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We study the properties of a binary microcavity polariton superfluid coherently injected by two lasers at
different momenta and energies. The crossover from the supersonic to the subsonic regime, where motion
is frictionless, is described by evaluating the linear response of the system to a weak defect potential. We

show that the coupling between the two components requires that either both components flow without

friction or both scatter against the defect, though scattering can be small when the two fluids are weakly
coupled. By analyzing the drag force exerted on a defect, we give a recipe to experimentally address the

crossover from the supersonic to the subsonic regime.
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Coherent quantum fluids can undergo a transition to the
superfluid phase, where the fluid viscosity is zero. When
the system excitations are described in terms of quasipar-
ticles, the Landau criterion [1] establishes the value of the
fluid critical velocity below which no excitation can be
created and the fluid exhibits superfluidity. In particular,
for weakly interacting Bose-Einstein condensates (BECs),
the critical velocity equals the speed of sound. The de-
scription of the superfluid properties of coupled multicom-
ponent condensates, where each component can have a
different density, and so a different speed of sound, and a
different velocity, is far from trivial. Yet, exploring how the
superfluid properties of one fluid are modified by the
presence of a second one is of fundamental interest.
Binary superfluids in cold atomic BECs have recently
attracted noticeable interest. Here, the formation of solitary
waves (see, e.g., Ref. [2]), the emission of Cherenkov-like
radiation from a dragged defect [3], and the critical veloc-
ities [4] have been studied. Because of their versatility in
control and detection, cavity polaritons—the strong coher-
ent mixture of a quantum well exciton with a cavity
photon—represent an ideal framework to address this
problem. In particular, the injection of polaritons by two
external laser fields allows us to independently tune the
two fluid degrees of freedom such as energies, momenta
(and therefore flow velocities), and particle densities,
something not possible to implement in atomic conden-
sates. At the same time, their finite lifetime makes polar-
itons prototypical systems for the study of condensation
out of equilibrium.

Superfluidity in resonantly excited one component po-
lariton fluids has been tested both theoretically [5,6] and
experimentally [7] through the observation of a dramatic
but not complete [8] reduction of the scattering against a
defect. As far as multicomponent polariton fluids are con-
cerned, superfluidity has been demonstrated in the optical

0031-9007/12/108(6)/065301(4)

065301-1

PACS numbers: 67.10.Jn, 03.75.Kk, 03.75.Mn, 71.36.4+c

parametric oscillator (OPO) regime through the friction-
less propagation of wave packets [9] and the observation of
quantized vortices and persistent currents [10,11].
However, a thorough analysis of the superfluid properties
of multicurrent systems is still missing.

In this Letter we consider a two-component polariton
system resonantly injected via two pumping lasers at dif-
ferent momenta and energies, and analyze its superfluid
properties. Following a Landau criterion approach, we
study the Bogoliubov excitation spectra in the linear ap-
proximation, showing the conditions under which the
system can sustain frictionless flow, and analyzing how
the superfluid properties of one component depend on the
density and velocity of the other component. We perform
the linear response analysis for defects with size smaller
than the healing length. The case of bigger and stronger
defects is more complex since nonlinear waves can be
emitted and a linear analysis of the problem might not be
sufficient [12]. Remarkably, we find that, within the
validity of the Landau criterion, the possibility of the
system to display frictionless flow in one component and
simultaneously a flow with friction in the other is impeded
by the coupling between the two components. Naturally,
when coupling a supersonic (SP) fluid with a subsonic (SB)
one, the amount of scattering induced by the SP component
to the SB one depends on the coupling strength between
the two fluids and their individual properties. Further, by
making use of a full numerical analysis of the system
mean-field nonlinear dynamics, we study the drag force
exerted by both condensates on a defect, and give a recipe
to experimentally address the SB to supersonic SP
CTOSSOVer.

We describe the dynamics of resonantly driven micro-
cavity polaritons via a Gross-Pitaevskii equation for
coupled cavity (/<) and exciton (¢ x) fields generalized
to include decay and resonant pumping (7 = 1) [13]:
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Here, two continuous wave pumping lasers, F =
Fi(r)eikir=e) 4 F (r)eikaT=020 resonantly inject po-
laritons at frequencies w, , and momenta Kk ,—both lasers
pump along the x axis, k;, = (k;,, 0). We assume the
exciton dispersion wy to be constant and the cavity one
quadratic, wc(—iV) = 0 — %, with me =2 X 107%my
and my being the electron mass. {1 is the Rabi frequency
(Qg = 4.4 meV) and «y and k. are the excitonic and
photonic decay rates. The exciton-exciton interaction
strength gy is set to one by rescaling both ¢y and
JF1.,- We set the energy zero to wy = a)% (zero detuning).
Finally, the potential V(r) describes either a defect natu-
rally present in the cavity mirrors or generated by an extra
laser pump [14].

In the linear approximation regime, and for a homoge-
neous pump [ F,(r) = F,], we can limit our study to the
following approximated solution of the Gross-Pitaevskii
equation:

Yxclr, )= e wile®mys +6, (rn] ()

j=12

where 3 = are the mean-field steady state solutions, and

where 6; (r, #) are small fluctuation fields describing the
linear response of the system to a weak defect potential
V(r). Similarly to Refs. [5,6], by substituting (2) into (1),
at the zeroth order [0; .= 0= V(r)] the mean-field
solutions #3 = solve a system of four coupled complex
equations, while the fluctuation fields as well as their
(Bogoliubov-like) spectra can be obtained by expanding
linearly in 6 ive and V(r). For additional details, see the
Supplemental Material [15] and Ref. [16].

The SP vs SB character of the excitations generated by
the defect potential can be studied by analyzing the real

part of the Bogoliubov spectra wEP,,UP,(k)’ where we have

labeled the eigenvalues with LP (lower polariton), UP
(upper polaritons), j = 1,2, and particle (+) and hole
(—) branches. According to the Landau criterion for super-
fluidity, a fluid moving against a defect is in a SB regime if
it is unable to excite quasiparticle states (i.e., when elastic
scattering is forbidden). This happens when the system’s
excitation spectra is either gapped, i.e.,

Rofp K] #0 VK, 3)

or it satisfies the condition R[ep (ko)] = 0 for one value

of the momentum only, namely, that of the condensate’s
momentum Kk (linear spectrum). Conversely, when for at
least two values of k, ?R[a)fpj (k)] = 0, the system is in the

SP regime. Note that, unlike for superfluid systems in

thermal equilibrium, for polaritons the above definition of
the SB regime does not mean a complete suppression of the
energy dissipation into the creation of quasiparticles [8,17].
In fact, because of the polariton finite lifetime, the spectra
are broadened and a residual drag is always present.

In order to analyze the superfluid properties of the
system, in Fig. 1 we compare the cases of coupled and
uncoupled fluids. This can be regarded, both from a theo-
retical and experimental point of view, as the comparison
between the case of two fluids pumped in different regions
of the cavity (uncoupled) with the case of two fluids
pumped in the same region (coupled). Clearly, the densities
of two coupled fluids depend on both pump intensities, and
thus, in order to correctly compare the coupled and un-
coupled scenarios, such intensities must be adjusted so that
the polariton densities of each fluid in the coupled case
separately coincide with the ones of the uncoupled fluids.
Typical behaviors of the system are illustrated in Fig. 1,
where both 2D contour plots of the space profiles
[f15.(r)]* and their associated excitation spectra
N[wyp(k)] are plotted. Let us consider first the case of
the panels corresponding to columns I to I'V: for uncoupled
components (columns I and III), the spectrum of fluid 1
(red or thin lines) crosses the zero-energy line in four
points at &/, k", k', and k", satisfying k' + k" = 2k, and
k" + k' = 2k,. Two quasiparticles with momentum k; can
be excited, and thus fluid 1 is in the SP regime. Now
Cherenkov-like waves can be emitted from the J-like
defect positioned in r =0 (see the [ (r)]* map of
column I). In contrast, the spectrum of the fluid 2 (blue
or thick lines) is gapped, no Cherenkov waves can be
emitted from the defect, and therefore fluid 2 is in the SB
regime. When, instead, we analyze the case where the same
two fluids are coupled (column II), we see that Cherenkov-
like waves appear in the 2D profiles of both | ¢, (r)|* and
[ ¢, (r)|?. This is because the interaction between the two
fluids produces an anticrossing, and thus a mixing, of the
corresponding Bogoliubov modes. As a consequence, the
fluid injected in the component 2 can now scatter against
the defect. An opposite case is shown in columns III and
IV. The polariton density of fluid 2 is now doubled with
respect to the case of columns I and II, keeping unchanged
the fluid 1 density. Now, the effect of the coupling is to
considerably decrease the scattering in component 1 and
the coupled excitation spectra satisfies Eq. (3): in this case
the effect of the coupling is that both components can flow
without friction. From this analysis, we can conclude that a
two-component polariton fluid can be in SB regime only if
both components are SB. This is because, due to the
coupling, the Bogoliubov spectra mix and only the scat-
tering properties of the system as a whole can be defined.
Since the combined state of the coupled system depends on
the densities of both fluids, the system as a whole is SP or
SB depending on which component dominates. In addition,
we find that when a fluid has either a too low density or a
too high velocity to exhibit frictionless flow on its own, the
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fluid can instead flow without friction when coupled to
another fluid with the suitable properties. In order to iden-
tify the role played by the coupling strength between the
two fluids in our predictions, we consider in columns
V-VIII of Fig. 1 the case of two fluids with a higher
photonic component, and therefore more weakly coupled,
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FIG. 1 (color online). 2D contour plots of the space profiles
Izlfuc(r)l2 [arbitrary units] (gray maps) and associated excita-
tion spectra N[ w; p(k)] [meV]: the two laser pumps are shined at
momenta k; = 0.9 and k, = 0.4 um™' (columns I-IV) and at
momenta k; = 0.6and k, = 0.1 um™! (columns V-VIII), while
in all cases the laser energies are 0.5 meV blue detuned above the
bare LP branch (k. = ky = 0.1 meV). Columns I, III, V, and
VII corresponds to the case where fluid 1 (red or thin) is
uncoupled from fluid 2 (blue or thick), while columns II, IV,
VI, and VIII describe the coupled cases. The densities of the two
components have been fixed to gyl 2=1.5meV and
gxly > =12meV (columns I and 1), to gyl¢ |* =
1.5 meV and gyl |* = 2.5 meV (I and IV), to gx|i |> =
1.O0meV and gyl | =125meV (V and VI), and to
gxli > = 1.0 meV and gx|¢, |* = 1.5 meV (VII and VIII).
The momentum labels k' = —0.4, k” = 0.40, k' = 1.4, and
k" =122 um™' are explicitly indicated in the spectrum of
column I.

with respect to the case of columns I-IV. While the same
qualitative conclusions hold, the scattering induced by
fluid 1 over fluid 2 is now substantially smaller and com-
parable with the effect due to the polariton linewidth.
Applying Eq. (3), one can study the SP and SB character
of the binary fluid as a function of the two particle densities
(see Supplemental Material [15]). It is, however, useful to
perform this study also as a function of the two pump
intensities, being these the experimentally accessible pa-
rameters. Panels I-III of Fig. 2 show the SB regions for
three values of the fluid 2 velocity. Clearly, if any of the two
pumps is switched off (F; = 0), one reproduces the single-
fluid case. As k, < k, the SB region for F'; = O starts at
lower pump intensities than the SB region for F, =0
(panel I): for higher fluid velocities, the system requires
higher polariton populations, and therefore higher pump
intensities, in order to be in the SB regime. Even if the
analytical dependence of the SB region on the two pump
intensities cannot be evaluated, one can qualitatively
understand its behavior: for fixed cavity and laser parame-
ters, the SB regime depends on the total particle density
seen by the two components | $]> = |¢?§(|2 +1ys |2. For
F, = 0and /gxF, = 0.45 meV*/2 (point A of Fig. 2), the
total particle density |$$|%, seen by the fluid is |#§|* =
[, [ = 1.37 meV/gx and the system is SB. If now the
second pump is turned on and ,/gxF, set to 0.3 meV?/?
(point B), the total particle density decreases to |$]> =
1.34 meV/gy and the system is in the SP regime. This is
because when F}, is turned on the particle density increases
by a factor [/,, |2 but, at the same time, the fluid 1 particle
density is decreased by a bigger factor. Since the system
starts in a SB regime, the dressed LP branch is blue detuned
with respect to the pump frequency w; and, therefore, the
effect of F, # 0 1is to further blue detune it, making it more
difficult for pump 1 to fill the cavity.

Evaluating the linear spectrum of excitations in experi-
ments can be a challenging task. In principle, the appear-
ance and disappearance of Cherenkov waves could be used
to determine the SP to SB crossover, similarly to Ref. [7].
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FIG. 2 (color online). Phase diagram, as a function of the
rescaled pump intensities /gx I’ lvz[meV3/ 2], showing the regions
where the system is SP (red) or SB (blue). In this case, the two
lasers pump at an energy 0.5 meV blue detuned from the bare LP
branch and ky = k¢ = 0.1 meV. In panel I, the lasers momenta
are k;, = 0.6 and k, = 0.1 um~!. In panels II and III the
x component of the momentum of laser 2 is increased by 0.2
and 0.4 um™!, respectively. Points A and B correspond to cases
discussed in the text.
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drag force

FIG. 3 (color online). Time average of the drag force of the
fluid as a function of the number of particles N; and N,. The two
lasers are pumping at momenta k; = 0.9, and k, = 1.0 um™!
and energies 0.3 meV blue detuned from the bare LP branch, and
ky = 0.22 meV, k- = 0.22 meV. Red dots correspond to the
case of two uncoupled fluids, while black cubes correspond to
the case of coupled fluids. The drag force for the uncoupled case

is evaluated as F, = W(NIFJI + N,F,).

However, for a quantitative description of the crossover we
propose to determine the drag force exerted by the binary
fluid on the defect V(r) [8,17,18]:

1 2
Fo= Fataop | mvemPvem. @
We evaluate the time average of the cavity field ¢ (r),
numerically solving the dynamics of Eq. (1) on a 2D grid
(256 X 256 points) of 150 X 150 um, by using a fifth-
order adaptive-step Runge-Kutta algorithm. The pumping
lasers have a smoothen top-hat spatial profile F ,(r) with
a full width at half maximum of o = 130 wm; the weak
defect has a Gaussian shape. In Fig. 3 we plot the drag
force that the binary fluid exerts on the defect as a function
of the two fluid numbers of particles, comparing the
coupled and uncoupled cases. The limit when one of the
two pumps is turned off recovers the results for a single
fluid [8]: when the particle density increases, the drag force
decreases from high values to a residual finite value. For
the case with two currents, we find that the drag force
exerted by two coupled fluids on the defect is weaker
than the drag force exerted by the two uncoupled compo-
nents. This is because, in the coupled case, particles of each
component move in an effectively denser medium than in
the uncoupled case [Eq. (3) of the Supplemental Material
[15]]; thus, the drag force is smaller. From the experimen-
tal point of view, in order to determine the drag force, one
could measure the near-field cavity emission in a region
around the defect as a function of position, and, if the shape
of the defect is known, one could evaluate the drag force
making use of Eq. (4). Note that the important quantity
needed for this measure is the shape of the potential, not its
precise height. Any uncertainty in the defect potential
intensity will systematically affect the drag force overall
scale but not its global dependence on the polariton den-
sities. Finally, we would like to stress that higher fluid
velocities and shorter polariton lifetimes give rise to higher

values (therefore more easily measurable) of the drag force
and of its residual value at high polariton density.

To conclude, we would like to note that we can draw this
Letter’s conclusions independently on the polariton life-
time, as they exclusively depend on the real part of the
Bogoliubov spectra and therefore hold in equilibrium con-
ditions, e.g., for the case of atomic superfluids. However,
even for extremely long polariton lifetimes, binary polar-
iton superfluids are more general than atomic ones. This is
because, while for the latter case the chemical potential
fixes the atom density, for the former, the laser frequency
can be tuned independently on its power which determines
the polariton density. Further, the polariton dispersion
deviates from quadratic at large momenta. This together
with the finite polariton lifetime has important consequen-
ces on the Bogoliubov spectrum, even in the case of one
fluid only: while for atoms, Bogoliubov spectra are all
linear at small wave vectors, for coherently pumped polar-
itons they can in addition be gapped or diffusive [6].
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