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Heating patterns and temperatures are among the most important determinants of English home energy
use. Consequently, building stock models, widely used for informing UK energy policy, are highly sen-
sitive to the assumptions they make on how occupants heat their homes. This study examined heating
patterns in English living rooms and compared them to model assumptions. A time-series of winter spot
temperature measurements was translated into statements of the heating system being on or off during
weekdays and weekend days, and the heating demand temperature estimated. The analysis showed that
weekdays and weekend days are far more similar than commonly assumed. Contrary to model as-
sumptions, homes were frequently heated outside assumed heating hours and not all homes were
heated at the same time or followed the same pattern. The estimated demand temperature was about
20.6 �C, and the average temperature during heating periods was about 19.5 �C, both lower than the
commonly assumed 21 �C used in models. Significantly, variability between homes in demand tem-
perature and hours of heating was substantial. The results indicate the need to revisit some assumptions
made in building stock models, and to take account of variability between homes when aiming at
predicting space heating demand for an individual home.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The Climate Change Act 2008 committed the UK to reducing its
greenhouse gas emissions by 80% by 2050 from a 1990 baseline [1].
In order to achieve this, carbon emissions from UK homes will need
to be near zero by that time. In order to reach that goal, the UK has
set an intermediate goal of reducing emissions from homes by 29%
by 2020 based on 2008 levels [2]. Energy use in homes makes up
just under a third of total energy use in the UK, and within a home,
approximately 57% of energy use is attributable to space heating [3].
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Modelling energy consumption is a widely used method of un-
derstanding how much energy is used in the UK housing stock, the
outputs of which provides a benchmark for making recommenda-
tions on energy saving policies and programmes, thereby reducing
greenhouse gas emissions. In the UK, a widely used model for pre-
dicting home energy consumption is the Building Research Estab-
lishment Domestic Energy Model (BREDEM) that is consistent with
the BS EN ISO 13790 standard. This is a data-driven building physics
model which has a core space heating equation based on gains from
heating systems and other elements (i.e. heating water, cooking,
lighting, appliances) balanced against heat losses through the
building fabric [4]. In BREDEM, space heating calculations are based
on heat losses, gains and temperatures inside the dwelling [5]. In-
ternal temperatures are calculated in two zones: the living area and
the rest of the dwelling. The default assumption in the model is that
the whole dwelling is heated only during specific time periods, and
that the living area is heated to a higher temperature (usually of
3 �C) than the rest of a home during these periods [4]:

� Heating demand temperature in the living room: 21 �C
� Heating period weekday: 7:00 to 9:00 and 16:00 to 23:00
� Heating period weekend: 7:00 to 23:00
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Outside these specified time periods, the heating system is
assumed to be off. It is understood that a single temperature and
heating pattern are “idealised” in order to reflect assumed “stan-
dard heating regimes” to estimate energy consumption on a
monthly (BREDEM 8) or yearly (BREDEM 12) basis ([4], p.7).
However, the validity of some of the assumptions of thesemodels is
questionable and not sufficiently based on robust data [6,7].

It is important that BREDEM reflects reality as closely as possible
as it is a foundation for many other UK building stock models (e.g.
BREHOMES, The Cambridge Housing Model, DeCARB, UKDCM and
CDEM [7]) and a current simplified BREDEM version (BREDEM 9)
forms the basis for the Standard Assessment Procedure (SAP), the
UK Government’s primary assessment mechanism for determining
energy efficiency of homes. The BREDEM family of models serves a
variety of purposes. As part of regulatory instruments, like the SAP,
they set standards for energy use against which individual dwelling
design proposals are evaluated for compliance. In doing this, they
serve a normative function representing how the fabric and heating
technology in dwellings should perform; they standardize occu-
pant influences in order to assess the building performance inde-
pendently of occupant effects. When used as the basis for building
stock modelling, however, their purpose is to indicate how homes
(i.e. occupied houses) actually perform. In this function they should
correctly represent occupant influences in order to correctly esti-
mate national energy demand from the nation’s homes. There is
relatively little evidence from national UK studies comparable to
BREDEM default values to assess whether they accurately reflect
reality, either on average, or for individual homes.

Kelly demonstrated that estimates of energy demand made
using SAP have been shown to be poor predictors of actual energy
consumption [8]. Shipworth et al. found that the averagemaximum
internal temperature for three winter months, used as a proxy for
thermostat settings, was 21.1 �C, in line with the heating demand
temperatures as assumed by BREDEM based models, but finding
great variability between homes [9]. The variability echoes the
findings of earlier studies: Hunt and Gidman’s large UK study in
1978 [10] and Palmborg’s small Stockholm study in 1981 [11].

The analysis of Shipworth et al. estimated a heating duration of
8.2 h on weekdays and 8.4 h on weekends, again with large vari-
ability between homes. This is substantially different to the BRE-
DEM standard assumption of 16 h of heating for a weekend day but
roughly in line weekday assumptions. Even the 1996 English House
Condition Survey found regularly heated living rooms were
reportedly heated for an average of 12.2 h per weekday, 13.5 h per
weekend day, each with a standard deviation of 6.4 h [12]. A recent
study of 59 homes that had received insulation upgrades found
daily heating periods varied from 2 to 20 h [13]. None of these
studies explicitly examined whether the temporal pattern of
heating over the day coincided with the heating periods as
assumed in BREDEM default values. Analysis of the 1996 English
House Condition Survey found 36% of households heated their
living rooms intermittently and 35% heated them all day during the
week, with 45% heating them all day at the weekend [12]. In
addition, almost half of households with central heating heated
their living rooms intermittently, whereas almost half of house-
holds with a retiree heated their living rooms all day.

In a previous paper, internal temperatures were compared
against BREDEM default values [14]. The analysis showed that
temperatures in the assumed heating periods were significantly
lower than the 21 �C assumed by BREDEM. However, the analysis
only focused on comparing measured temperatures to the assumed
temperature and did not consider the actual heating patterns of
living rooms.

The heating patterns that are built into BREDEM indicate as-
sumptions of when heating systems are ‘on’ or ‘off’. In order to test
these assumptions, we have developed an algorithm that translates
temperature sequences into statements about the heating system
being ‘on’ or ‘off’ and applied this to temperature data from living
rooms in English homes during winter. We compare our findings
against the timewindowsofheatingassumed inBREDEM.Further,we
estimate the ‘heating demand temperature’when the heating is ‘on’.

2. Methods

2.1. Survey and temperature measurements

The data analysed in this paper are derived from the Carbon
Reduction in Buildings Home Energy Survey (CaRB HES), the first
national survey exclusively focused on energy use in English
homes, that commenced in early 2007 (for details, see Ref. [9]).
Households were selected by stratified random sample drawn from
the Postcode Address File. Sampling and face-to-face interviews in
427 homes were carried out by the National Centre for Social
Research (NatCen). During the interview, householders answered
questions on the building characteristics of their home, heating
practices, and socio-demographics. For a subset of homes, tem-
peratures were monitored in the bedroom and living room from
mid July 2007 to early February 2008. HOBO UA 001-08 sensors are
self-contained data loggers that recorded spot temperature every
45min, resulting in 32measurements per day. These sensors have a
manufacturer reported accuracy of �0.47 �C at 25 �C, and were
placed in the home by the interviewer and/or the homeowner with
instructions on correct placement, i.e. between knee and head
height, away from any heat sources or direct sunlight. Calibration
measurements were taken of each sensor in a climate chamber at
25 �C before placement in the home and used to correct the
readings after the logged data had been extracted. The calibration
error from all sensors was found to be minimal with an average
error of Merror ¼ 0.19 �C (SD ¼ 0.11).

2.2. Sample characteristics

Of the 275 dwellings with data on living room temperatures, 11
used night-storage heaters, and 16 used other types of non-central
heating technology; they were excluded from the following anal-
ysis as BREDEM assumptions differ for those technologies [4]. Of
the remaining 248 homes, 93.5% had central heating with gas or
LPG, and the other 6.5% had some other sort of central heating. For
119 dwellings, the existence of additional forms of heating for the
main living roomwas reported, 125 did not use other heating in the
main living room, and for four homes the data is missing.

A comparison of the CaRB data sample to the English House
Condition Survey [15] showed an over-representation of owner-
occupied and detached homes and bungalows, and an under-
representation of privately rented accommodation and flats.
Overall, the CaRB sample is largely similar to national estimates; for
a more detailed comparison, see Ref. [14].

2.3. Temperature data and data cleaning

For this paper, the analysis focused on living room data in the
winter months. Winter was defined as a 92-day period between
November 2007 and January 2008, after which point the temper-
ature loggers were withdrawn. A variable expressing average daily
external temperature was created based on minimum and
maximum temperature at local weather stations within the re-
spondent’s Government Office Regions [16]. For no day or region in
the data analyses for this paper did the maximum external tem-
perature exceed 15.5 �C; due to the natural elevation of internal
temperatures above external due to incidental gains, above this
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temperature, it is assumed that no heating is necessary [17]. Hence,
all days considered in this study would be classified as “heating
days” using this criteria and constituted valid units of analysis. It
should be noted however that for some homes on some days close
to 15.5 �C, incidental gains may maintain internal temperatures
without the heating system being on leading to false positive re-
sults. The recorded internal temperature data was screened for
outliers, i.e. for recorded temperatures below 10 �C or above 35 �C,
and for changes of more than 10 �C in 45 min (indicating possible
placement close to a heating source or in direct exposure to sun-
light). Those potentially erroneous data points occurred on less
than 0.2% of days and were excluded from further analysis. The
dataset was managed and analysed using MS Access, SPSS, STATA,
and MatLab.

2.4. Analyzing the data

The basic data used for analysis were a matrix of internal tem-
peratures in 248 homes over 92 days with 32 measurement points
per day (i.e., 248 homes � 92 winter days � 32 measurement
points). Considering that BREDEM models assume differences in
heating demand depending on weekday versus weekend, we
separated days into weekdays (66 days) and weekends (26 days).

2.4.1. Probability of the heating system being on or off
Measured temperatures were translated into statements

regarding whether the heating systemwas on or off. This was done
by by examining the data for sequences of increasing and
decreasing temperatures. If the magnitude of change was at least
0.75 �C, it was considered as a change in the state of the heating
system. A change of less than 0.75 �C was considered to reflect
hysteresis of the thermostat, i.e. the difference between the tem-
perature at which the thermostat switches off and the temperature
at which it switches on again, or mini-fluctuations in the logger.
Boait and Rylatt [18] reported 1 �C as the hysteresis value. However,
other work reported a value of 0.56 �C [19]. The cut-off value 0.75 �C
was chosen as it is approximately in the middle of the other two
estimates, and we present a summary of results using two addi-
tional cut-off points to test the sensitivity of results to the choice of
cut-off point. In detail, the following steps were applied. Table 1
contains examples to illustrate the individual steps.

For each home, one vector of temperature measurement points
was created which encompassed 2944 values, i.e. 92 days � 32
measurement points (Table 1, Row 1) and then the difference of the
temperature at point tnþ1 and tnwas calculated resulting in a vector
of 2943 difference values (Row 2).

In this vector of differences values, points were identified where
a sequence changed from positive to negative (or vice versa) dif-
ference values (Row 3), for example, after five negative difference
values corresponding to falling temperatures, the sign of the tem-
perature difference changed to positive at the 6th point in the
sequence. Then the magnitude of change was calculated for
each sequence (Row 4) by summing difference values in Row
Table 1
Example for the steps performed to translate temperatures into statements on the state

Order of operations

1 Identify Temperature 19.5 19.3 19.1
2 Temperature_differences (tnþ1etn) �0.2 �0.2
3 Point_sequence (bold ¼ changed from increasing

to decreasing, or vice versa)
1 2

4 Magnitude_change
5 Point_sequence_corrected (bold ¼ changed from

negative to positive, or vice versa, by 0.75C)
1 2

6 Binary coding (0 or 1, which means ‘off’ or ‘on’) Off Off Off
2 of positive or negative sequences (e.g. �0.2 þ �0.2 þ
�0.6 þ �0.3 þ �0.6 ¼ �1.9). The absolute magnitude was then
compared against a set criterion of 0.75 �C (Row 5); in the example
of Table 1, �1.9 and 1.8 �C were above the criterion and hence kept
whereas�0.3, and 0.5 �C did not meet the criterion. If a change was
of a lesser magnitude, it was considered as having no change in the
heating system and hence, as not causing a change in a sequence.
The temperature sequence was translated into a binary variable
indicating if the heating system was on or off at any point in time
(Row 6). A sequence of decreasing temperatures means the heating
system is off, or of increasing temperatures means it is on. For
changes that are smaller than the criteria, the previous state is
continued. Note that this is done on the level of temperatures not
temperature difference, e.g. in the example, the first six tempera-
tures are judged as the heating being off; the 7th point in the
temperature sequence (17.8 �C) is when temperatures started to
increase as indicated by the 6th value of temperature differences.

The vector was turned back into a matrix of 92 days with 32
columns. A column refers to the state of the heating system be-
tween two measurement points, for example, the first column has
the state of the heating system between 00:00 and 00:45, the
second one from 00:45 to 01:30 etc. For the last day, the last
measurement point was excluded as no subsequent measurement
point existed with which to calculate the sequence of change.

Days were separated into weekdays and weekend days, result-
ing in a matrix of (maximally) 65 weekdays or 26 weekend
days � 32 binary coded variables for each home (31 values for the
last day). Then, for each home, for each of the 32 (time-point)
columns, the entries were summed across all days for which we
had valid data for that home; this sum was then divided by the
number of days for which we had valid data for that home. The
resulting value is the probability of the heating system being on -
for each home, at each of the 32 time intervals.

For the overall sample, the resulting matrix of 248 (dwellings)�
32 (probability estimates of the heating system being on at each
time-point) formed the basis of subsequent analysis. It was a
deliberate decision to not exclude days in which the heating was
always off, because a model to calculate overall energy demand for
heating should take into account that there are days without
heating. The impact of excluding those days is shown in the results
section (see 3.1.1).

2.4.2. Calculation of average heating duration
The probability values were translated into an estimate of hours

of the heating system being on. For each dwelling, the probability
estimates were averaged over the course of a day, separately for
weekdays and weekends. This value was multiplied by 24 (as there
are 24 h in the day) which gives the number of hours the heating
system was on.

2.4.3. Calculation of the estimated heating demand temperature
Firstly, in each sequence that was identified as having the

heating on, the maximum temperature was located. When the
of the heating system.

18.5 18.2 17.6 17.8 18.5 19.5 19.4 19.2 19.7.
�0.6 �0.3 �0.6 0.2 0.7 1.0 �0.1 �0.2 0.5
3 4 5 6 7 8 9 10 11

�1.9 1.9 �0.3 0.5
3 4 5 6 7 8 9 10 11

Off Off Off On On On On On On.



Table 2
Examples for temperature sequences during a ‘heating-on’ period with different
implications for the heating demand temperature.

Temperature sequence (maximum
temperature in bold)

Case 1: Maximum temperature
reflects demand temperature.

20.52 20.70 21.31 21.63 21.70 21.67

Case 2: Maximum temperature
reflects demand temperature.

20.52 20.70 21.31 21.63 21.67 21.70

Case 3: Maximum temperature does
not reflect demand temperature.

20.52 20.70 21.31 21.63 21.60 21.91
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maximum temperature was not the last temperature point in the
sequence but was followed by other data points (Case 1 in Table 2),
i.e. indicating that temperature had reached a plateau, it was
assumed that the maximum temperature reflected approximately
the heating demand temperature.5 If the maximum temperature
was the last data point in the sequence but differed only by less
than 0.1 �C of the previous data point (Case 2 in Table 2), it was also
counted as indicating the heating demand temperature. This was
done because inspection of all temperature differences had shown
that the minimum value of change was 0.0950 �C in all homes
(except for one where the value was 0.096 �C) and presumably
reflected some noise or jitter in the temperature sensors. If the
maximum temperature was the last data point in the sequence and
differed by 0.1 �C or more from the previous data point (Case 3 in
Table 2), the maximum value could mean two things:

(1) It could reflect the actual demand temperature. Reaching the
demand temperature may have coincidentally coincided with
the time at which the heating system was turned off (respon-
dent-operated or through the time-clock).

(2) It could be lower than the actual heating demand temperature.
The heating system would have been turned off before the
heating demand temperature was reached, i.e. before temper-
atures stabilized around the demand temperature.

It was impossible to decide which optionwas true; hence, when
the maximum temperature was the last data point, this value was
not included in estimating the heating demand temperature.

For each dwelling, all estimated heating demand temperatures,
i.e. maximum values in an ‘on’ sequence that were not the last data
point, were identified and averaged over all days and sequences,
arriving at one value of average heating demand temperature per
dwelling.

3. Results

3.1. Probability of the heating system being on over the course of
the day

The averaged probability over the course of the day did not
differ significantly between homes who reported having additional
heating in the main living room and those who had no other forms
of heating in the main living room. Therefore, in all following
analysis the full dataset is considered.6 Fig. 1 shows that average
5 The term ‘heating demand temperature’ is used here in preference to the term
‘thermostat setting’. This is done because the thermal characteristics of individual
homes vary. The temperature at the thermostat (frequently located in the hallway)
may not reflect the desired temperature of the occupants in the living room where
temperatures were recorded.

6 Excluding the period of Christmas holidays and New Year’s, i.e. from the 24th of
December to the 1st of January, did not change the average probability over the
course of a day so those days were maintained in the subsequent analysis.
probability (i.e. averaged over the 248 dwellings) for the heating
system being on at all of the 32 temperature-difference intervals.

Both for weekdays and weekends, the probability of the heating
system being on is about 0.1 from midnight onwards, and then
starts to increase at about 4:30, and reaches a morning peak be-
tween 6:45 and 7:30 on weekdays and between 7:30 and 8:15 on
weekends. For weekdays, the probability then declines by just over
0.1 and then increases again from 11:15 onwards; for weekends, the
decline is less pronounced. Probability peaked in the early evening,
i.e. about 18:00, both for weekdays and weekends. The maximum
probability was pmax.weekday ¼ 0.74 and pmax.weekend ¼ 0.71 which
means that in less than 75% of the homes, the heating system was
on. This means there was no period during which the heating was
estimated to be on in all homes during days in which the heating
system was assumed to be in use. Further, the heating system was
judged to be on in a considerable share of homes during those
periods in which BREDEM would assume homes not to be heated.
This was particularly pronounced for the weekday period between
9:00 and 16:00 where the mean probability was about p ¼ 0.5,
indicating that the heating was estimated to be ‘on’ in 50% of
homes, as compared to 0% in BREDEM assumptions.

Table 3 summarizes the mean probability for the heating system
to be on in the assumed heating periods. For each home, the
probability values for the respective heating period were averaged
and then the average and standard deviation of these estimates was
calculated across homes. A perfect mapping on the times as
assumed by BREDEM was not possible as temperatures were taken
at 45 min-intervals. As an approximation, the weekday morning
time window was defined as ranging from 7:30 to 9:00, and the
evening window as 16:30 to 22:30. The weekend time window
ranged from 7:30 to again 22:30. These times were slightly shorter
than the BREDEM-defined heating periods due to the nature of our
data collection (i.e. every 45min), but they only included times that
were part of BREDEM periods. Note that the probability estimates
refer to time intervals. For example, for the morning heating, the
time period from 7:30 to 9:00 corresponds to the average of the
probability estimates 7:30 to 8:15 and 8:15 to 9:00.

To take into account that heating was judged to be on outside
assumed heating periods, the probability values were average
across the day. The mean probability for weekdays was p ¼ 0.41
(SD ¼ 0.08) and for weekends p ¼ 0.42 (SD ¼ 0.08). Kolmogorove
Smirnov tests were used to test if data followed a normal distri-
bution; this was the case in all of the distributions under consid-
eration, allowing statistical tests that rely on the assumption of
normally distributed data. A paired sample t-test showed that the
difference in the two estimates was not statistically significant. This
translates to approximately 10 h of heating on weekdays and
weekend days.7 Using one-sample t-tests, the calculated duration
was compared against the values assumed by BREDEM, i.e. 9 h
(weekdays) and 16 h (weekends). For weekdays, the mean differ-
ence Mdiff_weekday ¼ 53 min (95% CI: 39e68 min) was significant,
t(247) ¼ 7.18, p < 0.001, indicating the calculated duration was
longer than the BREDEM assumption. For weekends, the mean
difference Mdiff_weekend ¼ e 6 h (95% CI: e 6 h, 15 min to e 5 h,
45 min) was also significant, t (247) ¼ �48.56, p < 0.001, indicating
shorter estimated durations than assumed under BREDEM.

3.1.1. Effect of days without heating
BREDEM assumes that homes are heated every day. Analysis

was conducted on how many days the heating system was judged
7 Using the exact probability estimates gives an estimate of 9 h and 50 min on
weekdays and 10 h and 5 min of heating on weekends, given that the values do not
differ significantly, 10 h was used as the value for both estimates.
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Fig. 1. Average probability for the heating system being on or off for weekdays and weekends. The vertical periods indicate times in which BREDEM would assume heating to be
on.
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to be off throughout the day. The distribution of the frequency of
non-heating days was highly positively skewed: 55% of homes had
no days without heating; 20% only had one or two days without
heating. Only 16% of homes had five or more days over the 92 day
period without heating. The probability estimates were tested to
see if they differed when excluding days without heating; the
average probability of the heating system declined somewhat (i.e.
Mweekday ¼ 0.43 andMweekend ¼ 0.44), however, the effect was only
on the order of 20e35 min per day. It was a deliberate decision to
not exclude days without heating from analysis because assump-
tions on heating patterns should take into consideration that there
are days when homes are not heated.

3.2. Variability between homes

Fig. 2 shows the histogram of estimated hours of heating for all
homes for a weekday (2a) and weekend (2b), with values rounded
to the nearest integer.

For weekdays, 13% of homes met the BREDEM assumption of 9 h
heating, 53% had longer durations, and 34% shorter durations. For
weekends, no home showed a heating duration equivalent to the
16 h as assumed by BREDEM; all homes had shorter durations. The
histograms indicate substantial variability between homes in their
estimated hours of heating.

3.3. Estimated heating demand temperature

For each home, the average heating demand temperature was
calculated. The average demand temperature was based on a
Table 3
Probability estimates for the three heating periods assumed in BREDEM.

Morning weekday
heating

Evening weekday
heating

Weekend
heating

Probability
heating on

Mean 0.57 0.61 0.58
SD 0.28 0.17 0.12
95% Confidence

interval for mean
0.54e0.60 0.59e0.63 0.56e0.59

The probability estimates shown in Table 2 reiterate the finding of Fig. 1: the
empirically derived estimates did not correspond to the BREDEM assumption that
all homes are heated during the periods as assumed in BREDEM. About 60% of
homes were judged to have the heating on in the three heating periods under
consideration.
different number of cases per home, depending on the number of
heating sequences with a plateau. The mean number of cases was
M ¼ 60 (SD ¼ 26). There was no significant correlation between
demand temperature and number of cases it was based on; hence,
allowing retention of all estimated demand temperatures irre-
spective of howmany cases they were based on. The mean demand
temperature across all homes was M ¼ 20.47 �C (SD ¼ 2.47; 95% CI
for the mean: 20.16e20.78), Fig. 3.

Using a boxplot analysis, six values of estimated heating de-
mand temperatures that fell outside the whiskers were excluded
and were hence considered outliers.8 The outlier-omitted calcu-
lated demand temperature was determined to beM¼ 20.58 �C. We
compared this to the BREDEM assumed demand temperature
of 21 �C using a one-sample t-test. The mean difference
Mdiff¼�0.42 �C (CI:�0.71 to�0.13) was significant, t(241)¼�2.87,
p ¼ 0.004, indicating a statistically significant lower estimated
demand temperature, albeit of small magnitude.

3.4. Average temperature for heating sequences

In addition to calculating the estimated average heating demand
temperature, the average temperature was calculated across all
homes during all heating-on periods. This was M ¼ 19.52 �C
(SD ¼ 2.39). This was calculated for each sequence of the heating
being on for each home and averaged across sequences. BREDEM
models assume that the demand temperature is achieved
throughout the entire assumed heating periods. This finding chal-
lenges that assumption, as even during heating periods tempera-
tures vary considerably, with average temperature approximately
1 �C below estimated demand temperature for our sample. The use
of estimated demand temperature for heat loss calculations in
modelswould therefore lead to anoverestimation of fabric heat loss.

3.5. Effect of changing the cut-off point

The above analyses are based on a minimum change in tem-
perature sequences of 0.75 �C. The same analysis was run with
8 Points are drawn as outliers if they are larger than Q3þW*(Q3eQ1) or smaller
than Q1eW*(Q3eQ1), where Q1 and Q3 are the 25th and 75th percentiles,
respectively. The default value of W ¼ 1.5 corresponds to approximately �2.7 sigma
and 99.3 coverage if the data are normally distributed. The plotted whisker extends
to the adjacent value, which is the most extreme data value that is not an outlier.



Table 4
Mean probabilities of the heating system being on using different change criteria.

Change
criterion

Mean probability heating on (SD)

Morning weekday
heating

Evening weekday
heating

Weekend
heating

0.5 �C 0.61 (0.29) 0.62 (0.17) 0.58 (0.12)
0.75 �C 0.57 (0.28) 0.61 (0.17) 0.58 (0.12)
1 �C 0.60 (0.28) 0.58 (0.18) 0.58 (0.13)

Three repeated measures ANOVA were used to test for differences in the mean
probability of the heating being on depending on the chosen cut-off point; one for
morning weekday heating, one for evening weekday heating, and one for weekend
heating. For morning weekday and evening weekday heating, the ANOVA were
significant (all F > 6.8, all p � 0.004). Posthoc comparisons with Bonferroni
adjustment showed that for the morning heating period, the chosen cut-off of
0.75 �C led to a significantly lower probability than using 0.5 �C or 1 �C as cut-off
point. For evening heating, all pairwise comparisons were significant. For the
weekend estimates, no significant differences in probability estimates were found.
Despite the statistical significance in two of the comparisons, the differences are of
low, if any, practical significance, and do not change the implications of the study.
The maximum difference in the estimated probabilities is pmaxdiff ¼ 0.04 which
translates to a difference of 4% in the percentage of homes with the heating on. All
other differences depending on cut-off point were even smaller, showing how little
results depend on the assumption of the cut-off point.
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Fig. 2. Histogram of the hours of heating for weekdays (a) and weekends (b).
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alternate cut-offs, as per the literature: 0.5 �C and 1.0 �C. Results
were virtually identical to using a cut-off of 0.75 �C. The overall
daily mean probability using a criterion of 0.5 �C was
pweekday ¼ 0.41 and pweekend ¼ 0.42; for a criterion of 1 �C
pweekday ¼ 0.41 and pweekend ¼ 0.42. The probability of the heating
system being on in the three heating periods as assumed under
BREDEM was also calculated. Table 4 summarizes the results.

4. Discussion

In this paper, estimated heating patterns and temperatures were
compared to commonly used assumptions on those variables. The
analysis showed the following:

� An estimated average heating duration of 10 h both for week-
days and weekends
B In comparison to BREDEM assumptions, this means 1 hmore

per weekday and 6 h less per weekend day. On an (average)
weekly basis, BREDEM overestimates heating duration only
by 7 h.

� Homes do not follow the temporal pattern of heating as
assumed under BREDEM.
B In particular for weekdays, the heating is on in a substantial

proportion of homes outside the assumed heating periods,
i.e. between 09:00 and 16:00.

� Probability never reached a value of 1, meaning at no point in
time did all homes have the heating system on as current
BREDEM based stock models assume.
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Fig. 3. Heating demand temperature across all buildings.
� Demand temperature is 20.58 �C. This is significantly lower,
statistically, than the assumed demand temperature but in real
terms is only about 0.4 �C less.

� The average temperature during ‘heating-on’ periods was
19.52 �C, approximately 1 �C lower than the estimated demand
temperature, challenging the assumption used in BREDEM
class models that homes achieve the heating demand tem-
perature throughout the heating period.

� Using different assumptions about thermostat cut-off points
hardly changed results, indicating insensitivity of findings to
this assumption.

� Homes differed substantially in heating durations and demand
temperature.

The estimates derived in this paper differ slightly from previous
estimates [9]. This is due to using a different method to determine if
the heating system is on. We introduced a minimum amount of
change necessary to trigger a change in the state of the heating
system whereas Shipworth et al. considered every increase in
temperature as an indication of the heating system being on [9].
Also, they used the daily maximum temperature as the thermostat
setting whereas we used the maximum temperature in a heating
sequence in which temperatures reached a plateau to approximate
the heating demand temperature. Despite the different approaches,
both studies found a large similarity between weekend and
weekday heating, and substantial variation between homes.
4.1. Implications for BREDEM based models

Our data imply that the distinction made between heating on
weekdays and weekends should be revised, considering the simi-
larity both in duration and temporal pattern. Also, the notion of a
rigid pattern which all homes follow should be reconsidered. At no
point in time were all homes found to have the heating system on,
and in general, the assumed temporal pattern of BREDEM did not
match the observed patterns. The analysis showed that in an
average week and home, BREDEM would overestimate the heating
duration by about 7 h and very slightly overestimate the demand
temperature by about 0.4 �C. This 9% overestimate in heating hours
could, for example, have a substantial impact when calculating
future energy demand as current projections predict an increase in
the number of households of about 221,000 per year [20].
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In addition, the analysis identified that the average temperature
during heating periods of 19.52 �C was approximately 1 �C lower
than the estimated demand temperature of 20.58 �C. This both
challenges the assumption that homes reach the demand temper-
ature throughout the heating period, and suggests that the
assumed internal temperature for heat-loss calculations in BRE-
DEM based stock models should be reassessed.

4.2. Implications beyond BREDEM

Assuming a fixed pattern and hence one duration and temper-
ature to calculate overall energy demand of the building stock is not
problematic as long as the assumptions on temperature and
duration accurately reflect reality. However, the temporal distri-
bution is of importance when considering, for example, peak de-
mand. In particular, given current proposals to increase the
electrification of domestic heat supply through use of heat-pumps
and electric resistive heating powered through a decarbonised
national electricity system, the issue of peak power demand is
critical [21,22]. The data here imply that not all homes demand
heating at the same time, which would mean a lower peak power
demand than if all homes heated at the same time.

4.3. Implications of the variability in heating patterns

The analysis also showed considerable variability between
homes in heating duration and demand temperature. Whilst using
the average duration and temperature minimizes the prediction
error across homes, the error in prediction of energy consumption
for an individual home could be high. Gill et al. showed that
occupant behaviour accounted for 51% of the variance in heat be-
tween dwellings that were nearly identical and designed to high
energy-efficiency [23]. Considering variability in heating data is
also important in order to avoid negative financial consequences
for home occupiers. In the UK, the Government launched the
“Green Deal” scheme that gives loans for energy efficiency mea-
sures that are paid back through the energy bills [24]. The intention
is that savings on energy bills will outweigh the cost of repayments,
the so called “Golden Rule”. In order for this to work out, pre-
dictions at the individual home level need to be as accurate as
possible so that households will not be left with much higher bills
than expected to repay the loans. Both the sources of inaccuracy,
and imprecision in estimates of home energy use highlighted in
this paper create risks to schemes such as the UK Green Deal.

4.4. Limitations of the current study

The analysis used temperatures recorded in the living room to
conclude whether heating was on or off; however a range of factors
beyond the heating being on or off may impact internal tempera-
tures, such as various forms of incidental gains and ventilative heat
losses. Whilst certain checks were used to control for these con-
founding factors in the data by, for example, excluding recordings
where temperatures increased or decreased by more than 10� be-
tween two measurement points (which might be the result of
sensor being in direct sunlight or a window being opened on a cold
winter’s day), only monitoring of radiator and/or thermostat would
9 It is unlikely though that in very poorly insulated homes on very cold days the
heating system was not able to deliver enough heat to prevent temperatures from
declining which would have led to the error of judging the heating system as off
even though it was on. In that case, the probability of the heating system being on
should have been lower; however, the average probability for the coldest ten days
was with an average of M ¼ 0.44 higher than the average for all days (i.e. M ¼ 0.41).
allow ruling out such confounding factors with certainty.9 Also,
whilst the CaRB survey was designed to be a nationally represen-
tative survey, comparison of characteristics of sample dwellings to
a nationally representative survey showed that the CaRB survey did
not match national statistics in all cases. However, even when
assuming a certain error margin around our findings to take into
account these limitations, data is still very strong in supporting the
key findings of the study.

4.5. Outlook for further research

The next natural extension to this analysis would involve linking
heating durations and temperatures to socio-demographic and
building-demographic explanatory variables, and external tem-
peratures in order to allow more accurate prediction of heating
demand temperature or heating duration for an individual home or
segment of homes. This could then allow targeting sub-segments of
the population for interventions to reduce energy consumption,
and allow much more accurate prediction of energy demand for
segments of homes. Also, previous research using cluster analysis
had shown that internal temperatures followed distinctive patterns
[25]. Applying similar clustering methods to heating probabilities
could identify the most common heating patterns. Identifying
common heating patterns may have important implications for the
design of heating technologies and control systems.

Analysis of within-home variability in heating patterns from
seasonal to daily timescales could be instructive in the design of
heating control systems by highlighting the degree of required
flexibility necessary to accommodate such variable heating system
demands. Highly irregular heating patterns would reduce the effi-
ciency of low carbon heating technologies such as ground-source
heat-pumps, and may indicate that occupants accustomed to
such patterns would find it challenging to adapt to the reduced
responsiveness of such systems.

Finally, a similar analysis on the rest of the house would be of
interest given that BREDEM distinguishes living room and the rest
of the house.

4.6. Conclusions

The study challenges common model assumptions on heating
patterns, hours, and temperatures. The results clearly show that no
deterministic heating pattern exists in English homes, that week-
days and weekends are very similar in their heating pattern, that
average temperatures during heating periods are substantially
below estimated demand temperatures, and that there is a sub-
stantial variability between homes in heating duration and tem-
perature. The findings have important implications for the
calculation of overall energy demand, energy demand of an indi-
vidual property, and of heat loss parameters of a building, and
suggest the need to revise current assumptions and applications of
models.
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