

Can we use hydrogen as a storage vector to reduce the cost of intermittent renewables?

Paul E. Dodds

UCL Energy Institute, University College London

Introduction

- 1. UK energy system electricity and storage
- 2. Potential roles of hydrogen
- 3. Important factors in the economics of hydrogen
- 4. Hydrogen valuation

UK energy system

UK renewable capacity

UK renewable generation

UK electricity generation

Final energy consumption in the UK

Dealing with renewable intermittency

Low demand, high supply periods:

- Curtailment of renewable generation
- Building extra electricity network capacity
- Building electricity storage
- Demand side management

UK energy storage

		Capacity (PJ)	Max flow rate (PJ/day)
Gas	Rough field	117	1.5
	Other depleted field	14	0.3
	Salt cavern	30	3.2
Oil products in 2012		324	
Hydrogen salt cavern		0.01	
Electricity pumped storage			
	Dinorwig	0.004	1.7 GW
	Other		1.0 GW

Hydrogen as a storage vector

- Electricity storage (underground or gas network)
- Heat decarbonisation (gas network mix)
- Industrial feedstock
- Transport fuel

Can we use hydrogen as a storage vector?

 Yes – from a technical perspective. When regulatory obstacles are overcome.

 Would it reduce the cost of intermittent renewables? Debatable.

What is the value of hydrogen?

- Cost electrolysers
- Real options cost risk of electrolysers being underused

- Direct value for end uses
- Indirect value avoiding network reinforcement and storage

Electrolyser cost

Equivalent cost of hydrogen production from additional offshore wind: 25 £/GJ

Indirect value for networks

- Where is the future renewable supply?
- Where are the network pinch points?
- Where are the best locations for electrolysers?

UK MARKAL and UK TIMES

- Bottom-up
- Perfect foresight
- Cost-optimisation
- Elastic demands
- Energy flows
- Environmental constraints, economic and policy focus

UK MARKAL

Value of hydrogen as a commodity

Hydrogen injection to the gas network

Hydrogen gas network conversion

Value of hydrogen as a commodity

Value of hydrogen as a commodity

Value of hydrogen for storage

- Developing new UK TIMES energy system model to examine inter-seasonal storage of electricity, gas, hydrogen and heat.
- Large-scale hydrogen storage: high cost, eff ≈ 40%
- Modelling issues:
 - Storage needed anyway?
 - How do we represent hydrogen production from excess electricity in energy system models?
 - Demand side management?

Conclusions

- Valuing hydrogen requires us to cross disciplinary boundaries – climate scientists, power engineers, energy economists
- Hydrogen is only an option if the electricity is essentially free or very low-cost – but is an additional market for renewable operators.
- Use in gas pipes or for transport is more economic than large-scale hydrogen storage.
- Future work: real options costs and indirect benefits.

Thank you for listening

Questions?

Thanks: Ed Sharp, Hannah Daly, UCL Energy Systems team

