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Abstract 

PEEK is a polymer that is used in many orthopaedic implants because of its favourable 

mechanical properties and its biocompatibility. High-reliability electronic implants such 

as pacemakers have ‘hermetic’ enclosures with the electronic components in dry gas. This 

type of package, generally made of metal or ceramic, guarantees a very long lifetime, but 

is also expensive. PEEK can be easily machined or injection-moulded, it is an attractive 

material for implant manufacturers and it may be that by novel design based on 

established material properties, PEEK may be used in some applications.  

This thesis examines the case of PEEK as a packaging material for applications which 

only require a more limited lifetime (less than three years). The process of moisture 

ingress through polymers is analysed, and a novel calculation method to quantify it is 

developed, based on an electrical analogy and Tencer’s approximation of the full solution 

to Fick’s laws of diffusion. A telemetry system is designed, which allows measuring the 

relative humidity inside a PEEK capsule. Diagrams, PCB layouts, microcontroller 

program and component lists are provided, making this design easily reproducible.  

The lifetime of PEEK packages is investigated, as well as the contribution of the 

adhesive seal vs. the package walls. In order to prolong this lifetime, the use of desiccant 

and thin film coating is suggested. The calculation method we developed is extended to 

the case of the use of desiccant. This model is found accurate in predicting the time 

constant when silica gel is used (Type IV isotherm), but not in the case of molecular 

sieve (Type I isotherm), because of the type of isotherm characterising the desiccant 

behaviour.  

Thin film coating of PEEK is also investigated as a means to reduce permeability. It is 

found that most PVD techniques do not provide a significant improvement, due to high 

residual stress and the porous morphology of the films. Nevertheless, applying a coating 

prior to deposition proves effective in mitigating these, and improves the time constant 

of the package by a factor of 2.3. Atomic Layer Deposition also shows an improvement 

in time constant of similar magnitude.  

Finally, guideline graphs and tables combining calculations and experimental results are 

presented, providing a quick way for the implant designer to evaluate which size package 

is required for their application. It is found that time constants in excess of 2.5 years are 

achievable, using the right combination of coating and desiccant. 
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Nomenclature 

Symbol Description Unit 

A surface area cm2 
AC External surface area of cylinder cm2 
ADRES value of the A/D conversion stored in the 

register 
8 bit number 

c water concentration g.cm-3 

C capacitance F 
ca moisture concentration outside the package g.cm-3 

CD capacitance of desiccant cm3 
CP capacitance of a porous material cm3 

CV capacitance of a cavity cm3 

D diffusion coefficient cm2.s-1 
d thickness of the wall cm 
dCM thickness of the solid cm 
E amplitude of the magnetic field fraction of the original 
F rate of transport of the substance g.s-1 

f frequency Hz 
FRC flow rate through coating g.day-1 

h thickness of sample m 
K permeation constant: combination of D and S cm2.s-1 
L inductance of coil H 
Lx ‘true’ or ‘standard’ leak rate of gas x cm3.s-1 
µ electrical permeability H.m-1 

M molecular mass g.mol-1 

m mass g 
m* mass of dry desiccant g 
mlim maximum amount of water allowed in the 

package 
g 

mlimD limit of moisture a desiccant can adsorb g 
mPOLYMER mass of polymer g 
MS water saturation level of polymer g 
Mt water absorption by polymer g 
n amount of substance moles 
P pressure of the gas under consideration Pa 
Px number of atm. of gas x in the package atm 
Q Partial pressure of water inside the package cavity 

at time t 
atm or Pa 

Qini partial pressure of water inside the package cavity 
at time t=0 

atm or Pa 

Qinp quantity of gas entering the package in time t atm 
R measured leak rate: quantity of gas permeating 

through a solid 
atm.cm3.s-1 

R universal gas constant J.mol-1.K-1 
RHa relative humidity outside of the package % 
RHi relative humidity at t=0 % 
RHt relative humidity at time t % 
RP resistance of a porous material to the flow of 

water vapour 
s.cm-3 

S solubility of gas in the polymer dimensionless(cm3/ cm3 
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at 1 atm) 
SD ‘solubility’ of gas in the desiccant dimensionless(cm3/ cm3 

at 1 atm) 
T temperature oC or K 
Td lifetime of desiccant hours or days 
tLC lifetime of coated capsule days 
tLDC lifetime of coated capsule with desiccant days 
V volume of the cavity in the package m3 or cm3 
VC Internal cavity volume of cylinder cm3 
VD volume occupied by the desiccant in the cavity in 

the package 
cm3 

VDD supply voltage V 
Vpolymer volume of polymer cm3 
VSO voltage fed to the microcontroller V 
VWATERvapour volume of water vapour cm3 

z depth of the conductor µm 
δ skin depth µm 
ΔP difference in partial pressure between outside 

and inside the package 
atm or Pa 

ΔPATM partial pressure difference of the gas under 
consideration between inside and outside the 
solid 

atm 

ΔPi initial partial pressure difference between outside 
and inside the package 

atm 

ΔPt partial pressure difference between outside and 
inside the package at time t 

atm 

ρPOLYMER density of polymer g.cm-3 

σ electrical conductivity Ω-1.m-1 
τ time constant of exponential relaxation process s 
τe experimental time constant associated with 

PEEK package 
s 
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Chapter 1 Introductory summary 

High-reliability electronic implants such as pacemakers have ‘hermetic’ enclosures with 

the electronic components in dry gas. This type of package, generally made of titanium 

alloy, or alumina, guarantees a very long lifetime but is stiff, which may not be an 

advantage for implants; also these materials and methods used to seal them can be 

expensive. For applications which only require a more limited lifetime (less than two 

years), it may be possible to use a polymeric material instead. For reference, Table 1-1 

provides example applications depending on their lifetime. 

Lifetime Application/examples 

2 days – a few 
weeks 

Prototyping – animal testing (9 days in (Lexell et al. 1992) 

2 months – 3 
years 

Animal models – clinical trials (Borton et al. 2013; Wang et al. 2012)   
Instrumented orthopaedic implants (e.g.  9 months  in (Faroug et al. 
2011))   
Veterinary/ patient monitoring – neuromuscular stimulators (e.g. 
gastric stimulator for obesity which may only need to be used until the 
patient has learned to adapt the food intake - 
http://www.ulb.ac.be/rech/inventaire/projets/5/PR4375.html) 

3 – 5 years Pacemaker (Forde 2006)  - ICD (Duffin 2006) : for these two 
applications, the whole device must be swapped after 3-5 years because 
of the battery, monitoring devices 

5 – 20 years Neurostimulators  (Dai Jiang et al. 2011) -  
Artificial vision prosthesis (Weiland et al. 2005) 

20+ years Cochlear implants (McDermott 1989) – Neurostimulators (Loeb 2001; 
Nonclercq et al. 2010) : these devices are recharged by induction 

Table 1-1 Electronic implant applications and their lifetimes 

Polyetheretherketone (PEEK) is a polymer that is used in orthopaedic implants because 

of its favourable mechanical properties and its biocompatibility. It can be easily machined 

or injection-moulded, making it an attractive material for implant manufacturers. Novel 

designs made from PEEK based on established material properties may be used in some 

applications and provide a cheaper alternative to established materials, making them 

more widely available. One significant advantage of a polymer over a metal for housing 

electrically isolated instrumentation is that power can be induced, and telemetry can be 

achieved, without eddy current loss. PEEK, like all polymers, absorbs water. This work 

investigates the lifetimes which are achievable using PEEK packages for electronic 

implants, including means to extend this lifetime.  

Chapter 2 provides an introduction to PEEK and its main properties. It lists existing 

joining technologies applicable to this type of thermoplastic polymer, which could also 

be used for the packaging seal. The subject of water permeation through polymers is also 

introduced, and the main calculation methods for water diffusion are reviewed from 

http://www.ulb.ac.be/rech/inventaire/projets/5/PR4375.html
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literature. Although an in vivo environment contains many elements which can interact 

with an implanted material, this study does not focus on biocompatibility (which is 

already proved for PEEK) and is concerned only with water permeation. This is 

explained in more details in Chapter 2. 

In Chapter 3, the main objectives of this work are presented in more detail, and the 

subject of water diffusion is analysed further. The two main calculation methods 

introduced in chapter 2 are compared. An original method which builds upon one of 

them is proposed. The validity of this model is assessed experimentally. It proves to 

provides a good approximation of moisture ingress into polymer packages which are 

made of different materials or have complex geometries (Dahan et al. 2012). 

In order to evaluate the evolution of water permeation experimentally, an inductive 

telemetry system is used to measure wirelessly the humidity inside sealed immersed 

PEEK packages. The methods and experimental set up used are outlined in Chapter 4, 

which provides a detailed description of the humidity sensing circuit design and the 

telemetry system.  

In Chapter 5, a literature review of adhesive bonding theory is included before the first 

experimental results. This chapter deals primarily with the lifetime of unmodified 

adhesively sealed PEEK packages. Different types of adhesives and their effectiveness 

are tested, and the influence of water diffusion through the seal vs. the package body is 

investigated. The effect of wall thickness on the lifetime is also assessed, using the 

calculation method we have presented. 

Ameliorative or preventative measures can be used against moisture ingress. Chapter 6 

starts with a presentation of the theory of desiccants, following which the calculation 

method presented in Chapter 3 is further developed to include the case where desiccant 

is used. Different types of desiccants are compared, and their effect on the lifetime of the 

packages is assessed experimentally (Dahan et al. 2013). This work validates the 

calculation method, which is then used to predict the impact of varying amounts of 

desiccant on the lifetime of different types of packages, and provide a guideline of 

achievable lifetimes. 

Chapter 7 looks into thin film coatings as a way to reduce the rate of moisture ingress. 

Physical Vapour (PVD) and Chemical Vapour (CVD) Deposition techniques are first 

reviewed, before a range of methods and thin film materials are tested experimentally. 

Different types of evaporation and sputtering PVD techniques are used for metallisation, 

while plasma enhanced CVD is used to deposit other types of materials. Other coating 

techniques are also investigated, including Atomic Layer Deposition, which proves to be 

the most effective. The thesis concludes with Chapter 8 which summarises and discusses 

the findings of this study in order to answer our research question. Finally, topics for 

future research are highlighted. 
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Chapter 2 PEEK, hermeticity, and moisture ingress – an 

introduction 

2.1 Introduction 

PEEK is already widely used as a biomaterial, but this study’s goal is to establish whether 

it can be used for implants incorporating electronics and sensors, by getting a useful 

lifetime for this type of package, and exploring ways to prolong this lifetime. 

2.2 PEEK as a material, properties 

It is interesting to first have a look at the properties of PEEK. 

2.2.1 Chemical structure and properties 

PEEK or Polyetheretherketone is a 

polyaromatic semi-crystalline 

thermoplastic polymer of basic formula 

(-C6H4-O-C6H4-O-C6H4-CO-).  

 

 

Typically, crystallinity ranges from 25-35%. Its melting temperature is ~340oC and its 

glass transition temperature is ~145oC. It can be readily melted by extrusion and injection 

moulding with conventional methods. Its chemical structure makes it stable at 

temperatures exceeding 300oC and resistant to chemical and radiation damage (Tavakoli 

et al. 2004; Ha, Kirch, et al. 1997) . After polymerization, PEEK is inert and apart from 

98% sulphuric acid, it is not soluble in conventional solvents at room temperature (Kurtz 

& Devine 2007) . 

2.2.2 Barrier properties 

PEEK membranes exhibit good resistance to the permeation of gases such as oxygen 

and helium (permeability coefficients respectively 1.57x103 and 76 cm3.m-2.day-1) and low 

water vapour permeation (3.9 g.m-2.day-1). PEEK can also be metallised or coated with 

other materials in order to further reduce permeability, as will be investigated during this 

thesis. [Data for permeability coefficients provided by Invibio Ltd. for a film thickness of 

100µm, 37oC, 1 bar pressure and 90% RH] 

2.2.3 Joining technology 

PEEK can be welded with various methods (fusion, laser, ultrasonic) and adhesively 

joined, either to itself or to metallic substrates such as titanium alloy and Co-Cr alloy, 

Figure 2.1 Molecular structure of PEEK 
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which are both implantable. This can be done effectively using adhesives such as 

silicones, epoxies and acrylics (Tavakoli et al. 2004). 

2.2.4 Mechanical properties 

PEEK is compatible with many reinforcing agents, including glass and carbon fibres, and 

then has a specific strength (strength/material density) higher than some metals such as 

steel (Kurtz & Devine 2007). As a composite material, it is available with a wide range of 

mechanical properties which can be tailored to the application. For instance, the tensile 

strength of unfilled polyetheretherketone is ~100 MPa but this can be extended to 2000 

MPa as a composite. Similarly, unfilled PEEK has a Young’s modulus of about 4 GPa 

but can be reinforced to match cortical bone (18 GPa) or titanium alloy (110 GPa) by 

varying the size and orientation of fibres in the composite (Kurtz & Devine 2007) . 

Matching bone modulus can be important in order to minimize stress shielding (Tavakoli 

et al. 2004). In the context of this PhD, this is a very interesting property to design 

implants in a field such as orthopaedics. Another interesting feature in this framework is 

that carbon fibre reinforced (CFR) PEEK composites’ mechanical properties are hardly 

affected by exposure to high temperature saline environments. 

2.2.5 Surface activation and coating of PEEK 

As a biocompatible material, PEEK has been increasingly used as a biomaterial for 

implants since the 1980s, in fields such as orthopaedic, trauma and spinal implants 

(Kurtz & Devine 2007). In order to improve implant fixation with bone, researchers 

have been investigating ways to make PEEK bioactive (i.e. with the capacity to interact 

with a living tissue or system; in this case, to improve the strength of the bone-implant 

interface), employing Hydroxyapatite (HA) to coat the polymer surface or as a composite 

filler and stimulate bone apposition for orthopaedic applications where a load is applied, 

e.g. non cemented hip stems (Ha, Kirch, et al. 1997; Ha, Eckert, et al. 1997). 

Hydroxyapatite is a naturally occurring mineral form of calcium apatite which is part of 

the mineral phase of the extracellular matrix of bones. It can be synthetically produced 

and is considered to be osteoconductive (Ha, Kirch, et al. 1997) (osteoconduction is the 

passive process by which bone grows on a surface).  

PEEK-HA composites have been tested and bioactivity was improved. However, 

problems regarding the mechanical affinity between HA and the PEEK matrix have been 

identified, resulting in reduced strength and toughness of the material (Kurtz & Devine 

2007) .  To avoid this problem and therefore extend the range of applications of PEEK 

for implants, coating with HA by precipitation or thermal plasma can be employed and it 

has been found to influence positively its bone-bonding properties (Kurtz & Devine 

2007; Ha, Kirch, et al. 1997).  

http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Apatite
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It is also possible to dual coat PEEK with titanium and HA. Titanium, as a well-proven 

biocompatible implant surface, is still present after HA has been absorbed in vivo, 

avoiding potential mild tissue reactions occurring around PEEK implants (Kurtz & 

Devine 2007; Ha, Eckert, et al. 1997). Vacuum Plasma Spray (VPS) is a suitable, highly 

reproducible and economically efficient process to realise this, granting good interlocking 

between all layers (Ha, Gisep, et al. 1997). 

2.2.6 Benefits of PEEK 

PEEK has many advantages which make it attractive as an implant material. As we have 

just seen, it has very good mechanical properties. Unfilled, it is one of the strongest 

polymers available, has a better strength to weight ratio than its metallic counterparts, as 

well as resistance to fatigue (Ramakrishna 2001). Its mechanical properties can also be 

tailored to the application by reinforcing it with carbon fibres. Furthermore, PEEK is 

inert, biocompatible, radiation/chemical resistant, and has a low heat conductivity. It can 

be injection moulded, 3D printed, and machined. Finally, as a polymer, it has high 

resistivity, low permeability, and does not attenuate RF electromagnetic fields, which 

makes it useful for implant applications which require telemetry or power induction. 

2.3 Encapsulation and hermetic packages  

Looking at electronic implants, it is important that electronic components are protected 

from humidity and from liquid water coming from the surrounding body fluids. This 

permeation can occur through the material itself, through the seals, and feedthroughs 

depending on the nature of the enclosure.  

2.3.1 Encapsulation 

To protect the electronic function of the implants, electronics can be either encapsulated, 

or placed in a hermetic package. The functions of these are quite different, as explained 

in (Donaldson 1992) : 

 “The encapsulant is not intended to be a barrier to moisture but, by adhering to the device 

surfaces and filling the spaces between conductors, it prevents water from condensing, which would permit 

ionic conduction and thus, perhaps after some time, failure (by leakage currents, gas evolution, corrosion, 

etc).” 

Encapsulation in waxes, epoxy resins or silicone rubbers can provide protection lasting 

more than ten years (Donaldson & Sayer 1981a; Donaldson 1988; Sinnadurai 1996). 

However, any failure of adhesion between the encapsulant and the components can 

create a void where water vapour can condense, with the consequences mentioned in the 

quoted paragraph above (Donaldson & Sayer 1981a). Rules are given in order to avoid 

such failure by optimizing component shape as well as the choice of encapsulant, 

insulator, and conductor (Donaldson & Sayer 1981a; Donaldson & Sayer 1981b). Plastic 
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encapsulation using junction coatings can also provide very high protection of semi 

conductor devices (Sinnadurai 1996). 

2.3.2 Hermetic packages 

Although it is possible to protect integrated circuits by means of encapsulation, the 

efficiency of encapsulation is very often unknown because of the variety of ICs available 

as well as the constant evolution of IC technology. Moreover, manufacturers do not test 

their ICs at 100% RH and under bias. It is therefore prudent to use hermetic packages 

which act as moisture barriers. Nevertheless, encapsulants must still be used to insulate 

the junction of the cables to the leadouts (Donaldson 1992). The best way to achieve 

long term protection is with hermetic packages made of glass, ceramic or metal 

(Schneider 1988), although these are expensive and complicated solutions. This thesis 

will investigate the hermeticity of PEEK packages in order to assess their longevity, as 

this would provide a cheaper and easily manufactured type of hermetic enclosure for 

implants. 

This type of package however is never 100% impermeable. Gases inside and outside can 

travel using cracks, capillaries, faults in the seal or through the material itself if it is 

permeable, as is the case for polymers such as PEEK. However, the package will be 

considered sufficiently ‘hermetic’ if it prevents these gases (especially water 

vapour) reaching a potentially harmful level within its expected lifetime. 

2.3.3 The importance of sealing 

In order to be effective, hermetic packages must be appropriately sealed. Poor seals can 

lead to damage of the electronics by condensation of water vapour, leading to corrosion, 

electromigration, or high current leakage (Traeger 2002). It has been shown that 

polymeric lid sealants, although processed at low temperature, inexpensive, and easy to 

rework, do not provide sufficient protection against water vapour permeation (Traeger 

2002). Seals made of metals are therefore preferred and processed by welding or 

soldering in order to limit the electronics’ exposure to high temperatures (Donaldson 

1992). However, it is also possible to realise effective composite seals for ceramic 

packages (Donaldson 1988). Irrespective of the process, it is important to prevent 

moisture from penetrating the cavity during sealing. This can happen from the substrate, 

the inert gas filling, the polymer materials or the sealant itself (Schneider 1988). 

 “As the temperature drops below the dew point the enclosed vapour condenses creating a thin 

water film on one of the inner surfaces of the package. With the different contaminations from die 

surfaces, polymers, flux residuals, and so on, the initially harmless water vapour becomes an electrolyte 

which can give start to various chemical and electrochemical reactions.” (Schneider 1988) 



24  

 

2.4 Joining technologies for thermoplastic polymers and the case of 

PEEK and implanted electronic devices 

In order to study the application of PEEK to implanted electronic devices, we must 

identify a way to join PEEK to itself or other polymeric materials, as this will be required 

either to seal a PEEK package containing electronic components, or to join parts while 

forming a structurally strong bond. There are many methods available for joining 

thermoplastic polymers. The ideal technology for sealing a PEEK package would be 

simple, cheap and ensure that the electronics are protected from excessive heat and 

vibrations at all times without affecting the hermeticity. The joining methods for 

thermoplastics which will be discussed here can be divided into 3 main categories: 

mechanical fastening, fusion bonding, and adhesive bonding (Amanat, James, et al. 

2010). Mechanical fastening uses means such as clipping, clamping, riveting or screwing 

in order to join two parts. However, this cannot be used for hermetic implanted 

packages, as hermeticity can by no means be guaranteed by any of these methods. We 

will then review the other two techniques. 

2.4.1 Fusion bonding 

In fusion bonding, the principle is to generate heat at the joint interface to bring the 

material to melt locally and ensure that parts form a strong bond, which can approach 

the bulk properties of the adherents (Stokes 1989; Grimm 1995). The different joining 

techniques can then be classified according to the method used for heat generation, as 

shown on Figure 2.2 below.  

 

Figure 2.2 Classification of fusion bonding techniques for thermoplastics 
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2.4.1.1 Thermal bonding 

Thermal bonding consists in heating the 

surfaces to be joined and applying pressure 

until the joint cools and consolidation occurs. 

Various techniques can be used to bring heat. 

Autoclaving or compression moulding can be 

used for co-consolidation, where the entire 

part is brought to melt temperature (340°C in 

the case of PEEK). This, however, requires 

expensive processes and complex tooling to 

ensure that pressure is maintained on the entire part to prevent de-consolidation 

(Ageorges et al. 2001). 

In self bonding the whole part is also heated up, but without reaching the melting point. 

Pressure is applied to promote chain interdiffusion. Above the glass transition 

temperature (143°C), a ‘healing’ process takes place at the interface through 5 steps (Kim 

& Wool 1983), and its mechanical strength develops: surface rearrangement, surface 

approach, wetting, diffusion and randomisation. 

However, the presence of potentially heat sensitive internal components in the case of 

this study forbids the use of both previously described techniques, where the amount of 

heat to provide would damage the electronics. We then look at techniques where the 

application of heat is more localised. 

Hot plate welding for instance is a 2 stage process in 

which both surfaces are put in contact with a hot surface 

which brings them to melting temperature, before being 

pressed together and allowed to cool down. Besides the 

relatively long weld times, the two main disadvantages 

of this technique are the severe deformation occurring 

with higher temperatures, as well as the melt residue 

adhering to the hot plate surface (Amanat, James, et al. 

2010), particularly for high melting temperature 

polymers such as PEEK. 

Infrared welding is very similar to the previous 

process, with the added advantage that the infrared 

source of heat is not in contact with the surfaces to 

bond. However, in most cases this technique will require 

pigmentation of the substrates, and there is a risk of 

cooling down between the two phases of the process 

Figure 2.3 Healing of a polymer-polymer interface 

Figure 2.4 Hot plate welding 

Figure 2.5 Infrared welding 
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which could decrease the bond strength. 

Hot gas and Extrusion welding are manual methods which both use a stream of hot 

gas to heat the surfaces to be joined. The difference lies in the fact that the former 

technique uses a thermoplastic filler rod between the two adjoining surfaces, whereas 

molten polymer is extruded into the joint with the latter. 

 

Figure 2.6 Transmission Laser Welding (TLW) 

In the context of implanted electronic devices, none of these methods can be used as the 

excessive heat produced would damage the electronics. There is however one thermal 

bonding technique which could be used, as the heat affected zone (HAZ) is extremely 

localized, guaranteeing the protection of the electronic components: laser welding. 

In Transmission Laser Welding (TLW), a near infrared laser beam goes through a 

laser transparent top part and onto a laser absorbing bottom layer. This could be either a 

carbon black pigmented part or a non absorbing part with a coating which absorbs laser 

energy in the laser wavelength range, e.g. Clearweld (Amanat, Chaminade, et al. 2010). 

When absorption occurs on the bottom part, it causes melting of the polymer at the 

bond interface. Upon cooling, the interface solidifies and creates a fused seal. 

This technique offers the advantage of a highly localised HAZ (more so than any other 

technique). However, its main limitation (besides the high cost) is the thickness of 

polymer which can be bonded. In the case of PEEK, the crystallinity scatters the laser 

light, and as a result of this loss of energy this technique is not suitable for parts thicker 

than 1.0 mm. Ideally, the parts to be bonded should not exceed 0.5 mm thickness. 

Direct Laser Welding provides a way to bond slightly thicker parts of up to 3 mm by 

introducing a clever design for the joint (cf. Figure 2.7 below) where the laser beam 

irradiates the joint directly, and the joint is designed to collapse during welding (Warwick 

& Green 2008). Nevertheless, even though the parts to be bonded can have thicker walls, 

the actual layer of PEEK which is melted is still limited to 1 mm, and therefore this 

method is not necessarily a great improvement in terms of hermeticity. 
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Figure 2.7 Direct Laser welding, joint design 

To summarise, most thermal bonding techniques are not suitable for PEEK in the 

context of implanted electronic devices, as the heat produced would damage the 

electronics contained within the enclosure. Laser welding could be a suitable alternative 

in this respect, but the limitations linked to the thickness of parts to be bonded would be 

a problem in terms of hermeticity of a package. However, if there was a way to make the 

external or internal surface of the package less permeable, with the use of a suitable 

coating for instance, then laser welding could prove appropriate for this type of 

applications. 

2.4.1.2 Friction welding 

In friction welding, heat is generated by rubbing the two 

surfaces to be bonded together under an applied pressure 

(see Figure 2.8). As with other thermal bonding techniques, 

the joint then consolidates and fuses upon cooling down, 

while the parts are still held under pressure. 

 When components have symmetrical and circular cross 

sections for instance, spin welding can be used (see Figure 

2.9). The parts to be bonded are pressed together and 

rubbed while in rotation relative to each other, with one 

fixed part and one spinning. The friction heat melts the polymer at the interface, and the 

molten film solidifies under pressure when the motion stops, creating a weld. 

For large parts with flat mating surfaces, a very similar technique is used: vibration 

welding. The principle is exactly the same as for spin welding, except that instead of 

spinning one of the parts, it is vibrated parallel to the weld line at a certain frequency and 

amplitude. 

Stir welding consists in using the head pin of a metallic rotating tool to stir and mix the 

polymer at the joint interface (Amanat, James, et al. 2010). This method results in an exit 

hole when the tool is removed, which would induce stress concentrations and 

hermeticity loss, even when filled. 

Figure 2.9 Spin welding Figure 2.8 Friction 
welding 
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Finally, ultrasonic welding allows the 

melting of the interface by transmitting 

ultrasonic vibrations through the material. 

By a combination of surface and 

intermolecular friction (Stokes 1989), 

melting occurs at ‘energy directors’, which 

are irregularities at the interface. It is 

necessary to design the part to incorporate 

these energy directors, as not enough 

friction would occur with flat parallel 

surfaces. 

The main drawback associated with friction welding techniques is the amount of 

vibrations generated, which may be incompatible with the presence of electronics in the 

package/implant. 

2.4.1.3 Electromagnetic welding 

Induction welding consists in producing a field by a coil in order to induce heating in a 

conductive material implanted in the plastic at the seal interface. An obvious limitation to 

this technique is its use when electronic components are included, especially if telemetry 

with a coil is already in use. 

Similarly, in microwave welding, a layer of electromagnetic absorbent material is placed 

at the interface and is heated using microwave power. The surrounding polymer then 

melts and a seal can be formed. This technique has the same limitations as induction 

welding and cannot be used for implanted electronic devices. 

Radiofrequency welding is used for polymers with polar groups in their structure, and 

melts the polymer at the interface with an intense electromagnetic field, applied by 

pressing electrodes on the sides of the parts to be joined. However, it only works with 

thin films and sheets and is not compatible with high melting temperature polymers such 

as PEEK, which does not have polar groups anyway. 

The only type of electromagnetic welding 

which could potentially be used with 

PEEK in this study is resistance 

welding, where an electrically resistant 

material is trapped between the two parts 

to be joined and heated by the passage of 

an electrical current. This causes the 

surrounding polymer to melt and weld 

upon subsequent cooling. The use of this technique for PEEK packages containing 

Figure 2.10 Ultrasoinc welding 

Figure 2.11 Resistance welding 
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electronics depends on the proximity of these components with the heated wire, as well 

as how localised the application of heat is. Other limiting factors include a potential 

increase in permeability due to the presence of this wire, or a weak structure at the joint. 

Moreover, this technique is mostly applied for composites, where a layer of conductive 

mesh is trapped at the interface, in order to provide uniform temperature. There is no 

guarantee that this would work with a single wire on a smaller surface, e.g. seal of PEEK 

capsule. 

2.4.2 Adhesive bonding 

Adhesive bonding can potentially join any two materials. It can be achieved either with a 

two component system which are mixed before use or with a single component bonding 

agent. The main drawbacks associated with this technique are the high permeability and 

the structural weakness of some adhesives. However, it is a cheap and simple technique 

which could be suitable to seal PEEK packages containing electronics if the required 

lifetime is limited. This lifetime is currently unknown and should be investigated in order 

to assess whether adhesive bonding is an appropriate process. 

2.5 Flow of gas in and out of sealed packages 

Having reviewed the properties of PEEK, as well as ways to seal a package made with 

this material, we now look at how moisture can permeate implant packages. 

2.5.1 Viscous, molecular and diffusive flow 

The flow of gases can be of three kinds, depending on the mean free path (mfp) of the 

gas under consideration (i.e. the average distance travelled by a molecule before it collides 

with another one). The flow will be viscous (or Poiseuille flow) if the collisions between 

molecules dominate (as opposed to collisions with the walls of the enclosure) and there is 

a difference in total pressure across the interface. This occurs for pressures larger than 

10-3 atm. When the pressure is less than 10-5 atm., collisions with the walls dominate, and 

the flow is described as molecular (or Knudsen flow). In between, when both types of 

collisions are common, the flow is said to be diffusive (or transitional) (Greenhouse 

2000; Davy 1975) . 

2.5.2 Origin 

Water inside a package can have three origins, besides the potential presence of water in 

the sealing chamber when the package was sealed. 

a) It can leak into the package from the outside environment through various faults 

in the material or sealing. 

b) Outgassing can take place from the package walls or from components or 

materials inside it, the extent of which depends on the kind of material, their 



30  

 

preparation as well as the preseal treatment. ‘Most of the outgassing occurs during burn-

in or high temperature operation’ (Greenhouse 2000) . 

c) There is a possibility for the gaseous hydrogen and oxygen inside the enclosure 

to combine directly into water. However, this reaction has a very slow rate so 

that no significant amount of water could be produced in years, although ‘a 

suitable catalyst could cause the reaction to take place’ (Greenhouse 2000)  . 

2.5.3 Consequences 

Water inside a package can lead to dendritic growth between interconnects of opposite 

polarities (Meyer 2007), ionic conduction, leakage currents, short circuits and various 

chemical and electrochemical reactions (Kornilov & Barinova 1996; Donaldson 1992)  

such as corrosion, often enhanced by electrical current in the circuit (Sedlak & 

Donaldson 1993).  Provided that the pH is not between 4.5 and 7.5, positive and 

negative ion corrosion (respectively acidic and basic) can occur (Greenhouse 2000). Two 

examples of corrosive chemical reactions are:   

3Al + 3Cl- +6H20 = AlCl3 + 2Al(OH)3 + 3H2 +3e- 

3Al + Na+ +7H20 = Al(OH)3 + NaOH + 3H2 +3e- 

Eventually, these various reactions will lead to failure of the electronic components. 

Failure will occur according to how fast these reactions occur and, although the presence 

of water is necessary for them to happen in the first place, trying to correlate moisture 

with failure rates can be inconclusive if the contaminant levels are not controlled as well 

(Greenhouse 2000) . 

2.5.4 Failure criteria 

There is no consensus on what the failure criterion should be (Vanhoestenberghe & 

Donaldson 2011). For instance, one criterion would be to use 99% RH. Condensation 

theoretically occurs at 100% RH, so any level below this should be acceptable. However 

it has been demonstrated in the literature that condensation could be promoted below 

that level due to impurities around which nucleation can occur. The presence of salts for 

instance can promote condensation at an earlier stage (Tencer 1994). At the opposite 

extreme, using that principle, some very conservative approaches are taken for long term 

hermetic packages, using criteria such as 10% RH, 5000 ppm, or 3 monolayers of water. 

The latter is the amount of liquid water theoretically necessary to promote corrosion. 

Nevertheless, this limit represents only the amount of liquid water condensed, and does 

not account for saturation of the air before condensation. Similarly, the 5000 ppm limit 

corresponds to the dew point of water vapour just below the freezing mark (-2oC). At 

that temperature, ice would form before any water could condense. It is also equivalent 

to 3 monolayers of water. 
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These limits have been defined for long term devices which are meant to last many 

decades in a wide range of environments and temperatures (often for military 

applications). For implant applications however, temperature is more or less constant 

around 37oC. Therefore a dew point (or condensation) temperature of -2oC would never 

occur, and such conservative limits do not apply. Using the same reasoning as the 5000 

ppm criterion, temperature is not expected to drop below 35oC for an implant, and using 

this as a dew point temperature corresponds to a limit well in excess of 50,000 ppm, 

more than ten times the value of the ‘military’ criterion. 

It must also be noted that this study attempts to understand and predict the ingress of 

water vapour through PEEK, and therefore focuses on water vapour only. It has been 

proved that a saline environment only has a very limited effect on the mechanical 

properties of PEEK (Kurtz & Devine 2007). Exposure to saline is not expected to 

modify the solubility or diffusion coefficients of the adhesive either (Chin et al. 1999). 

Moreover, the saturated vapour pressure of water vapour in equilibrium with salt water is 

slightly less than above water; therefore the gradient of pressure which is driving 

moisture ingress is also less. Silicone rubber has been proved to act as a semi permeable 

membrane which lets water vapour through, but through which most metal compounds 

do not diffuse at a significant rate (Donaldson et al. 2012). As a porous polymer, PEEK 

is expected to exhibit the same type of behaviour, although we have not measured the 

rate at which other molecules will go through. (Dahan et al. 2013) 

2.5.5 Helium leak tests 

For a ‘traditional’ package, made of metal or ceramic, the material of the package itself is 

often considered to be completely impermeable to water. However, practically, defects in 

the form of very fine leak channels can exist, whether in the material or the seal, meaning 

that gases can travel between the inside and outside. As mentioned previously, the 

package will be considered hermetic if it prevents gases (especially water vapour) from 

reaching a potentially harmful level within its expected lifetime. The most common 

method for studying fine leaks consists in detecting helium leaks using a mass 

spectrometer. To that end, the package is filled with helium using one of these two 

methods: 

 Bombing:  the package under test is placed in a high pressure helium chamber 

for a set time, hence forcing helium into it, before being transferred rapidly to the 

mass spectrometer chamber for detection. 

 Backfilling: the package is sealed in a helium chamber at known pressure and 

tested quickly afterwards. 

2.5.6 Formulas for the flow of gases and leak rates 

Through a leak channel, the measured leak rate is 
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         (2.5)  

where M is the molecular mass of the gas considered, T is the temperature and F is the 

conductance of the leak channel. This formula is valid for molecular flow. For viscous or 

combined flow, other equations are available (Greenhouse 2000)  (Davy 1975).  

 A difference must be acknowledged between the measured leak rate R and the ‘standard’ 

or ‘true’ leak rate L produced by a reference pressure of 1 atm, which is used in equations 

to determine the quantity of gas leaking in or out of a package.  

  
    

  
  

 (2.6)  

where Px is the number of atm. of gas x in the package. 

Leak rates are different for different gases through the same leak channel because of the 

gases’ different density and molecular size. However a simple relationship exists to derive 

the true leak rate of a gas if the true leak rate of another gas is known. This is easily 

found by combining Equations (2.5) and (2.6): 

  

      
                       

                       
 (2.7)  

The quantity of gas entering the package in time t is 

  
             

 
  
    (2.8)  

where     is the initial partial pressure difference, L is the true leak rate and V the 

internal volume of the package. 

We can then easily derive the time it would take for a given amount to leak in or the leak 

rate. 

  
   

 

 
       

    
   

  (2.9)  

  
   

 

 
      

    

   
  (2.10)  

And the total quantity of gas in a package is the quantity that has leaked in, plus the 

amount that was there initially, minus that which has leaked out. These equations apply 

to all gases independently. 
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2.5.7 The case of permeation through a solid 

It is usual manufacturing practice to determine the permeation rate by means of helium 

detection using equation (2.7) (Meyer 2007) (Kornilov & Barinova 1996). Bubble and 

fine leak tests (after bombing or backfilling) are used and these two detection methods 

together can detect almost the whole range of leak rate (Tencer 1994) (Lin et al. 2007). In 

this case, LH20 = 0.471 LHe.   

However, in the case of permeable solids such as PEEK, moisture ingress does not only 

occur through leak channels, but also through the solid itself, as well as the seal in the 

case of adhesive bonding. The diffusion rate of a gas through this solid depends on many 

factors such as the porosity of the material and the gas molecule size and affinity with the 

material (Greenhouse 2000).  

It is therefore not beneficial to predict the moisture ingress rate into a package made of a 

permeable material from a Helium leak detection test using Equation (2.7), although a 

correspondence could be found a posteriori, by treating permeation as a leak rate. This 

however would require finding the permeation rate through other means. In our case, 

humidity will be measured directly using humidity sensors, as detailed further in the next 

chapters. 

2.6 Expected lifetime of a polymer package 

If the enclosure material, such as PEEK, is permeable to the gas under scrutiny (i.e. 

water vapour), the passage through it is possible, via a two phase process (Greenhouse 

2000) . 

a) Adsorption of the gas on the surface of the solid.  

b) Diffusion of the gas through the solid, due to leak channels in the solid, an 

internal porous structure, and the chemical affinity of the gas for the solid.  

It is essential to review how to evaluate the lifetime of a polymer enclosure before trying 

to obtain it experimentally. 

2.6.1 Full transient model – Analogy with heat conduction problem 

The process of moisture diffusion through polymers follows Fick’s diffusion laws (Crank 

1975). The first law relates the diffusive flux and the gradient of concentration. It states 

that moisture goes from the region of high concentration to the region of low 

concentration. The rate of transport is then 

 
     

  

  
 (2.11)  

where F is the amount of water c transported through a unit cross section (per unit of 

time). c can be expressed as a density of water vapour, or as an absolute pressure. D is 



34  

 

the diffusion constant for a given temperature T. Fick’s second law describes the 

concentration of the gas in the polymer at a particular position and time. 

   

  
  

   

   
 (2.12)  

The case of diffusion into a container with a finite volume is analogous to the heat 

conduction problem of a slab in contact with a perfect conductor or a well stirred fluid, 

for which a solution was given by Carslaw and Jaeger (Carslaw & Jaeger 1959) and 

adapted to the diffusion problem (Paul & DiBenedetto 1965) to give an expression of c. 

If the temperature T is constant, c is also directly equivalent to the relative humidity, 

which is the ratio of the absolute pressure of water vapour c over the saturation vapour 

pressure (as it is constant for a given T). The solution is given by (2.13). 

 
                     

    
          

     
       

 
 
   

   

  

 

  (2.13)  

where η=dAS/V and the βk are the roots of the following equation 

         (2.14)  

and RHi = relative humidity in % at t=0      

 RHt = relative humidity in % at time t      

 RHa = relative humidity in % outside of the package    

 D = diffusion constant in cm2.s-1      

 V = volume of the cavity in the package in cm3    

 d = thickness of the wall in cm      

 A = surface area in cm2       

 S = solubility coefficient (dimensionless) 

There is no general analytical solution for the equation above. We must therefore solve 

this equation numerically for our specific case in order to get values to feed into 

Equation (2.13). It is not necessary to go beyond the tenth term of the sum, as the terms 

in the exponential become vanishingly small, and therefore so does the contribution of 

the subsequent terms of the sum. 

2.6.2 Tencer’s approximation 

Tencer developed a simpler model (Tencer 1994)  to calculate the moisture ingress in the 

cavity. The solution he finds is a typical exponential relaxation process: 

 
                     

 
 
   (2.15)  
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with the time constant defined as  

 
  

  

  
 
  

  
 
         

    
 (2.16)  

where K=S.D is the permeation constant for the package in cm2.s-1. The two terms in the 

time constant represent the two physical phenomena taken into consideration in the 

process: 

The first term corresponds to the diffusion through a non absorbing membrane, which 

in the full transient model corresponds to the case of a very large volume V. We then 

have η=0 and βk=kπ and it can be proven that the situation reduces to the flow through 

a membrane (Paul & DiBenedetto 1965) and that the process will be described by 

Equation (2.15) with the time constant reduced to 

 
  

  

  
 (2.17)  

The second term of Tencer’s time constant is related to the diffusion of water inside the 

body of the polymer, which corresponds to the other extreme, i.e. when V→0. In this 

case, η= ∞ and βk=(k+1/2)π, the problem reduces to the case of diffusion into a slab 

(Tencer 1994), and Equation (2.13) reduces to the following (for convenience of 

calculation we assume there is no water in the package at t=0): 

 
          

 

 
 

     

    
 
 
            

   

 

   

  (2.18)  

A ’time constant’ can then be defined (even though this is a sum of exponentials) as the 

time after which water at the interface achieves 1-1/e of the ambient value, which means 

that 

    
   

    
 

 
 

     

    
 
 
            

   

 

   

        (2.19)  

Solving this equation gives Dt/d2=0.505 (Tencer 1994). Therefore the time constant can 

be estimated as: 

 
  

  

  
 (2.20)  

The time to reach any humidity level can therefore be calculated by solving Equation 

(2.15) for time: 
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 (2.21)  

2.7 Difference between the solubility (S), diffusion (D) and permeation 

(K) constants 

Polymers can absorb significant amounts of water. PEEK for instance has a water 

absorption at saturation corresponding to 0.5% of its mass (fractional mass gain). S is 

called the solubility and corresponds to the amount of water per unit of volume which 

can be absorbed and stored into the porous wall. S is dimensionless, but often expressed 

in cm3/cm3 at a pressure of 1 atm (it is then equivalent to a Henry’s law constant (Yasuda 

1975) – see Equation (2.23)). The solubility for metals is zero, and ranges from 0.001 for 

the least absorbent glasses and ceramics, to 400 for the most absorbing polymers 

(Greenhouse 2000). It can be calculated using the water absorption (fractional mass gain) 

of the material. 

 

  
      
        

 
          

          
         

        
           

     
      

 (2.22)  

where the molar volume is 22.4 l.mol-1 at 00C and converted for T using the ideal gas 

equation (Yasuda 1975; Burnett et al. 1996). 

The permeation constant K is different from the diffusion constant D; as well as the 

diffusion of water through the solid, it takes into consideration the adsorption of water 

on the surface of the material and subsequent storage in the bulk material. 

       (2.23)  

2.8 Conclusion 

In this chapter, we have reviewed the main characteristics and properties of PEEK, the 

difference between encapsulation and hermetic packages, joining technologies for 

thermoplastic polymers which can be used to seal a package, as well as the theory behind 

water permeation through leak channels and polymer walls. After covering this 

background, the next chapter will focus on comparing existing calculation methods for 

water permeation through polymers and developing our own.  
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Chapter 3 Moisture ingress in an adhesively joined polymer 

packages - theoretical considerations and a novel calculation 

method 

3.1 Objectives and failure mechanisms 

The aim of this project is to develop the science of Smart Implanted Devices using the 

Polyetheretherketone (PEEK) polymer, which has attractive properties for many types of 

implants, with potential applications in orthopaedics, neuroprosthetics, veterinary and 

patient monitoring. The useful lifetime for an implantable package made of PEEK which 

contains electronic components must first be defined. We will then define the objectives, 

as well as the various modes of failure, in order to clearly identify the parameters which 

influence the lifetime. 

3.1.1 Useful lifetime and objectives 

The first task is to define what a useful lifetime is. In the context of this project, it can be 

defined as the time that the implant can sustain the function exerted by the electronics 

before the risk of failure appears. This function may be the primary purpose of the 

implant, but not necessarily. For example, it would be the main function for a nerve 

stimulation device, but not for a tibial nail with a force sensor. For the latter, the primary 

purpose of the implant is to replace the bone, whereas the function of the electronics is 

to monitor the strains in bone. The implant will still fulfil its main purpose of replacing 

the bone/promoting healing, etc. even if the electronics fails. Therefore, for that type of 

applications the useful lifetime corresponds to the definition given previously. 

For the tibial nail for instance, a useful lifetime for the electronics could be of about 9 

months. For some clinical applications however, the implant function can be needed for 

as little as one or two weeks (e.g. animal experiment). In this case a cheaper form of 

packaging would be highly beneficial.  There is therefore a wide range of lifetimes for 

which a PEEK package can potentially be used. On the other hand, the more we can 

extend this lifetime, the more types of application we can reach.  

The objectives of this project can then be summarised as follows: 

 Design of a package of similar size as traditional implants 

 Monitor humidity level inside the package 

 Establish lifetime 

 Identify the parameters which affect the lifetime and their influence 

 How can the lifetime be maximised in order to broaden the range of potential 

applications?  
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3.1.2 Failure mechanisms and criterion 

As we have seen previously, the criterion for failure corresponds to the risk of 

malfunction of the electronics due to the presence of water, and different standards are 

used throughout the literature (see 2.5.4 Failure criteria). Working with a polymer 

package for relatively short lifetimes, a reasonable level to work with is 60-65 %RH. This 

does not mean that failure will occur at these levels, but keeping the water vapour below 

this will not jeopardise the safety of the electronics sealed inside the package. For 

simplicity purposes, we can then assimilate lifetime and time constant, as the latter 

corresponds to the time to reach 63.2% RH (exponential decay 1-e-t/τ
, with τ the time 

constant; when t = τ, the relative humidity is 1-e-1=0.632 of its initial value).  

The sequence of events during failure is as follows: diffusion of water vapour, 

condensation, corrosion. After that, corrosion products may start diffusing out. By fixing 

a limit situated before the condensation stage, the lifetime considered here also takes into 

account this risk of diffusion of toxic elements. Furthermore, it is expected that even 

after corrosion, ‘likely corrosion products permeate through [..] at a low rate and seem unlikely to 

cause toxic effects’ (Donaldson et al. 2012).’ 

Although this limit is just as ‘arbitrary’ as the others, it offers the advantage of being 

flexible. By defining the time constant every time, one does not have to agree to the RH 

limit we define, but can use it to calculate water diffusion at whichever level they feel 

comfortable. For this reason, all the data will also be presented in graphs showing the 

evolution of the relative humidity with time.  

Figure 3.1 shows the schematic of a generic hermetic enclosure for an active implantable 

device (Amanat, James, et al. 2010) as well as the three ways moisture can penetrate 

inside the package and compromise the electronics. 

 

Figure 3.1 Moisture ingress into enclosure 

Moisture ingress can occur through: 

A. The seal, especially if we want to assess the viability of adhesive bonding 

B. The body of the capsule 
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C. The feedthrough when it exists. In order to eliminate this possibility, power and 

data can sometimes be transmitted by means of telemetry.  

If telemetry is used, we are therefore left with moisture penetrating through the seal and 

the body of the capsules, and we can focus on these two parameters.  

3.1.3 Description of the package 

A package has been designed in which the relative humidity will be monitored in order to 

get a useful lifetime for this type of enclosure. Before the experiment, we can try to 

evaluate what this lifetime would be by means of calculation. 

 

 

The PEEK package is a cylindrical capsule of outer diameter Øout=22.0 mm and height 

hout=8.3 mm. The inside diameter is Øin=18.0 mm and the height inside is hin=6.3 mm. 

The wall thickness is 1 mm on the top and the bottom of the capsule. This area 

represents 5.09 cm2. The thickness is 2 mm on the side of the cylinder. This area is 3.56 

cm2. The total surface area is SA=8.65 cm2 and the internal volume is Vin=1.603 cm3. 

3.2 Is the Tencer approximation a good representation of the full 

transient model? 

The previous chapter has presented two methods to evaluate water diffusion. We can 

now look at both models to assess whether they are in good agreement with each other. 

The full transient model is presumably more accurate, but is difficult to evaluate, whereas 

the Tencer approximation is supposedly less accurate but allows easy calculation of the 

lifetime. The question is therefore: how good is the approximation? 

Figure 3.2 Description of the PEEK capsule 
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3.2.1 Transient model 

First of all, it is important to note that there is no general analytical solution for Equation 

(2.13), representing the transient model (Paul & DiBenedetto 1965). We must therefore 

solve this equation numerically for our specific case in order to get values to feed into 

Equation (2.13). It is not necessary to go beyond the tenth term of the sum, as the terms 

in the exponential becomes vanishingly small, and therefore so does the contribution of 

the subsequent terms of the sum.  

For our comparison, if we take the case of the PEEK capsule, we consider the case of 

permeation through the top and bottom side of the capsule only. These sides have the 

same thickness of 0.1 cm, as opposed to the lateral sides which are twice as thick. Much 

less permeation would occur through these anyway, as all diffusion equations are 

functions of the square value of the thickness. The result is plotted on Figure 3.3. 

 

Figure 3.3 Water permeation through a 1mm thick wall – transient model 

We can observe three phases on this plot. In the first hours, the humidity level in the 

cavity does not rise, as moisture has to penetrate the thickness of polymer. There is then 

a quasi linear diffusion, which gradually slows down as the partial pressure difference 

diminishes. The expected time to reach 60% RH is around 250 hours, which is equivalent 

to 10.4 days. 

3.2.2 Tencer’s approximation 

Tencer’s approximation, on the other hand considers a single exponential relaxation 

process (see Equation (2.15)) with the following time constant (see Equation (2.16)):  
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Where the two terms in the time constant represent the two physical phenomenon taken 

into consideration in the process: 

The first term corresponds to the diffusion through a non absorbing membrane, which 

in the full transient model corresponds to the case of a very large volume V. This 

solution is plotted on Figure 3.4, corresponding to equations (2.15) and (2.17) as repeated 

below. 

                     
 
 

   where   
  

  
. 

 

 

Figure 3.4 Diffusion – case of a very large volume 

The second term of Tencer’s time constant is related to the diffusion of water inside the 

body of the polymer, which corresponds to the other extreme, i.e. when V→0. The 

result is plotted on Figure 3.5, corresponding to equation (2.18) as repeated below. 

 

          
 

 
 

     

    
 
 
            

   

 

   

  

 

In terms of profile, this looks very similar to the full transient model.  

Finally, Tencer’s approximation is plotted with both contributions on Figure 3.6. It gives 

a time to reach 60% RH of 10.1 days. 
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Figure 3.5 Diffusion – Case of a very small volume 

 

Figure 3.6 Tencer model and its components 

 

3.2.3 Comparison of the two models 

The two models are presented on Figure 3.7. We can see that the Tencer model provides 

a very good approximation of the full transient model (analytical solution, see Equation 

(2.13)) when predicting the lifetime (respectively 10.4 and 10.1 days), which is the value 
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we are interested in. However, the single exponential equation does not represent very 

well the humidity/time profile, especially in the beginning. 

 

Figure 3.7 Comparison between the ‘QSS’ model (dashed line) and the full transient solution 

 

3.3 A new calculation method for polymer packages with walls of varying 

thickness/properties. 

NB. This section is mainly extracted from (Dahan et al. 2012): which was published during the course 

of this study: 

Dahan, N., Vanhoestenberghe, A. & Donaldson, N., 2012. Moisture Ingress into Packages With 

Walls of Varying Thickness and/or Properties: A Simple Calculation Method. IEEE Transactions 

on Components, Packaging and Manufacturing Technology, 2(11), pp.1796–1801. 

The Tencer model is a good approximation of the full transient solution, which is 

convenient and simple to use. Nevertheless, like the full solution, it can only be used if 

the package has a single ‘porous’ wall or, alternatively, if all the walls are made of the 

same material and have the same thickness. If this is not the case, how do you use 

Tencer’s formula, and how are the contributions of the different walls added up? In this 

section, the model will be adapted to this specific case. Using an electrical analogy, the 

various components making up the time constant will be identified, and simple 

calculations allowing to consider walls of different thicknesses or materials will be 

described.  
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3.3.1 Electrical analogy, making sense of the time constant 

To sum up the contributions from different walls, it is important to understand how to 

identify the terms making up Tencer’s time constant, given by equation (2.16). An 

electrical analogy is proposed as drawn on Figure 3.8, where the voltage H is equivalent 

to the external relative humidity (RHa), the current i represents the rate of diffusion of 

water molecules (these molecules represent the charge Q), and the resistance RP is 

analogous to the resistance of the porous wall to the flow of water vapour. Finally, the 

capacitances CV and CP are equivalent to the ability to store water molecules by the 

volume of the cavity and the porous wall respectively. When both capacitors are charged, 

they reach the same potential H. We are then interested in characterising the evolution of 

HC (i.e. the humidity in the cavity of the package) over time. As will be discussed later in 

this chapter, this model is not meant to be the most physically accurate, but the one that 

best fits Tencer’s (see 3.3.4 and 6.5.3 for more detailed discussions).  

 

Figure 3.8 Moisture ingress through a porous wall into an enclosure, electrical analogy 

 

As shown on Figure 3.8, Ceq = CP + CV. Let HC be the voltage across CV. Using 

Kirchhoff’s voltage law: 

          (3.1)  

By differentiation, this expression becomes: 

   

  
     

  

  
 
   
  

 (3.2)  

Since      
   
  

 (3.3)  

We obtain the first order differential equation: 

   

  
 

 

     
    (3.4)  

i 

HC 
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At t=0,              , with HC0 the amount of moisture already present in the 

package when it is sealed. The solution is given by: 

 
             

  
  (3.5)  

with the time constant                    (3.6)  

This is exactly equivalent to the exponential relaxation process described by Tencer in 

equation (2.15), and we can identify the expressions (3.6) and (2.16) in order to obtain 

the correct form of RP, CV and CP. We already know by definition that CV corresponds to 

the volume V of the cavity.  

      (3.7)  

From the first term of the time constant in (2.16), we obtain: 

 
   

 

  
 (3.8)  

And from the second term, CP can be identified: 

 
   

   

 
 (3.9)  

3.3.2 Calculation method for package made with walls of different properties 

The example of a cylindrical package which is adhesively sealed is taken (as presented in 

section 3.1.3). The electrical analogy previously described then becomes as shown on 

Figure 3.9. 

 

Figure 3.9 Moisture ingress into an enclosure with walls of varying properties, electrical analogy 
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Each wall has a capacitive and a resistive component. There are three RP elements 

corresponding to the resistance to the flow of moisture offered respectively by the top 

and bottom, side polymer walls, as well as the seal, which may be made of a different 

material. The walls themselves can have different thicknesses. Similarly, there are three 

capacitive elements corresponding to the ability of these walls and seal to store a small 

amount of water, as well as one for the volume of the cavity.  

The resistances are arranged in parallel, hence the total resistance of the package 

decreases as resistive elements are added, and so does the time constant. The capacitors 

are also arranged in parallel, with the opposite effect. As all elements can store water, 

increasing their number will increase the total capacity of the package, as well as the value 

of the time constant associated with it. 

Regardless of the number of elements, it is then always possible to reduce the system to a 

simple equivalent as shown on  

 

Figure 3.10 Equivalent system 

CV remains unchanged and equal to the volume V of the cavity, and we have: 

 
        

 

    

 (3.10)  

and          
 

 (3.11)  

The calculation method is therefore as follows. 

(1) For each element (wall, seal, etc.), calculate the RP and CP components using 

equations  (3.8) and (3.9). 

(2) Find the equivalent RP and CP for the package using equations (3.10) and (3.11). 

(3) Calculate the time constant of the system with equation (3.6) 

(4) Calculate the RH level in the cavity at any time t using equation (2.15). 
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3.3.3 Experimental results 

In order to test the applicability of this calculation model, the implant size package 

described in section 3.1.3 is fitted with a humidity sensor (see Chapter 4 for the detailed 

method), and the experimental time constant is compared with the calculated one.  

Package Element 
Top 

+Bottom 
Sides Seal 

Material 
PEEK 

OPTIMA 
PEEK 

OPTIMA 
Cyanoacrylate (Loctite 

4061) 

Thickness d (cm) 0.10 0.20 0.23 

Surface area A (cm2) 5.09 3.56 0.03 

Solubility S 
(cm3/cm3) 

9.17 9.17 32.4 

Diffusion D (cm2..s-1) a8.20x10-9 a 8.20x10-9 b1.08x10-8 

Permeation K 
(cm2..s-1) 

7.52x10-8 7.52x10-8 3.50x10-7 

CV (cm3) -------------------------------------1.60---------------------------------- 

CP (cm3) 2.33 3.27 0.13 

RP (s.cm-3) 2.62x105 7.47x105 1.9x107 
Values for the solubility coefficients were calculated using the water absorption and the density of the material (Greenhouse 2000). 

Values for the diffusion coefficients were taken from the literature for similar materials (a(Grayson & Wolf 1987) and b(Braden 1964)) 
but are not specific to the materials we used, as those values were not available. 

Table 3-1 Calculations 

The value of the time constant for this enclosure is calculated using the method outlined 

in the previous section. The values for the various other parameters are calculated and 

presented in Table 3-1. Looking at these values, it is interesting to notice the predicted 

contributions of the various package elements (top & bottom, sides, seal). Figure 3.11 

shows these contributions to the total ‘conductance’ (1/Rp – how well it lets water 

through) and ‘capacitance’ (Cp and Cv – how much water can be stored) of the package 

respectively. In terms of conductance, the top and bottom parts are the most 

‘conductive’ by far (73% of the total conductance). This is because they are only 1mm 

thick, compared to the sides which are twice as thick. As for the capacitance, the sides, 

which are thicker, are expectedly the most absorbing element. In both cases, the 

contribution of the seal is expected to be negligible (1 and 2% respectively). 

 

Figure 3.11 Conductance (left) and capacitance (right) of package elements 
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The calculated time constant is τ = 15.9 days. This can be compared with the 

experimental time constant of 16.3 days (see ‘5.2.2 Preliminary experiment’ for detail), 

which matches the calculated one with an accuracy of  
    

 
     . This difference may 

be due to the accuracy of the sensor (see Figure 3.12), as well as the expected discrepancy 

between the diffusion coefficients used in calculations and the actual coefficients for 

PEEK and the adhesive used (Loctite 4061). Similarly, we also get an excellent 

approximation when using a capsule of uniform thickness 2 mm. The calculated time 

constant (33.8 days) is almost equal to the experimental one (34 days) (0.5% error). 

 

 

Figure 3.12 Humidity sensor accuracy 

3.3.4 Discussion 

Our model is based on the ‘QSS’ (‘quasi steady state’) model (Tencer 1994), which is 

itself an approximation of the full transient solution. This is illustrated by Figure 3.7 

which plots the calculated evolution of the RH level in the capsule cavity if moisture 

ingress was exclusively occurring though the top and bottom walls of the package. We 

can see that the QSS model (dashed line – Equation (2.15)) provides a very good 

approximation of the full transient model (full line, (2.13) solved numerically) when 

predicting the time constant or the lifetime of the package.  

However, the single exponential equation does not represent very well the humidity/time 

profile, especially in the beginning. Our model therefore has the same limitations and 

advantages. 

It is important to realise that the proposed electrical analogy is not meant to be the most 

accurate possible description of the actual physical diffusion process, but a reasonable fit 

for the ‘QSS model’. Indeed, the aim was to be able to identify the values of the 

capacitive and resistive elements with the time constant formula provided by Tencer. A 

consequence for instance is that instead of showing a slight initial delay in the increase of 
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RH in the cavity (corresponding to the time needed for moisture to go through the wall), 

the RH level rises immediately, as the ‘capacitor’ CV starts charging immediately. 

Our analogy will remain valid until condensation, as a step change in the capacitance of 

the cavity volume (CV) is then likely to occur. Nevertheless this is acceptable when using 

this method to determine the lifetime of a package, as the criterion used is the risk of 

condensation appearing. 

Finally, this model does not account for the moisture storage capacitance of the items 

enclosed in the package. This would simply be another capacitor element in parallel with 

the existing one, which capacitance value may or may not be negligible, depending on 

each case. However, this aspect may be difficult to evaluate, and neglecting it in any case 

makes the model more conservative, as any C element added would only prolong the 

lifetime of the package. 

Nevertheless, this method allowed us to find a way to combine the capacitive and 

resistive elements associated with each type of porous wall. The experimental results in 

the previous section showed that our model is appropriate to predict the lifetime of 

packages made of porous walls when their thickness or material properties vary, and does 

so with an excellent accuracy.   

3.4 Interpreting experimental results 

3.4.1 Normalising the lifetime 

When placing the sensing circuits within the capsules, it is unlikely that the external 

conditions will stay the same from one experiment to the other. However, as can be seen 

from the exponential relaxation equation (2.15), the lifetime will depend on RHi, which 

corresponds to the initial level of moisture present when closing the capsule. In order to 

compare the results, we can therefore ‘normalise’ the lifetime by determining 

experimentally the time constant, which itself depends exclusively on the package 

characteristics (material, thickness, etc.) and not on the initial conditions. This time 

constant can then be fed back into the exponential relaxation equation, and the time 

needed to reach any humidity level can be calculated. For simplicity purposes, the 

experimental time constant can be used as a reference to compare the various 

experimental parameters. 

3.4.2 Determining the experimental time constant 

The experimental plot of the evolution of the RH level within the capsule versus time 

assumes an exponential shape. In order to extract the experimental time constant τ, a 

linearization of Equation (2.15) must be performed. 
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This equation can be rearranged: 

        
       

   
 
  (3.12)  

And by taking the logarithm of this expression, the linearisation is obtained: 

 
             

 

 
              (3.13)  

Therefore, by plotting ln(RHa-RHt) as a function of time, a linear regression can be 

performed and the regression equation y=ax+b (with y the dependant variable and x the 

explanatory variable) obtained so that we can identify: 

 
   

 

 
 (3.14)  

The validity of the linearisation can be checked by looking at the R2 coefficient. This is 

the square of the Pearson correlation coefficient, which measures the linear association 

between the two variables. The value of R2 corresponds to the percentage of the 

variation in y which can be accounted for by its relationship with x. For instance, if 

R=0.9, it then means that 90% of the variation in y happens because of a variation in x, 

and 10% has to be accounted for by another reason. When convinced that this degree of 

association between the two variables is strong enough, the regression provides the best 

fit possible describing this relationship. The method used is that of ordinary least 

squares, where the squares of the residuals (real value of y – value of y expected if 

following the regression) are summed and the regression providing the smallest value for 

this sum is kept as the best fitting line. 

3.5 Conclusion 

This chapter started by defining what a useful lifetime is for our type of package. The 

Tencer ‘QSS’ model has been compared to the full transient solution of Fick’s equations 

applied to the problem of diffusion. Furthermore, we have built an original, simple 

model based on Tencer’s, which allows predicting accurately the lifetime of a polymer 

package with walls of varying thickness and properties. Finally, the method used to 

extract the time constant from an experimental plot has been presented. The next 

chapter will then present the rest of the experimental methods used in this study, 

including the design of a humidity sensing circuit. 
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Chapter 4 Measuring the humidity inside the capsule: method and 

set up 

In this chapter, a telemetry system for measurement of the relative humidity inside a 

PEEK capsule is designed, using the method of passive signalling. The influence of a 

metal coating on the power/data transfer is also discussed, and it is recommended to 

limit the thickness of such a coating to a few microns in order to limit eddy current 

losses.  

4.1 Telemetry using electromagnetic inductive coupling 

As discussed in section 3.1.2, it is advantageous to use telemetry as it removes a source of 

water permeation into the package, also allowing a better differentiation and 

understanding of diffusion through walls and seal.  

4.1.1 How does it work? 

 

Figure 4.1 Circuit diagram of the telemetry system 

In order to provide power and data to the electronic components enclosed in an implant, 

it is possible to use inductive coupling with the advantage of powering the implant 

externally from batteries housed within a small external package worn by the patient 

(Taylor et al. 1997). Signals can also pass in both directions through skin for telemetry 

purposes (Donaldson & Perkins 1983; Donaldson 1986). One coil pair is necessary, with 

each coil alternately used as a transmitter (of energy) and a receiver. This method of 

‘passive signalling’ is achieved by modulating the impedance of the receiver (Donaldson 

1986). This system has been successfully used for years, e.g. Telemetry of forces in 

microcontroller 
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implants (Taylor et al. 1997; Taylor & Walker 2001; Lu et al. 1997), and will be used 

throughout this study.   

The focus is on establishing useful lifetimes from enclosures made of PEEK. This can 

done by measuring the humidity levels inside capsules, using the telemetry system 

mentioned above (see Figure 4.1). The functioning of this passive signalling system will 

be described in more detail in this chapter (Donaldson & Perkins 1983; Donaldson 1986; 

Taylor 1996; Donaldson 1990) . 

4.1.2 Description of the receiver side (implant) of the telemetry system 

 

Figure 4.2 Circuit diagram of the receiver side 

Power is transmitted to the capsule by an inductive link (see Figure 4.1). Figure 4.2 

presents a schematic of the humidity sensing circuit placed in the PEEK package.  An 

updated and completed design will be presented later in this thesis. 

The coil L2 is shunt-tuned with capacitor CRS, which increases the output voltage of the 

coil and gives the shunt-tuned receiver a low output impedance (Donaldson 1990). 

Diode DR1 and capacitor CR1 form a peak rectifier with an output voltage slightly less 

than the peak voltage across L2CRS. As mentioned before, the impedance on this side is 

modulated by short-circuiting the coil through FETR1. 

The humidity sensor sends a signal via the PIC microcontroller with a certain period, to 

which corresponds a certain relative humidity level. This switches on the field effect 

transistor FETR1, which short-circuits the receiver coil. As a result, this changes the 

coupled impedance seen by the transmitter. This mirrored change in impedance is 

detected by the transmitter and can be demodulated to extract the RH level. In practice, 

the power flow is broken by brief signal pulses, which can be modulated with the signal. 

The short-circuiting pulses are short, so power flow to the implant is not much affected, 

and the voltage on CR1 is maintained during the short-circuit pulses. 

CRS 
CR1 

DR1 

DR2 

FETR1 

L2 
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4.1.3 Description of the transmitter side of the telemetry system 

 

Figure 4.3 Circuit diagram of the transmitter side 

On the transmitter side, a frequency generator drives two FETs which are a current 

amplifying stage driving the series-tuned coil (L1, CT1, CT2), and power and carrier are sent 

to the receiver side via the coil L1. L1 is series tuned using CT1 and CT2 (with CT1<< CT2) 

as tuning capacitors. The circuit (DT1, DT2, CT3, RT1) is a demodulator, as we measure a 

sinusoidal signal which is rectified by DT2 and smoothed by CT3 and RT1.  DT1 recharges 

CT2 on the negative half cycle. The envelope of that signal has a constant amplitude, and 

as the impedance on the receiver side is modified, this is reflected on the transmitter side, 

as a peak or drop, according to the configuration. This is demodulated, amplified, and 

the period of that signal can be measured. This period has a correspondence with the 

level measured by the humidity sensor, so we measure the RH inside the PEEK 

packages. Heat dissipation on the receiver side is limited by the short time to take a 

measurement (four to five seconds on average). 

FETTP1 

FETTN1 L1 

CT1 

CT2 DT1 

DT2 

CT3 

RT1 
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Figure 4.4 shows an oscillogram of the transmitter and receiver carriers as well as the 

output of the demodulator for the built system (see following sections). As described 

previously, the receiver carrier (channel 3 – pink) shows the shorting of the receiver 

circuit at regular intervals, here with a period of 460 µs. The reflected changes in 

impedance can be seen on the transmitter carrier (channel 1 – yellow) as amplitude peaks 

with the same period. Finally, the output of the demodulator is displayed on channel 2 

(blue), once again showing the same inter-pulse interval, which corresponds to 38% RH.  

 

 

Figure 4.4 Oscillogram showing the transmitter carrier (channel 1  –  yellow), the output of the demodulator 
(channel 2 – blue) and the receiver carrier (channel 3 – pink) 

 

4.1.4 Attenuation issues 

Hermetic enclosures made of metal or ceramic generally use a metal seal, which then 

becomes an electrically conductive ring. Placed in the radio-frequency magnetic field, this 

ring can become a ‘short-circuited turn’ by allowing eddy currents to circulate, which will 

affect the performance of the inductive link (Donaldson 1992). Potentially, a similar issue 

could appear due to any internal metal coating of PEEK deposited to reduce permeation. 
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4.1.4.1 Skin depth 

Electrical currents that oscillate at radio frequency (in the range of about 30 kHz to 300 

GHz) are confined to a layer below the surface, the thickness of which depends on the 

frequency. This is known as the ‘skin effect’. The depth to which electromagnetic 

radiation can penetrate a conducting surface decreases as the conductivity and the 

frequency increase. This is characterized by the skin depth δ, expressed for a good 

conductor as 

 
  

 

     
 (4.1)  

where f is the frequency of the incident electromagnetic wave, σ is the electrical 

conductivity of the material and µ its permeability. In our case the signal is transmitted at 

a frequency of 13.56 MHz. For titanium for instance, σ=1.8.10-6 Ω-1.m-1 and µ=4π.10-7 

H.m-1 so δ=102 µm. 

 

 

Figure 4.5 Skin depth as a function of frequency for titanium 
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Figure 4.6 Skin depth as a function of frequency 

Figure 4.5 and Figure 4.6 show that there is a trade off between high frequency and skin 

depth. As shown by the log scale, skin depth increases slowly with decreasing frequency. 

If we consider a field at the surface of a titanium sheet, located at z=0, at depth z in the 

titanium the magnitude of the field is 

 
      

 
 
  (4.2)  

where the constant K represents the magnitude of the field at the surface. The field 

drops off exponentially with depth as shown in Figure 4.7, and higher frequencies are 

more attenuated. 

 

Figure 4.7 Field magnitude vs. depth 
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At a single skin depth, the magnitude of the field is 36.8% of its incident value. At five 

skin depths it is 0.67%. Titanium has a skin depth of 102 µm at 13.56 MHz. A 5 µm thick 

coating for example is very small compared with the skin depth of titanium at this 

frequency. The magnitude of the field in this case would be 95% of its incident value (see 

Figure 4.7) and there should be little transmission issues due to attenuation by the Ti 

coating by skin effect only. However this illustrates the importance of limiting the 

thickness of coatings deposited in order not to affect the quality of the inductive link. 

4.1.4.2 Eddy current losses 

The skin effect we have just described is caused by self induced eddy currents. We have 

shown that a thickness of 5 μm should have a limited effect on the inductive link 

according to this effect alone. However, eddy currents can also induce efficiency losses 

which may be much more significant. As a first observation, we can see that the signal 

through a 3 μm Ti coated PEEK capsule cannot be picked up at the output of the 

demodulator as there are too much losses. This shows that this effect is very much 

present. It is however still possible to detect the signal by placing the oscilloscope probe 

at the transmitter coil instead (see trace 1 in Figure 4.4). We can then assess the extent of 

losses experimentally by looking at the amplitude of the peak coming from the reflected 

change in impedance at the transmitter coil, when thin film coatings are applied. The 

following coatings are tested: 

1. 0.5 μm aluminium (sputtered) 

2. 0.5 μm titanium (sputtered) 

3. 2 μm nichrome (sputtered) 

An uncoated PEEK capsule is used as control. The transmitter coil is placed at 1 cm 

from the receiver (humidity sensing) circuit. The uncoated capsule (control) presents a 

peak of 1.9 V (amplitude from the top of the carrier envelope to the peak of amplitude 

coming from the reflected change in impedance seen by the transmitter – e.g. Figure 4.4). 

results are summarised in Table 4-1. From these results we can see that there are 

significant losses due to the metal coatings. A 2 μm nichrome coating presents more than 

40 % of losses compared to the unattenuated signal. It is therefore important when 

testing coatings with this system to limit the thickness of the deposited material, and to 

stay within a 3-4 μm thickness range.  

Coating 
Amplitude of peak 
at transmitter (V) 

Attenuation 

Uncoated PEEK capsule 1.9 -- 

0.5 μm aluminium 1.2 37 % 

0.5 μm titanium 1.6 16 % 

2 μm nichrome 1.1 42 % 

Table 4-1 Attenuation of signal due to metal coating 
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4.2 Measuring the humidity level inside the PEEK capsule 

In order to determine the useful lifetime of a PEEK enclosure, it is necessary to examine 

the evolution of the humidity level in such a package. The principle of data transmission 

with passive signalling has just been explained. We can now see how to measure 

humidity and convert the signal in a way that can be transmitted and read appropriately. 

4.2.1 The humidity sensor 

The relative humidity inside the PEEK capsule is measured by a sensor from Sensirion 

(www.sensirion.com). The SHT21S is a capacitive type humidity sensor of small size: 

3x3x1mm. It is a smaller version of the SHT15, which has been reported as the sensor of 

choice for implant applications (Schuettler et al. 2011). 

The sensor provides calibrated, linearized signals, thanks to the 4C COMSens® 

technology which allows the chip to contain an amplifier, an A/D converter, intelligence 

for linearization and temperature compensation, as well as memory to hold calibration 

data.  

 

Figure 4.8 Humidity sensor diagram 

It is powered using VDD
 and VSS on pins 2 and 5 respectively (see Figure 4.8). The 

recommended supply voltage is 3.0 V. VDD and VSS must be decoupled with a 100 nF 

capacitor, placed as close to the sensor as possible.  

SCL on pin 3 is pulled high (to VDD) to tell the sensor to measure the relative humidity 

(as opposed to the temperature if SCL is pulled low). The sensor output on pin 6 (SDA) 

produces a 0-5 V rectangular wave output with a duty cycle proportional to the signal, 

which can then be converted into an analog voltage output VSO with a low pass filter. 

The recommended values for the low pass filter are RLP=100 kΩ and CLP=220 nF, 

resulting in a cut-off frequency of 7 Hz. VSO as a proportion of VDD is then converted 

into an analog voltage. The sensor measures the relative humidity once per second and 

its value is then obtained with the following equation 

RLP 

CLP 
SDA 

VSS 

SCL 

VDD 

C
=

1
0
0
n

F
 VSO 

3 2 1 

6 5 4 

http://www.sensirion.com/
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 (4.3)  

So when RH varies from 0 to 100 %, VSO varies from 0.144 to 2.544 V (if VDD is 3.0V). It 

is important to note the following instruction from the SHT21S datasheet:  

‘IMPORTANT: After soldering, the devices should be stored at >75 % RH for at least 12h to allow 

the sensor element to rehydrate. Otherwise the sensor may read an offset that slowly disappears if exposed 

to ambient conditions. Alternatively, the re-hydration process may be performed at ambient conditions (> 

40% RH) during more than 5 days’ 

 

In terms of accuracy, Sensirion provide 

maximal tolerances against a high 

precision reference such as a dew point 

mirror. Typical deviation are at 

±2%RH where maximal tolerance is 

±3%RH and about half the maximum 

tolerance at other values. These values 

are detailed in Figure 4.9 (Sensirion 

datasheet). 

 

At 37oC, the tolerance is ±7% RH between 0 and 10% RH, ±5% RH between 10 and 

30% RH and ±3% RH between 30 and 90% RH, to which the typical deviation must be 

added. 

4.2.2 The PIC Microcontroller and the program 

The principle of the telemetry system has been described previously: a signal is sent to a 

field effect transistor which, by short circuiting the coil, changes the coupled impedance 

seen by the transmitter side of the telemetry system. This is managed by a 

microcontroller, which reads the variable voltage VSO produced by the humidity sensor 

with an A-D input, converts it to a digital signal, and outputs a 3V signal with variable 

frequency F, activating the transistor with the same frequency. 

The microcontroller used is the PIC10F222 from Microchip (www.microchip.com). The 

PIC10F222 is an 8-bit microcontroller with six pins (see Figure 4.10). The assembler 

programming language is explained by (Smith 2006) . 

Figure 4.9 Accuracy of the sensor 

http://www.microchip.com/
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Figure 4.10 PIC microcontroller 

 

Pins 5 and 2 are used to supply power to the microcontroller as VDD (3.0 V) and VSS 

respectively. VSO is applied to Pin 1 (GP0) as an analogue input, and GP1 on pin 3 is a 

digital output, producing a 3.0 V signal with a variable frequency. The structure of its 

program should be as follows: 

 

Start 

Initialize 

1s delay to make sure that a signal is sent from the 

humidity sensor 

Read GP0 

Analogue/Digital Conversion. Result stored in ADRES. 

Begin Loop 

Set GP1 high 

Fixed delay(15µS) 

Set GP1 low 

Small fixed delay of 85 µS 

Variable delay according to ADRES 

Go to Loop 

END 

The result of the A/D conversion is stored in a register called ADRES, which is an 8-bit 

number. It can therefore take values between 0 and 255. As it is expressed as a function 

of VDD (3.0 V), each unit of ADRES represents 11.7 mV (=3/256). Therefore equation 

(4.3) can be rewritten as follows: 

                   (4.4)  

Effectively, when RH varies from 0% (0.144V) to 100% (0.2544V), ADRES ranges from 

12 to 217. As shown by the program structure and Figure 4.11, the signal is high for 

15µs, then low for 85µs plus a variable delay, which is chosen to be 4 times the value of 

ADRES. This was chosen in order to have a signal period ranging from about 150 - 

1000µS (about 1 - 6.5 kHz). The period of the signal can then be expressed as: 

               (4.5)  

Figure 4.11 output voltage generated by the 
microcontroller 
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And at the demodulation end, using equations (4.4) and (4.5), RH can be expressed 

directly as a function of the period T: 

                     (4.6)  

The program in Assembler language is reported in Appendix 1. 

4.3 Circuit design 

4.3.1 The receiver 

4.3.1.1 Updated receiver 

Now that the details of the humidity sensor and microcontroller are known, the circuit 

diagram of the receiver circuit can be redrawn (Figure 4.12), including a few additional 

components. 

 

Figure 4.12 Final design 

The coil characteristics are as follows: Ø16 mm, wire is Ø0.315 mm, 8 turns, L=1.559 

µH. The coil has a shunt resistance RP=15.08 kΩ, drawn on the schematic, although not 

physically present in the circuit. As explained before, CRS is used to tune the coil. In 

theory, C=1/ω2L=88.33 pF. However, the actual coil characteristics cannot be known 

exactly, so CRS1 and CRS2 are used, where CRS1=50 pF and CRS2 is a 100 pF variable 

capacitor. DR3 is a 15 V Zener diode. DR1 and DR2 are Schottky diodes with 0.4 V 

forward drop. CR1 is a 6.8 µF capacitor, and CR2 is a 2.2 µF capacitor for stability. A list of 

all components is available in Appendix 2. 

4.3.1.2 Prototype 

A prototype on breadboard, as shown in Figure 4.13, has been built in order to check 

that the circuit behaves as it should. 

VD

D 
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Figure 4.13 Breadboard design 

The coil here is replaced by a power supply and a resistor, and the microcontroller gets a 

set voltage from another power supply as an input (VSO), on 1 on Figure 4.13, to simulate 

the humidity sensor.  

This input signal applied on 1 is 

VSO=1.88 V, which should produce a 3 

V output signal on 2 with a period of 

730 µS. As shown on Figure 4.14 the 

signal does indeed have a period of 730 

µS and behaves as described in the 

previous section. 

 

 

 

The output signal is then applied to the 

gate of FETR1 on 3 which shorts the coil 

and affects the impedance of the circuit 

with the same period, as shown on 

Figure 4.15 (signal measured at 4 on 

Figure 4.13). 

 

 

 

 

Figure 4.15 Prototype testing 2 

Figure 4.14 Prototype testing 1 
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4.3.1.3 PCB Design 

For the PCB design, CRS1=75 pF, while CRS2 is a 5-20 pF variable capacitor. It should be 

kept in mind that the final aggregate value of CRS1 + CRS2 should be around 88pF. We also 

want to have these as low loss capacitors. C0G (NP0) type capacitors should allow a high 

Q at high frequency. 

The schematic for this circuit is shown on Figure 4.16. The printed circuit board layout is 

presented on Figure 4.17 and a picture of the circuit once built is presented on Figure 

4.18.  

 

Figure 4.16 Schematic of the receiver circuit 

 

Figure 4.17 PCB layout of the receiver 
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Figure 4.18 Implant sized humidity sensing circuit 

A test of the PCB, similarly to what was done previously, shows that the circuit is 

behaving as it should. Figure 4.19 below shows that the period of the measured signal is 

550 µS, corresponding to a relative humidity of 49.5% at room temperature (≈ 21oC), as 

derived from Equation (4.6) . 

 

 

Figure 4.19 Testing of humidity sensing circuit 

 

4.3.1.4 Tuning the coil 

In order to obtain the best performance, the coil has to be tuned for the frequency that 

will be used, using CRS1 and CRS2 as described previously. This is done with the help of a 

coil in impedance analyzer and inductive link, which shows a drop in impedance for the 

tuned frequency. The aim is therefore to match this drop with the desired frequency, in 

this case 13.56 MHz, by changing the tuning capacitance. 

When doing so, the analyzer showed that with the capacitance that we have, we were out 

of range, as the maximum reachable frequency was 11.6 MHz, for a tuning capacitance 

of 80 pF (CRS1=75 pF and CRS2=5 pF). Without the trimming capacitor, the frequency 

was 12.16 MHz, for a capacitance of 75 pF, so still out of range. This difference between 
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the expected and real values is due to the fact that the coil is not ideal. Moreover, several 

factors, such as the presence of the board, tracks, conducting components, and gaps 

between the board and the coil are likely to affect the flux. The tuning capacitance 

therefore has to be lowered further. The expected value can be calculated, by first 

reevaluating the true inductance of the coils: 

 
  

 

    
 

 

        
 (4.7)  

In this case, f=12.16 MHz and C=75 pF, so L=2.3 µH. Feeding this back into Equation 

(4.7), the expected tuning capacitance can be calculated for the desired tuning frequency 

(f=13.56 MHz): Ctuning=60 pF. As a result, CRS1 has to be changed for a 47 pF capacitor, 

and Ctuning is reached with the help of the variable capacitor CRS2 which remains 

unchanged (5-20pF). 

 

4.3.2 The transmitter 

The principle of the transmitter was explained in section 4.1.3. Our circuit is a simplified 

version of a more complex circuit designed by Dominik Cirmirakis from the Electrical 

Engineering Department at UCL (cf. Figure 4.20 for the schematic). 

The corresponding board is then built (cf. Figure 4.21) using a black mask on a PCB with 

UV-sensitive photo resist. Developer is used, and the circuit is etched to define the 

tracks. Holes are drilled and the components are soldered onto the board. The next step 

is then to tune the coil by choice capacitors C6-C11 as well as trimming capacitor C5. A 

list of all components is available in Appendix 2. 

The circuit is tested and shows that the signal is picked up at demodulation as described 

previously in Section 4.1.3. The period measured in Figure 4.4 is 460 µS, corresponding 

to a relative humidity level of 37.9% according to Equation (4.6). 
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Figure 4.20 Transmitter - diagram 
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Figure 4.21 Transmitter 
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4.4 Experimental set up 

 

Figure 4.22 Grid to hold PEEK capsules 

 
Figure 4.23 Experimental set up – water tank 

 

Figure 4.24 Experimental set up 

 

In order to evaluate the lifetime of our PEEK packages,  capsules are placed on a 

perforated plastic grid (cf. Figure 4.22), which is in turn placed in a water tank where 

water is heated to 37oC by a 150 W submersible heater equipped with a thermostat (cf. 

Figure 4.23).  
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The packages are sealed by applying adhesive on the joint area and keeping pressure 

between the two sides using metal clips during curing. They are then placed on the grid 

and data is read through the side of the tank by placing the transmitter’s coil facing the 

corresponding capsule (see Figure 4.24). 

4.5 Sample size 

Each capsule tested contains one of the humidity sensing circuits described in this 

chapter. For time and resources considerations, I decided to test three samples for each 

experimental parameter (n=3). Another reason for this decision is that we are trying to 

find large improvement in lifetimes. Small improvements are discarded in the face of the 

additional cost they incur compared with the benefit they provide. 

Retrospectively, it is also possible to justify this choice with a power calculation, using 

some of our experiments as pilot studies. The data used for the power calculation is 

summarised in Table 4-2. 

 
Experiment 

Average time  
constant 
(days) 

Standard 

deviation σ 

(days) 

P-value from two 
sample t-test 
with control 

Control PEEK-Ep seal 17.99 0.73 N/A 

Chapter 5 PEEK-CA seal 15.88 0.26 0.00900 

Chapter 5 Ti-Ep seal 472 119 0.00272 

Chapter 6 
PEEK-Silica gel-

Ep seal 
73.7 6.05 

0.00009 

Chapter 7 
PEEK-lacquer-Al 
coating-Ep seal 

41.64 4.10 
0.00060 

Table 4-2 Data for power calculation 

The power calculation is used to provide the sample size needed to be able to reject the 

null hypothesis that the population means of the experimental and control groups are 

equal with probability (power) 0.8 in this case. The Type I error probability associated 

with this test of this null hypothesis is 0.05 (probability of rejecting the null hypothesis 

when it is true). 

Comparing each pilot study in the table above with the control returns an optimal sample 

size of n=1. Normally, an a priori power calculation would not return n=1 as it is 

impossible to do comparative statistics with just one sample. Moreover n=1 is not a valid 

result as you need a standard deviation to do the power calculation, which you cannot 

have if n=1. 

However in our case we are doing a retrospective calculation, and we already have a 

standard deviation value that we can use. Furthermore, we are trying to measure large 

differences with a relatively small standard deviations, so there is no overlap of 
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distributions, and it makes sense that the power calculation returns n=1. Therefore the 

conclusion is that using n=3 for our experiments is sufficient. 

4.6 Conclusion 

In this chapter, we presented the telemetry system used, including the design of the 

receiver and transmitter, as well as the programming of the microcontroller and the 

experimental set up. In the next three chapters, experiments with PEEK capsules, metal 

coatings and desiccants are detailed, in order to assess the lifetime achievable by PEEK 

packages. In this study, more than 140 capsules have been tested. This experimental set 

up has proved to be robust, reliable and convenient, with each measurement taking four 

to five seconds maximum. The receiver circuits did go off-tune after a while, but re-

tuning was only needed very occasionally (every 10 months or so). Overall, this has been 

an extremely satisfactory method. 
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Chapter 5 Moisture ingress in adhesively joined PEEK capsules: 

experimental work 

This chapter begins with a literature review of adhesive bonding, followed by the 

experimental investigation of the lifetime of adhesively joined PEEK packages. Moisture 

ingress through the seal vs. the walls is differentiated using solid metal capsules, which 

only let water through the adhesive joint. The durability of adhesive joints under water is 

also tested using lap shear tests, and a guideline graph is provided to evaluate the time 

constant depending on the wall thickness and cavity size. 

5.1 Adhesive bonding – Literature review 

‘The forces involved in holding adhesives and sealants to their substrates or in holding 
adhesives and sealants together as a bulk material arise from the same origins. These same 
forces are all around us in nature. To understand what is happening in an 
adhesive or sealant joint, we must first understand the forces that bind 
atoms and molecules together’ (Petrie 2000). 
 

As an introduction, we will therefore first briefly review the forces which attract 

molecules to each other (intermolecular forces). These must be differentiated from 

intramolecular forces, which hold atoms together in a molecule. Having this full picture 

will then enable us to better understand how adhesive bonding works. This background 

information, although of a very basic level, will also prove useful in Chapter 6 to 

understand how desiccants and the adsorption process work. 

5.1.1 Intramolecular forces 

Intramolecular forces, also called primary forces, are those which attract atoms to each 

other to form a molecule. There are three types of primary or chemical bonds: ionic, 

covalent and metallic. The source of these interactions is the electrostatic force of 

attraction or repulsion between electrically charged particles (Coulomb force – 

proportional to the charge of the particles under consideration and inversely proportional 

to the square of their distance). They all involve the valence electrons, as there is a 

tendency of atoms to have a stable electron structure and fill the outermost electron shell 

(Malone 2003).  

1. Atoms can transfer electrons to each other and form ions. These oppositely charged 

ions can then form an ionic bond to create a stable compound. A typical example of 

this is sodium chloride (NaCl), in which an electron from a sodium atom is 

transferred to a chlorine atom. The two ions Na+ and Cl- can then form an ionic 

bond to create NaCl (see Figure 5.1). Ionic bonding is always found in compounds 

composed of both metallic and non metallic elements, as the former easily give up 
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their valence electrons to the latter due to the difference in electronegativity (Callister 

& Rethwisch 2008). 

 

 

 

 

2. When two atoms share a pair of electron, they form a covalent bond. It is a normal 

covalent bond if each atom provides one of the electrons in the bond, as shown by 

the example of water in Figure 5.2. 

 

  

 

If one of the atoms provides both electrons, it is a dative covalent bond (also called 

dipolar or co-ordinate bond).  This happens because electrons are more stable when 

attracted to two nuclei rather than one. An example of dative covalent bond can be 

found with the ammonium ion, as a hydrogen ion is transferred from hydrogen 

chloride to the lone pair of electrons of an ammonia molecule (see Figure 5.3).  

 

Figure 5.1 Ionic bond 

Figure 5.2 Normal covalent bond 

Figure 5.3 Dative covalent bond 
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3. In the case of metallic bonding, atoms lose electrons, and the resulting cations are 

attracted to the resulting ‘sea of electrons’. These electrons are not attached to a 

particular atom but are free to move between the ‘ion cores’ (Callister & Rethwisch 

2008). They are said to be delocalized. The strength of these bonds is summarised in 

Table 5-1 (Petrie 2000). 

Type of intramolecular bond Bond energy (kJ/mol) 

Ionic 600 - 1000 

Covalent 60 - 700 

Metallic 100 - 350 

Table 5-1 Types of intramolecular bonds 

The type of bond formed depends mainly on the electronegativity (capacity to attract 

electrons in a covalent bond) of the elements under consideration (Malone 2003). 

Electronegativities vary from 0.7 to 4.0 and are relative to the most electronegative 

element (F - 4.0). Electronegativities can then be used to predict how much ionic or 

metallic character a covalent bond will have, as very few components exhibit pure ionic 

or covalent bonding (Callister & Rethwisch 2008). 

If both atoms have a similar electronegativity, the electrons will be equally attracted to 

each element and will remain between the two. However, if one element is more 

electronegative than the other, the electrons will tend to be more attracted to it and on 

average will be closer to it. Its side of the molecule will have a slight surplus of electrons 

and a slight negative charge (δ-) (the opposite is true for the other element). In this case 

the bond is said to be polar covalent, and it is possible that the molecule as a whole will 

be polar as well, depending on its geometry and the elements under consideration.  

If the difference in electronegativity is large, then the bond is ionic: the electrons have a 

much stronger attraction towards the more electronegative element, which becomes 

negatively charged, whereas the more electropositive element becomes positively 

charged. In reality, most bonds are covalent with more or less of an ionic or metallic 

character (Malone 2003). 

Identical atoms have no difference in electronegativity, and the bond will be either 

covalent, or metallic if both elements are electropositive (neither can strongly attract 

electrons, which are then free to move). 

Although the forces presented here are called intramolecular forces, they can also 

sometimes be found between molecules. This is the case for example within a crystalline 

structure, which can have covalent or ionic bonds for instance. When that is the case the 

terms ‘primary forces’ or ‘chemical bonds’ is used instead of ‘intramolecular’ in order to 

avoid confusions. Crystalline structures can also have Van der Waals bonds, which are 

weaker and are the most general type of intermolecular forces. 
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5.1.2 Intermolecular forces 

Intermolecular forces, also called Van der Waals forces and physical bonds, are those 

which generally attract molecules to each other. They are the forces which must be 

overcome when a substance is melted or boiled, as these bonds must be broken for 

molecules to be free to move with respect to each other, and therefore make the 

substance liquid or gaseous. These forces are of three types. 

1. Dispersion forces, also known as London forces, are the electrostatic forces of 

attraction between a temporary and an induced dipole. In a molecule, electrons are 

not static, but in constant movement. As a result, at a given time, it is possible that 

most electrons are on one side of the molecule, and this side becomes slightly 

negatively charged (δ-). Conversely the other side is slightly positively charged (δ+). 

The molecule is then a temporary dipole, as this state lasts for a very short time only. A 

nearby molecule, as a result, will see its electrons repelled by the negative part of the 

dipole, and that side will become δ+, making the molecule an induced dipole, which is 

attracted to the temporary dipole. The polarities of the molecules are constantly 

fluctuating, but do so in a synchronised manner if they are close enough to each 

other. The strength of dispersion forces is affected by the molecular size and shape 

(Malone 2003). 

2. As seen previously, some molecules can be permanent dipoles, due to the ionic 

character of the intramolecular bonds. They are said to be polar. NaCl is a good 

example of this (Figure 5.1). In addition to dispersion forces, such molecules 

therefore also experience dipole-dipole bonding (or polar bonding). As a result, 

compounds which are attracted to each other by dipole-dipole bonding generally 

have a higher boiling point than those which only experience dispersion forces.  

3. However, the difference of bond strength provided when a permanent dipole is 

involved is generally not of great magnitude, with the notable exception of hydrogen 

bonding: If a hydrogen atom is bonded to a very electronegative element such as N, 

O or F, its only electron will be on average much closer to this other element. The 

permanent dipole will then be able to form a strong dipole-dipole bond with adjacent 

elements if these are highly electronegative. Hydrogen bonding is basically a stronger 

form of polar bonding, and has a significant effect on the properties of a compound 

(Malone 2003). 

Type of Van der Waals bond Bond energy (kJ/mol) 

Dispersion 0.1 - 40 

Polar 4 - 20 

Hydrogen Up to 40 

Table 5-2 Types of Van der Waals bonds 
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The strength of these secondary bonds is summarised in Table 5-2 (Petrie 2000). These 

forces are much weaker than the primary forces shown in Table 5-1. 

5.1.3 Surface energy 

We have seen the types of cohesion forces which hold the bulk of a material together. 

Let us now look at the boundary between the bulk and the environment: the surface of 

the material. The surface atoms are not bonded to the maximum number of neighbours, 

and therefore they are in a higher energy state than the bulk atoms. This excess of energy 

at the surface is called the surface energy γ (in mJ/m2). 

If the material under consideration is a liquid, a 

molecule within the body of this liquid is equally 

attracted in all directions. The molecules on the 

surface however are only pulled downwards and 

sideways, not upwards. The tendency to 

minimize energy therefore means that the 

surface area will be minimized too. This is why 

liquid water droplets are spherical (minimum 

surface area per volume) (Callister & Rethwisch 

2008). Still in the case of a liquid, the surface 

energy γ is equivalent to the surface tension γLV (in mN.m-1), which is effectively the 

energy necessary to break through the surface (see Figure 5.4). The surface tension of 

water at 20oC is 73 mN.m-1 (Adamson & Gast 1997). For silicone and cyanoacrylate, the 

values are respectively 24 mN.m-1 (Petrie 2000) and 34 mN.m-1 (source: cyanobond.de). 

In the case of a solid however, the material cannot freely change shape, but can try to 

reduce the surface energy by creating bonds with liquid substances for instance. If the 

surface energy of the solid is higher than the surface energy of the liquid, then the best 

option for the liquid to reduce its excess energy is not anymore by assuming a spherical 

shape, but by wetting the solid. 

Traditionally, solids are divided into high energy or low energy solids, and the surface 

energy depends on the strength of the molecular interactions within the bulk of the 

material. Metals, ceramics and glasses are high energy solids, as the bonds within the bulk 

are very strong (primary forces). Conversely, if the intermolecular forces are weak (Van 

der Waals forces), the solid has a low surface energy (fluorocarbons, hydrocarbons, 

polymers, etc). The surface free energy for PEEK and Titanium are respectively 38 mJ.m-

2  (Blundell & Osborn 1983) and 1588 mJ/m-2 (Adamson & Gast 1997). 

Figure 5.4  Surface tension 



76  

 

When a drop of liquid is placed on an ideal solid surface, a characteristic angle θ is 

formed (see Figure 5.5), and the force balance between the three phases’ surface tensions 

is described by Young’s equation (Young 1805): 

                 (5.1)  

where γSV, γLV and γSL  are respectively the solid-vapour, liquid-vapour and solid-liquid 

interfacial tensions. 

 

 

The wettability is deemed to be high if the contact angle θ is less than 90o. The criterion 

of ‘perfect wetting’ (θ=0o) is used to define the critical surface tension of the solid γC. This is 

the threshold for the surface tension of a liquid under which this liquid will perfectly wet 

the substrate. As a result, a liquid with a surface tension γLV<γC will perfectly wet this 

solid (provided it is an ideal surface – perfectly flat, clean, smooth, etc.) 

5.1.4 Work of cohesion and work of adhesion 

For a truly cohesive failure in the bulk of a material, the work of cohesion corresponds to 

the energy necessary to create two new surfaces from the bulk material: 

       (5.2)  

In the case of an adhesive and a surface, we can similarly define the work of adhesion. 

However, in this case, the interfacial energy must be added as there are intermolecular 

forces existing between the two materials. This yields the Dupré equation (Dupré 1869) 

which defines the work of adhesion: 

                (5.3)  

Equations (5.1) and (5.3) can then be combined into the Young-Dupre equation: 
 

                (5.4)  

And if there is prefect wetting (i.e. cosθ=1), then WA=WC, the adhesive bond is as strong 

as the bulk of the adhesive (Petrie 2000).  

Liquid (L) 

γSL 

θ 

γSV 

γLV 

Substrate (S) 

Vapour (V) 

Figure 5.5 Contact angle and surface free energy components 
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5.1.5 Theories of adhesion 

All the interactions between the adhesive and the adherend cannot be modelled on a 

single, comprehensive, unifying theory of adhesion. Instead, there are several theories 

which can be applied depending on the nature of the joint and how it is used in service. 

These theories can help understand why adhesive joints fail or succeed. The most 

common ones are ‘adsorption, mechanical interlocking, diffusion, electrostatic interaction, and weak-

boundary layers’ (Petrie 2000). 

1. According to the adsorption theory, adhesion occurs as adhesive molecules are 

adsorbed onto the surface of the substrate. Most of the time, it is a case of 

‘physisorption’ with weak Van der Waals forces. In more rare cases, ‘chemisorption’ 

can occur. In this case the bonds are either covalent or ionic, and both adhesive and 

substrate structures are changed (Oura et al. 2003). In both cases, it is necessary to 

establish a continuous contact between adhesive and adherend, hence the importance 

of good ‘wetting’, which, as we have seen before, is determined by the difference 

between γLV and γC. For good wetting, we need γADHESIVE<γC SUBSTRATE. This is one of 

the reasons why some polymeric adhesive (with relatively low surface tension) will 

work very well with high energy surface materials such as metals and ceramics, but 

might not offer as strong a bond with lower energy surfaces such as some polymers. 

After wetting is achieved, permanent adhesion (after curing of the adhesive) results 

mainly from primary and Van der Waals forces (Petrie 2000). 

2. Another aspect of the adhesion process relates to the mechanical theory, as there is 

always a degree of roughness associated with a surface. According to this theory, the 

surface roughness helps by providing more surface area for adhesive forces to 

develop. Moreover, it allows mechanical interlocking with the adhesive, provided that 

‘the adhesive can penetrate the cavities on the surface, displace the trapped air, and lock on 

mechanically to the surface’ (Petrie 2000). Under standard conditions of pressure, this is 

controlled mainly by the viscosity of the liquid adhesive. 

3. Bikerman first described the weak boundary layer theory, explaining that even 

when it seems that there is purely adhesive failure, it is in reality most of the time 

cohesive failure of a weak boundary layer very near the interface (Bikerman 1961). 

These layers can occur during application, setting, or service, if there is concentration 

of impurities near the bonding surface. They can be caused by air, constituents of the 

adhesive itself or water (as they easily adsorb on the substrate surface), metallic 

oxides, or a chemical reaction by-product of the curing reaction for instance. During 

service, moisture can also favour the formation of a weak boundary layer as it 

diffuses through the adhesive or the substrate and locates at the interface (Petrie 

2000). 
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For a limited number of applications, the electrostatic and the diffusion theories can also 

be appropriate. However, these theories are generally not as favoured as the first two 

(Petrie 2000). 

4. The electrostatic theory states that electrostatic forces form at the adhesive-

adherend interface, under the form of an electrical double layer, and account for the 

bond strength. This theory arose from observing electrical discharges when peeling 

an adhesive from a substrate.  

5. When both adhesive and adherend are polymeric, the diffusion theory explains that 

the cause of adhesion is inter-diffusion of molecules, provided that both substances 

have compatible long-chain molecules capable of movement. This theory can be 

applied for solvent or heat welding of thermoplastics for instance. 

All these theories have been reported in the literature to provide a good explanation of 

experimental observations. However none of them can be applied to all cases. As we will 

see later in this chapter, the adsorption, mechanical and weak boundary layer theories are 

the most relevant to the case of adhesive bonding to PEEK. 

5.1.6 Effect of moisture on an adhesive joint 

In a high relative humidity environment, moisture is a major threat to the stability of 

adhesive joints, due to the polar nature of water and the fact that polymers are permeable 

to it. Moisture can indeed degrade the properties of the bulk adhesive itself or the 

adhesion properties at the interface. It can also potentially degrade the properties of 

some adherends and cause dimensional changes (Petrie 2000; Lee 1987). 

As water permeates the bulk of the adhesive, it can induce cracks, or reduce the glass 

transition temperature of the adhesive by reducing intermolecular forces. Water will also 

generally lower tensile strength and Young’s modulus, although these changes are 

generally reversible upon drying. Furthermore water can degrade the adhesive by 

hydrolysis, causing the adhesive to lose hardness and strength. The chemical reaction 

involved here consists in degrading the long polymer chains into smaller molecules, 

causing the reduction of strength. This in turn will cause cohesive failure. However, a 

swelling of the adhesive may occur before then, and may cause deformation and bond 

failure before hydrolysis. 

Another even more common problem caused by moisture is that water permeating the 

adhesive can migrate to the interface and cause a loss of adhesion by displacing the 

adhesive at the bond interface. This displacement results from the competition between 

water and adhesive for surface sites: as water permeates the adhesive and migrates to the 

interface, its molecules occupy surface sites and ‘chase away’ the adhesive, causing 

adhesive failure. 
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In the case of a metal, water can promote the formation of metal oxides, forming a weak 

boundary layer with the adhesive which is therefore more likely to fail (Bikerman 1961). 

It is however possible to reduce the effect of water and improve the quality of the bond 

by various means. 

5.1.7 Promoting adhesion 

In order to obtain a stronger bond, there are several ways to prepare the surface.  

1 Applying a surface treatment in order to remove the weak boundary layers 

(passive process) which could increase the chances of bond failure. Another aim 

of surface treatment could be to increase the surface energy of this surface (active 

process) to improve wetting. Common surface treatments include degreasing 

(solvent or vapour), mechanical abrasion (added roughening effect for 

mechanical interlocking), plasma, chemical etching, etc. (Petrie 2000). The type of 

surface treatment to apply, if any, depends highly on the materials used and on 

the application (structural, hermetic, etc.). 

2 Whether in addition, or in place of surface treatment, the application of primers 

and coupling agents can help form a stronger bond and improve resistance to 

moisture. This is especially helpful when the substrate has a low surface energy, 

or if it is porous and allows moisture to migrate to the interface. The principle is 

to add an intermediate layer which bonds very well to both the substrate and the 

adhesive by chemisorption. As a result, the new covalent bonds formed are 

stronger than the bulk of the adhesive (Petrie 2000). Coupling agents can either 

be incorporated into the formulation of the adhesive, or added as a very thin 

coating (ideally one monolayer). 

5.2 Lifetime of adhesively joined PEEK packages – experimental work 

5.2.1 Selection of adhesives 

Joining technologies have been investigated in section 2.4 ‘Joining technologies for 

thermoplastic polymers and the case of PEEK and implanted electronic devices’. 

Adhesive bonding has been selected as the method of choice to seal packages in the 

context of this study for three reasons: 

 It is a very easy method to seal a large number of packages with virtually no extra 

equipment. It also makes the retrieval of humidity sensing circuits simpler, which 

is important as they are to be reused throughout this study. 

 Other sealing methods involve an amount of vibrations or heat which may be 

detrimental to the electronics (particularly the humidity sensor, which is a very 

sensitive component), or to the integrity and porosity of the PEEK package. 

Laser welding involves highly localized heating, but can only bond parts with a 
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maximum thickness of 1mm, which is counterproductive when looking at 

limiting moisture diffusion through the walls. 

 It is expected (because of the dimensions involved) that diffusion through the 

seal is negligible compared to diffusion through the bulk of the PEEK capsule, 

so using adhesive bonding should not be detrimental. This hypothesis will be 

tested in the following section of this study.  

In order to select appropriate adhesives, I chose to follow the work done by TWI Ltd., 

which assessed the adhesive bonding of PEEK for medical device applications (Tavakoli 

et al. 2004). Among the adhesives used, which are all certified for use with medical 

devices, I selected three types of adhesives: 

1. Silicone: NuSil MED3-4013. Silicone, although not as strong as other types of 

adhesives, is widely used for encapsulation of electronics, thanks its durability 

when exposed to water. 

2. Cyanoacrylate: Loctite 4061. Cyanoacrylate has a very low viscosity and surface 

tension, which helps form strong bonds with most materials. It also offers the 

benefit of curing very quickly at room temperature 

3. Epoxy: Loctite Hysol M31-CL. Epoxy is a strong structural adhesive with a good 

durability when exposed to water (although not as good as for silicones). 

In Tavakoli’s paper, these types of cyanoacrylate and epoxy adhesives presented the 

strongest bonds to PEEK. 

5.2.2 Preliminary experiment 

We can begin by going through the process used in experiments throughout this thesis. 

In the previous chapter, the PEEK capsule, the humidity sensing circuit, as well as the 

experimental set up, have been described in detail. For the first experiment, a PEEK 

capsule is adhesively joined with Loctite 4061 (cyanoacrylate) and placed in water at 37oC 

(n=3). The relative humidity is recorded and its evolution with time is plotted in Figure 

5.6. It can be noticed that the three capsules tested give extremely similar results, and the 

shape of the rise in humidity follows expectations, as presented in Chapter 3.  

Following the method presented in the section ‘3.4 Interpreting experimental results’, a 

linearization of Equation (2.15) is performed in order to extract the experimental time 

constant τ. This is done by plotting ln(RHa-RH) as a function of time for the plot of 

average values for this experiment. The results are presented in Figure 5.7, and the time 

constant is found to be 15.9 days. Figure 5.8 shows that using the exponential model and 

finding the experimental constant this way provides an excellent approximation of the 

real, experimental behaviour. 
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The method just described will be used throughout this work to calculate the 

experimental time constants. For clarity purposes, only the plot of average values will be 

presented for each experiment, and the time constants will be given without showing the 

regression plot. Unless it is stated otherwise, the reader should assume that for 

each parameter, the plotted results represent the average for three samples every 

time (n=3). Error bars showing the standard deviation will be displayed for each graph. 

 
Figure 5.6  RH level in PEEK capsule joined with cyanoacrylate 

 

Figure 5.7 Extraction of the experimental time constant 
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Figure 5.8 Comparison experiment vs. time constant found through linearisation and regression 

 

5.2.3 Lifetime of adhesively joined PEEK packages 

5.2.3.1 Moisture ingress into adhesively joined PEEK packages 

We now compare moisture ingress in the PEEK capsule for the three different types of 

adhesive seals.  

 

Figure 5.9 Moisture ingress into PEEK package with silicone, cyanoacrylate, and epoxy seal 
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Figure 5.9 shows the evolution of RH for packages sealed with MED3-4013 (silicone), 

Loctite 4061 (cyanoacrylate), and Loctite Hysol M31-CL (epoxy). The time constants are 

presented in Table 5-3. They are 16, 16.3, and 18 days respectively. Even though some of 

the adhesives are in theory much more permeable than PEEK, those time constants are 

actually very similar, which suggests that, diffusion through the seal has a very limited 

effect on the overall diffusion. This is because the area available for diffusion through the 

seal is much smaller than the area available for diffusion through the bulk of the capsule. 

However, there is still a difference of 12-13% between the time constant of silicone and 

cyanoacrylate on one side, and epoxy on the other. This is because epoxies are several 

order of magnitude less permeable than silicones, as can be seen in Figure 5.10 from 

(Traeger 2002), which shows the permeability values for different types of materials. 

 

 
Figure 5.10 Effectiveness of sealant materials - from (Traeger 2002) 

 

We can also evaluate the total amount of water which permeates through the package, 

including any moisture contained within the package walls, by placing capsules in a water 

bath at 37oC and weighing them periodically with a precision balance (Sartorius BP211D 

– Precision 10-5 g). The results for PEEK capsules joined with Loctite 4061 

(cyanoacrylate) and Loctite Hysol M31-CL (epoxy) can be observed in Figure 5.11. 

Parameters P-Si P-CA P-Ep 

Time constant(days) 16.0 16.3 18.0 

Table 5-3 Time constants for different types of seal 
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Figure 5.11 Mass gain of adhesively joined PEEK capsules in water 

This figure shows that the amount of water absorbed by the capsule is exactly the same 

whether an epoxy or a cyanoacrylate seal is used. This is because the amount of water 

which permeates into the seal is negligible compared to the amount absorbed by the 

body of the capsule.  

5.2.3.2 Water diffusion through the joint only – Metal capsules 

In order to assess how much water actually diffuses through the seal, we can use 

‘hermetic’ capsules, which will not let water through the body of the capsule. To this end, 

titanium capsules are used, which have dimensions exactly the same as the previously-

tested PEEK capsules. Because the capsule is metallic, it is impermeable to water, but 

cannot be used with our telemetry system. A feedthrough is therefore necessary for 

power supply and data transfer. Detailed views and dimensions for both the capsule and 

the feedthrough are shown in ‘Appendix 3. Solid Titanium capsule and feedthrough’. 

The feedthrough is laser welded to a holder, which is in turn laser welded to the capsule 

in order to guarantee hermeticity (see Figure 5.12). A wire is crimped with the 

feedthrough using a piece of gold tube (inside diameter 0.7 mm, 0.15 mm thickness). The 

body of the capsule is glued with silver filled epoxy to another wire and grounded. The 

base of these wires is encapsulated in silicone rubber to prevent leakage currents. 

The capsules are then sealed with silicone (MED3-4013), cyanoacrylate (Loctite 4061) 

and epoxy (loctite Hysol M31-CL) adhesives (n=3 for each), and placed in water at 37oC 

(see Figure 5.13). 
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Figure 5.12 Titanium capsule  

 

 

Figure 5.13 Titanium capsules in water 

 

 
Figure 5.14 Evolution of RH with time for Ti capsules 
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The evolution of the relative humidity with time is plotted in Figure 5.14. In this 

instance, we find that the time constants vary greatly, from a few hours to a few hundred 

days. The time constants for the package with the silicone and epoxy seal are 102 days 

and 405 days respectively. This is very much in line with expectations, as can be seen 

from Figure 5.10, and confirms that diffusion through the seal alone is negligible 

compared with diffusion through the bulk of the PEEK capsule.  

It is the result with cyanoacrylate which is unusual and unexpected, as it is much shorter 

than what was obtained with the PEEK capsule (0.4 days for the Ti capsule, 16.3 days 

for the PEEK package). This suggests that it cannot be due only to diffusion through the 

adhesive seal, but that there was adhesive failure which provided a path for moisture to 

penetrate at a much faster rate than it should. The most likely explanation is failure 

between titanium and the weak boundary layer covering it (oxide layer promoted by the 

presence of water – see 5.1.6).  

Testing a cyanoacrylate seal with a capsule made of brass instead of titanium shows 

interesting results. The brass capsule is fitted with a welded feedthrough, and a ground 

wire is welded using low temperature solder wire in order to avoid re melting the 

feedthrough solder. The brass package is shown in Figure 5.15 and results of the 

experiment are plotted in Figure 5.16. 

These results show that a similar phenomenon is happening. The moisture ingress is slow 

and steady before a point when it starts rising more abruptly. This tends to confirm that 

at some point failure of the joint occurs and affects the rate at which water vapour 

permeates the enclosure. For sample B, this inflexion occurs after only 18 days, whereas 

it takes 65 days for sample A and 75 days for sample C. Nevertheless, we can still 

evaluate and compare the rate of diffusion through cyanoacrylate by looking at the 

portion of plots for samples A and C before failure of the adhesive seal. Using the same 

method as previously, we find a time constant of 200 days, which is longer than for 

silicone, but shorter than the time constant associated with the epoxy seal. This results 

also highlights the obvious fact that the seal properties are different depending on the 

materials used (brass and titanium and PEEK). Whereas the PEEK/cyanoacrylate was 

very durable, the bond with titanium and brass was clearly affected by the presence of 

water. 
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Figure 5.15 Brass capsule 

 

Figure 5.16 Evolution of RH with time for brass capsule with CA seal 

5.2.3.3 Permeability coefficient of the seal materials 

Now that we have determined the time constants of adhesively sealed packages with 

impermeable walls (i.e. diffusion is only occurring though the seal material), it is possible 

to find the associated experimental permeability coefficient K. Equation (3.6) gave the 

time constant as:  

            

Here, we can make the assumption that the amount of water absorbed in the seal is 

negligible compared to the amount of water in the cavity, as seen in Figure 3.11. We 

therefore neglect the capacitance CP of the seal, and the time constant is now τ = RP.CV; 

we are in the case of diffusion through a non absorbing membrane (see 3.2.2). According 
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 (5.5)  

We have found the time constants for the metal packages with silicone, cyanoacrylate 

and epoxy to be respectively 102, 200 and 458 days. The corresponding permeability 

coefficients are then 11.9×10
-7

 cm2.s-1, 6.1×10
-7

 cm2.s-1, and 2.7×10
-7

 cm2.s-1 respectively, 

using values in Table 6-6 for V, d, and A. However, it must be kept in mind that due to 

the assumption we made, these values are only approximations to give an idea of orders 

of magnitude, especially for silicone and epoxy which actually tend to absorb quite a bit 

of water. Nevertheless, our assumption is still correct as long as there is only a very thin 

thickness of adhesive present. 

5.2.3.4 Durability of adhesive joints exposed to water 

The durability of cyanoacrylate and epoxy joints with titanium in the presence of water 

can be evaluated by testing their shear strength before and after continuous exposure to 

water at 37oC. The geometry of the joint to test must be carefully thought through in 

order to avoid cleavage or peel stress. This can occur for instance if the bonded 

adherends are too thin or flexible, especially if the pulling is not in the line of the joint. 

To avoid or minimize this effect, there are different joint geometries which can be used, 

such as beveled, joggle laps, or strap joints (Petrie 2000, p.107). I decided instead to use a 

classic single lap joint geometry, but to design custom made grips which ensure that the 

pulling is done exactly in the line of the joint, and therefore that only shear stress is 

applied. The grip design is shown in Figure 5.17. 

 

 

Figure 5.17 Design the grips for lap shear test 
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The pull test machine used is a Hounsfield OS11 Model H5k5, fitted with a 2.5kN strain 

gauge transducer. The set up is shown in Figure 5.18. 

 

Figure 5.18 Lap shear test 

In order to accelerate the ageing of the samples, they are placed in boiling water for 

different amounts of time and the effect of exposure to water on the bond strength is 

observed. The ‘10oC rule’, commonly used in the literature, can be applied here to get an 

equivalent time at 37oC.  This rule is based on a conservative approximation of an 

Arrhenius behavior, which assumes that the rate k of a chemical degradation process (in 

our case, hydrolysis of the joint by water) is proportional to e(-Ea/RT), with Ea the 

activation energy, R the gas constant, and T the absolute temperature. In that case, this 

‘10oC rule’ states that the rate of the chemical reaction will double for every 10oC increase 

in temperature (Hemmerich 1998). If t1 is the time of exposure to the ‘accelerated’ 

temperature T1, and t2 the equivalent time of exposure at temperature T2, we have the 

following equation: 

 
       

     
   (5.6)  

Using this equation, we find that the acceleration factor when T1=100oC and T2=37oC is 

79. This means that 1 and 2 weeks exposure at 100oC is equivalent to 1.5 and 3 years 

respectively at 37oC. It is important however to notice that this should be used as a 

guideline only, as our acceleration factor was based on an Arrhenius model, which in our 

case is only an assumption, although this is commonly used and shown to be true in the 

literature for some epoxies on metal (Broughton & Mera 1997; Kinloch 1995; Schuettler 
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et al. 2011). Moreover, for every 10oC, we also double the error originally introduced by 

the assumptions linked to this model (Hemmerich 1998), which can lead to significant 

uncertainty on the final result. 

25x25mm titanium squares are adhesively joined with either cyanoacrylate or epoxy, and 

placed in boiling water. The joint area measures 25x5mm. Their shear strength is then 

tested using the pull test machine. The results are summarized in Figure 5.19. 

 

Figure 5.19 Shear strength of adhesively joined Ti squares in boiling water 

For each time/adhesive combination, 3 samples were tested (n=3). Figure 5.19 shows 

the mean value for each. The standard deviation for each series is also displayed as error 

bars. When dry, the force applied leading to failure is 930 N and 2320 N for 

cyanoacrylate and epoxy respectively. After one week in boiling water (corresponding to 

1.5 year to water at 37oC), the forces to failure are then 211 N and 306 N respectively. 

However, as shown by the error bars, there is a very large uncertainty on the ‘epoxy’ 

result. After two weeks, the samples joined with cyanoacrylate fail spontaneously, 

whereas the ones joined with epoxy fail at an average pulling force of 325 N. It is 

therefore interesting to notice that a fair amount of force is still required to pull the 

epoxy joined samples. This means that even after three years in water at 37oC, we do not 

expect the joint to fail spontaneously (i.e. with no stress applied to it). As for the 

cyanoacrylate joint, we have seen previously that their adhesion to titanium is 

compromised when exposed to water. For all the samples, failure was purely adhesive, 

which means that even though the cohesive strength of the joint is expected to drop, the 

adhesive strength is affected to a greater degree.  
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Figure 5.20 Failure of adhesive joint 

Figure 5.20 shows the adhesive failure on the surface of one titanium sample. It is very 

interesting here to notice the colour difference between the titanium square and the area 

where the adhesive has failed. Here the cyanoacrylate adhesive very visibly removed the 

oxide layer from the surface of the substrate (see bright patch). This confirms that the 

failure of the cyanoacrylate joint of the metal capsules is due to a weak boundary layer of 

oxide, which is promoted by the presence of water and the action of the adhesive itself. 

It is therefore not an adhesive failure, but cohesive failure of the weak boundary oxide 

layer. It is also possible that the solvent in the cyanoacrylate adhesive affected the oxide 

layer on the surface of the titanium substrate in a way that precipitated its failure when 

exposed to water.  

Adhesion to PEEK has obviously not shown the same problem, and it is expected from 

this experiment that spontaneous adhesive failure of the PEEK capsule adhesive joint 

should not occur within the lifetime of the package. 

This phenomenon has been reported in the literature previously for metal/polymeric 

adhesive joints (Molitor et al. 2001), and surface treatments of the metal surface are 

recommended in order to improve mechanical interlocking (by increasing the surface 

roughness) and/or remove/replace the weak boundary oxide layer by a different type of 

layer which would form strong bonds with the adhesive while not being as susceptible to 

displacement by water. 

5.2.3.5 Failure of adhesive joints - explanation 

Exposure to moisture results in degradation of polymeric material primarily by 

hydrolysis, which affects the cross link density of the polymer (Broughton & Mera 1997). 

Looking at adhesive joints, water first accumulates to a critical concentration in the 

interfacial region, and hydrolysis in the long term causes failure of interfacial bonds (both 

primary and secondary), leading to loss of adhesive strength (Kinloch 1995; Gledhill et al. 

1980). If the adhesive becomes detached, it then provides a path for increased 
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permeation, as we have seen in the case of adhesively joined metallic capsules. The 

critical concentration of water necessary for this to happen depends on the material 

temperature and stress (Davis 2003), and may not be reached within the lifetime of the 

joint, as seems to be the case for the PEEK capsule. 

In the case of metallic substrates, water also weakens the oxide layer. This is because 

metal oxide surfaces are polar and attract water molecules which break the Van der 

Waals bonds between that surface and the substrate surface (Davis 2003; Drain et al. 

1985). The Dupre relation represented by Equation (5.3) can be adapted to define the 

work of adhesion WA in the presence of water as a function of the interfacial free energy 

adhesive/water γAW, substrate/water γSW, and adhesive/substrate γAS (Kinloch 1987): 

                (5.7)  

When no water is present, WA>0 and the bond is stable. In the presence of water 

however, WA may become negative and the interface unstable. This weak boundary layer 

is then the cause of the adhesive failure, as it was the case for the metal capsules and the 

lap shear tests performed. 

However, we have established that, when exposed to water at 37oC, the unstressed 

adhesively joined PEEK package does not experience adhesive failure over the course of 

its lifetime. Besides not having a weak oxide layer like metallic adherends, polymeric 

adherends have sometimes also been proved to dissolve into the uncured adhesive 

monomer, which results in a system with no true ‘interface’, therefore less subject to the 

effects of moisture (Drain et al. 1985). 

5.2.3.6 Use of a polyefin primer 

As mentioned in section 5.1.7, primers can sometimes be used to promote adhesion to 

low energy surfaces by adhering well both to the substrate and the adhesive. Instead of 

forming dispersive bonds, they can sometimes form covalent bonds, which are less 

susceptible to displacement by water. We can investigate whether the use of a primer 

with cyanoacrylate influences the rate of moisture ingress. The adhesive manufacturer 

recommends the use of a polyefin primer (Loctite 770) with the cyanoacrylate adhesive 

used (Loctite 4061). This type of primer has been proved very effective in producing 

strong bonds with dry samples (Tavakoli et al. 2004). PEEK capsules adhesively joined 

with Loctite 4061 + polyefin primer Loctite 770 were tested and results are presented in 

Figure 5.21. 
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Figure 5.21 RH level in PEEK capsules joined with cyanoacrylate and polyefin primer 

The average time constant associated with this bond is 13.6 days, which is actually less 

than the time constant when no primer is used (16.3 days). The same primer and 

adhesive are used with a titanium capsule such as described in section 5.2.3.2. The results 

are plotted in Figure 5.22, and show very similar results to those obtained without primer 

(see Figure 5.14 and Figure 5.16). 

 

Figure 5.22 RH level in titanium capsule joined with cyanoacylate and polyefin primer 

For two of the samples (2 and 3), there is almost immediate adhesive failure leading to 

very fast moisture ingress. The third sample shows a much slower moisture permeation 
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rate for a while, until its joint fails as well, allowing the water vapour content inside the 

package cavity to rise sharply. Moreover, the diffusion rate of the ‘flat’ part is actually 

once again faster than when no primer is used (time constant associated is 48 days, 

against 200 days for the adhesively joined brass capsule with no primer).  

The ineffectiveness of the primer is confirmed when looking at the shear strength of 

adhesively joined titanium squares exposed to water, as presented in Figure 5.23. This 

result is not surprising: as we have seen, the reason adhesively joined metal substrates do 

not resist very well in water is because of the weak oxide boundary layer, so trying to 

improve the bond between the adhesive and the oxide layer cannot improve the adhesion 

between the substrate surface and the oxide layer, or the cohesive strength of that same 

layer. But as previously stated, this does not affect the bond between PEEK substrates. 

Nevertheless, we have seen that using this primer actually has an adverse effect on the 

resistance to water, which explains why the time constant is less than when no primer is 

used.     

 

 

Figure 5.23 Shear strength of adhesively joined Ti squares in boiling water when a primer is used 

5.3 Influence of the wall thickness on the lifetime 

NB: Parts of this section are extracted from (Dahan et al. 2013), which was published during the course 

of this project. 

So far we have established that our calculation model fits the experimental results very 

well, and that an adhesively joined PEEK capsule has a lifetime varying between 16 and 
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then possible to establish the influence of the wall thickness and the size of the implant 

cavity on the package lifetime. 

We can examine the influence of the wall thickness on the time constant, by looking at 

the theoretical case of a cylindrical PEEK enclosure of constant thickness d (see Figure 

5.24). We can use either Tencer’s model (equation (2.16)) or ours (equation (3.6)). They 

are exactly equivalent in this case because of the geometry considered (uniform 

thickness). 

 

For ease of calculation, the cylindrical package considered is such that the internal height 

h of the cavity is equal to its internal radius r. This radius can then be expressed as a 

function of the internal cavity volume VC: 

 

   
  
 

 

 (5.8)  

The external surface area AC of this enclosure is: 

           
                

                 (5.9)  

And therefore the internal cavity volume of this cylinder and its external surface area can 

be related: 

 

       
  
 

 

       
  
 

 

     (5.10)  

The formula for the time constant then becomes: 

 
  

    

      
  
 

 

       
  
 

 

    

 
  

  
 

(5.11)  
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Figure 5.24 Cylindrical enclosure of constant wall thickness d - section 
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Using this formula, we can calculate the predicted time constant for packages of varying 

cavity volume and wall thickness. The results are plotted in Figure 5.25.

 

Figure 5.25 Influence of wall thickness and cavity volume on the time constant for a cylindrical package 

It can be noted that the cavity volume has very little influence on the time constant. This 

is because, as the cavity volume increases, so does the external surface area. The package 

is made of a porous material, so the effect of increasing cavity volume VC is compensated 

by an increase of surface area A.  

The wall thickness however has a major impact on the time constant (quadratic function 

for d large – see equation (5.11)). By pushing the thickness of the package wall to 3 mm, 

we can obtain a maximum time constant of nearly 69 days, for a package with a 1.5 cm3 

cavity volume (same order as our PEEK capsule). 

5.4 Summary and conclusion 

In this chapter we have compared three types of adhesives to be used as sealing materials 

for the PEEK package. The results of these tests are summarized in Table 5-4 (10 

experiments – n=3 – so 30 capsules were tested overall). We have found that although 

none of the adhesive joints are likely to fail if unstressed within the lifetime of the 

capsule, due to the action of water, the epoxy adhesive has proved to be the most 

durable and least permeable option.  

However, we have seen that the chosen adhesive only has a limited impact on the time 

constant of the package (up to 10%) when looking at such short lifetimes (less than a 

month).  Experiments with adhesively joined metal capsules showed that the amount of 

water diffusing through the seal is 20 times less than the amount of water permeating the 
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adhesively joined PEEK capsule. It is therefore perfectly acceptable to use adhesive 

bonding to seal the packages, and other more complex and expensive fusion welding 

methods are not necessary.  

Nevertheless, it must be kept in mind that if a method was found, that significantly 

reduces the amount of water diffusing through the body of the PEEK capsule, then the 

amount of water diffusing through the seal would be a greater proportion. The metal 

capsule experiments also demonstrated that the cyanoacrylate/metal interface fails very 

quickly when exposed to water, and therefore it should be avoided unless the metal is 

treated appropriately by removing weak boundary layers, promoting strong chemical 

bonds and mechanical interlocking. Alternatively, epoxy/metal interfaces proved to be 

very durable.  

Finally, using our calculation method, we produced a guideline graph which can be used 

to quickly assess the time constant of PEEK packages of various size and thickness. In 

the next two chapters, we will investigate the use of desiccants and metal coatings with 

the aim of prolonging this lifetime. 

 

Parameters 
Time 

constant 
(days) 

Comments 

PEEK + Cyanoacrylate seal (Loctite 4061) 15.9 -- 

PEEK + Cyanoacrylate seal 16.3 -- 

PEEK + Epoxy seal (Loctite Hysol M-31CL) 18.0 -- 

PEEK + Silicone seal (NuSil MED3-4013) 16 -- 

Ti + Cyanoacrylate seal  N/A Immediate failure 

Ti + Epoxy seal 405 -- 

Ti + Silicone seal 102 -- 

Brass + Cyanoacrylate seal  Variable 
Time constant before failure 

of joint is 200 days 

PEEK + Polyefin primer (Loctite 770) + 
Cyanoacrylate seal  

13.6 -- 

Ti + Polyefin primer (Loctite 770) + 
Cyanoacrylate seal 

Variable Quick failure of adhesive joint 

Table 5-4 Summary of results
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Chapter 6 Prolonging the lifetime using a desiccant 

This chapter assesses the extent to which the lifetime of a PEEK package can be 

extended using desiccant. The theory of adsorbents and desiccants is first studied, 

following which silica gel and molecular sieve are selected as the best types of desiccant 

for our application. The calculation model developed in Chapter 3 is expanded to the use 

of desiccant and tested experimentally. It is found that it provides a very good 

approximation of the time constant when silica gel is used, but that it is not applicable to 

molecular sieve. This result is linked to the type of isotherm of those desiccants. Finally, 

guideline graphs and tables are provided to evaluate the time constant of PEEK packages 

of various sizes, wall thickness, cavity volume, and desiccant content.  

6.1 Desiccants and adsorption – Literature review 

6.1.1 Introduction on adsorbents 

In order to prolong the lifetime of electronics within a package, one method is the use of 

a desiccant which will adsorb water and therefore increase the maximum amount of 

water which can penetrate the enclosure before presenting a threat. Let us first review 

the different types of desiccants and the processes involved in the adsorption of 

moisture. 

Adsorption technology is used in a wide range of applications in order to separate and 

purify gases and liquids (See Table 6-1 for a list of separation made by adsorption). 

Adsorbents can be used for instance to remove smells or moisture from air, or to refine 

oils and fat. In our case, we are only interested in adsorbents which help remove 

moisture from air. These particular types of adsorbents, which have a special affinity for 

water, are referred to as desiccants. 

6.1.2 Types of desiccant 

As for all types of adsorbents, desiccants use adsorption to attract and retain moisture. It 

is a surface phenomenon, and therefore the high capacity of an adsorbent depends on 

the high internal surface area per unit of mass. These can range from 100 m2.g-1 to 3000 

m2.g-1 (Crittenden & Thomas 1998).  

The capacity and selectivity of an adsorbent depends on its pores size (see 6.1.3 

Adsorption equilibrium). While some adsorbents such as zeolitic molecular sieves have 

uniform pore sizes, others show a range of pore sizes organised in interconnected 

networks (silica gels, aluminas). There are three types of pores: micropores which are 

smaller than 2 nm, mesopores which have diameters ranging from 2 to 50 nm, and 

macropores which are in excess of 50 nm (Crittenden & Thomas 1998). As we will see 



99  

 

later, this plays a great part in determining the isotherm type of the adsorbent (see 

6.1.3.1). 

As explained in a previous section on adhesive bonding (see 5.1.5 Theories of adhesion), 

adsorption can be of two types, physisorption or chemisorption. However, almost all 

adsorptive separation processes depend on physical adsorption rather than 

chemisorption (Ruthven 1984, p.30), and therefore water bonds to the surface of the 

adsorbent by physisorption only (especially Hydrogen bonding). As a result, the 

secondary bonds (dispersion forces, dipole and hydrogen bonds) can be broken easily by 

heat, the desiccant can be regenerated, and its potential for adsorption restored.   

SeparationA Adsorbent 

Gas Bulk Separations  
Normal paraffins, isoparaffins, aromatics Zeolite 

N2/O2 Zeolite 

O2/ N2 Carbon molecular sieve 

CO, CH4, CO2, N2, A, NH3/ H2 Zeolite, activated carbon 

Acetone/vent streams Activated carbon 

C2H4/vent streams Activated carbon 

H2O/ethanol Zeolite 

Gas PurificationsC  

H2O/ air, olefin-containing cracked gas, natural gas, 
synthesis gas, etc. 

Silica, alumina, zeolite  

CO2/C2H4, natural gas, etc. Zeolite 

Organics/vent streams Activated carbons, others 

Sulfur compounds/natural gas, hydrogen, 
liquefied petroleum gas (LPG), etc. 

Zeolite 

Solvents/air Activated carbon 

Odours/air  Activated carbon 

NOX/N2 Zeolite 

SO2/vent streams Zeolite 

Hg/chlor-alkali cell gas effluent Zeolite 

Liquid Bulk SeparationsB  

Normal paraffins, isoparaffins, aromatics Zeolite 

p-Xylene/o-xylene, m-xylene Zeolite 

Detergent-range olefins/paraffins  Zeolite 

p-Diethyl benzene/isomer mixture Zeolite 

Fructose/glucose Zeolite 

Liquid PurificationsC  

H2O/organics, oxygenated organics, chlorinated 
organics, etc. 

Silica, alumina, zeolite 

Organics, oxygenated organics chlorinated organics, 
etc./H2O 

Activated carbon 

Odour, taste bodies/drinking H2O Activated carbon 

Sulfur compounds/organics Zeolite, others 

Various fermentation products/fermentor effluent Activated carbon 

Decolorizing petroleum fractions, sugar syrups, 
vegetable oils, etc. 

Activated carbon 

AAdsorbates listed first. 
BAdsorbate concentrations of about 10 wt. % or higher in the feed.  
CAdsorbate concentrations generally less than about 3 wt.% in the feed. 

Table 6-1 Representative Commercial Adsorption Separations - From (Keller II 1987) 
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Adsorption of water is always accompanied by an increase in heat (exothermic process), 

‘the extent of which depends mainly on the magnitude of the Van der Waals forces involved, phase 

change, electrostatic energies and chemical bonds’ (Srivastava 1998). 

We can review the main types of desiccants and their properties: 

6.1.2.1 Molecular Sieve Zeolites 

Zeolites are alluminosilicates of crystalline porous structure. This structure constitutes 

the ‘pores’ of the adsorbent which the adsorbate penetrates. Because of this natural 

crystal form, there is no distribution of pore size. The lattice is uniform and the size of its 

channels determines which products it will adsorb. This feature is what distinguishes 

zeolites from other types of microporous adsorbents. Zeolites are also polar by nature. 

SiO4 and AlO4 tetrahedra assemble to form the zeolite framework in various regular 

arrangements through the sharing of oxygen atoms (Ruthven 1984). Differences based 

on molecular size, shape and other properties such as polarity are the differences on 

which the process of adsorption is based (Crittenden & Thomas 1998). A zeolite 

structure is represented by the crystal unit cell of formula: 

Mx/n [(AlO2)x(SiO2)y] . wH2O 

where n is the valence of the cation M, w is the number of water molecules per unit cell 

and x and y are the total number of tetrahedra per unit cell (Keller II 1987). The cation 

M balances the negative charge introduced by the aluminium atom, because of the 2/1 

ratio oxygen to aluminium, with respectively 2 negative and 3 positive charges each. The 

type and position of this exchangeable cation determine the channel size and therefore 

the properties of the zeolite (Crittenden & Thomas 1998).  

There are more than 150 types of synthetic zeolites known, and some typical 

commercially available molecular sieve zeolites and properties are presented in Table 6-2. 

Zeolite Type Designation Cation Pore Size (nm) Bulk Density (kg.m-3) 

A 3A K 0.3 670 -740 

 4A Na 0.4 660 - 720 

 5A Ca 0.5 670 - 720 

X 13X Na 0.8 610 - 710 

Mordenite, 
small port 

Zeolon-300 
Na + mixed 

cations 
0.3 - 0.4 720 - 800 

Chabazite AW-300 Mixed cations 0.4 -0.5 640 - 720 

Table 6-2 Commercial Molecular Sieve adsorbents and properties - From (Keller II 1987) 

The choice for zeolite type depends on the application and the substance to be adsorbed 

and hence on the pore size. For water adsorption, types 3A and 4A are used as 

desiccants, as their small pore sizes (respectively 0.3 and 0.4nm) only allow water and 

very few other small molecules to be adsorbed (see Figure 6.1). They use respectively 
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potassium and sodium as cations, and their formulas are K12[(AlO2)12(SiO2)12] and 

Na12[(AlO2)12(SiO2)12] (Ruthven 1984). 

 

Figure 6.1 Molecular dimensions and zeolite pore size (From (Breck 1974)) 

6.1.2.2 Silica gels 

Silica gel, of formula SiO2.nH2O, is a partially dehydrated form of polymeric colloidal 

silicic acid. It is amorphous, chemically inert, and polar. During manufacturing, chains 

and nets of linked SiO4 tetrahedra aggregate to form spherical particles. They 

agglomerate upon drying and treatment, and their size mainly determines the pore size of 

the microporous structure formed (Ruthven 1984). As a result, there is a large 

distribution of pore size, which varies from 1 to 40 nm (see Table 6-3) and influences the 

adsorption capacity of the desiccant (Yang 2003). 

 Physical Properties 

Surface area (m2.g-1) 830 

Density (kg.m-3) 720 

Reactivation temperature (oC) 130-280 

Pore volume (% of total) 50-55 

Pore size (nm) 1-40 

Pore volume (cm3.g-1) 0.42 

Adsorption Properties Percent per weight 

H2O capacity at 4.6 mm Hg, 25oC (19.3% RH) 11 

H2O capacity at 17.5 mm Hg, 25oC (73.6% RH) 35 

Table 6-3 Typical Properties of Adsorbent-Grade Silica Gel (From (Keller II 1987)) 
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Hydroxyl groups are present on the surface and confer it a degree of polarity, which 

favours the adsorption of polar molecules such as water by hydrogen bonding. Silica gel 

can exhibit surface areas of over 800 cm2.g-1. 

6.1.2.3 Activated aluminas 

Activated alumina is a porous high-area form of aluminium oxide Al2O3. Like silica gel, it 

has a range of pore sizes (although not as wide) which means that its capacity is strongly 

dependent on the ambient relative humidity. However, as shown on Table 6-4, the 

adsorption capacity ultimately is not as great as silica gel, which would therefore be a 

better choice of desiccant. 

 Physical Properties 

Surface area (m2.g-1) 320 

Density (kg.m-1) 800 

Reactivation temperature (oC) 150-315 

Pore volume (% of total) 50 

Pore size (nm) 1-7.5 

Pore volume (cm3.g-1) 0.40 

Adsorption Properties Percent per weight 

H2O capacity at 4.6 mm Hg, 25oC (19.3% RH) 7 

H2O capacity at 17.5 mm Hg, 25oC (73.6% RH) 16 

Table 6-4 Typical Properties of Adsorbent-Grade Activated Alumina - From (Keller II 1987) 

 

6.1.2.4 Isotherms and comparison of molecular sieve and silica gel 

 

Figure 6.2 Adsorption isotherms for molecular sieve and silica gel at 250C - From (Desiccare Inc. 2010) 
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Figure 6.2 shows the adsorption isotherms of silica gel and molecular sieve, i.e. the 

evolution of the adsorption capacity (represented here by the ratio mass of water 

adsorbed/dry mass of desiccant) vs. the partial pressure of water in the air to dry (which is 

equivalent to the relative humidity for a constant temperature). 

The isotherm of silica gel shows that the capacity rises constantly with RH, due to the 

distribution of pore sizes, and will reach its maximum value at high humidities. 

Conversely, molecular sieve desiccant reaches its full capacity at much lower RH, as the 

pores all have the same size. As a result, molecular sieve is much more effective at low 

RH. However, when reaching high humidities, silica gel offers a greater capacity. The use 

of one or the other will hence depend on the application, and it is important to keep 

these properties in mind when selecting a desiccant. 

6.1.3 Adsorption equilibrium 

6.1.3.1 The five types of experimental adsorption isotherms 

As we have seen previously, the isotherm is the function relating the quantity of gas q 

adsorbed and the steady state equilibrium partial pressure p at constant temperature 

(Crittenden & Thomas 1998). To allow a comparison of different materials, the quantity 

adsorbed is generally normalised by the dry mass of the adsorbent, which then gives the 

capacity of the adsorbent as a percentage of its dry mass. 

The isotherms for physical adsorption have been divided into the five main classes 

experimentally observed (Brunauer et al. 1940), which are represented in Figure 6.3. 

 

Figure 6.3 The five types of adsorption isotherms 

Among these, the most common are by far types I, II and IV (Crittenden & Thomas 

1998).  

- Type I characterises adsorption when it is limited to one monolayer of adsorbate at 

the adsorbent surface. It is valid for true microporous adsorbents, as the pore size is 

of the same order as the size of the molecule to adsorb. When the micropores are 

filled, which corresponds to the completion of a molecular layer, a saturation limit is 

reached. This type of isotherm is therefore observed for molecular sieve (see Figure 

6.2), which has a uniform pore size. 
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- On type II isotherms, the completion of a monolayer corresponds to the inflexion of 

the curve (see Figure 6.3). After this, adsorption occurs in indefinite successive layers, 

and then in capillary condensation as the diameter of the pores increases with the 

pressure. As a result, there is no saturation limit exhibited by these adsorbents. This is 

due to the large distribution pore sizes within the material. 

- Similarly, adsorbents which exhibit the type III behaviour also have a wide pore size 

range. In this case however there is a steady increase in adsorption as the vapour 

pressure rises 

- Type IV isotherms are similar to type II isotherms at low vapour pressure, but a 

saturation limit is reached as the pressure increases. This suggests that there is a finite 

number of multi layers, which corresponds to complete filling of the capillaries. This 

is the type of isotherm which matches the behaviour of silica gel (see Figure 6.2). 

- Finally, an isotherm of type V is observed when there are large intermolecular 

attraction effects. They are similar to type III isotherms, except for the fact that it 

exhibits a saturation limit when the vapour pressure increases. 

6.1.3.2 Adsorption equilibrium theories 

There is a variety of different isotherm equations and theories which attempt to describe 

the adsorption equilibrium of adsorbents. Two of the main models will be described 

here, corresponding respectively to monolayer and multilayer adsorption. 

6.1.3.2.1 The Langmuir and Langmuir-Freundlich isotherms 

Langmuir developed the simplest theoretical model for monolayer adsorption as he tried 

to represent chemisorption on localised sites (Langmuir 1916). This corresponds to the 

type I model of the Brunauer classification (Figure 6.3), and is based on the following 

assumptions: 

- All molecules are adsorbed through the same mechanism, at a fixed number of 

defined localised sites. 

- All the adsorption sites are energetically equivalent 

- There is no interaction between adsorbed molecules 

- Each site can only adsorb one molecule. Therefore there is only one monolayer 

formed at most. 

If θ represents the fraction of the adsorption sites occupied  

 
  

 

  
 (6.1)  

where qm is the quantity q of adsorbate adsorbed in one monolayer. 
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Langmuir defined the rate of adsorption as being proportional to the partial pressure P 

of the gas and the fraction (1-θ). This fraction represents the surface still available for 

adsorption sites. Similarly, he supposed that the rate of desorption was directly 

proportional to the fractional surface coverage θ. At equilibrium, the rate of adsorption 

onto the bare surface and the rate of evaporation from the first layer of adsorbate are 

equal, which yields the following equation: 

              (6.2)  

where ka and kd are respectively the rate constants for adsorption and desorption, and P 

is the partial pressure of the adsorbate (gas). This equation can be rearranged and the 

adsorption equilibrium constant K (also called Langmuir constant) is defined such as: 

  

   
 
  
  
     (6.3)  

The commonly quoted form of the Langmuir isotherm is then: 

 
  

 

  
 

  

    
 (6.4)  

The Langmuir model is a good fit for Type I isotherms which are characteristic of true 

microporous adsorbents such as molecular sieve. At low pressures, this isotherm can be 

reduced to a linear form (or Henry’s law form): 

 
  

 

  
    (6.5)  

6.1.3.2.2 The BET equation 

The four assumptions on which the Langmuir model is based are not always correct. 

This is especially true when it comes to limiting adsorption to one monolayer of 

adsorbate. Indeed, for non microporous surfaces (e.g. silica gel), a large proportion of 

pores can accommodate more than one molecule. In this case, multilayer adsorption is 

occurring and the formation of layers n>1 starts well before the completion of the first 

monolayer. This can be seen for instance on isotherms of type II and IV (Figure 6.3), 

where the point of inflexion corresponds to the filling of the first monolayer.  

The problem of multilayer adsorption is addressed by the BET isotherm (Brunauer 

1938), which most useful form is 

  

       
 

 

   
 
     

   
 
 

  
 (6.6)  
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where PS is the saturation vapour pressure of the adsorbate, and c is the BET equivalent 

of the constant K we used in the Langmuir equation. It represents for each layer the ratio 

of rate constants for adsorption and desorption. The BET theory assumes that c is 

constant across layers for a given temperature. Like the Langmuir theory, it also assumes 

that there is no interaction between neighbouring molecules of adsorbate. 

This expression has the general form of a type II isotherm (Ruthven 1984), but c and qm 

can be chosen so that it can fit any of the isotherms types II to V included (Crittenden & 

Thomas 1998). 

6.1.4 Rate of adsorption 

As mentioned previously, water adsorption by desiccants is done by physisorption. The 

Van der Waals forces occurring have very small energy barriers to overcome. The 

bonding should therefore normally be extremely rapid. However it has been noted that 

different types of transport resistances limit this rate significantly. These different types, 

inter and intraparticle, occur in series (Crittenden & Thomas 1998).  

The main resistance identified is the limit imposed to the transport of gas to the surface 

available for bonding within the porous structure of the adsorbent. This type of 

intraparticular transport resistance corresponds to diffusion in the porous material. It 

includes the following which, when present, occur in parallel. 

1. Depending on whether the mean free path of the water molecules is smaller or larger 

than the pores diameter, the diffusion through these pores is either Knudsen 

diffusion (molecular flow) or bulk diffusion (viscous flow) respectively. As many 

desiccants present a range of micro and mesopores (e.g. silica gel), both types of 

transport processes occur, and together they can be described by Fick’s laws of 

diffusion. For Silica gel for instance, the effective diffusion coefficient, representing 

the empirical net diffusion coefficient of the porous medium (Crittenden & Thomas 

1998), was reported to be in the region of 4x10-7 m2.s-1 (Aristov et al. 2006) which is 

about 105 larger than the diffusion coefficient of PEEK. This shows that we are still 

looking at a very fast process. 

2. When molecules are adsorbed, they may also move over the internal surface towards 

other adsorption sites. This surface diffusion phenomenon occurs especially within 

high area adsorbents which have narrow pores, and the magnitude of the effective 

diffusion coefficient is in the range 10-7 to 10-10 m2.s-1 (Crittenden & Thomas 1998). 

3. Diffusion in molecular sieve materials such as zeolites is relatively slow, as the 

adsorbate penetrates the material and its internal channels through molecular sized 

apertures which significantly restrict the entry rate. The associated effective diffusion 

coefficients are in the range 10-13 to 10-15 m2.s-1 (Crittenden & Thomas 1998). 
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There is also interparticular resistance occurring and restricting the physical adsorption of 

the adsorbate to the adsorbent. This type of resistance is present in series with 

intraparticular resistance. 

Each of the solid particles of adsorbent is surrounded by a layer of stagnant fluid. This 

thin fluid boundary layer acts as a transport resistance to the attachment of the adsorbate. 

Differences in concentration and temperature between the external surface of the particle 

and the bulk fluid are the driving forces which then define the rate of adsorption. For 

this reason, this phenomenon is referred to as interparticle mass and heat transport 

(Crittenden & Thomas 1998) 

 

NB: Parts of the following sections have been published in (Dahan et al. 2013) 

6.2 Selection of an appropriate desiccant 

In order to select the most appropriate desiccant to use in an implant cavity, the water 

adsorption of three types of desiccants was recorded over time. The desiccants tested 

were silica gel, molecular sieve, and ‘Thirsty Vycor’ porous glass (composed of 96% 

silica). These were dried under vacuum (70 mbar) according to manufacturers’ 

specifications: 

 

Type of 
desiccant 

Manufacturer’s 
designation 

Regeneration method 

Silica gel 
BDH® Silica Gel Prod. 

30063 
2 hours at 130oC 

4A Molecular 
sieve 

Multisorb Technologies 
Skavenger™ Preform 

1 hour at 130oC + 1 hour at 250oC 

Porous Glass 
Vycor® Brand Porous 

Glass no. 7930 

Cleaning with Hydrogen Peroxide at 
90oC + 1 hour at 60oC + 1 hour at 

180oC 

Table 6-5 Regeneration conditions for desiccants 

 

It must be noted that different conditions of drying were also tested (shorter times, or 

higher temperatures than specified) and impacted negatively on the adsorption capacity. 

It is therefore important to stay in that range of parameters when drying the desiccants. 

After drying, the desiccants were placed at ambient conditions (21oC, ca. 45% RH) on a 

precision balance (Sartorius BP211D – Precision 10-5 g) and their weight was measured 

over time. The results can be observed on Figure 6.4, showing the water adsorption (the 

ratio ‘mass of water adsorbed/mass of dry desiccant’) over time. 
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As can be seen on the graph, for these particular conditions of pressure and temperature, 

Thirsty Vycor adsorbs up to 5% of its dry weight, molecular sieve 17% and silica gel 

more than 26%. These results can be compared to the theoretical isotherms for these 

types of desiccant as shown on Figure 6.5 (data found on literature (Desiccare Inc. 2010), 

not specific to these particular brands of desiccants, apart from Thirsty Vycor). 

According to these adsorption isotherms, at 45% RH, Thirsty Vycor should adsorb 

around 10% of its dry weight in water, molecular sieve up to 22%, and silica gel 27%.  

 

Figure 6.4 Water adsorption vs. time at 21oC and 50%RH 

 

Figure 6.5 Adsorption isotherm at 25oC for silica gel, molecular sieve and Thirsty Vycor desiccants 
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For silica gel, the results are therefore in very good accordance with the data shown on 

Figure 6.5. The values for molecular sieve and Thirsty Vycor are below expectations, 

which could be due to their short time constant. The time used to transfer the sample 

from the vacuum oven and starting recording the data (ca. 1-2 minutes) could see the 

desiccant adsorbing the missing amount of water. Other causes could include incomplete 

drying, or samples not performing as well as generic specifications. Adsorption sites 

destroyed by heat could be another explanation. 

At any rate, it is clear that silica gel is the best desiccant for this application, as it can 

theoretically adsorb up to 33% of its dry weight in water at 60% RH and 25oC. The 

previous experiment shows that the performance is in good accordance with the theory, 

and that the cavity should be closed as soon as the desiccant is dry. The desiccant would 

otherwise very quickly adsorb significant amounts of water from the surrounding air and 

its capacity to keep the cavity dry would be reduced. 

Molecular sieve could also be a suitable desiccant for this application, although its 

capacity is not as large as for silica gel. Thirsty Vycor however has a very limited capacity 

and will only start adsorbing significant amounts of water (around 25% of dry weight) 

between 60 and 100% RH, which makes it unsuitable for our application. 

6.3 Influence of the temperature on the adsorption capacity 

The tests and isotherms we have looked at so far were performed at 21oC and 25oC, but 

we need to look at how the desiccant will behave at higher temperatures. There has been 

extensive testing of silica gel desiccants in the literature, and we can use this data to see 

whether the temperature influences the adsorption capacity of our desiccant. 

Figure 6.6 is reproduced from (Ng 2001) and plots the water adsorption by the desiccant 

as a function of the absolute pressure of water vapour. 

This shows that for a given water vapour pressure, the water adsorption is highly 

dependent on the temperature. Data can be extracted from this graph to plot the 

evolution of the water adsorption as a function of the relative humidity. This is plotted in 

Figure 6.7 and shows that the temperature has in fact  a negligible influence on the water 

adsorption by silica gel for a given relative humidity level. We can therefore use the 

isotherms obtained in the previous section (around 20-25oC) in further experiments at 

higher temperature (37oC). 
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Figure 6.6 Isotherm data for Type 3A silica gel - from (Ng 2001) 

 

Figure 6.7 Isotherm data for 3A silica gel as a function from the relative humidity (data from (Ng 2001)) 
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6.4.1 Calculation method 

For traditional packages made of metal or ceramic, the enclosure material is not porous. 

The only way water can permeate the package is through leak channels, often in the seal 

(see section 2.5 Flow of gas in and out of sealed packages). Unlike polymers such as 

PEEK, the walls of these packages cannot store water. The RH level in the cavity is 
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When using a desiccant, the lifetime of these packages can be calculated by multiplying 

the lifetime of the package without desiccant by the ratio  

  
                                                 

                                                      
 which can reach up to 5000 (Singh 

et al. 2001).  

However this method cannot be used in the case of a polymer package. This is because 

the humidity level in the cavity will only rise when it is inferior to the level in the PEEK 

walls and the desiccant. As long as these elements can absorb and adsorb water 

respectively, they keep the RH level in the cavity low. We can also understand from here 

that the effect of a desiccant in this type of ‘porous’ package is less than in traditional 

packages, which are much less permeable and have walls that cannot store water. 

It is possible to calculate the lifetime of the package incorporating desiccant using the 

method described in section 3.3 (A new calculation method for polymer packages with 

walls of varying thickness/properties.), which is repeated here, with a slight change to 

account for the presence of the desiccant. This desiccant is accounted for by the 

presence of another capacitance, CD, placed in parallel with the capacitance CV 

representing the package cavity (see Figure 6.8).  

(1) For each element (wall, seal, etc.), we calculate the RP and CP components using 

equations (3.8) and (3.9),    
 

  
 and    

   

 
 respectively. 

(2) The equivalent RP and CP for the package can be found using equations (3.10) and 

(3.11),         
 

   
  and            respectively. 

(3) The time constant of the system is calculated with the following equation: 

                     (6.7)  

where CD is the ‘capacitance’ associated with the desiccant. 

(4) Finally, the RH level in the cavity at any time t is found using equation (2.15),  

                     
 
 

   

To find the capacitance of the desiccant CD, we first establish the solubility of water 

vapour into the desiccant SD, the same way we do with any type of porous material (see 

Equation (2.22)). 

 

   
      

          
 
            

          
        

        
           

     
      

 (6.8)  

and the capacitance CD is: 
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          (6.9)  

where VD is the volume of the desiccant. CD then corresponds to the volume of water 

which can be stored in the desiccant at 1 bar. As we will see later, the use of this method 

is highly dependent on the type of desiccant used (i.e. constant capacitance? Linear/non-

linear?) and it is not to be expected to be valid for all types of adsorbents. 

 

Figure 6.8 moisture ingress through a PEEK package containing desiccant - Electrical analogy 

6.4.2 Preliminary experiment – amount of water adsorbed by silica gel at high 

humidity levels 

Unlike molecular sieve, which adsorption capacity does not evolve past 8 – 10% RH (see 

Figure 6.5), the adsorption capacity of silica gel is strongly dependent on the surrounding 

humidity level. Preliminary experiments were led to assess the amount of water 

ab/adsorbed in the body of a PEEK capsule and the silica gel desiccant respectively. 

These PEEK capsules were placed in water at 37oC, and then weighed periodically with a 

10-5 g accuracy and the weight gain was averaged for each set of tests (n=3).  

The first batch of capsules contains no desiccant. The other set contains 87 mg of silica 

gel desiccant, which, when dried, comes down to 70 mg (20% adsorption capacity at 

ambient conditions – see Figure 6.5).  This amount of desiccant occupies ca. 6% of the 

volume cavity.  

The water vapour mass gain from each package is presented in Figure 6.9, which shows 

that the package without desiccant absorbs about 9 mg of water at saturation, whereas 

the package with desiccant gains 28 mg. The amount of water in the cavity is expected to 

be negligible (ca. 0.05 mg), and therefore it can be deduced that the desiccant adsorbs up 

to 19 mg of water at saturation. This corresponds to 27% of its dry weight, which is less 

than expected from the isotherm in Figure 6.5. This could be due to any of the reasons 

mentioned in section 6.2 - Selection of an appropriate desiccant.  

As the true value for water adsorption by the desiccant, it will be the one used for the 

calculation of the predicted time constant and validation of the model. 
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Figure 6.9 Water mass gain from packages 

6.4.3 Calculated lifetime  

When using molecular sieve or silica gel desiccant, values for SD and CD can be found 

using Equations (6.8) and (6.9). For 70 mg of dry silica gel and an adsorption capacity of 

27%, we find SD = 274 and CD = 26.6 cm3. Using these values as well as those previously 

calculated in Table 3-1, which are reported in Table 6-6, we find a predicted time 

constant of 75.5 days. Similarly, for 4A molecular sieve desiccant, SD= 149, and 

CD=16.5 cm3. The predicted time constant for this package is then 48.6 days. 

Package Element 
Top 

+Bottom 
Sides Seal Desiccant 

Material 
PEEK 

OPTIMA 
PEEK 

OPTIMA 
Cyanoacrylate 
(Loctite 4061) 

Silica Gel 

Thickness d (cm) 0.10 0.20 0.23 N/A 

Surface area A (cm2) 5.09 3.56 0.03 N/A 

Solubility S 
(cm3/cm3) 

9.17 9.17 32.4 356 

Diffusion D (cm2..s-1) a8.20x10-9 a 8.20x10-9 b1.08x10-8 N/A 

Permeation K 
(cm2..s-1) 

7.52x10-8 7.52x10-8 3.50x10-7 N/A 

CV (cm3) --------------------------------1.60--------------------------------- 

CP (cm3) 2.33 3.27 0.13 CD= 34.5 

RP (s.cm-3) 2.62x105 7.47x105 1.9x107 N/A 
Values for the solubility coefficients were calculated using the water absorption and the density of the material (Greenhouse 2000). 
Values for the diffusion coefficients were taken from the literature for similar materials (a(Grayson & Wolf 1987) and b(Braden 

1964)) but are not specific to the materials we used, as those values were not available. 

Table 6-6 Values used for calculation of moisture ingress 
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6.5 Experimental results 

Two sets of capsules (n=3) with desiccant were placed in water at 37oC and the RH level 

is recorded over time. Two types of desiccant are used: molecular sieve and silica gel (see 

Figure 6.10). The quantities of desiccant are those described in the calculations section.  

 

Figure 6.10 Molecular sieve (top) and silica gel (bottom) desiccant in PEEK capsules 

6.5.1 Using molecular sieve desiccant 

The results for the experiment with molecular sieve are presented in Figure 6.11. 

 

Figure 6.11 RH level in PEEK capsule with molecular sieve desiccant 

From this graph we can see that it takes 33 days for the RH level to rise to 63%. The 

progression follows what is expected from the isotherm. Molecular sieve has a high 

capacity at low humidity (see Figure 6.5), and therefore the RH level remains low as long 

as the desiccant has not reached its maximum capacity. After this, the humidity rises 

normally in the cavity. However, the actual lifetime (33 days to reach 63% RH) is quite 
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far off the lifetime prediction of 48 days (32% accuracy). Because of the shape of the 

increase, we can also see that it is not appropriate to talk about ‘time constant’ in this 

case. 

6.5.2 Using silica gel desiccant 

The results are presented in Figure 6.12. 

 

Figure 6.12 RH level in PEEK capsule with silica gel desiccant 

For silica gel, the plot looks very different. The adsorption capacity is highly dependent 

on the humidity level (see Figure 6.5), so the RH is constantly rising, but at a slower rate. 

The experimental lifetime obtained is 73.5 days, which was very well approximated by 

calculation (75.6 days – 2.8% accuracy). 

6.5.3 Comparison and validity of the calculation method 

The influence of desiccant on the humidity rise in the package can be observed and 

compared on Figure 6.13, which displays results for molecular sieve, silica gel, and a 

regular capsule without desiccant. The results are summarised in Table 6-7. 

Parameters 
Predicted time 

constant 
Real time 
constant 

Accuracy of 
prediction 

No desiccant 16.3 days 15.9 days 2.4% 

4A molecular sieve  
(73 mg dry) 

48.6 days 33 days 32% 

Silica gel (70 mg dry) 75.6 days 73.5 days 2.8% 

Table 6-7 Time constants - summary of results 
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Figure 6.13 Influence of desiccant type on RH level 

As mentioned previously, we can see that when using molecular sieve, the humidity 

remains low until full capacity is reached, as after this the RH level increases at the same 

rate as for the capsule without desiccant. The lifetime prediction however turned out to 

be not very accurate (32%). At best it predicted the order of magnitude of the lifetime. 

When using silica gel, we obtained a more linear response, with a more accurate lifetime 

prediction (2.8% accuracy). 

These results show that the validity of this calculation method is highly dependent on the 

type of desiccant used and the isotherm type. The model is relatively appropriate for 

isotherm types II to V, but not really for type I isotherm (see Figure 6.3), unless you want 

an indication of the order of magnitude of the lifetime, which it can still provide. The 

model still uses the correct adsorption capacity; it is the way it considers the RH rise 

which does not correspond to reality, especially for desiccant exhibiting a type I isotherm 

behaviour such as 4A molecular sieve. 

Indeed, the calculation model supposes an inverse exponential increase of the RH level 

inside the cavity (following equation (2.15)), as it is the case when no desiccant is present. 

However, the shape of this increase is highly dependent on the type of desiccant used. A 

molecular sieve desiccant for instance, which exhibits high adsorption at low RH level, 

would keep the RH level low until it has reached full adsorption capacity, and would then 

allow the RH level to rise as if no desiccant was present. So if we look at the electrical 

analogy (see Figure 6.8), CV only starts charging once CD is fully charged, which is a 

different, more complicated model altogether. This model would be similar to that of a 

battery charger, where current flows to the battery to be charged (CD) until it is full, after 

which the current is switched to another path, CV. 
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Silica gel on the other hand, has increased capacity at higher RH level. In that sense the 

model we use is also inaccurate. In this case CD really is a capacitor with a non linear 

capacitance (ability to store water depends on the RH level), which would be dependent 

on the voltage across CV (i.e. the humidity in the cavity). However, because this is much 

closer to the model we use and the capacity of the desiccant evolves without latency, it 

still provides a very good estimation of the lifetime.  

6.6 Maximum lifetime achievable using a desiccant 

We can see from Figure 6.13 that using a desiccant offers a significant improvement in 

lifetime: 3-fold for molecular sieve, and 7-fold for silica gel. The maximum lifetime 

obtained of 73 days corresponds, as mentioned in a previous section, to an arbitrary limit 

at which we consider the risk of failure starts appearing. In practice our humidity sensing 

circuit enclosed in the package was still working after 120 days when we stopped the 

experiment. This has been true of every capsule experiment conducted in this study. Out 

of the 140+ capsules tested in this study, there has been no failure of humidity sensing 

circuits due to exposure to moisture. This tends to prove that any electronics enclosed in 

such a package is actually extremely likely to survive way beyond the designated ‘lifetime’. 

However, this is a safe, conservative working limit, and 73 days is already a useful lifetime 

for a number of clinical and test applications.  

We can now wonder how far this lifetime can be pushed using desiccant and increasing 

the thickness of wall enclosures. Our calculation method can be used to evaluate the 

lifetime of various capsule geometries containing a certain amount of desiccant. For ease 

of calculation, we can compare the time constants, which are very close to our definition 

of the lifetime, as it corresponds to the time it take to reach 1-e-1=63% of the final value, 

i.e. 63% RH. 

In section 5.3, we looked at the influence of the wall thickness on the lifetime of a PEEK 

package. We can now conduct the same analysis with the case of desiccant. What is the 

maximum achievable lifetime when using desiccant?  

So far in the previous tests, the silica gel desiccant tested was occupying ca. 6% of the 

cavity volume. It is however reasonable to assume that 10% of an implant cavity can be 

filled with desiccant. Using this number, we can look at the influence of desiccant on the 

time constant for the theoretical case of a spherical package, using equation (5.11), which 

becomes:  

 
  

         

      
  
 

 

       
  
 

 

    

 
  

  
 

(6.10)  

The results of these calculations are presented in Figure 6.14.  
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Figure 6.14 Influence of the use of silica gel desiccant (10% of cavity volume) on the time constant for a 
cylindrical enclosure 

The first thing to notice is that, unlike the previous case (no desiccant), the cavity volume 

has a major influence on the time constant. This is because the quantity of desiccant 

depends directly on V (10%).  

For a typical implant size cavity V=1.5 cm3, and a constant wall thickness of 3 mm, the 

time constant goes from 69 days when no desiccant is used to 233 days with silica gel 

desiccant.   

When the cavity volume increases further, as more desiccant can be fitted, the time 

constant rises, to 357 days when V=5 cm3 for instance. 

These calculations have used a basis of 10% of the cavity filled with desiccant. However, 

depending on the application, there may be much more space available for desiccant in 

the cavity. Figure 6.15 shows the effect of different amounts of desiccant for a fixed 

internal volume of 1.5 cm3.  

When filling 10% of the volume with silica gel, we have seen that the time constant can 

reach 7.6 months for a 3 mm thick cylindrical enclosure with 1.5 cm3 cavity volume. This 

value goes up to 13 months when using 20% desiccant, and 18.5 months with 30%, 

which would be sufficient for many applications. Some results are presented in Table 6-8. 

 

0

50

100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4

Ti
m

e
 c

o
n

st
an

t 
(d

ay
s)

wall thickness (cm)

5 (des)

1.5 (des)

0.25 (des)

1.5 (no des)

Volume (cm3)



119  

 

 

Figure 6.15  Influence of wall thickness and amount of desiccant on the time constant 

 

Amount of desiccant used V=1.5 cm3 - d= 2 mm V=1.5 cm3 - d= 3 mm 

No desiccant 33.9 days 81 days 

10% 5.3 months 7.6 months 

20% 9.4 months 13 months 

30% 13.6 months 18.5 months 

Table 6-8 Calculated time constant for cylindrical PEEK capsule using varying amounts of desiccant 

 

6.7 Conclusion 

To summarise, we have seen that the lifetime of a PEEK package highly depends on the 

thickness of its walls, as well as whether or not desiccant is used. The lifetime must 

therefore be calculated for each case using the method provided in 6.4.1. However 

Figure 6.14 and Figure 6.15 can be used as a guideline or a first approximation of what is 

achievable. Time constants varying from a couple of months to 1.5 year can be obtained 

using the right combination of wall thickness and silica gel desiccant. This provides a 

useful lifetime for a number of applications which could benefit from cheaper packaging 

options. 
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Chapter 7 Prolonging the lifetime using a thin film coating 

In this final experimental chapter, the main vacuum deposition techniques are first 

reviewed, before a range of coating techniques and materials are tested. It is found that 

most PVD films fail due to high residual stress and the growth of a porous morphology, 

which can be alleviated to some extent by the use of a lacquer prior to deposition. ALD 

also proves to be effective in reducing moisture permeation by a factor of 2.3. 

7.1 Vacuum deposition techniques – Literature review 

Coatings are generally used to improve the surface properties of materials, such as 

biocompatibility, water wettability, adhesion properties (using high surface energy 

coatings), corrosion resistance, wear and scratch resistance. They can also be used to give 

new properties to the substrate on which they are applied, such as photo sensitivity or 

electrical conduction. A method to reduce the water permeability of PEEK could be to 

apply a coating to its surface.  

Coating PEEK with hydroxyapatite and/or titanium has been investigated and applied 

successfully previously for orthopaedic implants (Ha, Kirch, et al. 1997; Kurtz & Devine 

2007; Ha, Eckert, et al. 1997). This was done using particulate deposition techniques 

such as vacuum plasma spray (VPS), which produces 10-50 μm thick porous coatings 

(Pawlowski 2009), in order to improve osteoconductivity. In our case, porosity is 

obviously to be avoided. On top of producing porous coatings, VPS has been reported 

to increase the porosity of PEEK, as overheating PEEK can lead to formation of holes 

and voids due to viscous flowing above the glass transition temperature (oral 

presentation by Eurocoatings S.P.A. at the 2012 World Biomaterials Conference in 

Chengdu, China).  

There is a very wide range of coating processes available, depending on the application 

and the materials involved. Because of the telemetry system used in our experiments, 

having too thick a coating may affect power and data transfer (see 4.1.4 Attenuation 

issues), so our investigation will be limited to thin films of less than 5 μm thick. The 

following section provides an overview of the main thin film vacuum coating techniques 

which may be useful to improve the barrier properties of our material. 

7.1.1 Physical vapour deposition (PVD) 

In physical vapour deposition (PVD), the material to be deposited is vaporised, then 

transported while in gas phase, and deposits on the substrate by condensing on its cold 

surface, regaining a solid form.  There are no chemical reactions involved in PVD (unlike 

in the case of reactive sputtering). This is a purely physical process, hence its name. 

There are many ways to vaporise the deposition material, which determine the type of 
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PVD. In these methods, the coating material is vaporised either by evaporation or 

sputtering. We can briefly review the main PVD techniques available. 

7.1.1.1 Evaporation sources 

Before the vaporised atoms can be deposited on a substrate, they have to be removed 

from a source. When the removal process consists in thermally heating the source 

material, we talk of evaporation. This is used for instance to metallise large polymer films 

(crisps bags, helium balloons, etc.). Evaporation is generally realised under high (10-9 bar ) 

or ultra high (10-12 bar) vacuum, in order to minimise the probability of the evaporated 

atoms to collide with other particles before condensing at the surface of the substrate to 

be coated. It is a ‘line-of-sight’ process (Mattox 1998). If they did not have this long 

mean free path, the particles would lose energy by scattering and the deposition rate 

would drop significantly. The other purpose of the vacuum is to avoid any reaction 

between the species to deposit and potential contaminants, except in the case of 

‘reactive evaporation’ which can be used to form compound films and deposit oxides 

or nitrides for instance (reaction of the deposition material with oxygen and nitrogen 

respectively).  

Evaporative sources can be separated into two categories: The first category regroups the 

methods in which the gas phase generated is in quasi equilibrium with its source, and the 

second describes the sources which are not (Mahan 2000, p.115). 

The effusion (or Knudsen) cell, as shown in Figure 7.1, is a source in which the coating 

material is heated inside a closed container. The evaporated material is then in 

equilibrium with the liquid phase, and is emitted into the coating chamber (which is 

under a high vacuum) via a small orifice at the top of the container. This allows the 

particles produced to escape the chamber without collisions and with a long mean free 

path (much greater than the orifice diameter). The flow generated is therefore ‘molecular’ 

(see 2.5.1 Viscous, molecular and diffusive flow), and is called ‘molecular beam’. This 

gave the name to the PVD technique called ‘molecular beam epitaxy’.  
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Figure 7.1 Quasi-equilibrium evaporation source - The effusion cell 
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The second category of evaporative sources, non equilibrium sources, is much broader, 

and describes those sources where the liquid evaporant is in a large, low pressure volume 

and there is therefore no separation between the source and the coating chamber. 

Examples of nonequilibrium sources are presented in Figure 7.2 (a), (b), (c), and (d). 

The crucible source (a) is typically a ceramic cup which is heated by a resistive coil or 

wire. The boat source (b) is usually made of a refractory metal such as tantalum or 

tungsten. A large current is passed through ‘the boat’ and heats it up to allow evaporation 

of the coating material. These last two sources are generally used at low temperature, as 

at high temperature the crucible or boat material might react chemically with the 

evaporant (Spear 1976; Rossnagel 2003). (c) is a simple hot filament source which is 

heated and melts the source material attached to it, emitting particles in all directions. (d) 

represents the electron beam source (EBPVD - also called E-gun evaporator): A 

electron beam is generated by passing a high current through a hot filament (cf. (c)), 

accelerated, and bent at 270o using a magnetic field in order not to interfere with the 

emitted flow of particles. The kinetic energy of the electrons produced is then converted 

into thermal energy and used to locally heat up only the top part of the evaporant 

contained in a water cooled crucible, thus avoiding the potential issue of chemical 

reactions with the container material as described for sources (a) and (b) . The type of 

heating used generally depends on the vaporisation temperature of the source material, 

with resistive heating used mostly below 1500oC, and EBPVD above that temperature 

(Mattox 1998), for the reason described previously. 

Irrespective of the source type, the substrate to be coated is placed in a line of sight of 

the emitted particles, generally between 10 and 100 cm away from the source, and ‘it is 

desired that the mean free path of the evaporant flux exceed the distance to the sample. This reduces in-

flight scattering with the background gas, which can lead to reduced deposition rates’ (Rossnagel 2003). 

In the case of reactive evaporation, where chemical reactions between the evaporated 

species and the background gas are sought, a low vacuum is applied instead of a high 

vacuum. 

There are also variations of reactive evaporation, such as activated reactive 

evaporation (ARE) or partially ionized beam (PIB), where the deposition is altered 

by using a plasma and some ionization respectively. Another form, ion beam assisted 

deposition (IBAD), is shown in Figure 7.3. These techniques offer the added benefit of 

accelerated rates in the compound formation by providing extra energy. 
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Figure 7.3 Ion beam assisted deposition (IBAD) 
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Figure 7.2 Non equilibrium evaporative sources: (a) crucible source, (b) boat source, (c) hot filament 
evaporator, (d) electron beam source (cross section) 
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The last two main evaporation techniques are pulsed laser deposition (PLD) and 

cathodic arc deposition (CAD). PLD is a ‘flash evaporation’ method which consists in 

bombarding the source material with photons in order to evaporate it. This is done using 

a laser which vaporises the top 100 nm of the material surface and creates a plasma 

plume containing the source material under various forms such as ions, molecules, 

atoms, molten globules and clusters (Hubler & Chrisey 1994). The main advantage of 

PLD is its versatility when it comes to the form of source material used. It can be under 

the form of a liquid, solid, powder or as ceramic pellets. However, this technique is not 

suitable for deposition on large areas and its energetic inefficiency restrains its use mostly 

to research purposes (Rossnagel 2003). 

In CAD, the source material is used as a cathode and struck with a very high current, low 

voltage arc. The very high energy present at the point of impact is used to vaporise the 

source material (Martin 1996). Similarly to EBPVD, the arc is bent using a transverse 

magnetic field to avoid interactions with the emitted flux. Cathodic arc deposition can be 

used to form thin ceramic, metallic and composite films. 

Evaporation may however present several problems: film properties may be affected by 

the temperature difference between the hot source and the cooler substrate. A thin film 

is deposited in thermal equilibrium with the substrate, but can then be subject to issues 

related to ‘wetting, nucleation, cluster formation and agglomeration’ (Rossnagel 2003). In contrast, 

this is much less of an issue with sputtering techniques, as the sputtered atoms benefit 

from their large kinetic energy to bond more readily with the substrate surface. 

In cathodic arc deposition, microparticles can be emitted from the source material due to 

the violent nature of the arc, and deposit under the form of droplets, which would affect 

the properties of the film by making it ‘underdense and bumpy’ (Rossnagel 2003). There 

is also a risk in PVD techniques linked to high temperatures, and electron beams tend to 

produce X-Rays which may damage the substrate. Furthermore, if the substrate surface is 

hot, the film can present internal tensile stress because of the difference in thermal 

expansion coefficient between the film material and the substrate material (Birkholz et al. 

2004). The other potential problem comes from the long mean free path of the particles 

and therefore the very directional coverage. Although this guarantees that the deposition 

rate does not drop excessively, it also means that the material may deposit non-uniformly 

on a rough surface, or present shadowing if there are steps in the geometry of the 

substrate.  

7.1.1.2 Sputter deposition techniques 

Sputtering techniques consist in bombarding a target material (the source) with particles 

to dislodge kinetically some of its surface atoms. These atoms are then responsible for a 

‘cascade effect’ by dislodging more atoms deeper below the surface, which will then do 
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the same until all residual energy is not sufficient to dislodge more atoms. The ejected 

atoms are those which are emitted from the target material as a result of this multi-

collision process. These sputtered particles once vaporised can then deposit on the 

substrate. Although the bombarding particles can theoretically be anything (atoms, ions, 

molecules, photon), they are usually an inert gas ion such as argon ions. This is because it 

is easier to create a large flux of ions, and because noble gases have a full outer shell of 

valence electrons, and therefore are less likely to react chemically with other species (the 

ion will be neutralised before hitting the surface (Rossnagel 2003)). Sputtering is typically 

performed under low to moderate vacuum (10-4 to 10-7 bar). The sputtered atoms tend to 

have a shorter mean free path than with evaporation techniques, and as a result 

sputtering generally results in better step coverage. Another important advantage of 

sputtering techniques is that they can sputter very high temperature metals which may be 

difficult to evaporate. The deposition systems typically use either a plasma or an ion 

beam to bombard the target material. 

In diode sputtering, the plasma is created from the gas atoms present (generally argon) 

by applying a voltage across a cathode (the target material) which attracts the positive 

ions and an anode which attracts the electrons in that volume. The plasma thus 

generated, called a diode, contains electrons and ions in the same proportion, as well as 

neutral gas which has a density which is one to three times that of the ions and electrons 

(Rossnagel 2003). Near the cathode target, the ions present in the plasma can be 

accelerated and bombarded onto it, triggering the sputtering process as previously 

described. There are different types of diode sputtering arrangements, the fundamental 

ones using either a DC, an RF, or an RF discharge and a magnetron (Mahan 2000, 

p.153). The DC arrangement uses a DC discharge (current flowing through the low 

pressure plasma). The substrate is the anode and the target is the cathode, as presented in 

Figure 7.5. The typical physical separation between the anode and cathode is a few 

centimetres. RF sputtering uses an RF discharge instead and presents the advantage of 

using lower voltages and pressures, with higher deposition rates.  
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Figure 7.4 DC sputtering 

A magnetron can be used to increase the plasma density by creating a magnetic field B 

perpendicular to the existing electric field E. This magnetic field is therefore parallel to 

the target surface, increases the path length of the electrons in the near cathode region 

and traps them in a closed loop (Hall Effect), which in turn augments the number of 

collisions with the background gas. This results in increased ionisation, higher plasma 

density, as well as enhanced bombardment and deposition rates.  

Another improvement consists in ionising some of the sputtered metal atoms before 

they deposit on the substrate, and therefore deposit metal ions in the film alongside 

neutral atoms (Rossnagel 1998). This is known as Ionised PVD (I-PVD), and is done in 

order to collimate the directional distribution of the metal atoms. 

Although it is possible to coat the substrate by placing it directly within the plasma, the 

geometry (size) of the substrate can be a limiting factor. Moreover, direct exposure to 

plasma can cause damage, for instance by exposing the substrate to high temperatures. A 

solution consists in keeping the plasma within a contained volume (Kaufman 1986), and 

accelerating an ion beam to bombard the substrate within the coating chamber. This is 

known as ion beam sputtering (see Figure 7.5). However this technique presents lower 

deposition rates than magnetron sputtering because the ion beam has a lower power 

density (Rossnagel 2003). As with previous methods, a vacuum (low vacuum – less than 

10-6 bar) is used to increase the mean free path of both the beam ions and the sputtered 

particles, making ion beam sputtering a line-of sight process. As a result, bombarding 

atoms can trigger resputtering of previously deposited particles on the substrate 
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(Hoffman 1990; Bauer 1994). This a general problem linked to sputtering methods 

though, and not just to ion beam sputtering.   

 

Figure 7.5 Ion beam sputtering 

Similarly to evaporation, it is also possible to have reactive sputter deposition by 

introducing in the chamber a species (such as oxygen or nitrogen for example) which will 

react with either or both the target material and the thin film deposited on the substrate. 

7.1.2 Chemical vapour deposition (CVD) 

Chemical vapour deposition (CVD) is another widely used thin film vacuum deposition 

technique. Unlike PVD, the source of depositing material for chemical vapour deposition 

is a gas, as opposed to a solid or a liquid. The gaseous precursors are either reduced or 

decomposed at the substrate surface to deposit the desired atoms or molecules, generally 

forming chemical bond at high temperature (Morosanu 1990; Pierson 1999). As a result, 

the deposited atoms form a stronger bond than those deposited by PVD. There are 

many CVD deposition techniques available, and there is also a wide range of thin film 

materials which can be deposited using CVD. Graphene for instance has been reported 

to be completely impermeable to gases (Bunch et al. 2008; Novoselov et al. 2012). 

Diamond films could also be used for this purpose. However, because of the elevated 

temperatures used (typically between 600 oC and 950oC), CVD of these materials is not 

suitable for deposition on PEEK (Davis 1993; Singh Raman et al. 2012). Nevertheless, 

there is a variation of CVD which uses plasma to ‘activate’ gaseous precursors and 

enhance the decomposition and reaction, allowing the overall temperature to be lowered 

significantly. Plasma Enhanced CVD (also designated as PCVD, PeCVD or PaCVD) 

may therefore be used to deposit a thin film on a polymer substrate provided the 

required temperature is low enough. In order to reach temperatures which would be low 

enough to use with PEEK, a combination of CVD and PVD should be used, and the 

substrate should not be placed directly in the plasma discharge zone.  
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7.1.3 Film growth and properties 

The growth of the deposited film and its properties can be affected by a variety of 

causes, such as particulate contamination (which can generate pinholes), angle of 

incidence of the depositing atoms, as well as outgassing for instance (which can have an 

adverse effect on adhesion and nucleation) (Mattox 1998, p.474). The process of film 

growth can be divided into five stages (Venables et al. 1984; Stowell 1974; Reichelt 1988; 

Mattox 1998): 

A. Condensation and nucleation: The atoms which have reached the substrate 

surface but not yet condensed are called ‘adatoms’, and are mobile on this surface until 

they condense. The substrate temperature, its surface interaction with adatoms (bonding) 

and the energy of the atoms affect this mobility. When they lose energy, they can bond to 

other atoms and condense. This loss of energy can be due to collisions with other atoms, 

chemical reaction with surface atoms, or when they find nucleation sites such as 

impurities or discontinuities for instance.  In order to obtain a dense film, a high 

nucleation density (number of nuclei/unit area) is sought. The nucleation density can be 

improved by various means, such as changing the deposition temperature or rate for 

example.  

B. Growth of nuclei: The growth occurs when more atoms collide with an existing 

nucleus or are directed towards it. 

C. Formation of interface: When the depositing atoms diffuse and react with the 

substrate, there is formation of an interface, which properties influence the adhesion and 

characteristics of the film. Interfacial regions can be qualified as: abrupt, diffusion, 

compound, pseudo diffusion, reactively graded, or any combination of these categories. 

Abrupt interfaces generally occur when there is little or no diffusion into the bulk 

material, as well as a low nucleation density. As a result, a thick film is necessary to 

ensure continuity, and interfacial voids are often present which leads to low adhesion.  

When the film and the substrate materials can, and do, diffuse into each other, there 

is formation of a diffusion interface, which is highly dependent on time and 

temperature.  This produces a graded interface which generally promotes adhesion, 

provided there are no contaminants on the surface (Williams et al. 1986). Diffusion 

interfaces are mostly formed in metallic systems, although there is diffusion of metals 

into polymers during the early stages of the deposition process (Zaporojtchenko et al. 

2000; Faupel F. et al. 1998). However, different materials have different diffusion rates, 

which can cause porosity at the interface and can lead to poor adhesion (Mattox 1998, 

p.490). Compound interfaces are formed when chemical reactions occur at the surface 

alongside diffusion. When more than one material is deposited, the deposition of one can 

start before the deposition of the previous begins, which forms a graded interface. 
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D. Film growth: As nucleation continues, the film is allowed to grow as new 

material is deposited. Film properties such as grain size, surface morphology and film 

density are dependent on this growth. 

E. Changes occurring after deposition: More changes can occur after the 

deposition due to ‘natural’ causes: adhesion of the film can change because of residual 

stress (the relief of residual stress can promote the formation of voids), moisture or 

corrosion for instance. Chemical reactions with the ambient gas can also affect the film 

properties. Post treatments of the film surface, whether it is under the form of thermal, 

chemical, mechanical treatments, as well as topcoats, can also be used to modify the film 

after deposition. 

7.1.4 Adhesion and loss of adhesion 

As we have just seen, film adhesion is very closely linked with those properties which 

influence film growth, namely ‘nucleation, interface formation, film growth, as well as the properties 

of the interfacial materials’ (Mattox 1998, p.651). The loss of adhesion can occur near the 

interface region (either in the substrate or the film) by cohesive failure or in the 

interfacial region by adhesive failure. Depending on the scale, de-adhesion can cause 

pinholes or delamination, and its origin can be mechanical, thermal or chemical (as well 

as electro chemical). There are several factors which influence the quality of adhesion of 

the film to the substrate: 

 The film density and morphology are highly dependent on the way the film 

grows. The columnar morphology is very common with PVD and CVD coatings 

(Mattox 1998, p.497), and may promote or degrade the adhesion properties depending 

on the case. However, the ‘columns’ even when well bonded to the substrate, often 

attach to each other poorly, which makes for a porous coating, and should be avoided 

when trying to improve barrier properties (Prater & Moss 1983). This is the case for 

example with some evaporation techniques where the incident atoms have very little 

energy and mobility, which results in ‘self shadowing’, columnar growth, low density, and 

porosity of the film (Rossnagel 2003). This effect of directionality is also reinforced with 

surface roughness (more showing), as well as when the deposition is ‘line of sight’, which 

is mostly the case of evaporative techniques. Conversely, sputtering techniques, which 

operate at higher pressure, often within a plasma, tend to minimise this effect. 

 Residual film stress, whether compressive or tensile, finds its origins in the 

difference in thermal coefficient between the film and the substrate materials. When it is 

close to the fracture stress, or when an external load is applied, residual film stress leads 

to buckling and is relieved by producing blisters and voids in the case of compressive 

stress (Gille & Rau 1984). Residual internal tensile stress on the other hand produces 

cracks and/or peeling of the film. The highest stresses are generated by high modulus 

materials such as Tungsten (411 GPa) or Chromium (279 GPa) for example, and can 
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cause spontaneous loss of adhesion (Mattox 1998, p.625). This is because these materials 

tend to not deform under stress and therefore ‘store’ it instead. 

 Porosity and pinholes, which are closely related to the columnar morphology 

and particulate contamination, facilitate the diffusion of water or other corrosive 

substances which will in turn affect the adhesion of the film to the substrate. 

 The columnar morphology is not the only one which promotes pinholes and 

porosity. Granular morphology also contributes to the formation of voids, and therefore 

allows de-adhesion to occur (Carcia et al. 2007).  

 Molten droplets deposited can also be preferential sites for the growth of 

discontinuities (nodules). These nodules, which have a poor adherence to the substrate 

can easily give way to pinholes (Spalvins 1974). 

7.2 PVD coating on PEEK 

After reviewing the different types of existing vacuum deposition techniques. We can 

evaluate some of them experimentally in order to gain a better understanding of their 

effect as a moisture barrier, as well as to investigate whether they can be helpful in 

prolonging the lifetime of a package. 

7.2.1 Evaporation coating 

We first coat PEEK with a thin layer of titanium using a PVD technique, and observe 

the influence on moisture permeation. PEEK capsules, as described in previous chapters, 

were coated with a 3 μm titanium thin film using cathodic arc deposition, which is an 

evaporation technique. The result is shown in Figure 7.6. As previously, a humidity 

sensing circuit inside the capsule records the evolution the he relative humidity (n=3). 

The result (averaged) is compared to the result without coating, for two types of adhesive 

joints. The four experiments presented in Figure 7.7 are: 

1. PEEK capsule adhesively joined with Loctite 4061 (Medical grade cyanoacrylate) 

2. PEEK capsule adhesively joined with Loctite Hysol M31-CL (Medical grade 

epoxy) 

3. PEEK capsule with 3 μm thick Ti coating deposited with Cathodic arc 

deposition PVD system (evaporation), adhesively joined with Loctite 4061 

(Medical grade cyanoacrylate) 

4. PEEK capsule with 3μm thick Ti coating deposited with Cathodic arc deposition 

PVD system (evaporation), adhesively joined with Loctite Hysol M31-CL 

(Medical grade epoxy) 
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Figure 7.6 PEEK Capsule with 3 m Ti coating (CAD) 

 

Figure 7.7 Evolution of the RH level in PEEK capsule with and without Ti coating, for two types of adhesive 
joints 

 

The associated time constants are calculated by performing a regression on a linearised 

version of each curve (see 3.4.2 Determining the experimental time constant) and 

summarised in Table 7-1. 

Parameters P-CA P-Ep P-Ti(3μmCAD)-CA P-Ti(3μmCAD)-Ep 

Time constant (days) 16.3 18 11.4 23.5 

Change 
coated/uncoated 

- - -30% +30% 

Table 7-1 Time constants of Ti coated (CAD) PEEK packages 
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The main thing to note here is that the titanium coating produced only a very slight 

improvement in lifetime in one case (+30% when using the epoxy adhesive), and a 

reduction of lifetime in the other (-30% when using cyanoacrylate), which prompts two 

categories of questions: 

 Why does the coating provide barely any improvement? Is it defective or is it all 

the fault of moisture ingress at the joint? 

 Why is there a difference between the cyanoacrylate and the epoxy? Can this 

account for the reduction in lifetime? 

We can first look at what happens at the joint. The experiment with the cyanoacrylate 

joint suggests that there is increased diffusion at the joint. Indeed, even if the coating was 

completely porous, the lifetime should be identical to that of the uncoated package. As it 

is shorter, the most likely explanation is that there is more moisture ingress at the joint. 

This phenomenon has been previously observed when Zanni-Deffarges studied the 

diffusion of water in bulk and in joints (Zanni-Deffarges 1995), and based his findings 

on a study of moisture ingress in composite materials (Bonniau & Bunsell 1981), where it 

is shown that ‘water enters the system along the interface between matrix and fibre’. On this basis, 

he offers a possible explanation for this enhanced diffusion, where two mechanisms 

favour water ingress: 

1. ‘Regular’ diffusion though the thickness of the adhesive 

2. Water ‘seeps or spread close to the interface and may then, in turn, diffuse towards the bulk of 

the glue line’ 

A phenomenon of ‘capillary diffusion’ is suggested, where the interface region allows 

water to enter the system by seepage. Zanni-Deffarges imagines the diffusion near the 

metal (Ti coating)/polymer (Epoxy adhesive) transition to be analogous to a wetting 

triple line (see Figure 7.8). 

 

Figure 7.8 Model of diffusion front near the metal/polymer transition (from (Zanni-Deffarges 1995)) 
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The Ti coating is a relatively high energy surface, and the free energy could be quite large 

at the metal (oxides)/’dry’ adhesive interface. As a result, a large interfacial tension could 

favour the water diffusion front progression by ‘pulling’ it. A good analogy given for this 

phenomenon is the wetting front of a liquid spreading on a high energy surface, where 

the surface tension powers the motion. We can test this hypothesis by looking at 

diffusion of moisture into coated capsules where the joint remains uncoated. This is 

presented in Figure 7.9. 

 

Figure 7.9 Effect of metallised joint on PEEK package adhesively joined with cyanoacrylate 

It is very clear here that metalizing the joint area or not has little effect on moisture 

ingress. Looking at time constants, we find 11.4 days for the capsule coated everywhere 

versus 13.4 days for the capsule which is not coated at the joint. Moreover, the coated 

packages actually present a smaller time constant than the uncoated one. These facts 

suggest that there is indeed increased diffusion at the joint, although its effect is fairly 

limited.  However, if we look at Figure 7.10 which presents results for the same 

experiment, but with an epoxy adhesive instead of cyanoacrylate, we can refine this 

analysis further. 
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Figure 7.10 Effect of metallised joint on PEEK package adhesively joined with epoxy 

 

Results are summarised in Table 7-2. 

P-CA 16.3 P-Ep 18 

P-Ti-CA 11.4 P-Ti-Ep 23.5 

P-Ti-no joint-CA 13.4 P-Ti-no joint-Ep 22.3 

Table 7-2 Time constants (in days) for packages coated with 3um titanium (with and without coating at 
joint) 

When an epoxy adhesive is used, we can see that there is very little difference in time 

constants whether the joint remains uncoated or not. Moreover, the time constant of the 

coated capsules in this case (23.5 days) is slightly increased compared to the uncoated 

one (18 days). Nevertheless, the increase linked to the titanium coating remains small 

(30%), and the coating is mostly ineffective as a barrier against moisture. This experiment 

however shows no evidence that the theory of increased ‘capillary diffusion’ is true, and 

that it certainly is not applicable in this case. The lesser time constant observed in coated 

capsules joined with cyanoacrylate (11.4 and 13.4 days) compared with the uncoated one 

(16.3 days), demonstrates that there is increased diffusion at the joint in that case though. 

This can be explained by the metal capsule and lap shear test experiments led in Chapter 

5, which established that titanium joints with cyanoacrylate are degraded very quickly in 

water (see section 5.2.3 for more details). For this reason, future experiments with metal 

coatings will only use epoxy as an adhesive. 
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7.2.2 Reasons for failure 

We can now try to understand why this titanium coating is not effective in reducing 

diffusion of water through the walls. It could be that the coating is inherently porous, or 

that the interface PEEK/metal is degraded by the presence of water for instance. Water 

can degrade the bulk properties (chemical, physical and mechanical) of the adhesive, as 

well as the interfacial adhesive properties. It can also induce dimensional changes which 

may in turn result in additional stress in the deposited film. 

We can first look at the effect of water by placing half capsules directly in water and 

observe the effect on the integrity of the film. Six half capsules (three top and three 

bottom parts) are placed open in water at 37oC to allow direct observation of potential 

delamination. The six parts, coded A, B, C, D, E and F, show various levels of resistance 

for the coating. The first signs of degradation appear on A after 6 days, and then 

gradually develop through time as shown in Figure 7.11. 

 

 

Figure 7.11 Degradation of A 

 

A similar phenomenon is observed with sample E (see Figure 7.12). It is interesting to 

note that the coating here is still present and the titanium does not peel away. Instead, it 

seems that water induces a lack of adhesion between the PEEK and the thin and dense 

Ti layer. 
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Figure 7.12 Degradation of E 

 

Sample D starts to be degraded 

only after 27 days, but in a similar 

fashion to the previous two 

samples (see Figure 7.13). Here 

again, there is still cohesion of the 

Ti layer, but lack of adhesion 

between the Ti layer and the 

PEEK body.  

The other three samples, however, 

stay completely intact after two 

months in water (e.g. sample B in 

Figure 7.14).  

 

Figure 7.14 Sample B 

Figure 7.13 Degradation of D 
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As we have seen in 7.1.4 ‘Adhesion and loss of adhesion’, internal tensile strength in the 

film can result in de-adhesion of the film. Blistering at the surface occurs by buckling 

when there is high residual compressive stress in the film which is relieved. Voids can 

subsequently be formed, as was observed. If there were residual tensile stress, we would 

have seen cracking or peeling of the film instead. The magnitude of the total stress 

depends on the film material and thickness. We obviously look for a thick coating to act 

as a barrier to moisture but it must be kept in mind that there is a trade off as increasing 

the thickness is likely to also increase the internal residual force.  

This effect is enhanced by the presence of water. Water vapour diffusion has been 

reported to degrade the adhesive properties at the interface between a polymer material 

and a metallic film (Venables 1984). After diffusing to the interface, water can hydrolyse 

and destroy the Van der Waals bonds between the film and the substrate. Furthermore, 

we know that the diffusion barrier properties of the substrate material are important. ‘For 

example, one mode of failure of aluminium metallised plastic film is diffusion of water from the 

unmetallised side of the polymer surface’ (Mattox 1998, p.627). It is this loss of adhesion which 

relieves the residual stress in the film and causes blistering and potentially rupture of the 

film. The apparent loss of adhesion might also be due to ‘incomplete contact of the film with 

the substrate surface, or growth effects such as voids’ (Mattox 1998, p.327) during formation of 

the film, which could be caused by shadowing effects (because of machining of the 

surface for instance). 

PVD evaporative coatings in general have been reported to produce ‘non-optimal film 

properties’ such as ‘pinholes, less than bulk density, columnar morphology, high residual 

film stress’ (Mattox 1998, p.326). We looked at the surface of the film with an field 

emission electron scanning microscope (SEM – JEOL JSM7401F) to see if these non 

desirable properties can be spotted. For reference, an SEM view of the uncoated PEEK 

package surface is displayed in Figure 7.15, with a x1400 magnification. 
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Figure 7.15 SEM image of PEEK capsule surface (x1400) 

 

Figure 7.16 SEM image (backscattered e-) of Ti coated capsule (CAD) (x1400) 

 

Figure 7.17 SEM image of Ti coated capsule (CAD) (x1400) 
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Figure 7.16 and Figure 7.17 show similar views of the surface of the Ti coated capsule we 

have tested. These views clearly confirm the presence of nodules. Molten droplets 

(‘spits’) deposited generally exhibit poor adhesion with the substrate and can easily give 

way to pinholes (see dark zones around nodules). 

 

Figure 7.18 SEM image of Ti coated capsule (CAD) (x10,000) 

Further magnification allows the observation (especially on nodules) of what is seemingly 

the columnar morphology we have described in section 7.1.4. Granular and columnar 

boundaries can facilitate gas permeation (Carcia et al. 2007). This is because each column 

can be bonded effectively to the substrate separately without being adequately bonded to 

each other (Prater & Moss 1983). Columnar morphology is therefore generally associated 

with porosity, which in our case is a big issue and can be another explanation as to why 

this coating does not act as an effective barrier against moisture. 

Using a similar evaporation technique, a thin film of a different material is applied to new 

samples. Aluminium is deposited with a thickness of 3 μm (three 1 μm layers 

superimposed). Previous customers of the company which performed the coating have 

reported an increase in barrier properties when a base lacquer is applied prior to 

deposition. This is therefore tested by applying such a pre treatment, stoving the capsule, 

and then performing the Al thin film deposition. The lacquer used was MBASE 045A 

manufactured by Marbo Milan Italy. These packages are shown in Figure 7.19 and the 
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results are plotted in Figure 7.20, alongside the results corresponding to the previous 

experiment with the titanium thin film, for comparison purposes. 

 

Figure 7.19 PEEK capsules with evaporation deposited aluminium thin film - with (bottom) and without 
(top) base lacquer applied beforehand and stoved 

 

Figure 7.20 Evolution of RH in evaporation PVD coated capsules (Al -3 μm) 

The time constant of the aluminium coated capsule is 18.7 days, which is very similar to 

the uncoated capsule (18 days), but actually less than the lifetime of the Ti coated capsule 

(23.5 days). This coating is therefore completely porous and ineffective as a barrier to 

moisture. However, the result of the package with base lacquer applied prior to 

deposition is extremely interesting. The lifetime in this case is 41.7 days, which represents 

an improvement of more than 130%. This operation allowed an increase of the time 

constant by a factor of 2.3. As we have seen, shadowing or step coverage can be 

problematic with evaporation processes, as it affects film growth and can promote 

columnar or granular morphology and porosity. The lacquer can to some extent limit this 
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by smoothing the deposition surface and providing better adhesion properties to the first 

layer of metal deposited, which in turns affects the whole process of film growth in a 

positive manner. This is clearly seen in Figure 7.21 and Figure 7.22 by comparing the 

surfaces of both types of samples. The surface of the lacquered capsule is clearly much 

smoother after deposition than the one where no lacquer was applied. The film is still 

porous, but to a much lesser extent. Some bigger defects also subsist. We can see a 

cracked patch in Figure 7.22, which is presumably due to loss of adhesion and ‘lifting off’ 

of the coating (because of the action of water). The bright reflection on the ‘patch’ 

(which is observed with further SEM magnification in Figure 7.23) is due to electrons 

being conducted away because of this ‘lifting off’. Small dust particles can be also be 

seen. These were trapped when the base lacquer was applied and the metal film was 

deposited on top. 

 

Figure 7.21 SEM image of Al coated capsule (evaporation) without base lacquer (x100) 

 

Figure 7.22 SEM image of Al coated capsule (evaporation) with base lacquer (x200) 
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Figure 7.23 SEM image of Al coated capsule (evaporation) with base lacquer (x1,000) 

 

7.2.3 Sputtering coating 

After trying evaporation PVD techniques, we can look at sputtering and see if the thin 

films produced result in increased barrier properties. A PEEK package is coated with 

Zirconium at a thickness of 1.9 μm (2 stages) using magnetron sputtering (see 7.1.1.2 

‘Sputter deposition techniques’). Results are plotted in Figure 7.24. 

 

Figure 7.24 Evolution of RH in magnetron sputtering PVD coated capsules (Zr – 1.9 μm) 
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The lifetime obtained is 16.7 days, which is shorter than both the coated (3 μm Ti) and 

uncoated capsules. This method is therefore highly ineffective. Upon opening the 

package, we can see a lot of blistering of the film, as can be observed in Figure 7.25.  

 

Figure 7.25 Zr coated PEEK capsule (magnetron sputtering) - blistering of the film 

As was the case for the delamination experiment of the Ti coated capsule, this can be 

explained by high residual compressive stress in the film which is relieved when water 

induces a lack of adhesion at the interface. There is always a trade off between thickness 

of the film, which presumably we want to maximise, and residual stress, which we should 

be looking to minimise. There are recommendations in the literature to limit the 

thickness of high modulus materials such as Chromium, in order to limit residual stresses 

in the deposited film (Mattox 1998, p.645). In the case of PEEK and other polymers 

however, all metallic materials comparatively have a significantly higher modulus, and 

therefore the film thickness should be minimised irrespective of the metal used. 

We can therefore try thinner coatings with different materials. PEEK capsules are coated 

with a thin film of thickness 0.5 μm only (in this case, n=1, because of resources 

available). The process used this time is Argon sputtering (see 7.1.2), and the film 

materials used are aluminium, titanium, and chromium. Those capsules are presented in 

Figure 7.26, and results are plotted in Figure 7.27. 

 

Figure 7.26 Ar sputtering of PEEK capsules with (from left to right): Al, Ti, and Cr (500nm thickness) 
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Figure 7.27 RH in Ar sputtering PVD coated PEEK capsules (Al, Ti, Cr – 0.5 μm) 

 

Results are summarised in Table 7-3. The aluminium coating provides a 39% increase in 

time constant compared to the uncoated package, whereas the chromium coating sees an 

increase of 10% and the titanium coating has no effect. Once again, these films failed to 

provide a significant increase in lifetime. Unlike previously though, the film thickness has 

been minimised (0.5 μm) to reduce residual film stress. The main culprit here is the 

porosity of the film, and residual stress in the film is not as much of an aggravating 

factor. 

 

Parameters P-Ep P-Al-Ep P-Ti-Ep P-Cr-Ep 

Time constant (days) 18 25 17.9 19.8 

Change 
coated/uncoated 

- +39% -0.6% +10% 

Table 7-3 Time constants of Ar sputtering PVD coated PEEK packages (Al, Ti, Cr – 0.5 μm) 

 

This is confirmed by Figure 7.28 which shows an SEM view of the surface of the Ti 

coated capsule with a x20,000 magnification. The granular/columnar morphology is 

clearly visible here, and the grain/columns have a width of about 0.1-0.3 μm. This is 300-

1000 times the size of water molecules, which explains the porosity of such films, as the 

space between poorly bonded structures is sufficient for water molecules to diffuse 

through.  
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Figure 7.28 SEM image of Ti coated capsule (sputtering) (x20,000) 

Finally, we can test the effect of multi-layer and compound films on the barrier 

properties of the film. Using Ar sputtering, 2 sets of PEEK capsules were coated with a 

seed layer of 0.05 μm of titanium for one, chromium for the other, followed by 0.45 μm 

of gold for both. The capsules are displayed in Figure 7.29. Another set of capsules is 

coated with a 2 μm thick film of nichrome using Ar sputtering. The results from these 

experiments are plotted in Figure 7.30 and summarised in Table 7-4. 

 

Figure 7.29 Ar sputtering of PEEK capsules with (from left to right): Ti+Au and Cr+Au (500 nm thickness) 
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Figure 7.30 RH level in Ar sputtering PVD coated PEEK capsules (Ti+Au, Cr+Au - 0.5 μm, NiCr – 2  μm) 

 

Parameters P-Ep P-Ti-Au-Ep P-Cr-Au-Ep P-NiCr-Ep 

Time constant (days) 18 20.2 15.9 25 

Change 
coated/uncoated 

- +12% -12% +39% 

Table 7-4 Time constants PVD coated PEEK packages (Ti+Au, Cr+Au - 0.5 μm, NiCr – 2 μm) 

 

The NiCr coating provides a 39% increase in time constant compared to the uncoated 

package, whereas the titanium-gold coating sees an increase of 12% and the chromium-

gold shows a 12% decrease. None of these succeed in providing effective barrier 

properties against moisture, for the same reason as previously. Figure 7.31 shows that the 

titanium gold film also exhibits granular morphology.  

In multilayer systems, poor adhesion can also occur if the first layer deposited is 

contaminated before the second layer deposits. The example of Ti-Au metallisation is 

given in the literature (Mattox 1998, p.645), where titanium can be oxidised, in which 

case the subsequent Au layer would not adhere well. 
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Figure 7.31 SEM image of Ti-Au coated capsule (sputtering) (x20,000) 

 

7.3 Plasma enhanced CVD 

As reported in the literature review section of this chapter (see 7.1.2), chemical vapour 

deposition can also be used to deposit thin films at temperatures which are compatible 

with PEEK.  

In a first instance, capsules are coated using PVD (titanium, 1 μm), followed by plasma 

assisted CVD (PaCVD) of Diamond-Like Carbon (DLC) (2 μm). It is a film of 

amorphous carbon (a-C) which has a number of properties similar to those of bulk 

diamond, such as inertness, hardness or coefficient of friction, as well as the same cubic 

chemical structure (Monaghan et al. 1993). In order to get optimum properties, CVD at 

600 – 900oC is generally used. In our case however, PaCVD is used, close to 100oC. 

Although it ensures that this is compatible with our substrate material, it can also 

potentially affect the properties of the deposited film. 

Another set of PEEK capsules is coated with a thin film of siloxane (SiOx) (1 μm), using 

PaCVD. The result is a transparent coating which is presumably quite uniform and 

continuous, as suggested by Figure 7.32, which shows how it refracts incident light and 

produces a ‘rainbow effect’ on the surface. 
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Figure 7.32 PEEK capsule coated with SiOx by PaCVD (1 μm thickness) 

The two types of packages produced are tested in the usual fashion, and results are 

plotted in Figure 7.33. Results for both packages are extremely similar, and the time 

constants found are 20.8 and 20.9 days. 

 

Figure 7.33 RH level in PaCVD coated PEEK capsules - Ti (1 μm)+DLC (2 μm), SiOx (1 μm) 

It is interesting to notice that both DLC and SiOx are hydrophobic. However, this does 

not affect the diffusion of gaseous molecules of water, which are very small (less than 0.3 

nm) and which flow is driven by the pressure difference between the two sides of the 

package walls. Figure 7.34 shows the peeling off of the DLC coating because of the 

action of water. The peeling off and curling of the film this time is due residual internal 

tensile stress (Laugier 1979). This can be attributed to the low deposition temperature, 

which generates a high amount of residual stress. (Monaghan et al. 1993) 
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Figure 7.34 DLC coating peeling off 

Figure 7.35 presents SEM images of the siloxane coated surface with x100 and x20,000 

magnification. The former shows that the film is smoother than what was obtained with 

PVD coatings (see Figure 7.21), while the latter refines this to show discontinuities in the 

film at a smaller scale, explaining the failure to decrease significantly the transmission rate 

of water through the package walls. 

 

Figure 7.35 SEM image of SiOx coated capsule (PaCVD) (x100, x20,000) 

PaCVD grown SiOx thin films on other polymers have also been reported in the 

literature to exhibit pinhole densities which are compatible with our observations (Carcia 

et al. 2007; da Silva Sobrinho et al. 2000). As with other vacuum thin film coatings, 

permeation occurs through pinholes, pores or defects. 

7.4 Other coating techniques 

After testing PVD and PECVD coatings, we can now look at a few other deposition 

methods and assess their impact on permeability. 

7.4.1 Atomic Layer Deposition of alumina 

Atomic Layer Deposition (ALD) is a variation of CVD, which provides very fine control 

over the film thickness. In ALD, two precursors are deposited alternately, and produce a 

self limiting reaction which results in the formation of the wanted compound. This 
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sequential reaction of the precursors with the substrate surface is the main difference 

with CVD. The substrate surface adsorbs one of the precursors until saturation, before 

the second precursor is introduced. Between the depositions of each species, all excess 

and non reacted material is purged from the system using pulses of an inert gas. With 

each cycle, the same amount of material is deposited, and the film thickness can be 

controlled very accurately. Moreover, this technique has the advantage of producing 

highly conformal and uniform coatings (Carcia et al. 2009). This is of particular interest 

when coating a machined polymer surface such as that of our PEEK capsule. ALD also 

offers the advantage of a low deposition temperature (Groner et al. 2004), which was the 

limiting factor to the use of CVD.  

As we have seen in the previous section, PVD and PECVD films either have pinholes or  

granular/columnar morphologies which allow water vapour permeation. ALD deposition 

of a 25 nm thick alumina (Al2O3) film on a polyester film has been reported to reduce the 

water vapour transmission rate by a factor of up to 105 compared to the uncoated 

polymer film alone (Carcia et al. 2007). Other studies report an improvement of three 

orders of magnitude (George 2010). This is because ALD films are highly conformal 

(Ritala et al. 1999) and nearly pinhole-free (Groner et al. 2002). 

In order to deposit Al2O3, the substrate is exposed sequentially to trimethylaluminium 

[Al(CH3)3] (TMA) and water in an ABAB... binary reaction sequence (Dillon et al. 1995). 

This binary reaction is: 

                            

For this experiment, a 40 nm Al2O3 film is deposited on PEEK capsules of uniform 

thickness (2 mm – see Figure 7.36) using ALD, and the capsules are tested in the usual 

fashion. The evolution of the humidity inside the package is plotted in Figure 7.37, 

alongside the RH level in an uncoated PEEK capsule and in a solid titanium capsule (see 

5.2.3.2 Water diffusion through the joint only – Metal capsules) for comparison. All these 

packages are sealed using Loctite Hysol M-31CL (epoxy). The time constants are 

summarised in Table 7-5. 
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Figure 7.36 Cross section of cylindrical PEEK capsules used for PVD/PaCVD tests (Type A -left) and ALD 
tests (Type B - right) 

 

Parameters 
PEEK - 

Epoxy seal 

PEEK - Al2O3 
ALD coating -

Epoxy seal 

Titanium – 
Epoxy seal 

Time constant (days) 42.8 101 458 

Change coated/uncoated - +136% +970% 

Table 7-5 Time constants of uncoated and ALD PEEK packages, coated PEEK packages, and titanium 
packages 

 

Figure 7.37 Evolution of the RH level in adhesively joined titanium and PEEK capsules (with and without 
ALD coating) 

The uncoated PEEK capsule has a time constant of nearly 43 days, and the ALD coated 

package has a time constant of 101 days, which represents an improvement of 136%. 

The ideal case is represented by the adhesively joined titanium capsule (τ = 458 days), 

where water only permeates through the adhesive seal. Although the improvement of 

lifetime when using ALD is significant, it should be much closer to the ideal case of the 

Ti capsule, according to the results previously reported from the literature (George 2010; 

Carcia et al. 2007). 
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One possible explanation for this mismatch could be that the results reported refer to 

deposition on low roughness surfaces such as polymer membranes. Our machined 

PEEK capsules however have a much greater surface roughness, the scale of which is 

greater than the thickness of the Al2O3 film (40 nm). Nevertheless, it has been shown 

before that such ALD films are perfectly conformal even in similar conditions (Ritala et 

al. 1999). This explanation is therefore unlikely to be the main cause of the difference 

between the expected and observed effects. 

The most likely explanation lies in the level of moisture the film is exposed to. While the 

studies which report a 103 - 105 decrease in water vapour transmission rate were done at 

85% RH, other studies report that when exposed to saturated water vapour, the barrier 

properties are degraded significantly after 4-5 days (Dameron et al. 2008; Nahar 2000; 

Nahar 2002): 

 ‘Water exposure on Al2O3 can lead to the corrosion and reconstruction of the Al2O3 film. This 

degradation may lead to the formation of pinholes in the Al2O3 ALD film and result in barrier failure’ 

(Dameron et al. 2008) 

However, the same study reports that this issue can be resolved by using Al2O3/SiO2 

bilayers as SiO2 does not form a hydrate with water and can therefore protect the 

alumina film. 

7.4.2 Electrodeposition with copper 

Electrodeposition, otherwise known as electroplating, consists in using an electric current 

to produce a (usually) metallic coating. The object to be coated is the cathode of an 

electrolytic cell, and is immersed into an aqueous solution containing a salt ‘MA’ of the 

metal ‘M’ to be deposited. The metallic cations ‘M+’ of the salt are attracted to the 

cathode of the cell, and therefore plate the object. The anode is generally made of the 

metal we want to plate, and is used to replenish the solution in metal ions as these are 

progressively deposited on the cathode. Another method consists in using a non 

consumable anode, but the bath must then be periodically replenished with metal ions. 

PEEK is a non conductive polymer, and therefore cannot be used directly as the cathode 

of the electrolytic cell. I used a technique called brush plating in order to electroplate the 

sample. The surface of our capsule must be made conductive beforehand. This is done 

using a conductive ink which is painted onto the surface in successive layers with oven 

baking between each layer.  

According to manufacturer’s specifications, a layer of lacquer is first applied to improve 

adhesion of the conductive ink to the substrate. The first layer of conductive ink, applied 

in a circular motion, is left to dry for 24 hours at room temperature and placed in a fan 

oven at 50oC. A second layer is then applied across the sample and placed in the oven for 
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the same amount of time. Instead of plunging the substrate into a bath, an absorbent 

swab dipped into the copper solution is placed on a carbon electrode (anode). The 

conductive surface to be coated is linked to the negative pole of the power supply with a 

crocodile clip, and the electrode with the swab on top is run through the surface to coat, 

and periodically dipped into the copper solution to replenish it in copper ions. 

However, the copper turns out to deposit very unevenly across the surface, which may 

be due to uneven spreading of the conductive ink during drying and hence differences in 

conductivity. As a result, the layer deposited becomes quite thick by the time all the 

sample surface is coated. This is observed on more than 30 samples, and I did not 

manage to find deposition conditions (supply voltage, amount of solution used, rate of 

replenishing) which allowed a uniform thin film to be deposited. The best and most 

uniform result obtained is shown in Figure 7.38. Unfortunately, none of the capsules 

could be tested in water as the deposited copper layer is too thick to be used with our 

telemetry system and did not allow reading of the humidity level inside the package. 

 

Figure 7.38 PEEK capsule electroplated with copper 

7.4.3 Dip coating with titania 

Titania can be deposited via a sol-gel dip coating method. This is a chemical procedure 

where a colloidal solution (sol) is a precursor, which after hydrolysis and polymerisation 

evolves into a network (gel). The sol is made at room temperature from titanium n-

butoxide, n-butanol, isopropanol, acetonitrile and water. The overall reaction formula is 

                         

After deposition by dip coating, the substrate is then generally calcinated at high 

temperature (500oC) to remove any trace solvent and promote crystallisation (Dunnill et 

al. 2011; Kafizas et al. 2009). PEEK however cannot resist such a high temperature, 

which means that the deposited film will remain largely amorphous. 

The preparation procedure is detailed in (Kafizas et al. 2009). To prepare the sol, 

acetylacetone (2.5246 g, 0.02526  mol) is first dissolved in butan-1-ol (32 cm3, 0.35 mol). 

The purpose of this colourless solution is to moderate the reaction rate (Su et al. 2004). 
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Titanium n-butoxide is then added (17.50 g, 0.05 mol) and stirred for an hour using a 

magnetic stirrer. After this stage, distilled water (3.64 ml, 0.20mol) dissolved in 

isopropanol (9.05 g, 0.15 mol) is added to the solution and stirred for one hour. The 

prepared sol is aged over night and then ready for dip coating. The apparatus used for 

dip coating is shown in Figure 7.39. 

The substrate is dipped in the sol and withdrawn at a steady rate of 0.2 cm.s-1, producing 

a 100nm thick layer at each dip (Kafizas et al. 2009). As mentioned previously, deposited 

TiO2 is generally baked afterwards at 500oC to promote crystallisation and form anatase. 

However this is not possible with PEEK, which has a glass transition temperature of 

143oC. Nevertheless, it is still necessary to bake the samples in order to remove any trace 

of solvent. Samples are baked at 120oC, with the consequence that the deposited films 

remain amorphous. A certain degree of shrinkage of the film is expected upon baking, so 

adding more layers can be beneficial. 3 sets of parameters are therefore tested (n=3): 

1 Single coat + baking at 120oC for one hour 

2 Three successive coats, with one hour room temperature drying between each. 

After all layers are deposited, baking at 120oC for one hour 

3 Three coats are applied, with baking at 120oC for one hour between each 

 

Figure 7.39 Deposition of titania thin films by sol-gel dip coating preparation 

All capsules in this experiment are joined adhesively with Loctite 4061 (cyanoacrylate). 

The results are plotted in Figure 7.40. The corresponding time constants are identical for 

all tested parameters and equal to 13.5 days, which is shorter than the uncoated capsule 

result (15.9 days).  
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Figure 7.40 RH level in TiO2 coated PEEK capsules 

This type of coating is ineffective largely because of the shrinkage which occurs and 

creates large cracks in the coating, as shown in Figure 7.41. This was observed for all 

samples.  

 

Figure 7.41 Microscope view of the titania coating for sample (3) (scale in μm) 

7.4.4 Dip coating with ceramic 

A ceramic coating by dip coating was produced by Invibio Ltd. The thick coatings 

produced (three) are tested in the usual fashion and results are presented in Figure 7.42. 
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Figure 7.42 RH level in ceramic coated PEEK capsules 

The results produced are different for all three samples, which is due to different 

thicknesses of coatings which is not uniform (between 1 and 1.5 mm). The associated 

time constants are 22.5, 31.5 and 38.6 days respectively. Although this may seem like an 

improvement, compared to the time constant obtained for the uncoated PEEK capsule, 

it must be kept in mind that there is an extra thickness of material involved here. 

Calculations show that an equivalent thickness of PEEK would produce a lifetime of 

about 65 days. This proves that the ceramic coating is in fact porous, and even more so 

than the PEEK. This is confirmed by performing a sorption test, where pieces of the 

ceramic coating are dried (120oC, overnight), placed in water at 37oC, and their mass gain 

is recorded periodically with a precision balance (Sartorius BP211D – Precision 10-5 g). 

As can be seen from Figure 7.43, which plots the evolution of this mass gain, the ceramic 

pieces from the coatings absorb up to 1.7% of their weight, which is more than three 

times the absorption capacity of PEEK. This demonstrates the porosity of this coating, 

and also explains the time lag in RH increase in the cavity observed in Figure 7.42. 
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Figure 7.43 Mass gain of ceramic coating in water 

7.5 Summary and conclusion 

In this chapter, we have reviewed and tested a wide range of coating methods in order to 

assess whether the lifetime of our package can be prolonged. The results of these tests 

are summarized in Table 7-6 (20 experiments – n=3 – so 60 capsules were tested overall). 

We have seen that the PVD and PaCVD processes produce films which fail to act as 

effective barrier against moisture. This has been linked to either (or both) failure of film 

adhesion to the substrate due to residual stress, or to the structure of the film itself. 

Residual stress depends on the process used and the thickness of film deposited. We 

have seen that there is a clear trade-off between increasing the thickness of the film in 

order to improve barrier properties, and reducing it to minimise residual stress as well as 

eddy losses for the telemetry. 

Structural problems have been attributed to columnar and granular morphologies of the 

film, which facilitate permeation. The growth of a film with such morphology is 

promoted by particles and surface roughness of the substrate which shadow the arriving 

flux of coating material, therefore influencing film formation.  

Interestingly, we have noticed that the application of a layer of lacquer prior to PVD 

coating significantly mitigates this effect and increases barrier properties by 132%, 

although defects are still present. In all cases however, lateral diffusion between pores 

and pinholes can also be blamed for increased diffusion (Lewis & Weaver 2004).  
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Another notable exception is atomic layer deposition of Al2O3 films which results in an 

increase of the time constant of 136%, although exposure to saturated water vapour 

prevents a much better result.  

Nevertheless, we have successfully identified two methods (ALD and PVD + lacquer) 

which provide a significant improvement in time constant in the context of short term 

implantable electronic devices. 

 

Parameters 
Coating 
method 

Time 
constant 
(days) 

Change in 
time 

constant (%) 

PEEK + CA seal (loctite 4061) - 16.3 -- 

PEEK + Epoxy seal (Loctite Hysol M-31CL) - 18.0 -- 

PEEK + 3 µm Ti + CA seal CAD 11.4 -29.7 

PEEK + 3 µm Ti (except at joint) + CA seal CAD 13.4 -17.6 

PEEK + TiO2 coating (100-300 nm) + CA seal Dip coating 13.5 -17.1 

PEEK+ 50 nm Cr + 450 nm Au + Epoxy seal Ar sputtering 15.9 -11.3 

PEEK+ 1.9 µm Zr + Epoxy seal 
Magnetron 
sputtering 

16.7 -7.2 

PEEK+ 500 nm Ti + Epoxy seal Ar sputtering 17.9 -0.2 

PEEK + 3 µm Al + Epoxy seal Evaporation 18.7 4.2 

PEEK+ 500 nm Cr + Epoxy seal Ar sputtering 19.8 10.2 

PEEK+ 50 nm Ti + 450 nm Au + Epoxy seal Ar sputtering 20.5 14.4 

PEEK + 1 µm Ti + 2 µm DLC + Epoxy seal PVD + PaCVD 20.8 15.6 

PEEK+ 1 µm SiOx + Epoxy seal PaCVD 20.9 16.5 

PEEK + 3 µm Ti coating + Epoxy seal CAD 23.5 31.1 

PEEK + 3 µm Ti (except at joint) + CA seal CAD 22.3 37.2 

PEEK+ 2 µm NiCr + Epoxy seal Ar sputtering 25.0 39.0 

PEEK+ 500 nm Al + Epoxy seal Ar sputtering 25.0 39.3 

PEEK + base lacquer+ 3 µm Al + Epoxy seal Evaporation 41.7 132.1 

PEEK 2 mm  + Epoxy seal - 42.8 -- 

PEEK 2 mm + 40 nm Al2O3- Epoxy seal ALD 101 135.9 

Table 7-6 Coatings - summary of results 
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Chapter 8 Summary, discussion, and future work 

In order to gather the findings of our study in a more compact and accessible way, this 

brief final chapter summarises the results presented in the previous chapters, discusses 

some general points which have not yet been addressed in previous discussions, presents 

the maximum achievable lifetime of PEEK packages, and puts forward some areas for 

future work 

8.1 Summary, discussion and maximum achievable lifetime 

The aims of this thesis were to identify the parameters which influence the lifetime of a 

PEEK package for implantable electronic devices, to establish the lifetime of such a 

package and to investigate ways to prolong it. 

Chapter 2 provided an introduction and reviewed the properties of PEEK, the difference 

between encapsulation and packaging for implants, joining technologies for 

thermoplastic polymers which can be used to seal the packages, the mechanism of water 

permeation through non permeable (via defects) and permeable materials, as well as 

existing calculation methods to predict moisture ingress through permeable materials 

such as PEEK. The two methods presented were the full transient solution to Fick’s laws 

of diffusion (Paul & DiBenedetto 1965), and  Tencer’s ‘quasi steady state’ approximation 

(Tencer 1994). 

After the objectives of this study were stated in a more detailed manner, the PEEK 

package used was presented (cylindrical package of internal volume 1.6 cm3, with a wall 

thickness of 1 mm on the top and bottom, and 2 mm on the side). Chapter 3 then 

compared those two methods and established that Tencer’s model provides a good 

approximation of the full transient solution, by combining the two extreme cases of 

diffusion through a non absorbing membrane (very large cavity volume V) and into a 

permeable slab (negligible cavity volume). Tencer’s model also offers the advantage of 

being much easier to use than the full transient solution, which requires to be solved 

numerically.  

However, both solutions are limited to permeation through a single wall, or to a package 

with walls of uniform thickness. An original, simple calculation method was therefore 

developed which allows one to take into account those differences in thickness or even 

material (Dahan et al. 2012). This method is an improvement of Tencer’s, and uses an 

electrical analogy to model the package as a system of capacitors and resistors, 

representing the ability of package elements to store water and resist its flow respectively. 

‘This is the exact approach used for thermal diffusion modelling but applied to moisture diffusion.  [...]  

For thermal diffusion the technique is documented in many textbooks and articles.  However, there are 
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no equivalent papers on applying it to "moisture diffusion". Even for those familiar with it from thermal 

analysis the paper is useful since the parameters of the analogy are clearly spelled out’ (Reviewer’s 

comment when presented for publication).  

As it is based on Tencer’s model (the resistance and the capacitance are identified from 

Tencer’s time constant), it shares its flaws and qualities: it is not the most accurate 

description of the actual physical process, but it is simple to use and provides a good 

approximation of the time constant, as proved experimentally. Using our method, the 

resistance and capacitance of the seal of an unmodified PEEK capsule was estimated to 

be negligible (see Figure 3.11). 

Chapter 4 presented the telemetry system used throughout this thesis to measure the 

relative humidity inside the PEEK packages. This system is based on the method of 

‘passive signalling’ and made of a ‘transmitter’ (external) and a ‘receiver’ (implant) which 

are inductively coupled. This system has proved to be reliable and robust (more than 140 

packages have been tested in this fashion), and its simplicity makes it accessible to 

anyone wishing to pursue similar studies. To this effect, the design of both transmitter 

and receiver circuits were detailed, as well as components lists, circuit diagrams and 

microcontroller program. It was also highlighted that the thickness of any metal coating 

applied to act as a moisture barrier should be limited to 3-4 µm in order to limit 

attenuation and eddy current losses. 

In Chapter 5 we assessed experimentally the lifetime of adhesively joined PEEK 

capsules. The chapter began with a quick review of the basic concepts of primary, 

secondary forces, and surface energy, which are essential to understand how adhesive 

bonding works. From the literature, the different theories of adhesion were also 

presented, and the relevant ones in our case were the adsorption theory, the mechanical 

theory and the weak boundary layer theory. Three types of adhesives were selected and 

tested to bond the package: cyanoacrylate (Loctite 4061), epoxy (Loctite Hysol M31-CL), 

and silicone (NuSil MED3-4013). The time constants of such packages were 

experimentally determined to be between 16 and 18 days, with epoxy being the least 

permeable type of seal as expected. In order to determine the influence of the seal only, 

metal capsules made of titanium and brass were adhesively joined with the same 

adhesives and tested, and the epoxy seal alone  presented a time constant 20 times larger 

(458 days) than the adhesively joined PEEK capsule alone, which confirmed the 

estimation made of the seal having a negligible influence. This is an important result 

which tells us that adhesive bonding may be sufficient to join polymer parts, and that 

using other fusion welding method, which are more costly and potentially harmful to the 

electronics is not necessary. However, this remains true for non coated packages, and 

should an effective coating material (as a water vapour barrier) be found, then the 

influence of the seal would become much greater. Nevertheless, the length of the seal’s 
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time constant (458 days) means than in this eventuality useful lifetimes could still be 

reached for adhesively joined packages.  

Using the calculation method presented in the previous chapter, a guideline graph was 

then produced, which allows prediction of the time constant of a cylindrical PEEK 

package, depending on the walls’ thickness and the cavity volume (see Figure 5.25). This 

can be used to establish what package dimensions are needed depending on the lifetime 

needs of the application. As an example, a 2 mm thick cylindrical PEEK package of 

internal volume 1.5 cm3 would have a time constant of 34 days. 

Although this lifetime could already be useful for some very short term experiments such 

as animal experiments, a longer lifetime would increase the breadth of potential 

applications. One of the solutions, which was investigated in Chapter 6, consists in using 

a desiccant to adsorb water as it enters the package cavity, therefore maintaining a lower 

level of relative humidity until saturation of the desiccant. This chapter first included 

some background on desiccants and the adsorption process. The various types of 

desiccants available and the corresponding adsorption isotherms were presented. Our 

time constant calculation model was also extended to account for the presence of the 

desiccant as an extra purely capacitive element. For our application, two types of 

desiccant were selected and tested:  

 4A molecular sieve, which has a type I isotherm behaviour, high adsorption at 

low relative humidity and can was found to adsorb up to 17% of its dry weight in 

water 

 Silica gel desiccant, which has a type IV isotherm behaviour and a variable 

adsorption capacity depending on the surrounding relative humidity (e.g. 27% at 

45% RH, 35% when exposed to saturated water vapour). 

Experimentally, silica gel proved to be much more effective than 4A molecular sieve, 

with a time constant of the package increased by more than 120% for an equal mass of 

desiccant. Our updated calculation model provided an accurate estimation of the time 

constant in the case of silica gel (2.8%) but very inaccurate in the case of 4A molecular 

sieve. This result was linked to the type of isotherm behaviour exhibited by the 

adsorbents, with the molecular sieve’s behaviour being incompatible with our electrical 

analogy calculation model. Nevertheless, it was proved that silica gel was the most 

effective type of desiccant to be used for our application and that our calculation model 

allowed an accurate prediction of the time constant of the PEEK package containing this 

type of desiccant. Similarly to Chapter 5, guideline graphs were produced, which can be 

used to establish what package dimensions are needed depending on the lifetime needs 

of the application. They provide the time constant of a cylindrical PEEK package with 

desiccant as a function of: 
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 The wall thickness and the cavity volume, when 10% of this volume is occupied 

by silica gel desiccant (see Figure 6.14) 

 The wall thickness and the amount of silica gel desiccant, for a fixed cavity 

volume of 1.5 cm3 (see Figure 6.15) 

As an example, a 2 mm thick cylindrical PEEK package of internal volume 1.5 cm3 

would have a lifetime of 9.4 months when filled with 20% of desiccant, and 13.6 months 

when filled with 30% desiccant. 

Another approach to improving the lifetime was taken in Chapter 7, which dealt with 

thin film coatings on PEEK. The chapter started with a review of the main PVD and 

CVD thin film vacuum coating techniques available and applicable to PEEK. A range of 

coating techniques and materials were then tested experimentally. Most of them proved 

ineffective in stopping the ingress of water vapour and prolonging the lifetime of the 

package significantly. This was attributed mostly to the growth of a columnar or granular 

morphology, where the columns are bonded effectively to the substrate, but are poorly 

bonded together, resulting in a porous structure. This growth, inherent to the PVD and 

PECVD processes in particular, was promoted by the surface roughness of the PEEK 

capsules and the presence of contaminants. Interestingly, this effect was mitigated to a 

great extent by the deposition of a layer of lacquer (then stoved) prior to PVD to smooth 

down the rough machined surface and promote good adhesion of the first deposited 

layer of metal, which conditions the morphology of the film. Packages PVD coated with 

lacquer prior to aluminium showed an improvement of more than 130% compared with 

the uncoated capsule and the same type of coating without lacquer. This is all the more 

interesting that most manufacturers did not show awareness of the ineffectiveness of 

their films and believed that they would significantly reduce the ingress of water vapour. 

One reason for this is that they are used to depositing this type of films on polymer 

membranes which have a low surface roughness. This is the case for example for crisp 

bags or helium balloons, which deflate in 1-2 weeks instead of 1-2 days for regular 

balloons. There is therefore a problem of perception from manufacturers, due to a lack 

of understanding of the processes at work. As is reported in the literature, ‘it is easier to 

suppress the oxygen transport than the water transport, due to the additional active penetration of water 

through hydrogen bonds [...], capillary condensation, and swelling with high internal pressure, leading to 

new defects’ (Vasko et al. 2009).  

Based on the positive result of the lacquer/PVD combination, it could be interesting for 

future improvement to look into depositing a thin layer of polymer such as PET or 

parylene (between 10-40 μm thick) in order to smooth the machined surface prior to 

PVD metallisation, and look at the effect on water vapour ingress. 
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In Chapter 7, we also found that there is a clear trade-off between increasing the film 

thickness to improve barrier properties, and reducing it to avoid internal residual stress, 

whether compressive or tensile, which results in blistering and curling of the film 

respectively, especially when exposed to water. However, there is evidence from the 

literature that in most cases increasing the film thickness beyond 1 μm has little influence 

in decreasing the transmission rate further (Vasko et al. 2009). We therefore recommend 

limiting the thickness of deposited thin films to 1-2 μm in order to reduce internal stress 

and minimise eddy current losses. 

Other non-PVD or CVD techniques were also tried without success, with the exception 

of Atomic Layer Deposition of Al2O3 thin films, which, although they were only 40 nm 

thick, improved the time constant by more than 130%. Despite providing a reasonable 

improvement, this technique remained less successful than what could have been 

expected from the literature. This was attributed to direct exposure to saturated water 

vapour pressure which can degrade the film, but does not happen at lower RH levels 

(Nahar 2000; Nahar 2002; Dameron et al. 2008). Future work could investigate the use of 

Al2O3/SiO2 ALD bilayers, or SiN PVD/Al2O3 ALD bilayers (one or more bilayers, 

separated by polymer interlayers), which have been reported to improve nucleation of 

the film and to protect it from such corrosion effects. (Dameron et al. 2008; Carcia et al. 

2009).   

ALD provided a lifetime improvement of 136%, which is seemingly the same as the 

improvement of the lacquer + PVD. It is therefore important to highlight that the sets of 

capsules used were not the same (see Figure 7.36); the ALD coated capsules were thicker 

(2 mm) and therefore although the improvement factor was the same, ALD is actually 

more effective as a moisture barrier than the lacquer/PVD combination.  

However, the former was almost four times as expensive (coating 9 capsules cost £1350 

with ALD, and only £350 with PVD. These costs would of course be greatly reduced in 

case of mass production, but the ratio should remain similar). However, ALD presents 

the advantage of causing no eddy current losses. So the use of one or the other technique 

would depend on the needs of the application, as well as whether any of these coatings 

can be improved in the suggested ways. 

In this study, I have been looking for a manufacturer capable of producing an effective 

thin film which would act as a barrier against moisture, and I have tested many different 

techniques. Due to time and resources constraints, it was not possible to try them all, but 

a reasonable range of the most commonly used coating techniques (PVD and CVD), as 

well as some more recent and less used ones (ALD) were tested. Nevertheless, it should 

be kept in mind that many factors affect the morphology and adhesion properties of 

these films, and therefore it is also possible that the processes tried may indeed be 

appropriate, but that the right coating parameters were not used. 
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Using the results we have reported, we can now establish the maximum achievable 

lifetime by PEEK capsules with both desiccant and a thin film coating for capsules types 

A and B (see Figure 7.36). In this thesis we have produced enough information to allow 

implant designers to quickly determine the size and type of package they need depending 

on their application (coated? with desiccant? how much of it?), using either the guideline 

graphs, or simple calculations. The difficult part is actually to obtain accurate 

characteristics (diffusion, solubility and permeation constants) for the various materials 

used. Another difficulty is that the results with the coatings are valid only for the 

geometry tested and cannot be extended to other types of capsules. 

As a guideline, Table 8-1 presents time constants for PEEK packages using both silica 

gel desiccant and a thin film coating. The results with coating refer to the use of 

lacquer/PVD for the type A capsule (1 mm thick on top and bottom, 2 mm on sides –

see Fig. 11) and to ALD coating for the type B capsule (2 mm thick walls). For example, 

the predicted time constant of such a package with 2 mm thick walls (using 20% 

desiccant) is of almost two years, which would be a useful lifetime for many applications.  

Amount of 
desiccant used 

Coating 
Type A capsule 
(see Figure 7.36)  

d= 1-2 mm 

Type B capsule 
(see Figure 7.36)  

d= 2 mm 

No desiccant No 10 days 33.9 days 

10% No 2.8 months 5.3 months 

20% No 5.3 months 9.4 months 

30% No 7.7 months 13.6 months 

No desiccant Yes 23 days 2.6 months 

10% Yes 6.4 months 12.2 months 

20% Yes 12.2 months 21.6 months 

30% Yes 17.7 months 31.3 months 

Table 8-1 Calculated time constant for cylindrical PEEK capsule using varying amounts of desiccant and a 
thin film coating 

For a certain number of applications which fall within this range of achievable lifetimes 

PEEK can therefore be used to advantageously package implantable electronic devices, 

and make the most of its properties: 

 Biocompatibility 

 Light weight  

 Thermal insulation (low heat conductivity) 

 Does not corrode 

 Unlike metal packages, PEEK packages do not interfere with inductive links or 

electrical signals in and out of the device (Amanat, James, et al. 2010) 

 Unlike ceramic packages, they are not brittle 
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 PEEK can be injection moulded into complex designs and at high volumes, 

resulting in reduced manufacturing costs 

 One of the strongest polymers 

Potential applications depending on the lifetime are showed in Table 1-1 p.18, and some 

of these could clearly benefit from the advantages of PEEK packages. This is the case 

for example for animal experiments with neurostimulators, which may require a lifetime 

as small as a few days (e.g. 9 days in (Lexell, Jarvis, Downham, & Salmons, 1992)). Other 

prototypes may obviously require longer lifetimes, depending on the aim of the 

experiment. An example of such an application can be an instrumented tibial nail (e.g. 

Smartnail, Smith & Nephew - (Faroug et al., 2011)) made of PEEK, which requires a 

lifetime of 9 months. Potential applications could therefore benefit from such a cheap 

and versatile packaging option in the fields of orthopaedics, neuroprosthetics, veterinary 

and patient monitoring, especially when it comes to prototyping and clinical trials.  

Another advantage of PEEK is that its mechanical properties can be tailored to the 

application using fibre reinforcement, which is of particular interest for instrumented 

orthopaedic implants, where we look to minimise stress shielding by matching the 

material’s Young’s modulus with that of bone. With metal implants, where those moduli 

are mismatched, the bone healing process can be affected and result in bone atrophy. 

Using PEEK in this case can be beneficial. Although CFR-PEEK has not been tested in 

this study, we can expect our conclusions to be still true, as the diffusion and sorption 

properties of PEEK composites are not significantly different from those of natural 

PEEK; Moreover, PEEK composites have been proved to exhibit excellent resistance to 

a saline environment (Tsai & Lin 1998; Kurtz & Devine 2007). 

However, we must highlight that all the packages in this study were not submitted to any 

kind of external stress. In orthopaedic applications, this is obviously not the case, and 

this may affect the package, especially when a coating is applied. PVD coatings are 

actually expected to behave quite well in that respect, as they are commonly used in foil 

flexible films (crisp bags, helium balloons), although the effect of applied stress on their 

water vapour permeability has not yet been tested. This can be part of a body of future 

work, which would look into the effect of applied stress on the integrity and water 

permeability of thin film coatings. Depending on the level of stress or deformation 

applied to the package, this could also affect the adhesive seal. The type of adhesive used 

is also important. For example silicone has an adhesive strength which is less than that of 

cyanoacrylate, but is more flexible and durable when exposed to water. This is therefore 

also something which should be investigated when looking at orthopaedic applications. 

Presumably this could be minimised in some cases by placing the seal and coating 

appropriately in the implant design (e.g. in unstressed or least stressed part of the 

implant, or near the neutral axis in case of pure bending). 
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Alternatively, we could also examine other possible sealing methods. This would also 

become necessary if we managed to increase the efficacy of thin film coatings 

significantly. Our results so far show that among all the thin films we have tested, we 

have obtained at most an improvement of the lifetime of a factor 2.3. In this case the 

amount of water permeating through the thin seal vs. the walls/coating is still fairly 

limited. 

Should a more important improvement be found in the future, (e.g. polymer/metal 

bilayers, Al2O3/SiO2 ALD bilayers), then the influence of the seal would be more 

significant, and it would be worth looking into fusion welding methods to seal the 

package. Nevertheless, it must be kept in mind that many fusion bonding methods ‘are 

not suitable because of excessive heat load which may be delivered to sensitive components within the 

capsule’ (Amanat, James, et al. 2010). This is especially true for PEEK, which has a high 

melting temperature (340oC). In this respect, laser welding seems to be the most 

promising technique, but is limited in the thickness of the parts that can be bonded (up 

to 1mm only). There will be therefore a trade off which would need to be offset by the 

performance of the coating as a sealing method.  

8.2 Future work 

After reviewing and discussing the main results and achievements of this thesis, we can 

finish by summarising the future areas of investigation mentioned, which could follow up 

on this work: 

For all types of applications 

 Polymer/PVD bilayer (subcoat of polymer such as PET or parylene between 10-

40 μm) 

 Polymer/ALD bilayer 

 Other bilayers (e.g. Al2O3/SiO2, Al2O3/SiN) 

 If any of the above is successful, other sealing methods such as laser welding 

might be needed 

For orthopaedic applications 

 Effect of applied stress on the integrity and water permeability of thin film 

coatings 

 Effect of applied stress on the integrity and water permeability of the adhesive 

seal 

8.3 Conclusion 

In this final chapter, the main achievements and results from this thesis have been 

reviewed. These provide sufficient basis for using of PEEK as a packaging material for 
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electronic implanted devices with a lifetime of less than 2-3 years. Areas of future work 

have also been presented in order to develop further the lifetime and range of 

applications which could be reached for such packages. 
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Appendix 1. Assembler code for the receiver circuit 

 
;********************************************************************** 
;    Files Required: P10F222.INC                                      * 
;********************************************************************** 

list      p=10F222  ; list directive to define processor 
#include <p10F222.inc> ; processor specific variable definitions 
__CONFIG H'0FEA' 

; '__CONFIG' directive is used to embed configuration word within .asm file. 
; The lables following the directive are located in the respective .inc file. 
; See respective data sheet for additional information on configuration word. 
 
;********************************************************************** 
;***** VARIABLE DEFINITIONS 
  UDATA 
fd1 res  1   ;delay loop counters 
fd2 res  1 
dc1 res  1    
time1 res  1 
time2 res  1 
temp res  1 
time res  1 
 
 
;********************************************************************** 
;CONFIGURATION SECTION 
 ORG     0xFF             ; processor reset vector 
; Internal RC calibration value is placed at location 0xFF by Microchip 
; as a movlw k, where the k is a literal value. 
 ORG     0x000            ; coding begins here 
 movwf   OSCCAL           ; update register with factory cal value 
;Calibrate oscillator. 
 
por    ; test if Power on Reset has happened 
 btfss STATUS,3 
 goto por 
 
gpwu 
 btfsc STATUS,7 ;test if change on port reset has happened 
 goto gpwu 
 
clrf ADRES 
 
;1 SEC DELAY TO MAKE SURE THE SUPPLY VOLTAGE/CURRENT ARE 
STABLE (PB WITH SURGE OF CURRENT OTHERWISE 
;DELAY ALSO TO MAKE SURE THE HUMIDITY SENSOR HAS SENT SIGNAL 
BEFORE  
 movlw .244  ;delay is 244*(1023+1023+3)+2=499,458 cycles=0.5s 
 movwf time2 
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 clrf time1  ;inner loop:256x4-1 
timedly1   ;inner loop 1:1023 cycles 
 nop      
 decfsz time1,f  ;decrement counter, skip next line if 0 
 goto timedly1 
timedly2   ;inner loop 2:1023 cycles 
 nop     
 decfsz time1,f  ;decrement counter, skip next line if 0 
 goto timedly2 
 decfsz time2,f  ;decrement counter, skip next line if 0 
 goto timedly1 
 
 movlw .244  ;delay is 244*(1023+1023+3)+2=499,458 cycles=0.5s 
 movwf time2 
 clrf time1  ;inner loop:256x4-1 
timedly3   ;inner loop 1:1023 cycles 
 nop      
 decfsz time1,f  ;decrement counter, skip next line if 0 
 goto timedly3 
timedly4   ;inner loop 2:1023 cycles 
 nop     
 decfsz time1,f  ;decrement counter, skip next line if 0 
 goto timedly4 
 decfsz time2,f  ;decrement counter, skip next line if 0 
 goto timedly3 
 
 
 
 movlw B'00000111' ;Sets prescaler.sets TOCS to make GPIO available as 
I/O. 
 OPTION 
 bcf ADCON0,7 ;ANS1=0, GP1 is digital I/O 
 bsf ADCON0,6 ;ANS0=1, GP0 is analog I 
 clrf GPIO  ;Clear GPIO to a known state 
 movlw B'00001001' ;GP0 is input, GP1 is output 
 tris GPIO  ; 
 bcf ADCON0,2 ;CHS0=0, GP0 is ADC input channel 
 bcf ADCON0,3 ;CHS1=0, GP0 is ADC input channel 
 bsf ADCON0,0 ;ADON=1, Turn on ADC module 
 goto start 
;******************************************************************* 
 
;******************************************************************* 
start 
 
;DELAY TO MAKE SURE THE ACQUISITION HAS HAPPENED  
 movlw .255 
 movwf time 
timestart   ;total delay=255*4-1+2=1021uS. Normally, 8uS is enough 
 nop     
 decfsz time,f  ;decrement counter, skip next line if 0 
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 goto timestart 
 
;DO A/D CONVERSION 
 bsf ADCON0,1 ;sets GO/DONE as 1. starts A/D conversion 
waitadc 
 btfsc ADCON0,1 ;checks if GO/DONE bit is 0 <=> A/Dconversion 
done 
 goto waitadc  ;if not, check again 
 
 movf ADRES,w ;copy ADRES to temp 
 movwf temp 
 
output 
;SENDING THE OUTPUT SIGNAL WITH THE REQUIRED FREQUENCY 
;SETS GP1 HIGH + FIXED DELAY 
 bsf  GPIO,1  ;Sets GP1 high (for fixed delay=15uS) 
 movlw .3  ;fixed delay counter N=3 
 movwf fd1 
 nop   ;uses 1 instruction cycle 
fixdly1    ;total delay=N*4-1+4=15uS 
 nop     
 decfsz fd1,f  ;decrement counter, skip next line if 0 
 goto fixdly1 
 
;SETS GP1 LOW + FIXED + VARIABLE DELAY  
 bcf GPIO,1  ;Sets GP1 low (for variable delay=84uS) 
 movlw .20  ;fixed delay counter N=20 
 movwf fd2 
fixdly2    ;total delay=N*4-1+3=82uS 
 nop 
 decfsz fd2  ;decrement counter, skip next line if 0 
 goto fixdly2 
 
 
 movf temp,w  ;copy ADRES to counter 
 movwf dc1 
vardly    ;total delay=N*4-1+4=ADRES*4+3 
 nop   ;uses 1 instruction cycle 
 decfsz dc1  ;decrement counter, skip next line if 0 
 goto vardly 
  
 goto output  ;repeat forever 
 
 END                       ;directive 'end of program' 
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Appendix 2. List of components for the telemetry system 

 

List of components for receiver (implant side) on PCB 

Denomination Type Value Manufacturer Manufacturer part nb 
Package 

type 
Farnell 

order nb 

CRS1 Capacitor 47 pF Kemet C0402C470J5GAC 0402 1414592 

CRS2 Trimm Capacitor 5-20 pF AVX CTZ2E-20C-W2-P CTZ2 1189327 

DR1 Diode, schottky 0.4V FD NXP 1PS76SB21 SOD-323 8734038 

DR2 Diode, schottky 0.4V FD NXP 1PS76SB21 SOD-323 8734038 

DR3 Zener diode 15 V ON Semiconductor MM3Z15VT1G SOD-323 1431192 

CR1 Tantalum Capacitor 6.8 μF Kemet T491A685K016AT case A 1457431 

CR2 Capacitor 2.2 μF Kemet C0402C225M9PAC-TU 0402 1650817 

FETR1 MOSFET N-channel 3 V ON Semiconductor MMBF170LT1G SOT-23 1431321 

VR Voltage regulator 3 V out Microchip MCP1702T-3002E/CB SOT-23 1331489 

PIC10F222 Microcontrolleur N/A Microchip PIC10F222T-I/OT SOT-23-6 1332177 

SHT21 Humidity sensor N/A Sensirion SHT21S DFN 1888014 

CHS Capacitor 100 nF Kemet C0402C104K4RACTU 0402 1288252 

CLP Capacitor 220 nF Kemet C0402C224K9PAC 7867 0402 1572610 

RLP Resistor 100 kΩ VISHAY DRALORIC CRCW0402100KFKED 0402 1469671 

       

List of components for transmitter 

Denomination Type Value Manufacturer Manufacturer part nb 
Package 

type 
Farnell 

order nb 

C1,C2 Capacitor 0.47 μF AVX 12061C474KAT2A 1206 1833899 

C3,C4 Capacitor 4.7 μF MURATA GRM31CR71H475KA12L 1206 1735545 

C5 Trimm capacitor 4-40 pF 
VISHAY BC 

COMPONENTS 
BFC280908002 2 pins 1215715 

C6-C11 Capacitor 0.47 μF KEMET C1206C474K3RACTU 1206 1288280 

C12-C16 Capacitor 0.1 μF AVX 12061C104KAZ2A 0603 1740540 

CT3 Capacitor 390 pF MULTICOMP MCCA000452 1206 1759331 

C19 Capacitor 510 pF VISHAY VITRAMON VJ1206A511JXBMT 1206 1650955 

L choke coil 680 μH PANASONIC ELC12D681E N/A 1749142 

R1 Resistor 0 Ω VISHAY DRALORIC CRCW08050000Z0EA 0603 1469846 

R2 Resistor 1 MΩ MULTICOMP MCHV06W8J0105T5E 1206 1576211 

RT1 Resistor 2 kΩ VISHAY DRALORIC CRCW12062K00FKEA 1206 1469985 

R4 Resistor 1 kΩ PANASONIC ERA8AEB102V 1206 1717745 

DT1,DT2 Schottky diode 
30 mA 
FWD 

VISHAY 
SEMICONDUCTOR 

BAT83S-TR DO-35 1651141 

XTAL Crystal 
13.56 
MHz 

ABRACON ABM3-13.560MHZ-B2-T 
5x3.2mm 

SMD 
1611805 

IC1-IC3 IC, CMOS, Inverter N/A 
TEXAS 

INSTRUMENTS 
SN74AC14N 

14 pins, 
DIP 

1470853 

DEI420 
IC, Driver, MOSFET 

DE275 
N/A IXYS RF DEI420 DEIC420 1347728 
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Appendix 3. Solid Titanium capsule and feedthrough 
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