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We point out an earlier unnoticed implication of quantum indistinguishability, namely, a property which

we call ‘‘dualism’’ that characterizes the entanglement of two identical particles (say, two ions of the same

species)—a feature which is absent in the entanglement of two nonidentical particles (say, two ions of

different species). A crucial application of this property is that it can be used to test quantum

indistinguishability without bringing the relevant particles together, thereby avoiding the effects of mutual

interaction. This is in contrast to the existing tests of quantum indistinguishability. Such a scheme, being

independent of the nature and strength of mutual interactions of the identical particles involved, has

potential applications, including the probing of the transition from quantum indistinguishability to

classical distinguishability.

DOI: 10.1103/PhysRevLett.110.140404 PACS numbers: 03.65.Ud, 03.67.Ac, 42.50.�p

A profound feature of the quantum world is the indis-
tinguishability of various copies of a given particle—a
property which has been verified to hold for photons
[1,2], mesons [3], electrons [4], neutrons [5], and recently
for He and Rb atoms [6–8]. The last set of experiments are
significant attempts in testing quantum indistinguishability
(QI) for increasingly massive objects. We may stress that
extending the verification of QI to objects more complex
than atoms is of fundamental importance since this will
probe the limits of the quantum world [9] from a perspec-
tive which is distinct from testing the superposition prin-
ciple for macroscopic systems—a widely pursued program
[9,10] that notably advanced recently [11]. A further moti-
vation comes from a recent study of tunably indistinguish-
able photons [2] that leads to the question of whether
similar tunings of QI can occur while verifying it with
increasingly macroscopic objects. A key condition for such
tests [2,4,6,12] is to ensure that the observed statistical
effects arise solely from QI. This requirement is hard to
satisfy for macroscopic or any other type of strongly
interacting objects, such as while testing the QI of large
molecules by bringing them together at a beam splitter. For
example, for mutually repelling bosonic objects, fermionic
behavior may be seen [13]. In this context, the very recent
photonic simulations of the effects of interactions on the
tests of QI [14] underscore the topical interest of this issue
[7,8]. Thus, the question arises of whether QI can be tested
in a way that is unaffected by mutual interactions of the
objects involved. That such an ‘‘interaction-independent
test’’ of QI is indeed possible is revealed by the present
work. This possibility arises from a hitherto unexplored
property of an entangled state of identical particles (IPs)
which we call ‘‘dualism.’’

The above mentioned dualism can be stated as follows:
If two IPs, distinctly labeled by a dynamical variable A,

are entangled in terms of a different dynamical variableB,
then these particles can also be regarded as being entangled
in the variable A when labeled by the other variable B.
Interestingly, this feature provides a testable difference
between an entangled state of IPs, say, two ions of the
same species localized in traps at distinct locations (as in
Ref. [15]), and an entangled state of nonidentical particles,
say, an ion and a photon (as in Ref. [16]). Here we for-
mulate a generic scheme to test this dualism that is imple-
mentable with any pair of distinctly labeled IPs, provided
they can be entangled. While such entangled states are
routinely produced for photons [17] and trapped ions
[15], very recently, the productions of entangled mobile
electrons [18] and trapped atoms [19], along with notable
advances in entangling mobile atoms [20] and distant
molecules [2], have been achieved. Here an important
point is that if QI of given IPs is to be tested, this property
should not in itself be invoked to generate the required
entanglement. From this point of view, the entangling
mechanisms of Refs. [2,15,19,21–23] are particularly apt.
Further, we may note that the scheme proposed here could
be practically useful. For example, it implies that a given
entangled state of spin or internal degrees of freedom
[15,17–19,21–23] can also function as a momentum
entangled state. It may thus allow the flexibility of invoking
the same entangled state as a resource for processing
quantum information using either the internal or the
motional variables.
While this Letter will be couched througout in terms of

entangled ‘‘particles,’’ the treatment will be equally valid
in terms of entangled ‘‘modes’’ [24] when each mode has
exactly one particle [25]. Situations abound in which two
identical particles can be distinctly labeled using a suitable
dynamical variable—say, the EPR-Bohm—type states of
two identical particles where the terminology particle 1
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and 2 is widely used. Such distinct identification may be
made through a difference in spatial locations of the par-
ticles (such as ions in distinct traps) or in their momenta
(such as photons flying in different directions). These types
of entangled states are crucial in applications of quantum
information, where the terminology such as ‘‘a local op-
eration on particle 1’’ (say, belonging to a party Alice) and
‘‘a local operation on particle 2’’ (say, belonging to a party
Bob) is frequently used even if the particles under consid-
eration (e.g., two photons or two electrons) are identical.
On the other hand, the two correlated electrons in a helium
atom exhibiting quantum indistinguishability cannot be
distinctly labeled; however, it is important to stress that
in our Letter we are not considering such a situation. In this
Letter, we proceed to show that in the former EPR-
Bohm—type situation, by formulating a suitable example,
quantum indistinguishability can be made to manifest for
identical particles that are distinctly labeled. This becomes
possible because of the way the choice of the dynamical
variable for labeling the particles is appropriately varied in
the course of our experimental scheme.

Let us consider the EPR-Bohm entangled state of two
spin- 12 IPs (e.g., electrons) written as

j�i12 ¼ �j"i1j#i2 þ �j#i1j"i2; (1)

where � and � are nonzero amplitudes. In writing Eq. (1),
the labels 1 and 2 need to correspond to different values of
dynamical variables because the identical particles cannot
be distinguished in terms of their innate attributes such as
rest mass or charge. Although Eq. (1) is widely used, an
alternative description of the above EPR-Bohm entangled
state of IPs is given in the usual second quantized notation

as j�i12 ¼ ð�cyk1;"c
y
k2;# þ �cyk1;#c

y
k2;"Þj0i, where c

y
ki;�

creates

a particle in momenta state ki and spin state� ¼" , # and j0i
is the vacuum state. This second quantized representation
clarifies that, in order to meaningfully describe an EPR-
Bohm state of two identical particles, we need at least two
variables: one variable A (e.g., momentum in the above
example) to label the particles, and another variable B
(e.g., spin) which is entangled, where ½A;B� ¼ 0. In
terms of distinct eigenvalues A1, A2 and B1, B2 of the
variables A and B, respectively, one may thus write an
EPR-Bohm state as

j�ðA1; A2; B1; B2Þi ¼ ð�cyA1;B1
cyA2;B2

þ �cyA1;B2
cyA2;B1

Þj0i;
(2)

where cyAi;Bj
creates a particle in the simultaneous eigen-

state jAi; Bji of the variables A and B. In order to put

Eq. (2) in the form of Eq. (1) we rewrite cyAi;Bj
j0i as jBjiAi

,

where Ai is taken as the ‘‘which particle’’ label (thus, jBjiAi

is a second quantized notation), whence

j�ðA1; A2; B1; B2Þi ¼ �jB1iA1
jB2iA2

þ �jB2iA1
jB1iA2

:

(3)

The above form of rewriting is, in fact, standard and is
widely used in describing the entangled states of IPs gen-
erated in actual or proposed experiments [12,17,26,27]. For
example, in the routinely used two-photon entangled state
1
ffiffi

2
p ðjHi1jVi2 þ jVi1jHi2Þ, the symbols jHii and jVij are, in
fact, rewritten forms for cyki;Hj0i and cykj;V j0i, where ki and
kj are labels for distinct momenta directions. Considering

in the same sense as Eq. (1), the above Eq. (3) is an
entangled state of the variable B (say, polarization or
spin) with the variable A (say, position or momentum)
being the ‘‘which particle’’ label. Alternatively, we may
use the eigenvalues of the variable B to label the particles

and replace cyAi;Bj
j0i in Eq. (2) by jAiiBj

to rewrite Eq. (2) as

j�ðA1;A2;B1;B2Þi¼�jA1iB1
jA2iB2

��jA2iB1
jA1iB2

; (4)

where, in the last step, jA2iB1
� cyA2;B1

and jA1iB2
� cyA1;B2

have been exchanged to bring Eq. (4) to the same form as
Eq. (1) (i.e., the ‘‘which particle’’ label B1 preceding the
‘‘which particle’’ label B2 in both terms of the superposi-
tion). The upper and lower signs of� in Eq. (4) correspond
to bosons and fermions, respectively, and arise from the
above exchange of creation operators. The two equivalent
representations of the state j�ðA1; A2; B1; B2Þi given by
Eqs. (3) and (4) bring out the property of dualism. This
means that a class of states of two identical particles can
equally well be regarded as entangled in either the variable
A or the variableB, depending upon whether the variable
used for distinguishing (labeling) the particles is B or A,
respectively. The way this property of dualism arises can
also be seen clearly through the derivation given in the
Supplemental Material [28] in terms of a first quantized
formulation based on appropriate symmetrization or anti-
symmetrization using pseudolabels.
That the above property of dualism holds essentially

for IPs can be seen by replacing for nonidentical particles

the right-hand side of Eq. (2) by ð�cyA1;B1
dyA2;B2

þ
�cyA1;B2

dyA2;B1
Þj0i, where cy and dy create different species

of particles. While the above state can be written in the
analogue of Eq. (3), �jB1iA1;CjB2iA2;Dþ�jB2iA1;CjB1iA2;D,

where C and D stand for distinct particle attributes such as
mass or charge, it cannot be written in the analogue of
Eq. (4), as that would entail superposing states jCi and jDi,
which is not allowed.
There is a complementarity in the dualism in the sense

that one cannot observe simultaneously the entanglement
in both the variables. This complementarity makes evident
the way j�ðA1; A2; B1; B2Þi differs from the hyperen-
tangled states [29] in which more than one variable is
simultaneously entangled. We may also stress that this
property of dualism, stemming from the interchangeability
of two different dynamical variables that are used for
labeling the concerned particles, is a manifestation of
quantum indistinguishability that is different from its other
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manifestations, e.g., the behavior of IPs on simultaneous
incidence on a beam splitter [17].

Next, we discuss how the above dualism can be tested.
Since an entangled state is required for this purpose, we
first consider the readily available polarization entangled
states of photons. Such a state can be written as in Eq. (1)
with the particle indices 1 and 2 corresponding to momenta
labels �k and k, respectively, and " and # representing
polarization states H and V, respectively. The dualism can
then be expressed as

jHi�kjVik þ jVi�kjHik � j � kiHjkiV þ jkiHj � kiV:
(5)

Let k be chosen to be along the x axis. Then the polariza-
tion entanglement implied by the left-hand side of Eq. (5)
can be tested in the usual manner by Alice and Bob on
opposite locations along the x axis. For testing its dual, we
separate the H and V components of the state along the y
axis, as shown in Fig. 1 with the aid of a polarization beam
splitter (PBS). Then the labels H and V on the right-hand
side of Eq. (5) become identifiable with distinct momenta
along the y axis, and the particle labeledH reaches Charlie,
while the particle labeled V reaches Diana, as shown in
Fig. 1. Charlie and Diana are thus in possession of the
entangled state j � kiCjkiD þ jkiCj � kiD, where C
stands for the particle possessed by Charlie and D for the
particle possessed by Diana. In this entangled state, the
momenta component along the x axis appears as a simple
dichotomic variable on which Charlie and Diana can per-
form a Bell’s inequality experiment using a beam splitter
and detectors using the procedure described in detail in the
caption of Fig. 1. We stress that the violation of Bell’s
inequality by the dual forms of entanglement is merely a
convenient tool to verify the property of dualism (an entan-
glement witness can also be used [30]). Importantly, the
same test is also possible with other entangled IPs such as
ions [15,31], where efficient detectors make the study of
Bell’s inequality free of the detection loophole [31].
Moreover, in this context, the necessity of ensuring space-
like separation does not arise at all.

The predicted sign difference between the dual forms of
entanglement Eqs. (3) and (4) in the case of fermions
should also be testable. The presence of such sign differ-
ence is reinforced through an alternative derivation of the
dualism in terms of symmetrization or antisymmetrization
in the first quantized notation, given in the Supplemental
Material [28]. If separate experiments measuring the ex-
pectation value of the Bell operator (i.e., the expectation
value of the linear combination of four correlators occur-
ring on the left-hand side of the Bell inequality, without
taking the modulus) are performed using entanglements in
the variablesA andB, respectively, the expectation values
in the two cases will have an opposite sign for fermions.
Hence, the testing of such dualism can enable verifying the
bosonic or fermionic nature of the particles.

Further, note that the PBS in the above scheme is merely
used to separate the photons according to their polarization
and enable the verification of the dual entanglement (the
PBS has no role in creating the dual entanglement). A
practical application of the above scheme would thus be
to use spin or polarization entangled states (if they are
easier to produce) as a resource for obtaining momentum
entangled states. For example, spin entangled mobile
electrons have just been realized [18], where the state
j"ik1

j#ik2
þ j#ik1

j"ik2
is produced with k1 and k2 being

momenta states in two distinct one-dimensional conduct-
ing channels. When such a state is generated, the dualism
pointed out will enable one to easily obtain a momentum
entangled state (electronic waveguides have been fabri-
cated [32] and spin analogues of a PBS have been proposed
[33]). Almost any other method for obtaining momenta
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- - +k k k k 
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FIG. 1. Scheme to test the dualism in entanglement of identi-
cal particles. Two photons of the same frequency in the polar-
ization entangled state j�i12 ¼ 1

ffiffi

2
p ðjHi1jVi2 þ jVi1jHi2Þ are

emitted in opposite directions by the source S. The labels 1
and 2 stand for their momenta �k and k, respectively, along the
x axis. The �k and k photons fly towards Alice and Bob,
respectively. If they conducted polarization correlation measure-
ments on these photons, they could verify their polarization
entanglement. Instead, in order to verify the dual momentum
entanglement implied by the right-hand side of Eq. (5), they put
polarization beam splitters A and B in the paths of the photons
which deflects jVi photons in theþy direction (towards Charlie),
and jHi photons in the �y direction (towards Diana). It is
because the photon pair is emitted in the state j�i12 that only
one photon reaches Charlie, while its partner reaches Diana.
Then, by the dualism of Eq. (5), the x component of their
momenta is entangled. Now, since there are only two possible
values of the x component of the momentum, namely,�k and k,
one can associate a dichotomic pseudospin observable [40] with
this momentum using operators �x ¼ j � kihkj þ jkih�kj,
�y ¼ iðj � kihkj � jkih�kjÞ, and �z ¼ jkihkj � j � kih�kj.
These pseudospin operators and their linear combinations are
measurable by a beam splitter with a tunable reflectivity and two
detectors if exactly one photon is incident on the beam splitter at
a time. By noting the coincidence of clicks in their detectors,
Charlie and Diana can verify whether a Bell-type inequality is
violated by the momentum pseudospin correlation measure-
ments on their photons, thereby testing the property of dualism.
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entangled states from spin entangled states will be more
complicated (involving either delocalized spin measure-
ments or additional momenta dependent spin flips). Next,
we discuss a foundational application of the property of
dualism.

Existing tests of QI involve bringing two IPs together
[1,4,12] to exhibit, for example, bunching and antibunch-
ing, whose results would be modified by particle interac-
tions [13]. As the identical objects get complex, the
outcomes of such tests could increasingly deviate from
the ideal noninteracting case in view of complicated scat-
terings, including inelastic collisions, fragmentations, or
chemical reactions. However, in testing our dualism as
above, the objects in the jki and the j � ki state are never
present concomitantly. Consequently, the outcomes of our
proposed experiment should be the same whatever the
mutual interactions of the IPs, thereby providing an
interaction-independent test of QI.

The caveat is that the IPs will have to be in an entangled
state before the experiment. Preparing such a state is
generically challenging, for which invoking QI could be
required [12]. However, there are several schemes which
do not invoke QIs of the IPs involved; e.g., in a recent
breakthrough, atoms held in distinct tweezers were
entangled [19]. The internal levels of two identical ions
in distant traps have already been entangled by photode-
tection [15], whose feasibility for molecules was also
demonstrated recently [2]. In fact, the generation of
entangled molecules is being explored so actively that
testing Bell’s inequalities with molecules is just a matter
of time [23]. Polar molecules (e.g., CO, ND3, OH, YbF)
cooled to a ground state and trapped [34] can be entangled
either by a direct interaction [21] or through a mediating
resonator [22]. Although the interactions are used here to
generate an entangled state which is used to test QI through
our dualism, the test of QI in itself remains unaffected by
interactions, provided the entangled particles are kept well
separated during the test.

The entangling methods of the previous paragraph gen-
erate the state j"ic 1

j#ic 2
þ j#ic 1

j"ic 2
, where " = # stand for

ionic (molecular) internal states (spins), c 1 and c 2 label
the center of mass wave function of ions or molecules in

the traps 1 and 2, respectively, and j"ic j
� cy";c j

j0i and

j#ic j
� cy#;c j

j0i (the rotational-vibrational modes of the

molecules are taken to be cooled to their ground states
[21,34]). To verify the dualism using our scheme (Fig. 1),
one needs to transfer the entangled ions or molecules from
their traps to matter waveguides [35], thereby converting
their trap states to momenta states: jc 1i ! j � ki, jc 2i !
jki. For the subsequent interferometric procedure, beam
splitters, waveguides, or PBS are available (using atom
chips [13,35], molecular waveguides [36,37], and molecule
chips [38]). This opens up a way to reveal the true indis-
tinguishability of thosemutually repulsive bosonic ions and
polar molecules which show deceptive antibunching [13].

We now consider the role in the dualism experiment of
those degrees of freedom which are not involved directly in
any of the dual forms of entanglement. These degrees of
freedom are assumed to be in the same collective state
j�0i for both the trapped IPs when they are first en-
tangled. We thus write the initial state as j"ic 1;�0

j#ic 2;�0
þ

j#ic 1;�0
j"ic 2;�0

. Now, suppose after the preparation of the

above state and the switching off of any interaction
between the IPs (say, by pulling their traps far apart) they
are held in their respective traps for a time t over which
neither the c.m. motion nor the entangled spinlike variable
is significantly affected by the environment. This is pos-
sible, since the spinlike variables considered by us can
have long coherence times [21], and stable superpositions
of motional states of the c.m. have been demonstrated for
large molecules [10]. However, with increasing molecular
complexity, the number of degrees of freedom involved in
j�0i becomes larger with their collective state more influ-
enced by the environment. Then, j�0i would evolve differ-
ently to j�1ðtÞi and j�2ðtÞi in the respective traps. Although
this does not affect the violation of Bell’s inequality for the
spin entanglement, it suppresses Bell’s inequality violation
for the dual momentum entanglement by a factor
jh�1ðtÞj�2ðtÞij2—a form of decoherence relevant to the
transition from QI to classical distinguishability of IPs.
In the classical limit, �1ðt ! 1Þ and �2ðt ! 1Þ emerge
as intrinsic labels for IPs as jh�1ðt!1Þj�2ðt!1Þij2!0.
Such a quantum to classical transition complements the
widely studied quantum to classical transition through the
decoherence of superpositions [10,39].
Finally, the very feature, as we have shown, that there is

a scheme unaffected by interactions whereby one can test
whether strongly interacting identical complex particles
can ‘‘justly be regarded as being created from the same
vacuum’’ should be interestig in itself. Further, that this
stems from a hitherto unnoticed dualism in the entangle-
ment of IPs enhances the need for its experimental verifi-
cation even for photons, ions, atoms, or electrons. Also,
importantly, as we have argued, if tested with more com-
plex objects, this dualism has the potentiality to provide a
fruitful way of studying the transition from QI to classical
distinguishability.
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Ikonen, S. Götzinger, and V. Sandoghdar, Phys. Rev.
Lett. 104, 123605 (2010).

[3] G. Baym and P. Braun-Munzinger, Nucl. Phys. A610, 286
(1996).

[4] R. C. Liu, R. C. Liu, B. Odom, and S. Tarucha, Nature
(London) 391, 263 (1998); H. Kiesel, A. Renz, and F.
Hasselbach, Nature (London) 418, 392 (2002).

[5] M. Ianuzzi, A. Orecchini, F. Sacchetti, P. Facchi, and S.
Pascazio, Phys. Rev. Lett. 96, 080402 (2006).

[6] T. Jeltes et al., Nature (London) 445, 402 (2007); A. G.
Manning, S. S. Hodgman, R. G. Dall, M. T. Johnsson, and
A.G. Truscott, Opt. Express 18, 18 712 (2010).
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