA and acetyl CoA were quantified by HPLC. 
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bezafibrate specifically increases PanK1α expression through activation of PPARα.  The 

increase in PanK1α expression following bezafibrate treatment resulted in a 2.6 fold 

increase in CoA levels (Ramaswamy et al. 2004).  In order to reproduce this effect, HepG2 

cells were incubated with bezafibrate in DMEM containing 10% FBS for 24 hrs.  A 2 fold 

increase was detected in combined CoASH + acetyl CoA levels in HepG2 cells by the 

recycling assay (Figure 4.9A), following an increase in PanK1β expression (Figure 4.9B). 

Most of this change appeared to be due to an increase in acetyl CoA, rather than free 

CoASH.  It is possible that free CoASH levels are tightly regulated.  Alternatively CoA is rate-

limiting for reactions that require CoA as a cofactor, and any resulting changes in CoA might 

be seen via the converted acylated CoA products.  A 1.6 fold increase in CoA levels was also 

detected after bezafibrate treatment in Hek293 cells (Figure 4.10C).  These data indicate 

that PanK regulation of CoA biosynthesis still takes place in these cells.  Bezafibrate is 

known to have effects other than increasing PanK1 expression, therefore is not suitable for 

the study on the role of CoA as a regulator of cellular processes and a more specific method 

of manipulating CoA levels is required.   

4.2.4.2 Overexpression of CoASy 

Bezafibrate effects showed that changing CoA biosynthetic enzymes is a good way 

to change CoA levels.  Initially, tetracycline-inducible stable cell lines of Hek293 over-

expressing CoASy wild type (WT) and a dominant negative mutant which completely 

disrupts PPAT activity, CoASy*203 were tested.  Altering CoA levels through CoASy 

expression is potentially easier than altering CoA levels through PanK expression since PanK 

has a number of isoforms (1-4) and also these cell lines have previously been established in 

this laboratory.  To determine whether over-expression of this enzyme results in an 

increase in CoA levels, Hek293 parental (empty vector), and Hek293 over-expressing WT 

and mutant forms of CoASy were treated with 1 μg/mL tetracycline in DMEM with 10% FBS  
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Figure 4.9: Bezafibrate increased CoA levels in HepG2 cells. HepG2 cells were incubated in DMEM, 10% FBS 
in the presence of DMSO or 0.5 mM BF for 24 hours at 37˚C, 10% CO2.  A)  Total CoA and acetyl CoA levels 
were quantified in cell extracts using the recycling assay.  Free CoA levels were calculated from the difference 
between total and acetyl CoA.  B) Western blot analysis of PanK1β expression in HepG2 lysates. p<0.05 (*); p 
<0.001 (**) 
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Figure 4.10: CoA levels in cells over-expressing CoA Synthase. Expression of CoASy was induced by adding 1 
µg/ml tetracycline to Hek293 parental, Hek293 over-expressing CoASy WT or Hek293 over-expressing 
CoASy*203 cells in DMEM, 10% FBS at a confluency of 60% and incubating for 24 hours at 37˚C, 10% CO2.  
Combined CoA + acetyl CoA, free CoASH and acetyl CoA levels were measured by HPLC (A) and the enzymatic 
recycling assay (B).  Combined CoA + acetyl CoA levels were measured in all cell lines after a further 24 hour 
incubation with 0.5 mM BF at 37˚C, 10% CO2 by HPLC (C). CoASy expression was measured in Hek293 parental, 
Hek293 over-expressing CoASy WT and mutant CoASy*203 cell lysates by Western Blot analysis (D) p<0.05 (*). 
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for 24 hrs.  CoA levels were measured in all these cell lines by the recycling assay and HPLC.  

Surprisingly the expected increase in CoA levels with the wild type CoASy over-expressing 

cells or the decrease with CoASy*203 mutant cells was not seen when measuring by both 

methods (Figure 4.10 A&B).  This may be because under these conditions PanK is the major 

rate-limiting enzyme and the endogenous level of CoASy is sufficient to maintain normal 

turnover of CoA, especially when the basal rate of CoA biosynthesis is very low, as appears 

to be the case with these cells.  Even when PanK was hyper activated with the 

hypolipidemic drug bezafibrate there was still no difference in CoA levels between Hek293 

cells over-expressing CoASy, CoASy*203 and Hek293 parental control (Figure 4.10C). CoASy 

WT and CoASy*203 are both over-expressed (Figure 4.10D), so these results imply that 

CoASy is not the main control point of CoA biosynthesis in Hek293 cells under normal 

conditions.   

4.2.4.3 The effect of Hopantenate on CoA levels 

Hopantenate (Hopan) is a structural analogue of pantothenate and is a PanK 

inhibitor in mice, which has been shown to decrease CoA levels in liver and kidney (Zhang 

et al. 2005).  HepG2 cells were seeded at 30% confluency in DMEM containing 10% FBS for 

4 hrs.  After removing the media, cells were then incubated in pantothenate free DMEM 

(no FBS) with various concentrations of pantothenate, ranging from 0-16 mM, added 

independently, with or without the addition of 200 μM Hopan for 24 hrs.  No significant 

changes in combined CoASH + acetyl CoA levels were detected by HPLC when changing the 

concentration of pantothenate in the media or when incubating Hopan with HepG2 cells 

(Figure 4.11A).  Surprisingly cells are able to grow normally, even without added 

pantothenate in the medium.  Therefore to determine if pantothenate is required for these 

cells, HepG2 cell growth was measured in the absence of pantothenate using the cell titre 

blue fluorometric assay.  Only after seeding HepG2 cells at a high density (2000 cells/well –  
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Figure 4.11: The effect of Pantothenate and Hopan on CoA levels in HepG2 cells. A) HepG2 cells were seeded at a 
confluency of 30% and incubated for 4 hours in DMEM, 10% FBS at 37°C, 10% CO2.  DMEM was removed and cells 
washed with PBS before incubating cells in pantotheniate free DMEM +/- pantothenate +/- 200 μM Hopan as 
indicated, for 48 hours. at 37°C, 10% CO2. Combined CoA + acetyl CoA levels were quantified in cell extracts using 
HPLC. B) Growth analysis of HepG2 cells in pantothenate free media.  HepG2 cells were seeded into 96 well plates at 
either 100 cells/well or 2000 cells/well and cell growth was measured in pantothenate free DMEM and normal DMEM 
using cell titre blue reagent, measuring 560/590 fluorescence.  
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96 well plate) was any cell growth seen, however this was greatly impaired compared to 

when pantothenate was present in the media (Figure 4.11B).  Together, these data indicate 

that cells need pantothenate to grow, however once they accumulate enough CoA, cells 

are able to survive in the absence of pantothenate.  This suggests the extracellular supply 

of pantothenate is not essential for cell maintenance, possibly due to CoASH having a long 

half-life and/or a CoASH or pantothenate recycling mechanism is in place.  

4.2.4.4 The effect of Pantethine on CoA levels 

Pantethine has been shown to restore CoA levels in a PanK2 deficient PKAN 

(Pantothenate Kinase-associated neurodegeneration) Drosophila model, as well as in 

dPanK/fbl RNAi-treated S2 cells (Rana et al. 2010).  Pantethine is a disulphide of 

pantetheine and both molecules can be phosphorylated by PanK and converted into 4’-

phosphopantetheine (an intermediate in the canonical de novo CoA biosynthesis pathway) 

(Abiko 1967).  Alternatively, a novel pathway for CoA biosynthesis, independent of PanK, 

has been proposed (Rana et al. 2010).  HepG2 cells were supplemented with 100 μM 

pantethine in DMEM containing 10% FBS to see whether this might result in an increase in 

CoA levels.  However, treatment up to 6 days did not result in a statistically significant 

change in combined CoASH + acetyl CoA levels.  This may indicate that pantethine only can 

increase CoA levels when the canonical pathway is impaired.   

4.2.4.5 Delivery of CoA using liposomes and cell penetrating peptides  

The delivery of a number of biological compounds into mammalian cells has been 

improved by fusing them to cationic peptides and is a way to specifically increase CoA.   

These peptides are able to overcome the lipophilic barrier of the cellular membrane and 

are known as protein transduction domains or cell penetrating peptides.  Cell penetrating 

peptides have been used to deliver a wide variety of cargoes including proteins, DNA, 

antibodies, toxins and nanoparticular drug carriers such as liposomes inside cells (Guidez 
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2004; Vives 2003).  In these studies, the TAT peptide (GRKKRRQRRRPQ), derived from the 

transactivator of transcription of the HIV virus, was linked to a terminal cysteine and 

incubated with CoA dimer to attach CoA through a disulphide bond.  The linkage of the TAT 

peptide with CoA would potentially transport CoA into mammalian cells following 

incubation, and free CoASH would be released in the reducing conditions inside the cell 

(Figure 4.12).  HepG2 cells were incubated with 10 µM TAT peptide, as well as poly-arginine 

(Arg9) (another cell penetrating peptide method) and also liposomes loaded with CoA to 

try and deliver CoA into cells, however none of the methods used could successfully 

increase CoA levels in cells.   

4.2.5 Generation of a stable cell lines over-expressing PanK1β and 

its characterisation 

Zhang et al. transiently over-expressed PanK1β and PanK3 in Hek293 T cells and in 

both cases measured a significant increase in CoA biosynthesis using radioactive 

pantothenate (Zhang et al. 2005).  Since this appears to be a good way to specifically 

increase CoA, stable cell lines over-expressing PanK1β were generated to study the effect 

of increasing CoA on cultured cells. 

4.2.5.1 Generation of Hek293 stably expressing PanK1β 

PanK1β was amplified by PCR from the pET28a vector containing PanK1β obtained 

from ADDGENE.  The forward primer contained an EcoRI restriction site as well as 30 bases 

from the N-terminal sequence that were missing from the ADDGENE construct.  The 

reverse primer contained a NotI restriction site and the final base of the C-terminal 

sequence, which was missing from the ADDGENE construct.  The PCR product was sub-

cloned into pET30a and sequenced.  The NotI/EcoRI-digested fragment was then ligated 

into pcDNA3.1(+).  Restriction digestion analysis confirmed that PanK1β (~1000 bp) was  
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Figure 4.12: Potential method to deliver CoA into HepG2 cells using cell penetrating peptides. Schematic 
demonstrating how the TAT peptide (GRKKRRQRRRPQ) could be used to transport CoA into cells. 
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correctly inserted into pcDNA3.1(+) (Figure 4.13A).  Sequencing analysis with the T7 

forward primer and BGH reverse primer confirmed that PanK1β was cloned in the correct 

orientation and the additional bases were included (Figure 4.13B&C).   Purified 

pcDNA3.1(+)/PanK1β plasmids were transfected into Hek293 and HepG2 cells using 

ExGen500 reagent.  Expression of PanK1β was much more efficient in Hek293 cells 

compared to HepG2 cells (Figure 4.14A&B), so the generation of stable cell lines was 

continued in Hek293 cells using Geneticin® selection.  After Geneticin® selection, 

expression of PanK1β was checked again and it was confirmed that stable cell lines over-

expressing PanK1β were successfully generated (Figure 4.14C).   

4.2.5.2 Analysis of CoA levels in Hek293 over-expressing PanK1β 

CoA levels were measured in these Hek293 cells over-expressing PanK1β using 

HPLC.  In cells over-expressing PanK1β there was a 63% increase in free CoASH levels, a 

130% increase in acetyl CoA levels, a 240% increase in malonyl CoA levels and a 57% 

increase in HMG CoA levels, which all contributed to a 2-fold elevation in total acid soluble 

CoA levels (Figure 4.15A).  Interestingly, no increase was observed in long-chain acyl CoA 

(Figure 4.15B).  A two-fold increase in combined CoASH + acetyl CoA levels was observed by 

the recycling assay (Figure 4.15C). It is important to note that the 3-fold increase in malonyl 

CoA is a minimum estimate as it is not known whether any other peaks co-elute with 

malonyl CoA.  Alkaline hydrolysis illustrated that no peaks co-eluted with the other CoA 

esters mentioned, however it was not possible to check this for malonyl CoA as its peak is 

difficult to identify under normal conditions.  An increase in the peak which corresponds 

with malonyl CoA is clearly visible in Hek293 cells over-expressing PanK1β (Figure 4.16).   

4.2.5.3 The effect of PanK1β over-expression on cell growth 

To investigate whether cell growth was affected by the elevated CoA levels in 

PanK1β over-expressing cells, Hek293 parental and Hek293 cells over-expressing PanK1β  
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Figure 4.13: Molecular cloning of PanK1β. A) Restriction Digestion analysis shows that PanK1β has been 
correctly cloned into pcDNA3.1(+).  Plasmid pcDNA3.1(+)/PanK1β was restricted with EcoRI and NotI to 
release the 1 kb PanK1β insert (lanes 4+5).  Lane 1 contains the molecular weight marker, Lane 2 contains 
purified pcDNA3.1(+), Lane 3 contains purified PanK1β DNA (from PCR products).  Products were analysed 
by agarose gel electropheresis. B) Sequencing analysis of pcDNA3.1(+)/PanK1β with T7 forward primer 
shows that the N-terminal region of PanK1β has the EcoRI restriction site and bases missing from the 
ADDGENE version of PanK1β inserted correctly. C) Sequencing analysis of pcDNA3.1(+)/PanK1β with BGH 
reverse primer shows that the C-terminal region of PanK1β has the NotI restriction site and codon missing 
from the ADDGENE version of PanK1β inserted correctly. 
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Figure 4.14: Generating stable cell lines overexpressing PanK1β. A) Expression of PanK1β was measured by 
western blot analysis in Hek293 transiently transfected with PanK1β using Exgen500 transfection reagent. B) 
Expression of PanK1β was measured by western blot analysis in HepG2 transfected with PanK1β using 
Exgen500 transfection reagent.  C) Stable cell lines over-expressing PanK1β were generated by treating cells 
transfected with PanK1β or plasmid alone with 800 μg/mL Geneticin

®
.  PanK1β expression was measured by 

western blot analysis in parental cells containing the plasmid alone and cells over-expressing PanK1β.  
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Figure 4.15: The level of CoA increases in cells over-expressing PanK1β. A) CoA and a range of CoA esters were 
measured in Hek293 parental and Hek293 over-expressing PanK1β cells using HPLC. B) Long chain CoA esters were 
measured by the recycling assay after alkaline hydrolysis of the PCA pellet. C) Combined CoA + acetyl CoA levels were 
measured in cell PCA extracts and quantified by the recycling assay. p<0.05 (*); p <0.001 (**) 

 



A Study of Coenzyme A Metabolism and Function in Mammalian Cells 

 

 

144 

 

 

   

  
 

 

Figure 4.16: Representative HPLC profile showing malonyl CoA peak in control Hek293 cells and cells 
over-expressing PanK1β.  Malonyl CoA values were only quantified from samples showing a distinct peak. 
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were seeded into 96-well plates (~2000 cells/well) and growth of each cell line was 

analysed using the cell titre blue assay over a period of up to 10 days.  After 5 days, it 

became clear that the rate at which cells over-expressing PanK1β was slower than that of 

control cells, with the number of cells about 30-40% lower by the end point (Figure 4.17A).  

This reduction in cell growth was not seen in cells over-expressing CoASy (WT or *203 

mutant) (Figure 4.17B), suggesting specific effects of PanK1β.  Consistent with slower 

growth, protein amount in cell lysates, was also reduced by about 30% in cells over-

expressing PanK1β (Figure 4.17C). 

4.2.5.4 The effect of PanK1β over-expression on signalling pathways involved in 

cell growth 

mTOR and PI3K are central players in the regulation of growth and localise with the 

site of CoA production (outer mitochondrial membrane).  Moreover, unpublished work 

from this laboratory also provided evidence that CoA interacts with mTOR.  To test whether 

slower growth of cells over-expressing PanK1β is due to changes in mTOR and PI3K 

signalling, phosphorylation of the downstream targets of mTOR and PI3K was measured 

using phospho-specific antibodies against S6K and PKB respectively.  No change in the 

phosphorylation of S6K or PKB was observed in PanK1β over-expressing cells (Figure 

4.18A), indicating that CoA has no effect on long-term mTOR or PI3K activation.  AMPK 

signalling also was not affected by the increase in CoA levels, suggesting that no changes in 

AMP: ATP ratio occurred (Figure 4.18A).   

CoASy expression did not change in Hek293 cells over-expressing PanK1β (Figure 

4.18B), signifying that the increase in CoA levels was solely due to an increase in PanK1β 

and additional elevation of secondary rate-limiting enzyme in the CoA biosynthetic 

pathway was not required.  This further supports the earlier notion that CoASy is not as 

important as PanK in the regulation of CoA biosynthesis.   
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Figure 4.17: The effect of PanK1β over-expression on cell growth.  Cell growth was measured in Hek293 
parental, Hek293 over-expressing PanK1β in three independent experiments (A) and also Hek293 over-
expressing CoASy (WT and *203) (one experiment shown out of three) (B) as a control using the cell titre blue 
reagent.  Cells were seeded into 96 well plates as approximately 2000 cells/ well. C) A similar number of Hek293 
parental or cells over-expressing PanK1β were seeded onto 6 cm plates and allowed to grow for the same 
amount of time until they were 70-80% confluent.  Protein concentration was analysed in lysates of these cells 
using Bradford assay.   
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Figure 4.18: The effect of PanK1β over-expression on various signalling proteins.  S6K, PKB and AMPK 
activation (A) as well as expression of CoASy (B) were measured by western blot analysis in cells over-expressing 
PanK1β. 
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4.2.5.5 The effect of PanK1β over-expression on metabolic pathways 

Glycolysis is the main metabolic pathway used in fast proliferating cells such as 

Hek293, as glucose is used to generate biomass as well as ATP (Vander Heiden et al. 2009).   

It is possible that an increase in CoA might disturb the normal metabolic balance of Hek293 

cells.  Acetyl CoA levels were also significantly increased, which might suggest an increase 

in glucose or fatty acid oxidation.   

Fatty acid oxidation was compared in Hek293 parental cells and Hek293 over-

expressing PanK1β cells by incubating cells with 0.1 mM [9,10 3H] palmitate (10 mCi/mmol) 

(bound to 1% BSA).  The rate of palmitate oxidation in control cells was 7.5 pmol/min/mg 

protein whereas the rate in cells over-expressing PanK1β was slightly lower at 6 

pmol/min/mg protein (Figure 4.19).  The decrease was not statistically significant.  To 

assess whether glucose oxidation differs between Hek293 parental cells and Hek293 over-

expressing PanK1β cells, cells were incubated with 5 mM D-[14C(U)] glucose (0.1 μCi/mmol).  

As with fatty acid oxidation, glucose oxidation also was not significantly affected by 

increased CoA levels in cells over-expressing PanK1β, with a rate of 119 pmol/min/mg 

protein for control cells and a rate of 141 pmol/min/mg protein for cells over-expressing 

PanK1β (Figure 4.20). 

Lactate production usually correlates with the rate of glycolysis and was also 

measured in cells over-expressing PanK1β over a time course of 6 hrs.  Lactate production 

was measured spectrophotometrically using LDH, after PCA extraction.  Interestingly, 

lactate production appeared to be about 10-20% higher in cells over-expressing PanK1β 

and this observation was intensified to about 40% higher when standardising against 

protein concentration (Figure 4.21A&B).  The significance of this effect will be discussed 

below.   
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Figure 4.19: Fatty acid oxidation in cells over-expressing PanK1β. Fatty acid oxidation was measured in Hek293 
parental cells and Hek293 cells over-expressing PanK1β by incubating cells for 1 hr with 0.1 mM  [9,10 

3
H] 

palmitate bound to 10% BSA (10 mCi/mmol). Cells were killed with 5% PCA and palmitate was extracted using a 
chloroform and methanol extraction procedure.  The amount of 

3
H2O produced from oxidation of [9,10 

3
H] 

palmitate was measured by scintillation counting.  The results are shown after standardising by μg protein 

 

 

Figure 4.20: Glucose oxidation in cells over-expressing PanK1β. Glucose oxidation was measured in Hek293 
parental cells and Hek293 cells over-expressing PanK1β by incubating cells for 90 mins with 5 mM D-[

14
C(U)] 

glucose (0.1 µCi/mmol). Cells were killed with 5% PCA and [
14

C] CO2 produced was trapped in benzethonium 
hydroxide for 1 hr after lysing the cells with PCA. [

14
C] CO2 was measured by scintillation counting. The results 

are shown after standardising by μg protein.  
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Figure 4.21: Lactate production in cells over-expressing PanK1β. A) Lactate production was analysed after 
incubating Hek293 parental and over-expressing PanK1β cells with PBS, 1.3 mM CaCl2, 1.3 mM MgSO4, and 5 
mM glucose for the time points up to 6 hours.  Cells were killed with 5% PCA and lactate was assayed 
spectreophotometrically.  B) Lactate production was recorded relative to the 0 time point and also standardised 
against μg protein.   
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4.2.5.6 The effect of PanK1β over-expression on protein acetylation 

A study from Sibon’s group suggested changing intracellular CoA level alone can 

influence the acetylation of proteins (Siudeja et al. 2011).  Together with the observation 

here that acetyl CoA levels as well as free CoASH levels were increased (Figure 4.15A), one 

might expect acetylation of proteins to also increase in cells over-expressing PanK1β.   

Western blot analysis using antibodies against acetyl lysine residues confirmed that 

acetylation did increase in cells over-expressing PanK1β on a wide range of proteins (Figure 

4.22A).  Indeed, histones and tubulin are commonly acetylated proteins and here it is 

possible to see an increase in acetylation of proteins at molecular weights corresponding to 

histones (11-21 kDa) and tubulin (50-55 kDa).  Acetylation has been shown to regulate a 

number of processes such as chromatin remodelling, cell cycle, DNA repair, splicing, 

nuclear transport, and actin nucleation (Choudhary 2009).  There is no simple relationship 

between protein acetylation and cell growth and there are conflicting results in the 

literature, however increasing acetylation by histone deacetylase (HDAC) inhibitors has an 

anti-proliferative effect, which is why HDACs are often targets for cancer (Sambucetti 

1999).  As expected, incubation of Hek293 cells with HDAC inhibitor, TSA, caused inhibition 

of cell growth (Figure 4.22B).   
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Figure 4.22: The effect of PanK1β over-expression on protein acetylation.  A) Proteins acetylated on lysine residues 
were measured using antibodies against acetyl lysine residues by western blot analysis in cells over-expressing 
PanK1β. B) Hek293 cells were incubated with various concentrations of TSA indicated and growth of cells was 
monitored over 7 days using the cell titre blue reagent. 
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4.3 Discussion 

The aims of this chapter were to determine the suitability of using cultured cell 

lines as a model for studying CoA; to identify the role of the interaction between CoASy and 

mTOR and PI3K signalling proteins; and to investigate the effects that manipulation of CoA 

levels have on cellular function.  HepG2 cells were chosen as a cultured cell model as they 

were thought to represent liver, which is a highly metabolically active tissue and 

consequently has high levels of CoA.   

One of the most striking observations here was that HepG2 cells contained much 

lower levels of CoA than liver.  There are several reasons why this difference may have 

occurred.  Firstly, unlike liver in adult rats, HepG2 cells are cultured in medium containing 

high levels of growth factors as well as non-physiologically high levels of glucose (25 mM).  

Glucose has previously been shown to inhibit CoA synthesis in liver and heart (Smith 1978; 

Robishaw et al. 1982).  Secondly, HepG2 cells are a hepatoma cell line and previous studies 

have shown that liver tumours contained approximately 5 times less CoA compared to 

healthy liver.  The low levels of CoA may also be related to the ability of cells to oxidise 

fatty acids.  Tissues with high fatty acid oxidation capacity such as liver and kidney tend to 

have high CoA content.  Cancer cells typically rely on glycolysis.  The low fatty acid 

oxidation capacity, combined with high levels of glucose in the culturing medium may force 

HepG2 cells down the glycolytic route for energy metabolism and this may result in low 

CoA levels.  

HepG2 cells were also not particularly responsive to stimuli previously reported to 

change CoA levels in liver.  For example, both insulin and glucose did not significantly affect 

CoA levels in the cultured cells tested.  Incubation with fatty acids was an exception, in 

which the decrease in CoA observed here corresponded with the literature, where rats fed 

a high fat diet had reduced CoA levels in a number of tissues compared to rats fed a high 
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carbohydrate diet (Tokutake et al. 2010).  This may be related to degradation of CoA by 

fatty acids reported by Lopaschuck (Lopaschuk et al. 1986).  However, generally the low 

levels of CoA and the lack of agreement with liver indicate that HepG2 cells may not be a 

suitable model for studying the physiological function of CoA in liver in vivo.   

Another objective of this study was to elucidate the relative importance of CoASy in 

the regulation of CoA levels.  Following the observation that CoASy associates with mTOR, 

S6Kand p85αPI3K, it was tested whether mTOR and PI3K signalling could affect CoA levels.  

CoA levels were not changed by inhibition of PI3K and mTOR, therefore mTOR and PI3K 

signalling do not appear to be a mechanism for regulating CoA biosynthesis in these cells.   

There is the possibility that inhibiting PI3K and mTOR signalling might result in a range of 

contrasting metabolic effects that in turn may increase CoA utilisation or degradation yet 

the overall levels of CoA remain constant.  Another possible explanation may be that 

because the levels of CoA in cultured Hek293 and HepG2 cells are so low, CoASy may not 

be working as a rate-limiting enzyme.  Here, it was confirmed that although CoASy has 

previously been identified as rate-limiting following the observation of the accumulation of 

4’ phosphopantetheine (4’PP) (Jackowski and Rock 1981; Jackowski and Rock 1984; Rock et 

al. 2000), PanK is the major control point for CoA biosynthesis in Hek293 cells.  This was 

demonstrated by the results showing that CoA levels did not change when CoASy was over-

expressed, or even when PanK1α was hyper activated with bezafibrate.  Furthermore, no 

change in CoASy expression was observed when CoA levels were elevated upon PanK1β 

over-expression.  These studies suggest that regulation of CoASy does not contribute to 

overall control of CoA levels in the conditions used here.   

When investigating different methods of manipulating cellular CoA level for the 

final objective, it was interesting to find that CoA levels in HepG2 cells were not affected 

upon Hopan treatment, or even when pantothenate was completely absent.  This suggests 
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that there is a large buffering capacity to keep CoA levels within a tight range and 

alternative routes to CoA biosynthesis, such as conversion through its esters, play a large 

role in the maintenance of CoA levels in HepG2 cells.  Indeed, Zhang et al. identified an 

accumulation of acyl carnitines in the liver of mice treated with Hopan, which is consistent 

with the cycling function of carnitine to accept acyl groups from acylated CoA and release 

free CoASH during the process (Zhang et al. 2007).  Moreover, metabolomic and gene 

expression analysis identified adjustments that focussed on preserving the CoA 

concentration.  Also, although Zhang et al. found a decrease in CoA levels in liver and 

kidney upon Hopan treatment, no changes were displayed in heart or brain.  These tissue 

specific differences could result from a lower turnover rate of CoA in heart and brain, 

corresponding to a longer half life and may also be why no changes in CoA are seen in 

HepG2 cells.  

A novel finding here was that increasing CoA appears to have an anti-proliferative 

effect on cells.  Why cell growth was inhibited remains unknown, but it does not appear to 

involve changes in mTOR or PI3K signalling pathways which play a central role in growth 

regulation.  As activation of AMPK was not detected, it is unlikely that cells over-expressing 

PanK1β were energetically compromised.  Also, since there was no change in growth after 

CoASy over-expression, the effects of CoA on growth are likely to be specific for PanK1β.   

The possibility was considered that an increase in CoA might cause a metabolic 

shift which is unfavourable for Hek293 growth.  No changes in glucose or palmitate 

oxidation were detected following an increase in CoA, however the possibility that 

palmitate or glucose oxidation was increased immediately after PanK1β overexpression 

cannot be ruled out.  Even if this was the case, these effects were not sustained and 

therefore could not account for slower growth. 
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The increase in lactate production observed in this chapter, may suggest an 

accumulation of pyruvate.  Pyruvate kinase (PK) is the rate-limiting enzyme that mediates 

the final step of glycolysis.  There are several isoforms of PK and the dominant form in 

Hek293 cells is PKM2, which is also exclusively over-expressed in embryonic and tumour 

cells (Bluemlein 2011).  PKM2 is an inactive form of PK and it has been suggested that its 

overexpression results in the accumulation of glycolytic intermediates, which can be used 

for biosynthetic processes and cell growth.  It is thought that high expression of PKM2 

contributes to cancer cell growth and a study by Christofk et al. suggested that an 

increased flux through the PK reaction slows down cancer cell growth (Christofk et al. 

2008).  Therefore, although speculative, if PKM2 plays a similar role in Hek293 cells in 

promoting cell growth, the slower growth of PanK1β over-expressing cells may be related 

to activation of the PK reaction.  It has previously been shown that PanK4 associates with 

PKM2, however it is not known how this association affects the activity of either enzyme or 

whether any other PanK isoforms interact with PKM2 (Li et al. 2005).  It is possible that an 

increase in lactate formation may be through direct interaction of PanK1β with PKM2.   

Acetylation is another potential factor investigated here that might affect cell 

growth.   Acetylation is widely thought to be regulated through the balance between HAT 

and HDAC activities.  Recent studies provided some evidence that changes in the supply of 

its substrate acetyl CoA may also be important (Cai et al. 2011).  Km values of HATs, such as  

HAT1, PCAF, p300, and GCN5, for acetyl CoA are in the low micromolar range (1-10 µM) 

(Tanner, Langer, and Denu 2000; Tanner, Langer, Kim, et al. 2000; Bordoli et al. 2001; Poux 

et al. 2002; Wu et al. 2012).  The cytosolic concentration of acetyl CoA is also estimated to 

be in the low μM range and it is thought that acetyl CoA can freely pass through the 

nuclear pore complex (Takahashi et al. 2006). Therefore, an increase in cytosolic acetyl CoA 

would alone be expected to drive acetylation of histones, transcription factors, signalling 
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and metabolic proteins, providing the appropriate HATs are activated.  This effect may be 

more pronounced in cultured cells which contain less CoA, and the assumption is made 

that cytosolic acetyl CoA is also proportionately lower.  Acetylation of some proteins has 

been implicated in the inhibition of cell growth and HDAC inhibitors have been studied as 

possible anti-cancer agents. Although precise relationship between acetylation and growth 

is likely to be complex and depend on the proteins acetylated, the data presented here is 

consistent with the idea that global increase in acetylation through PanK1β overexpression 

may have inhibitory effect on cell growth.  
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Chapter 5: CoA Binding Proteins 

5.1 Introduction 

Coenzyme A has the potential to regulate proteins through several different 

mechanisms; as a cofactor; through allosteric interaction; through the formation of di-

sulphide bonds via its thiol group.  There are many accounts in the literature where CoA 

acts as a cofactor during a wide range of metabolic reactions.  However the reports of CoA 

interacting through allosteric or di-sulphide modification are limited. 

One of the more commonly known regulatory interactions of CoA is with PanK, 

which regulates the primary step in the CoA biosynthesis pathway.  CoA is involved in the 

feedback regulation of PanK in both prokaryotes and eukaryotes and is competitive with 

respect to ATP (Kupke et al. 2003; Rock et al. 2000; Song and Jackowski 1994; Vallari et al. 

1987; Yun et al. 2000). The different mammalian isoforms of PanK are regulated by free 

CoASH as well as its thioesters to various degrees (Leonardi et al. 2005). 

CoA has also been reported to regulate the enzyme pyruvate dehydrogenase 

kinase (PDHK) in pig heart muscle (Siess and Wieland 1982).  CoA was shown to increase 

the activity of PDHK, with its thiol group acting as a requirement for the stimulation.  Acetyl 

CoA, benzoyl CoA and CoA dimer were all ineffective at stimulating PDHK and other thiol 

containing agents such as DTT, β-mercaptoethanol and glutathione were all unable to 

substitute CoA as an activator of PDHK activity, indicating CoA’s specificity for the enzyme.  

The activation of PDHK stimulates PDH phosphorylation and consequent inactivation, 

preventing the conversion of pyruvate into acetyl CoA (Siess and Wieland 1982).   
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Covalent modification of a few proteins by CoA through formation of mixed di-

sulphides with cysteine residues or exchange reactions with protein di-sulphides has been 

identified.  These protein modifications were demonstrated for the mutant β-subunit of F1-

ATPase of E. coli (Odaka et al. 1993); a flavodoxin of K. pneumonia (Thorneley et al. 1992); 

and for the rat liver mitochondrial matrix enzymes acetyl-CoA acetyltransferase, 3-

ketoacyl-CoA thiolase (Huth et al. 1988, 1991) and hydroxymethylglutaryl-CoA synthase 

(Charlier, Narasimhan, & Miziorko 1997).  CoA modification for the liver mitochondrial 

proteins appeared to protect the proteins from degradation (Huth et al. 2002). 

The aim of this study is to gain a greater understanding of the function of CoA as a 

regulator of cellular processes.  In the previous chapter a “top down” approach was used, 

however in this chapter a “bottom-up” approach was applied with the aim of identifying 

proteins that directly interact with CoA and establish how they are regulated.  Affinity 

purification with CoA Sepharose is a commonly used approach which has previously been 

used to purify a number of CoA binding proteins, such as acyl-CoA synthetase and choline 

acetyltransferase as well as identify novel proteins related to peroxisomal thiolases 

(Driskell et al. 1978; Kameda et al. 1985; Raeber et al. 1989; Yang 1996).  CoA affinity 

purification was stated to be a specific and rapid procedure, which effectively binds to CoA-

dependent enzymes and so CoA Sepharose 4B beads were used in this study to purify CoA-

interacting proteins.  CoA-interacting proteins were identified by mass spectrometry.  The 

full procedure used to identify CoA-binding proteins is outlined in Figure 5.1. 

  



A Study of Coenzyme A Metabolism and Function in Mammalian Cells 

 

 

161 

 

 

 

 

 

 

 

Figure 5.1: Strategy for the Analysis of CoA binding proteins. 
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5.2 Results 

5.2.1 Coupling of CoA to Cyanogen Bromide Activated Sepharose 

5.2.1.1 Chemistry of coupling CoA to Sepharose 

Activated Sepharose 4B (4% agarose) beads are often used for the preparation of 

resins which can identify protein interactions through affinity purification.  Sepharose 

beads can be activated with cyanogen bromide (CNBr), which reacts with the hydroxyl 

groups on Sepharose and results in two types of products: an isourea derivative and a 

substituted imidocarbonate (Figure 5.2). The isourea is positively charged, so these beads 

can also act as an anion exchanger.  These beads react with nucleophiles, such as primary 

amines.  CoA has two reactive groups: its thiol group and the amine on the adenine ring 

which both can potentially react with CN group, resulting in the formation of CoA 

Sepharose beads (Figure 5.2). 

5.2.1.2 Binding and orientation to CoA Sepharose beads  

To identify proteins that are potentially regulated by CoA, CoA was coupled to 

CNBr-activated Sepharose 4B to generate CoA Sepharose beads.  CNBr activated Sepharose 

was incubated with 6 mM CoA in 100 mM phosphate buffer, pH 6 overnight at 4°C.  

Samples at the beginning and end of the coupling reaction were analysed by Ellman’s test 

and the coupling efficiency was determined to be approximately 60% (Figure 5.3A). 

Since CoA has two potential reactive groups, it was necessary to determine the 

orientation which CoA binds to activated Sepharose beads.  Therefore, CoA Sepharose was 

prepared under various conditions that blocked the thiol group of CoA and binding patterns 

of liver lysate proteins were compared (Figure 5.3B).  These conditions included using de-

sulpho CoA or CoA pre-treated with the alkylating agents, NEM and maleimide.  The results 

indicate that proteins do not really bind when the thiol group is blocked before coupling  
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Figure 5.2: Schematic to display how CoA can be coupled to cyanogen coated beads of cyanate ester or cyclic 
imidocarbonate form.  The lone pair of electrons on the adenine NH2 group of CoA interact with the delta positive 
carbon of the cyanate/ imidocarbonate group of CoA, resulting in the coupling of CoA to the beads. 

 



A Study of Coenzyme A Metabolism and Function in Mammalian Cells 

 

 

164 

   

 

Figure 5.3: The binding and orientation for CoA binding to CNBr activated Sepharose beads. A) 2 μL samples 
from the supernatant of 100 mM phosphate buffer + 6 mM CoA were taken at the start and end of the coupling 
reaction.  Coupling efficiency of CoA to cyanogen bromide activated Sepharose was measured using Elmans test, 
where the absorbance of samples was measured at 412 nm after incubating with 0.1 mM DTNB, 100 mM Tris/ 
HCL pH 8.0 and 2.5 mM sodium acetate for 30 mins at room temperature.  Acetyl CoA coupling was measured by 
HPLC. B)  Rat liver lysates were incubated with cyanogen bromide-activated Sepharose 4B that had been 
incubated either with CoA (lanes 1 and 4), de-sulpho CoA (lane 2), Tris (lane 3), or CoA pre-treated with 
maleimides (lanes 5 and 6). Lysates were also incubated with ATP-Sepharose (lane 7).  Proteins that bound to 
beads were released through boiling in SDS loading buffer, then resolved by SDS-PAGE analysis and silver 
staining. 
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CoA to CNBr Sepharose.  Therefore, CoA is most likely coupled to Sepharose beads through 

its thiol group.  Although these CoA derivatives do contain adenine NH2 groups, they seem 

unable to react with the Sepharose beads, possibly due to the delocalisation of the lone 

pair electrons to the adenine ring structure.   

Additional tests were carried out to eliminate the possibility of proteins interacting 

with CoA Sepharose through di-sulphide linkage.  Treating CoA-coupled beads with 100 

mM maleimide, prior to incubation with lysates did not affect the binding pattern of 

proteins compared to untreated CoA Sepharose.  Moreover, incubation of lysates with CoA 

sepharose in the presence of the reducing agent 10 mM DTT did not affect protein binding 

patterns (Figure 5.4).  These results further support the conclusion that beads are coupled 

to CoA through the thiol group as proteins do not appear to interact with CoA through di-

sulphide bridges.  

As CoA appears to bind through the sulfhydryl group, this leaves the adenine 

nucleotide group exposed for protein binding.  Affinity binding experiments were carried 

out using ATP immobilised on Sepharose through its phosphate group to determine 

whether the pattern of proteins binding to CoA Sepharose solely represent nucleotide 

binding proteins. The protein binding pattern of ATP Sepharose is different from CoA 

Sepharose, indicating that there are a number of proteins that require the pantetheine 

moiety of CoA, in addition to the adenine group for binding to occur, suggesting that these 

proteins specifically bind to CoA.  In addition, non-specific protein binding through ionic 

interactions was detected using CNBr Sepharose coupled to Tris (primary amine), which 

carries the same positive charge as CoA Sepharose. 

5.2.1.3 Do proteins that bind to CoA Sepharose bind specifically to CoA? 

It is important to check whether the proteins purified by this method are specific to 

CoA.  Rat liver lysates were incubated with Sepharose beads coupled to CoA or Tris for 2  
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Figure 5.4: Proteins do not bind to CoA through its thiol group.  The lysate from rat liver was incubated with 
Sepharose beads, coupled to CoA or Tris (control beads).  Liver lysates were also incubated with beads that had 
been pre-treated with 100 mM maleimide. Proteins were released through boiling in SDS loading buffer, then 
resolved by SDS-PAGE analysis and silver staining. 
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hrs at 4°C, with shaking.  Proteins bound to CoA Sepharose were then eluted with 100 mM 

CoA, ADP or pantothenate (Figure 5.5).  Very few proteins were eluted with ADP and none 

at all were eluted with pantothenate.  These data indicate that the majority of proteins 

purified by this method specifically bind to CoA.   

5.2.2 Affinity Purification and SDS-PAGE Analysis 

The CoA molecule can interact with proteins in a number of ways (Figure 5.6).  

Non-specific ionic interactions represent one option; however these can be identified, and 

consequently eliminated, through binding patterns with Tris beads.  Specific interactions 

include proteins binding through the pantothenate moiety, through the adenosine moiety 

as well as both the pantothenate and adenosine moieties.  It is important to be aware that 

this method also may pull down proteins which bind to proteins specifically interacting with 

CoA but do not directly interact with CoA themselves. 

Having established a method that has the potential to effectively identify specific 

CoA interacting proteins, lysates with a normalised protein concentration, from HepG2 

cells, Hek293 cells and various rat tissues (liver, kidney, heart, brain) were incubated with 

the CoA beads and bound proteins were analysed by SDS-PAGE and silver staining (Figure 

5.7A&B).  There were a number of proteins that did bind to the control beads, through 

either non-specific binding to the beads, or ionic interactions, however there were also a 

large number of proteins that appeared to specifically interact with CoA in each of the 

different lysates. Several CoA binding proteins were observed in all of the lysates (eg. 

Proteins of about 76 kDa), yet there were also tissue-specific proteins.  For example, small 

molecular weight proteins between 31 and 38 kDa appeared to be prominent in liver and 

kidney tissue, lower in heart and HepG2 and almost non-detectable in brain and Hek293 

cells.  Hek293 cells actually have been shown to have more similarities with neuronal cells, 

rather than kidney cells (Shaw et al. 2002) and this is apparent from the similarities in  
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Figure 5.5: Proteins are specifically eluted from CoA beads by CoA. The lysate from rat liver was incubated 
with Sepharose beads, coupled to CoA or Tris (control beads) for 2 hours, 4°C with continuous mixing. After 
washing beads with lysis buffer, followed by Hepes buffer + 1 mM DTT, proteins were eluted with either 100 
mM CoA, ADP or pantothenic acid.  Total proteins that bound to beads were released by boiling in SDS loading 
buffer.  Eluted and total bound proteins were resolved by SDS-PAGE and visualised by Coomassie staining. 
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Figure 5.6: Schematic showing the potential interactions that proteins in cell/tissue lysates could use to 
specifically bind to CoA.  These include:  A) Ionic interactions B) Interactions with the pantothenate or 
adenosine group C) Interactions with both the pantothenate and adenosine group or indirect interactions to 
CoA through binding to a protein which interacts with CoA. 
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Figure 5.7: Affinity purification of CoA binding partners in various rat tissues and cultured cells.  The lysates 
from rat liver, heart and kidney (A) and HepG2 and Hek293 in addition to rat liver and kidney (B) were 
incubated with Sepharose beads, coupled to CoA or Tris (control beads). Beads were washed with lysis buffer, 
followed by Hepes buffer + 1 mM DTT, before proteins were released through boiling in SDS loading buffer, 
then resolved and visualised by SDS-PAGE and silver staining. 
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protein binding patterns between Hek293 and brain tissue in the lower molecular weight 

region. 

Liver was selected for further analysis as it appeared to contain the greatest 

number of CoA interacting proteins out of all the lysates tested.  Further elution of liver 

proteins bound to CoA beads with increasing concentrations of CoA, confirmed that a large 

number of proteins specifically bind to CoA (Figure 5.8).   

5.2.3 Identification of CoA binding proteins 

Specific CoA binding proteins present in rat liver lysate were eluted from Tris and 

CoA Sepharose by 100 mM CoA and resolved through SDS-PAGE analysis and Coomassie-

staining (Figure 5.9A).  Each lane of the gel was sliced into 30 pieces, digested with trypsin, 

and protein identity was analysed by mass-spectrometry.   

143 CoA binding proteins were identified through mass spectrometry (Figure 5.9B, 

Table 5.1).  These proteins were divided into several groups: CoASH/CoA ester related 

proteins (17); dehydrogenases (20); other metabolic enzymes (6); kinases (3); acetyl 

transferases (2); ADP ribosyltransferases (2); Ubiquitin ligase (1); disulphide isomerases (2); 

G protein signalling proteins (1); scaffold proteins (5); proteins involved in 

translation/transcription (29); ribosomal proteins (13); cytoskeletal proteins (24); and other 

proteins (18) including blood and extracellular matirix proteins as well as putative and 

previously uncharacterised proteins.  A number of metabolic enzymes that were expected 

to bind to CoASH or its thioesters were pulled down, such as 3-ketoacyl-CoA thiolase 

(Figure 5.10), however there were also proteins identified as potentially novel CoA 

interacting proteins, for example fructose bisphosphate aldolase B (Figure 5.10).  Earlier 

experiments indicated that CoA binds to the Sepharose beads through its thiol group, 

leaving the nucleotide moiety exposed for protein interaction.  This therefore resulted in a 

number of proteins that were known to bind to ATP (e.g. nucleoside diphosphate kinase, 
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Figure 5.8: Affinity purification of CoA binding partners in rat liver.  The lysate from rat liver was incubated 
with Sepharose beads, coupled to CoA or Tris (control beads). Beads were washed with lysis buffer, followed by 
Hepes buffer + 1mM DTT, before eluting proteins with increasing concentrations of CoA (10, 50 and 100 mM).  
The commercially supplied standard used here contains 3 moles of Li

+
/ mole CoA, so proteins were also eluted 

with LiCl as a control. Proteins were boiled in SDS loading buffer, then resolved and visualised by SDS-PAGE and 
silver staining. 
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Figure 5.9: A) Image of the Coomassie stained gel used for identification of CoA-binding proteins purified by 
CoA-Sepharose. Liver lysate proteins eluted from Tris and CoA-Sepharose by CoA were boiled in SDS loading 
buffer and resolved by SDS-PAGE and Coomassie-stained.  Each-lane was sliced into 30 pieces, digested with 
trypsin, and protein identity analysed by mass-spectrometry. B) Summary table of CoA-binding proteins. 
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Name Mr 
(KDa) Accession No. 

2,4-dienoyl-CoA reductase, mitochondrial Rattus norvegicus 36 DECR_RAT 
3-ketoacyl-CoA thiolase, mitochondrial Rattus norvegicus 42 THIM_RAT 
Acyl-coenzyme A amino acid N-acyltransferase 2 Rattus norvegicus 46 ACNT2_RAT 
Acyl-Coenzyme A dehydrogenase family, member 11 Rattus norvegicus 87 B3DMA2_RAT 
ATP-citrate synthase Rattus norvegicus 121 ACLY_RAT (+1) 
Hydroxyacyl-Coenzyme A dehydrogenase type II Rattus norvegicus 27 B0BMW2_RAT (+1) 
Hydroxymethylglutaryl-CoA synthase, mitochondrial Rattus norvegicus 57 HMCS2_RAT (+1) 
Peroxisomal 2,4-dienoyl-CoA reductase Rattus norvegicus 31 DECR2_RAT 
Peroxisomal acyl-coenzyme A oxidase 1 Rattus norvegicus 75 ACOX1_RAT 
Peroxisomal acyl-coenzyme A oxidase 2 Rattus norvegicus 77 ACOX2_RAT 
Peroxisomal bifunctional enzyme Rattus norvegicus 79 ECHP_RAT 
Peroxisomal D3,D2-enoyl-CoA isomerase Rattus norvegicus 43 Q5XIC0_RAT 
Peroxisomal multifunctional enzyme type 2 Rattus norvegicus 79 DHB4_RAT (+1) 
Peroxisomal trans-2-enoyl-CoA reductase Rattus norvegicus 32 PECR_RAT 
Phytanoyl-CoA dioxygenase, peroxisomal Rattus norvegicus 39 PAHX_RAT 
Trifunctional enzyme subunit alpha, mitochondrial Rattus norvegicus 83 ECHA_RAT 
Putative uncharacterized protein Zea mays 35 B4FU60_MAIZE (+2) 
6-phosphogluconate dehydrogenase, decarboxylating Rattus norvegicus 53 6PGD_RAT (+1) 
NADPH:adrenodoxin oxidoreductase, mitochondrial Rattus norvegicus 54 ADRO_RAT 
Grhpr protein Rattus norvegicus 36 B0BN46_RAT 
Sepiapterin reductase (7,8-dihydrobiopterin:NADP+ oxidoreductase) Rattus norvegicus 28 B2RYK3_RAT (+1) 
L-lactate dehydrogenase Rattus norvegicus 36 B5DEN4_RAT (+2) 
Biliverdin reductase B (Flavin reductase (NADPH)) (Biliverdin reductase B (Flavin reductase 
(NADPH)) (Predicted), isoform CRA_b) Rattus norvegicus 22 B5DF65_RAT 
Carbonyl reductase [NADPH] 1 Rattus norvegicus 31 CBR1_RAT 
Carbonyl reductase 4 Rattus norvegicus 25 CBR4_RAT 
Estradiol 17-beta-dehydrogenase 8 Rattus norvegicus 27 DHB8_RAT 
Dehydrogenase/reductase SDR family member 4 Rattus norvegicus 28 DHRS4_RAT (+1) 
10-formyltetrahydrofolate dehydrogenase Rattus norvegicus 99 FTHFD_RAT (+1) 
Glucose-6-phosphate 1-dehydrogenase X Mus musculus 59 G6PD1_MOUSE (+4) 
Hydroxysteroid dehydrogenase-like protein 2 Rattus norvegicus 58 HSDL2_RAT 
Isocitrate dehydrogenase [NADP] cytoplasmic Microtus ochrogaster 47 IDHC_MICOH (+8) 
Oxidoreductase NAD+-binding domain-containing protein 1 Mus musculus 35 OXND1_MOUSE 
Prostaglandin reductase 1 Rattus norvegicus 36 PTGR1_RAT 
Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1, 
methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthetase Rattus 
norvegicus 

101 Q5EBC3_RAT 

Ab1-219 Rattus norvegicus 52 Q7TP88_RAT (+1) 
Quinone oxidoreductase Rattus norvegicus 35 QOR_RAT 
Quinone oxidoreductase-like protein 2 Rattus norvegicus 38 QORL2_RAT 
Fructose-bisphosphate aldolase B Rattus norvegicus 40 ALDOB_RAT (+1) 
ATP synthase subunit alpha, mitochondrial Rattus norvegicus 60 ATPA_RAT 
ATP synthase subunit beta Homo sapiens 

57 A8K4X0_HUMAN 
(+10) 

5,10-methenyltetrahydrofolate synthetase (5-formyltetrahydrofolate cyclo-ligase) Rattus 
norvegicus 23 Q5M9F6_RAT 
Cytidine monophosphate N-acetylneuraminic acid synthetase Rattus norvegicus 48 Q5M963_RAT 
tRNA-dihydrouridine synthase 3-like Rattus norvegicus 72 DUS3L_RAT 
Nucleoside diphosphate kinase B Rattus norvegicus 17 NDKB_RAT 
Nucleoside diphosphate kinase Rattus norvegicus 19 Q99NI1_RAT 
Nucleoside diphosphate kinase A Rattus norvegicus 17 NDKA_RAT 
Glycine N-acyltransferase Rattus norvegicus 34 A4PB92_RAT (+1) 
Gnpnat1 protein Rattus norvegicus 21 B1H249_RAT (+1) 
Parp9 protein Rattus norvegicus 92 A1A5Q1_RAT 
Poly [ADP-ribose] polymerase 12 Mus musculus 80 PAR12_MOUSE (+2) 
TRIP12 protein (Fragment) Bos taurus 

126 Q0P5M6_BOVIN 
(+2) 
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Name Mr 
(KDa) Accession No. 

Putative disulfide-isomerase Taeniopygia guttata 27 B5FXN8_TAEGU (+7) 
Protein disulfide-isomerase A6 Rattus norvegicus 48 PDIA6_RAT 
Guanine nucleotide binding protein alpha inhibiting 2 (Fragment) Capra hircus 35 A4F2F7_CAPHI (+16) 
AP-2 complex subunit alpha-1 Mus musculus 108 AP2A1_MOUSE 
AP-2 complex subunit alpha-2 Mus musculus 104 AP2A2_MOUSE (+6) 
AP-2 complex subunit mu-1 Bos Taurus 50 AP2M1_BOVIN (+15) 
cDNA FLJ78481, highly similar to Homo sapiens adaptor-related protein complex 2, beta 1 
subunit, mRNA Homo sapiens 106 A8K916_HUMAN 

(+9) 
Clathrin light chain B Bos Taurus 25 CLCB_BOVIN (+6) 

Constitutive coactivator of peroxisome proliferator-activated receptor gamma Mus musculus 89  F120B_MOUSE 

Novel protein, possible orthologue of human peroxisomal proliferator-activated receptor A 
interacting complex 285 PRIC285 Mus musculus 

334  
A2AS03_MOUSE 

(+1) 

Staphylococcal nuclease domain-containing protein 1 Rattus norvegicus 102  SND1_RAT 

ATP-dependent RNA helicase DDX1 Rattus norvegicus 82  DDX1_RAT 

DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (Fragment) Rattus norvegicus 69  B6DTP5_RAT (+1) 

DEAD (Asp-Glu-Ala-Asp) box polypeptide 6 Xenopus tropicalis 
54  

B1WAU0_XENTR 
(+10) 

DEAD box polypeptide 17 isoform p82 variant (Fragment) Homo sapiens 81  Q59F66_HUMAN 

RNA helicase Mesocricetus auratus 73  Q8K5D5_MESAU 

Ras GTPase-activating protein-binding protein 1 Mus musculus 52  G3BP1_MOUSE (+1) 

Ras GTPase-activating protein-binding protein 2 Mus musculus 54  G3BP2_MOUSE (+1) 

Hnrnpl protein (Fragment) Rattus norvegicus 62  B5DFG2_RAT (+1) 

Splicing factor proline/glutamine rich (Polypyrimidine tract binding protein associated) Mus 
musculus 

75  
A2A7U6_MOUSE 

(+2) 

cDNA FLJ75550, highly similar to Homo sapiens heterogeneous nuclear ribonucleoprotein A1 
(HNRPA1), transcript variant 1, mRNA Homo sapiens 

34  
A8K4Z8_HUMAN 

(+14) 

cDNA FLJ75459 Homo sapiens 
43  

A8K4L9_HUMAN 
(+8) 

cDNA FLJ77927 Homo sapiens 
60  

A8K894_HUMAN 
(+7) 

Ewing sarcoma breakpoint region 1 Homo sapiens 
65  

B0QYK0_HUMAN 
(+16) 

Heterogeneous nuclear ribonucleoprotein D0 Rattus norvegicus 38  HNRPD_RAT 

Non-POU domain-containing octamer-binding protein Homo sapiens 54  NONO_HUMAN (+4) 

PABPN1 protein Bos Taurus 29  A2VE34_BOVIN (+4) 

Predicted protein Nematostella vectensis 26  A7TAM8_NEMVE 

Putative uncharacterized protein Mus musculus 42  Q91VM5_MOUSE 

Putative uncharacterized protein Mus musculus 
88  

Q3TVV6_MOUSE 
(+5) 

Putative uncharacterized protein Zea mays 
36  

C0P9K6_MAIZE 
(+10) 

RNA granule protein 105 Rattus norvegicus 78  A9ZSZ9_RAT (+1) 

cDNA FLJ36192 fis, clone TESTI2027450, highly similar to Eukaryotic translation initiation 
factor 3 subunit 5 Homo sapiens 

39  
B3KSH1_HUMAN 

(+11) 

Eukaryotic translation initiation factor 3, subunit 1 Mus musculus 
36  

A2AE04_MOUSE 
(+9) 

Eukaryotic translation initiation factor 3, subunit E interacting protein Homo sapiens 
71  

B0QY89_HUMAN 
(+7) 

Eukaryotic translation initiation factor 4A isoform 1 Sus scrofa 46  A6M928_PIG (+15) 

Eukaryotic translation initiation factor 4A isoform 3 Sus scrofa 47  A6M931_PIG (+2) 

40S ribosomal protein S19 Homo sapiens 
16  

B0ZBD0_HUMAN 
(+9) 

cDNA FLJ40595 fis, clone THYMU2010705, highly similar to 40S RIBOSOMAL PROTEIN S4, X 
ISOFORM Homo sapiens 

30  
B2R491_HUMAN 

(+13) 

LOC100037080 protein Xenopus laevis 
33  

A2BDA2_XENLA 
(+16) 

LOC100037089 protein (Fragment) Xenopus laevis 
31  

A2BDB1_XENLA 
(+10) 
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Name Mr 
(KDa) Accession No. 

LOC100125111 protein Xenopus tropicalis 15  A4IH66_XENTR (+9) 

LOC100145026 protein (Fragment) Xenopus tropicalis 
15  

B0BME0_XENTR 
(+19) 

Putative uncharacterized protein Mus musculus 
27  

Q5YLW3_MOUSE 
(+3) 

Ribosomal protein L11 Mus musculus 
20  

A2BH07_MOUSE 
(+7) 

Ribosomal protein L23 Mus musculus 
15  

A2A6F9_MOUSE 
(+19) 

Ribosomal protein S10 Capra hircus 19  A5JST4_CAPHI (+7) 

Ribosomal protein S11 Homo sapiens 
18  

B2R4F5_HUMAN 
(+7) 

Ribosomal protein S5, isoform CRA_b Rattus norvegicus 23  B0BN81_RAT 

Rps16 protein Mus musculus 
16  

A4FUS1_MOUSE 
(+22) 

Actin (Fragment) Euagrus chisoseus 22  B2XY21_9ARAC 

Actin (Fragment) Labyrinthula terrestris 34  A4ZA16_9STRA 

Actin related protein 2/3 complex, subunit 4, 20kDa, isoform 3 (Predicted) Papio Anubis 20  A9L8Z8_PAPAN (+7) 

Actin-related protein 2/3 complex subunit 1B Rattus norvegicus 41  ARC1B_RAT (+4) 

Actin-related protein 2/3 complex subunit 2 Bos Taurus 34  ARPC2_BOVIN (+7) 

Actin-related protein 3 Mus musculus 47  ARP3_MOUSE (+4) 

cDNA FLJ78587 Homo sapiens 
50  

A8JZY9_HUMAN 
(+20) 

Desmin (Predicted) Callicebus moloch 
53  

B1MTK2_CALMO 
(+5) 

Filamin, alpha Mus musculus 280  B9EKP5_MOUSE (+2) 

Filamin-B Mus musculus 278  FLNB_MOUSE 

Gelsolin Bos Taurus 81  GELS_BOVIN (+2) 

LIM domain and actin-binding protein 1 Mus musculus 84  LIMA1_MOUSE (+4) 

Myo18a protein Mus musculus 
232  

B2RRE2_MOUSE 
(+1) 

MYO1B protein Bos Taurus 132  A6QLD6_BOVIN (+5) 

Myosin, heavy polypeptide 8, skeletal muscle, perinatal Mus musculus 
223  

B2RWW8_MOUSE 
(+14) 

Myosin-10 Bos Taurus 229  MYH10_BOVIN 

Myosin-9 Mus musculus 226  MYH9_MOUSE 

Myosin-Ic Rattus norvegicus 120  MYO1C_RAT 

Plectin-1 Rattus norvegicus 534  PLEC1_RAT (+9) 

Predicted protein Nematostella vectensis 
50  

A7S027_NEMVE 
(+53) 

Radixin Homo sapiens 
69  

B0YJ88_HUMAN 
(+10) 

Taf15 protein Rattus norvegicus 60  B2RYG5_RAT 

Tropomodulin 3 Rattus norvegicus 39  Q6AXW2_RAT 

Tropomyosin 1, alpha Rattus norvegicus 29  Q6AZ25_RAT 

Fibronectin Rattus norvegicus 273  FINC_RAT 

Kallistatin Rattus norvegicus 48  P97569_RAT (+1) 

Plasminogen Rattus norvegicus 91  PLMN_RAT 

Heat shock protein 90kDa alpha (Cytosolic), class A member 1, gene 2 Xenopus tropicalis 
82  

A0JMA1_XENTR 
(+50) 

Trim14 protein Rattus norvegicus 50  B2RYH2_RAT 

Protein FAM98A Rattus norvegicus 55  FA98A_RAT 

Uncharacterized protein KIAA0564 homolog Mus musculus 213 K0564_MOUSE 

Novel protein (2610510H03Rik) Mus musculus 45  A2ATZ4_MOUSE (+1) 

UPF0027 protein C22orf28 homolog Mus musculus 55  CV028_MOUSE (+2) 

LRRGT00192 Rattus norvegicus 34  Q6QI16_RAT 
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Name Mr 
(KDa) Accession No. 

LOC100145742 protein (Fragment) Xenopus tropicalis 98  B1WB27_XENTR (+7) 

Putative uncharacterized protein RPL30 (Fragment) Homo sapiens 
13  

A8MTA6_HUMAN 
(+20) 

Putative uncharacterized protein ENSP00000352132 Homo sapiens 
22  

A6NE65_HUMAN 
(+8) 

Erythroid spectrin alpha Rattus norvegicus 277  Q6XDA1_RAT 

Erythroid spectrin beta Rattus norvegicus 246  Q6XDA0_RAT 

Complement C1q subcomponent subunit C Rattus norvegicus 26  C1QC_RAT 

Hemoglobin alpha, adult chain 2 Rattus norvegicus 15  B1H216_RAT (+1) 

Table 5.1: Full list of CoA binding proteins purified using CoA Sepharose from rat liver lysate, analysed by 
mass spectrometry. 

 

 

Figure 5.10: Example MS-MS spectra of selcted CoA binding proteins. 
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Figure 5.10) or NAD+ (e.g. lactate dehydrogenase, Figure 5.10), which are both similar in 

structure to CoA due to the presence of the adenine group.  Moreover, transcription 

factors, like PPARγ (Figure 5.10) were pulled down through this analysis, indicating that CoA 

might directly affect transcription.  

5.2.4 Functional Studies 

The enzymes glucose-6-phosphate Dehydrogenase (G6PDH), lactate 

dehydrogenase (LDH) and fructose-bisphosphate aldolase (aldolase) are among the 

proteins that have been identified as potentially novel CoA binding proteins.  These 

enzymes were chosen to carry out more specific functional studies, since they are 

important metabolic enzymes that were readily available and could be assayed easily.  

G6PDH and LDH are dehydrogenases and consequently are known to interact with 

NADP/NADPH and NAD+/NADH respectively, so it is not unexpected that they would 

accommodate CoA due to the similarities in structure between these molecules.  

Interestingly, aldolase is not known to interact with any nucleotide. 

G6PDH is the rate-limiting enzyme in the pentose phosphate pathway and converts 

NADP to NADPH during the reaction involving the transformation of glucose-6-phosphate 

to phosphoglucono-δ-lactone.  G6PDH maintains NADPH levels for the biosynthesis of fatty 

acids and isoprenoids as well as for maintaining glutathione levels in cells helping to 

prevent oxidative damage.  LDH catalyses the interconversion of pyruvate and lactate, with 

the simultaneous interconversion of NADH and NAD+.  Pyruvate is the final product of 

glycolysis and the forward LDH reaction, resulting in lactate production, occurs when 

oxygen concentrations are low.  Aldolase is also an enzyme involved in glycolysis, catalysing 

the breakdown of fructose 1,6-bisphosphate into glyceraldehyde-3-phospate and 

dihydroxyacetone phosphate.  
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To examine whether these enzymes bind directly to CoA, a CoA binding assay was 

carried out.  50 μg of G6PDH, LDH or aldolase was incubated with Tris or CoA beads for 2 hrs, 

4°C, with mixing.  Proteins that interacted with the beads were released through boiling with 

SDS loading buffer, and resolved through SDS-PAGE analysis and Coomassie staining.  There 

appears to be little difference in the binding pattern between Tris and CoA beads for both LDH 

and aldolase, suggesting that these enzymes do not directly bind to CoA (Figure 5.11A).  They 

were possibly pulled down during affinity purification through binding to another protein that 

interacts directly with CoA.  On the other hand, a much greater proportion of G6PDH binds to 

CoA beads, compared to Tris beads, signifying that G6PDH does interact directly with CoA 

(Figure 5.11A).  It is interesting that only G6PDH binds directly to CoA, despite the fact that LDH 

can also hold the adenine nucleotide in its active site.  An explanation for this might be because 

the NADP active site of G6PDH can accommodate the 3’phosphate the ribose sugar of CoA due 

to the presence of the 2’ phosphate on the ribose sugar of NADP/NADPH, however NAD+/NADH 

active site of LDH probably does not contain the space for this phosphate group (Figure 5.11B). 

The intracellular concentration of NADP is estimated to be about 170-220 μM (Olsen et 

al. 2003), with the cytosolic concentration of NADPH estimated at 10-20 μM (Gupte et al. 2005). 

Since the cytosolic CoA concentration is also around 20 μM (Robishaw & Neely 1985), it is 

feasible that CoA could compete with the NADP binding site of G6PDH. 

An enzymatic assay was therefore carried out to investigate whether CoA could act as a 

competitive inhibitor of G6PDH activity.  2 mM glucose-6-phosphate was incubated with 0.5 

mM NADP in Tris HCl (pH 7.5) and 10 mM MgCl2 in the presence of increasing concentrations of 

CoA (5 μM-5 mM).  Increasing CoA concentrations did not appear to have any effect on G6PDH 

activity, measured by changes in NADPH absorption, indicating that CoA does not inhibit G6PDH 

(Figure 5.12A).  Furthermore, CoA does not regulate LDH activity, as expected, at physiological 

CoA concentrations (Figure 5.12B).  The physiological relevance of CoA binding to G6PDH still 

remains to be elucidated.    
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Figure 5.11: CoA binding assays for specific enzymes.  A) 50 μg Glucose-6-phosphate dehydrogenase, LDH or 
Aldolase in Tris buffer (pH 7.5) was incubated with Sepharose beads bound to CoA or Tris (control) for 2 hours, 
4°C, with mixing.  After washing in TBS, the proteins were released from the beads by boiling in SDS loading 
buffer.  Proteins were resolved and visualised by SDS-PAGE and Coomassie staining. These experiments were 
repeated three times.  B) Diagram of the structures of CoA, NADP and NADH, which highlights the phosphate 
group present on the ribose sugar of CoA and NADP but not NADH. 
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Figure 5.12: CoA has no effect on glucose-6 phosphate dehydrogenase or lactate dehydrogenase activity. A) 
Glucose-6-phosphate dehydrogenase activity was measured in the presence of 2 mM glucose-6 phosphate, 0.5 
mM NADP and 10 mM MgCl2 in Tris HCl (pH 7.5) alone or with concentrations of CoA ranging from 5 μM to 5 
mM for 10 mins, 30°C.  ΔNADPH was analysed by measuring ΔA340 nm. B) Lactate dehydrogenase activity was 
measured in the presence of 1.3 mM pyruvate and 0.3 mM NADH in 65 mM Tris HCl, pH 7.5 alone or with 
concentrations of CoA ranging from 10 μM to 10 mM for 10 mins, 30°C. ΔNADH was analysed by measuring 
ΔA340 nm.  
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5.3 Discussion 

Affinity purification on CoA Sepharose has been used previously to isolate specific 

CoA binding proteins, however it has not been mentioned in the literature as a method to 

identify novel CoA binding proteins.  There have been a number of limitations with this 

method that need to be taken into account.  Firstly, not all proteins identified here as CoA 

binding proteins represent proteins that interact with CoA directly, as exemplified by LDH 

and aldolase.  It is possible these proteins were bound to other proteins that interacted 

with CoA.  For example, aldolase has been implicated in the interaction with several 

proteins unrelated to glycolytic enzymes such as actin and tubulin, both of which were 

pulled down in this screen (Volker and Knull 1997; Wang et al. 1996). 

It was determined in this chapter that CoA was bound to Sepharose via its SH 

group, leaving the adenine nucleotide exposed.  Another limitation with this approach was 

therefore that CoA beads were also able to bind to adenine nucleotide binding proteins, 

potentially pulling down proteins that interact with ATP/ADP, NAD+, NADP and FAD, rather 

than CoA.  Judging by the names of many of these proteins/enzymes, many do appear to 

bind with these nucleotides, such as the dehydrogenases, helicases and kinases.  To 

eliminate nucleotide binding proteins in future studies, samples could be run through an 

ATP or NAD+(H) affinity matrix first, before using CoA Sepharose.  However this may also 

eliminate some genuine CoA-interacting proteins. 

CoA is held in a specific orientation with the beads, therefore CoA may not be as 

flexible when interacting with proteins and possibly may prevent binding.  Structural 

studies have shown that the conformation of CoA when bound to a number of CoA binding 

proteins can alter between an extended and bent conformation (Engel 1996).  It is possible 

that the steric effect of the Sepharose prevents CoA from forming the bent conformation at 

its pyrophosphate linkage and consequently interacting with proteins requiring that form.  
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Furthermore, protein/CoA interactions that also require salt bridges are prevented as the 

SH group is inaccessible.   It is also possible that the beads themselves might hinder protein 

binding.  The addition of a linker between CoA and Sepharose might improve accessibility 

of proteins interacting with the pantetheine moiety.   

Kinases that interacted with CoA were of particular interest in this study in order to 

identify any signalling pathways CoA might regulate.  Only three kinases were detected 

through this method, all of which were variations on the same enzyme (nucleoside 

diphosphate kinase).  The reason why more kinases were not pulled down by the CoA 

beads could possibly be because kinases generally are present in very low abundance and 

the mass spectrometry analysis was not sensitive enough to detect them.  It needs to be 

taken into account that proteins that were extremely abundant (e.g. ribosomal proteins) 

may have bound non-specifically to CoA.    

Despite the limitations, a number of potentially novel CoA-interacting proteins 

have been identified, and their specific interaction with CoA should be validated in future 

studies.  G6PDH is the main regulatory enzyme in the pentose phosphate pathway, which is 

essential for the formation of NADPH (required for fatty acid synthesis and prevention of 

oxidative stress), nucleic acids and nucleotides and aromatic amino acids.  Although CoA 

did bind to G6PDH, physiological concentrations of CoA did not appear to show any 

regulatory effects on its enzymatic activity.  The activity of yeast G6PDH has been 

previously reported to be down-regulated by palmitoyl CoA (Kawaguchi and Bloch 1974), 

and this might explain the interaction seen between G6PDH and CoA.  The absence of a 

regulatory effect may be because CoA does not bind strongly enough to G6PDH.  Palmitoyl 

CoA may be more effective due to its long fatty acyl CoA chain.  

Furthermore, proteins that interact with the SH group of CoA remain to be 

investigated, having ensured linkage to CNBr coupled beads through the adenine group.  
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This may be achieved by the method of Rieke et al, where an analogue of CoA, N6-{N(6-

aminohexyl)carbamoylmethyl}-CoA is used to immobilise CoA through its terminal amino 

group.  Initially, bis(CoA) is alkylated with iodoacetic acid, followed by rearrangement to 

bis(N6-carboxymethyl-CoA).  Next, condensation with 1,6-diaminohexane yields bis{N6-[N-

(6-aminohexyl)-carbamoylmethyl]-CoA}.  The bis(CoA analogue) is then split by reducing 

with DTT.  A further reaction with Nbs2 (5,5’-dithio-bis(2-nitrobenzoic acid), prevents the 

thiol group of CoA binding to Sepharose and also enables the coupling efficiency of the 

ligand, based on the amount of 5-thio-2-nitrobenzoic acid liberated after treatment with 

DTT (Rieke et al. 1979).  By leaving the SH group available and carrying out affinity binding 

experiments under non-reducing conditions, proteins with cysteine residues could form di-

sulphide bridges with CoA.  Indeed, regulation of proteins through sulfhydryl modification 

is commonly carried out by glutathione (Bellomo et al. 1987), and a number of proteins 

such as PTEN and receptor tyrosine phosphatases enzymatic activities depend on their 

catalytic cysteine residues in the active site (Leslie 2003; Winterbourn 2008; Yu 2005).   
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Chapter 6: Discussion 
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Chapter 6: Discussion 

CoA has been shown to regulate many important metabolic pathways through its 

action as a cofactor, however it also has the potential to regulate proteins through 

allosteric and covalent interactions.  Most of the literature focusses on the role of CoA in 

intermediary metabolism and very little is known about the part it plays as a regulator of 

cellular function.  Furthermore, the levels of CoA are altered in several diseases, including 

cancer and diabetes, yet the mechanisms behind these changes and the consequences of 

altered CoA levels are still unclear.  The aim of this thesis was to identify novel cellular 

processes regulated by changes in CoA levels and also to understand in more detail how 

CoA levels are regulated.  

Most studies on CoA in the literature have used whole animals or isolated tissues.  In 

this thesis, cultured cells were used as an experimental model, so it was necessary to 

ensure that CoA could accurately be measured in this system.  Development and 

optimisation of sample extraction procedure and detection methods (an enzymatic 

recycling assay and HPLC) resulted in reliable and reproducible techniques that could 

accurately measure CoA levels within the picomole (or µM concentration) range observed 

in cultured cell extracts.   

Two approaches were used to investigate the role of CoA as a regulator.  The “top 

down” approach was applied in Chapter 4 to identify cellular processes and pathways 

which are influenced by changes in CoA levels.  In Chapter 5 the “bottom up” approach was 

employed, where a CoA affinity matrix was created to pull down individual proteins that 

interacted with CoA and establish how they are regulated by CoA.  Mass spectrometry 

analysis of proteins that were affinity purified with CoA identified 143 proteins, many of 
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which were not previously known to bind to CoA.  For example, a number of transcription 

factors are potential novel binding partners for CoA and require further investigation.  Of 

the three proteins selected for further investigation into CoA regulation, only G6PDH was 

found to directly interact with CoA.  This identified a limitation, where some proteins that 

potentially bind to CoA binding proteins could also be pulled down with this approach.  It 

may therefore be necessary to investigate more stringent purification conditions in future 

studies. 

In Chapter 4, in addition to the investigation of processes potentially regulated by 

changes in CoA, several conditions were tested in cultured cells to see whether their effects 

mediated similar changes in CoA levels to what was observed in the literature.  The main 

limitation encountered here was that CoA levels are much lower in cultured HepG2 cells 

compared to liver (Figure 4.1).  This is an issue because if CoA acts as a regulator, the 

effects of changes in CoA levels in these cells may not represent the effects in liver in vivo.   

The low levels of CoA also seen in Hek293 cells might account for the fact that CoASy 

was not rate-limiting and CoA levels were not regulated through mTOR and PI3K signalling, 

despite the association of mTOR, S6K and p85αPI3K with CoASy.  The effects of the 

interactions of CoASy with S6K and PI3K still remain to be elucidated.  Evidence that CoASy 

is rate-limiting was previously reported in E. coli as well as mammalian COS-7 cells through 

accumulation of 4’PP (Jackowski and Rock 1981; Rock et al. 2000), however radioactive 

studies in rat heart did not observe this accumulation unless CoA synthesis was stimulated 

(Robishaw et al. 1982).  This suggests CoASy is not rate-limiting in all systems.  There is still 

the possibility that CoASy over-expression affects the rate of CoA biosynthesis, however 

overall CoA levels do not change due to rapid recycling (Smith 1978).   

Another limitation with this study was that cultured cells did not respond well to 

conditions previously reported to affect CoA levels in tissues, including glucose and insulin.  
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It is important to note that a number of reports in the literature did not measure a change 

in absolute CoA levels despite an increase in the rate of CoA biosynthesis as measured by 

incorporation of radioactive pantothenate into CoA (Reibel et al. 1981a; Robishaw et al. 

1982; Smith 1978).  This, together with the observation that a lot of processes are altered 

to maintain the CoA level, may be partly why the effects with nutrients and hormones did 

not correlate with the previous data in the literature.  Alternatively, the half-life of CoA in 

the cultured cells studied might be longer than the time-points measured upon treatment 

with various stimuli, and consequently may be a reason why few changes in CoA levels 

were seen.  

Despite the limitations with this study, several potential processes that may be 

regulated by CoA were identified.  Over-expression of PanK1β resulted in an increase in not 

just free CoASH levels, but also acetyl CoA, malonyl CoA and HMG CoA.  The rise in 

individual CoA esters not only indicates that CoA is the limiting factor for production of 

these esters, but also gives an insight into processes this increase in CoA might affect.  For 

example, acetyl CoA can be synthesised through the action of PDH in the mitochondria, ACL 

in the cytosol, or β-ketothiolase during fatty acid oxidation, so CoA is limiting for at least 

one of these enzymes.  Depending on whether acetyl CoA is synthesised in the cytosol or 

mitochondria, an increase in acetyl CoA could potentially result in increased glucose and 

fatty acid oxidation, increased acetylation which was observed in this study, and amino 

acid, fatty acid and nucleotide synthesis.  Malonyl CoA is formed in the cytosol from acetyl 

CoA by ACC, which is usually tightly regulated by hormones, citrate and AMP.  However in 

these conditions it appears to be dependent on the amount of CoA available.  This increase 

in malonyl CoA levels could promote fatty acid biosynthesis and polyketide biosynthesis as 

well as inhibit fatty acid oxidation.  HMG CoA can be formed in the cytosol and 

mitochondria by HMG synthase and could activate the mevalonate and ketogenesis 
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pathways, respectively.  Interestingly, no change in long-chain acyl CoA occurred.  It has 

been previously suggested that acyl CoA synthetase is dependent on cytosolic CoASH 

concentration as its Km for CoASH is in the low micromolar range, close to the estimated 

cytosolic concentration of CoASH (Bakken et al. 1991). The lack of an increase in long chain 

acyl CoA may suggest that Pank1β overexpression mainly increases free CoASH in the 

mitochondria and causes little change in the cytosol, or some other factors such as supply 

of fatty acids are limiting for the acyl CoA synthetase reaction.  In future studies it would be 

important to determine the subcellular distribution of CoASH/CoA esters and whether 

over-expression of PanK1β increases CoASH and CoA esters in mitochondria, cytosol or 

both compartments.  No change in long-chain acyl CoA may also suggest that inhibition of 

growth by PanK1β over-expression observed here is not mediated by the metabolic 

enzymes or ion channels that long-chain acyl CoA regulates.   

Although these changes in CoA esters, as well as the effect on acetylation and growth 

observed in Hek293 cells following an increase in CoA biosynthesis may not reflect the 

effect of increasing CoA in tissues such as liver (in which basal CoA levels are approximately 

10-fold higher), these findings may be relevant to some pathologies in which CoA levels are 

reported to be low.  It is interesting to note that CoA levels in cultured cells are reminiscent 

of disease states such as cancer.  It is also important to be aware that the levels of CoA in 

cultured cells are not only much lower than in tissues such as liver, but the ratio of CoASH 

to acetyl CoA is reversed.  This effect was also seen in liver biopsy samples taken from 

patients with Reye Syndrome (Corkey et al. 1988).  Disease states with low levels of CoA 

might have similar profiles as the cells studied here, therefore it might be possible to apply 

the regulatory mechanisms discovered to these pathological conditions.  This might include 

the non-rate-limiting observations seen with CoASy in Hek293 cells. 
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The reasoning behind the novel finding that increasing CoA appears to have an anti-

proliferative effect on cells still remains unknown.  One of the possible suggestions, 

following the observed increase in lactate production, was that an increase in flux through 

the rate-limiting PK reaction was taking place.  Future studies should address this possibility 

by measuring cellular content of pyruvate and glycolytic intermediates in Pank1β over-

expressing cells.  Pank1β itself might interact and modulate the activity of PK, however 

immunoprecipitation studies need to be carried out to determine whether this interaction 

actually takes place.  The effect of over-expressing catalytically inactive Pank1β should also 

be tested.  

The anti-proliferative effect observed following increased CoA levels might also be due 

to acetylation of proteins regulating cell growth, since increased acetylation was observed 

when PanK1β was over-expressed in Hek293 cells.  Mass spectrometry analysis should be 

carried out in the future to identify which proteins are acetylated, and specific functional 

assays for individual proteins could determine whether acetylation of these proteins 

contributes to decreased cell growth. 

It is tempting to speculate a reciprocal relationship between CoA levels and cell growth.  

It appears cancer cells (e.g. HepG2) and transformed fast growing cells (e.g. Hek293) 

contain low levels of CoA, and the data here indicate that increasing CoA slows down cell 

growth in Hek293 cells.  It may be the low CoA levels that contribute to the fast growing 

phenotype of cancer cells.  The results involving pantothenate withdrawal indicated that 

cells are able to grow in the absence of pantothenate, once cells have initially accumulated 

enough CoA.  This supports the concept that cells require relatively little CoA in order to 

grow.  This observation that increasing CoA slows down cell growth still has to be 

confirmed in HepG2 cells and other cancer cell lines as it may not be true for all cell types 

and conditions.  There is an argument that low CoA levels in these cells are simply due to 



A Study of Coenzyme A Metabolism and Function in Mammalian Cells 

 

 

191 

the culturing conditions (e.g. high glucose), however cell culturing media are optimised to 

promote cell growth and maintenance.  In other words, if culturing media is responsible for 

low CoA levels in these cells, one cannot rule out the possibility that maintenance of low 

CoA by these media may be a necessary factor for promoting cell growth.  In future studies, 

it would be interesting to compare CoA levels in primary hepatocytes, isolated from rat 

liver, with the CoA levels measured in rat liver tissue and HepG2 cells. 

In conclusion, this thesis has provided a greater insight into how CoA is regulated and 

also the wider role of CoA as a regulator of cellular processes.  It was initially shown that 

mTOR and PI3K signalling do not regulate CoA levels in cultured cells, despite the 

interaction between CoASy and S6K and p85αPI3K.  Increased CoA also does not appear to 

affect mTOR or PI3K signalling.  CoASy was not rate-limiting in Hek293 cells, however, so it 

cannot be ruled out that CoASy regulates CoA levels in vivo.  When investigating the role of 

CoA as a regulator of cellular function, CoA binding studies identified a large number of 

proteins that were not previously known to interact with CoA.  Further functional studies 

should determine the impact of these interactions.  The main finding was that increasing 

CoA levels results in mechanisms that inhibit cell proliferation.  This effect might be 

mediated through an increase in acetylation or another mechanism associated with high 

CoA levels.  This finding is important because increasing CoA could potentially be used as a 

method to target cancerous cells by slowing down the fast growing phenotype of these 

cells.   
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