
Interactive Collaborative Filtering

Xiaoxue Zhao, Weinan Zhang
∗

, Jun Wang
Computer Science, University College London
{x.zhao, w.zhang, j.wang}@cs.ucl.ac.uk

ABSTRACT
In this paper, we study collaborative filtering (CF) in an
interactive setting, in which a recommender system contin-
uously recommends items to individual users and receives in-
teractive feedback. Whilst users enjoy sequential recommen-
dations, the recommendation predictions are constantly re-
fined using up-to-date feedback on the recommended items.
Bringing the interactive mechanism back to the CF pro-
cess is fundamental because the ultimate goal for a recom-
mender system is about the discovery of interesting items
for individual users and yet users’ personal preferences and
contexts evolve over time during the interactions with the
system. This requires us not to distinguish between the
stages of collecting information to construct the user profile
and making recommendations, but to seamlessly integrate
these stages together during the interactive process, with
the goal of maximizing the overall recommendation accuracy
throughout the interactions. This mechanism naturally ad-
dresses the cold-start problem as any user can immediately
receive sequential recommendations without providing rat-
ings beforehand. We formulate the interactive CF with the
probabilistic matrix factorization (PMF) framework, and
leverage several exploitation-exploration algorithms to se-
lect items, including the empirical Thompson sampling and
upper confidence bound based algorithms. We conduct our
experiment on cold-start users as well as warm-start users
with drifting taste. Results show that the proposed methods
have significant improvements over several strong baselines
for the MovieLens, EachMovie and Netflix datasets.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Information Filtering

Keywords
Interactive Collaborative Filtering, Exploitation-Exploration,
Personalization, Recommender Systems

∗The first two authors have equal contribution to this work.

1. INTRODUCTION
An increasing number of online services have adopted rec-

ommender systems to help users discover information; users
can either browse, search or simply receive recommendations
to satisfy their needs. Amazon reported 35% of purchases
originated from recommended items in 2006 [23], and Google
News improved its traffic by 38% via its personalized rec-
ommender system [11]. Despite providing a more intelligent
way to discover relevant items, the use of traditional rec-
ommender systems has been limited and they are usually
positioned as a complement to searching and browsing.

More recently, as a standalone Web service, Interactive
Recommender Systems have emerged, by which 100% vol-
ume of their services is comprised of direct user interactions
with the recommender system over time. In many such sys-
tems, there is no need for users to actively search for con-
tent. Instead, items, such as webpages (StumbleUpon.com),
songs (Pandora.com) or deals (Groupon.com), can be sequen-
tially recommended to individual users, whilst feedback on
recommended items is continuously observed. During the
interactions, the recommender system is continuously re-
fined by receiving feedback on delivered items and the user
can enjoy sequential recommendations. Figure 1(a) provides
snapshots of the StumbleUpon Web discovery service and the
Pandora radio streaming service. Such interactive recom-
mendation services, despite easy to use, pose a ‘chicken-or-
the-egg’ problem in providing accurate personalized recom-
mendations. Successful personalized recommendation pre-
diction requires adequate observations of user’s preferences.
However, as illustrated in Figure 1(b), the preference ob-
servation is restricted only to the items that have been rec-
ommended. Therefore a critical problem is: how to rapidly
learn a new user’s interest while not compromising his/her
recommendation experience? Or, from the modelling per-
spective, how to balance between the goals of learning the
user profile and providing accurate predictions?

In such interactive recommendations, the first series of
interactions with a new user are especially important. It is
usually called the cold-start problem in the literature. Ex-
isting techniques address the problem by using a two-phase
process, i.e., to use active learning [21, 29] or an interview
process (preference elicitation) [41, 16] to first learn the user
profile, and then to make recommendations based on the
established profile. The two-phase solution solves the prob-
lem to a certain extent, but may not provide a complete
solution. Asking the user to explicitly give ratings is still
time-consuming and sometimes a burden for him/her; the
user may have already left the service before his/her profile
has been established. Recommendations would preferably
be provided right from the very beginning and interests ac-
quired by employing a less intrusive and implicit method of

(a) Two examples of Interactive Recommender Systems.

(b) Non-stop Recommendation-feedback loop.

Figure 1: Interactive Recommendation: a ‘chicken-
or-the-egg’ problem. Recommendation requires
feedback, whereas the feedback is only on the rec-
ommended items. The scenario is also different from
common relevance feedback in information retrieval,
which normally handles the feedback in one or two
iterations and lacks an established way to balance
the exploration and exploitation [34].

gradually learning user profiles. A successful algorithm for
interactive recommendation should not distinguish between
the two phases, but continuously detect/learn the user pro-
file while trying to satisfy the user at the same time.

The two inter-connected objectives mentioned above are
closely related to the Exploitation-Exploration (EE) prob-
lem [6, 15, 25]. It is the dilemma whether, for each inter-
action, we should try to satisfy the user’s interest with the
best-guessed item based on current knowledge, or whether
we should try some sub-optimal yet discriminative items
to gain more knowledge about the user. The EE problem
has been heavily studied in the machine learning and statis-
tics communities, and multi-armed bandits are the generic
setting of an EE problem. Many algorithms have been
proposed under the independent-arm assumption, such as
probability-based methods, e.g., ε-greedy [6], epoch-greedy
[24], Exp3 and Exp4 [7], and index-based methods, e.g., Git-
tins Index [15] and the Upper-Confidence Bound [5, 6].

The EE principle has been applied for personalized con-
tent recommendation. For example, in news article delivery
tasks [25], a contextual-bandit algorithm has been proposed
on the basis of the content features (texts) of the news ar-
ticles and the browsing contexts of the users. The idea was
to approximate the news articles’ profile features and max-
imize the overall delivery performance across news articles
using a linear prediction model.

However, it is unclear as to how to model the interaction in
pure collaborative filtering settings where there is no content
data to represent users and items and the only observations
are ratings. In this paper, in order to naturally integrate
with existing collaborative filtering approaches, we address

the Interactive Collaborative Filtering (ICF) problem under
the popular matrix factorization framework, which has been
proven to be effective in various recommendation competi-
tions [22]. Specifically, we extend the probabilistic matrix
factorization (PMF) [33] to build the probabilistic model of
the user-item ratings over time. Our intention is to max-
imize the users’ overall satisfaction throughout the recom-
mendation journey. By modeling the rating with PMF, the
uncertainty of a predicted rating comes from both the user
feature vectors and the item feature vectors. While many
existing multi-armed-bandit algorithms have addressed the
problem by assuming arms to be independent [9, 24, 6], some
others have tackled special cases where arms are structured
in linear forms [5, 25]. In this paper, to consider the uncer-
tainty in both the user and item feature vectors, we adopt
empirical effective algorithms such as Thompson sampling
[8] and construct a sampling process from their distribu-
tions. Furthermore, in some cases, the item feature vectors
are well-learnt and thus the item-side uncertainties could be
disregarded. The problem then falls into a linear form in
the item feature vectors, and thus various linear bandit al-
gorithms [5] are applicable, including a variation of ε-greedy
algorithm, linear and generalized linear upper-confidence-
bound algorithms. Experimental results on both cold-start
and warm-start (with drifting taste) users show significant
improvements over several strong baselines for the Movie-
Lens, EachMovie and Netflix datasets.

The rest of this paper is organized as follows. Section 2
discusses the related work. Our solution is formally pre-
sented in Section 3. The experiment is described in Section
4, and we conclude this paper in Section 5.

2. RELATED WORK
The CF research has been traditionally focused on pre-

dicting the unknown ratings of a target user as accurately
as possible from a collection of user profiles. Major solutions
are categorized into two classes: The memory-based meth-
ods make the recommendation by explicitly modelling the
user or item similarities [19, 12] or combining them together
[38], while the model-based methods provide recommenda-
tions by developing a ‘model’ of user ratings. For instance,
latent factor models have become quite popular during the
recent years [20], while the matrix factorization techniques
[22] have shown their effectiveness in various settings such
as the Netflix and Yahoo! music competitions.

A key challenge in CF is to effectively predict preferences
for new users, a problem generally referred to as the user
cold-start problem [2, 35]. A straightforward method to
tackle the problem is to interview the user to provide addi-
tional information (e.g. favorite genres) or to ask the user
to rate a set of items in order to provide enough data for the
recommender system. The items used in the interview can
be selected based on measures such as popularity, entropy
and coverage [30, 31], or a decision tree to partition the users
[41, 17]. Active learning is also deployed in order to identify
the most informative set of training examples (items) with
respect to some selection criterion, such as the expected in-
formation gain [18, 21], with the target of minimizing the
number of interactions. In summary, all those methods first
explicitly figure out the user profile and then use the estab-
lished user profile to make further recommendations. How-
ever, asking users to take interviews is still time-consuming
and sometimes a hurdle for them to overcome even if the
effort has been kept minimum. By contrast, ICF that we
propose does not distinguish between the stages of learn-
ing user profiles and making satisfactory recommendations,

but naturally integrates them together. As such, any user,
whether a new user or not, can immediately receive sequen-
tial recommendations and explore items without overcoming
the hassle of providing ratings before hand.

In the machine learning and statistics communities, the
EE problem has been well studied by considering the multi-
armed bandit settings [9, 24, 5]. Under the assumption that
rewards of arms are independent to each other, ε-greedy
is a straightforward algorithm that adds the probability of
random exploration [6] into a greedy algorithm. The epoch-
greedy method generalizes it for the case that the total time
T is unknown so that the exploitation and exploration take
place alternatively in each epoch to minimize the regret
(i.e., the cumulative loss compared to the optimal one) [24],

and it achieves a regret of Õ(T 2/3) with a high probabil-
ity. The confidence bound algorithms seek to find a region
that bounds the expected payoff with a high probability,
and within the region, the arm with highest upper confi-
dence bound is selected: the EXP4 approach [7] achieves an

Õ(
√
T) regret with high probability. A drawback of these

approaches lies in that when the number of arms is huge, ex-
ploration becomes difficult. As such, the underlying struc-
ture of the arms should be considered. A well-known sce-
nario is that the expected reward is a linear function with
respect to the features of them, where the linear bandit algo-
rithm is proposed [5, 10, 1]. On the other hand, in the con-
textual bandit model with side information, the structure is
modelled by positioning each arm into a feature space [13],
while a more general linear setting is discussed in [14]. Be-
sides the above algorithms, Thompson sampling yet provides
a more flexible way to tackle the multi-armed bandit prob-
lems [8] which does not restrict the reward function forms to
a linear one. Therefore, when we model the interaction, we
propose to use Thompson sampling [8], which provides an
empirical solution where the uncertainties of both the learnt
feature vectors of the user and the item are considered.

The contextual bandit models have been applied to model
news article recommendations [25] and online advertising
[27], where in each timestep a context (in the form of a fea-
ture vector) is revealed, and an arm (either a piece of news
or an ad) is selected based on the context. The contextual
bandit approaches can be naturally applied to both cases
because in both cases the content features such as the user’s
demography and location information, and the item’s tex-
tual descriptions, preexist and can be immediately used to
represent the ‘context’. In our domain-free scenario where
users or items are presented only by ratings, it is, however,
essential to derive a sensible representation for the corre-
lated arms (items) and the contexts (users) and combine
them together.

3. ICF FRAMEWORK
3.1 Objective Function

Suppose the system has N items and M users in record.
The ratings between them are recorded in the preference ma-
trix RM×N in which each element rui is the observed rating
from the user u to the item i. Without loss of generality, we
consider the following process in discrete timesteps. Sup-
pose the target user is now denoted simply by u. At each
timestep t ∈ [1, 2, . . . , T], the system delivers (recommends)
an item to the target user. The user will then give feedback
in the form of ratings, or ‘like’s and ‘dislike’s, or ignore the
recommendation (‘unknown’s). In either way, we denote the
feedback as ru,i(t), the rating collected by the system from
user u to the recommended item i(t) at timestep t. In other
words, ru,i(t) is the ‘reward’ collected by the system from

this target user. After receiving feedback, the system up-
dates its model and decides which item to recommend next.

Let’s denote H(t) as the available information at t the
system has for the target user

H(t) = {i(1), ru,i(1), . . . , i(t− 1), ru,i(t−1)} . (1)

The item is selected according to a strategy π, which is
defined as a function from the current information to the
selected item:

i(t) ≡ π(H(t)) . (2)

The optimal strategy should maximize the cumulated ex-
pected reward during T timesteps,

i∗(·) = arg max
i(·)

T∑
t=1

E[ru,i(t)], (3)

where i(·) = {i(1), i(2), . . . , i(T)}. Because of the nature of
recommender systems, here we use reward rather than regret
to express the objective function, and maximizing cumula-
tive reward is equivalent to minimizing regret. Here we con-
sider the quality of recommendations at different timesteps
as equally important, and summarize the user’s overall sat-
isfaction at a given period T . In our experiments, we show
that a higher level of exploration is required in order to
achieve a longer-term cumulative reward.

This objective falls into the target of the multi-armed ban-
dit problem, where we regard each item as each arm of the
bandit. The next questions are how to estimate the reward
and how to optimize the objective function. Using the la-
tent factor model [20], the rating is a product of user and
item feature vectors pu and qi. This is widely used in many
CF algorithms:

ru,i = p′uqi + η, (4)

where η ∼ N (0, σ2) is the observation noise. The objective
function is then re-formulated as follows:

i∗(·) = arg max
i(·)

T∑
t=1

E[ru,i(t)|t]

= arg max
i(·)

T∑
t=1

Epu,qi(t)[p
′
uqi(t)|t] . (5)

The question now is how to optimize the objective function.

3.2 Item Selection via Sampling
Both pu and qi are random variables following certain

distribution p(pu, qi|t). A heuristic solution of Eq. (5) is to
sample an item based on its probability of being optimal [8],

p (i(t) = i) =

∫
I
[
E(rui|pu, qi) = max

j
E(ruj |pu, qj)

]
·

p(pu, qi|t)dqidpu, (6)

where I is the indicator function; it is 1 when the equal-
ity holds (i.e., when item i has the highest expected rating
given pu and qi); otherwise 0. Thus, integrating pu and qi
out gives the probability of being optimal at t for item i.
The integration is computational expensive, but in practice,
no need to compute it explicitly. In this paper, a sampling
approach, called Thompson sampling, is leveraged to ap-
proximate the integration in Eq. (6) [8]. A nice property of
Thompson sampling is that the integration is circumvented
by sampling both the user and item feature vectors together
from their distributions (consider the uncertainty from both

aspects) and picking the item that leads to the largest ex-
pectation of the reward:

i∗(t)ts = arg max
i

E(rui|p̃u, q̃i), (7)

where p̃u and q̃i mean the sampled user and item feature
vectors, which will be described in the next section.

3.2.1 Distributions of User and Item Feature Vectors
In this section, we adopt the PMF model [33] to build the

distributions for the user and the item feature vectors, which
are then used to generate the samples. Specifically, the con-
ditional probability distribution of the rating given the user
and item feature vectors follows a Gaussian distribution

p(rui|p′uqi, σ2) = N (rui|p′uqi, σ2) . (8)

We denote P (Q) as the user (item) feature vector ma-
trix, where each row vector represents a user (item) feature
vector (P = [p1,p2, . . . ,pM]′, Q = [q1, q2, . . . , qN]′). The
distribution of the preference matrix R given P and Q is
then the joint probability, i.e.,

p(R|P,Q, σ2) =

M∏
u=1

N∏
i=1

[N (rui|p′uqi, σ2)]δui , (9)

where δij = 1 if user u rated item i and δij = 0 otherwise.
Similar to the PMF model [33], we define the prior dis-

tributions of the user and item feature vectors as Gaussian
with prior variances σ2

p and σ2
q

p(pu|σ2
p) = N (pu|0, σ2

pI), (10)

p(qi|σ2
q) = N (qi|0, σ2

qI) . (11)

By observing the ratings R, we can obtain the posterior
distributions for the user and item feature vectors [33]. Here
we focus on the conditional distribution of the user (item)
feature vectors, given the current item (user) feature vec-
tors to implement Markov chain Monte Carlo and Gibbs
Sampling (MCMC-Gibbs):

p(P |R,Q, σ2, σ2
p, σ

2
q) ∝ p(R|P,Q, σ2) · p(P |σ2

p, σ
2
q)

∝
M∏
u=1

N (pu|0, σ2
pI)

N∏
i=1

[N (rui|p′uqi, σ2)]δui

∝
M∏
u=1

exp

− 1

2σ2

(σ2

σ2
p

p′upu +
∑
δui=1

(rui − p′uqi)2
)

∝
M∏
u=1

exp

− 1

2σ2

(
p′u(

∑
δui=1

qiq
′
i +

σ2

σ2
p

I)pu − 2
∑
δui=1

ruiq
′
ipu
)

∝
M∏
u=1

N (pu|µu,Σu) . (12)

It means for each user its feature vector follows a Gaussian
distribution given item feature vectors:

p(pu|R,Q, σ2, σ2
p, σ

2
q) = N (pu|µu,Σu), (13)

µu = (D′uDu + λpI)−1D′uru, (14)

Σu = (D′uDu + λpI)−1σ2 . (15)

Here, Du is the observational matrix for the user, each
row of which is the feature vectors of the user rated items
sampled from their posteriors. ru denotes the vector of cor-
responding ratings of these items for the given user u, and
λp = σ2/σ2

p.

Algorithm 1 Thompson sampling

Require: parameters for the item feature vector distribu-
tions Θ = {(ν1,Ψ1), . . . , (νN ,ΨN)}, σ, λp
Initialization: A← λpI
b← 0
for t = 1, 2, 3, ..., T do

Estimate µu,t = A−1b
Estimate Σu,t = A−1σ2

Sample p̃u,t from N (pu,t|µu,t,Σu,t)
Sample q̃i from N (qi|νi,Ψi)for {i ∈ {1, 2, . . . , N}}
Select the arm i∗(t) = arg maxi p̃

′
uq̃i

Receive the reward ru,i∗(t)
Update A← A+ q̃i∗(t)q̃

′
i∗(t)

Update b← b+ ru,i∗(t)q̃i∗(t)
end for

Similarly, the posterior distribution for the item feature
vector qi conditioned on the sampled user feature vectors
can be obtained as

p(qi|R,P, σ2, σ2
p, σ

2
q) = N (qi|νi,Ψi), (16)

νi = (B′iBi + λqI)−1B′iri, (17)

Ψi = (B′iBi + λqI)−1σ2, (18)

and Bi is the observational matrix with each row the sam-
pled user feature vector.

The distributions converge by alternatively sampling the
item and the user feature vectors according to the condi-
tional distributions for them. Then both the expected user
and item feature vectors (µu and νi) and their uncertainties
(Σu and Ψi) are obtained.

3.2.2 Combing Thompson Sampling with PMF
Thompson sampling can be implemented according to the

distributions while they are updated online whenever new
ratings are collected by the system. However, in the ICF
scenario, the distribution of the target user’s feature vec-
tor is much more sensitive to his/her feedback on the items.
On the item side, since each item has usually collected rel-
atively sufficient ratings, it is not necessary to retrain its
feature vector immediately after receiving each rating from
the target user, and we choose to periodically retrain them.
Therefore, we simply use the notation q̃i to express sam-
pled item feature vector from the presently calculated item
feature vector distribution. For the target user, its observa-
tional matrix grows each time, and its distribution can be
described similarly conditioned on the observations:

p̃u,t ∼ N (pu,t|µu,t,Σu,t), (19)

where

µu,t = (D′u,tDu,t + λpI)−1D′u,tru,t, (20)

Σu,t = (D′u,tDu,t + λpI)−1σ2. (21)

Similarly, Du,t is the observational matrix with each row
is the recommended item feature vector, and Σu,t is the
uncertainty of the user feature vector at time t.

From Eq. (7), the Thompson sampling method with the
PMF modeling suggests to choose the item with the highest
value of the inner product of the sampled values, and Eq.
(7) can be approximated as:

i∗(t)ts = arg max
i

p̃′u,tq̃i, (22)

where p̃u,t is sampled from the estimated distribution in Eq.
(19). The algorithm is described in Algorithm 1.

Thompson sampling enables exploration through the ‘width’
of the distributions of the inner product of the user and

Algorithm 2 Linear UCB

Require: MAP solution of item feature vectors Q =
{ν1, . . . ,νN}, σ, λp, and α ∈ R+

Initialization: A← λpI
b← 0
for t = 1, 2, 3, ..., T do

Estimate µu,t = A−1b
Estimate Σu,t = A−1σ2

Choose the item

i∗(t) = arg max
i

(
µ′u,tνi + α||νi||2,Σu,t

)
Receive the reward ru,i∗(t)
Update A← A+ νi∗(t)ν

′
i∗(t)

Update b← b+ ru,i∗(t)νi∗(t)
end for

item feature vectors. The ‘width’ further comes from both
the uncertainties of the user and item feature vectors. By
this approach described above, the uncertainties of the user
and item feature vectors are considered on the same foot-
ing. However, considering ICF as a user-centric scenario
(Figure 1), the obtained knowledge on the target user side
may be much more important than that on the item side,
especially when items have collected many ratings and thus
are always already well-learnt. Therefore, in the following
part, we adopt a biased view so that the item feature vectors
are assumed to be well-learnt as the maximum a posterior
(MAP) solution νi from the distributions obtained by PMF,
and only the user feature vector distributions are maintained
for the sampling process.

3.3 Item Selection via Confidence Bound
With the item feature vectors known and fixed, the re-

ward in Eq. (4) tends to be a linear form with the item
feature vectors as coefficients, and the essence of the EE is
to approach the user feature vector. Therefore, such prob-
lem falls into the framework of linear bandits [5]. Linear
Upper-Confidence-Bound (UCB) algorithm, and its varia-
tions are widely used for such problems. In this way, we
take the MAP estimation of the item feature vectors νi as
the representatives of the items and assume them to be fixed.

In the following, linear and generalized linear UCB algo-
rithms are presented for our problem respectively. A varia-
tion of ε-greedy algorithm is also provided for comparison.

3.3.1 Linear UCB
As mentioned above, assuming the item feature vectors as

fixed, the reward function reduces to be linear in the item
feature vectors, and the objective function in Eq. (4) is
further written as

i∗(·) = arg max
i(·)

T∑
t=1

E[ru,i(t)] = arg max
i(·)

T∑
t=1

Epu [p′u|t]νi(t),

(23)

where Epu [p′u|t] can be estimated according to Eq. (20).
The expected user feature vector can be obtained accord-

ing to Eq. (20). Now the uncertainty of the reward can be
obtained as the estimated variance of the inner product of
the user and item feature vectors p′uνi, which comes from
the uncertainty of the estimation in the user feature vector.
The estimated variance is the 2-norm based on Σu,t (accord-
ing to Eq. (21), but note that here the observational matrix
is made up of the posterior feature vectors of the items):

||νi||2,Σu,t ≡
√
ν′iΣu,tνi . (24)

Algorithm 3 GLM-UCB

Require: MAP solution of item feature vectors Q =
{ν1, . . . ,νN}, σ, λp, and c ∈ R+

Initialization: A← λpI
for t = 1, 2, 3, . . . , T do

Estimate p̂u,t by Eq. (29)
Estimate Σu,t = A−1σ2

Choose the item

i∗(t) = arg max
i

(
ρ(p̂′u,tνi) + c

√
log t||νi||2,Σu,t

)
Receive the reward ru,i∗(t)
Update A← A+ νi∗(t)ν

′
i∗(t)

end for

Algorithm 4 Linear ε-greedy

Require: MAP solution of item feature vectors Q =
{ν1, . . . ,νN}, λp and ε ∈ [0, 1]
Initialization: A← λpI
b← 0
for t = 1, 2, 3, ..., T do

Estimate µu,t = A−1b
With probability 1− ε choose the item

i∗(t) = arg max
i

(
µ′u,tνi

)
Otherwise choose an item randomly
Receive the reward ru,i∗(t)
Update A← A+ νi∗(t)ν

′
i∗(t)

Update b← b+ ru,i∗(t)νi∗(t)
end for

According to [37], with the item feature vectors known
and fixed, the expectation of the reward by choosing item i
is bounded in the interval Θi,t with probability at least 1−ζ

Θi,t =
[
µ′u,tνi − α||νi||2,Σu,t ,µ

′
u,tνi + α||νi||2,Σu,t

]
(25)

where α = 1+
√

ln (2/ζ)/2. The bounded interval motivates
an UCB bandit algorithm, i.e., at each timestep, choose the
item with the highest upper confidence bound:

i∗(t)l = arg max
i

(
µ′u,tνi + α||νi||2,Σu,t

)
. (26)

The algorithm is given in Algorithm 2. The algorithm is
proven to have a very tight regret bound of Õ(

√
T) [25].

As defined in Eq. (21), matrix Σu,t is a regularized fisher
information matrix, measuring how much ‘information’ is
known about the user feature vector from the previously rec-
ommended items, given the item feature vectors are known
already. That is, to recommend an item that maximizes
||νi||2,Σu,t is to recommend an item that has been the least
represented (understood) by the perviously recommended
items.

3.3.2 Generalized Linear UCB
The problem can be also linked to the generalized lin-

ear bandit problem in [14], which gives a general solution
Generalized Linear Model Bandit-Upper Confidence Bound
(GLM-UCB) if we assume the reward takes the following
form

ru,i(t) = ρ
(
p′uqi(t)

)
+ η(t), (27)

where ρ is a monotonically increasing function which takes
a linear or nonlinear form. Here we give two options of
function ρ, a linear form suggested in Eq. (4), and a sigmoid

form

ρ(p′uqi) =
1

1 + e−pu′qi
. (28)

Similar to the derivations in LinUCB, here the item fea-
ture vectors qi are approximated by the maximum a pos-
terior (MAP) solution νi. On the other hand, we need to
estimate the user feature vector according to the generalized
linear model, which here we denote as p̂u,t (note that here
the solution p̂u,t is no longer the MAP solution in Eq. (20)
due to the nonlinear function ρ). In general, according to
[14], the quasi-likelihood estimator p̂u,t of Eq. (27) is the
solution of

t−1∑
τ=1

(
ru,i(τ) − ρ(p̂′u,tνi(τ))

)
νi(τ) = 0. (29)

Specifically, for a sigmoid form, it is estimated as

t−1∑
τ=1

(
ru,i(τ) −

1

1 + e−p̂
′
u,tνi(τ)

)
νi(τ) = 0. (30)

For a linear form, the estimate is the same as the max-
imum posterior estimation of the user feature vectors Eq.
(20).

The GLM-UCB algorithm follows a similar process as Lin-
ear UCB, i.e., firstly p̂u,t is estimated, and the choice of the
item is based on the estimated p̂u,t but with exploration part
added which is 2-norm based on Σu,t (Eq. (24)) multiplied
by a factor c

√
log t [14]

i∗(t)gl = arg max
i

(
ρ(p̂′u,tνi) + c

√
log t||νi||2,Σu,t

)
. (31)

The GLM-UCB algorithm is illustrated in Algorithm 3.
Note that exploration term α is time-dependent:

α = α(t) = c
√

log t, (32)

where c is a constant with respect to t [14]. With term
c
√

log t, the decreasing trend of ||νi||2,Σu,t is weakened so
that the exploration level is maintained to some extent. Us-
ing the conclusion from [14], GLM-UCB has a regret bound

of Õ(
√
T).1

Just like the other index-based EE algorithms [5], the
algorithms have a low computational complexity, which is
O(T 3 +K2N).

3.3.3 Linear ε-greedy
The linear ε-greedy algorithm is based on the greedy strat-

egy under our setting, which can be described as

i∗(t)g = arg max
i

µ′u,tνi. (33)

Because µu,t and νi can be seen as the MAP solutions for
the PMF model, which can also be referred as the solutions
by singular vector decomposition (SVD). We refer to the
greedy strategy as greedy SVD, or simply SVD.

The greedy strategy is the myopic strategy that always
picks the item leading to the highest expected reward based
on current knowledge. Linear ε-greedy we adopt here is
the naive algorithm which chooses the greedy strategy with
probability 1− ε and explores into random items with prob-
ability ε. The algorithm is described in Algorithm 4.

For the above algorithms, two factors contribute to the
selection of the item: the exploitation factor suggested by
the greedy algorithm Eq. (33), and the exploration factor

1The detailed form of the bound is looser than that of Lin-
UCB but it is more general.

Table 1: Characteristics of the datasets.
Dataset MovieLens EachMovie Netflix

#users 943 72,916 480,189
#items 1,683 1,648 17,770

#ratings per user 106.04 38.56 209.25
#ratings per item 59.42 1706.30 5654.50

total #ratings 100,000 2,811,983 100,480,507

which is controlled by parameters α, c andε respectively. For
each of the three algorithms, the larger the parameter is, the
more emphasis is put onto the exploration effort accordingly.

4. EXPERIMENTS
Experiments are carefully designed to answer the follow-

ing questions: (1) How can EE algorithms outperform my-
opic CF algorithms for the cold-start users? (2) Among the
EE algorithms, which one is the most effective and why? (3)
Are the algorithms also effective for warm-start users, espe-
cially those whose interests change over time? (4) Consid-
ering top-n recommendation over time, can the algorithms
still be effective?

4.1 Datasets
We base our experiments on three popular datasets Movie-

Lens (100k), EachMovie and Netflix. The basic information
of the datasets is summarized in Table 1.

Due to the interactive nature of our problem, an online ex-
periment with true interactions from users would be ideal,
but it is not always possible [25]. Instead, we follow an
unbiased offline evaluation scheme for contextual-bandit al-
gorithms in [26]. In our setting, we assume that the ratings
recorded in the datasets are users’ instinctive actions, not
biased by the recommendations provided by the system. In
this way, the records can be treated as unbiased to represent
the feedback in an interactive setting [41].

We normalize the ratings into the range [−1, 1] and split
the data into two user-disjoint sets: the training users and
their ratings are used to train the parameters for the item
distributions, as required in Thompson Sampling, and to
obtain the MAP solutions of the item feature vectors, as re-
quired in UCB-based algorithms (Section 3.2.1). The item
feature vector information is maintained as unchanged dur-
ing the test phase when the test users go through the inter-
active recommendation process during T timesteps because
the collected ratings from the target user have trivial ef-
fect on the item feature vector distributions. According to
the purpose (whether to test the performance on cold-start
users, or on warm-start users), we select test users based on
different criteria, detailed in each subsection.

4.2 Compared Algorithms
The baselines include:
Random. In each interaction, randomly chooses an item

from the entire item set to recommend to the target user.
Popularity-based (Pop). The system picks the most

popular items to recommend to the target user.
Greedy SVD (SVD). This algorithm is built upon the

SVD approach. We regard it as the myopic algorithm in
ICF. For each target user, the system needs to retrain the
SVD model after each interaction.

Active Learning (AL). Active learning methods have
been proposed for the cold-start problem [18]. The idea is
to minimize the uncertainty in the model, so that the item
with highest uncertainty is selected [32].

Interview Process (Interview). The interview pro-
cess first constructs the user profile with a number of most
discriminative items, and then shifts to the greedy recom-

Table 2: Cold-start performance on MovieLens, EachMovie, and Netflix dataset.
Dataset MovieLens (100k) EachMovie Netflix

Measure Cumulative Precision Cumulative Precision Cumulative Precision
T 10 20 40 120 10 20 40 120 10 20 40 120

Random 0.690 1.390 2.925 8.420 0.545 1.125 2.245 6.285 0.245 0.455 0.88 2.395
Pop 5.060 9.500 15.710 42.170 3.200 6.72 11.200 24.675 4.700 9.335 17.760 45.370
SVD 6.360 11.035 19.390 43.155 4.095 7.590 13.295 31.435 5.675 10.410 18.975 48.900
AL 6.850 11.095 18.905 41.785 3.180 6.865 13.270 29.965 7.060 12.595 18.695 21.780

Interview 6.800 11.885 20.495 45.745 3.180 6.865 13.270 30.660 3.825 9.165 18.720 52.310

TS 6.465 11.31 19.565 43.745 4.605 8.270 14.025 31.395 6.160 11.420 20.585 52.300
ε-greedy 6.375 11.060 19.440 43.180 4.660 8.430 14.315 32.270 5.725 10.545 19.205 49.780
LinUCB 6.850 11.835 20.820 46.455 4.610 8.175 14.280 33.590 7.060 12.735 22.855 56.490
GLM-Lin 6.850 11.835 20.820 46.470 5.105 9.030 15.170 35.045 7.060 12.835 22.830 55.620
GLM-Sig 6.850 11.830 20.825 46.445 4.765 8.435 14.305 32.605 7.060 12.710 22.780 56.275

Improvement 7.7%* 7.2%* 7.4%* 7.7%* 24.7%* 19.0%* 14.1%* 11.5%* 24.4%* 23.3%* 20.5%* 13.7%

Measure Cumulative Recall Cumulative Recall Cumulative Recall
T 10 20 40 120 10 20 40 120 10 20 40 120

Random 0.006 0.012 0.024 0.076 0.004 0.009 0.016 0.047 0.001 0.001 0.002 0.007
Pop 0.047 0.088 0.144 0.376 0.025 0.053 0.087 0.194 0.015 0.029 0.055 0.139
SVD 0.058 0.099 0.171 0.369 0.037 0.066 0.111 0.246 0.018 0.033 0.059 0.149
AL 0.064 0.102 0.170 0.369 0.027 0.059 0.099 0.232 0.022 0.04 0.06 0.071

Interview 0.063 0.108 0.182 0.395 0.025 0.054 0.102 0.231 0.022 0.04 0.071 0.175

TS 0.060 0.104 0.175 0.380 0.037 0.066 0.109 0.240 0.020 0.036 0.064 0.160
ε-greedy 0.0578 0.100 0.172 0.372 0.040 0.071 0.118 0.261 0.020 0.037 0.067 0.173
LinUCB 0.064 0.109 0.187 0.409 0.038 0.068 0.115 0.251 0.022 0.04 0.072 0.173
GLM-Lin 0.064 0.109 0.187 0.409 0.042 0.072 0.121 0.272 0.022 0.041 0.071 0.171
GLM-Sig 0.064 0.109 0.187 0.409 0.038 0.067 0.113 0.252 0.022 0.04 0.071 0.173

Improvement 9.4%* 10.1%* 9.4%* 10.8%* 13.5%* 9.1%* 9.1%* 10.6%* 22.2%* 24.2%* 22.0%* 16.1%

mendation strategy. Here we follow the work of [17] and set
the interview question number as 5.

Our EE algorithms include the following variations:
Thompson Sampling (TS). This is Algorithm 1.
Linear UCB (LinUCB). This is Algorithm 2. α is

used to tune this model.
Linear GLM (GLM). This is Algorithm 3. We set

function ρ as a linear function, i.e., GLM-Lin, and a sig-
moid function, i.e., GLM-Sig. c is used to tune this model.

Linear ε-greedy. (ε-greedy) This is Algorithm 4. A
tuning parameter ε is used to control the balance between
the exploitation and exploration.

In addition, we add a constraint for all the algorithms
that the same item should not be repeatedly recommended
as suggested in most previous ranking-oriented recommen-
dation settings [28, 40].

4.3 Evaluation Measures
Three evaluation metrics are used:
Cumulative Precision@T . A straightforward evalua-

tion measure is the number of the positive ratings collected
during the total T interactions:

precision@T =
1

#users

∑
users

T∑
t=1

θhit . (34)

For both datasets, we define θhit = 1 if the rating is no less
than 4, and 0 otherwise, similar to the definition of positive
ratings in previous work [3].

Cumulative Recall@T . We can also check for the recall
during T timesteps of the interactions.

recall@T =
1

#users

∑
users

T∑
t=1

θhit

#preferences
. (35)

Cumulative nDCG@n. For the case that multiple items
are shown in one interaction, the ranking of the item listed
is also important: it is more useful to have the highly rel-
evant items appear earlier in the ranking list. We use the
normalized discounted cumulative gain (nDCG@n) as the

0.1 1 10
3

4

5

6

7

8

 T=20
 T=120

alpha

C
um

ul
at

iv
e

Pr
ec

is
io

n

15

20

25

30

(a) LinUCB

1E-3 0.01 0.1

5

6

7

8

 T=20
 T=120)

epsilon

C
um

ul
at

iv
e

Pr
ec

is
io

n

24

28

32

(b) ε-greedy

Figure 2: Cumulative precision against parameter
turning on EachMovie.

ranking measure

nDCG@n =
1

Z

n∑
j=1

2rj − 1

log2(j + 1)
, (36)

where rj is the real rating of the item shown at ranking posi-
tion j. Z is the normalization factor making the score of the
optimal ranking to 1 such that 0 ≤ nDCG@n ≤ 1. Similar
to the cumulative precision and recall, here the cumulative
nDCG@n should also take sum over T and average on users.

4.4 Cold-start Cases

4.4.1 Test User Selection
In order to test the system’s performance on cold-start

users, we first select users with sufficient numbers of recorded
ratings in order to test the performance. Here we randomly
select 200 users with more than 120 ratings because up to
T = 120 interactions are studied. Then the parameters of
item feature vector distributions are trained without these
user’s ratings according to Section 3.2.1.

4.4.2 Performance Comparison
Performances of proposed algorithms and the baselines

for cold-start users are compared and summarized in Table
2. Optimally tuned parameters have been adopted for each
T = 10, 20, 40, 80, 120. The effect of parameters will be dis-
cussed in Section 4.4.3. The best-performing algorithm is

Table 3: Performance on Warm-start Users with Taste Drift on MovieLens and EachMovie.
Dataset MovieLens (100k) EachMovie

Measure Cumulative Precision Cumulative Precision
T 60 80 100 120 60 80 100 120

Random 2.420 3.100 3.730 4.435 3.532 4.400 5.363 6.279
Pop 16.025 18.420 20.490 22.775 19.526 20.437 21.416 22.447
SVD 18.620 21.290 24.060 25.980 19.447 22.453 25.458 28.353

TS 19.095 21.780 24.620 26.515 20.047 22.879 25.832 28.968
ε-greedy 18.995 21.72 24.535 26.480 19.984 22.904 25.974 28.805
LinUCB 20.005 22.875 25.775 27.780 20.205 23.137 26.221 29.247
GLM-Lin 19.895 22.905 25.665 27.775 22.853 25.916 28.863 31.711
GLM-Sig 20.000 22.835 25.760 27.790 20.437 23.358 26.279 29.284

Improvement 7.4% 7.6%* 7.1% 7.0% 17.5%* 15.4%* 13.4%* 11.8%*

Measure Cumulative Recall Cumulative Recall
T 60 80 100 120 60 80 100 120

Random 0.038 0.050 0.063 0.074 20.047 22.879 25.832 28.968
Pop 0.245 0.286 0.321 0.358 0.126 0.148 0.169 0.189
SVD 0.267 0.311 0.351 0.379 0.126 0.148 0.169 0.189

TS 0.272 0.314 0.360 0.388 0.129 0.149 0.170 0.192
ε-greedy 0.273 0.317 0.363 0.391 0.13 0.15 0.172 0.191
LinUCB 0.291 0.341 0.389 0.422 0.132 0.155 0.178 0.199
GLM-Lin 0.291 0.342 0.388 0.424 0.156 0.180 0.204 0.223
GLM-Sig 0.291 0.341 0.388 0.421 0.138 0.161 0.182 0.201

Improvement 9.0% 10.0%* 10.8% 11.9% 23.8%* 21.6%* 20.7%* 18.0%*

shown in boldface with ∗ marking significant improvements
(by Wilcoxon signed-rank test). The row of improvement
shows the increases brought by the best-performing algo-
rithm compared to the greedy SVD strategy.

The observations can be summarized into the following
points: (1) The Thompson sampling algorithm generally
works better than the greedy SVD, or the ε-greedy algo-
rithm. In most cases, Thompson sampling also exceeds other
baseline algorithms (according to the cumulative precision).
It means that the exploration by considering the uncertain-
ties of the user and items according to their probability dis-
tributions, is more promising than randomly conducting ex-
plorations. Nevertheless, the Thompson sampling fails to
outperform the LinUCB or GLM algorithms. (2) In almost
all cases, the UCB-based algorithms perform better than
the baselines. In MovieLens and Netflix, the three UCB-
based algorithms have close performances while in Each-
Movie GLM-Lin outperforms all the baselines. The increase
by the proposed EE algorithm compared to SVD is up to
7.7% on MovieLens, 24.7% on Eachmovie, and 24.4% on
Netflix (according to the cumulative precision). All of the
improvements (except one) are statistically significant. (3)
Among all the proposed EE algorithms, linear ε-greedy per-
forms worst, but still better than the greedy SVD. It sug-
gests that adding some level of exploration can always im-
prove the pure exploitation strategy. (4) The greedy SVD
outperforms the popularity-based strategy, and obviously
the random strategy performs the worst. (5) The interview
strategy performs better than the active learning strategy
in the long run, because it shifts to exploitation after learn-
ing the user by exploration (5 timesteps). For all the three
datasets, however, the interview strategy is not as good as
the algorithms which are proposed based on ICF framework.

There are two possible reasons that UCB-based algorithms
outperform the Thompson sampling method. First, the user
uncertainties may play a much more important role in the
ICF scenario. Consideration on item-side uncertainties may
be helpful for learning the item feature vectors in the long
run, but in this user-centric system, it may hamper the user
experience. Second, compared with the UCB-based algo-
rithms which explicitly pursue the highest possible perfor-
mance for each item as their exploration strategy, Thomp-
son sampling involves considerations on both the positive
and negative possible performances for each item. In ad-

dition, the sampling process itself imports the exploration
instability. However, the UCB-based algorithms are built
on the assumption that the item feature vectors are well-
learnt. In the case of very limited available data and thus
underestimated item feature vectors, it may be necessary to
consider the uncertainty of item feature vectors. We leave
this problem as our future work.

4.4.3 Impact of Trade-off Parameters
The algorithm-dependent parameters α, c, ε are used to

balance between the exploitation and exploration. Here we
focus on the cumulative precision as the measure of the per-
formance, and investigate how the performance depends on
the parameters, with respect to two horizons T = 20 and
T = 120, shown in Figure 2.2 We only show the impact of α
for LinUCB and ε for linear ε-greedy due to the page limit
whereas other cases display the similar trends.

We observe that when either α or ε (for either the case
of T = 20 or T = 120) increases, the performance first in-
creases, and then falls down. The peak performance corre-
sponds to the optimal parameter which for T = 20 is smaller
than that for T = 120. This is intuitively correct because
more exploration is needed when a longer-term satisfaction
is targeted. In practice, for the decision of T , we can make
use of the statistics from the system record, such as the
average life-time of the users.

4.5 Warm-start Cases with Taste Drift
4.5.1 Test User Selection

Through this experiment, we aim to answer the question
whether the algorithms are also applicable on warm-start
users to follow up their interests throughout the interac-
tions, especially when their tastes are changing over time.
To do this, we first divide the rating records of the users
(whose ratings are more than 120) into two periods (set 1
and set 2). Then, we employ the genre information of the
items as an indication of the user interest [36]. That is,
we calculate the cosine similarity between the genre vectors
of the two periods. We choose the users with the smallest
cosine similarity as an indication that they have significant
interest drift across the two time periods. All the other users

2Empirically, we do not necessarily restrict α according to
Eq. (25).

Table 4: Performance for Multiple-item Recommendations by Cumulative nDCG.
Dataset MovieLens EachMovie Netflix
Measure nDCG@3 nDCG@5 nDCG@3 nDCG@5 nDCG@3 nDCG@5

T 20 40 10 20 20 40 10 20 20 40 10 20

Random 0.750 1.563 0.369 0.701 0.619 1.280 0.290 0.586 0.263 0.46 0.145 0.255
Pop 4.876 8.669 2.666 4.633 3.864 5.588 1.752 2.913 5.29 9.165 2.687 4.693
SVD 6.099 9.832 3.361 5.345 5.043 8.083 2.651 4.379 7.465 12.733 3.983 6.837

TS 6.195 9.912 3.393 5.452 5.167 8.320 2.678 4.431 7.962 13.887 4.237 7.363
ε-greedy 6.080 9.845 3.352 5.333 5.181 8.482 2.689 4.509 7.591 13.009 4.006 6.87
LinUCB 6.391 10.250 3.419 5.519 4.996 8.381 2.689 4.466 8.113 14.085 4.221 7.376
GLM-Lin 6.369 10.253 3.427 5.472 5.367 8.862 2.815 4.719 7.834 13.569 4.145 7.265
GLM-Sig 6.363 10.236 3.424 5.432 5.156 8.375 2.718 4.494 8.081 14.094 4.199 7.353

Improvement 4.8% 4.3% 2.0%* 3.3%* 6.4% 9.6% 6.2%* 7.7%* 8.7%* 10.7%* 6.4%* 7.9%*

Table 5: A case study of cold-start user #454 on Movielens. User feedback R: L-Like, D-Dislike, U-Unknown.
Movie Genre Abbreviation: Ac-Action, Ad-Adventure, An-Animation, C-Comedy, CC-Children’s Comedy,
D-Drama, R-Romance, S-Scientific Fiction, T-Thriller, W-War.

T R Movies recommended by SVD Genres R Movies recommended by LinUCB Genres

1 L Star Wars (1977) Ac,Ad,R,S,W L Star Wars (1977) Ac,Ad,R,S,W
2 L Raiders of the Lost Ark (1981) Ac,Ad L Raiders of the Lost Ark (1981) Ac,Ad
3 L Fargo (1996) C,D,T U The Godfather (1972) Ac,C,D
4 D The Silence of the Lambs (1991) D,T D The Silence of the Lambs (1991) D,T
5 D Dante’s Peak (1997) Ac,T D Return of the Jedi (1983) Ac,Ad,R,S,W
6 U Kika (1993) D D The Empire Strikes Back (1980) Ac,Ad,D,R,S,W
7 U A Very Brady Sequel (1996) C L Air Force One (1997) Ac,T
8 U Boomerang (1992) C,R U Liar Liar (1997) C
9 U Black Sheep (1996) C U Twelve Monkeys (1995) D,S
10 L The Saint (1997) Ac,R,T L Contact (1997) D,S
11 U Kiss the Girls (1997) C,D,T D Toy Story (1995) An,CC
12 U Batman (1989) Ac,Ad,C,D L Braveheart (1995) Ac,D,W
13 U Matilda (1996) CC L Titanic (1997) Ac,D,R
14 D Rock, The (1996) Ac,Ad,T L Schindler’s List (1993) D,W
15 D The Usual Suspects (1995) C,T L The Shawshank Redemption (1994) D

with their ratings compose the training set. We only con-
duct experiments on MovieLens and EachMovie datasets, as
there is no movie genre information for Netflix dataset.

4.5.2 Adaptability to Taste Drift
In order to test how the system can catch the users’ taste

drift, we conduct the empirical experiment as follows: for
each user, in the first period with 60 interactions, we use set
1 as the ground truth of the test users; and then, from the
61st interaction, the ground truth is changed from set 1 to
set 2 to simulate the process of his/her taste drift. Table 3
presents the results of our proposed algorithms compared to
the baselines on the datasets, respectively. Because we focus
on the performance when the user has changed the interest,
only the results for T ≥ 60 are shown.

From the results, it can be seen that the proposed al-
gorithms outperform the baselines for both datasets. When
compared with the greedy SVD method, the improvement is
up to 7.6% on MovieLens dataset, and 17.5% on EachMovie
dataset. Among the algorithms, the UCB-based algorithms
perform better than Thompson sampling method, which is
similar to the results for the cold-start experiments.

4.6 Top-N Ranking Performance
We also conduct an experiment with multiple item slots

at each interaction. The ranking-aware measure nDCG is
used to test the performance. The test users are the same
as the ones in the cold-start setting. The only difference is
that the number of interactions is reduced since the number
of recommended items in each interaction increases. The
results are shown in Table 4.

A similar trend is shown compared to the case of one item
at each timestep: on MovieLens, either LinUCB or GLM-
Lin performs the best, and on EachMovie, GLM-Lin always
performs best. The results indicate that the algorithms still
outperform the baselines in the multiple item setting. In
addition, the performance on nDCG measure suggests that
our proposed algorithms are also capable of the CF ranking
problems.

4.7 Case Studies
In order to better illustrate why the algorithms outper-

form greedy SVD, we present two case studies for a cold-
start user and a taste-drift user respectively.

4.7.1 A Cold-start User Case
In Table 5, we present the first 15 sequentially recom-

mended movies to a typical user #454 on Movielens by
greedy SVD and LinUCB, and the corresponding feedback.
From the results we can see that (i) LinUCB earns more
‘like’ feedback and less ‘dislike’ and ‘unknown’ feedback; (ii)
After the first three ‘likes’, SVD keeps recommending ac-
tion, crime and thriller movies, which is somewhat myopic;
(iii) For LinUCB, after receiving the positive and negative
feedback on action, war, thriller, and science fiction movies,
it tries different genres such as drama, comedy and anima-
tion. After the next five interactions, LinUCB discovers the
other interest in drama movies.

4.7.2 A Warm-start User with Taste Drift
In Figure 3, we show a typical taste-drift case of user #833

on Movielens. Specifically, 7 typical movie genres (out of 18)
are involved here. The black bars show the user’s taste drift
by calculating the percentage difference of the normalized
distributions on each genre between two time periods as in
Section 4.5.1. The blue and orange bars show the percent-
age difference on each genre of the recommended items by
LinUCB and greedy SVD respectively. We see that LinUCB
captures the user’s taste drift in a better way than greedy
SVD: (i) For these genres, LinUCB captures the drift di-
rection. For example, the user’s interest in Comedy movies
decreases (-4.3%3) between the two periods. LinUCB also
recommends fewer (-3.2%) Action movies but greedy SVD
recommends more (+1.1%) Action movies to the user. (ii)
For most genres, LinUCB to some extent captures the drift
degree, e.g., the user has a 0.8% interest decrease on Ro-

3The percentage measures the difference of the proportion of
Comedy movies the user watches between the two periods.

-6%

-4%

-2%

0

2%

4%

6%

8%

Ac on Comedy Crime Film-Noir Mystery Romance Sci-Fi

User dri

LinUCB dri

SVD dri

Figure 3: A case study on handling taste drift.

mance movies and LinUCB also recommend 1.1% fewer Ro-
mance movies, but greedy SVD dramatically decreases this
type of movies to the extent of 4.4%.

5. CONCLUSION AND FUTURE WORK
In this paper, we have introduced an interactive collabo-

rative filtering framework. Within the framework, a prob-
abilistic matrix factorization model is leveraged to capture
the distributions of user and item feature vectors. And based
on that, the Thompson sampling and several UCB-based
algorithms are adopted to balance between the exploitation
and exploration for the interactive CF problem. The experi-
ments were conducted in three situations: when a cold-start
user joins the system, when a warm-start user has taste
drift, and when multiple items are recommended in each in-
teraction. Throughout the experiments, we demonstrated
that our proposed algorithms outperformed several strong
baselines including the greedy SVD algorithm, the active
learning and the interview approaches.

Our future work involves several possible directions. First,
we will investigate the roles that the user and item feature
vector uncertainties in the case of limited available data.
Second, we are interested in the item cold-start problem:
how to target new items to a set of existing users so that the
long-term feedback collected by the item is maximized. Fi-
nally, we would like to extend our work to interactive search
[4] and consider the diversity of top-N ranking [39, 36], and
compare our work with other interaction-based approaches.

6. REFERENCES
[1] J. Abernethy, K. Amin, M. Draief, and M. Kearns. Large-scale

bandit problems and kwik learning.

[2] H. Ahn. A new similarity measure for collaborative filtering to
alleviate the new user cold-starting problem. Information
Sciences, 2008.

[3] X. Amatriain, J. Pujol, N. Tintarev, and N. Oliver. Rate it
again: increasing recommendation accuracy by user re-rating.
In RecSys, 2009.

[4] P. Anick, A. Gourlay, and J. Thrall. Systems and methods for
interactive search query refinement, Sept. 20 2005. US Patent
6,947,930.

[5] P. Auer. Using confidence bounds for exploitation-exploration
trade-offs. The Journal of Machine Learning Research, 2003.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis
of the multiarmed bandit problem. Machine learning, 2002.

[7] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The
nonstochastic multiarmed bandit problem. SIAM Journal on
Computing, 2002.

[8] O. Chapelle and L. Li. An empirical evaluation of thompson
sampling. In Neural Information Processing Systems (NIPS),
2011.

[9] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Greedy
algorithms. Introduction to algorithms, 2001.

[10] V. Dani, T. Hayes, and S. Kakade. Stochastic linear
optimization under bandit feedback. In COLT, 2008.

[11] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: scalable online collaborative filtering. In

WWW, 2007.

[12] M. Deshpande and G. Karypis. Item-based top-N
recommendation algorithms. ACM Trans. Inf. Syst., 2004.

[13] M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford,
L. Reyzin, and T. Zhang. Efficient optimal learning for
contextual bandits. arXiv preprint arXiv:1106.2369, 2011.

[14] S. Filippi, O. Cappé, A. Garivier, and C. Szepesvári.
Parametric bandits: The generalized linear case. Advances in
Neural Information Processing Systems, 2010.

[15] J. Gittins, K. Glazebrook, and R. Weber. Multi-armed bandit
allocation indices. Wiley, 2011.

[16] N. Golbandi, Y. Koren, and R. Lempel. On bootstrapping
recommender systems. In CIKM, 2010.

[17] N. Golbandi, Y. Koren, and R. Lempel. Adaptive bootstrapping
of recommender systems using decision trees. In WSDM, 2011.

[18] A. Harpale and Y. Yang. Personalized active learning for
collaborative filtering. In SIGIR, 2008.

[19] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative filtering. In
SIGIR, 1999.

[20] T. Hofmann and J. Puzicha. Latent class models for
collaborative filtering. In Proc. of IJCAI, 1999.

[21] R. Jin and L. Si. A bayesian approach toward active learning
for collaborative filtering. In UAI, 2004.

[22] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8):30–37,
2009.

[23] P. Lamere and S. Green. Project aura: recommendation for the
rest of us. Presentation at Sun JavaOne Conference, 2008.

[24] J. Langford and T. Zhang. The epoch-greedy algorithm for
contextual multi-armed bandits. Advances in Neural
Information Processing Systems, 2007.

[25] L. Li, W. Chu, J. Langford, and R. Schapire. A
contextual-bandit approach to personalized news article
recommendation. In WWW, 2010.

[26] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline
evaluation of contextual-bandit-based news article
recommendation algorithms. In WSDM, 2011.

[27] W. Li, X. Wang, R. Zhang, Y. Cui, J. Mao, and R. Jin.
Exploitation and exploration in a performance based
contextual advertising system. In SIGKDD, 2010.

[28] N. Liu and Q. Yang. Eigenrank: a ranking-oriented approach to
collaborative filtering. In SIGIR, 2008.

[29] D. Maltz and K. Ehrlich. Pointing the way: active collaborative
filtering. In CHI, 1995.

[30] A. Rashid, I. Albert, D. Cosley, S. Lam, S. McNee, J. Konstan,
and J. Riedl. Getting to know you: learning new user
preferences in recommender systems. In IUI, 2002.

[31] A. Rashid, G. Karypis, and J. Riedl. Learning preferences of
new users in recommender systems: an information theoretic
approach. ACM SIGKDD Explorations Newsletter, 2008.

[32] N. Rubens, D. Kaplan, and M. Sugiyama. Active learning in
recommender systems. Recommender Systems Handbook,
pages 735–767, 2011.

[33] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. Advances in neural information processing
systems, 20:1257–1264, 2008.

[34] G. Salton and C. Buckley. Improving retrieval performance by
relevance feedback. Readings in information retrieval, 1997.

[35] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock.
Methods and metrics for cold-start recommendations. In Proc.
of SIGIR, 2002.

[36] Y. Shi, X. Zhao, J. Wang, M. Larson, and A. Hanjalic.
Adaptive diversification of recommendation results via latent
factor portfolio. In SIGIR, 2012.

[37] T. Walsh, I. Szita, C. Diuk, and M. Littman. Exploring
compact reinforcement-learning representations with linear
regression. In UAI, 2009.

[38] J. Wang, A. P. de Vries, and M. J. T. Reinders. Unifying
user-based and item-based collaborative filtering approaches by
similarity fusion. In SIGIR, 2006.

[39] J. Wang and J. Zhu. Portfolio theory of information retrieval.
In SIGIR, 2009.

[40] M. Weimer, A. Karatzoglou, Q. Le, A. Smola, et al.
Cofirank-maximum margin matrix factorization for
collaborative ranking. In NIPS, 2007.

[41] K. Zhou, S. Yang, and H. Zha. Functional matrix factorizations
for cold-start recommendation. In SIGIR, 2011.

