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Abstract

Aging causes anatomical and functional changes in visual and circadian systems. In wild type mice rods, cones, and photosensitive retinal
ganglion cells (pRGCs) decline with age. In rd/rd cl mice, the early loss of rods and cones is followed by protracted transneuronal loss of
inner retinal neurons as well as the pRGCs. Here we use Fos induction to study the light input pathway to the suprachiasmatic nuclei (SCN),
the intergeniculate leaflets (IGL) and ventral lateral geniculate nuclei (vLGN) of old (~700 days) and young (~150 days) wild type and
rd/rd cl mice. Cholera toxin tracing was used in parallel to study the anatomy of this pathway. We find that aging rather than retinal
degeneration is a more important factor in reducing light input to the SCN, causing both a reduction in Fos expression and retinal afferents.
Furthermore, we show light-induced Fos within the VLGN and IGL is predominantly subserved by rods and cones, and once again aging

reduces the amplitude of this response.
© 2012 Elsevier Inc. All rights reserved.
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Photoreception in rodents is mediated by rods, cones,
and melanopsin-based photosensitive retinal ganglion cells
(pRGCs) (Hattar et al., 2003; Lucas et al., 2003; Panda et
al.,, 2003; Sekaran et al., 2003). The pRGCs alone are
capable of mediating circadian photoentrainment and the
phase shifting effect of single pulses of light on activity
onset delivered to animals maintained under constant dark-
ness (Barnard et al.,, 2004; Freedman et al., 1999), and
multiple other irradiance detection tasks including the sup-
pression of pineal melatonin (Lucas et al., 1999), pupil
constriction (Lucas et al., 2001), negative masking behavior
(Thompson et al., 2008) and the modulation of sleep (Alti-
mus et al., 2008; Lupi et al., 2008).

Aging affects both the retina and circadian system. In the
retina there are age related neuronal reductions, particularly
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in the rods, cones, and retinal ganglion cells (RGCs) (Cav-
allotti et al., 2001; Danias et al., 2003; Gao and Hollyfield,
1992; Katz and Robison, 1986). In the circadian system,
both the amplitude of the pacemaker and its responses to
light have been shown to be reduced in humans (Czeisler
et al., 1991; Mirmiran et al., 1992), hamsters (Davis and
Viswanathan, 1998; Penev et al., 1997; Zee et al., 1992;
Zhang et al., 1996), rats (Sutin et al., 1993) and mice
(Aujard et al., 2001; Benloucif et al., 1997; Valentinuzzi et
al., 1997; Welsh et al., 1986). Here we use a mouse model
(rd/rd cl) (Freedman et al., 1999; Lucas et al., 1999) to
assess the relative importance of age versus retinal degen-
eration on the responsiveness of the circadian system to
light. In old rd/rd cl mice the complete loss of the outer
retina is followed by a more protracted decline of the inner
retina that starts at approximately 9 months of age. By
1824 months the inner nuclear layer is considerably thin-
ner and in many regions totally absent. Our previous studies
demonstrated that there is an age related decline of mel-
anopsin and Thy-1 expression in wild type and rd/rd cl mice
(Semo et al., 2003b), both genotypes showing an ~40%
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reduction in melanopsin pRGCs (Semo et al., 2003a). Here
we study the impact of the rd/rd cl lesion on the light-
induced gene expression (c-fos) within, and the projections
to, the master circadian pacemaker (suprachiasmatic nuclei/
SCN) in aging congenic rd/rd cl and wild type mice. The
immediate early gene c-Fos provides a powerful marker of
photic signaling to the SCN. In rodents, pulses of light
during the night results in Fos induction in the retinorecipi-
ent region of the SCN (Chambille et al., 1993; Earnest et al.,
1990; Rea, 1989; Rusak et al., 1990; Schwartz et al., 2000).
Moreover, the numbers of Fos positive neurons (Beaule and
Amir, 1999), and the overall levels of c-fos and Fos expres-
sion in the SCN is broadly correlated with the effects of
light on circadian behavior (Dkhissi-Benyahya et al., 2000;
Kornhauser et al., 1990; Lupi et al., 1999).

In addition to the SCN, we have used light-induced Fos
and tract-tracing to assess the impact of age and retinal
degeneration on two other retinorecipient structures that
receive afferents from pRGCs; the intergeniculate leaflets
(IGL) and the ventral lateral geniculate nuclei (VLGN)
(Gooley et al., 2001; Gooley et al., 2003; Hattar et al., 2002;
Hattar et al., 2006; Morin et al., 2003). The IGL of the
lateral geniculate complex receives direct bilateral retinal
input from RGCs (Hickey and Spear, 1976; Ling et al.,
1998; Morin and Blanchard, 1997; Morin et al., 1992;
Muscat et al., 2003; Pickard, 1982) that are collateral to
those that project to the SCN (Pickard, 1985). In contrast to
the SCN, the relationship between light and Fos induction
within the IGL has received relatively little attention and
remains poorly understood (Lupi et al., 1999; Peters et al.,
1996). Through its projections to the SCN, the IGL is a
functional contributor to circadian rhythmicity by its mod-
ification of circadian responses to both photic and nonphotic
cues (Harrington and Rusak, 1986; Janik and Mrosovsky,
1994; Johnson et al., 1989; Morin and Pace, 2002; Mros-
ovsky, 1996; Pickard et al., 1987; Reebs and Mrosovsky,
1989). The VLGN is another component of the visual system
that has been shown to project bilaterally via the optic tracts
to the SCN (Legg, 1979; Pickard, 1982; Ribak and Peters,
1975; Swanson et al., 1974). While the VLGN shows up-
regulation of Fos in response to light, any role it may have
in circadian organization remains unresolved (Prichard et
al., 2002; Rusak et al., 1990).

1. Methods
1.1. Animals

Congenic wild type and rd/rd c] C3H/He mice (described
in Lucas et al.,, 1999) were maintained at 22 °C, 50%
humidity in a 12 : 12 h light/dark (12 : 12 LD) cycle. Food
and water available ad libitum. All procedures were con-
ducted according to the Home Office (UK) regulations,
under the Animals (Scientific Procedures) Act of 1986.

1.2. Fos induction

Quantitative analysis of Fos induction in brain nuclei
was undertaken in both old mice (610—847 d old; wild type
pulsed n = 6; wild type sham n = 4; rd/rd cl pulsed n = 7,
rd/rd cl sham n = 6) and in young mice (100-200 d; wild
type pulsed n = 5; wild type sham n = 5; rd/rd cl pulsed
n = 3; rd/rd cl sham n = 3). Mice were entrained for at least
10dtoa 12 : 12 LD, lights on at 4:00 and off 16:00. On the
day of the light pulse the animals remained in darkness. At
20:00 (4 h after the lights would normally have been turned
off) mice were transferred to the light pulse equipment under
infrared illumination and exposed to a 15 min pulse of light
(A @t 505 nm at an irradiance of 8.0 wW/cm? measured
using an optical power meter, Macam Photometrics). Sham
pulsed mice were handled in a similar manner but no light
pulse was given. Following the light pulse mice were returned
to their cages. Ninety min after the beginning of light treatment
animals were deeply anesthetized with sodium pentobarbitone
(60 mg/kg), perfused transcardially with warm (32 °C) 0.9%
NaCl, followed by 300 mL of cold 4% paraformaldehyde in
0.1-M phosphate buffer, pH 7.4. The brain was removed and
processed as described in Section 1.4.

1.3. Neuronal tracing

Neuronal tracing was carried out in old and young wild
type and rd/rd cl mice (n = 3 young wild type, n = 3 young
rd/rd cl, n = 2 old wild type and n = 2 old rd/rd cl). Mice
were anaesthetized with ketamine hydrochloride, 60 mg
kg~ ' and xylazine, 7 mg kg~ ' and a topical analgesic
ophthalmic solution (Proparacaine parachloride). Cholera
toxin Subunit B tracer (CTB, List Biological, Campbell,
CA) (1% diluted in sterile distilled water) was injected into
the vitreous chamber of one eye with the aid of a micropi-
pette (50 mm tip) sealed to the needle of a 5 wL. Hamilton
syringe. Twenty-four hours later, the mice were perfused
transcardially as described in Section 1.2.

1.4. Tissue preparation and immunohistochemistry

Following perfusion, brains were removed, postfixed
overnight in the same fixative at 4 °C, and cryo-protected by
immersion in a solution of 30% sucrose in PBS overnight at
4 °C, then stored in PBS-A (0.01 M PB, 0.9% NaCl, 0.1%
NaN; 0.1%). Following cryo-protection in 30% sucrose,
serial coronal brain sections (40 wm) containing the SCN,
IGL, and vLGN were cut from each brain on a freezing
microtome. Sections were processed for Fos or CTB immu-
nohistochemistry depending on previous treatment (light
induction or intraocular injection). They were incubated in
50% ethanol, 0.9% NaCl, and 0.05% H,0, to block endog-
enous peroxidase at 4 °C for 1 h. Then they were washed in
PBS (0.01 M PB, 0.9% NaCl) and blocked in 1% normal
serum (goat or rabbit according to the primary antibody
host) in PBST-A (0.1 M PB, 0.9% NaCl, 0.3% Triton-X
100, NaN; 0.1%) for 60 min at 4 °C followed by incubation
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in primary antibody rabbit anti-Fos (Ab-5 Oncogene Re-
search Products Calbiochem) at a final dilution of 1 : 20,000
or goat anti-CTB (List Biological, Campbell, CA) at a
dilution of 1 : 10,000 at 4 °C for 72 h. The secondary
antibody binding and avidin biotin amplification was carried
out using the Vectastain ABC Elite kit (PK-6101 for Fos or
PK-6105 for CTB). Brain sections were then washed in Tris
buffer 0.05M, pH 7.4 twice for 10 min and then transferred
to chilled 4 °C Tris buffer containing 0.02% 3, -3’ Diamino-
benzidine, 0.5% nickel ammonium sulfate (DAB-Ni) and
0.001% H,0,. The development of the Chromagen was
kept the same for all brain slices. The slices were thoroughly
washed with Tris buffer (two times and left overnight at
4 °C). Then they were mounted on chrome alum and gela-
tin-coated slides, air dried, dehydrated in a series of alco-
hols, cleared in xylene, and coverslipped with DePeX. Con-
trol slices where the primary or secondary antibodies were
replaced with normal serum did not show any label.

1.5. Image analysis

All the brain sections through the SCN, IGL, and vLGN
were analyzed using a computerized image analysis system.
They were examined under a Zeiss Axioplan 2 microscope
and images captured with a Spot Digital Camera (Diagnos-
tic Instruments). In our study, the computerized image anal-
ysis software Image-Pro Plus (Media Cybernetics) was used
to determine the integral optical density (IOD) of the la-
beled brain sections. The IOD represents the integral sum of
the surface area of single pixels multiplied by their corre-
spondent optical density values. This method has been used
widely to measure levels of Fos in the SCN (Barnard et al.,
2004; Dkhissi-Benyahya et al., 2000; Lupi et al., 1999; Lupi
et al., 2006; Sekaran et al., 2005) and takes into account not
only the total area of Fos positive nuclei but also the density of
the label (Rieux et al., 2002). For the purposes of standardiza-
tion each brain area was processed in parallel. The IOD values
were summed for paired nuclei and in all sections, rostral to
caudal in which the nuclei could be identified.

1.6. Statistics

For the Fos induction studies we used three way
ANOVA for three factors (pulse, genotype, and age), car-
ried out using StatView SE+ Graphics, v1.0.3 (SAS Insti-
tute, Inc, Cary, USA), followed by Bonferroni’s multiple
comparison test for post hoc comparisons. For neuronal
tracing the average and standard deviations for densitometry
measurements are quoted in the results, the number of
animals precluded statistical analysis of these data.

2. Results

2.1. SCN: light activation and retinal afferents

Light-induced Fos occurs in the SCN of both wild type
and rd/rd cl mice at both young and old ages (Fig. 1).
Analysis of all the IOD data of Fos immunoreactivity in the

SCN by three way ANOVA (factors: pulsing, genotype and
age) shows: (1) there is a significant effect of light (F| 59 =
108.3, p < 0.0001), a light pulse causes a substantial in-
crease in Fos immunoreactivity; (2) a significant effect of
age (F| 5o = 20.15, p < 0.0001), older animals show atten-
uated Fos levels and (3) an interaction between light pulsing
and age (F| 9 = 21.58, p < 0.0001) the amplitude of light
induced Fos is reduced in old animals. In both young wild
type and rd/rd cl mice there is a ~25 fold induction of Fos
after a light pulse. Fos is also induced by light in old wild
type and rd/rd cl mice but the magnitude of induction is
attenuated to ~9 fold (for post hoc comparisons see Table 1).
Interestingly there is no significant difference in the ampli-
tude of Fos induction between genotypes (Fig. 2).

We have also investigated the extent of retinal projec-
tions to the SCN in young versus old rd/rd cl and wild type
mice. Representative sections are shown in Fig. 1I-L. Ret-
inal projections to the SCN show a similar symmetrical
bilateral distribution for both rd/rd cl and wild type mice.
Significantly, labeling appears reduced in old animals, and
again is similar for both genotypes. Densitometry values
indicate that the projection is similar between young wild
type (average CTB 10D 413,905 = SD 35,474) and young
rd/rd cl (average CTB IOD 319,483 = SD 11,938). In old
wild type and rd/rd cl these values are reduced (wild type
159,408 = SD 30,873 and rd/rd cl 269,764 £ SD 8,313).

2.2. IGL: light activation and retinal afferents

Analysis of the Fos IOD in the paired IGL nuclei by three
way ANOVA shows: (1) a significant effect of light (F, 5, =
18.01, p < 0.0002) resulting in an increase in Fos; (2) a
significant effect of age (F; 3, = 10.52 p < 0.003) with
attenuated Fos levels in old animals and (3) a significant
effect of genotype (F 3, = 4.50, p < 0.04), the rd/rd cl
show slightly lower levels of Fos (Figs 3 and 4A). Post hoc
tests (Table 1) indicate that there is significant light induc-
tion of Fos in the IGL of young wild types (p < 0.05), and
that this is reduced in old animals (p < 0.05) such that there
is not a significant light induction of Fos in the IGL of old
light pulsed wild type animals compared with old sham
pulsed wild types. Although the level of Fos in the IGL is
higher in the rd/rd cl following light administration (in both
young and old) this is not to a significant level.

The retinal projections to the IGL have an asymmetrical
distribution with a different contralateral/ipsilateral compo-
nent. In both rd/rd cl and wild type young and old there is
a higher contralateral component than ipsilateral (Fig. 5).
The sum of the IOD values for CTB from both the ipsi- and
contralateral contribution to the IGL shows a marked reduc-
tion with aging in the wild type animals (wild type young
175,232 *= 22,559 vs. wild type old 80,462 = 17,899). The
values from the rd/rd cl IGL also show a slight reduction
with aging (rd/rd cl young 156,044 = 33,280 vs. rd/rd cl
old 150,201 % 28,666).
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Fig. 1. Light induced Fos and cholera toxin B (CTB) immunoreactivity in the suprachiasmatic nuclei (SCN) of young and old, wild type, and rd/rd cl mice.
Representative images of Fos immunoreactivity are shown in A—H. Images A, C, E, and G are from animals that received no light (sham pulse) while those
in B, D, F, and H received a pulse of light. SCN from young wild type mice are shown in (A) and (B), and young rd/rd cl in (C) and (D), those from old
wild type mice are shown in (E) and (F), and old rd/rd cl in (G) and (H). Examples of regions of interest analyzed for integrated optical density of Fos in
the SCN are shown in (B). I-L representative images of CTB immunoreactivity following unilateral intravitreal injection of CTB. SCN from (I) wild type
young, (J) rd/rd cl young, (K) wild type old and (L) rd/rd cl old mice. Scale bar for all images in (A) 100 wm.

2.3. vLGN: light activation and retinal afferents

(Figs 3 and 4B). Post hoc testing (Table 1) indicates that

Three way ANOVA on IOD data from the vLGN shows there is a significant light induction of Fos in the young wild
a significant effect of light only (F,,;, = 27.76, p < type animals (p < 0.001) and that the magnitude of this
0.0001), with no significant effects of either age or genotype induction is reduced in old wild types (p < 0.05). Three way
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Table 1
Post hoc Bonferroni comparisons for IOD of Fos in the SCN, IGL
and VLGN

Post hoc comparison SCN IGL vLGN
p-values

p <0001 p<005 p=<0.00l

p-values  p-values

WT young light v. WT young

sham
RC young light v. RC young sham p < 0.001 NS NS
WT old light v. WT old sham p <005 NS NS
RC old light v. RC old sham p < 0.05 NS NS
WT young light v. WT old light p <0.01 p<0.05 p<0.05
RC young light v. RC old light p < 0.001 NS NS
WT young light v. RC young light NS NS NS
WT old light v. RC old light NS NS NS

Abbreviations: 10D, integrated optical density; IGL, intergeniculate leaf-
lets; NS, not significant; SCN, suprachiasmatic nuclei; RC, rd/rd cl; VLGN,
ventral lateral geniculate nuclei; WT, wild type.

ANOVA does not describe any genotype differences, how-
ever at the post hoc level we have been unable to detect a
significant light induction of Fos in the VLGN of rd/rd cl,
the IOD levels do indicate a subtle light induced increase in
Fos compared with sham pulsed rd/rd cl (Fig. 4B).

Retinal projections to the VLGN again have an assy-
metrical distribution with a higher contralateral than ipsilat-
eral component (Fig. 5). The IOD values for CTB in the
VLGN (ipsi- and contralateral) are markedly reduced with
age in the wild type animals (wild type young 761,795 *=
114,706 vs. wild type old 468,464 *= 98,007). There is a
slight reduction in the IOD values for the rd/rd cl projection
but again this is not as marked as for the wild types (rd/rd cl
young 798,531 = 118,799 vs. rd/rd cl old 668,448 =
49,229).

3. Discussion

In the present study we have used a mouse model (rd/rd cl)
to assess the relative importance of age versus retinal
degeneration on light-induced Fos within specific retino-
recipient areas (SCN, IGL, and VLGN) of the brain. Fos
expression has been used widely as a marker for neuronal
activation in response to various stimuli including light
(Dkhissi-Benyahya et al., 2000; Kornhauser et al., 1992). In
parallel, we have employed CTB as an anterograde tracer to
label these retinal target areas (Angelucci et al., 1996; Mik-
kelsen, 1992; Reiner et al., 1996).

3.1. Light activation in the SCN following retinal
degeneration and aging

Previously, levels of Fos expression in the SCN have
been shown to correlate with light intensity and the magni-
tude of circadian phase shifts (Dkhissi-Benyahya et al.,
2000; Kornhauser et al., 1990; Lupi et al., 1999). In the
present study, we show light induction of Fos in both young
rd/rd cl and wild type animals and we also show that the
levels of Fos in the SCN of both genotypes are statistically
indistinguishable, indicating that at the cellular level, the

light input to the SCN in rd/rd cl mice is unaffected by outer
retinal cell loss. Thus, melanopsin-based pRGCs alone are
able to induce normal levels of Fos. These findings are
consistent with our previous results showing that the circa-
dian behavior of mice lacking rods and cones and that of
wild type mice is broadly similar (Barnard et al., 2004;
Freedman et al., 1999; Lucas et al., 1999; Semo et al.,
2003b). Indeed the magnitudes of phase shifts to a light
pulse of 505-nm wavelength (as used here) are not signifi-
cantly different between wild type and rd/rd cl mice, sug-
gesting compensatory mechanisms of the pRGC system in
the absence of outer retinal photoreception (Semo et al.,
2003b). The rods and cones, however, do provide light
information to the SCN. For example, in the absence of
melanopsin (Opn4 '~ mice) rods and cones can partially
compensate for the loss of functional pRGCs, showing
attenuated phase shifts and Fos induction of ~40% (Hattar
et al., 2003; Panda et al., 2002; Ruby et al., 2002). In view
of this input from the rods and cones it is perhaps surprising
that their loss does not appear to attenuate light-induced Fos
in the SCN of rd/rd cl mice.

In aged wild type and rd/rd cl mice, SCN neurons still
show significant light-induced Fos, but there is a marked
reduction in levels compared with younger animals of both
genotypes. We have shown previously that aged rd/rd cl and
wild type mice have significantly fewer melanopsin positive
RGCs than young mice, but that the numbers of melanopsin
cells are not significantly different between the two genotypes
(Semo et al., 2003a; Semo et al., 2003b). This attenuation in
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Fig. 2. The total integrated optical density (IOD) for Fos immunoreactivity
measured in the paired nuclei of the suprachiasmatic nuclei (SCN) from
sham and light pulsed, old and young, wild type and rd/rd cl mice. Fos is
significantly induced by light in both the rd/rd cl and wild type (post hoc
p < 0.05). The magnitude of this induction is equivalent in both genotypes
and is reduced in the old mice by ~58%.
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YOUNG

Fig. 3. Light induced Fos immunoreactivity in the intergeniculate leaflets (IGL) and ventral lateral geniculate nuclei (vLGN) of young and old wild
type and rd/rd cl mice. The images A, C, E, and G are from animals that received no light (sham pulse) while those in B, D, F, and H received a pulse
of light. IGL/VLGN from young wild type mice are shown in (A) and (B), and young rd/rd cl in (C) and (D), while those from old wild type mice
are shown in (E) and (F), and old rd/rd cl in (G) and (H). The smaller dashed area in (H) marks an example of the region of interest that would be
anlaysed for Fos in the IGL, while the larger area defines the region of interest for the VLGN. Scale bar 100 um.
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Fig. 4. The total integrated optical density (IOD) for Fos immunoreactivity
measured in the paired nuclei of the (A) intergeniculate leaflets (IGL) and
(B) ventral lateral geniculate nuclei (vLGN) from sham and light pulsed,
old and young, wild type and rd/rd cl mice. In the IGL and VLGN there is
a significant light induction of Fos only in wild type animals and the
magnitude of this induction is reduced in old animals. There is no statis-
tically significant light induction of Fos in the rd/rd cl.

RGCs may well account for the reduction in Fos expression
we observe within the SCN of aged mice and is consistent
with our observation of an ~40% decrease in retinal affer-
ents in these mice (Fig. 1). Since we did not find differences
in melanopsin numbers between the genotypes, our result
showing that the aged rd/rd cl and wild type have a similar
magnitude of Fos induction within the SCN is also consis-
tent. Studies in humans also suggest age-related changes in
the pRGC system. In a recent paper, lipofuscin deposits

have been reported within melanopsin RGCs of aging indi-
viduals (Vugler et al., 2007). Although loss of melanopsin
PRGCs seems to be the most parsimonious explanation for
the reduction in Fos within the SCN, we cannot entirely
exclude the existence of other causes. For example, a re-
duction in light transmission through the lens has been
reported in old hamsters (Zhang et al., 1998) and humans
(Cuthbertson et al., 2009). It is also possible that there might
be age related impairments in the physiological responses of
the SCN neurons perhaps by changes in neurotransmitter
release and/or a reduction in neurotransmitter receptors
(Aujard et al., 2001; Tamaru et al., 1991).

3.2. Light activation in the IGL and vLGN following
retinal degeneration and aging

In the IGL and vLGN, in contrast to the SCN, we observe
differences in Fos expression between young rd/rd cl and
wild type mice. Wild type animals show a marked induction
of Fos in the IGL and vLGN in response to light, while rd/rd cl
mice show only a slight elevation of Fos in response to
light and this fails to reach statistical significance when
compared with sham treated controls. This suggests
strongly that rod and cone photoreceptors play a more
dominant role in light activation of the IGL and vLGN. In
view of the different sensory tasks mediated by rods/cones
and pRGCs, these results are not too surprising (Hankins et
al., 2008), reflecting their respective roles as image and
irradiance detectors. These findings are similar to those in
another visually impaired mouse (Rho ™/~ Cnga3~'") which
lacks functional rods and cones, where light stimuli failed to
elicit Fos induction in the IGL (Barnard et al., 2004). Old
rd/rd cl and wild type mice fail to show any significant
light-induced Fos within the IGL and vLGN. We suggest
this lack of Fos expression in the old wild type, compared
with young animals, is related to a loss of rod/cone input.
Our neuronal tracing suggests a reduction of fiber density of
retinal afferents to the IGL/VLGN in aged wild type mice
and correlates well with previously reported results showing
a reduction of rods and cones in the aged human and rodent
retina (Gao and Hollyfield, 1992; Katz and Robison, 1986).

3.3. Overall summary and conclusions

We show a generalized loss of retinal afferents (~40% to
the SCN) and a reduction in light activation in both normal
and retinally degenerate mice (rd/rd cl) (20-27 months of
age). Previous studies in aging wild type mice have shown
a steady decrease in RGC numbers, declining by ~41% at
18 months of age (Neufeld and Gachie, 2003). Outer retinal
degeneration appears to accelerate RGC loss in rd/rd mice
as they show ~20% fewer RGCs at 11-12 months com-
pared to wild types (Wang et al., 2000). What is perhaps
surprising in the present study is that retinal afferent loss is
not enhanced by rod and cone loss in the aged rd/rd cl mouse.
Indeed, at this advanced age it appears that the afferents are
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Fig. 5. Cholera toxin B (CTB) immunoreactivity in the intergeniculate leaflets (IGL) and ventral lateral geniculate nuclei (VLGN) of young and old wild type
and rd/rd cl mice after unilateral intravitreal injection of CTB. The images A, C, E, and G are contralateral to the injected eye while those in B, D, F, and
H are ipsilateral. Projections to the IGL/VLGN in young wild type mice are shown in (A) and (B), and young rd/rd cl in (C) and (D), while those from old
wild type mice are shown in (E) and (F), and old rd/rd cl in (G) and (H). Black arrows indicate the VLGN and white arrows the IGL. Scale bar 200 wm.

preserved to the same level as wild types. Our data indicate
that the extensive loss of RGCs over the life span of the
mouse is not related to the loss of outer retinal photorecep-
tors and other factors must be involved, such as nutritional
intake, light levels, and/or strain specific diseases (Danias et
al., 2003; Neufeld and Gachie, 2003). Our results might also
reflect the fact that we have focused on regions that receive
inputs from melanopsin pRGCs, and these neurons may be
somewhat more resistant to axotomy induced cell death
(Robinson and Madison, 2004), that may be occurring in the
dystrophic retina (Wang et al., 2000).

In summary, our data allow us to conclude that advanced
age is a more important factor than retinal degeneration in
reducing the level of light activation in the SCN. Our study
provides important anatomical correlates to recent studies
showing the therapeutic benefit of providing increased light
to elderly people for the improvement of circadian rhythm
deficits (Dowling et al., 2008; Lieverse et al., 2008; Riem-
ersma-van der Lek et al., 2008).
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