
Multichannel Distributed
Coordination for
Wireless Sensor Networks:
Convergence Delay and Energy
Consumption Aspects

Dujdow Buranapanichkit

Department of Electronic and Electrical Engineering
University College London

A thesis submitted for the degree of Doctor of Philosophy
In Electronic and Electrical Engineering

August, 2013

2

Statement of Originality

I, Dujdow Buranapanichkit, confirm that this work presented in this thesis is my

own work. Where information has been derived from other sources, I confirm that

this has been indicated in the thesis.

Signed________________________

Date___________________________

3

Acknowledgement

Obtaining of a PhD has never been a simple thing. However I am the luckiest student to

have Dr. Yiannis Andreopoulos as my supervisor during my PhD studies at UCL, to guide

and advise me, support my research, teach me the methodology to solve research

problems and most importantly help me with the mathematical aspects included in this

thesis, which will be invaluable for my entire career. I wish and have to express my sincere

gratitude to him.

Many thanks to the knowledgeable and friendly Academics of the Telecommunications

and Information Processing Group: Dr. John Mitchell, Dr. Miguel Rio, and Prof. Izzat

Darwazeh for their advice, understanding and encouragement in my research thesis. Also

many thanks to Dr. Kenneth Tong for his support of my research.

I would like to thank all the friends helping my research: Dr. Fei Qin, Dr. Xuewu Dai and

George Smart for their support on my work. I would also like to thank all the PhD

members of my group coinciding with my time at UCL: Dr. Davide, Dr. Safa, Dr. BoWen,

Oluyemi, Mohammad Ashraful, Haixia, Yu, George, Pedro, Spyridon, Ryan, Dr. Marcus and

Dr. Manoj for the memorable times that we had together.

Beyond all the above people, I would like to thank my family for the support and

encouragement during my PhD life. Lastly, I express my sincere gratitude to the Thai

Government Scholarship (Science and Technology), funded by the Royal Thai Government,

for financially sponsoring my PhD studies.

4

Contents

Statement of Originality... 2

Acknowledgement.. 3

Contents.. 4

List of Figures... 7

List of Tables... 10

List of Acronyms... 12

Abstract……….. 13

1. Introduction... 14

1.1 Aim and Scope.. 15

1.2 Literature Review... 16

1.2.1 The IEEE 802.15.4 Standard ... 16

1.2.2 Synchronization Approaches.. 17

1.2.2.1. Recent Advances and Applications based on Desynchronization 20

1.2.3 Multichannel MAC Approaches.. 21

1.2.4 Dynamic Power Management in WSNs .. 22

1.3 Thesis Structure .. 24

1.4 Publications... 26

2. Synchronization Primitives ... 28

2.1 Synchronization... 31

2.1.1 Implementation Details... 32

2.1.2 Experimental Validation ... 38

2.2 Desynchronization ... 42

2.2.1 DESYNC-TDMA Algorithm and Implementation Description.................................. 43

2.2.2 Experimental Validation ... 46

2.3 PCO-based Inhibitory Coupling... 48

2.3.1 Implementation Details... 49

2.3.2 Experimental Validation ... 51

5

2.4 Conclusion.. 52

3. Stochastic Modeling of Convergence to Desynchronization in Wireless Sensor Networks54

3.1 Phase Domain of DESYNC .. 57

3.2 PCO-based Inhibitory Coupling in Phase Domain... 58

3.3 Stochastic Modeling of DESYNC and PCO-based Inhibitory Coupling............................. 59

3.3.1 Modeling of Firing Cycles Required for DESYNC’S Convergence Time 62

3.3.2 Modeling of Firing Cycles Required for Convergence in PCO-based

Desynchronization with Inhibitory Coupling ... 63

3.4 Experimental Validation .. 67

3.4.1 Conjecturing DESYNC and PCO as Second-order Systems.. 67

3.4.2 Standard Deviation of the Phase Measurement Noise ... 68

3.4.3 Measurement and Simulation Setup.. 69

3.4.4 DESYNC Results .. 70

3.4.5 Results with PCO-based Desynchronization .. 72

3.5 Discussion .. 74

3.6 Conclusion.. 77

4. Distributed Desynchronization In Multi-hop Wireless Sensor Networks 78

4.1 Proposed Multi-hop DESYNC Protocol ... 78

4.1.1 Features and Implementation Details... 79

4.2 Experimental Results .. 82

4.3 Conclusion.. 84

5. Distributed Time-Frequency Desynchronization In Wireless Sensor Networks................ 85

5.1 Proposed Multi-channel Extension ... 86

5.1.1 Proposed Protocol... 86

5.1.2 Properties ... 90

5.2 Experiments.. 95

5.3 Conclusion.. 98

6. Analytic Study of Energy Consumption in Desynchronization-based Wireless Sensor

Networks under Variable Data Production Rates... 99

6

6.1 Description of Systems under Consideration.. 99

6.1.1 Data Consumption and Penalty..102

6.2 Characterization of Energy Consumption...104

A. Uniform Distribution ...106

B. Pareto Distribution ..107

C. Exponential Distribution ..109

D. Half-Gaussian Distribution..110

6.3 Evaluation of the Analytic Results ...111

6.4 Conclusion..114

7. Study of Energy Consumption for Distributed Coordination in Visual Sensor Networks115

7.1 System Model ...116

7.2 Derivation of the Minimum Energy Consumption under Application Constraints118

7.2.1 Illustrative Case: Uniform Distribution ..119

7.2.1.1. n Direction ..119

7.2.1.2. k Direction ..120

7.2.1.3. Uniqueness of Solution..120

7.2.2 Pareto Distribution ...122

7.2.3 Exponential Distribution ..122

7.2.4 Half-Gaussian Distribution ..123

7.3 Evaluation of the Analytic Results ...124

7.4 Applications ..126

7.5 Conclusions ...128

8. Conclusion ..130

8.1 Future Work..131

A. Appendix 1 ... 134

B. Bibliography... 136

C. Supplementary Materials... 149

7

List of Figures

1.2: Schemes for time synchronization in wireless sensor networks. ... 25

2.1: Network model for WSNs assuming 5 fully-connected nodes and one monitoring base

station node (in the orange circle). ... 29

2.2: Local view of node n୧’s events including transmitted and received fire messages........ 30

2.3: PCO Dynamics model demonstrating the mapping between the state variable x

counting the clock period and the node’s phase φ. .. 32

2.4: Local view of decentralized synchronization algorithm indicating the algorithmic fire

times (in solid lines) and the physical fire times (in dotted lines). ... 33

2.5: General view of local timeline for SYNC algorithm. .. 34

2.6: Local timeline for SYNC algorithm with buffer. .. 34

2.7: Format of a fire message of SYNC algorithm.. 34

2.8: Local view for determining t୧
(୩)

of SYNC algorithm... 36

2.9: Local view of SYNC algorithm when transmitting data.. 37

2.10: Format of a data message of SYNC algorithm... 37

2.11: Address space of the flash memory of iMote2 [123].. 38

2.12: Photos of the iMote2 board... 40

2.13: Scheduling of the fire-message broadcast for node i. .. 44

2.14: Format of a fire message for DESYNC algorithm.. 45

2.15: Local view of nଵ during DESYNC-TDMA and including data transmission........................ 45

2.16: Format of a data message for DESYNC algorithm. ... 46

2.17: Local view of PCO-based Inhibitory Coupling... 49

2.18: Format of a fire message for PCO-based inhibitory coupling. .. 50

2.19: Results of the total throughput for the different protocol of the synchronization

primitive... 53

3.1: The kth phase update of node n୧happens when: (a) node n୧ାଵ (next firing node) fires

in DESYNC; (b) another node fires in PCO-based desynchronization and ni is within the

listening interval (i.e. if 1-
ଵ

< φ୧

(୩-ଵ)
< 1).. 57

3.2: Scheduling of the kth fire-message broadcast for node i for DESYNC. 58

8

3.3: Phase adaptation during the reception of the kth message in PCO-based

desynchronization. .. 59

3.4: A pictorial illustration of the probability density functions of the phase random

variables {Φ୧-ଶ, Φ୧-ଵ , Φ୧, Φ୧ାଵ } for the lth phase-updatel ≥ 2 of the ith firing via (3.5) 67

3.5. Node phase convergence to fixed phase for DESYNC (left) and PCO-based (right)

approaches. The period number refers to the firing cycle based on the node’s internal

clock. “Simulation” is performed by Matlab in noise-free conditions, i.e. each phase is

detected accurately and instantaneously by all nodes. .. 68

3.6: Required firing cycles for convergence for the DESYNC algorithm for various values of

α. The vertical error bars correspond to one standard deviation from the experimental (or

simulation) mean values, which are indicated by marks. ... 71

3.7: Required firing cycles for convergence for the PCO-based algorithm for various values

of α. The vertical error bars correspond to one standard deviation from the experimental

(or simulation) mean values, which are indicated by marks. .. 73

4.1: WSN with hidden nodes... 78

4.2: Format of a fire message of multi-hop DESYNC algorithm... 80

4.3: Code for multi-hop DESYNC version that the hidden node(s)... 80

4.4: Local view for multi-hop DESYNC to find the t୧ାଵ
(୩-ଵ)

and t
୧-ଵ

(୩-ଵ)
. .. 81

4.5: Code for multi-hop DESYNC algorithm when checking the neighbour list. 81

4.6: Code for multi-hop DESYNC when checking the hidden node list... 82

5.1: A sample of the random channel selection case scenario of the proposed multi-channel

extension.. 87

5.2: The diagram of the proposed multi-channel extension... 89

5.3: Code for the random channel selection.. 98

6.1: A uniformly-formed topology which is fully connected to one base staion with a

indicating the consumption rate of a base station (in bits-per-second)101

6.2: Energy profile of a TelosB sensor node running balanced TDMA data transmission for

a fully-connected topology during the active period...102

6.3: Energy consumption per node with different data transmission rates and under

different numbers of nodes..113

7.1: The grayscale surfaces show, for each statistical distribution, the energy consumption

of a single camera sensor node as a function of the frame rate and the total number of

nodes in the TDMA schedule. The blue crosses correspond to the value of the consumed

energy as measured from the sensor network testbed correspond to active time of the

sensor node in 1s..125

9

7.2: Energy consumption for JPEG application, the grayscale surfaces represent the fitted

energy function obtained with the Pareto PDF equation, while the blue crosses represent

the experimental measurements correspond to the active time of the sensor node in 1s.

..127

7.3: Energy consumption for salient point application, the grayscale surfaces represent the

fitted energy function obtained with the Pareto PDF equation, while the blue crosses

represent the experimental measurements correspond to active time of the sensor node in

1s. ..129

C.1: Code of SYNC algorithm ...149

C.2: Code of SYNC algorithm when considering the phase. ..149

C.3: Code of SYNC algorithm when transmitting data. ...150

C.4: Code for DESYNC-TDMA. ..150

C.5: Code for Desync-TDMA when transceiving data. ...151

C.6: Code of PCO-based inhibitory coupling..151

10

List of Tables

2.1: SYNC’s performance for different number of nodes, the maximum data rate at one

single node was 84.8kbps. .. 42

2.2: DESYNC -TDMA's performance for different number of nodes; the max. data rate with

single transmitter and receiver setup was 85.3 kbps. .. 47

2.3: Performance of PCO-based inhibitory coupling for different number of nodes; the

maximum data rate at the single transmitter-receiver setup was 85.3 kbps. 51

3.1: Nomenclature table .. 56

3.2: DESYNC: average performance metrics under (guard) thresholds 20ms and 1ms. The

numbers in brackets in the convergence iterations indicate the model prediction............... 76

3.3: PCO: average performance metrics under (guard) thresholds 20ms and 1ms. The

numbers in brackets in the convergence iterations indicate the model prediction............... 76

4.1: Results under the multi-hop topology of Figure 4.1. The presented measurements

include the period after SS has been obtained. .. 83

5.1: Throughput of the proposed TFDMA with 16 nodes. ... 96

5.2: Throughput obtained with DESYNC, TSMP and EM-MAC; all results are reported under

a fully-connected WSN topology comprising 16 nodes.. 97

5.3: Average delay (and standard error of mean) until SS. ... 97

5.4: Average delay until SS under TSMP and EM-MAC. .. 97

6.1: Nomenclature table ..103

Table 6.2: The minimum energy consumption required amongst the considered PDFs for

activation time Tୟୡ୲= 400 s (6 min 40 s)...113

7.1: System Settings...124

7.2: Differences between the theoretical and experimental results and the optimal value of

the nodes number and the frames number (on the last column) amongst the considered

PDF under the settings of Figure 7.1. ...125

7.3: Minimum energy consumption under ad-hoc settings and proposed framework. The

energy saving shows in the percentile difference between the ad-hoc and proposed cases

for two sample application scenarios. ...128

11

List of Acronyms

APP Application layer

BI Beacon Interval

BO Beacon Order

BRIEF Binary Robust Independent Elementary Features

CAP Contention Access Period

CCA Clear Channel Assessment

CDF Cumulative Density Function

CFP Contention Free Period

CLT Central Limit Theorem

CMOS Complementary metal–oxide–semiconductor

CPU Central Processing Unit

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

DCT Discrete Cosine Transform

DPCM Differential pulse-code modulation

DESYNC Desynchronization Algorithm of Degesys et al

DPM Dynamic Power Management

DSP Digital Signal Processing

DTFDMA Distributed Time Frequency Division Multiple Access

EM-MAC Efficient Multichannel MAC

FAST Features from Accelerated Segment Test

FTSP Flooding Time Synchronization Protocol

GTS Guaranteed Time Slot

HAA Hardware Abstraction Architecture

IBS Interval Based Synchronization

IEEE Institute of Electrical and Electronics Engineers

JPEG Joint Photographic Experts Group

KB Kilobyte

kbps Kilobit Per Second

MAC Medium Access Control

MB Megabyte

12

OSI Open System Interconnection

PAN Personal Area Network

PCO Pulse Coupled Oscillator

PDF Probability Density Function

PHY Physical Layer

RBS Reference Broadcast Synchronization

RFA Reachback Firefly Algorithm

RTOS Real-time operating system

RV Random variable

SD Super frame

SEM Standard Error of the Mean

SO Super frame Order

SS Steady State

STD Standard Deviation

SYNC Synchronization

TDMA Time Division Multiple Access

TFDMA Time Frequency Division Multiple Access

TPSN Timing-sync Protocol for Sensor Networks

TSCH Time Synchronized Channel Hopping

TSMP Time Synchronized Mesh Protocol

VSN Visual Sensor Networks

WSNs Wireless Sensor Networks

13

Abstract
This thesis develops new approaches for distributed coordination of data-intensive

communications between wireless sensor nodes. In particular, the topic of

synchronization, and its dual primitive, desynchronization at the Medium Access

Control (MAC) or the Application (APP) layer of the OSI stack, is studied in detail.

In Chapters 1 and 2, the related literature on the problem of synchronization is

overviewed and the main approaches for distributed (de)synchronization at the

MAC or APP layers are analyzed, designed and implemented on IEEE802.15.4-

enabled wireless sensor nodes.

Beyond the experimental validation of distributed (de)synchronization

approaches, the three main contributions of this thesis, corresponding to the

related publications found below, are:

 establishing for the first time the expected time for convergence to

distributed time division multiple access (TDMA) operation under the two

main desynchronization models proposed in the literature and validating

the derived estimates via a real-world implementation (Chapter 3);

 proposing the extension of the main desynchronization models towards

multi-hop and multi-channel operation; the latter is achieved by extending

the concept of reactive listening to multi-frequency operation (Chapter 4

and 5).

 analyzing the energy consumption of the distributed TDMA approach under

different transmission probability density functions (Chapter 6 and 7).

Conclusions and items for future work in relation to the proposals of this thesis are

described in Chapter 8.

14

1.Chapter 1

Introduction

Wireless sensor networks (WSNs) have received significant attention from the

research community for a number of years. One of the key aspects in the energy

and bandwidth efficiency of WSNs is how to transmit data from sensors to base

station(s), or from sensor to sensor without packet collisions at the physical (PHY)

layer. This is because, if packets collide at the physical layer of standard PHY

designs of WSNs, this means that all transmitters wasted energy for no benefit and

the transmission opportunity was also wasted as no receiver can recover useful

information.

A crucial element in any Medium Access Control (MAC) or Application (APP)

layer protocol aiming to avoid packet collisions under data intensive WSN

communications is an efficient synchronization or desynchronization mechanism.

Within the context of MAC or APP-layer design of WSNs, synchronization can be

seen as the mechanism to align transmission intervals between co-located sensors

before deciding which sensor should use which interval. Desynchronization is the

dual primitive of this, i.e. each sensor is obtaining its own transmission interval at

the MAC or APP layer with (ideally) no overlap between the transmission intervals

of co-located sensors. In WSN nodes with different clock characteristics, once

synchronization or desynchronization is achieved, well-known low-complex

scheduling (e.g. round-robin) can be used in order to send packets from one node

to another without collisions. Thus, due to their importance, (de)synchronization

approaches in WSNs have been a long-standing research problem, especially the

aspects related to distributed (de)synchronization, i.e. (de)synchronization without

the use of a central (master) coordinating node.

Interestingly, various distributed (de)synchronization mechanisms for WSNs

have been inspired from mathematical biology and natural sciences

[106][110][111]. For example, it has been known for some time that a group of

15

fireflies emit light flashes in a synchronous manner in order to attract their

partner. In this work, we consider theory and development of biology-inspired

distributed (de)synchronization in small- and medium-scale WSNs, with a special

emphasis on desynchronization, which has been shown to be better suited to MAC

and APP-layer protocol design than synchronization. Beyond the theoretical

aspects of such (de)synchronization mechanisms, the thesis proposes practical

WSN multichannel protocol designs based on them and validates their

performance and energy efficiency under real-world transmission rates stemming

from variable-rate data gathering and transmission in WSNs.

1.1 Aim and Scope

The standard IEEE802.15.4 MAC that was designed with a view towards WSN

deployments supports a typical CSMA/CA mechanism for collision detection and

avoidance at the MAC and PHY layers of WSNs. However, when considering the

stringent energy and bandwidth constraints of WSNs, this mechanism is not

sufficient as it does not ensure all self-inflicted (i.e. caused by nodes within the

WSN) interference and packet collisions are avoided. Therefore WSNs need to have

an effective protocol to manage how to transmit the data from many sensor nodes

to the base station (or from sensor to sensor) without data collisions and with high

bandwidth utilization. A collision-free time division multiple access (TDMA) or

time-frequency division multiple access (TFDMA) protocol is the one of the best

schemes for this purpose. Such mechanisms can be achieved in a centralized or

decentralized manner. Because decentralized schemes do not depend on a single

entity (i.e. the coordinator node), the decentralized-based TDMA will be the most

interesting approach for our study. In order to achieve this in an energy-efficient

and robust manner, in this thesis we shall follow biology-inspired proposals based

on pulsed coupled oscillators. Two further advantages of such mechanisms are

their inherent robustness to noise and their inherent capability to self-adjust in the

presence of nodes joining or leaving the WSN.

16

1.2 Literature Review

Given that the proposals are all built on standard-compliant MAC and APP layers of

modern WSN hardware, the first part of the literature review discusses the

IEEE802.15.4 standard, which forms the basis of all experimental setups of this

work. Subsequently, MAC and APP-layer oriented (de)synchronization proposals

are reviewed, with a special emphasis on desynchronization that forms one of the

main aspects of this thesis. Since desynchronization principles are used to propose

a new multichannel MAC protocol for WSNs, previous work on multichannel

coordination in WSNs in then reviewed. Finally, given that energy efficiency is one

of the crucial aspects of WSN deployments, the last part of the literature review is

devoted to research work on dynamic power management.

1.2.1 The IEEE 802.15.4 Standard

The MAC and PHY layers of IEEE 802.15.4 are specified for low-rate wireless

personal area networks [33]. A widely-used implementation of the IEEE 802.15.4

protocol is provided in the nesC programming environment in TinyOS. Similarly

some RTOS (real-time operating systems) such as the Contiki RTOS, have also

supported the IEEE 802.15.4 over standard-compliant hardware. The supported

functionalities of IEEE 802.15.4 MAC are [35]:

 Generating network beacons (coordinator node) and synchronizing to the

beacons

 Supporting the personal area network association and disassociation

 Employing the CSMA/CA mechanism for channel access, supported by clear

channel assessment (CCA) and channel frequency selection in PHY layer

 Handling the guaranteed time slot (GTS) allocation

 Providing a link control mechanism for increased connection reliability

between two MAC devices.

This thesis is concerned with real-world WSN communications over existing

hardware and protocol infrastructure. As such, we build algorithms at the MAC

layer, with particular emphasis on backward compatibility to the standard

17

IEEE802.15.4 MAC. This allows for wide applicability of the thesis proposals to a

variety of existing and forthcoming standard-compliant transceiver hardware in

WSNs.

1.2.2 Synchronization Approaches

There are many proposals in research literature for synchronization (or

desynchronization) in WSNs. However, most such proposals have been designed

and tested via simulation and/or assume operation at the PHY layer [1]–[7], where

beacon collisions can be resolved via dedicated physical-layer modes of operation.

Moreover, when considering PHY-layer (de)synchronization, transmission delays

and end-to-end response times are easier to determine than when considering the

problem of (de)synchronization at the MAC or APP layer. This is because MAC and

APP-layer (de)synchronization is based on packet transmissions (and not PHY-

layer beaconing [8]–[10][13][15][19]), which add extra uncertainties with respect

to the actual transmission and response times of nodes. However, their advantage

is that they do not require changes at the PHY or MAC layers (beyond trivial

modifications such as setting retransmission waiting times to near-zero at the

MAC) and can thus be deployed in a variety of IEEE 802.15.4-compliant systems.

In this section, we highlight several schemes proposed in the literature, with

emphasis on proposals that have been implemented on real hardware or have

reached near-deployment phase for real-world WSNs, either at the PHY or MAC

and APP layers of the OSI stack.

One of the most popular proposals is the flooding time synchronization protocol

(FTSP) [1][124], which is aiming for centralized clock synchronization across all

nodes of a WSN. The node with the least identifier is chosen to be the source of the

“standard” time. This node periodically sends the synchronization message. The

other nodes receive the message and calculate the shift and relative frequency with

respect to the node that is the source of the standard time.

Within a similar context as the FTSP, several algorithms have been proposed to

address the clock drift amongst different nodes [2]. Most algorithms fall in the

18

category of drift-constrained clock models. A popular approach is the interval-based

synchronization (IBS) [3][125][126]. In IBS, while two nodes communicate, they

update the upper and lower bounds and integrate the selection of the maximum

lower and minimum upper bounds of time interval to derive a time estimator. As

such, this method derives the time and drift constraints imposed by a certain

implementation.

In order to derive a collision-free communication schedule, proposals for time-

triggered systems form a global time base that is distributed amongst the nodes via

distributed clock synchronization [4]. The reachback firefly algorithm (RFA) is

proposed to provide such a common time base, based on pulse-coupled biological

oscillators (PCOs) [4][112]. In PCOs with RFA, the clock synchronization messages

have not been broadcast by all nodes at the same time to avoid message collisions

in these broadcasts. Instead, the reachback response is defined, which sends the

synchronization messages with a random offset [4]. This highlights one of the main

problems of synchronization (in contrast to desynchronization), i.e. the need to

provision for mechanisms avoiding message or beacon collisions at the PHY layer.

Another approach to the problem of synchronization is the timing-sync protocol

for sensor networks (TPSN), which provides network-wide time synchronization

in sensor networks [5][6]. In TPSN, the network is established as a hierarchical

structure. The root of a network is the master node and other nodes synchronize

their clocks to the master node. The technique is based on broadcasts from the

master node, which is called the signal node, along the hierarchical structure. The

broadcasts follow the reference broadcast synchronization (RBS) method [7].

Specifically, the signal node broadcasts the synchronizing beacon without

timestamp to its neighbor. Each node uses its receiving time of that reference

beacon to synchronize its own clock. Finally, other works [20][21] focus on

achieving the accuracy of the time synchronization in wireless sensor network to

obtain the clock synchronization [22][23].

19

More recently, there have been proposals to solve the dual problem to

synchronization, i.e. desynchronization of wireless sensor nodes. The most

prominent proposal is the DESYNC algorithm, which proposes a novel

desynchronization and time division multiple access (TDMA) protocol [8]. In

DESYNC, the sensor nodes work in a periodic schedule. Each node broadcasts (or

“fires”) a desynchronization-oriented message every period based on the previous

and next firings from other nodes. Based on the received fire message broadcasts,

each node adjusts its own fire message to be at the mid phase between the

previous and next fire messages received. As a result, once the nodes have

converged to desynchronization, each node’s TDMA slot starts at its firing (zero

phase) and ends at the firing of the next node and all TDMA slots are guaranteed to

be non-overlapping.

Similar techniques to DESYNC were proposed in [9]. There, the

desynchronization algorithm is based on the PCO concept. Each node has a clock

which ticks for a single period, e.g. from time 0.0 to time 1.0. When node hears any

message from another node outside a specified interval of time (called the

refractory period), it updates its local clock to synchronize and transmit the

message at the same time or at least within a small refractory period [9]. When the

clock reaches 1.0, it resets to zero and a fire (or beacon) packet has been

broadcast. The process is repeated indefinitely in this manner and it ensures

desynchronization is achieved between the participating nodes regardless of their

clock drift.

To summarize the literature review on synchronization, within existing

approaches, all centralized synchronization approaches are based on the premise

of maintaining (and synchronizing to) a centralized clock. As an alternative,

distributed desynchronization is a new primitive that allows for equidistant

channel access times for WSNs organized in a fully-connected (single-hop)

network topology while avoid collisions of synchronization messages, leading to

collision-free TDMA that does not require the presence of a coordinating node

20

[8][9][13][81][84][89][90]-[92]. All existing desynchronization approaches are

based on the principle of reactive listening, where nodes periodically broadcast

short packets (so-called “beacon”, “pulse”, or “fire” messages [8][9][13]) and then

adjust their next broadcast time based on the reception of fire messages from the

remaining nodes sharing the allocated spectrum. Equivalent distributed

synchronization algorithms have also appeared recently [9].

1.2.2.1. Recent Advances and Applications based on
Desynchronization

Since the original formulation of desynchronization within the context of WSNs

[4][8] several authors extended properties of its basic reactive listening primitive

in a number of ways. Extensions towards multihop topologies have been proposed

by low-complex graph theory methods [15][18], or via broadcast of only a limited

number of beacon messages to the immediate neighbors [82][88]. The effects of

node mobility in desynchronization were discussed in recent work [83]. A

desynchronization method based only on carrier sense (under scenarios with

limited reception capabilities or even under adversarial conditions) was also

proposed recently [93]. Under the knowledge of the total number of nodes, it was

shown that maintaining one node with fixed beaconing (i.e. an “anchored” node)

[81] allows for faster convergence to TDMA. A modification of desynchronization

to allow for “self-adjustment” of the firing order (instead of resetting its phase to

zero) was proposed recently be Klinglmayr and Bettstetter [85]. Other works

focused on modifications to the basic desynchronization to allow for TDMA with:

low-complexity scheduling [36][87], unequal slot sizes [9][86], as well as

scheduling under discrete resources (non-continuous time) [89]. Finally, in our

recent work [34] we proposed a time-frequency extension of the

desynchronization process in order to achieve increased bandwidth efficiency and

allow for low-complex distributed coordination across the multiple channels

supported by the IEEE 802.15.4 standard for WSN communications. Overall, it is

evident that distributed desynchronization remains a very active field of study as it

21

can significantly assist a variety of problems in WSN design, such as interference

avoidance, asynchronous transmission in multihop networks and low-complex

multichannel coordination at the MAC layer. Since the latter aspect forms a part of

this thesis, it is discussed in more detail in the following section.

1.2.3 Multichannel MAC Approaches

MAC protocols control and the Link/PHY layer access times in a WSN and as such

they are essential in minimizing congestion and interference amongst competing

nodes in the network. One of the most efficient ways to minimize congestion and

interference is to use multiple channels. This has been recognized recently by the

ratification of the coordinator-based time-synchronized channel hopping (TSCH)

mode of the IEEE 802.15.4e-2012 standard [29][30][140][141].

Mo et al. categorize multichannel MAC protocols based on their principles of

operation [63]. Some of the most energy-efficient protocols for multichannel MAC

in WSNs are based on the parallel rendezvous approaches as proposed in McMAC

[65], MMSN [64], etc, where multiple nodes simultaneously attempt to synchronize

in different channels. The efficiency of such approaches stems from the

achievement of quick synchronization, which incurs less collisions and idle

listening time (both of which are known to be the sources of substantial energy

expenditure in WSN-oriented transceivers). On the other hand, the single

rendezvous MAC approaches use a dedicated control channel, where coordination

of transmission and reception amongst the WSN nodes takes place. Some of the

earliest single rendezvous MAC protocols via a dedicated control channel are DCA-

PC [68] and DPC [69], which are important schemes for multichannel MAC

coordination because they allow for high number of channels and large-size

packets to be used. Other approaches along these lines include MMAC [66] and

MAP [142]; however, such approaches require strict time synchronization before

starting the multichannel coordination, which may be hard to achieve in practice.

Concerning parallel rendezvous protocols, the key aspect is to decrease the

energy consumption when each node switches channels frequently to avoid

22

persistence interference on a single channel. One of the most promising works in

this domain is the EM-MAC protocol for WSNs by Tang et al. [44]. Each node within

EM-MAC attempts to predict its receiver’s wake up time and transmitters and

receivers are designed to rendezvous in each channel without the use of a

centralized control channel. While EM-MAC has indeed demonstrated very low

energy consumption, it achieves low bandwidth efficiency as most of the time the

nodes are in stand-by mode. Other parallel rendezvous protocols, such as CAM-

MAC [67], were proposed to enhance the performance significantly based on the

usage of a dedicated control channel. CAM-MAC does not require clock

synchronization and does not allow for frequent channel switching. Along similar

lines, Pister and Doherty [32] designed the TSCH protocol for multi-hop WSNs

using channel hopping with a centralized controller. TSCH has been shown to

achieve high bandwidth efficiency with moderate energy consumption while

minimizing collisions and avoiding persistent interference within a single channel.

As such, it was included within the IEEE802.15.4e-2012 standard as an optional

mode of operation and an open-source effort to support the deployment of TSCH

within its standardized mode was started recently (openWSN project [140]).

1.2.4 Dynamic Power Management in WSNs

The basic idea of dynamic power management (DPM) is to improve the energy

conservation capability of a system with minimal or no effect on its operation and

performance. Evidently, the topic of DPM is vast and any attempt to summarize the

entirety of the literature around it would be futile. Thus, in this section we only

highlight the essentials of DPM within the context of WSNs in order to support our

developments and validation of desynchronization-based protocols with energy-

efficient operation.

Within a WSN, it is self-evident that each node should be set to sleep mode or

idle state when there is nothing to do, in order to conserve energy [95]. Modern

RTOS designs, such as Contiki, support DPM inherently by automatically setting

the transceiver or the processor (or both) to sleep mode when the RTOS detects

23

they are not used by the executing threads. On the other hand, other operating

systems like TinyOS require the programmer to manually set parts of the sensor to

sleep mode when they are not used.

As discussed previously, several MAC protocols are specifically attempting to

minimize energy consumption. Overall, the crucial aspects to address are

[70][73][77][95]–[98]: (i) minimizing idle listening, i.e. minimizing the times when

a node switches on its receiver circuit when there is no packet to be received; (ii)

minimizing the amount of collisions occurring in the wireless medium; (iii)

minimizing the control operations required to achieve minimal (or no) idle

listening and minimal (or no) collisions, as very complex MAC protocols will not

allow for the processor to go to sleep mode. Amongst the vast amount of research

works in this area, we highlight two representative cases that encompass most or

all of the principles highlighted previously: Pantazis et al [96] proposed a TDMA-

based scheduling using sleep mode to save energy consumption; the monitoring of

an electric system [97] utilized WSNs with DPM to allow for very long operational

times. The reader is referred to the survey paper of Bachir et al [98] for further

examples of DPM-based approaches in WSNs.

Another category of research approaches the problem of DPM by focusing on a

particular aspect of the WSN-based monitoring [70]. Technology-oriented

approaches design new circuits and systems for more efficient energy

management [71][72], or strive for more efficient scheduling and transmission

protocols [34][44][47][58]. These try to bridge the gap between data sensing and

transmission requirements and the corresponding energy production (e.g. via a

harvesting unit) and energy storage capability of the underlying hardware. Finally,

another group of approaches proposes optimal energy management policies under

given energy harvesting, sensing and transmission capabilities [73]-[75][78]. Such

policies optimize the manner each sensor node performs its data gathering and

buffer management in order to minimize the required energy consumption.

24

1.3 Thesis Structure

The vast majority of these works do not provide a practical implementation;

instead, only simulation results are presented. Importantly, there is no common

experimental basis to compare the algorithms within each category of Figure 1.1.

Performing detailed theoretical and experimental comparisons between

distributed (de)synchronization algorithms based on local clock information is the

first aspect of this thesis.

To this end, the main objective of this thesis is to establish, analyze and evaluate

the distributed synchronization protocols operating on real WSN hardware. The

major contributions are outlined below:

(i) We propose realizations of the (de)synchronization algorithms that are

simple enough to run on commodity WSN hardware and the results are

measured from a practical test-bed using IEEE802.15.4 MAC [19][33].

(ii) We propose (for the first time) an analytic model for the convergence to

desynchronization under PCO-based methods, which is coupled with

experimental results using real WSN hardware based on the IEEE 802.15.4.

(iii)The bandwidth efficiency of desynchronization is enhanced by introducing

desynchronization in multiple communication channels available under the

IEEE802.15.4 MAC [33] and also by considering desynchronization under a

multi-hop topology.

(iv)We prove the convergence of the proposed distributed multichannel

desynchronization and propose a model for the expected delay to achieve

convergence to steady-state; the theoretical results are validated via

experiments based on a nesC TinyOS deployment [34].

(v) The energy efficiency for the distributed synchronization in WSNs is

studied according to a model for energy consumption under a variety of

statistical characterizations for the data production [77].

25

Figure 1.1: Schemes for time synchronization in wireless sensor networks.

Concerning (i) and (ii), for the two main proposals of PCO-based

desynchronization:

 the DESYNC-based TDMA protocol was implemented on TinyOS-based

Telos sensor motes [8];

 the decentralized PCO-based synchronization algorithm of [11] was

implemented on TinyOS-based MicaZ motes.

In order to evaluate and compare between these two methods, our work

designs and implements both algorithms on the same hardware, i.e. TinyOS-based

iMote2 nodes.

Concerning (iii)–(iv), we propose two elements for improving the network

performance of PCO-based desynchronization protocols. In existing PCO-based

synchronization primitives, besides the time dimension, frequency (i.e. the utilized

channel of IEEE 802.15.4) is not considered. To this end, we design protocols for

adjusting the transmission channel based on the number of nodes already present

in each channel. Via experiments with real sensor network hardware (iMote2 with

TinyOS), we demonstrate that the proposed mechanisms lead to significantly

increased bandwidth efficiency in comparison to [8][11] as well as improved

convergence time in multichannel desynchronization compared by [32][44].

Global-Clock based

Centralized

[1], [2]

Centralized

[5], [6], [7]

Distributed

[3], [4]

Synchronization

(Wireless Sensor Networks)

Local-Clock based

Distributed

[8], [9], [11], [12], [13]

Focus of this thesis

26

Finally, concerning (v), our contribution is to consider the expected energy

consumption of a multichannel desynchronization-based protocol and sensor

nodes producing and transmitting data with variable rates. The aim is to predict

how much energy must be preserved under duty-cycling–based operation and

under the existence of a predefined energy source (e.g. energy available from the

battery within a certain interval of time). Specifically, we propose an analytic

model that has been validated via different transmission rate probability density

functions (PDFs) stemming from real-world applications. The average energy

consumption was experimentally measured based on a resistor connected in series

to TelosB motes (running the Contiki RTOS and the proposed multichannel

desynchronization) and a high-speed oscilloscope capturing the current

consumption in real time.

1.4 Publications

 H. Besbes, G. Smart, D. Buranapanichkit, C. Kloukinas and Y. Andreopoulos,

“Analytic conditions for energy neutrality in uniformly-formed wireless

sensor networks,” IEEE Transactions on Wireless Communications, -

Submitted.

 A. Vittorioso, D. Buranapanichkit, G. Fortino and Y. Andreopoulos,

“Coordination for TDMA operation in WSNs: comparison between

centralized and distributed mechanisms,” 9th European Conference on

Wireless Sensor Networks (EWSN), poster presentation, 2012

 D. Buranapanichkit, and Y. Andreopoulos, “Distributed time-frequency

division multiple access protocol for wireless sensor networks,” IEEE

Wireless Comm. Letters, vol. 1, no. 5, pp. 440-443, Oct 2012.

 D. Buranapanichkit, A. Vittorioso, G. Fortino and Y. Andreopoulos,

“Performance comparison of centralized and distributed coordination for

27

TDMA operation in wireless sensor networks,” London Communication

Symposium (LCS), 2011.

28

2.Chapter 2

Synchronization Primitives

Synchronization in WSNs is a long-standing research problem [10][11][112][115]-

[117]. In the last 10 years, new approaches based on pulse-coupled oscillators

have gained significant traction within the WSN research community [8][9]. The

basic premise of these methods is reactive listening: each wireless sensor node

listens for periodically-broadcast messages from other nodes, called “pulse” or

“fire” messages. Based on the received messages, each node adapts their internal

time measurement function that triggers their own fire message [8][9]. Once the

node is triggered to fire, it reacts by broadcasting its own fire message. The

advantage of these protocols in comparison to centralized clock synchronization is

in their implementation simplicity, robustness to clock drift and transmission

delay jitter, and in the avoidance of depending on a single coordinator node (or

base station).

The reactive listening process consists of a convergence period, where nodes

adjust their firing times, and a steady-state period where fire messages are sent by

each node in regular (periodic) intervals, followed by data packets. In the latter

case, nodes have converged into a collision-free time-division multiple access

(TDMA) system. It is well-known that convergence to TDMA can be achieved by

synchronization [4][9] or by its dual primitive, i.e. desynchronization [8][15][18].

Our work studies both schemes. However the bulk of this thesis work focuses on

the latter since: (i) no collision-avoidance schemes for the fire messages

themselves are required (i.e. unlike in synchronization schemes [4]) and (ii)

desynchronization algorithms have low complexity and their implementation in a

WSN requires a single timer in each node [8][18].

Given the similar mechanisms used by all algorithms, in this thesis we use

common notations for all distributed synchronization designs. They are

29

represented in the network diagram of Figure 2.1 where we depict the model of a

fully-connected wireless sensor network. A broadcast message from a node is

received from every node in the network. For non-invasive monitoring purposes,

we assume there always exists a “base station” node that listens to all broadcast

messages from all nodes and then sends the message trace file to the computer via

the USB port for analysis.

Figure 2.1: Network model for WSNs assuming 5 fully-connected nodes and one

monitoring base station node (in the orange circle).

Each node ݊, 1 ≤ �݅≤ ܹ , with ܹ being the total number of nodes in the

network, picks its local time, ݐ
(ିଵ)

, to broadcast its (݇− 1)th fire message. The

“local” view of the network events seen from node ݊during its (݇− 1)th period is

represented in Figure 2.2, where the received fire messages from other nodes are

represented by downward arrows. Node ݊ broadcasts its fire message at ݐ
(ିଵ)

,

which is indicated by the upward arrow. Throughout the thesis, ݐ
(ିଵ)

comprises

the time instant when node ݊ transmitted the fire message within the (݇− 1)th

period (or (݇− 1)th firing), while ିݐ ଵ
(ିଵ)

and ାଵݐ
(ିଵ)

comprise fire messages

received by node ݊ and originating by nodes ݊ି ଵ and ݊ାଵ (respectively) during

(݇− 1)th period. Without loss of generalization, we assume that nodes fire in their

numerical order, i.e. node ݊ି ଵ fires before node ݊ for each periodic interval.

Figure 2.2 shows that node ݊ receives the broadcast fire message from the

previous node at ିݐ ଵ
(ିଵ)

as well as from the next node at ାଵݐ
(ିଵ)

. Based on the

reactive listening primitive of each synchronization scheme, each node ݊

calculates the time to broadcast its own message during the next period ()݇, i.e.

n
1

n
2

n
4 n

3

Base station, n
0

n
5

30

ݐ
()

. In the steady state of the WSN system, each node fires its message every ܶs,

which is the desired TDMA period. The aim of each synchronization approach is to

schedule all fire messages in a way that leads to TDMA, with each of the ܹ nodes

having transmission interval of
ೈ

s in steady state (SS), after ୱ݇ୱ periods. The

convergence to TDMA is checked by: หݐ(౩౩) − (౩౩ିଵ)ݐ − ܶห< �ܾ ୲୦୰ୣ ୱܶ , with

୲ܾ୦୰ୣ ୱ�߳�[0.001,0.020] a preset threshold. Once this condition is satisfied, the

system is deemed to be in a “converged” state and ୱ݇ୱ comprises the number of the

required firing cycles for convergence.

Figure 2.2: Local view of node ݊’s events including transmitted and received fire

messages.

In order to achieve convergence to TDMA, beyond the default firing period of ܶ

seconds, each distributed synchronization protocol is using a “coupling”

mechanism during the reactive listening primitive with coupling parameters:

 ∋�ߙ (0,1), which is the phase coupling constant controlling the speed of

the phase adaptation; alternatively, ߙ is called the “jump-size” parameter in

[8]; this parameter is used in Sections 2.2 and 2.3;

 <ߝ 0, which is the coupling strength, used for tuning the scheduling in

Section 2.1;

 ߮�∈ [0,1), which represents the node’s phase variable. Each node has a

local clock whose counter loops from 0 to 1: the phase variable represents

a mapping of the node’s clock value (modulo ܶ) to the interval [0,1);

importantly, this mapping may not always be linear or indeed continuous,

as explained in the following section.

In this chapter, we describe the design and implementation of each primitive of

the distributed (de)synchronization algorithms studied. First of all, the operation

of the synchronization approach is presented, a protocol that we called the SYNC

it

Period = T

Time (s)ti-1
(k-1) ti

(k-1) ti+1
(k-1) (k)

received fire message

transmitted fire message

31

algorithm [4]. This was inspired by firefly synchronization [4]. The dual primitive

is the desynchronization scheme, which is called the DESYNC algorithm [8]. Finally,

the description of the PCO-based algorithm with inhibitory coupling [9] is given,

which is also a desynchronization approach. The chapter concludes with a

discussion of all (de)synchronization primitives.

2.1 Synchronization

This section studies the distributed synchronization strategy. We implemented the

SYNC algorithm based on the PCO and the RFA algorithms [4]. In the PCO scheme,

each node needs to fire and receive the signal pulse. Similarly, each node has a

clock that counts periodically from 0 to ܶ [9], i.e. ߮�∈ [0,1) . When the node’s

phase reaches 1, the node broadcasts its synchronization (fire) message and resets

its counting clock (phase) to zero. When the other nodes hear this broadcast, they

adjust their local clock according to the coupling strength (ߝ) and a concave down

function [4][9][12]. Since each node ݊uses a local state variableݔ�� (0 ≤ ≥ݔ 1) to

measure time within each period; the non-linearity of the concave down function

used in existing proposals [4][9][12] makes the evolution of the phase variable a

nonlinear function as shown Figure 2.3. Importantly, within each period of each

node, the SYNC algorithm defines a special time interval, called the refractory

period, which is defined at the beginning and the end of the time (ݔ) measurement

of each period. If a broadcast message is heard during this interval, the node is not

allowed to update its clock. In fact, if all nodes are synchronized, they transmit the

fire message at the same time, or within this refractory period, and no further

phase update takes place.

The RFA is used in conjunction with PCO to enable a decentralized

synchronization algorithm [11]. The reachback firefly algorithm helps where

nodes purse synchronization by adapting the offset in order to avoid the problem

that a sender cannot receive messages while it transmits the data. In the original

PCO proposal, when all nodes are synchronized, they will transmit the clock

message at the same time using a special medium access mechanism [9]. However,

32

in conventional MAC designs for WSNs, e.g. in IEEE802.15.4 MAC, this causes

collision of the fire messages themselves. For this reason, each node should send

the synchronization (fire) message with a random offset to avoid collisions. Nodes

collect all synchronization events from the last period and decide how to react

during the next period. The messages themselves contain the relative time from

the moment they should have been fired, to the moment they were actually fired

(because of the random offset). This is called the reachback response [4].

Figure 2.3: PCO Dynamics model demonstrating the mapping between the state variable ݔ

counting the clock period and the node’s phase ߮.

In our work, we designed and implemented these approaches for the SYNC

algorithm as explained in this next subsection.

2.1.1 Implementation Details

The description of the design and implementation of the SYNC algorithm for

IEEE802.15.4 MAC is divided in two sections. The first subsection presents the

SYNC algorithm during the convergence period. The second subsection is concerned

with the operation after convergence and introduces the TDMA protocol and its

operation in IEEE802.15.4 MAC.

An important characteristic of the PCO with RFA is the distinction between the

notions of algorithmic time and physical time as shown in Figure 2.4. The

algorithmic time represents the fire message broadcast within the refractory

period, which will happen when the system is in converged state. This is the time

used in the PCO-based synchronization algorithm for establishing convergence to

steady (synchronized) state. By properly choosing the refractory period, the

system can be stabilized as demonstrated in [121][122]. The physical time is the

߮1
D߮

ߝ

0

x

x + ε

x

Refractory period

1

Refractory period

33

fire message broadcast time assigned based on the reachback response in order to

avoid fire message collisions. This is the actual (physical) time that the node will

broadcast the fire message. Therefore, we have to identify the delta time (Dݐ)

which is the difference between the physical time and the algorithmic time. This

variable needs to be placed in the fire message itself. In this way, once a node

receives (or broadcasts) the fire message, it (or all other nodes) will be able to

calculate and consider the algorithmic time to check for convergence to TDMA with

the SYNC algorithm.

In order to calculate the physical time for sending the fire message, we need to

assign the slot number for each node. The physical time was set to be the time at

the slot number timing with
்

ௐ
s. This time was also used for starting sending the

data messages when nodes are synchronized.

Figure 2.4: Local view of decentralized synchronization algorithm indicating the

algorithmic fire times (in solid lines) and the physical fire times (in dotted lines).

2.1.1.1 Operation of PCO-based synchronization during the
convergence period

As shown in Figure 2.5, we consider only the algorithmic time when checking for

synchronization. Each node ݊ calculates its phase, ߮
()

, which is the difference

between the next fire time and the received fire time from the other nodes. As

mentioned, the phase is an important variable in the SYNC algorithm as it is used to

control the time ݐ
()

to broadcast the node’s own fire message during the t݇h

periodic interval. After node ݊ broadcasts its fire message, it will calculate the

time to schedule ݐ
()

, i.e. its next fire time. During the convergence period of PCO

with RFA, each node keeps all received fire messages from the other nodes in the

previous period (݇− 2) as demonstrated in Figure 2.6. They are collected in the

node’s event list, which is a small buffer in memory. Using the event list buffer, each

݇− 1 period ݇ period

DݐଵAlgorithmic Time

Physical Time

Dݐଶ Dݐଷ

ଵ݊ ଶ݊ ଷ݊
ଵ݊ ଶ݊ ଷ݊ Time (s)

34

node will use the algorithmic time of all received fire message in period ݇െ ʹ and

assume they happen in the same manner in�݇ െ ͳ. Based on this assumption, the

node will calculate ߮
ሺሻ

and decide when its next fire broadcast will take place in

the next period ()݇.

Figure 2.5: General view of local timeline for SYNC algorithm.

Figure 2.6: Local timeline for SYNC algorithm with buffer.

Concerning the format of a fire message: Each node will store Dݐ (difference

between physical and algorithmic time) in 1 byte. As shown in Figure 2.7, each fire

message also includes the node ID, the message sequence number and the delta

time. Since the format for storing time variables in TinyOS has 4 bytes, Dݐ is

converted to 1 byte. The value of Dݐwill be divided by a time constant (12800) to

fit within 1 byte.

Figure 2.7: Format of a fire message of SYNC algorithm.

We now start to describe our TinyOS implementation from the event of

receiving a fire message, which is shown in Figure C.1 in Appendix C. Each node

will determine the algorithmic time from the obtained fire message (line 3). Thus,

it also stores that algorithmic time plus one period (since it will be used for the

ݐ
(ିଵ)

ݐ
()Received FireTime

Received FireTime

Phase (߮
()

)
It’s time to calculate

the next_FireTime

Refractory PeriodRefractory Period

Time (s)

Keeping events in

the event list

ݐ
()ݐ

(ିଵ)
ݐ

(ିଶ)

It’s time to consider all

events in the past period

Time (s)

Node ID Sequence NO Delta Time

2 bytes 1 byte 1 byte

35

next period) in the event list. When it is time to fire its own message, the node will

check first that it has already computed its algorithmic fire time. In fact, if

just_usedAlgTime is FALSE, the node will need to calculate its own algorithmic fire

time. To this end, it will start to process all received fire times from all other nodes

in order to set the new next algorithmic fire time. After finishing the execution, it

will clear all the received algorithmic time in event list in order to keep the new

algorithmic times to be received in the next period. Furthermore, it will set its

physical time at the start interval of its slot time (line 10). After that, the case of

just_usedAlgTime = TRUE is handled; in this case, the node will send its broadcast

fire message at the calculated physical time (line 12). Node then will reset its

algorithm time (line 13).

When setting the physical time, we also calculate the slot time for each node, i.e.

the time interval during which the node can transmit data. The value controlling

the slot time is the slot number, which is found by checking the received fire

message as described in the following. As shown in the code of SetPhysicalTime{}

of Figure C.1, the slotTime_MyNode is the start of the slot time. It is also used to

assign the physical time for each node. In addition, the slotTime_EndNode is the

end time of the node’s (transmission) slot. It is imperative to set the slot time

correctly to ensure collision-free transmissions during each node’s slot. Because of

noise in the measured times of the start and end period, a small time value is

subtracted from the slotTime_EndNode to avoid colliding with the next received

fire time.

Consider determining ݐ
()

of a certain node, as shown in the schematic of Figure

2.8. All received fire times were sorted from first to last and the node will check

these fire times. If the calculated algorithmic time of a received fire message is

within the refractory period, the node will not change its fire time (i.e. this message

is ignored). Otherwise, ݐ
()

is adjusted according to the time difference between

the expected next fire time ݐ)
ᇱ()

= ݐ
(ିଵ)

+ ܶ is the expected next fire time) and

the received algorithmic fire time, which we call the delta-phase (∆߮). When

36

∆߮ > 0.5, we consider the received fire time in “ phase A”, which means its

received fire time is closer to ݐ
(ିଵ)

than ݐ
ᇱ()

. Conversely, when ∆߮ ≤ 0.5, this

means the received algorithmic fire message time is closer to ݐ
ᇱ()

than ݐ
(ିଵ)

. We

consider the received fire time in “phase B”.

Figure 2.8: Local view for determining ݐ
() of SYNC algorithm.

The node will schedule its own algorithmic fire time based on the difference

between the currently-scheduled firing time and the received algorithmic fire time.

If these times are close to each other, the node will fire instantly when it gets that

fire message. In the case where the received fire time is more than ܶ/2 from the

node’s own fire time, the node will adjust ݐ
ᇱ()

by adding or subtracting by a

constant valueߝ�to obtain the new ݐ
()

. In the PCO-based protocol the appropriate

value of the coupling strength [119][120], ,ߝ was within an interval of a few

milliseconds in order to reach quick and stable synchronization [9].

As shown in the pseudocode of Figure C.2 in Appendix C if ∆߮ is less than the

refractory period, the just_Phase0 will be TRUE and ݐ
()

will be scheduled at the

normal period (i.e. after ܶs). Meanwhile, if ∆߮ is out of the refractory period, the

node will adjust it as described previously: if ∆߮ > 0.5 , the node will add ߝ to its

phase (line 10). Afterwards, the new phase will be checked again to see if it

exceeds unity (one period). If so, the node will fire after a very small offset value

(line12). Otherwise, ߮
()

is simply adjusted by line)ߝ 14). Conversely, if ∆߮ ≤ 0.5,

node will subtract ߝ (line 16). Then, if the new phase is less than 0, node will fire

instantly (within a small offset value – line 18). Otherwise it will fire in the new

time scheduled after the subtraction of line)ߝ 20).

2.1.1.2 Operation of PCO-based synchronization after convergence
is achieved

ݐ
(ିଵ)

ݐ
ᇱ()

ܶ/2

Phase I. A Phase II. A Phase II. B Phase I. B

t୧
(୩)

I. A
ݐ

()

II. A

ܶ

ݐ
()

I. B

ݐ
()

II. B

Time (s)

37

The data transmission in the SYNC algorithm is shown in Figure 2.9. Each node

starts sending data after checking for convergence to TDMA. Convergence is

established when all the algorithmic times from all nodes are in the refractory

period; when this is satisfied per node, each node assumes that it is in converged

mode. After this point, the node will transmit data messages to a receiver node

after broadcasting its fire message and within its calculated transmission slot time.

These data messages are from the data in the flash memory of the TinyOS-based

mote. When the node has already sent a packet, it will check the remaining time of

its slot time. If the rest of time is less than the time_SendData_onePack (Figure 2.9),

the node will stop sending data.

Besides transmitting and receiving data, each node has to write the received

data in its flash memory. When each node receives data messages, it keeps them in

the “received” buffer. Afterwards, once the node acquires a fire message from

another node, it will write all its data message to the flash memory. This method

ensures all messages are written correctly. Each node sends its data messages

consecutively during its slot time.

Figure 2.9: Local view of SYNC algorithm when transmitting data.

For the format of the data message, we changed the size of the data length for

iMote2 wireless sensors at path beta/platform/imote2/AM.h. The

TOSH_DATA_LENGTH was modified to 28. This data message includes the source

mote ID, sequence number and data which were read from the flash memory of the

node; the format of the data message is shown in Figure 2.10.

Figure 2.10: Format of a data message of SYNC algorithm.

Data message

ଶ݊’s slot time

ݐ
(ିଵ)

ݐ
()

ଵ݊’s slot time ଷ݊’s slot time

Time_sendData_onePack

Source Mote ID Sequence NO Data [24]

2 bytes 2 bytes 1*24 bytes

Time (s)

38

Figure 2.11: Address space of the flash memory of iMote2 [123].

The iMote2 sensor node has 32 MB of flash memory, shown schematically in the

memory address space of Figure 2.11. Each node has the file system in the flash

memory and the space to store all outgoing data starts at address 0x0030 0000.

Correspondingly, all incoming (received) data is written in memory positions

starting from address 0x0040 0000

As mentioned, before starting to send data, each node checks for convergence.

Moreover, while each node sends its fire message, it will check the number of

neighbour nodes, which is counted based on the number of received fire message

broadcasts. At the same time, it will count the number of fire messages received

within the refractory period, which is called “phase0” in the pseudocode of Figure

C.3 in Appendix C. As shown in the pseudocode, if the number of neighbour nodes

and the number of algorithmic phases are equal and also just_Phase0 = TRUE (line

15), the node will be in converged state. As a result, the node transmits data

messages to a receiver node after it broadcasts a fire message. Those data

messages are from the data in flash memory of the TinyOS-based mote. When the

node has already sent the packet out, it will check the remaining time of its slot

time. If the rest of time is less than the time_SendData_onePack, the node will stop

sending data. The last activity of a node is to write data in flash memory when it

already has the data message in the received buffer. This is done after the node

receives a fire message from another node.

2.1.2 Experimental Validation

The SYNC algorithm was implemented on iMote2 wireless sensor motes. The motes

use the standard (Zigbee) IEEE802.15.4 protocol theoretically capable of 250kbps

File System

Linux Kernel

Boot Loader

2,048 Kbytes

256 Kbytes

30,464 Kbytes

0x0000 0000

0x0004 0000

0x0024 0000

0x0200 0000

39

peak rate based on the 2.4GHz CC2420 RF transceiver. Radio messages use

TinyOS’s standard and are conventionally called TOS messages. The active

message format consists of a 28-byte payload including the sender ID and message

sequence number and a 12-byte header including the message length and receiver

ID.

We use the TinyOS’s implementation for the transmission with the CSMA radio

interface. In our experiment, we set the initial backoff to approximately 1.2 ms for

data sending. We changed the value of initial backoff from the preset of a random

number as “(call Random.rand () & 0xF) + 1” to a fixed value (“4”) at a library file in

the path tos/lib/CC2420Radio/CC2420RadioM.nc. This number becomes to be

equal to 4*20 symbols*16s per symbol = 1.28 ms. This is because, under the SYNC

protocol, collisions are expected to happen very rarely.

2.1.1.1. Wireless Sensors and their hardware and software
components

The concept of a sensor in this thesis comprises a hardware platform with a

transceiver. Figure 2.12 shows an example platform, the iMote2 from Crossbow

[60], which is designed for advanced sensor network applications requiring high

CPU/DSP and reliability. It has an Intel PXA271 32-bit microcontroller with 256 KB

of SRAM and 32 MB of SDRAM and 32 MB of flash memory. Its radio unit is a TI

CC2420 transceiver with an on-board antenna that follows the IEEE802.15.4

standard (Section 1.2.1). The CC2420 supports a 250 kbps data rate at the PHY

layer with 16 channels in the 2.4 GHz band [17]. The iMote2 is a modular stackable

platform and can be stacked with sensor boards to customize the system to a

specific application, along with a battery board to supply power to the system.

The other node (mote) used in the results of this thesis (Chapter 6 and 7 with

Contiki), the Telos [61], is designed for very low-power operation and can support

less complex tasks and applications than iMote2. It has a TI MSP430 16-bit

microcontroller with 10 KB of RAM and 48 KB of flash (program) memory, uses the

same CC2420 radio chip, and also operates with a pair of AA batteries.

40

Figure 2.12: Photos of the iMote2 board

Concerning operating systems used in such WSN hardware, the first

mainstream operating system in use today is TinyOS. TinyOS is a lightweight

operating system specifically designed for low-power wireless sensors [143].

TinyOS applications and systems are written in the nesC language which is similar

to C language but produces executable modules with reduced code size. TinyOS is

an event-driven operating system using a component-oriented programming

abstraction. For example of a basic data-aggregation application, When TinyOS

tells the application that the node has completed the boot process, the application

code configures the power settings on the radio and starts a periodic timer.

Depending on the specifics of the functionality of each application, this timer fires

every few milliseconds (for example) and the application code puts the sensor

values into a packet and calls the radio to send the packet to a data sink. TinyOS

can be used to port applications easily to a variety of hardware platform via a

multi-level hardware abstraction architecture (HAA) which provides access to a

device i.e. radio, timers, sensor, etc. as PHY-layer components. In addition, when

the nodes organize themselves into a network, TinyOS provides MAC-layer

implementations for communications-oriented applications.

The other operating system gaining significant abstraction for sensor network

applications is the Contiki operating system. Contiki is an open source operating

system for networked systems focusing on low-power wireless devices. Contiki

provides multitasking and a built-in TCP/IP stack. The Contiki programming model

41

is based on a memory-efficient programming abstraction with multi-threading and

event-driven programming. This feature is quite similar to nesC TinyOS for

implementing applications.

2.1.1.2. Experimental Setup

We formed a single-hop network composed of up to 16 TinyOS motes. One mote is

set up as a base station, i.e. it records all the messages (fire messages and data

messages) over the USB port to a computer. The base station has designated start

and end time so as to keep all messages within one minute (60 s). We used the

same fixed parameters which are:

 period (ܶ) set to 2 seconds,

 epsilon (ߝ) set to 20 ms and refractory period set to 60 ms (i.e. ±30 ms

before and after the node’s own fire time)

for all experiments. The number of motes was selected as: 4, 8, 12 and 16. Five

tests of 60s for each number of motes were performed.

In this section, we study the performance of all distributed TDMA i.e. SYNC (in

subsection 2.1.1.3), DESYNC (in subsection 2.2.2.2) and PCO-DESYNC (in subsection

2.3.2) to compare the bandwidth efficiency with the same hardware platform and

settings. At the beginning, in order to measure the maximum data rate that can

obtain at the APP layer with IEEE 802.15.4–enabled sensor nodes, we deployed

one node to transmit messages to the base station without interruption or other

concurrent transmissions. We then measured the APP-layer data throughput at the

base station, which was found to be 84.8 kbps. This is used as our benchmark in all

our comparisons based on the concept of the normalized (%) throughput, which

defines the percentile ratio between the throughput of an experiment (e.g. testing

the Sync protocol) and the maximum measured throughput of 84.8 kbps. Beyond

the normalized throughput, the max and min individual throughputs were

calculated from best and worst average throughput per individual node. Finally,

for data messages, given that we include the source mote ID and sequence number,

42

we can evaluate the message loss per node from computing the ratio between the

total missing messages and the total number of messages received successfully.

2.1.1.3. Experimental Results

The results of the SYNC algorithm are given in Table 2.1. When increasing the

number of nodes from 4 to 8, the total throughput drops by roughly 1.97 kbps per

node (71.3kbps instead of 79.2kbps). There are two main reasons of the low

throughput: firstly, each node needs to reserve the time for the refractory period

(60 ms) within each period and, secondly, the slotTime_EndNode has to be set to

at least 10 ms per slot time, per node.

Table 2.1: SYNC’s performance for different number of nodes, the maximum data rate at

one single node was 84.8kbps.

Table 2.1 shows that the network performance of the SYNC algorithm becomes

dramatically worse when the number of nodes is more than 12. We found the

message loss is high in the case of 16 nodes and there is certain imbalance between

the maximum and minimum individual node throughput. This is due to collisions

of fire messages when increasing the number of nodes, despite the usage of the

RFA mechanism.

2.2 Desynchronization

This section describes the design and implementation of a decentralized self-

organizing desynchronization scheme to obtain distributed TDMA behaviour via

the IEEE802.15.4 MAC. In addition, experimental results are presented for this

algorithm using TinyOS iMote2 wireless sensor nodes. We first examine the

implementation of the single-hop DESYNC algorithm [8] and then attempt to expand

Nodes 4 8 12 16

Total Throughput (kbps) 79.2 71.3 65.3 39.3

Normalized, % 93.4 84.1 76.5 46.4

Max Individual (kbps) 19.8 9.0 5.4 6.3

Min Individual (kbps) 19.7 8.7 5.4 1.4

Message Loss (%) 0.0 0.0 0.0 4.9

43

this DESYNC algorithm to the multi-hop network case, by considering the two-hop

neighbours (Section 4.1).

In the single-hop case, each node will broadcast a fire message every period and

all other nodes can hear this message. Since each node receives all broadcast fire

messages, all nodes in the topology will adjust their own fire message broadcast

schedule to be performed at the middle of the two fire message times immediately

preceding and following their own message broadcast. This means that, in the

DESYNC algorithm, nodes in the network try to adapt their phase to be at the

midpoint of the previous and next neighbor’s phase. Once the WSN converges to

the steady state, each TDMA slot time will occur between each node’s own fire time

and their next-phase neighbor fire time. In other words, each TDMA slot is equal to

the time between a node’s previous-phase neighbor and the node’s own phase.

2.2.1 DESYNC-TDMA Algorithm and Implementation Description

Similarly to the case of the SYNC algorithm, our description is separated into two

parts, before and after convergence to TDMA is achieved. Before convergence to

TDMA is achieved, each node adjusts its phase and also updates its fire time. After

convergence is obtained, every node in the network transmits fire messages

periodically, i.e. in the steady state. During this stage, nodes can transmit data

messages.

2.2.1.1 Operation of DESYNC-TDMA during the convergence period

In DESYNC, each node ݊ (1 ≤ ݅≤ ܹ) picks a particular time instant ݐ in which to

broadcast its fire message based on the broadcasts of ݊ି ଵ and ݊ାଵ (where we set

ି݊ଵ ≡ ௐ݊ , ݐି ଵ ≡ ௐݐ and ௐ݊ ାଵ ≡ ଵ݊, ௐݐ ାଵ ≡ .(ଵݐ The determination of this time

instant is performed immediately after the node detects the fire message of ݊ାଵ, as

shown in Figure 2.13. Hence, ݊ listens to all other nodes’ fire message broadcasts

and for the t݇h iteration (period) is set to fire according to the reactive listening

primitive:

ݐ
()

= ܶ+ (1 − ݐ(ߙ
(ିଵ)

+ ߙ
௧షభ

(ೖషభ)
ା௧శభ

(ೖషభ)

ଶ
jj (2.1)

44

where ܶ is the desired TDMA period (in s) and ߙ ∈ (0,1) a parameter that scales

how far ݊moves from its current fire time (at ݐ
(ିଵ)

) toward the desired midpoint.

As mentioned at the beginning of this chapter, ݐ
()

and ݐ
(ିଵ)

comprise the times

when node ݊ transmitted its fire message within the ()݇th and (݇− 1)th period

(respectively), while ିݐ ଵ
(ିଵ)

and ାଵݐ
(ିଵ)

comprise the times when node ݊ received

fire messages from nodes ݊ି ଵ and ݊ାଵ (respectively) within the (݇− 1)th period.

Previous work [8][15] showed that the reactive listening primitive of (2.1) leads

to near-optimal TDMA behavior in SS for 1-hop networks after ୱ݇ୱ periods, which

is expressed mathematically by:

ቚݐ
(౩౩)

− ݐ
(౩౩ିଵ)

− ܶቚ< ୲ܾ୦୰ୣ ୱܶ (2.2)

Figure 2.13: Scheduling of the fire-message broadcast for node .݅

with ୲ܾ୦୰ୣ ୱܶ �;�ܾ ୲୦୰ୣ ୱ�߳�[0.001,0.020] a preset threshold. In the steady-state, each

node transmits data packets for

ೈ
s immediately following its fire-message

broadcast. If a node joins or leaves the network, thereby leading to ܹ ᇱ≠ ܹ fire-

message broadcasts, the remaining nodes reconfigure their fire-message

broadcasts to converge to a new TDMA state and then continue data transmission

once (2.2) is satisfied. Once TDMA behavior is achieved, the only overhead stems

from the fire-message broadcasts, which include the number of the broadcasting

node. Assuming negligible propagation delay and error-free transmission of

broadcasts, ୱ݇ୱ can be found by iterating the system’s linear mapping matrix [8]

until (2.2) is satisfied. We provide further details on this issue in our contribution

in the next chapter of this thesis.

The format of the fire message consists of the node ID and sequence number of

the fire message as shown in Figure 2.14.

it

time to calculate
reactive listening

Period = T

primitive of (2.1)

Time (s)ti-1
(k-1) ti

(k-1) ti+1
(k-1) (k)

...

45

Figure 2.14: Format of a fire message for DESYNC algorithm.

Concerning implementation, as shown in Figure C.4 in Appendix C, the process

begins with the node broadcasting its fire message every period via the event

AlarmFired. When the node receives a fire message (FireMessage.Received), it will

classify that fire time to be the next node ାଵݐ)
ሺିଵሻ

) or the last node before its own

firing ିݐ) ଵ
ሺିଵሻ

) based on the just_Fired status. If it is in the case of the next node’s

fire time, the task CalculatedNextFireTime will be called and then the node will

compute its own next fire time.

2.2.1.2 Operation of DESYNC-TDMA after the convergence is
achieved

Each node will start sending data after checking for convergence. While a node

receives ାଵݐ
ሺିଵሻ

, it will check the time difference between ݐ
ሺሻ

and ݐ
ሺିଵሻ

as shown in

Figure 2.15. If this difference is less than ୲ܾ୦୰ୣ ୱ, the node will assume that DESYNC

has converged. After this point, the node will transmit data messages to a receiver

node immediately after broadcasting its fire message. Those data messages are

from the data in the flash memory of the TinyOS-based mote. When the node sends

a data packet, it checks the remaining time of its TDMA slot. If the remaining time

is less than the time_SendData_onePack, the node will stop sending data. Besides

transmitting and receiving data, each node has to write the received data in flash

memory. While the node is receiving data messages, it will keep them in received

buffer. Once this node acquires a fire message from another node, it will write the

buffered data to the flash memory immediately.

Figure 2.15: Local view of ଵ݊ during DESYNC-TDMA and including data transmission.

Node ID Fire Sequence No

2 bytes 2 bytes

1ݐ
(݇−1) ଵݐ

()

ଵ݊’s slot time ଶ݊’s slot time ଷ݊’s slot time

ଶ݊ ଷ݊

Data message

Time_SendData_OnePack

Fire message

ଵ݊ Time (s)

46

Figure 2.16: Format of a data message for DESYNC algorithm.

Concerning the format of the data message (Figure 2.16), we changed the size of

the data length for iMote2 to 28 bytes. This data message includes the mote ID, the

message sequence number and the data, which were read from the flash memory

of the sender node.

We check the state of convergence at the time of the calculation of ݐ
ሺሻ

. The

check consists of examining the time difference between the node’s ݐ
ሺሻ

and ݐ
ሺିଵሻ

.

This time difference is compared to the period (ܶ s). Under TDMA, the time

difference between consecutive firings should be nearly equal to the period; we set

the acceptable difference threshold between the two to be ͲǤͲͳܶ in (2.2).

As shown in Figure C.5 in Appendix C, when the event FireMessage.SendDone of

a fire message happens, the node will check the set_converged status. If the node is

in the converged state, it will establish the receiver ID and then send data to that

node. Similar to the SYNC case, the data is taken from the flash memory, starting at

address 0x0030 0000. Transmitting will continue by checking the

time_SendData_onePack within a few milliseconds after the event

DataMessage.SendDone of a data message. If the current time approaches the

expected NextNode FireTime, ሺݐାଵ
ሺିଵሻ

 �ܶ ሻ, the node will stop sending data

immediately.

Afterwards, when the event DataMessage.Received occurs, the node will start

buffering the incoming data packets in the “received” buffer and, as mentioned, it

will write the received buffer in the flash memory once the next fire message is

received. We define the received buffer size to be 20 KB.

2.2.2 Experimental Validation

The DESYNC-TDMA algorithm was implemented on iMote2 wireless sensor motes

following the hardware and settings used for the SYNC algorithm.

2.2.2.1 Experimental Setup

Source Mote ID Sequence NO Data [24]

2 bytes 2 bytes 1*24 bytes

47

We tested with a single-hop network consisting of (maximally) 16 nodes. One mote

was set up as a base station, recording all messages (fire messages and data

messages) within a 1-minute (60 s) interval. We used the same fixed parameters

which are:

 period (ܶ) set to 2 second and

 alpha (a) set to 0.85.

The number of nodes was set at 4, 8, 12 and 16. Five tests of 60 s were performed

for each total number of nodes. The maximum throughput was found to be almost

identical to the SYNC case, i.e. 85.3 kbps. We consider as the total throughput the

measured data messages from each node (which are picked up by the base station)

and as normalized (%) throughput the ratio between the total throughput and the

maximum throughput. The max and min individual throughput was calculated

from the average of the best and worst throughput per node for all 5 runs. Since all

data messages include the source node ID and sequence number, we can evaluate

the message loss by computing the ratio between the total missing messages and

the total number of messages received correctly.

2.2.2.2 Experimental Results

Nodes 4 8 12 16

Total Throughput (kbps) 84.0 80.5 78.5 75.2

Normalized, % 98.5 94.3 92.0 88.1

Max Individual (kbps) 21.1 10.1 6.6 4.8

Min Individual (kbps) 20.9 9.9 6.4 4.4

Message Loss (%) 0.0 0.0 0.0 0.0

Table 2.2: DESYNC -TDMA's performance for different number of nodes; the max. data rate

with single transmitter and receiver setup was 85.3 kbps.

Table 2.2 shows the DESYNC-TDMA throughput and message loss. When the

number of nodes increases, the total throughput measured in the network

decreases by (approximately) 0.8 kbps per node. The table shows that we virtually

had no message losses throughout our experiments. The balance between the

maximum and minimum individual node throughput is quite good for all cases of

48

the number of nodes when comparing with the SYNC algorithm (Table 2.1),

especially for the case of 16 nodes. This means DESYNC algorithm attains better

performance for collision-free TDMA in WSNs than the SYNC algorithm.

2.3 PCO-based Inhibitory Coupling

This algorithm was proposed recently based on the original PCO model in [9]. It

provides increased performance for desynchronization for distributed TDMA. The

PCO scheme is able to provide for collision-free TDMA, where the fire times of all

nodes are scheduled with spacing equal to

ೈ
s.

When a single node exists in the network, it emits a pulse periodically every ܶ

periods. Following the PCO principle, when the phase of node i (߮) reaches 1, the

node will emit a pulse and reset its phase back to 0. To achieve the PCO with

inhibitory coupling, a concave function is introduced, which typically is [9]:

(݂߮
()

) = −log(߮
()

) (2.3)

Inhibitory coupling defines the coupling constant as:

=ߝ − log(1 − (ߙ (2.4)

where ߙ ∈ (0,1) is the phase-coupling constant controlling the speed of the phase

adaptation and <ߝ 0 is the coupling strength. The protocol achieves the strict

desynchronization based on the following updating rule:

߮
()

= ቐ
݂ିଵ(((݂߮

(ିଵ)
) + (ߝ if ߮

(ିଵ)
∈ (1 −

1

ܹ
, 1)

߮
(ିଵ)

otherwise

(2.5)

where the factor ܹ ≥ 1 controls the spacing between nodes

(݂߮
()

) = −ln(1 − ܹ (1 − ߮
()

)) (2.6)

Taking the exponential function for both sides, we have:

݁(ఝ
(ೖ)

) = ݁ି୪୬(ଵିௐ ቀଵିఝ
(ೖ)
ቁ) (2.7)

which leads to:

݁ି(ఝ
(ೖ)

) = (1 − ܹ (1 − ߮
()

)) (2.8)

From (2.5), when the node will update its phase, we have:

݂ିଵ(((݂߮
(ିଵ)

) + (ߝ = (1 −
1

ܹ
(1 − ݁ି(ఝ

(ೖషభ)
)݁ିఌ)) (2.9)

49

From (2.4) we get: �݁ିఌ = 1 − .ߙ Combining this with (2.8) leads to:

݂ିଵ(((݂߮
(ିଵ)

) + (ߝ = (1 −
1

ܹ
((1 − ܹ(ߙ (1 − ߮

(ିଵ)
) + (ߙ (2.10)

Therefore:

߮
()

= (1 − ߮(ߙ
(ିଵ)

+ 1)ߙ −
1

ܹ
)

(2.11)

The last derivation describes the practical phase update scheme for PCO-based

desynchronization with inhibitory coupling. As noted in [9] and shown in (2.11),

this phase update depends on the number of nodes (ܹ) in the WSN.

2.3.1 Implementation Details

PCO-based desynchronization with inhibitory coupling adjusts the period of fire

message broadcasts of each node according to the received fire messages within a

certain interval in-between each node’s own consecutive firings [9]. As such: (i) the

scheduled time for the fire message broadcast of each node changes after each

message received within a certain time interval [i.e. adaptation is not based on the

previous and next fire message as in (2.1)]; (ii) knowledge of the total number of

nodes (ܹ) is required [9].

We implemented the PCO-based inhibitory coupling of the previous subsection

in iMote2 wireless sensors. The basic time diagram of the operation is shown in

Figure 2.17. In this section we explain the details of the implementation of the

scheme before the convergence to TDMA. For the operation after convergence to

distributed TDMA is achieved, the process follows the DESYNC algorithm of

Subsection 2.2.1.2.

Figure 2.17: Local view of PCO-based Inhibitory Coupling.

Typically, each node will fire every period (ܶ). Once a node receives a fire

message from another node within its “listening” interval [(ܶ− భ

ೈ
,ܶܶ)], it will

(ܶ− (୭୰୧୧୬ୟ୪ݐ∆
ݐ

(ିଵ)
୭୰୧୧୬ୟ୪ݐ∆

ୡ୳୰୰ݐ ݐ
ᇱ()

ݐ
()

(ܶ− ୳୮ୢୟ୲ୣݐ∆)

ܶ

ܶ(1 −
1

ܹ
)

Time (s)

50

update its next fire time with (2.12), which is directly derived from the theoretical

(2.11):

୳୮ୢୟ୲ୣݐ∆ =(1 − (ߙ −ୡ୳୰୰ݐ) ݐ
(ିଵ)

) + ×ߙ ܶ(1 −
1

ܹ
) (2.12)

Once a node knows the total number of nodes, it can precalculate the second

term of the summation involved in this equation to facilitate the implementation.

The node’s fire message time will be updated based on οݐ୳୮ୢୟ୲ୣ calculated for all

received messages from all nodes i as shown in (2.13). This update is applied only

if ୡ୳୰୰െݐ ݐ
ሺିଵሻ

 �ܶሺͳെ భ

ೈ
) and ୡ୳୰୰െݐ ݐ

ሺିଵሻ
൏ �ܶ

ݐ
()

= +ୡ୳୰୰,ݐ (ܶ− ୳୮ୢୟ୲ୣݐ∆ ,) (2.13)

All fire messages received outside the “listening interval” of ሺܶ െ భ

ೈ
ܶǡܶ ሻs are

simply ignored. After ୱ݇ୱ phase updates, such an approach has been shown [9] to

converge to “dispersed” fire message broadcasts at intervals of భ

ೈ
ܶs within

consecutive firings of each node.

We define the short fire message format similar to the DESYNC algorithm because

of collision-free in communication. The format of this message consists of the node

ID and sequence number of the fire message as shown in Figure 2.18.

Figure 2.18: Format of a fire message for PCO-based inhibitory coupling.

In the beginning, the node fires its broadcast message every period based on the

event Time.AlarmFired. Each node is interested in the fire message received

within the “listening” phase. In fact, if the received fire message is received outside

of the listening phase, the node will not update its fire message scheduling. On the

other hand, if the node receives a fire message within the listen phase, it will call

task setAlarmFired to shift the new next fire time as illustrated in the Figure 2.19.

Node ID Fire Sequence No

2 bytes 2 bytes

51

2.3.2 Experimental Validation

The PCO-based inhibitory coupling algorithm (PCO-DESYNC) was implemented on

iMote2 wireless sensor motes following the experimental setup used for SYNC and

DESYNC.

We used the same (fixed) parameters as before, which are

 period (ܶ) set to 2s and

 alpha (a) set to 0.85

for all measurements. The number of nodes was selected to be 4, 8, 12 and 16 and

five tests of 60s were executed per case. The maximum throughput in PCO-based

inhibitory coupling algorithm is similar to the DESYNC algorithm.

Table 2.3: Performance of PCO-based inhibitory coupling for different number of nodes;

the maximum data rate at the single transmitter-receiver setup was 85.3 kbps.

The PCO-DESYNC throughput and message loss shows in Table 2.3. When the

number of nodes increases, the total throughput decreased by approximately

1.5kbps per node. This throughput’s decrease was almost twice as the DESYNC

throughput’s reduction for the corresponding cases (Table 2.2). That makes the

PCO-DESYNC bandwidth efficiency to be lower than that of DESYNC for all cases of the

number of nodes. This is due to the more frequent updating of each node’s fire

time based on the listening interval, which makes PCO-DESYNC more prone to noise

in the fire message times than the DESYNC algorithm. However, the table also

shows the message loss was virtually zero and that PCO-DESYNC remains

significantly superior to the SYNC algorithm (Table 2.1).

Nodes 4 8 12 16

Total Throughput (kbps) 82.1 75.8 70.3 64.2

Normalized, % 96.3 88.8 82.4 75.2

Max Individual (kbps) 20.8 9.6 6.0 4.1

Min Individual (kbps) 20.1 9.3 5.7 3.9

Message Loss (%) 0.0 0.0 0.0 0.0

52

2.4 Conclusion

In order to design an efficient distributed synchronization protocol, the achieved

data throughput must be maximized and collisions during the steady state of the

operation must be minimized. We have presented, implemented and

experimentally validated the performance of three different protocols for

distributed TDMA at the IEEE802.15.4 MAC. All protocols use

broadcastsynchronization (fire) messages from each node, based on each node’s

own local clock. The first algorithm, SYNC, was found to have the following

detriments:

(i) Setting up the reachback response and the slot time of each node in order to

avoid collisions during the TDMA (steady) state is cumbersome to

implement in the standard IEEE802.15.4 MAC.

(ii) If the refractory period is kept short, the protocol becomes more efficient in

the steady state but synchronization becomes difficult; alternatively, if the

refractory period grows, the protocol becomes less efficient.

(iii)The total throughput of SYNC approach drops dramatically when the

number of nodes increases as shown in Figure 2.19.

For DESYNC and PCO-DESYNC, which were found to be the most efficient cases

(both communication-wise but also implementation-wise), we will be able to

identify the trends of the convergence time for the distributed synchronization in

the next chapter. Therefore an interesting problem would be to derive stochastic

estimates of the convergence time for these two cases of desynchronization.

Specifically, we are interested in establishing the settling time to achieve TDMA

convergence in WSNs based on DESYNC and PCO-DESYNC. This is the topic of the

following chapter.

53

Figure 2.19: Results of the total throughput for the different protocol of the

synchronization primitive.

4 6 8 10 12 14 16
35

40

45

50

55

60

65

70

75

80

85
Total Throughput

number of nodes

T
h
ro

u
g
h
p
u
t

(K
b
p
s
)

SYNC
DESYNC
PCO
DESYNC-Degesys[8]

(k
b

p
s)

54

3.Chapter 3

Stochastic Modeling of Convergence to

Desynchronization in Wireless Sensor

Networks

Following the description of the previous chapter, desynchronization can be

abstracted as the algorithm for revising the fire message broadcast time of each

wireless sensor node (or “node”) of a fully-connected WSN based on the received

messages from the other nodes within a certain time period. As introduced in

Chapter 2, we consider a network of ܹ fully-connected WSNs, each with an

internal clock with ܶs period and follow the notational conventions of that chapter

with minor extensions1. Moreover, this model could also be applicable for the

multi-hop WSNs as shown in Chapter 4. Each node keeps the phase of fire

messages in relation to its clock ticks and, in the steady state, it broadcasts one fire

message every ܶs as in Chapter 2 and without loss of generalization. The actual

broadcast (or “fire”) times of every node are determined based on the reactive

listening primitives of the next two subsections. For expositional purposes, in the

next section we ignore the phase measurement noise and assume each fire time

can be determined precisely and instantaneously by all nodes. This noise is

however taken into account in the modeling framework of the Section 3.3.

One of the major open problems of desynchronization in WSNs is the derivation

of robust estimates for the required iterations until convergence to steady state is

achieved. While previous work has derived order-of-convergence estimates, these

are derived based on heuristics and are only expected to capture the asymptotic

1 Italicized letters indicate scalars and boldface letters indicate vectors. For vectors a and b, the

circular convolution [94] with period ܹ is given by (0 ≤ ݊ < ܹ):

∗܉) ௐ(܊ []݊. Random variables (RVs) are represented by Greek uppercase letters, e.g.

Φ~ܰ(ߤ ߪ,) or Δ~ܷ(ߤ,ߪ), with ܰ() and ܷ() reserved to indicate the normal and uniform

PDFs, respectively, with mean ߤ (or (ߤ and standard deviation ߪ (or .(ߪ

55

behavior of the desynchronization process. Instead, in this chapter we propose to

estimate the convergence iterations of desynchronization by embracing the non-

deterministic aspects of this process and utilize stochastic (instead of

deterministic) estimates for the convergence iterations of desynchronization. That

is, we do not use the actual firing times of the WSN nodes, but rather their

statistical description, which does not require any explicit assumption on the node

firing order. In order for our estimates to have wide applicability, we focus on the

two reactive listening primitives that form the basis of all desynchronization

algorithms and have been described in detail in the previous chapter: (i) the

DESYNC algorithm of Degesys, Patel et al [8][13]; (ii) PCOs with inhibitory coupling,

as proposed by Pagliari et al [9], which, under the knowledge of the total number

of nodes, have been conjectured to converge to steady state faster than the DESYNC

algorithm [9]. Via the proposed stochastic estimation framework, we derive

analytic formulations for the number of iterations until the firing (or pulsing) time

is expected to have converged to within ୲ܾ୦୰ୣ ୱܶ s from its SS value, with

୲ܾ୦୰ୣ ୱ ∈ [0.001,0.020], i.e. guard times of 1-20ms for firing cycles with period ܶ =

1s. In addition, we validate our results based on a real WSN deployment as well as

under a simulation environment and demonstrate the accuracy of the proposed

stochastic estimates against the convergence bounds found in the literature

[101][118].

For measurement and analysis of convergence properties, a base station can be

used to passively listen to all fire message broadcasts, with ܹ consecutive firings

comprising a firing cycle. For all desynchronization algorithms, it is immaterial

which physical sensor node is linked to which firing, as desynchronization is solely

dependent on the received fire message times [8][9][13][15][34][81]-[83][107].

For this reason, we shall be explicitly discussing firing events and not the physical

nodes that create them.

As shown in Figure 3.1, we can imagine the nodes as beads moving clockwise on

a ring [8] with period T=1s. When node ݊ reaches the top, it fires: its phase has

56

reached one and it is reset to zero once the fire message has been broadcast.

During each firing cycle, each firing node ݊ increments its phase and the phase of

received fire messages by

∀ ,݅ :݇߮
()

← ߮
()

+ ݐ∆ (mod 1).j (3.1)

with dependingݐ∆ on the node’s internal clock granularity. Via the received fire

messages, each node ݊adjusts its firing phase ߮
(ିଵ) to ߮

() based on the reactive

listening primitives of the next two subsections. Thus, ݇ indicates the t݇h phase-

update iteration and not the t݇h firing cycle. The two may or may not coincide for

each desynchronization algorithm. In this section we ignore the phase

measurement noise and assume each fire time can be determined precisely by all

nodes. This noise is however taken into account in the modeling framework

Table 3.1: Nomenclature table

Symbol Definition

ܹ total number of nodes in the desynchronization process

ܶ period of firing cycles (in seconds)

ߙ phase coupling constant of desynchronization

୲ܾ୦୰ୣ ୱ steady-state convergence threshold of desynchronization

subscripts:
,݅݅− 1,݅+ 1

indicating that the variable corresponds to the current, previous or
next firing

‖ܞ‖ vector norm-2

]ܞ]݊ the t݊h element of vector ܞ ,݊≥ 0

∗܉) ௐ(܊ []݊ the t݊h sample of circular convolution of period ܹ

߮() quantity ߮ computed after ݇ iterations

expr (mod 1) modulo-1 of expression expr ∈ ℝ

⌊ݑ⌋ the largest integer that is smaller or equal to ݑ

⌈ݑ⌉ the smallest integer that is largest or equal to ݑ

Pr[expr] probability of occurrence of expression expr

57

(a) (b)

Figure 3.1: The t݇h phase update of node ݊happens when: (a) node ݊ାଵ (next firing

node) fires in DESYNC; (b) another node fires in PCO-based desynchronization and ݊is

within the listening interval (i.e. if 1 −
ଵ

ௐ
< ߮

(ିଵ)
< 1).

3.1 Phase Domain of DESYNC

It is mathematically convenient to express the reactive listening primitive of (2.1)

using the phase ߮
()

in relation to the t݇h periodic interval [8] (Figure 3.2):

߮
()

= (1 − ߮(ߙ
(ିଵ)

+ ߙ
ఝషభ

(ೖషభ)
ାఝశభ

(ೖషభ)

ଶ
(mod 1)൨.j (3.2)

In this approach, the t݅h firing node, ݊, updates its phase once within each firing

cycle at the moment the next node (݊ାଵ) fires. As shown in Figure 3.1(a), the

update uses the previous and next node’s fire-message broadcast phase and moves

݊’s phase towards the middle of the interval between the firing of the previous

and the next node by (1 ≤ ݅≤ ܹ). With ߙ ∈ (0,1) the phase-coupling constant

controlling the speed of the phase adaptation. Previous work [8][13] showed that

the reactive listening primitive of (3.2) disperses all fire message broadcasts at

intervals of

ೈ
within each periodic firing cycle. Thus, it leads to near-optimal TDMA

in SS after ୱ݇ୱ iterations of (3.2), where all fire messages are periodic and the

phase update of (3.2) leads to convergence, expressed by:

At ୱ݇ୱth phase update: ∀ :݅ ቚ߮
(౩౩)

− ߮
(౩౩ିଵ)

ቚ≤ ୲ܾ୦୰ୣ ୱ,j (3.3)

with ୲ܾ୦୰ୣ ୱ a preset threshold, typically ୲ܾ୦୰ୣ ୱ ∈ [0.001,0.02].

In SS, each node transmits data packets for ܶ(భ

ೈ
− ୲ܾ୦୰ୣ ୱ)s immediately following

its fire-message broadcast (which limits the maximum number of nodes supported

under collision-free TDMA to less than ቔ 1

್౪౨౩
ቕ). If a node joins or leaves the

network, the remaining nodes reconfigure their fire messages to converge to a new

58

TDMA state and then proceed with data transmission once (3.3) is satisfied. Once

TDMA behavior is achieved, the only overhead stems from the fire-message

broadcasts, which are very short packets (just two bytes in our implementation).

Assuming negligible propagation delay and error-free detection of messages, it has

been conjectured [8][13] that convergence to TDMA requires iterations of order:

ୈ݇ୗଢ଼େ[]଼[ଽ]~ ܱ(
ଵ

ఈ
ܹ ଶln(

ଵ

౪౨౩
)). (3.4)

Figure 3.2: Scheduling of the t݇h fire-message broadcast for node f݅or DESYNC.

3.2 PCO-based Inhibitory Coupling in Phase Domain

In PCO-based desynchronization, the phase of each node ݊, ߮
(ିଵ)

∈ [0,1), refers

to the delay between ݊’s last firing and the reception time of the t݇h fire message;

see Figure 3.3 for a pictorial example. PCO-based desynchronization with

inhibitory coupling adjusts each node’s phase according to the received fire

messages within a certain interval in-between the node’s own consecutive firings

[9]. This is indicated as the “listening interval” in Figure 3.1(b). As such: (i) the

phase of each node changes after each message received within the listening

interval [i.e. a varying number of phase updates may occur within each firing

cycle]; (ii) knowledge of the total number of nodes (ܹ) is required [9]. Hence, for

any period of any node ݊, when the t݇h fire message is received at ߮
(ିଵ)

ܶs after

݊’s last firing, with 1 − భ

ೈ
< ߮

(ିଵ)
< 1, the node’s phase updating rule is [9]:

߮
()

= [(1 − ߮(ߙ
(ିଵ)

+ 1)ߙ − భ

ೈ
) (mod 1)] (3.5)

which is directly derived from (2.12) with ߙ ∈ (0,1) the phase-coupling constant

controlling the speed of the phase adaptation. All fire messages received outside

the “listening interval” (1 − భ

ೈ
, 1) are simply ignored. The update of (3.5) changes

(k –1) th period

phase update

of (3.2)

Time (s)

...

k th period

...

59

the next fire time of ݊ from ܶ to ܶ(1 + ߮
(ିଵ)

− ߮
()

), as seen in Figure 3.3. After

ୱ݇ୱ phase updates, ߮
(౩౩)

= 1 − భ

ೈ
± ୲ܾ୦୰ୣ ୱ or, equivalently, (3.3) holds under

convergence. Hence, like the DESYNC case, once such TDMA behavior is achieved,

the only overhead stems from the short fire message broadcasts. Unlike DESYNC

though, the phase adaptation in (3.5) requires the knowledge of the total number

of WSNs, ܹ . Assuming negligible propagation delay and error-free detection of

broadcast messages and 1 − ߙ >
ଵ

ௐ
., it has been shown [9] that the number of

firing cycles for convergence to TDMA requires is lower bounded by:

݇େ[ଽ] ≥ අ
୪୬[

್౪౨౩
మ[భశഀషೈ (భషഀ)షభ]

]

୪୬(ଵିఈ)ା୪୬(ௐ)
ඉ,j

(3.6)

Figure 3.3: Phase adaptation during the reception of the th message in PCO-based

desynchronization.

3.3 Stochastic Modeling of DESYNC and PCO-based Inhibitory
Coupling

Our stochastic estimates of the convergence time for DESYNC-based and PCO-based

desynchronization assume that the phase of transmitted or received fire messages

is contaminated by white noise due to varying propagation and processing delays

of a practical WSN environment. In addition, convergence is determined based on

the PDF of a node’s phase variable. These conditions are formalized by the

following propositions.

Definition 1 (Convergence to Steady State): The notion of phase update

convergence to SS is determined based on the probability density function (PDF) of

each node’s current firing phase under successive DESYNC and PCO phase updates:

the phase of the current firing evolves over time following (3.1) but its updates via

ignored

Time (s)

......

T (1 -W -1)0

phase

update of (3.5)

updated

fire time

T T (1+ –)

updated listening

interval
listening

interval

60

(3.2) or (3.5) converge according to (3.3). □

Definition 2 (Phase Model): Each node’s initial phase variables, (߮
()

,߮ି ଵ
()

,߮ାଵ
()

)

when performing the phase update of (3.2) or (3.5) are modeled as independent

random variables that are uniformly distributed between [0, 1), i.e. ∀fire ∈

{ ,݅݅− 1,݅+ 1}: Φ୧୰ୣ
()

~P
 ౨

(బ) with

P
 ౨

(బ) = ߤ)ܷ
 ౨

(బ) ߪ,
Φ(0)) (mod 1).

Phase variables refer to nodes’ own fire time for DESYNC and to nodes’ received

fire times for PCO-based desynchronization. We define the mean times of

successive phase updates to be equidistant, which, for DESYNC, is expressed as:

∀݅< ܹ : ߤ
 షభ

(బ) − ߤ

(బ) =
1

ܹ
, ߤ

(బ) − ߤ

 శభ
(బ) =

1

ܹ
(3.7)

with ߤ
 బ

(బ) = ߤ
 ೈ

(బ) and for the PCO update of (3.5) is stated by:

∀ :݅ ߤ

(బ) = 1 −
1

ܹ
(3.8)

In the beginning of the desynchronization, the nodes are assumed as completely

uncoordinated, i.e. ∀i: σ (బ) = భ

√భమ
. □

Our estimates of the convergence iterations for DESYNC and PCO-based

desynchronization assume each phase in (3.2) and (3.5) is contaminated by white

noise due to the varying propagation and processing delays of a WSN environment.

Definition 3 (Measurement Noise Model): All phase values in the update of (3.2)

or (3.5) are contaminated by additive noise, modeled as an independent, zero-

mean, uniformly-distributed, random variable, Δ~ܷ(0, σ). □

The standard deviation of the measurement noise of Definition 3 will be derived

experimentally, as this includes the effects of propagation and processing delays

that can only be inferred via measurements from a real deployment.

Due to the measurement noise and the interaction between nodes, for each

phase update ,݇ the PDF of the phase of any node ݊, P

(ೖ) , changes after applying

(3.2) or (3.5); consequently, this changes the probability of convergence to SS:

PrቂቚΦ
()

− ߤ

(ೖ)ቚ≤ ୲ܾ୦୰ୣ ୱቃ= න P

(ೖ)(ݑ− ߤ

(ೖ))݀ݑ
౪౨౩

ି౪౨౩

61

= erfቌ
୲ܾ୦୰ୣ ୱ

ߪ2√

(ೖ)

ቍ
(3.9)

with erf(ݑ) the error function [14]. Notice that (3.9) holds under the assumption

that P

(ೖ) converges to a normal distribution for both DESYNC and PCO-based

desynchronization, which, as the next two subsections will show, turns out to be

the case. Consequently, we use a stochastic criterion for convergence based on the

confidence intervals of the normal distribution [14]. By defining the

confidence coefficient

ୡܿ୭୬= PrቂቚΦ
()

− ߤ

(ೖ)ቚ≤ ୲ܾ୦୰ୣ ୱቃ, 0 < ୡܿ୭୬< 1, (3.10)

we have from (3.9):

√2 erfିଵ(ୡܿ୭୬)ߪ
(ೖ) − ୲ܾ୦୰ୣ ୱ = 0

(3.11)

with erfିଵ(ݑ) the inverse error function that can be expressed by its Maclaurin

series:

erfିଵ(ݑ) =
ଵ

ଶ
+ݑ)ߨ√

గ

ଵଶ
ଷݑ +

గమ

ସ଼
ହݑ +

ଵଶగయ

ସଷଶ
ݑ + ⋯). (3.12)

Thus, (3.11) becomes the mechanism for defining the phase update iteration

leading to SS: we determine the phase-update iteration ୱ݇ୱ for which the amplitude

of the left side of (3.11) is minimized, i.e. the phase update iteration leading to

convergence with probability that closely matches ୡܿ୭୬, which is our

(predetermined) confidence.

Definition 4 (Converged State with ୡܿ୭୬× 100% Confidence, 0 < ୡܿ୭୬< 1): We

define a desynchronization mechanism as being in “steady state” or “converged

state” with ୡܿ୭୬× 100% confidence, at the ୱ݇ୱth phase-update iteration, where:

∀ :݅ ୱ݇ୱ = arg min
∀∈ℕ

ቚ√2 erfିଵ(ୡܿ୭୬)ߪ
(ೖ) − ୲ܾ୦୰ୣ ୱቚ (3.13)

with ߪ

(ೖ) the standard deviation of the phase PDF of the current firing at the t݇h

iteration of (3.2) or (3.5) and erfିଵ(ݑ) given by (3.12). □

Since ߪ

(ೖ) is affected by the measurement noise, in order for the system to

remain in the converged state indefinitely, the threshold for the convergence,

୲ܾ୦୰ୣ ୱ, must be set according to the (estimated) .ߪ Conversely, we can treat the

62

entire desynchronization process as a “black box” system and estimate ߪ by

measuring the phase deviation from the mean obtained when performing the

update of (3.2) or (3.5) during SS. This will be demonstrated in the experimental

section.

3.3.1 Modeling of Firing Cycles Required for DESYNC’S Convergence
Time

Proposition 1: Under the setup of Definition 2 and Definition 3, the number of firing

cycles for the DESYNC of (3.2) to converge under Definition 4 is:

݇ୢ ୱୣ୷୬ୡ = arg min
∀∈ℕ

ቚ√2 × erfିଵ(ୡܿ୭୬) ߪୢ ୱୣ୷୬ୡ
()

− ୲ܾ୦୰ୣ ୱቚ (3.14)

with

ߪୢ ୱୣ୷୬ୡ
()

= ට‖ܞ()‖ଶߪ
 (బ)
ଶ + ∑ ߪଶ‖()ܞ‖

ଶ
ୀଵ , (3.15)

=ܞ ൣ
ఈ

ଶ
1 − ߙ

ఈ

ଶ
൧and ()ܞ = ∗ܞ … ∗ ᇣᇧᇤᇧᇥܞ

୲୧୫ ୱୣ

(3.16)

the vector produced by ݆consecutive circular convolutions of length ܹ (by zero-

padding ݒ to length ܹ).

Proof: By denoting all input random variables by () = Φൣଵ
()

… Φௐ
()൧and

the corresponding additive measurement noise sources [independent identically

distributed (iid) random variables] from Definition 3 by ઢ = [Δଵ … Δௐ], the

first iteration of the phase update process of (3.2) is:

 (ଵ) = ∗ܞൣ ൫ () + ઢ൯ (mod 1)൧. (3.17)

Thus, we have: ∀ ߤ݅:

(భ) = ߤ

(బ) and

∀ ߪ݅:
Φ(1) = ߪ)ට‖ܞ‖

Φ(0)
ଶ + ߪ

ଶ). (3.18)

Generalizing this for ݇ iterations, we reach: ߤ

(ೖ) = ߤ

(బ) and ߪ
Φ(ߪୢ=݇(ୱୣ୷୬ୡ

()
,

shown in (3.9). We can now make the following observations:

 Each term Φ
()

is a linear mixture of independent random variables (i.e. iid

noise ઢ and phase vector ());

 ∀ �݅∈ ℕ∗ , we can pick =ߝ (1 − ߪ(ߙ

(బ) and, from (3.15), ߪୢ ୱୣ୷୬ୡ
()

> ;�ߝ

 All initial PDFs have finite support (they are all variants of the uniform

distribution); hence, densities P

(ೖ) will have finite support since they are

63

linear mixtures of PDFs with finite support.

These three observations satisfy the three conditions for the generalized form

of the central limit theorem (CLT) to be applicable [[14], pp. 219-220] (see also

Appendix 1), and thus:

Φ
()

~ ߤ)ܰ

(బ) , ߪୢ ୱୣ୷୬ୡ
()

) (mod 1) (3.19)

Hence, we reach (3.14) for convergence under Definition 4. □

Proposition 1 shows that under the given algorithm of (3.2) for DESYNC, ݇ୢ ୱୣ୷୬ୡ

is affected by ,ߙ as well as by the noise assumptions, expressed by ߪ (బ) and ߪ in

Definition 2 and Definition 3, respectively. Interestingly, the total number of nodes

does not appear to influence the convergence to the steady state. For the special

cases of ܹ ∈ {2,3,4} nodes, we set ܹ = 5 in the circular convolution of (3.16) to

avoid erroneous overlapping within ()ܞ due to the short length of the circular

convolution.

3.3.2 Modeling of Firing Cycles Required for Convergence in PCO-
based Desynchronization with Inhibitory Coupling

Proposition 2: Under the setup of Definition 2 and Definition 3, the number of firing

cycles for convergence under Definition 4 in the PCO-based inhibitory coupling of

(3.5) is:

݇େ = arg min
∀ஹଶ

อ ݑ

ୀଶ

+ 1 −
1

ܹ
− ୳݇୮ୢୟ୲ୣ อ

(3.20)

With

=ݑ erf൭
උௐ
ଶ
ඏ+ 1

ܹ େߪ
(ି ଵ)

√2
൱− erf൭

1

ܹ େߪ
(ି ଵ)

√2
൱

(3.21)

୳݇୮ୢୟ୲ୣ = arg min
∀∈ℕ

ቚ√2 × erfିଵ(ୡܿ୭୬)ߪେ
()

− ୲ܾ୦୰ୣ ୱቚ (3.22)

େߪ
()

= ට(1 − ߪଶ(ߙ
 (బ)
ଶ +

(ఈିଵ)మ

ఈ(ఈିଶ)
[(1 − ଶ(ߙ − ߪ[1

ଶ, (3.23)

Proof: We separate the proof into a series of stages based on the temporal

evolution of the convergence process.

First firing cycle: The expected number of phase updates within the first firing

64

cycle is equal to the number of firings expected to be heard within (1 − భ

ೈ
, 1) from

the initiation of each firing phase, which is:

 ൬݆
ܹ − 1

݆
൰ቀ

ଵ

ௐ
ቁ

ቀ1 −
ଵ

ௐ
ቁ
ௐ ିଵିௐ ିଵ

ୀଵ
= 1 −

1

ܹ
(3.24)

Concerning the first firing: What is important in our modeling is not the change

in the actual fire times but the change in the statistics (i.e. first two moments) of

the phase random variables in the update of (3.5). In PCO, the phase update

iteration of (3.5) only uses the moments of the node’s own phase when (3.5) is

applied; hence it is using the moments of the previous phase update iteration. To

calculate ୧୬୧୲ܣ (expected number of firings heard in the first iteration) one must

assume the initial moments for all phase variables of all nodes as there is no prior

information on the node’s firing. That is, it could be that the node is the first to fire

or the last to fire within one firing cycle – there is no way to know this and thus we

assume the statistics of the previous iteration for all nodes. In the case of ,୧୬୧୲ܣ that

would be the initial moments as presented in Definition 2 and Definition 3, thereby

deriving =୧୬୧୲ܣ 1 −
ଵ

ௐ
.

We are interested in the estimation of the expected number of firing cycles for

convergence to TDMA under the predefined threshold. However, what we can

count via the stochastic analysis is: how many times are the nodes expected to

apply (3.5) within each firing cycle. Then, through that we can estimate how many

firing cycles will it take (on average) until (3.5) leads to convergence under

Definition 4. Thus, the expected number of firings each node will receive during

the first firing cycle is what is needed to find out how many times (3.5) (phase

update) will be applied in the first firing cycle. This is given by .୧୬୧୲ܣ

This is derived based on the binomial theorem, since Definition 2 mandates that

∀ :݅ Φ
()

is uniformly distributed within [0,1). Since ୧୬୧୲approachesܣ unity for large

ܹ , assuming sufficiently large ܹ , each node will update its phase variable once in

the first firing cycle via (3.5), thereby deriving:

∀ :݅ Φ
(ଵ)

= (1 − Φ)(ߙ
()

+ Δ
()

) + 1)ߙ −
ଵ

ௐ
) (mod 1) (3.25)

with Δ
() being random variables modeling the measurement noise of ߮

()
from

65

Definition 3 From (3.8) and (3.25):

ߤ

(భ) = 1 −
ଵ

ௐ
, (3.26)

i.e. the mean values of successive fire messages remain equidistant after the first

firing cycle. The standard deviation of Φ
(ଵ)

is:

େߪ
(ଵ)

= (1 − ߪට(ߙ
Φ(0)
ଶ + ߪ

ଶ. (3.27)

Generalizing this to the t݇h phase update:

Φ
()

= (1 − Φ(ߙ
()

+ (1 − (ߙ

ୀଵ

Δ
(ି)

൫1ߙ+ − భ

ೈ
൯∑ (1 − (ߙ

ୀଵ (mod 1),

(3.28)

with Δ
(ି)

iid random variables, each stemming from Definition 3. All Φ
()

have

equidistant mean values because of (3.26) and standard deviation given by (3.23).

Similarly as for Proposition 1:

 each random variable Φ
()

is a linear mixture of independent random

variables

 େߪ
()

> (1 − ߪ(ߙ
Φ(0)

 all densities P

(ೖ) have finite support since they are linear mixtures of PDFs

with finite support.

Thus, via the central limit theorem [14] (see also Appendix 1 for more details),

assuming sufficient updates take place, Φ
()

will converge to normally-distributed

random variables with equidistant mean values. We can thus reach convergence

under Definition 4 for ୳݇୮ୢୟ୲ୣ given by (3.22). However, given that in PCO-based

desynchronization the number of phase updates per firing cycle is not fixed, in

order to derive the expected number of firing cycles until convergence is achieved,

we need to derive the expected number of phase updates after each firing cycle.

We can then match the expected number of phase updates until convergence to the

expected number of firing cycles. The remainder of the proof is dedicated to this.

Subsequent firing cycles, effect of neighboring firings: A pictorial illustration

of the PDF of t݅h firing, F, during its t݈h phase update is given in Figure 3.4 in

conjuction with its listening interval and the PDFs of Fି ଶ, Fି ଵ and Fାଵ (two

previous and one subsequent firing). Since all phase random variables are

normally distributed after a few phase updates, it is straightforward to infer from

66

Figure 3.4 that the probability that Fି ଵ will occur within F’s listening interval is

1

2
erf൭

1

ܹ େߪ
(ି ଵ)

√2
൱.

Moreover, the probability that Fି ଶ will occur within F’s listening interval is

1

2
erf൭

2

ܹ େߪ
(ି ଵ)

√2
൱− erf൭

1

ܹ େߪ
(ି ଵ)

√2
൱൩.

This is also the probability that Fାଵ (subsequent firing) will occur within the

listening interval of F.

Subsequent firing cycles the effect of all firings within a window of ܹ

firing events: We can now generalize the previous calculation to the probability of

occurrence of the ቔ
ௐ

ଶ
ቕfirings Fି ଵ and Fାଵ within F’s listening interval. Beyond

the Fି ଵ, for the t݆h firing after the F or the (݆+ 1)th firing before the F

(1 ≤ ݆≤ ቔ
ௐ

ଶ
ቕ), this probability is

1

2
erf൭

݆+ 1

ܹ େߪ
(ି ଵ)

√2
൱− erf൭

݆

ܹ େߪ
(ି ଵ)

√2
൱൩.

Hence, summing up the probabilities of firing within F’s listening interval for all

ቔ
ௐ

ଶ
ቕ firings before and after the F, the expected number of phase updated during

the t݈h firing cycle is given by (3.21). The total number of phase updates expected

within ݇ firing cycles is:

 ݑ

ୀଶ

+ 1 −
1

ܹ
.

As a result, for�݇update phase updates leading to convergence under Definition 4

[shown by (3.22)], the corresponding number of firing cycles is given by (3.20). □

Proposition 2 shows that the PCO-based desynchronization, ݇େ is affected by

,ߙ as well as by the noise assumptions, expressed by ߪ (బ) and ߪ in Definition 2

and Definition 3. The total number of firing, ܹ , is also influencing the number of

iterations for convergence to the steady state. However, as it will be shown by the

next section (experiments), this effect is negligible in practice.

67

Figure 3.4: A pictorial illustration of the probability density functions of the phase random

variables {Φି ଶ, Φି ଵ�, Φ�, Φାଵ�} for the t݈h phase-update(݈≥ 2) of the t݅h firing via
(3.5) .

3.4 Experimental Validation

For our experiments, we used the same hardware and settings as in the previous

chapter, i.e. the iMote2 Crossbow WSNs with TinyOS 1.x. All nodes use the IEEE

802.15.4 standard with the default 2.4GHz Chipcon CC2420 wireless transceiver.

We followed the TinyOS standard message format but reduced it to 2 data bytes

when sending fire messages, since only the node number is required within a fire

message. Similar to prior work [8], and as described in the previous chapter we

reduced the backoff time to 1.2ms and, as described in Section 3.1 and 3.2, we used

the local clock of each node to keep track of the node’s own firing time as well as

the firing times of the other nodes.

3.4.1 Conjecturing DESYNC and PCO as Second-order Systems

First we studied the experimental behavior of our system conjecturing it to be a

second-order dynamic system, which is known to asymptotically converge with

exponential rate to steady-state. If such a system is underdamped (e.g. due to the

presence of noise), under a step input we expect to see an oscillatory response to

the steady state. We compare the experimental response with a (noiseless) Matlab

simulation of DESYNC and PCO as seen in Figure 3.5. It can be observed that the

noiseless simulation model is close to a critically-damped system and thus

converges to steady-state faster, while the experimental realization of DESYNC and

68

PCO indeed appears to resemble the response of a second-order underdamped

system. This provides some intuitive justification to the exponential rates of

convergence that have been conjectured in the literature but it also shows that

such convergence rates may not in fact capture the actual convergence iterations

required for DESYNC and PCO to reach the SS in a real deployment due to the

underdamped nature of the system.

Figure 3.5. Node phase convergence to fixed phase for DESYNC (left) and PCO-based (right)

approaches. The period number refers to the firing cycle based on the node’s internal

clock. “Simulation” is performed by Matlab in noise-free conditions, i.e. each phase is

detected accurately and instantaneously by all nodes.

3.4.2 Standard Deviation of the Phase Measurement Noise

In the second part of our validation, we derived the standard deviation of the

phase measurement noise, which can only be established via measurements from

the real environment where DESYNC and PCO will be deployed.

The test environment was a standard University laboratory room, where

interference from co-existing WiFi networks at the 2.4GHz range cannot be

excluded. Our approach for measuring Δߪ is as follows: (i) we implemented the

DESYNC and PCO-based desynchronization in TinyOS nesC code as described in

Section 3.1 and 3.2; (ii) we set ܹ = 4, 8, 16 nodes and ߙ = 0.95 to ensure

maximum coupling strength and ܶ = 1s (which is the SS period value used in all

our experiments) and (iii) we measured the oscillatory behavior of each node’s

phase after it has been left operating for prolonged interval of time to ensure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Period Number

N
o

d
e

P
h

a
se

DESYNC-based Desynchronization

Experiment

Noise-free Simulation

1 2 3 4 5 6
0.35

0.4

0.45

0.5

0.55

Period Number

N
o

d
e

P
h

a
se

PCO-based Desynchronization

Experiment

Noise-free Simulation

69

convergence to SS. The statistics of the oscillatory phase behavior observed via this

experiment correspond to the marginal statistics of the phase during SS, i.e. the

phase measurement noise accumulated due to interference and processing

uncertainties. For both algorithms we found the standard deviation of the

oscillating phase amplitude around the SS value of each node’s phase to be ߪ =

0.34ms and the accumulated phase statistics over all ܹ nodes were confirmed as

marginally white. This was used for the validation of Proposition 1 and Proposition

2. No other parameter tuning is needed for the proposed model. This approach is

easy to replicate under any real-world WSN setup.

3.4.3 Measurement and Simulation Setup

We are now ready to proceed with the experimental setup for both DESYNC and

PCO-based desynchronization. In both cases, once all nodes were activated to

transmit and receive on a single channel, a special “mix message” was broadcast by

one of the nodes (chosen randomly) in order to trigger all nodes to set their initial

fire message phase to correspond to a random interval within ܶ = 1s from its

reception. This creates the initial conditions of Definition 2. The nodes will then

desynchronize their transmission of fire messages and converge to distributed

TDMA. We present results under two convergence thresholds:�ܾ୲୦୰ୣ ୱ = 0.001 and

୲ܾ୦୰ୣ ୱ = 0.02 and with coupling coefficients ∋�ߙ {0.05, … ,0.95}. We use

cܿonf = 1 − 10ିସ to detect convergence under Definition 4 with near certainty.

Under the experimental setup, each node detects convergence (or SS) by checking

if (3.3) is valid for the last 5 firing cycles. After achieving SS and remaining in this

state for 50 firing cycles, a node broadcasts another mix message, in order to

repeat the process. This facilitates the automated collection of 100 experimental

convergence iterations. Each node reported the number of firing cycles until

convergence was detected (minus 4 cycles) via a special “report” message to a base

station listening passively to all messages for monitoring purposes.

In order to cross-validate our theoretical and experimental results with

simulations, we used the Matlab code of Degesys et al [8][145] for DESYNC and

70

added to it Matlab code for PCO with inhibitory coupling. We deliberately apply

zero-mean additive noise in the phase update with ߪ = 0.34ms and set each node

to misfire with probability 0.4% in order to simulate the noise conditions observed

in our experimental setup. Despite the fact that the simulation cannot capture the

complex behavior of the real system in full detail, it allows for numerous

desynchronization processes to be simulated (300 Matlab runs per triplet

{ܹ ,ߙ, ୲ܾ୦୰ୣ ୱ} for each algorithm).

3.4.4 DESYNC Results

The results for this desynchroniztion mechanism are reported in Figure 3.6. All

measurements around a value of α correspond to results with that value of ;ߙ they

have been plotted slightly separately solely for ease of illustration. For comparison

purposes, we have also included the conjuecture of (3.4) for convergence to TDMA

with DESYNC [8][13] in our results by scaling the order estimate to fit within the

range of the obtained experiments and simulations. While we used ܹ = 16 for this

conjecture, this order of convergence has the same shape in function of ߙ for other

values of ܹ but simply needs different scaling to fit the range of the experiments.

The results of Figure 3.6 show that the experiments and simulations appear to be

independent of ܹ , i.e. as expected from Proposition 1.

The WSN tends to converge to steady state faster when ��decreasesߙ (until ߙ =

0.25), since the presence of measurement noise causes higher-amplitude

oscillations for strong coupling, i.e. for high values of .ߙ However, for very small

values of ,ߙ the convergence iterations increase dramatically due to weakened

coupling between neighboring nodes. The model of Proposition 1 is within the

standard deviation of the experimental results for all cases. In addition, the model

prediction is within the standard deviation of the simulation results for the vast

majority of cases, as seen in Figure 3.6.

Finally, by comparing the convergence results for low and high convergence

threshold, one can observe that the use of small convergence threshold increases

the converge iterations. The proposed model also predicted this behavior correctly

71

as shown by the figure of the Pearson correlation.

Figure 3.6: Required firing cycles for convergence for the DESYNC algorithm for various
values of .ߙ The vertical error bars correspond to one standard deviation from the

experimental (or simulation) mean values, which are indicated by marks.

For example the Pearson correlation coefficient between the simulation and

experimental result is defined as the covariance of the two results divided by the

product of their standard deviations. Therefore the Pearson correlation

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0

5

10

15

20

25

30

35

40

Desync (b
thres

= 0.001)

k d
e
sy

n
c

experimental mean, W=16
experimental mean, W=8
experimental mean, W=4
experimental mean, W=4,8,16
simulation mean, W=4,8,16
model, Proposition 1
conjecture of (4) with W=16, [3][4]8 9

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0

5

10

15

20

25

30

35

Desync (b
thres

= 0.02)

k
d

e
sy

n
c

experimental mean, W=16
experimental mean, W=8
experimental mean, W=4
experimental mean, W=4,8,16
simulation mean, W=4,8,16
model, Proposition 1
conjecture of (4) with W=16, [3][4]8 9

72

coefficients for the simulation and the model curves against the mean

experimental values were found to be: 0.9795 and 0.9723 (respectively) for

୲ܾ୦୰ୣ ୱ = 0.001, while for ୲ܾ୦୰ୣ ୱ = 0.02 they were 0.9939 and 0.9931 (respectively).

3.4.5 Results with PCO-based Desynchronization

The results are reported in Figure 3.7 for both small and large convergence

thresholds. Our model exhibited no practical variation for different values of ܹ ;

hence, for ease of illustration we present the proposed model with��ܹ = 16.

Similarly, we used ܹ = 16 for the lower bound of (3.6) in order to allow for the

bound to be applicable for all values of ߙ except of ∋�ߙ {0.85,0.95} [for which the

constraint of 1 − <�ߙ
ଵ

ௐ
of (3.6) is violated or is marginally applicable]. Since (3.6)

derived negative estimates for most values of ,ߙ we added an offset to the results

of the bound to bring all of them to the non-negative region. Evidently, the bound

of (3.6) does not match the observed behavior. We remark however that this is to

be expected as the bound of (3.6) is derived under the assumption that each firing

is influenced only by the firing of one neighboring node [9].

In this case, the system of nodes converges to SS faster for higher ߙ values.

Figure 3.7 demonstrates that the proposed model predicts this trend correctly and

remains within one standard deviation from the experimental results and, for the

majority of cases, within one standard deviation from simulation results. Since the

model results do not change for different values of ܹ , the firing events beyond the

window of ܹ firing [(3.21) of Proposition 2] do not affect the model calculation; in

other words, the inclusion of ܹ firing in (3.21) balances the results to the same

values for different settings of ܹ tested, which agrees with the overall

experimentally observed behavior of the system.

Finally, by comparing the convergence results for low and high convergence

threshold, we note that the use of small convergence threshold increases the

convergence iterations. The proposed model predicts this behavior correctly and

agrees with the experimental trends reported. The Pearson correlation for the

simulation and the model curves against the mean experimental values were:

73

0.9896 and 0.9739 (respectively) for ୲ܾ୦୰ୣ ୱ = 0.001, while for ୲ܾ୦୰ୣ ୱ = 0.02 they

were 0.9977 and 0.9989 (respectively).

Figure 3.7: Required firing cycles for convergence for the PCO-based algorithm for various

values of .ࢻ The vertical error bars correspond to one standard deviation from the

experimental (or simulation) mean values, which are indicated by marks.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

PCO (b
thres

= 0.001)

k P
C

O

experimental mean, W=16
experimental mean, W=8
experimental mean, W=4
experimental mean, W=4,8,16
simulation mean, W=4,8,16
model, Proposition 2
lower bound of (6) with W=16, [3]9

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0
5

10
15
20
25
30
35
40
45
50
55
60

PCO (b
thres

= 0.02)

k P
C

O

experimental mean, W=16
experimental mean, W=8
experimental mean, W=4
experimental mean, W=4,8,16
simulation mean, W=4,8,16
model, Proposition 2
lower bound of (6) with W=16, [3]9

74

3.5 Discussion

By cross referencing between Figure 3.6 and Figure 3.7 we can compare the

convergence iterations of both algorithms for different settings. Under appropriate

choice of the coupling coefficient ,ߙ the required firing cycles for convergence with

PCO-based distributed desynchronization is comparable to the convergence cycles

of DESYNC. As shown in Figure 3.6 and Figure 3.7, previous estimates or bounds

that do not use a stochastic approach (and do not take into account the

measurement noise conditions) are not a tight match to the experiments. To the

best of our knowledge, this is the first work to derive stochastic convergence

estimates for desynchronization and compare them against measurements from a

real-world WSN deployment2.

Our approach is also making a modeling simplification, which is discussed here.

Both Proposition 1 and Proposition 2 make use of “stale” statistics for the

stochastic characterization of convergence. Specifically, (3.15) and (3.23) as well as

the description of the phase update process of (3.17), (3.25) and (3.28) assume

that all random variables corresponding to the received fire messages have

standard deviation corresponding to the previous phase update. However, each

random variable corresponding to each phase variable of Definition 2 may have

updated its standard deviation during each phase update. This is not taken into

account when one assumes that all random variables have the same standard

deviation for each phase update.

Concerning this point, we emphasize that, to calculate Φ
()

and its moments for

DESYNC and PCO-based convergence without making an explicit assumption on the

exact firing order, one must assume the statistical moments for all phase variables

of all firings are “stale” , i.e. they correspond to the previous phase update

iteration, ݇− 1. That is, it could be that a particular firing event is the first or the

2 The only related attempt was found in [4]. However, that work proposes PCO with positive

coupling for synchronous pulsing. The required differences (i.e. different phase update,

reachback response, pre-emptive message staggering, RODL file [4]) do not permit a direct

comparison of the convergence estimate of [4] with the experimental and theoretical results

of this work.

75

last in a given phase update iteration. Since we do not assume any knowledge of

this order (which may in fact not be fixed), Proposition 1 and Proposition 2 make

use of the statistics of the previous phase update iteration for all nodes. Given that

our stochastic modeling framework is in good agreement with the experimental

and simulation results without requiring experimental tuning (besides knowledge

of the standard deviation of the phase measurement noise), such a simplification

can be considered as a good balance between the required assumptions and the

modeling complexity.

In relation to WSN-based experiments of previous work [8],[13] that tend to use

convergence thresholds that are an order of magnitude smaller and aim for TDMA

systems with strict guard times, one can argue that the choice of a higher threshold

for convergence, as seen in this chapter, can have an adverse effect on the achieved

throughput once TDMA is reached since it leads to higher guard threshold. For

example, Degesys et al [8] used similar WSN technology but, for increased TDMA

accuracy, they managed to achieve 1ms threshold (୲ܾ୦୰ୣ ୱ = 0.001) in their

experiments. However, we found that this does not provide for higher throughput

in SS in comparison to setting ୲ܾ୦୰ୣ ୱ = 0.02, i.e. as shown in this chapter. For

example, the DESYNC and PCO algorithms for ܹ = 4, ߙ = 0.95, ୲ܾ୦୰ୣ ୱ = 0.02 and

ܶ = 1s lead to (approximately) 83kbps data throughput (which corresponds to

97% of the maximum throughput obtained between two nodes under the same

environmental conditions). Similar results have been obtained for all other cases.

Thus, that is why we would like to present results for ୲ܾ୦୰ୣ ୱ = 0.02 that our

results are comparable or superior to the ones reported in [Table 1, [8]].

Nevertheless the comparison of the proposed model with experiments, simulation

results, and with previously known bounds for small guard threshold:

୲ܾ୦୰ୣ ୱ = 0.001 (1ms for ܶ = 1s) as proposed below:

Apparently, the experiment results for DESYNC-TDMA throughput and message

loss is represented in Table 2.2 with the same ୲ܾ୦୰ୣ ୱ and�ܶ . To illustrate this, Table

76

3.2 and Table 3.3 present a comparison between the average bandwidth and

convergence times obtained by using each of the two thresholds (୲ܾ୦୰ୣ ୱ =0.02 and

୲ܾ୦୰ୣ ୱ =0.001) in DESYNC and PCO-based desynchronization for the indicative case

of ܹ = {4,8,16} nodes and ߙ = 0.75. Following Degesys et al [8], the measured

data throughput of all network nodes is normalized against the maximum data

throughput between two iMote2 nodes under single sender-receiver

communication (found to be 85.32kbps).

Table 3.2: DESYNC: average performance metrics under (guard) thresholds 20ms and 1ms.

The numbers in brackets in the convergence iterations indicate the model prediction.

Table 3.3: PCO: average performance metrics under (guard) thresholds 20ms and 1ms.

The numbers in brackets in the convergence iterations indicate the model prediction.

The tables illustrate that, when using ୲ܾ୦୰ୣ ୱ = 0.02 (20ms), the results are

superior to the ones with ୲ܾ୦୰ୣ ୱ = 0.001 (1ms). This is because of the standard

deviation of the marginal distribution of the phase measurement noise ߪ =

0.34ms (Subsection 3.4.2). This causes the nodes to occasionally lose their

Threshold ܛ܍ܚܐܜ࢈ = . =ܛ܍ܚܐܜ࢈ .

DESYNC /Nodes 4 8 16 4 8 16

Total Throughput (kbps) 84.02 80.46 75.19 72.69 65.58 62.96

Normalized, % 98.48 94.30 88.13 85.19 76.86 73.79

Max Individual (kbps) 21.12 10.10 4.85 19.40 9.16 4.40

Min Individual (kbps) 20.86 9.93 4.40 16.81 7.50 3.36

Convergence iterations 6.5 [6] 6.1 [6] 5.1 [6] 10.7 [11] 11.9 [11] 10.5 [11]

Message Loss (%) 0.00 0.00 0.00 0.01 0.03 0.01

Threshold ܛ܍ܚܐܜ࢈ = . ܛ܍ܚܐܜ࢈ = .

PCO /Nodes 4 8 16 4 8 16

Total Throughput (kbps) 82.12 75.80 64.17 70.92 64.39 62.80

Normalized, % 96.26 88.84 75.21 83.12 75.47 73.60

Max Individual (kbps) 20.75 9.63 4.12 18.24 8.40 4.10

Min Individual (kbps) 20.11 9.26 3.88 17.26 6.54 3.35

Convergence iterations 5.5 [3] 5.5 [3] 6.1 [3] 8.2 [5] 8.4 [5] 9.7 [5]

Message Loss (%) 0.00 0.00 0.00 0.03 0.01 0.01

77

converged (steady) state under�ܾ୲୦୰ୣ ୱ = 0.001, thus requiring them to reapply

DESYNC or PCO phase updates to converge again. Hence, although increasing the

convergence threshold decreases the transmission slots’ size per node, it can

significantly enhance TDMA stability for DESYNC and PCO-based algorithms under

real-world sensor network deployments, thereby leading to higher bandwidth.

Finally, the required firing iterations for convergence are decreased with

increased convergence threshold, which makes the desynchronization algorithms

more relevant to practical applications. The results of Table 3.2 and Table 3.3 show

that the model remains close to the average experimental value and can be used as

a predictor for the expected convergence time under a variety of settings.

3.6 Conclusion

Stochastic estimation of the convergence iterations to distributed time-division

multiple access is proposed for two algorithms from the literature: the DESYNC

approach and pulse-coupled oscillators with inhibitory coupling. Our stochastic

estimates establish the expected firing cycles required until the probability density

function of a node’s phase falls within the a-priori determined threshold with very

high confidence (ୡܿ୭୬× 100% confidence of Definition 4). For both algorithms, our

analytic expressions are validated successfully based on experiments with a fully-

connected network of wireless sensor nodes under real-world conditions and

based on simulations. Our model can estimate the convergence time under

different configurations of desynchronization since it includes the influence of

system parameters: total number of nodes, coupling coefficient, convergence

threshold and phase measurement noise. As such, it can be used to estimate the

best operational parameters (and associated delay) to establish distributed TDMA

under several WSN protocols based the principle of desynchronization.

78

n2

n1 n3

n4

n5

n6

n7

n8

4.Chapter 4

Distributed Desynchronization In Multi-

hop Wireless Sensor Networks

As shown in the previous two chapters, the DESYNC-TDMA algorithm works well for

a fully-connected network and under single-channel operation. Nevertheless in a

multi-hop network, each node cannot hear all other nodes of the system. Studies

about the behaviour of the DESYNC on multi-hop networks have appeared in

literature [15]; however, only simulations or theoretical analysis has been

presented, without a real-world implementation. Degesys et al [15] consider the

DESYNC on several topologies of WSNs: path graph, cycle graph, star graph, and

unit-disk graph. Unlike [15], in this chapter we describe a modification of the

DESYNC-TDMA algorithm to handle the multi-hop network scenario without

considering specific topologies (Section 4.1).

4.1 Proposed Multi-hop DESYNC Protocol

Multi-hop desynchronization has been studied theoretically in [15][18]. The main

issue with multi-hop network infrastructures is the “hidden terminal” problem.

This problem is demonstrated in the topology of Figure 4.1, where, for example,

broadcast fire messages from ହ݊ are only picked up by ଵ݊. This hinters the

synchronization of ଵ݊, as ଶ݊, ଷ݊, ସ݊ are unaware that ହ݊ will interfere with their

transmissions since that node is hidden from them.

Figure 4.1: WSN with hidden nodes.

79

To address this issue, each node extends its own fire message to include the

node numbers and the relative time instants that the node received their fire

messages in relation to the time the node broadcasts its own fire message. Thus,

reactive listening is extended to include the neighbours’ information. This is

achieved by each node maintaining a list of nodes from which fire messages have

been received (direct fire messages) as well as a list of fire messages mentioned by

other nodes (indirect fire messages). Nodes included in the second list but not in

the first, are hidden nodes. When a node schedules its fire-message broadcast, it

takes into account all other broadcasts inferred from both lists. In addition, the

scheduling happens immediately after the node’s own firing [and not as in Figure

2.13] and uses the previous period’s fire message times.

4.1.1 Features and Implementation Details

In this section we describe the enhancements required for the multi-hop DESYNC in

the way we implemented them. We start by identifying the format of the modified

fire message, shown in Figure 4.2. The fire message for the multi-hop DESYNC

includes the neighbour node ID (for all messages received by the sender node) and

the difference time between the broadcast time of that message and the receipt of

the neighbour fire message. The neighbour node ID is found from the sender ID in

the broadcast fire message. These two values (neighbour node ID and difference

time) are kept in the neighbour list, which includes the status of that neighbour

node. The size of the neighbour ID is 1 byte per node. Similarly, the different time’s

length is 1 byte per node. In fact, the length of time variable in TinyOS has 4 bytes.

It is converted from 4 bytes to 1 byte. Compacting the number of bytes needed for

this information makes the fire message’s length smaller, which leads to less

overhead for its transmission and thereby better network performance. The fire

message keeps the neighbour node ID and different time of up to 11 nodes as

shown in Figure 4.2. This is the maximum number of nodes as we define in our

experiments with multi-hop desynchronization, but it can be easily extended for

larger WSNs if required.

80

Figure 4.2: Format of a fire message of multi-hop DESYNC algorithm.

We explain how to find the hidden nodes using a broadcast fire message of any

node in the code of Figure 4.3. Once the event of receiving a fire message is

triggered, when getting the neighbour node ID from the fire message of multi-hop

DESYNC, each node will check the status of every neighbour node ID in the fire

message. By default, the node’s status of all its neighbour is “HEARD”. If the node’s

status is not “HEARD”, that node will be a hidden node.

Figure 4.3: Code for multi-hop DESYNC version that the hidden node(s).

For a multi hop network, the timing information in the fire message is used for

the scheduling of the next fire time,ݐ�
ሺሻ

. This algorithm needs to find the new

NextNode FireTime,ݐ�ାଵ
ሺିଵሻ

and LastNode FireTime, ିݐ� ଵ
ሺିଵሻ

. This is achieved using

the neighbour ID and difference times in the fire messages. When a node receives

the fire message, it will collect the node ID, status and the relative time of any

neighbour node into the table list. Then the node will define the ାଵݐ
ሺିଵሻ

and

ିݐ ଵ
ሺିଵሻ

before calculating the ݐ
ሺሻ

. Specifically, it finds the two neighbour nodes

considering also potential hidden nodes; therefore the node needs to check the

difference time between its own fire time and other’s fire time for two cases which

are in the past time, ݇െ ʹ and at the current period,�݇ െ ͳ as demonstrated in

Figure 4.4 . When considering the minimum of the difference time, it can be the

81

time at ିݐ ଵ
(ିଶ)

and ାଵݐ
(ିଶ)

which will be set as the ିݐ ଵ
(ିଵ)

and ାଵݐ
(ିଵ)

respectively in the

case I. On the other hand, the node can hear the fire message at the ିݐ ଵ
(ିଵ)

, not the

ିݐ ଵ
(ିଶ)

That means this time will be the ିݐ ଵ
(ିଵ)

. Therefore this is case II which the

ାଵݐ
(ିଵ)

is calculated from the fire time at the ାଵݐ
(ିଶ)

by adding a period (ܶ).

Figure 4.4: Local view for multi-hop DESYNC to find the ାଵݐ
(ିଵ)

and ିݐ ଵ
(ିଵ)

.

In order to obtain the smallest of the difference time, the node has to check

through all neighbour node list and the hidden node list to determine which is the

last node and next node are. First of all, node examines the neighbour node list as

shown the code in Figure 4.5. The node needs to initialize the min_diff_prev and

min_diff_next with a large value. Then it will compare these two values with the

difference time, which is the time between its own fire time and any other node’s

fire time. As described previously, we need to consider this comparison both for

the (݇− 2) period and for the (݇− 1) period, in order for the node has to discover

the new ାଵݐ
(ିଵ)

and ିݐ ଵ
(ିଵ)

from the neighbour and hidden node list correctly.

Figure 4.5: Code for multi-hop DESYNC algorithm when checking the neighbour list.

ݐ
(ିଶ)

ݐ
(ିଵ)

ାଵݐ
(ିଶ)

ାଵݐ
ିݐ⬚ ଵ

(ିଶ)
ିݐ ଵ

(ିଵ)

ଷ݊ ଷ݊ ହ݊
ହ݊ ଶ݊ ସ݊ ݊݊

Case I Case II
It is time to calculate

the Next FireTime

Time (s)

82

After checking neighbour list, the node continues to examine the hidden node

list with the same procedure, as shown in Figure 4.6.

Figure 4.6: Code for multi-hop DESYNC when checking the hidden node list.

When we have finished these procedures, we can calculate the ݐ
()

for two cases

as shown in Figure 4.4 . We consider the prevTime_pastFire status for selecting

the criteria. If it is TRUE, this means we compute the time ݐ
()

according to the

period ݇− 2 (case I):

ݐ
()

= ܶ+ (1 − ݐ(ߙ
(ିଵ)

+)ߙ
௧షభ

(ೖషమ)
ା௧శభ

(ೖషమ)

ଶ
+ ܶ)

(4.1)

On the other hand, the case is prevTime_pastFire = FALSE, node will schedule

the ݐ
()

based on the interval ݇− 1 (case II) by:

ݐ
()

= ܶ+ (1 − ݐ(ߙ
(ିଵ)

+ ߙ
௧షభ

(ೖషభ)
ା௧శభ

(ೖషమ)
ା ்

ଶ

(4.2)

4.2 Experimental Results

We tested a multi-hop DESYNC network with 8 motes and used the topology of Figure

4.1 as an example. We run five tests of 60 seconds for each case: when using the

proposed algorithm for discovering and incorporating hidden nodes and when using

the conventional DESYNC algorithm of Chapter 2. It can be observed from Figure 4.1

that ଵ݊ is linked to ହ݊, ଶ݊ is linked to ݊, ଷ݊ is linked to ݊ and ସ݊ is linked to ଼݊.

Hence, ହ݊~ ଼݊ are all hidden nodes. When testing with the hidden-node

83

implementation of the fire message broadcasts, we validated that each hidden node

can discover all fire messages from all 8 nodes. For example, node 5 is a hidden node

that discovers all fire messages from reading the fire message of node 1. For the

conventional DESYNC, i.e. without the hidden node implementation, each hidden node

can hear only the fire message from the node it is directly linked to. For instance,

node 5 only discovers node 1, whereas node 1 can hear fire messages from node 2, 3,

4 and 5.

In the first round of experiments, we set a single-channel mode and arranged the

topology of Figure 4.1 using UCL’s anechoic chamber for antenna measurements3 to

create an interference-free test environment that also includes obstacles with

absorbing material limiting the broadcast messages of each node to the indicated

links in the topology. This allows for testing of the multi-hop desynchronization of

Section 4.1 against the conventional single-hop DESYNC scheme [8].

The average throughputs after 10 tests of 60s each are given in Table 4.1 against

conventional (1-hop) DESYNC [8]. It is particularly evident from the results that the

inclusion of the neighbours’ node list alleviates the hidden-node problem and

maintains high throughput and low message loss for the proposed multi-hop

desynchronization approach.

Scheme
Proposed
Multi-hop

1-hop [8]

Total throughput (kbps) 68.7 27.6

Normalized, % 80.5 32.3

Max per node (kbps) 9.6 6.1

Min per node (kbps) 7.9 1.6

Message loss (%) 0.1 1.0

Table 4.1: Results under the multi-hop topology of Figure 4.1. The presented measurements

include the period after SS has been obtained.

For 8 nodes, we found the total throughput of the proposed multi-hop extension

decreased by approximately 15% in comparison to the conventional DESYNC design

3 http://www.ee.ucl.ac.uk/about/anechoic-chamber

84

under the fully-connected topology. For the partly-connected topology, the total

throughput of conventional DESYNC without the hidden node decreased by

approximately 60% from the 68.7 kbps obtained by the proposed multi-hop DESYNC.

The message loss also gets to approximately 1%. For the multi-hop DESYNC, we set up

the new threshold from 10 ms to 15 ms and time_SendData_onePack from 8 ms to 15

ms in order to make the system stable.

4.3 Conclusion

By extending the primitive of distributed desynchronization in wireless networks,

we proposed (and demonstrated) the improvements offered by including

neighbour-node information to avoid the hidden node problem in multi-hop

topologies. Experimentation using TinyOS iMote2 wireless sensors demonstrated

the throughput increase provided by our proposed multi-hop mechanism and

validated our theoretical findings.

85

5.Chapter 5

Distributed Time-Frequency

Desynchronization In Wireless Sensor

Networks

In this chapter we study the capability of desynchronization-based

communications via multiple channels. The proposed multichannel protocol

improves the throughput performance against single-channel desynchronization-

based WSNs [16].

Complementary to desynchronization for distributed TDMA, multi-channel MAC

protocols aim for load balancing via frequency division multiple access [37]-[39],

or TDMA combined with pseudo-random channel hopping, e.g. as proposed for the

upcoming IEEE 802.15.4e standard [29]. The key principles are: (i) collection of

traffic statistics or TDMA coordination by a central station; (ii) centralized TDMA

and channel assignment (or hopping) for interference reduction.

In this chapter, we propose distributed MAC-layer time-frequency division

multiple access (TFDMA) for WSNs based on reactive listening of message

broadcasts. Unlike previous TFDMA schemes [37]-[39] that are centralized or

highly-complex for real-world sensor devices (due to complex heuristics or NP-

time algorithms), our approach forms a low-complex decentralized scheme based

on reactive listening [105]. In addition, unlike channel hopping approaches based

on IEEE 802.15.4e MAC [29][30], we avoid continuous channel switching; we

instead provide for distributed TDMA and channel assignment that is compatible

with the widely-supported IEEE 802.15.4 MAC and is also applicable within other

multichannel MAC protocols without requiring explicit hardware support.

Beyond the proposed TFDMA, this chapter’s contributions are: (i) we prove that

distributed TFDMA converges to steady state under appropriate parameter

settings; (ii) we derive the expected delay for convergence to SS; (iii) we perform

86

real-world validation of the proposed scheme via TinyOS iMote2 nodes and make

our source code available online [45].

5.1 Proposed Multi-channel Extension

Standards suitable for wireless sensors, such as the IEEE 802.15.4 MAC, allow for

half-duplex communications over a selection of channels at 2.4GHz with minimal

cross-channel interference. This hints that, should TDMA desynchronization be

extended to ܥ channels ܥ) > 1), increased throughput per node will be observed

since ⟦ܹ ୲୭୲ ⁄ܥ ± 0.49ത⟧ nodes 4 will operate in each channel. The highest throughput

can be achieved when the number of nodes is balanced in all channels [37]. For

example, for ܥ = 2, the aim would be to “spontaneously” separate �ܹ ୲୭୲= 8 nodes

into two distinct sets: ܹ ଵ = ܹ ଶ = 4, i.e. 4 nodes in each channel. This uses the

allocated spectrum of IEEE802.15.4 twice as efficiently in comparison to PCO-

based TDMA [8][9]. However, channel switching must be designed judiciously, as

frequent channel switching causes loss of (de)synchronization due to variable

hardware and operating system latencies and additional effort (and energy

consumption) is required to recover it [44].

5.1.1 Proposed Protocol

TFDMA extends the reactive listening primitive and makes for a stable process for

time-frequency node balancing. By utilizing reactive listening, it only allows for

channel switching if less nodes are detected in the new channel. The detailed

operation is described here.

Switching: In the beginning, each wireless sensor picks a channel Ch{ }ܿ

(1 ≤ ܿ≤ (ܥ randomly after that applies DESYNC [8]. After ୱ݇ୱ periods, convergence

to TDMA is achieved [via the check of the convergence state (ቚݐ
(s݇s+1)

− ݐ
(౩౩)

− ܶቚ<

tܾhresܶ)]. We present the scenario which sensor nodes join in the random channel

as in Figure 5.1, this means that, on average, TFDMA will begin in a near balanced

state. We have proposed our delay analysis to reflect this, seen by Proposition 2.2,

4 ܹ ୲୭୲indicates the total number of nodes and ܹ represents the number of nodes operating

in channel }ℎܥ)ܿ }ܿ); ⌊a⌋, ⌈a⌉ and ⟦a⟧ are the floor, ceiling and round operations.

87

which now does the averaging of the expected delay under each possible initial

state, multiplied by the probability that this initial state will happen when ܹ ୲୭୲

nodes join ܥ channels randomly.

Figure 5.1: A sample of the random channel selection case scenario of the proposed multi-

channel extension.

After ୱ݇ୱ periods, convergence to TDMA is achieved [via the check of

ቚݐ
ሺ౩౩ାଵሻെ ݐ

ሺ౩౩)
െ ܶቚ൏ ୲ܾ୦୰ୣ ୱܶ with ୲ܾ୦୰ୣ ୱ a preset threshold, e.g. ୲ܾ୦୰ୣ ୱ = 0.02].

Subsequently, after broadcasting its fire message, each node can switch to the

previous or next channel, i.e. from ��ሼܿ ሽ to ��ሼܿ {ݏ (ͳ ܿ ,ܥ with

ݏ ∈ {±1, … , ʹȀܥ⌋± ⌋} and cyclic extension: ��ሼܥ {|ݏ| ≡ Ch{|ݏ|}, Ch{1 − {|ݏ| ≡

��ሼܥ ͳെ ,({|ݏ| by broadcasting a “switch” message in ��ሼܿ ሽ. This message

contains the node number and alerts all other nodes listening and transmitting in

��ሼܿ ሽthat this node will attempt to switch to a different channel. Once receiving

one switch message, all other nodes in ��ሼܿ ሽ disable the desynchronization

process and, instead of assigning their next fire-message broadcast based on

ݐ
(ାଵ)

ൌ ܶ (ͳെ ݐ(ߙ
()

 ߙ
௧షభ

(ೖ)
ା௧శభ

(ೖ)

ଶ
, they simply repeat it after ܶs for the next

period. This is termed “switch” mode.

Reactive listening: The node attempting to switch to ��ሼܿ {ݏ listens to the

fire messages of ��ሼܿ {ݏ for one period5 and determines if ܹ ା௦ ܹ − 2. If so,

it joins the new channel and distributed TDMA is achieved in ��ሼܿ ሽand ��ሼܿ {ݏ

via DESYNC. Otherwise it returns to ��ሼܿ ሽ, broadcasts a “return” message, and

5 Each beacon message includes the total number of nodes heard in ��ሼܿ ሽ, as well as a flag

indicating whether the channel is in switch mode (i.e. whether a node has left to listen to

��ሼܿ .({ݏ Thus, each node finds ܹ (and whether switch mode is on) even if only a single

beacon message is heard in ��ሼܿ ሽ.

88

rejoins desynchronization and data transmission in Ch{ }ܿ. Nodes in Ch{ }ܿ exit the

switch mode and continue their regular desynchronization operation when a

return message is received, or after two periods.

Assuming ݏ
()

> 0 for the t݇h switch mode of Ch{ }ܿ, if a return message is

received, all nodes in Ch{ }ܿ set ݏ
(ାଵ)

= ݏ−
()

, i.e., when unsuccessful, the

switching direction changes; furthermore sୡ gradually increases up to ⌊2/ܥ⌋± to

cover all channels. An update occurring simultaneously between channels:

ܿ→ ܿ+ ݏ
()

and ƴܿ→ ܿ(1 ≤ ƴܿ≤ ܥ & ƴܿ≠)ܿ is expressed stochastically for Ch{ }ܿ by:

ഥܹ

(ାଵ)

= ഥܹ

()

− min൜ݑܹഥ
()

− 2 − ഥܹ
ା௦

(ೖ)
()

൨ୱ୵ ,
() ഥܹ

()

, 1ൠ

+ minቄݑቂܹഥ́
()

− 2 − ഥܹ

()
ቃୱ୵ ,́

() ഥܹ
́
()

, 1ቅ

(5.1)

with: ഥܹ
()

the expected number of nodes at Ch{ }ܿ after the t݇h switch mode; [∙]ݑ

the unit-step function, used to identify whether switching can occur between

channels ܿ→ ܿ+ ݏ
()

and ƴܿ→ ;ܿ and ୱ୵ ,
()

, ୱ୵ ,́
()

the switching probabilities of a

node in Ch{ }ܿ and Ch{ ƴܿ}.

Stability and convergence mechanism: Since each node decides and sends its

switch message immediately after its fire message, once one such message is heard

in one period, the remaining nodes in that channel cannot switch in this period.

The switch mode allows for undisturbed operation while nodes find out if the

previous or next channel has less nodes: (i) if a node returns, it can quickly regain

its previous TDMA slot with minimal disturbance; (ii) via the switch mode, the

reactive listening primitive of (5.1) is used for adjustment of the number of nodes

per channel. Once the switch mode is exited for the t݇h time in Ch{ }ܿ, each node

modifies its switching probability by:

ୱ୵ ,
()

= minቄߚ௩ × ୱ୵ ,
(ିଵ)

, 1ቅ (5.2)

where: =ݒ 1 if no return message is received, =ݒ −1 otherwise, and ߚ > 1. Notice

that ୱ୵ ,
()

controls how quickly the nodes of channel Ch{ }ܿ will attempt to switch

initially and ߚ controls the “back-off” from switching (also preset), and ݒ changes

according to the result of the last switch attempt.

89

Notice that, once ⟦ܹ ୲୭୲ ⁄ܥ ± 0.49ത⟧ nodes exist in all channels, further switching

attempts will cause the nodes to return to their original channel, thus leading to

 ǣܿୱ୵ ǡ
ሺୱୱሻ

→ 0 from (5.2). Thus, even in steady state we enforce infrequent channel

switching attempts to periodically discover and compensate for potential

imbalances created by nodes departing unexpectedly (e.g. if nodes malfunction):

we impose that a node in each channel will attempt to switch after ܼ periods of

switching inactivity.

Figure 5.2: The diagram of the proposed multi-channel extension

Both the periodic fire message broadcasts and the reactive listening principle are

of critical importance for (5.1) and for the proposed TFDMA operation as they

ensure switching nodes can detect the number of nodes in the new channel (and

whether the new channel is in fact in switch mode).

90

The proposed protocol has two tunable parameters6: ୱ୵ ,
()

and .ߚ They are linked

together via the update of ୱ୵ ,
()

given by eq. (5.2). Notice that the original DESYNC

anyway had two tunable parameters: ୲ܾ୦୰ୣ ୱ and .ߙ The exploration of the specific

effect of these four parameters on the convergence delay remains a topic for future

work. Given we provide our full source code in the [45], comparisons under

different settings for ୱ୵ ,
()

and ߚ and ୲ܾ୦୰ୣ ୱ and ߙ are easy to perform by any

experimentalist in this area.

5.1.2 Properties

Proposition 1 (Convergence to SS): An arbitrary distribution of ܹ ୲୭୲ nodes in ܥ

channels (ܹ ୲୭୲≥ (ܥ2 will be driven to balanced state of ⟦ܹ ୲୭୲ ⁄ܥ ± 0.49ത⟧ nodes per

channel under TFDMA with 0 < ߙ < 1.

Proof: Single-channel TDMA desynchronization has already been shown to

converge for 0 < ߙ < 1 [8][9]. Thus, it suffices to show that the proposed channel

switching mechanism leads to balanced number of nodes per channel.

It is straightforward to check that the vectors comprising ܹ
(ୱୱ)

= ⟦ܹ ୲୭୲ ⁄ܥ ±

0.49ത⟧, ∀ :ܿ 1 ≤ ܿ≤ ,ܥ are eigenvectors (with unity eigenvalue) of the matrix system

formed for all channels via (5.1). Thus ܹ
(ୱୱ)

are the fixed points of the system of

(5.1). For every iteration ,݇ the matrix system formed by (5.1) for all ܥ channels

has all its eigenvalues on or within the unit circle. Limit cycles are avoided as u[∙]

ensures updates will happen only when leading to balanced number of nodes.

Thus, ∀ :ܿ lim→ஶ ܹ
()

= ܹ
(ୱୱ)

.

Assuming that for every channel ܿ (1 ≤ ܿ≤ :(ܥ ݏ
()

= 1, then the transition

system formed by [(5.3),[43]] for all ܥ channels is written in matrix form as:

ഥ(ାଵ)ܟ = ۵() ഥ()ܟ (5.3)

with ഥ(ାଵ)ܟ = ൣܹഥଵ
(ାଵ) ഥܹ

ଶ
(ାଵ)

⋯ ഥܹ
ିଵ
(ାଵ) ഥܹ

(ାଵ)൧

்

(5.4)

6 There is also parameter ܼ which forces a switching attempt and can be set to any number of

periods higher than the number of periods required for convergence to steady state. In

practice, this is simply a periodic “nudge” of the system in order consider random unbalances

occurring from nodes disappearing because they terminated their communications

unexpectedly (e.g. due to malfunction or low battery).

91

ഥ()ܟ = ൣܹഥଵ
() ഥܹ

ଶ
()

⋯ ഥܹ
ିଵ
() ഥܹ

()൧

்

(5.5)

۵() =

⎣
⎢
⎢
⎢
⎡
1 − ଵ݃ 0 ⋯ 0 ݃

ଵ݃ 1 − ଶ݃ ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 − ݃ିଵ 0
0 0 ⋯ ݃ିଵ 1 − ݃⎦

⎥
⎥
⎥
⎤

(5.6)

and ∀ :ܿ ݃ = ቂܹഥݑ
()

− ഥܹ
ାଵ
()

− 2ቃୱ୵ ,
()

with the constraint of ݃
ഥܹ

()

≤ 1 due to the

min{∙} operators of [(5.3),[43]], i.e. only one node is allowed to switch at any given

moment.

For the general case of ݏ
()

≠ 1, factors ݃ of ۵ are positioned in column ܿand

row ܿ+ ݏ
()

, with cyclic extension at the borders (i.e. when ܿ+ ݏ
()

> ܥ or

ܿ+ ݏ
()

< 1). The stochastic transition matrix ۵ of (5.3) under any ݏ
()

is a left-

stochastic matrix with: its columns maximally summing to unity, all its entries

being non-negative and each entry is smaller or equal to unity. As such, via the

Perron–Frobenius theorem [43], we identify that the maximum magnitude of all

eigenvalues of ۵ is unity, i.e. all eigenvalues of any instantiation of ۵ are within the

unit circle. Hence, under iterations with stochastic matrices ۵, the system of (5.3)

will converge to a steady state or to a limit cycle. Limit cycles, i.e. oscillations

between unbalanced number of nodes per channel, are avoided since, under the

reactive listening [expressed stochastically by (5.1)], nodes switch only if they join

a channel with less nodes. The inclusion of the total number of nodes (and switch

mode status) of each channel with each beacon message7 ensures that no

erroneous node switching can occur during convergence to SS even under the

occasional loss of a switch or beacon message. Hence, the system of (5.3) will

converge to a steady state. All vectors:

ܟ (ୱୱ) = [⟦ܹ ୲୭୲ ⁄ܥ ± 0.49ത⟧ ⋯ ⟦ܹ ୲୭୲ ⁄ܥ ± 0.49ത⟧]் (5.7)

7 Each beacon message includes the total number of nodes heard in Ch{ }ܿ, as well as a flag

indicating whether the channel is in switch mode (i.e. whether a node has left to listen to

Ch{ܿ+ .({ݏ Thus, each node finds ܹ (and whether switch mode is on) even if only a single

beacon message is heard in Ch{ }ܿ.

92

comprise the eigenvectors (fixed points) of the system of (5.3) with ۵ = ۷[i.e. all

eigenvalues corresponding to the eigenvectors of (5.7) are 1] since all w(ୱୱ) of (5.7)

lead to:

ݕ,ݔ∀ ∈ {1, … {ܥ, ∶ maxቄቚܹഥ௫
()

− ഥܹ
௬
()
ቚቅ= 1

⇒ ቂܹഥ௫ݑ:ݕ,ݔ∀
()

− ഥܹ
௬
()

− 2ቃ= ቂܹഥ௬ݑ
()

− ഥܹ
௫
()

− 2ቃ= 0

⇒ ∀ :ܿ ݃ = 0.

Thus:

∀ :ܿ lim
→ஶ

ܹ
()

= ⟦ܹ ୲୭୲ ⁄ܥ ± 0.49ത⟧. (5.8)

Since ۵ = ۷for all fixed points, limit cycles are avoided once reaching one of the

ܟ (ୱୱ) of (5.7). Also, the system of (5.3) is guaranteed to converge to one of the

eigenvectors of (5.7) since only single-node transitions occur. This avoids limit

cycles between vectors:

ܟ (୪ୡ) = [⟦ܹ ୲୭୲ ⁄ܥ ± 0. 9ത⟧ ⋯ ⟦ܹ ୲୭୲ ⁄ܥ ± 0. 9ത⟧]் (5.9)

or between other combinations of unbalanced number of nodes amongst ܥ

channels. □

Since nodes join channels randomly, there is no ranking specified: each node

will fire according to DESYNC and will listen to other firings for timing

synchronization and for channel distribution. Thus, even if a node gets a chance to

switch, new nodes come (or leave) from its channel. Hence, after the converged

state, a balanced number of nodes will exist in each channel. Essentially, it is the

same as a lottery: whether a node stays in the same channel or whether it moves to

a different channel, it will reach a balanced state of ⟦ܹ ୲୭୲ ⁄ܥ ± 0.49ത⟧ nodes per

channel.

Proposition 2 (Expected Delay until Convergence to SS): For TFDMA with ܹ ୲୭୲

nodes in ܥ channels, the expected delay (in s) until convergence to balanced state

can be estimated by:

ௐ݀ ౪౪, = ܶቈ∑ ቂ()݅ ∑ ൫݀ () + 2൯
ௐ ౚ()
ୀଵ ቃ

(ೈ ౪౪శషభ)!

(షభ)!ೈ ౪౪!

ୀଵ
+ ୱ݇ୱ

(5.10)

with: t݅he index of the vector comprising a possible distribution of ܹ ୲୭୲nodes in ܥ

channels (i.e. [ܹ ଵ()݅ …ܹ ()݅],

93

))݅ = ෑ ቈ൬
ܹ୰ୣ ୱ,()݅

ܹ()݅
൰

−ܥ) 1)ௐ ౨౩,()ିௐ ()

ௐܥ ౨౩,()

ିଵ

ୀଵ

(5.11)

and ݀() =
ଵିቀଵିఉೖషభ౩౭ ,

(బ)
ቁ
ೋ൫ೈ ౚ()శ൳ೈ ౪౪ ⁄ ൷షೖశభ൯

ଵିቀଵିఉೖషభ౩౭ ,
(బ)

ቁ
ೈ ౚ()శ൳ೈ ౪౪ ⁄ ൷షೖశభ

(5.12)

with ∀ :݅ ܹ ୰ୣ ୱ,()݅ = ܹ ୲୭୲− ∑ ܹ ()݅ି ଵ
 ୀଵ , and

ܹ ୢ୧()݅ = max∀|ܹ()݅ − ⟦ܹ ୲୭୲ ⁄ܥ ⟧|. (5.13)

Proof: This proposition shows the influence of design settings: ୱ୵ ,
()

, ߚ and ୱ݇ୱ

(controlled by ,([8]�ߙ as well as system parameters: ,ܥ ܹ ୲୭୲, ܶ and ,ܼ on the

expected delay. When ܹ ୲୭୲ nodes join ܥ channels randomly,

ௐܮ ౪౪, = (ܹ ୲୭୲+ ܥ − 1)! −ܥ)] 1)!ܹ ୲୭୲!]⁄ possible combinations can occur

(∀ ,݅ 1 ≤ ݅≤ ௐܮ ౪౪,: [ܹ ଵ()݅ …ܹ ()݅]).

To derive the possible combinations, we begin by assuming zero nodes in

channels 1,2, … −ܥ, 1; this means that all ܹ ୲୭୲nodes must be in channel .ܥ If zero

nodes exist in channels 1,2, … −ܥ, 2 and one node exists in channel ܥ− 1, this

means that ܹ ୲୭୲− 1 nodes must be in channel ܥ. Continuing on this expansion, we

can cover all possible cases (two nodes in Ch{ܥ− 1} and ܹ ୲୭୲− 2 nodes in Ch{ܥ}

and so on). This leads to the following summation for ܥ ≥ 2 and ܹ ୲୭୲≥ :ܥ2

ௐܮ ౪౪, = ∑ ∑ … ∑ (ܹ ୲୭୲− ∑ ݅
ିଶ
ୀଵ + 1)

ௐ ౪౪ି ∑ ೕ
షయ
ೕసభ

షమୀ
ௐ ି భ
మୀ

ௐ ౪౪
భୀ

(5.14)

Lemma 1: ௐܮ ౪౪, =
(ௐ ౪౪ାିଵ)!

(ିଵ)!ௐ ౪౪!
.

Proof of Lemma: The proof is performed by induction for values of .ܥ For

ܥ = 2,3, we validate straightforwardly that:

ܥ = 2:
(ௐ ౪౪ାଵ)!

ௐ ౪౪!
= ܹ ୲୭୲+ 1, and

ܥ = 3:
(ௐ ౪౪ାଶ)!

ଶௐ ౪౪!
= భ

మ
(ܹ ୲୭୲+ 1)(ܹ ୲୭୲+ 2) = ∑ (ܹ ୲୭୲− ଵ݅ + 1)

ௐ ౪౪
భୀ

.

Assuming that the lemma holds for ܥ = ,݇ i.e

(ௐ ౪౪ାିଵ)!

(ିଵ)!ௐ ౪౪!
= ∑ ∑ … ∑ (ܹ ୲୭୲− ∑ ݅

ିଶ
ୀଵ + 1)

ௐ ౪౪ି ∑ ೕ
ೖషయ
ೕసభ

ೖషమୀ
ௐ ౪౪ି భ
మୀ

ௐ ౪౪
భୀ

(5.15)

we shall show that we reach (5.15) with ݇ replaced by ݇+ 1.

We can write the case of ܥ = ݇+ 1 from (5.14) as:

∑ ∑ … ∑ ∑ ((ܹ ୲୭୲− ଵ݅) − ∑ ݅
ିଵ
ୀଶ + 1)

(ௐ ౪౪ି భ)ି∑ ೕ
ೖషమ
ೕసమ

ೖషభୀ

(ௐ ౪౪ି భ)ି∑ ೕ
ೖషయ
ೕసమ

ೖషమୀ

(ௐ ౪౪ି భ)
మୀ

൨
ௐ ౪౪
భୀ

94

=
(ܹ ୲୭୲− ଵ݅ + ݇− 1)!

(݇− 1)! (ܹ ୲୭୲− ଵ݅)!

ௐ ౪౪

భୀ

derived by using (5.15) for the sum series in brackets and assuming (ܹ ୲୭୲− ଵ݅)

total nodes. The last expression can be straightforwardly be rewritten as:

(ܹ ୲୭୲− ଵ݅ + ݇− 1)!

(݇− 1)! (ܹ ୲୭୲− ଵ݅)!

ௐ ౪౪

భୀ
=

1

(݇− 1)!

(1݅ + ݇− 1)!

1݅!

ܹ tot

1݅=0

=
(ܹ tot +)݇!

(݇− 1)! ܹ݇ tot!

=
[ܹ tot + (݇+ 1) − 1]!

[(݇+ 1) − 1]!ܹ tot!

i.e. (5.15) with the replacement of ݇by ݇+ 1.

Thus, (5.15) holds for ݇ replaced by ݇+ 1. As such, it holds for any ݇≥ 2. □

The probability of each combination ݅occurring is))݅, given by (5.11). Since

nodes join a channel randomly, once each node makes a decision, it is a “success”

or “fail” process for each channel: “success” if the node joins it, “fail” otherwise. The

probability of “success” is
ଵ

, while the probability of “fail” is

ିଵ

. Hence, for the

first channel, the probability of having ܹ ଵ()݅ nodes (“successes”) out of ܹ ୲୭୲

(based on the binomial distribution) is:

)ଵ)݅ = ቀௐ ౪౪
ௐ భ()

ቁ
(ିଵ)ೈ ౪౪షೈ భ()

ೈ ౪౪
.

For the second channel, the probability of having ܹ ଶ()݅ nodes out of [ܹ ୲୭୲− ܹ ଵ()݅]

possible nodes [since we assumed that ܹ ଵ()݅ nodes have chosen to join the first

channel] is:

)ଶ)݅ = ቀௐ ౪౪ି ௐ భ()
ௐ మ()

ቁ
(ିଵ)ೈ ౪౪షೈ భ()షೈ మ()

ೈ ౪౪షೈ భ() .

Iterating this for all channels, we derived in a similar fashion)ଷ)݅, …)ିଵ,)݅. The

remaining number of nodes, i.e. [ܹ ୲୭୲− ∑ ܹ()݅ିଵ
ୀଵ] nodes will be joining channel

ܥ with probability))݅ = 1. Since these probabilities are independent, the

probability of node distribution : [ܹ ଵ()݅ …ܹ ()݅] in channels 1, … ܥ, is:

))݅ = ∏ ܿ ()݅ିଵ
ୀଵ = ∏ ቀௐ ౨౩,()

ௐ ()
ቁ

(ିଵ)ೈ ౨౩,()షೈ ()

ೈ ౨౩,()݅ ൨ିଵ
ୀଵ

with ܹ ୰ୣ ୱ,()݅ = ܹ ୲୭୲− ∑ ܹ ()݅ି ଵ
 ୀଵ . Notice that the assumption of nodes deciding

first on whether to join channel 1, then whether to join channel 2, etc., is not

restrictive. In fact, the above analysis can be expressed with any order of channels

without affecting the result.

95

Hence, the expected delay is ௐ݀ ౪౪,= ܶ∑))݅ ୮݀ ୰ୣ୧୭ୢୱ()݅
ೈ ౪౪,

ୀଵ
, with ୮݀ ୰ୣ୧୭ୢୱ()݅

the expected number of periods until convergence to SS is achieved for

combination .݅ For each combination, ୮݀ ୰ୣ୧୭ୢୱ()݅ is dominated by the channel with

the largest imbalance from the average, since this channel will have the largest

inflow or outflow of nodes. The largest imbalance is expressed by ܹ ୢ୧()݅. The

remainder of the proof estimates ୮݀ ୰ୣ୧୭ୢୱ()݅. We present the case of the channel

with the largest surplus of nodes under combination ݅(assumed to be Ch{ }ܿ); the

equivalent hold for the channel with the largest deficit.

First, nodes will desynchronize in Ch{ }ܿ, thus requiring ୱ݇ୱ periods.

Subsequently, they will gradually leave Ch{ }ܿ until ⟦ܹ ୲୭୲ ⁄ܥ ± 0.49ത⟧ nodes remain

in that channel. Since nodes decide independently on whether to attempt a switch,

the probability that of no switching within the first period is:

୬୭_ୱ୵ ,
()

= ቀ1 − ୱ୵ ,
()

ቁ
ௐ ౚ()ା⟦ௐ ౪౪ ⁄ ⟧

(5.16)

By construction, one switching attempt must happen within (maximally) ܼ

periods. Hence, the expected number of time periods until the first switch happens

is:

݀(ଵ) = ୬୭_ୱ୵ቀݖ ,
()

ቁ
௭ି ଵ

ቀ1 − ୬୭_ୱ୵ ,
()

ቁ

௭ୀଵ
+ ܼቀ୬୭_ୱ୵ ,

()
ቁ

(5.17)

=
ଵିቀ_౩౭ ,

(బ)
ቁ
ೋ

ଵି_౩౭ ,
(బ) e c

(5.18)

This is followed by two periods where nodes repeat their beacon message

waiting for a “return” message. Iterating the above process, for the t݇h departure

in Ch{ }ܿ, we reach ݀() given by (5.12). Finally, ୮݀ ୰ୣ୧୭ୢୱ()݅ is found by the

accumulation of all ܹ ୢ୧()݅ iterations, which leads to (5.10). □

5.2 Experiments

For our experiments, we used ܹ ୲୭୲= 16 iMote2 sensors (with the 2.4GHz Chipcon

CC2420 wireless transceiver), placed in an obstacle-free topology. All messages

used the TinyOS standard with 96-byte payload. The utilized parameters were:

96

୲ܾ୦୰ୣ ୱ = 0.02, ܶ = 0.25s, ߙ = 0.95, ߚ = 1.25, ∀ ୱ୵ܿ: ,
()

= 0.33, ݏ
()

= 1, ܼ = 60. Due

to the use of higher convergence threshold than the one used in DESYNC, we found

ୱ݇ୱ = 6, which leads to significantly-faster convergence to SS than what is reported

in [8]. All measurements are averages of several trials of 60s each. Up to ܥ = 8

channels were used (out of the 16 available in IEEE802.15.4), and one base station

is used per channel to passively record all messages for subsequent analysis.

Table 5.1 contains the results with respect to bandwidth efficiency (the last

column of the table is discussed separately in the following paragraph). We also

present the results of DESYNC [8], TSMP [32] (which is a centralized channel-

hopping protocol) and the recently-proposed EM-MAC [44] in Table 5.2. These

comprise the state-of-the-art in centralized and distributed channel hopping in

WSNs. All approaches are realized over the same physical layer (IEEE802.15.4 and

the Chipcon CC2420 transceiver). By comparing the two tables, it is evident that

the total network throughput (throughput of all nodes) as well as the throughput

per node is higher in the proposed TFDMA than in all the other TDMA or channel

hopping solutions when all 8 channels are used. Our throughput surpasses DESYNC

even in the single channel case because we use higher convergence threshold,

leading to faster convergence to SS. Unlike EM-MAC that is designed for low-

bandwidth wireless transmissions over lengthy periods of time, the proposed

TFDMA can achieve very high bandwidth for rapid message exchanges within

short intervals. This is very suitable for WSN-based surveillance and monitoring,

where infrequent alerts can initiate rapid wake-up and high volume of WSN traffic

for short intervals, before the network suspends again.

Total Channels 1 2 4 8
8, hidden node &

reshuffling

Tot. throughput (kbps) 126.9 266.7 543.8 801.9 649.0

Max per node (kbps) 8.3 16.7 34.1 58.1 52.6

Min per node (kbps) 7.3 16.5 33.7 43.5 32.1

Message loss (%) 0.54 0.01 0.01 0.96 0.98

Table 5.1: Throughput of the proposed TFDMA with 16 nodes.

97

Protocol
DESYNC

[8]
TSMP
[32]

EM-MAC
[44]

Tot. throughput (kbps) 55.0 574.4 5.1

Max per node (kbps) 3.5 35.9

(average)

0.32

(average)Min per node (kbps) 3.2

Message loss (%) 0.30 0.01 0.00

Table 5.2: Throughput obtained with DESYNC, TSMP and EM-MAC; all results are reported

under a fully-connected WSN topology comprising 16 nodes.

We also measured the average time to achieve convergence to SS in TFDMA versus

the estimate of Proposition 2. Table 5.3 and Table 5.4 show the convergence time

required by the other three solutions under comparison. Evidently, the proposed

TFDMA achieves quick convergence, which agrees with the theoretical estimates of

Proposition 2. Such low convergence times enable the application of node

reshuffling (or suspension) in periodic intervals, i.e. all nodes can be forced to

randomly join a new channel in order to increase their connectivity. By applying

such node reshuffling every 60s, we obtained the results reported in the last

column of Table 5.1; importantly, these results include the overhead of handling

one-hop, possibly hidden, nodes based on the inclusion of neighboring nodes’

beacon times within each node’s beacon message, as proposed in [15]. These

results still surpass the competing solutions despite the increase of beacon

message size. A thorough study of properties of the proposed protocol under

arbitrary topologies remains a topic for future work.

Total Nodes 16 8

Tot. Channels 8 4 2 4 2

Measured (s) 4.7 [±1.7] 4.0 [±1.0] 3.2 [±0.5] 3.1 [±0.7] 2.9 [±0.6]

Proposition 2 (s) 4.9 4.1 2.7 3.1 2.3

Table 5.3: Average delay (and standard error of mean) until SS.

Protocol DESYNC [8] TSMP [32] EM-MAC [44]

Delay until SS (s) 8~48 48 8~9

Table 5.4: Average delay until SS under TSMP and EM-MAC.

98

Figure 5.3: Code for the random channel selection

5.3 Conclusion

We proposed a new distributed time-frequency division multiple access (TFDMA)

protocol. By utilizing the concept of reactive listening, our approach distributes the

available transmission opportunities in a balanced manner across time and

frequencies (channels) in a sensor network without requiring the presence of a

coordinator node. Stability and convergence time were derived analytically and

validated experimentally based on TinyOS iMote2 wireless sensors. Our proposal

allows for increased throughput and decreased convergence time versus TDMA-

only schemes or versus centralized and distributed channel-hopping based

approaches.

99

6.Chapter 6

Analytic Study of Energy Consumption in

Desynchronization-based Wireless

Sensor Networks under Variable Data

Production Rates

In this chapter, we focus on the common application scenario of a monitoring

infrastructure where sensor nodes follow a periodic duty cycle in order to capture

and transmit measurements to a base station, or to another node that relays the

information to a base station. We derive a parametric model for energy

consumption in function of the system settings under the assumption of a

uniformly-formed WSN, i.e. a network of identical sensor nodes that are: (i)

producing data traffic with the same statistical characterization and (ii) directly

connected to the base station represented by a symmetric star graph with

balanced bandwidth allocation per link [47]. Within this framework, the key

advance of our work in comparison to previous work on optimal energy

management policies [73][74][75][78] is that we provide closed-form expressions

for the minimum-required energy consumption of each sensor in a uniformly-

formed WSN operating under a desynchronization-based collision-free

communications protocol.

Energy consumption is the important issue beyond the topic of the convergence

delay for this our thesis. In order to study our developments and validation of

desynchronization-based protocols with energy-efficient operation, we proposed

an analytic framework for characterizing practical energy consumption in

uniformly-formed WSNs in this chapter.

6.1 Description of Systems under Consideration

Energy efficiency is a major challenge in WSNs. The approach pursued in this

chapter proposes optimal energy management policies under given sensing and

100

transmission capabilities [70]-[76]. Our study is inspired by dynamic power

management approaches [78]-[80]. The reader is referred to Section 1.2.4 that

discussed related work to DPM and energy management systems.

For our analysis, we assume that, for an operational interval of ܶ seconds, the

sensor nodes are continuously active for ୟܶୡ୲seconds. This defines the duty cycle

ܿ=
ୟܶୡ୲

ܶ
(6.1)

This activation can be triggered by external events or by scheduled data gathering

with rate ܿ over the duration of the application, 0 < ܿ< 1. Examples are: data

acquisition and transmission in environmental monitoring [62][98], event-driven

activation for surveillance [70], and adaptive control of duty cycling for energy

management [78][76]. Thus, the value of ܿ can be adjusted statically or

dynamically based on empirical observations from the application environment.

When the sensor nodes are activated, they first converge into a balanced time-

frequency steady-state mode, where each node joins one base station on a

particular channel such that the number of nodes coupled to each base station is

balanced and each base station can receive data from ݊ nodes without collisions.

Several low-energy (centralized or distributed) WSN protocols, such as EM-MAC

[44], wirelessHART [46], IEEE802.15.4 GTS [40]-[42][47] and TFDMA [34] can

achieve this goal. For example, TFDMA, as presented in Chapter 5, achieves this for

16 nodes and 4 channels (i.e. ݊ = 4) within 3-5 seconds [34], while the centralized

IEEE802.15.4 GTS can establish collision-free single-channel time division multiple

access (TDMA) within 1-2 seconds [47]. While energy is consumed for this

convergence, the payoff for the WSN is the achievement of balanced, collision-free,

steady-state operation with predictable characteristics during the active period. In

this chapter, we focus on the basic case of a fully-connected network with one base

station in order to facilitate the study of the energy consumption under a collision-

free desynchronization-based communications protocol. An example of a

uniformly-formed topology that can operate in collision-free steady-state mode are

given in Figure 6.1.

101

Figure 6.1: A uniformly-formed topology which is fully connected to one base staion

with ܽ indicating the consumption rate of a base station (in bits-per-second)

Each sensor captures and transmits data with variable rate, which will be

modelled as a random variable. The rate variability may stem from: adaptive

sensing strategies [48], packet retransmissions or protocol adaptivity to mitigate

interference effects [44], and variable-rate source-channel encoding [50], to

reduce the transmission bit rate and ensure robustness to packet erasures [49].

Given that ݊ sensor nodes communicate with the same sink node without

collisions during the steady-state, depending on the amount of data to be

transmitted, a node may need to: (i) stay awake (beaconing and radio on) if less

bits have to be sent than what is possible within its transmission slot; (ii) buffer

the residual data if more bits must be sent than what its slot permits. Once the

active period of ୟܶୡ୲ seconds lapses, each node suspends its activity in order to

preserve energy for (1 −)ܿܶ�seconds. Figure 6.2 shows an example of the

operation of the active period, which is discussed in detail in the next subsection.

We remark that practical WSN transceiver hardware reacts in intervals

proportional to one packet transmission (or to the utilized time-frequency slotting

mechanism). Thus, the transmission and reception of data is not strictly a

continuous process.

102

However, energy consumption within each sensor node is strictly continuous as,

regardless of the transceiver, each sensor node is active for the entire duration of

ୟܶୡ୲ seconds by sensing, processing data (e.g. to remove noise or to perform data

encoding) and other runtime operations related to data gathering, processing and

transmission (such as buffer management at the application, medium access and

physical layers and servicing interrupts of the runtime environment).

Figure 6.2: Energy profile of a TelosB sensor node running balanced TDMA data

transmission for a fully-connected topology during the active period.

6.1.1 Data Consumption and Penalty

When the WSN goes into the active state, we assume that ݇ Joule is consumed by

each sensor node in order to reach the balanced, collision-free, steady-state

operation via one of the well-known centralized or distributed mechanisms

suitable for this purpose [32],[34],[44],[46],[51], many of which were described in

the previous chapters of this thesis. During the steady-state operation of each

node, the average energy rate consumed to process and transmit data is ݃ Joule-

per-bit.

Because the data production and transmission by each sensor node is a non-

deterministic process, the data transmission rate (in bits-per-second) is modeled

by random variable (RV) Y with PDF P(y) . The statistical modeling of this rate can

be gained by observing the occurred physical/chemical phenomena and analyzing

the behavior of each node when it captures, processes and transmits bits relevant

to them. Alternatively, the data transmission rate can be controlled (or “shaped”)

103

by the system designer in order to achieve a certain goal, such as limiting the

occurring latency or, in our case, to minimize the preserved energy required in

order to operate each node in perpetuity.

Symbol Unit Definition

ܿ -- Duty cycle

,ܶ ୟܶୡ୲ s Operational time interval, active time interval

݊ --
Total number of sensor nodes communicating with a base station
of the single-hop topology

݇ J Energy consumed for wake-up, set-up and convergence

݃ J/b Power for processing and transmitting one bit

 J/b Penalty power for storing one bit during sink overloading

ܾ J/b
Power during idle periods for the time interval corresponding to
one bit transmission

ܽ bps Data consumption rate of a base station

ݎ bps Average data transmission rate per node

Ψ ~ ܲ(y) bps RV modeling the data production and transmission rate per node

y]ܧ] bps Expected data production and transmission rate per node

ୠܲୟ୲୲ୣ ୰୷ W
Required battery power supply for each node during the
operational time interval

Table 6.1: Nomenclature table

The data consumption rate of the application layer of a base station under the

employed collision-free steady-state operation is ܽ bits-per-second (bps). For

example, under the IEEE802.15.4 physical layer and the CC2420 transceiver,

ܽ≅ 144 kbps at the application layer under the NullMAC and NullRDC options of

Contiki operating system8. Since each sink node is coupled with ݊ identical sensor

nodes in the single-hop topology (Figure 6.1), we define the ratio ೌ

as the coupling

point of a base station node. This means that, in the ideal case, each sensor node

should transmit its captured data at the rate of ೌ

bps. However, given the time-

varying nature of the data transmission rate per node, beyond the energy for data

8http://www.sics.se/contiki/wiki/index.php/Change_MAC_or_Radio_Duty_Cycling_Protocol

s contains more details; the NullMAC mechanism does not do any MAC-level processing and

leads to the maximum energy efficiency, assuming that the application layer handles the

transmission opportunities appropriately.

104

capturing and transmission we encounter the following two cases: (i) receiver

underloading, where Ψ < ܽ

݊
and “idle” energy is consumed by the node with rate ܾ

Joule-per-bit (J/b) by staying active during transmission opportunities for

synchronization and other runtime purposes (e.g. transmitting beacon messages

[34], [51]); (ii) receiver overloading, where Ψ > ܽ

݊
and “penalty” energy is

consumed with rate� J/b by the sensor to buffer (and retrieve) the data prior to

transmission. Examples of both are illustrated in Figure 6.2 for TDMA-based

collision-free transmission [8],[34]. The nomenclature summary of our system

model is given in Table 6.1.

6.2 Characterization of Energy Consumption

We derive the analytic conditions that correspond to the minimum energy

consumption required in the system model described previously. There are two

modes of operation with complementary energy profiles: the active mode, where

energy is consumed, and the sleep mode, where each node is suspended to save

energy.

During the active mode period of ܿܶ seconds we define four components for the

energy consumption for each sensor node.

1. Setup and convergence energy: Each node is activated once during the

operational time interval. Thus the energy to converge to steady state is ݇ J. We

remark that the convergence time is at least two orders of magnitude smaller than

ୟܶୡ୲ (e.g. 1-5 s vs. ୟܶୡ୲= 400 s) and can be considered negligible in comparison to

ୟܶୡ୲ .

2. Energy for sensing, processing and transmitting the node's own data, given by

ܿܶ ݃∫ y�ܲ (y)݀y = ܿܶ [y]ܧ݃
ஶ

J, with [y]ܧ the expected transmission rate of each

node. If [y]ܧ > ೌ

(i.e. the mean transmission rate is higher than the coupling

point), then ୟܶୡ୲ includes the time each node has to remain active without

producing new data, in order to complete the transmission of the data buffered in

its flash memory.

105

3. Idle energy, consumed when the data rate Ψ is smaller than the sink coupling

point ೌ

∶ �ܾܿܶ∫ (ೌ

− y)�ܲ (y)݀y

ೌ

J. This energy corresponds to beaconing for

synchronization and other runtime operations carried out during the transmit

mode.

4. Penalty energy, consumed when the data rate Ψ is larger than the sink coupling

point ೌ

and the data is buffered in high-power, typically off-chip, memory prior to

transmission at the next available opportunity: ܿܶ ∫ (y − ೌ

)�ܲ (y)݀y

ஶ
ೌ

J.

Notice that, apart from the setup and convergence energy, the energy consumption

for all the number of nodes in WSNs is given in .ܧ This energy consumption of

each node is defined as the consumed energy which needs to have the produced or

preserved energy to compensate for surviving in the system during the operational

time interval. It can be calculated for each sensor nodes by:

ܧ = ݇+ ܿܶ ܧ[y]݃+ ܾන ቀ

− yቁܲ(y)݀y

ೌ

+ න ቀy −

ቁܲ(y)݀y

ஶ

ܽ
݊

൩
(6.2)

Adding and subtracting ܿܶ ∫ ൫y − ܽ

݊
൯�ܲ (y)݀y

ೌ

in ܧ , we get

ܧ = ݇+ ܿܶ ܧ[y]݃+ ܾන ቀ

− yቁܲ(y)݀y

ೌ

− න ቀy −
ܽ

݊
ቁ�ܲ (y)݀y

ೌ

+ න ቀy −
ܽ

݊
ቁ�ܲ (y)݀y

ೌ

+ න� ቀy −

�ቁܲ(y)݀y

ஶ

ܽ
݊

൩

ܧ = ݇+ ܿܶ ܧ[y]݃+ ܾන ቀ

− yቁܲ(y)݀y

ೌ

+ න ቀ

− yቁ�ܲ (y)݀y

ೌ

+ −[y]ܧ
ܽ

݊
൩

Finally, we get

ܧ = ݇+ ܿܶ ܧ[y] (݃+ (−
ܽ

݊
+ (ܾ+ න(ቀ

− yቁܲ(y)݀y

ೌ

൩
(6.3)

Evidently, the energy consumption depends on the coupling point, ೌ

, as well as on

the PDF of the data transmission rate per sensor node, ܲ(y) . In the remainder of

this section, we consider different cases for ܲ(y) to derive the energy

consumption under different statistical characterizations for the data transmission

rate of each node.

We can now consider four PDFs (Uniform, Pareto, Exponential, Half-Gaussian)

that have been used to model the marginal statistics of many real-world data

106

transmission applications. We provide the obtained analytic calculation and results

for each distribution. This facilitates comparisons of the minimum energy

consumption required under different characterizations for the data rate.

A. Uniform Distribution

When no knowledge of the underlying statistics of the data generation process

exists, one can assume that ܲ(y) is uniform over the interval :[ݎ0,2]

ܲ(y) =
1

ݎ2
(6.4)

The expected value of Ψ is [y]ܧ = ݎ bps. For ೌ

< ݎ2 , by using (6.4) in (6.3), we

obtain

,ܧ = ݇+ ܿܶ ቈݎ(݃+ (−
ܽ

݊
+
ܽଶ(ܾ+ (

ݎ4݊ ଶ

(6.5)

For�ܾ ≠, 0 The first derivative of ,ܧ to ݊ is

,ܧ݀

݀݊
= ܿܶ ቈ

ܽ

݊ଶ
−
ܽଶ(ܾ+ (

ݎ2݊ ଷ

(6.6)

For ݊ ∈ [1, ∞) , the number of nodes for which
ಶ,

= 0 is9

݊, =
(ܾܽ+ (

ݎ2
(6.7)

The second derivative of ,ܧ is

݀ଶܧ,

݀݊ଶ
= ܿܶ ቈ−

2ܽ

݊ଷ
+

3ܽଶ(ܾ+ (

ݎ2݊ ସ

(6.8)

By evaluating
ௗమா,

ௗమ
for ݊, nodes, we obtain

݀ଶܧ,

݀݊ଶ
൫݊ ,൯=

8ܶ ଷݎସܿ

ଶܽ (ܾ+ ଷ(
(6.9)

which is positive. This means that ݊, is the number of nodes that achieves the

minimum energy consumption for this case, which is

min{ܧ,} = ݇+ ܿܶ ݃ݎ +
ܾ

ܾ+
൨

(6.10)

9 We remak that, when used in a practical setting, the optimal value for the number of nodes

must be rounded to the nearest integer. However, for exposition simplicity we do not explicitly

indicate this rounding in our notation.

107

The last equation demonstrates that the minimum power supply required over the

operational interval is given by:

min{ ୠܲୟ୲୲ୣ ୰୷} =
݇

ܶ
+ ݃ݎܿ +

ܾ

ܾ+
൨

(6.11)

with ୠܲୟ୲୲ୣ ୰୷ the expected power available to each node (in Watt). Hence, if the

power obtained from the battery of each node is (at least) min{ ୠܲୟ୲୲ୣ ୰୷} W

(averaged over the interval of ܶ seconds), this suffices for the operation of a WSN

comprising ݊, nodes in the fully-connected network, with each node

transmitting data with uniform rate between [ݎ0,2] bps. The minimum power

shown in (6.11) is obtained under the operational parameters: ,ܿ ,ܶ ,݇݃, ܾ, (see

Table 6.1) and ݊, nodes and [y]ܧ = ݎ . These parameters can be derived based

on the utilized technology and the application specifics, as we shall show in the

next subsection.

B. Pareto Distribution

This distribution has been used, amongst others, to model the marginal data size

distribution of TCP sessions that contain substantial number of small files and a

few very large ones [52], [53]. Consider ܲ(y) as the Pareto distribution with scale

ݒ and shape ߙ ≥ 2 ߙ) ∈ N) ,

ܲ(y) = ቐ
ߙ
ఈݒ

y1+ߙ
, y ≥ ݒ

0, otherwise

(6.12)

The expected value of Ψ is [y]ܧ =
ఈ௩

ఈିଵ
bps. Thus if we set

=ݒ
−ߙ 1

ߙ
ݎ

(6.13)

we obtain [y]ܧ = ,bpsݎ i.e. we match the expected data transmission rate to that

of the Uniform distribution. For the case of the Pareto distribution and ೌ

≥ ,ݒ we

obtain via (6.3)

,ܧ = ݇+ ܿܶ ቈ
+݃)ݒߙ (

−ߙ 1
+
ܾܽ

݊
+ (ܾ+)(

ఈ݊ఈିଵݒ

ఈܽିଵ −ߙ) 1)
−

ݒߙ

−ߙ 1
)

(6.14)

The first derivative of ,ܧ to ݊ is

108

,ܧ݀

݀݊
= ܿܶ −

ܾܽ

݊ଶ
+
ܽ

݊ଶ
(ܾ+)(

ݒ݊

ܽ
)ఈ൨

(6.15)

The number of nodes for which
ಶ,ౌ

= 0 is

݊, = (
ܽ

ݒ
)൬

ܾ

ܾ+
൰

భ
ഀ (6.16)

The second derivative of ,ܧ is

݀ଶܧ,

݀݊ଶ
= ܿܶ

2ܾܽ

݊ଷ
+
ܽ

݊ଷ
−ߙ) 2)(ܾ+)(

ݒ݊

ܽ
)ఈ൨

(6.17)

By evaluating
ௗమா,ౌ

ௗమ
for ݊, nodes, we obtain

݀ଶܧ,

݀݊ଶ
൫݊ ,൯=

ܿܶ (2ܾ+ −ߙ) 2)(ܾ+ (
య
(ଷݒഀ

ଶܾܽ
య
ഀ

(6.18)

which is positive. This means that ݊, is the number of nodes that achieves the

minimum energy consumption for this case, which is

min{ܧ,} = ݇+ ܿܶ ቂ݃ݎ − ܾ+ ܾ
ഀషభ
ഀ (ܾ+ (

భ
ഀቃ

(6.19)

The last equation demonstrates that the minimum power supply required over the

operational interval is given by:

min{ ୠܲୟ୲୲ୣ ୰୷} =
݇

ܶ
+ ቂ݃ݎܿ − ܾ+ ܾ

ഀషభ
ഀ (ܾ+ (

భ
ഀቃ

(6.20)

A special case for this distribution is when ߙ = ,ݎ which leads to =ݒ −ݎ) 1) from

(6.13). Then, the expected value of Ψ is [y]ܧ = ݎ bps and its standard deviation is

[y]ߪ = ඥ
ೝ

ೝషమ
. For <ݎ 150 bps, the standard deviation is less than 0.7% of the

mean value. Thus, in practice this case corresponds to transmission with fixed rate

of .bpsݎ This scenario occurs in WSNs capturing and transmitting data with fixed

rate during their active time, e.g. in periodic temperature or humidity

measurements gathered by WSNs [99],[100]. For this case, the number of nodes

leading to the minimum required power is:

݊, = (
ܽ

−ݎ 1
)൬

ܾ

ܾ+
൰

భ
ೝ (6.21)

For the vast majority of values for ܽ and usedݎ in practical WSN applications, ݊,

is equal to ቔ

+ 0.5ቕwhen rounded to the nearest integer. This agrees with the

109

intuitive answer for balancing fixed-rate transmission with bpsݎ to consumption

rate of ܽ bps. This means that ݊, is the number of nodes that achieves the

minimum energy consumption for this case, which is

min{ܧ,} = ݇+ ܿܶ ቂ݃ݎ − ܾ+ ܾ
ೝషభ
ೝ (ܾ+ (

భ
ೝቃ

(6.22)

C. Exponential Distribution

The marginal statistics of MPEG video traffic have often been modelled as

exponentially decaying [54]. Consider ܲ(y) as the Exponential distribution with

rate parameter భ

ೝ

ܲ(y) =
1

ݎ
exp൬−

1

ݎ
y൰

(6.23)

for y ≥ 0 . In this case, the expected value of Ψ is [y]ܧ = ݎ bps via (6.3), we

obtain

,ܧ = ݇+ ܿܶ ݎ(݃+ (+
ܾܽ

݊
+ +ܾ)ݎ −expቀ)(

ܽ

ݎ݊
ቁ− 1)൨

(6.24)

The first derivative of ,ܧ to ݊ is

,ܧ݀

݀݊
= ܿܶ −

ܾܽ

݊ଶ
+
ܽ

݊ଶ
(ܾ+ −expቀ(

ܽ

ݎ݊
ቁ൨

(6.25)

Assuming that ܾ≠ 0 , the number of nodes for which
ಶ,ు

= 0 is

݊, =
ܽ

ln൫ା)ݎ

൯)

(6.26)

The second derivative of ,ܧ is

݀ଶܧ,

݀݊ଶ
= ܿܶ

2ܾܽ

݊ଷ
+

ܽ

݊ସݎ
(ܾ+ −expቀ(

ܽ

ݎ݊
ቁ(ܽ− ൨(ݎ2݊

(6.27)

By evaluating
ௗమா,ు

ௗమ
for ݊, nodes, we obtain

݀ଶܧ,

݀݊ଶ
൫݊ ,൯=

ܿܶ ଷݎܾ

ଶܽ
ln(

ା

)ସ

(6.28)

which is positive and the natural logarithm is raised to an even power. This means

that ݊, is the number of nodes that achieves the minimum energy consumption

for this case, which is

110

min{ܧ,} = ݇+ ܿܶ ቂ݃ݎ + (ܾlnቀ
ା

ቁ)ቃ

(6.29)

The last equation demonstrates that the minimum power supply required over the

operational time interval for this case is given by:

min{ ୠܲୟ୲୲ୣ ୰୷} =
݇

ܶ
+ ቂ݃ݎܿ + (ܾlnቀ

ା

ቁ)ቃ

(6.30)

D. Half-Gaussian Distribution

We conclude this part by considering ୌܲ(y) as the Half-Gaussian distribution with

mean ୌܧ [y] = ݎ .

ୌܲ(y) = ቐ

0, y < 0

2

ݎߨ
exp(

yଶ

ଶݎߨ
), y ≥ 0

(6.31)

This distribution has been used widely in data gathering problems in science and

engineering when the modelled data has non-negativity constraints. Some recent

examples include the statistical characterization of motion vector data rates in

Wyner-Ziv video coding algorithms suitable for WSNs [55], or the statistical

characterization of samples captured by an image sensor [56],[57]. Via (6.3), we

obtain

,ୌܧ = ݇+ ܿܶ ቈݎ(݃+ (−
ܽ

݊
+ (ܾ+ −expቆ)ݎቆ(

ܽଶ

ଶ݊ଶݎߨ
ቇ− 1ቇ

+
ܽ

݊
erf(

ܽ

ݎ݊ߨ√
))

(6.32)

The first derivative of ,ୌܧ to ݊ is

,ୌܧ݀

݀݊
= ܿܶ

ܽ

݊ଶ
−
ܽ

݊ଶ
(ܾ+ erf൬(

ܽ

ݎ݊ߨ√
൰൨

(6.33)

with erf(∙) the error function that can be approximated by its Taylor series

expansion. Under ܾ≠ 0 and ≠ 0, the number of nodes that leads to the minimum

power required under data transmission rate (per node) characterized by ୌܲ(y)

݊,ୌ =
ܽ

)erfିଵݎߨ√
ା

)

(6.34)

with erfିଵ(∙) the inverse error function, which can be approximated by its series

expansion. Then the second derivative of ,ୌܧ is

111

݀ଶܧ,ୌ

݀݊ଶ
= ܿܶ ቈ−

2ܽ

݊ଷ
+

2ܽ

݊ଷ
(ܾ+ erf൬(

ܽ

ݎ݊ߨ√
൰+

2ܽଶ

ݎ݊ߨ ସ
(ܾ+ −expቆ(

ܽଶ

ଶݎଶ݊ߨ
ቇ

(6.35)

By evaluating
ௗమா,ౄ

ௗమ
for ݊,ୌ nodes, we obtain

݀ଶܧ,ୌ

݀݊ଶ
൫݊ ,ୌ൯=

ܶܿߨ2 ଷݎ

ଶܽ
(ܾ+ (exp൬−ቂerfିଵቀ

ା
ቁቃ
ଶ

൰ቂerfିଵቀ

ା
ቁቃ
ସ (6.36)

which is positive since the inverse error function is raised to an even power and all

variables are positive. This means that ݊,ୌ is the number of nodes that achieves

the minimum energy consumption for this case, which is

min{ܧ,ୌ} = ݇+ ܿܶ ݃ݎ − ܾ+ (ܾ+ (exp൬−erfିଵቀ

ା
ቁ
ଶ

൰൨
(6.37)

The last equation demonstrates that the minimum power supply required over the

operational time interval for this case is given by:

min{ ୠܲୟ୲୲ୣ ୰୷}ୌ =
݇

ܶ
+ ݃ݎܿ − ܾ+ (ܾ+ (exp൬−erfିଵቀ

ା
ቁ
ଶ

൰൨
(6.38)

6.3 Evaluation of the Analytic Results

We consider a typical WSN setup comprising of several TelosB nodes (using the

IEEE802.15.4 standard with the CC2420 transceiver) running the low-power

Contiki 2.6 operating system. All nodes use our recently-proposed TFDMA protocol

(which is available as open source [34],[45]) to communicate with the base station

existing at the same channel, following topologies such as the ones shown in Figure

6.1. TFDMA can be deployed at the application layer with very low complexity and

provides for balanced multichannel coordination of multiple nodes. We opted for

its usage as it allows for quick convergence to the steady state and permits for

collision-free communications once steady state has been established. It also

provides for comparable or superior bandwidth utilization to channel-hopping

approaches like TSMP and EM-MAC [34]. However, similar results can be obtained

with any other protocol ensuring collision-free single- or multi-channel

communications under a multi-level cluster hierarchy, such as TSMP [32],

IEEE802.15.4 GTS [51],[58], etc.

112

For the utilized TFDMA and active time ୟܶୡ୲= 400 s, convergence has been

shown to occur in less than 1.3% of ୟܶୡ୲ (3-5s) and, on average, the energy

dissipation for convergence has been found to be ݇= 165.6 mJ in our setup.

Concerning the communications side, following the default TFDMA setup, for all

our measurements we set the packet size to 114 bytes, the DESYNC interval to 1s

and the DESYNC constant to 0.65 [8]. Each node transmits 1-byte beacon packets

every 8ms when it is not transmitting data packets during its transmission slot to

maintain connectivity and synchronization. Finally, since the TFDMA protocol

ensures no collisions occur during the steady-state active mode, we are utilizing

the very-low complexity NullMAC and NullRDC options of Contiki RTOS, which lead

to maximum data consumption rate at the application layer of ܽ= 144 kbps.

Concerning the data gathering itself, we created artificial data via a custom

Matlab function that, starting from the rand() function, generates data with

Uniform, Pareto, Exponential and Half-Gaussian distributions (considered in the

previous subsection) via rejection sampling [59], with mean transmission rate

equal to =ݎ 24 kbps. The data is copied onto each node and it is read from its

external flash memory during the steady-state active mode. This ensures that: (i)

we match the different PDFs under consideration and (ii) the energy to retrieve

this data from the flash memory replaces the sensing energy (that would have

been dissipated if the data had come from an actual sensing process).

Under these operational settings, our energy measurement setup comprises a

high-tolerance 1 Ohm resistor placed in series with each TelosB node. By

measuring the current consumption at the resistor and knowing that each node

operates at 3 Volt, we derive the real-time energy consumption (see Figure 6.2 for

examples). The utilized time resolution for the power measurements was 10 KHz

using a Tektronix MDO4104-6 oscilloscope. Under this setup, we also measured

the different energy rates of Table 6.1 by enabling transmission, listening, writing

to flash memory and beaconing during the idle state to maintain synchronization.

113

They were found to be: ݃ ൌ Ǥʹʹ ͻ ʹʹ ൈ ͳͲି�Ȁ��ǡൌ Ǥͅ͵ ͻ ͻ͵ʹൈ ͳͲି�Ȁ������ܾ ൌ

2.17324 × 10ିJ/b .

The results of Figure 6.3 demonstrate that each transmission rate distribution

incurs different energy consumption and the ranking of the data production and

transmission PDFs in this respect is precisely:

۴ ൏܍ܜ܉܀�܌܍ܠܑ ൏ܗܜ܍ܚ܉۾ ܖ܃ ܕܚܗܑ ൏ െܔ܉۶ ܖ܉ܛܑܛܝ܉۵ ൏ ܔ܉ܜܑܖ܍ܖܗܘܠ۳

Figure 6.3: Energy consumption per node with different data transmission rates and under

different numbers of nodes

minimum energy consumption
of difference transmission rate

Theoretical
(J)

Experimental
(J)

Percentile error
(%)

Uniform, ݊, = 4.67 3.705 3.707 0.042

Pareto ߙ) = 4), ݊, = 6.19 2.977 2.965 0.391

Pareto ߙ) = 20), ݊, = 6.00 2.476 2.531 2.206

Fixed Rate, ݊, = 6.00 2.367 2.484 4.951

Exponential, n, = 5.84 4.508 4.482 0.579

Half-Gaussian, ݊,ୌ = 5.21 4.099 4.079 0.494

Table 6.2: The minimum energy consumption required amongst the considered PDFs

for activation time ୟܶୡ୲= 400 s (6 min 40 s)

114

Thus, the manner the data traffic is shaped in a WSN plays an important role in the

system's requirements for minimum energy consumption. Moreover, the results

show that, depending on the transmission rate PDF, the number of nodes where

the minimum energy consumption occurs, i.e. ݊, , ݊,, ݊,, ݊, and�݊,ୌ (as seen

in (6.7), (6.16), (6.21), (6.26) and (6.34) respectively), may differ. The accuracy of

these analytic estimations is quantified in Table 6.2 in comparison to the

experimentally-obtained values for the minimum energy consumption of each

distribution with the theoretical solution in (6.11), (6.20), (6.22), (6.30) and (6.38).

6.4 Conclusion

We proposed an analytic framework for characterizing practical energy

consumption in uniformly-formed WSNs. Our framework recognizes the

importance of the application data transmission rate in the WSN’s energy

dissipation. This framework provides for an analytic assessment of the expected

energy dissipation in function of the system parameters, under a variety of

statistical characterizations for the data transmission rate of each sensor node. The

experimental assessment via low-power TelosB node validates that our analytical

framework matches experiments with accuracy that within 7% of the energy

consumption. This can be used in conjunction with future power management

systems in WSN nodes in order to predict the best possible data frame rate and

transmission rate that can be accommodated in function of the system’s

operational settings.

115

7.Chapter 7

Study of Energy Consumption for

Distributed Coordination in Visual Sensor

Networks

The integration of low-power wireless networking technologies such as WSNs with

inexpensive complementary metal-oxide semiconductors (CMOS) cameras has

enabled the development of the so called Visual Sensor Networks (VSNs), that is,

networks of wireless devices capable of sensing multimedia content such as still

images and video, as well as scalar sensor data from the environment. Due to their

flexibility and low-cost, VSNs may potentially enable new applications ranging

from enhanced surveillance to advanced service for health care, thus they have

attracted the interest of researchers worldwide in the last few years.

VSNs are uniquely challenging with respect to traditional WSNs, because of the

struggle between the application requirements and hardware constraints.

Multimedia applications require to process, store and transmit large amount of

data, which can be extremely demanding for resource-limited VSN hardware.

Hence, energy consumption plays a crucial role in the design of a VSN, especially

for those applications where a VSN is required to operate for hours of even days

perpetually. Again, in the last few years several works have addressed the problem

of lifetime maximization in VSNs: depending on the research area, solutions are

available for energy-aware protocols [127], cross-layer optimization [128][129],

application trade-offs [130] and deployment strategies [131].

In this chapter, we approach the problem of energy minimization in a more

system-oriented manner. We focus on homogeneous VSNs composed by identical

sensors and we derive a parameterized analytic model that captures the expected

energy consumption in function of (i) the number of visual nodes deployed, (ii) the

frame-rate used on board of each camera and (iii) the statistical characterization of

116

the multimedia traffic. We also take into account application-specific constraints,

such as spatial/temporal resolution or budget constraints. The resulting energy

equations can be solved by means of minima analysis, to provide closed-form

expressions for the minimum energy consumption.

The framework in this chapter has been developed from previous chapter and

also changed some parameters which are ݇ (the number of frames by each camera)

and ܽ (Energy for data acquisition one bit) and added a new parameter that is ୠݏ

(data consumption rate of a base station). The rest of this chapter is organized as

follows: in Section 7.1 we present the analytic model that characterizes the system

under consideration. In Section 7.2, we derive closed-form expression for

minimum energy consumption under different statistical characterization for the

multimedia traffic produced by the camera sensors, and under application-drive

constraints. Then, in Section 7.3 we validate the proposed model for the radio

subsystem through experimental measurements on a real sensor network testbed

via TelosB node. Two different real-case scenarios are presented in Section 7.4,

where we show the benefits of using the proposed model in the design of a VSN.

Finally, Section 7.5 concludes the chapter.

7.1 System Model

We consider a wireless visual sensor network organized in a star topology, with ݊

camera nodes sending multimedia data to a base station (sink) which is the center

of the star. The network is operated by some form of collisions-free protocol (e.g.

TDMA) and we assume that each camera node comprises two coupled subsystems,

the multimedia subsystem and the radio subsystem. The multimedia subsystem is

responsible for acquiring images, processing them and communicating the

processed data to the radio subsystem, which transmits the multimedia data to the

base station. Example multimedia applications that follow this scheme are: JPEG

compression and transmission of still images [132], or visual features extraction,

compression and transmission for object recognition [133]. The two subsystems

work in parallel, that is, while the multimedia system acquires and processes data

117

for the time slot ,ݐ the radio subsystem transmits the multimedia data relative to

the time slot −ݐ 1.

We analyze the energy consumption of such a system, and derive the optimal

settings to minimize it, under two application constraints, namely:

• spatial coverage bounds: the number of deployed nodes communicating with a

base station of the single-hop topology, ,݊ is upper-bounded and lower-bounded,

i.e. ୫݊ ୧୬ ≤ ݊ ≤ ୫݊ ୟ୶

• temporal coverage bounds: the minimum frame acquisition rate, ୫݂ ୧୬, within

the time slot, ,ܶ is lower-bounded, i.e. ୫݂ ୧୬ܶ�≤ ݇

In general, the data produces by each sensor node in such multimedia

applications is a non-deterministic process. Thus we can model the amount of data

produced per frame by each camera node with a random variable (RV) Y , with

PDF P(y) .

Regardless to the specific application and the duty cycle between operational

and active time interval, we can assume that each sensor node performs the

following operations:

1. Acquisition: a new frame is acquired by means of a low-power camera

sensor. Each frame acquisition costs ܽ Joules. The energy consumed during the

time slot, ,ܶ is hence ݇ܽ Joules.

2. Processing and transmission: the frame is processed with a CPU-intensive

algorithm by the multimedia subsystem. The results are communicated to the

radio subsystem, which sends them to the base station. Let ݃ be the energy cost of

processing and transmitting one bit of information (different applications may

have different processing costs, while the transmission cost depends only on the

specific radio chip used by the sensor node). The energy consumed is hence

݃∫ y

�ܲ ൫y

൯݀ y

= y]ܧ݃

]

ஶ

Joules, with ܲ(y

) is the RV that comprises the data

generated by the processing and transmitting for the sum of ݇ frame and y]ܧ

]

the expected data generated by the processing and transmitting per node for the

sum of ݇ frame.

118

3. Buffering or Idling: The sensor network consists of ݊ sensor nodes

organized with a collision-free protocol. When ୠݏ is the data consumption rate

(capacity) of the base station in bits per second. During time slot, ,ܶ each sensor

node can transmit ೞౘ

= ೞ

bits successfully, with ݏ the data consumed in bits by a

base station within time slot. Thus we identify two cases: if the amount of data

generated by the processing phase is greater than ೞ

the sensor node has to buffer

the remaining data in a high-power, typically off-chip, memory. Let be the energy

cost of storing one bit of the data generated, the energy spent for buffering is

∫ (y

−
௦

)�ܲ ൫y

൯݀ y

ஶ
ೞ

Joules. Conversely, if the data generated is less than ೞ

, the

sensor node can enter in an idle state where an energy ܾ is consumed for

beaconing and other synchronization operations. Hence, the consumed energy is

ܾ∫ (
௦

− y

)�ܲ ൫y

൯݀ y

ೞ

Joules. Note that here we have used a random variable

ܲ(y

) to model the data generated by ݇ frame acquisitions.

Summing all the contributions, the energy consumption of the coupled system

ୡܧ is:

ୡܧ = ݇ܽ + ܧ݃ yൣ

൧+ න (y

−
ݏ

݊
) ܲ൫y

൯݀ y

ஶ

ೞ

+ ܾන (
ݏ

݊
− y

) ܲ൫y

൯݀ y

ೞ

(7.1)

Adding and subtracting ∫ (y

−
௦

)�ܲ ൫y

൯݀ y

ೞ

to (7.1) leads to:

ୡܧ = ݇ܽ + (݃+ ܧ(yൣ

൧−

ݏ

݊
+ (ܾ+ න((

ݏ

݊
− y

) ܲ൫y

൯݀ y

ೞ

(7.2)

7.2 Derivation of the Minimum Energy Consumption under
Application Constraints

In the following, we will consider different cases for ܲ൫y

൯ and derive the best

choice for ݊ and ݇ that allows to minimize the energy consumption, while

ensuring the conditions imposed by the spatial and temporal coverage constraints.

The objective is to minimize ୡܧ subject to the spatial and temporal constraints

defined in previous section, that is:

Minimize)ୡܧ ,݊)݇

subject to:

୫݊ ୧୬ ≤ ݊ ≤ ୫݊ ୟ୶

119

�݂୫ ୧୬ܶ�≤ ݇

7.2.1 Illustrative Case: Uniform Distribution

In the simplest case, one can assume that ܲ൫y
൯ is uniform over the interval

[0, 2 [ݎ݇ , being ݎ the expected value of Y , in bits. We can write:

ܲ൫y
൯= ൝

1

2 ݎ݇
, 0 ≤ y

≤ 2 ݎ݇

0, otherwise

(7.3)

Using (7.3) in (7.2) with [yܧ

] = ݎ݇ ,we obtain:

ୡ,ܧ = [݇ܽ+ (݃+ [ݎ(−
ݏ

݊
+
+ܾ)ଶݏ (

4݊ଶ ݎ݇
(7.4)

We start by searching for critical points of ୡ,ܧ , which are the candidates for being

minima. By definition, a critical point of a multidimensional function is the point

where the gradient of the function itself is equal to zero. Hence, we have to impose

that both the derivatives of ୡ,ܧ with respect to ݊ and ݇are zero.

⎩
⎨

⎧
ୡ,ܧ߲

߲݊
=
ݏ

݊
−
+ܾ)ଶݏ (

4݊ଷ ݎ݇
= 0

ୡ,ܧ߲

߲݇
= [ܽ+ (݃+ [ݎ(−

+ܾ)ଶݏ (

4݊ଶ݇ଶݎ
= 0

(7.5)

The only solution for the system equation in (7.5) turns out to be ܽnegative, which

is not feasible since ܽ is an energy cost. Hence we conclude that there is no

solution ܵ∈ ℝxℝ with�ܵ ≡ (,݊)݇ such that the gradient is zero. In other words,

none of the point inside the domain of ୡ,ܧ is a minimum. Hence, what we do is to

look at one or the other direction individually (i.e., ݊ or)݇ with the general idea to

find a minimum at least for that particular direction and then picking up , for the

other direction, the best value that doesn't violate the constraints.

7.2.1.1. Direction

Let's cut the function ୡ,ܧ with a plane ݇= ത݇, and evaluate the cut)ୡ,ܧ ,݊ ത݇) which

is now function of ݊only. The minimum of)ୡ,ܧ ,݊ ത݇) is

݊, =
+ܾ)ݏ (

ݎത݇2

(7.6)

To generalize to any ത݇, let's evaluate)ୡ,ܧ ,݊)݇ on ݊,:

120

)ୡ,ܧ ݊, ,)݇ = ݇ቈܽ + (݃+ −
ଶ

ܾ+
ݎ(

(7.7)

which has its minimum value for the minimum allowable .݇ Since the constraint

on the minimum frame rate requires that ݇≥ ୫݂ ୧୬ ,ܶ the solution turns out to be

ܵబ,
= ൬

+ܾ)ୠݏ (

2 ୫݂ ୧୬ݎ
, ୫݂ ୧୬ܶ൰

(7.8)

is the optimal value in the ݊direction.

7.2.1.2. Direction

Similarly, let's cut the function ୡ,ܧ with a plane ݊ = ത݊, and minimize)ୡ,ܧ ത݊,)݇

which is now function of ݇only. The minimum analysis gives

݇, =
ߙݏ

2 ത݊
(7.9)

As a minimum with ߙ = ට ್శ

ೝ[ೌశ(శ)ೝ]
. Again, to generalize to any ത݊direction, let's

evaluate)ୡ,ܧ ,݊)݇ on ݇, :

ୡ,൫݊ܧ , ݇,൯=
ݏ

݊
ඨ

(ܾ+ +ܽ)((݃+ (ݎ(

ݎ
−

(7.10)

which has its minimum value for the maximum allowable ,݊ which in our case is

୫݊ ୟ୶. Hence,

ܵబ,
= ൬݊ ୫ ୟ୶,

ߙݏ

2 ୫݊ ୟ୶
൰

(7.11)

is the optimal value in the ݇direction.

7.2.1.3. Uniqueness of Solution

So far, we have found two potential solutions for our problem: ܵబ,
which

minimize the energy when looking at the ݊ direction only, and ܵబ,
which does the

same for the ݇direction. However, it is not clear which is the best solution. It turns

out that using ܵబ,
or ܵబ,

depends only on the particular choice of ୫݂ ୧୬.

Recalling that any solution (,݊)݇ must respect (i) ݊ ≥ ୫݊ ୧୬, (ii) ݊ ≤ ୫݊ ୟ୶ and

(iii) ݇≥ ୫݂ ୧୬ ,ܶ we consider ܵబ,
, imposing the constraint:

୫݊ ୧୬ ≤
+ܾ)ୠݏ (

2 ୫݂ ୧୬ݎ
≤ ୫݊ ୟ୶ (7.12)

121

which leads to
+ܾ)ୠݏ (

ݎ݊2 ୫ ୟ୶
≤ ୫݂ ୧୬ ≤

+ܾ)ୠݏ (

ݎ݊2 ୫ ୧୬

(7.13)

or, by using two new variables ଵ݂, and ଶ݂,

ଵ݂, ≤ ୫݂ ୧୬ ≤ ଶ݂, (7.14)

with ଵ݂, is clearly smaller than ଶ݂, . Similarly, by looking at ܵబ,
, we obtain:

ߙݏ

2 ୫݊ ୟ୶
≥ ୫݂ ୧୬ܶ (7.15)

which leads to

୫݂ ୧୬ ≤
ߙୠݏ

2 ୫݊ ୟ୶

(7.16)

with using a new variable ݂, . We proved that ݂, < ଵ݂, .

Hence the optimal solutions are ܵబ,
for (7.14) and ܵబ,

for (7.16). Now we

consider the rest of the cases when ݂, < ୫݂ ୧୬ < ଵ݂, and when ୫݂ ୧୬ > ଶ݂, . In both

cases, neither ܵబ,
nor ܵబ,

can be used: because ݊, > �݊ ୫ ୟ୶ when using ܵబ,

and ݇, < ୫݂ ୧୬ܶ when using ܵబ,
for the first case and because ݊, < �݊ ୫ ୧୬ when

using ܵబ,
and ݇, < ୫݂ ୧୬ܶ��when using ܵబ,

for the second case.

However, the solution must lie on one of the three lines (݊= ୫݊ ୟ୶, ݊ = ୫݊ ୧୬ or

݇= ୫݂ ୧୬ܶ), otherwise we would have found a minimum in the domain (we recall

that the gradient of)ୡ,ܧ ,݊)݇ is never zero).

Let's focus on the first case, when ݂, < ୫݂ ୧୬ < ଵ݂, and evaluate)ୡ,ܧ ,݊)݇ on

the ݊ = ୫݊ ୟ୶ border. The problem is that the minimum ݇, =
௦ఈ

ଶౣ ౮
is now

smaller than ୫݂ ୧୬ .ܶ Since)ୡ,ܧ ,݊)݇ is decreasing for�݇ < ݇, and increasing for

݇> ݇, , the optimal point is ݇= ୫݂ ୧୬ ,ܶ which leads to the solution (୫݊ ୟ୶, ୫݂ ୧୬ܶ).

Similarly, let's look at the ݇ direction, evaluating the energy function on

݇= ୫݂ ୧୬ .ܶ Now the minimum ݊, = ೞ(್శ)

మౣ ೝ
is beyond ୫݊ ୟ୶. Since)ୡ,ܧ ,݊ ୫݂ ୧୬ܶ) is

decreasing for ݊ < ݊, and increasing for ݊> ݊, the optimal point is ୫݊ ୟ୶,

which leads to the solution (୫݊ ୟ୶, ୫݂ ୧୬ܶ).

Eventually, now let's focus on the second case when ୫݂ ୧୬ > ଶ݂, . We consider as

same as the first case. We conclude that the solution is (୫݊ ୧୬, ୫݂ ୧୬ܶ). Therefore we

122

finally conclude that the solution (,݊)݇ that gives the minimum energy

consumption is:

⎩
⎪⎪
⎨

⎪⎪
⎧ if ୫݂ ୧୬ ≤ ݂, , ܵ(,݊)݇ = ൬݊ ୫ ୟ୶,

ߙݏ

2 ୫݊ ୟ୶
൰

if�݂, < ୫݂ ୧୬ < ଵ݂, , �ܵ(,݊)݇ = (୫݊ ୟ୶, ୫݂ ୧୬ܶ)

if ଵ݂, ≤ ୫݂ ୧୬ ≤ ଶ݂, , ܵ(,݊)݇ = ൬
ୠݏ) (ܾ+ ((

2) ୫݂ ୧୬ (ݎ
, ୫݂ ୧୬ ܶ൰

if ୫݂ ୧୬ > ଶ݂, , ܵ(,݊)݇ = (୫݊ ୧୬, ୫݂ ୧୬ܶ)

(7.17)

With ݂, =
௦ౘఈ

ଶౣ ౮
,�݂ଵ, =

௦ౘ(ା)

ଶౣ ౮
and ଶ݂, =

௦ౘ(ା)

ଶౣ

In the remainder, we consider the other cases for data production PDFs.

7.2.2 Pareto Distribution

Here we assume that ܲ൫y
൯ is a Pareto distribution with scale andݒ ,ߙ or:

ܲ൫y
൯= ቐ

ߙ
ఈݒ

y

1+ߙ

, y

≥ ݒ

0, otherwise

(7.18)

The expected value of Y is ܧ yൣ

൧=

ఈ௩

ఈିଵ
. Thus if we set

=ݒ
ఈିଵ

ఈ
ݎ݇ we obtain ܧ yൣ

൧= ,ݎ݇ i.e., we match the expected transmission data

to that of the Uniform distribution. In this case the energy expression in (7.2)

becomes:

ୡ,ܧ = ݇ܽ + (݃+ (
ݒߙ

−ߙ 1
+

ݏܾ

݊
+ (ܾ+)(

ఈ݊ఈିଵݒ

ఈܽିଵ −ߙ) 1)
−

ݒߙ

−ߙ 1
)

(7.19)

With the same considerations as evaluated in the uniform case except there is no

solution for ݇ direction. Therefore the solution (,݊)݇ giving the minimum energy

consumption is:

⎩
⎪
⎨

⎪
⎧

if ୫݂ ୧୬ < ଵ݂,, ܵ(,݊)݇ = (୫݊ ୟ୶, ୫݂ ୧୬ ܶ)

if�݂ଵ, ≤ ୫݂ ୧୬ ≤ ଶ݂,, �ܵ(,݊)݇ = ൭
ୠݏߙ

−ߙ) 1) ୫݂ ୧୬ ݎ
൬�

ܾ

(ܾ+ (
൰

భ
ഀ

, ୫݂ ୧୬�ܶ ൱

if ୫݂ ୧୬ > ଶ݂,, ܵ(,݊)݇ = (୫݊ ୧୬, ୫݂ ୧୬ܶ)

(7.20)

With�݂ଵ, =
ఈ௦ౘ

(ఈିଵ)ౣ ౮�
ቀ�

(ା)
ቁ
భ
ഀ

and ଶ݂, =
ఈ௦ౘ

(ఈିଵ)ౣ ��
ቀ�

(ା)
ቁ
భ
ഀ

7.2.3 Exponential Distribution

Considering ܲ൫y
൯ as the exponential distribution with mean ܧ yൣ

൧= ,ݎ݇ we

have:

123

ܲ൫y
൯=

1

ݎ݇
exp൬−

1

ݎ݇
y

൰

(7.21)

Via the energy expression, we obtain:

ୡ,ܧ = [݇ܽ+ (݃+ [ݎ(+
ݏܾ

݊
+ (ܾ+ (ቂ݇ −expቀ)ݎ

ܽ

݊ ݎ݇
ቁ− 1)ቃ

(7.22)

With the same considerations as evaluated in the uniform case except there is no

solution for ݇ direction. Therefore the solution (,݊)݇ giving the minimum energy

consumption is:

⎩
⎪
⎨

⎪
⎧

if ୫݂ ୧୬ < ଵ݂,, ܵ(,݊)݇ = (୫݊ ୟ୶, ୫݂ ୧୬ ܶ)

if�݂ଵ, ≤ ୫݂ ୧୬ ≤ ଶ݂,, �ܵ(,݊)݇ = ቌ
ୠݏ

୫݂ ୧୬ lnቀݎ
ܾ+
ܾ

ቁ
, ୫݂ ୧୬�ܶ ቍ

if ୫݂ ୧୬ > ଶ݂,, ܵ(,݊)݇ = (୫݊ ୧୬, ୫݂ ୧୬ܶ)

(7.23)

With�݂ଵ, =
௦ౘ

ౣ ౮��୪୬�ቀ
್శ

್
ቁ

and ଶ݂, =
௦ౘ

ౣ ��୪୬�ቀ
್శ

್
ቁ

7.2.4 Half-Gaussian Distribution

We start this part by considering ୌܲ൫y
൯ as the Half-Gaussian distribution with

mean ୌܧ yൣ

൧= .ݎ݇

ୌܲ൫c൯= ቐ

0, y

< 0

2

ߨ ݎ݇
exp(

y

ଶ

ଶݎଶ݇ߨ
), y

≥ 0

(7.24)

Via the energy expression, we obtain:

ୡ,ୌܧ = [݇ܽ+ (݃+ [ݎ(−
ݏ

݊
+ (ܾ+ (

+ ቈ݇ −expቆ)ݎ
ଶݏ

ଶ݊ଶݎଶ݇ߨ
ቇ− 1 +

ݏ

݊
erf(

ݏ

ߨ√ ݎ݇݊
)

(7.25)

With the same considerations as evaluated in the uniform case except there is no

solution for ݇ direction. Therefore the solution (,݊)݇ giving the minimum energy

consumption is:

⎩
⎪
⎨

⎪
⎧

if ୫݂ ୧୬ < ଵ݂,ୌ , ܵ(,݊)݇ = (୫݊ ୟ୶, ୫݂ ୧୬ ܶ)

if�݂ଵ,ୌ ≤ ୫݂ ୧୬ ≤ ଶ݂,ୌ , �ܵ(,݊)݇ = ቌ
ୠݏߙ

ߨ√ ୫݂ ୧୬ erfିଵቀݎ

ܾ+
ቁ

, ୫݂ ୧୬�ܶ ቍ

if ୫݂ ୧୬ > ଶ݂,ୌ , ܵ(,݊)݇ = (୫݊ ୧୬, ୫݂ ୧୬ܶ)

(7.26)

With�݂ଵ,ୌ =
ఈ௦ౘ

√గౣ ౮��ୣ୰
షభቀ

್శ
ቁ

and ଶ݂,ୌ =
ఈ௦ౘ

√గౣ ��ୣ୰
షభቀ

್శ
ቁ

124

7.3 Evaluation of the Analytic Results

To validate the proposed analytical model we performed a series of experiments

on a typical WSN platform, namely the TelosB sensor nodes (equipped with the

IEEE802.15.4 compliant CC2420 radio transceiver and running the low-power

Contiki 2.6 operating system). We implemented a sensor network operated by the

recently proposed TFDMA protocol, which allows for collision-free transmission.

Hence, we could utilize the very low-complexity NullMAC and NullRDC options of

the Contiki RTOS, which lead to a maximum data consumption rate at the

application layer of ୠݏ = 144 kbps. To simulate the data production process, we

artificially created data according to the PDFs considered in previous section via

rejection sampling [59], setting the mean transmission rate to =ݎ 5.2 kbit. The

data is copied onto each sensor node during deployment, and it is read at runtime

and considered as coming from the multimedia processor.

Parameter Unit Value

ୠݏ kbps 144

ݎ kbit 5.2

ܽ J 4.000 × 10ିଷ

݃ J/b 2.197 × 10ି

ܾ J/b 1.902 × 10ି

 J/b 2.861 × 10ି

୫݊ ୧୬, ୫݊ ୟ୶ - 2, 16

୫݂ ୧୬ fps 2

Table 7.1: System Settings

Under these operational settings, we measured the real-time energy

consumption of each sensor node by integrating its instantaneous current

consumption profile, which we obtained using a Tektronix MDO4104-6

oscilloscope and measuring the current consumption at a high-tolerance 1 Ohm

resistor placed in series with each TelosB node. Under this setup, we also

measured the different energy costs for transmission, beaconing and buffering,

which are reported in Table 7.1. The cost of acquiring an image is derived from the

125

specifications of the OV7670 camera sensor, which is widely used in low-power

visual sensor platforms, such as the one proposed in [134] [135]. To simulate the

image acquisition process, the energy consumption measured for a particular

value of ݇ is increased artificially by ݇ܽ Joules.

Figure 7.1: The grayscale surfaces show, for each statistical distribution, the energy

consumption of a single camera sensor node as a function of the frame rate and the

total number of nodes in the TDMA schedule. The blue crosses correspond to the value

of the consumed energy as measured from the sensor network testbed correspond to

active time of the sensor node in 1s.

Table 7.2: Differences between the theoretical and experimental results and the

optimal value of the nodes number and the frames number (on the last column)

amongst the considered PDF under the settings of Figure 7.1.

Then, for each data production PDF considered in the previous section, we

computed the theoretical energy function and the optimal values of ݇ and ݊ that

Transmission Rate
PDFs

Mean Error
(%)

Max Error
(%)

܀ value Theoretical
Optimum

Uniform 1.25 5.24 0.9982 ݊= 12,݇= 2

Pareto ߙ) = 4) 1.90 6.59 0.9988 ݊= 14,݇= 2

Exponential 1.00 5.35 0.9977 ݊= 16,݇= 2

Half-Gaussian 1.33 6.65 0.9963 ݊= 13,݇= 2

126

allow for minimum energy consumption, using the results in (7.17),(7.20),(7.23)

and (7.26). As one can see from Figure 7.1, for all the tested distributions the

theoretical and experimental results are in agreement, with the maximum

percentage error between them limited to 6.65%. We have observed the same

level of accuracy under a variety of TFDMA settings and minimum frame rate ୫݂ ୧୬

but omit these repetitive experiments for brevity of exposition.

7.4 Applications

So far, we have considered four different distributions for the data generation

process. However, it is interesting to study a real-case scenario, in order to assess

that the proposed optimization model can be applied in an actual visual sensor

network deployment. In this section, we consider two different multimedia

applications, namely (i) encoding and transmission of JPEG frames and (ii)

extraction and transmission of corner-like features for visual analysis. For the

input data, we considered the video sequences from the PETS2007 dataset10,

which are taken from an airport surveillance video system. The resolution of all

sequences is 768 x 576 pixels and the frame rate is 25 fps.

1. JPEG compression: We simulated a hybrid DCT-DPCM system, such as the one

presented in [136]. In this system, the first frame of the video sequence is JPEG

encoded and transmitted. For the subsequent frames, only the difference between

two adjacent frames is encoded. The encoding process follows the standard JPEG

baseline, i.e., quantization of the Discrete Cosine Transform (DCT) coefficients

followed by run length encoding and Huffman coding. The resulting encoded frame

size is stored in a file, which is then fed to the sensor network testbed for energy

measurements. The process is repeated for different values of ݇ by reducing the

input video sequence frame rate.

2. Visual feature extraction: Several visual analysis tasks can be performed by

disregarding the pixel representation of an image, and relying only on a much

10 http://pets2007.net

127

more compact representation based on local visual features [137]. In a nutshell,

salient keypoints of an image are identified by means of a detector, and a

descriptor is computed from the pixel values belonging to the image patch around

the keypoint. Here, we focus on corner-like local features. Precisely, we process

each frame of the input video sequence with the FAST corner detector [138], which

is optimized for fast extraction of visual features on low-power devices. Each

detected keypoint is then described by means of a binary descriptor, such as BRIEF

[139], where each element of the descriptor itself is a bit that reports the result of

an intensity comparison between two pixels of the patch to be described. Here we

assume that each descriptor is composed by 512 binary tests, for a descriptor size

of 64 bytes. Thus, each frame will require 64݉ bytes to be transmitted, being ݉

the number of keypoints detected by the FAST algorithm. Also in this case, the

process is repeated for different video sequences frame rate.

Figure 7.2: Energy consumption for JPEG application, the grayscale surfaces represent the

fitted energy function obtained with the Pareto PDF equation, while the blue crosses

represent the experimental measurements correspond to the active time of the sensor

node in 1s.

We repeated the experimental measurements described in previous section for

both application scenarios. Then, we fitted11 the energy measurements with one of

11 Fitting is performed by matching the average data size ofݎ each distribution to the average
data size of the JPEG compressed frames and the set of visual features.

128

the energy functions derived in Section 7.2. Interestingly, we found that assuming

the data samples for both the application scenario as coming from a Pareto

distribution produces a good fit, as shown in Figure 7.2 and Figure 7.3, with a

coefficient of determination value Rଶ of 0.96 for the JPEG case and 0.95 for the

salient point case. Thus, we can utilize the results for the minimum energy

consumption in the Pareto case to discuss the gain that can be potentially achieved

by following the proposed approach. As an example, in Table 7.3, we consider two

different cases for each application scenario. Each case has different application

constraints and we compare the optimal solution with an ad-hoc "conservative"

solution obtained by choosing the minimum frame rate and the minimum and

maximum number of nodes allowable. As one can see, the proposed approach

allows to obtain significantly energy savings, as high as 45.65%.

Case Constraints

JPEG compression: =࢘ 20.5 kbit Visual feature extraction: =࢘ 11.7 kbit

Ad-hoc
deployment

Proposed
approach

Gain
(%)

Ad-hoc
deployment

Proposed
approach

Gain
(%)

I

୫݂ ୧୬ = 0.2 fps ݊= 3 ݊= 6

45.41

݊= 3 ݊= 6

46.65୫݊ ୧୬ = 3 ݇= 0.2 ݇= 0.2 ݇= 0.2 ݇= 0.2

୫݊ ୟ୶ = 6 ୡܧ = 0.010 J ୡܧ = 0.005 J ୡܧ = 0.010 J ୡܧ = 0.005 J

II

୫݂ ୧୬ = 2 fps ݊= 2 ݊= 4

17.76

݊= 2 ݊= 6

35.96୫݊ ୧୬ = 2 ݇= 2 ݇= 2 ݇= 2 ݇= 2

୫݊ ୟ୶ = 10 ୡܧ = 0.023 J ୡܧ = 0.019 J ୡܧ = 0.022 J ୡܧ = 0.014 J

Table 7.3: Minimum energy consumption under ad-hoc settings and proposed framework.

The energy saving shows in the percentile difference between the ad-hoc and proposed

cases for two sample application scenarios.

7.5 Conclusions

We applied an analytic framework for characterizing practical energy consumption

in uniformly-formed network with the case of the visual sensor networks. We

focused on the case where the network is operated by collision-free TDMA and

deployed to carry out a delay-tolerant monitoring task. This framework was solved

to optimality for different multimedia traffic distribution and validated through a

real sensor network testbed with accuracy below 7% of the energy consumption.

Finally, we applied this model to two real case scenarios, demonstrating that

129

substantial energy saving can be obtained with the proposed approach, with

respect to an ad hoc system design.

Figure 7.3: Energy consumption for salient point application, the grayscale surfaces

represent the fitted energy function obtained with the Pareto PDF equation, while the blue

crosses represent the experimental measurements correspond to active time of the sensor

node in 1s.

130

8.Chapter 8

Conclusion

This work studies MAC-layer distributed (de)synchronization for efficient TDMA

mechanisms in real-world WSNs, with a focus on the IEEE802.15.4 MAC. We

reviewed the literature behind of all well-established synchronization approaches

in WSNs. It consists of proposals for global-clock–based synchronization and local-

clock–based synchronization. Each of them is separated into centralized and

distributed synchronization. In this thesis we focus only the distributed

synchronization with working on its own clock.

In Chapter 2, we review, implement and evaluate the basic algorithms proposed

in the literature for distributed TDMA in WSNs based on synchronization and

desynchronization. Amongst the three proposals reviewed, the SYNC algorithm has

the highest implementation complexity due to the reach-back response and the

complexity in managing the slot time. The DESYNC algorithm achieves the highest

network resource utilization and has the lowest implementation complexity, with

the PCO-DESYNC achieving similar but slightly inferior results.

In Chapter 3, we focus on these two algorithms (DESYNC and PCO-DESYNC) and

characterize the convergence time via stochastic modelling and assuming a

stochastic convergence criterion. The results of the experimental validation with

varying coupling parameter and different convergence threshold ୲ܾ୦୰ୣ ୱ agree

with the results of the mathematical model for both algorithms. Under high

threshold for convergence, the two algorithms achieve higher bandwidth and

lower delay to steady state when compared under low threshold for convergence.

As a side effect of our analysis, our model analytically establishes the coupling

parameter that minimizes the expected iterations required until convergence

under both algorithms.

In Chapter 4, we extend the desynchronization primitive to multi-hop WSN

communications. The hidden node problem has been handled via the multi-hop

131

extension of the basic DESYNC algorithm and experimental results show that the

proposed solution is simple and efficient in dealing with arbitrary multi-hop

topologies in WSNs.

In Chapter 5, we focus on the multi-channel extension of DESYNC to achieve

increased bandwidth efficiency in a distributed (coordinator-less) manner. This

new protocol is called the TFDMA. We propose an analytic model for estimating

the expected delay to balanced state and prove that TFDMA is stable. The

experimental results agree with the theoretical model for the convergence delay

and indeed demonstrate the increased bandwidth efficiency of TFDMA against

single-channel DESYNC and two other state-of-the-art multi-channel WSN protocols.

In Chapter 6, we analyze the energy consumption for distributed TDMA with

various transmission rate PDFs in order to support various applications producing

irregular data payloads. We found the optimal number of nodes achieving the

minimum energy consumption under a uniformly-formed WSN fully-connected

topology. Our results show that the derived analytic formulation of the energy

consumption agrees with an experimental test-bed based on TelosB motes.

In Chapter 7, we extend the analytic formulation of energy consumption of

distributed TDMA to the case of visual sensor networks where competing

constraints are set with respect to the required frame-rate per sensor and the total

number of sensors to deploy (spatial versus temporal coverage in the WSN). Two

examples of multimedia applications are used for experimental validation: JPEG

compression and salient point extraction from video frames. We found that the

data processing and transmission rate of the JPEG and salient point case can be

well approximated with the Pareto distribution.

8.1 Future Work

In the future work, we suggest to study further the optimized space-time-

frequency mechanisms for distributed (de)synchronization in WSNs. The aim is to

establish the best approach for distributed desynchronization and bandwidth

132

efficiency while at the same time allowing for energy-efficient and scalable

operation within a WSN infrastructure based on IEEE802.15.4 MAC.

This goal of future work is an energy-efficient, high-throughput distributed

multi-channel communication scheme for the main desynchronization primitives

(DESYNC and PCO-DESYNC) realized on a low-resource platform with IEEE802.15.4

compatibility. In [24], high communication bandwidth can be achieved if the load

in wireless network is balanced. The authors propose a cognitive load balance

algorithm for single-hop multi-channel sensor networks. However, like most work

on this topic [25][26], all such balancing schemes are related to the centralized

case, where an unfaltering (coordinating) node is present and manages the entire

process. This type of base station or sink node is responsible for broadcasting the

control message to allocate the channel utilization to each node in the network.

However, this is inappropriate for WSNs deployed under completely unpredictable

conditions, e.g. for surveillance or monitoring at remote and potentially hostile

environments. To this end, this work is related to the decentralized WSN case.

We are also interested in time synchronized channel hopping, which has been

proposed recently as an extension of the standard IEEE 802.15.4e for the case of

decentralized WSNs [30][31]. Within the context of this work item, we can devise a

theoretical and experimental comparison between our scheme (time-frequency

distributed desynchronization) and the decentralized TSCH. There are many

interesting metrics for evaluation such as energy consumption, connectivity

[113][114], throughput, as well as message loss.

Eventually, a related task is the proposed scheme of multi-hop based

synchronization primitives [108][109]. Initial proposals for distributed time

synchronization protocols within multihop WSNs exist in the literature [27][28].

They developed efficient communication protocols based on two-hop information.

Degesys et al [15] also discuss extensions of the DESYNC algorithm towards multi-

hop networks using simulations. Overall, there is sufficient interest from the

research community in this topic to warrant the study of all synchronization

133

primitives for the case of multi-hop networks, especially via the use of real WSN-

based implementations. Combining of the multiple-channel and multi-hop

protocols proposed is a challenging task that could be attempted within future

work in this field.

134

A. Appendix 1

We elaborate further why the central limit theorem is applicable within the DESYNC

and PCO formulation.

All initial random variables, i.e. vectors Φ() and noise vector Δ (the latter is

inserted at each phase update iteration) are independent, following Definition 2

and Definition 3. At each phase update iteration ,݇ each updated phase random

variable Φ
()

is the sum of independent, random variables: Φି ଵ
()

, Φ
()

, ାଵߔ
()

,... and

noise terms: ∀݈∈ {0, … ,݇− 1}: ∆ି ଵ
() , ∆

(), ∆ାଵ
() ,... scaled by constants of the form:

∀ :݈ (1 − ,(ߙ ቀ
ఈ

ଶ
ቁ

, (1 − ቀ(ߙ
ఈ

ଶ
ቁ

, (1 − ቀ(ߙ
ఈ

ଶ
ቁ, etc.

This sum grows at each iteration due to new independent noise and phase terms

being inserted. For example, for DESYNC we have:

At 1st phase update iteration;

Φ
(ଵ)

=�(1 − Φ)(ߙ
()

+ ∆
()

) + ߙ
 షభ

(బ)
ା∆షభ

(బ)
ା శభ

(బ)
ା∆శభ

(బ)

ଶ
(mod 1)൨

Then 2nd phase update iteration;

Φ
(ଶ)

=�(1 − Φ)(ߙ
(ଵ)

+ ∆
(ଵ)

) + ߙ
 షభ

(భ)
ା∆షభ

(భ)
ା శభ

(భ)
ା∆శభ

(భ)

ଶ
(mod 1)൨

ߔ
(ଶ)

=�(1 − ଶ(Φ(ߙ
()

+ ∆
()

) + (1 − ߙ(ߙ
 షభ

(బ)
ା∆షభ

(బ)
ା శభ

(బ)
ା∆శభ

(బ)

ଶ
+

ఈ

ଶ
(1 − Φି(ߙ ଵ

()
+

ߙ�����
 షమ

(బ)
ା∆షమ

(బ)
ା

(బ)
ା∆

(బ)

ଶ
+(1 − Φାଵ(ߙ

()
+ ߙ

(బ)
ା∆

(బ)
ା శమ

(బ)
ା∆శమ

(బ)

ଶ
൨+ (1 − ∆(ߙ

(ଵ)
+

ߙ�����
∆షభ

(భ)
ା∆శభ

(భ)

ଶ
(mod 1)൨

Φ
(ଷ)

= ⋯ (3rd phase update iteration)

⋮

Φ
()

= ⋯ (݇th phase update iteration)

We can derive similar expressions for PCO-based desynchronization albeit with

the difference that only noise terms are inserted in each iteration (and no new

phase terms):

At 1st phase update iteration;

Φ
(ଵ)

= [(1 − Φ)(ߙ
()

+ ∆
()

) + 1)ߙ − భ

ೈ
) (mod 1)]

Then 2nd phase update iteration;

Φ
(ଶ)

= [(1 − Φ)(ߙ
(ଵ)

+ ∆
(ଵ)

) + 1)ߙ − భ

ೈ
) (mod 1)]

ߔ
(ଶ)

= [(1 − ଶ(Φ(ߙ
()

+ ∆
()

) + (1 − ∆(ߙ
(ଵ)

+ (2 − 1)ߙ(ߙ − భ

ೈ
) (mod 1)]

135

Φ
(ଷ)

= ⋯ (3rd phase update iteration)

⋮

Φ
()

= [(1 − Φ(ߙ
()

+ ∑ (1 − (ߙ
ୀଵ ߂

(ି)
+ ൫1ߙ − భ

ೈ
൯∑ (1 − ିଵ(ߙ

ୀ (mod 1)]

[݇th phase update iteration – this is actually (3.28)], with Δ
(ି)

iid random

variables, each stemming from Definition 3. As a result, each term

Φ
(ଵ)

, Φ
(ଶ)

, … , Φ
()

comprises the sum of independent (but not identically-

distributed) random variables12.

According to Papoulis [ref. [14] pp. 219-220], a set of sufficient conditions for

the CLT to hold, i.e. Φ
()

→ஶ
ሱ⎯ሮ ߤ)ܰ

(ೖ) ߪ,

(ೖ)), is:

(a) Φ
()

must be derived as the sum of independent but not necessarily

identically-distributed random variables

(b) A constant <ߝ 0 exists such that ∀ ߪ݇:

(ೖ) > .ߝ

(c) ∀ ,݅ :݇ densities P

(ೖ) are zero outside a finite interval no matter how large the

interval may be.

Condition (a) holds as elaborated above. Condition (b) holds since, ∀݇ ∈ ℕ∗, we

can pick =ߝ (1 − ߪ(ߙ
 (బ) (that satisfies the requirement that <ߝ 0) and then,

from (3.15): ߪୢ ୱୣ୷୬ୡ
()

> ,andߝ from (3.23): େߪ
()

> .ߝ Finally, condition (c) holds for

our case because all initial PDFs have finite support (they are all variants of the

uniform distribution); hence, densities P

(ೖ) will have finite support since they are

linear mixtures of PDFs with finite support.

As a final note, Papoulis remarks [ref. [14] pp. 215] that if the PDFs in the mixture

are smooth, the convergence to the normal distribution is fast, i.e. even the sum of

five random variables can be assumed to be normally distributed with very good

approximation accuracy.

12 We note that scaling and shifting a random variable by a constant will change its moments
by stretching and shifting its distribution function, but it will not make it dependent to other
random variables.

136

B. Bibliography

[1] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time synchronization

protocol,” Proc. of the 2nd ACN conf. on Embedded Networked Sensor Systems, Nov.

2004.

[2] Q. Li and D. Rus, “Global clock synchronization in sensor networks,” IEEE

Transactions on Computers, vol. 55, no. 2, pp. 214-226, Feb. 2006.

[3] K. Marzullo and S. Owicki, “Maintaining the time in a distributed system,” Proc. of the

2nd Ann. ACM Symp. on Principles of Distributed Computing, vol. 19, no. 3, Jul .1985.

[4] R. Leidenfrost and W. Elmenreich, “Firefly clock synchronization in an 802.15.4

wireless network,” EURASIP J. on Embedded Syst., vol. 2009, Jan. 2009.

[5] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing –sync protocol for sensor

networks,” Proc. of the 1st Int. Conf. on Embedded Networked Sensor Syst., Nov. 2003.

[6] S. Ganeriwal, R. Kumar, S. Adlakha, and M. Srivastava, “Network-wide time

synchronization in sensor networks,” NESL, Tech. Rep., 2003.

[7] J. Elson, L. Firod, and D. Estrin, “Fine-grained network time synchronization using

reference broadcasts,” Proc. of the 5th Symp. on Operating Systems Design and

Implementation, vol. 36, Dec. 2002.

[8] J. Degesys, I. Rose, A. Patel, and R. Nagpal, “DESYNC: Self-organizing

desynchronization and TDMA on wireless sensor networks,” 6th Int. Symp. on IPSN,

Apr. 2007.

[9] R. Pagliari, Y.-W. P. Hong, and A. Scaglione, “Bio-inspired algorithms for

decentralized round-robin and proportional fair scheduling,” IEEE J. on Select. Areas

in Commun., vol. 28, no. 4, pp. 564-575, May 2010.

[10] Y. W. Hong and A. Scaglione, “A scalable synchronization protocol for large scale

sensor networks and its applications,” IEEE J. on Selected Areas in Communications,

vol. 23, no. 5, pp. 1085-1099, May. 2005.

[11] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal, “Firefly-inspired

sensor network synchronicity with realistic radio effects,” Proc. of the 3rd Int. Conf. on

Embedded Networked Sensor Syst., Nov. 2005.

137

[12] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, “Distributed

synchronization in wireless networks,” IEEE Signal Process. Mag., vol. 25, no. 5, pp.

81-97, Sept. 2008.

[13] A. Patel, J. Degesys, and R. Nagpal, “Desynchronization: The theory of self-organizing

algorithms for round-robin scheduling,” Proc. IEEE Internat. Conf. on Self-Adaptive

and Self-Organizing Syst. (SASO), pp. 87-96, Jul. 2007.

[14] A. Papoulis, Probability and Statistics, Prentice Hall, 1989.

[15] J. Degesys and R. Nagpal, “Towards desynchronization of multi-hop topologies,”

Second IEEE Int. Conf. on Self-Adaptive and Self-Organizing Syst., Oct. 2008.

[16] M. Ramakrishnan and P. V. Ranjan, “Multi channel MAC for wireless sensor

networks,” Int. J. of Computer Networks & Communications, vol. 1, no. 2, pp. 47-54,

Jul. 2009.

[17] Crossbow Technology, Inc., “Imote2.builder kit manual,” rev. A, Sep. 2007

[18] A. Motskin. T. Roughgarden, P. Skraba, and L. Guibas, “Lightweight coloring and

desynchronization for networks,” IEEE Infocom, pp. 2389-2391, Apr. 2009.

[19] D. Buranapanichkit and Y. Andreopoulos, “Stochastic modelling of convergence to

desynchronization primitive in wireless sensor networks,” Submitted to ACM

Transactions on Autonomous and Adaptive System, - Under review.

[20] M. L. Sichitiu and C. Veerarittiphan, ‘‘Simple, accurate time synchronization for

wireless sensor networks,’’ Proc. IEEE Wireless Communications and Networking, vol.

2, pp. 1266–1273, Mar. 2003,

[21] J. Van Greunen and J. Rabaey, ‘‘Lightweight time synchronization for sensor

networks,’’ Proc. 2nd ACM Int. Conf. Wireless Sensor Networks and Applications

(WSNA), pp. 11–19, 2003,

[22] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, ‘‘Clock synchronization for

wireless sensor networks: a survey,’’ Ad-Hoc Networks, vol. 3, no. 3, pp. 281–323,

Mar. 2005.

[23] Y. C. Wu, Q. Chaudhari, and E. Serpedin, “Clock synchronization of wireless sensor

networks,” IEEE Signal Process. Mag., vol. 28, no. 1, pp. 124-138, Jan. 2011.

[24] M. Song, Y. Zhao, J, Wang, and Park, E.K., “A high throughput load balance algorithm

for multichannel wireless sensor networks,”ICC '09. IEEE International Conference,

pp. 1-5, Jun. 2009.

138

[25] Y. Zeng, N. Xiong, and T. Kim, “Channel assignment and scheduling in multichannel

wireless sensor networks,” 33rd IEEE Conference on Local Computer Networks, pp.

512-513,Oct. 2008

[26] Y. Kim, H. Shin, and H. Cha, “Y-MAC: An energy-efficient multi-channel MAC protocol

for dense wireless sensor networks,” International Conference on Information

Processing in Sensor Networks, Apr. 2008.

[27] R. Solis, V. Borkar and P. R. Kumar, “A new distributed time synchronization protocol

for multihop wireless networks.” Proceedings of the 45th IEEE Conference on

Decision and Control, pp. 2734-2739, Dec. 2006.

[28] K.-Y. Cheng, K.-S. Lui, Y.-C. Wu, and V. Tam, ‘‘A distributed multihop time

synchronization protocol for wireless sensor networks using pairwise broadcast

synchronization,’’ IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 1764–1772, Apr.

2009.

[29] http://www.ieee802.org/15/pub/TG4e.html

[30] A. Tinka, T. Watteyne, and K. Pister “A decentralized scheduling algorithm for time

synchronized channel hopping,” Lect. Notes Inst. Comp. Sci. (Proc. Ad-Hoc Networks),

vol. 49, no. 4, pp. 201-216, Aug.2010.

[31] T. Watteyne, S. Lanzisera, A. Mehta, and K. Pister, “Mitigating multipath fading

through channel hopping in wireless sensor networks”, IEEE International

Conference on Communications (ICC 2010), pp 1-5, May 2010

[32] K. Pister and L. Doherty, “TSMP: Time synchronized mesh protocol,” Parallel and

Distributed Computing and Systems Proc. IASTED Symp. On Distr. Sensor Netw., pp.

391-398, Nov. 2008.

[33] IEEE 802.15.4 Standard-2003, “Part 15.4: Wireless medium access control (MAC)

and physical layer (PHY) specifications for low-rate wireless personal area networks

(LR-WPANs),” IEEE-SA Standards Board, 2003.

[34] D. Buranapanichkit and Y. Andreopoulos, “Distributed time-frequency division

multiple access protocol for wireless sensor networks,” IEEE Wireless Comm. Letters,

vol. 1, no. 5, pp. 440-443, Oct 2012.

[35] A. Koubaa and M. Alves, “An IEEE 802.15.4 protocol implementation (in

nesC/TinyOS): reference guide v1.2,” IPP-HURRAY Technical Report, HURRAY-TR-

061106, Feb. 2007.

139

[36] R. Pagliari, Y.-W. P. Hong, and A. Scaglione, “Pulse coupled oscillators’ primitives for

collision-free multiple access with application to body area networks,” IEEE Applied

Sciences on Biomedical and Communication Technologies, ISABEL, pp. 1-5, Oct, 2008.

[37] H. K. Le, D. Henriksson, and T. Abdelzaher, “A practical multi-channel media access

control protocol for wireless sensor networks,” Proc. IEEE IPSN, pp. 70-81, 2008.

[38] M. Kodialam and T. Nandagopal, “Characterizing the capacity region in multi-radio

multi-channel wireless mesh networks,” Proc. Mobicom’05.

[39] X. Lin and S. B. Rasool, “Distributed and provably efficient algorithms for joint

channel-assignment, scheduling, and routing in multichannel ad hoc wireless

networks,” IEEE/ACM Trans. Netw., vol. 17,no. 6, Dec. 2009.

[40] A. Koubaa, M. Alves and E. Tovar, “GTS allocation analysis in IEEE 802.15.4 for real-

time wireless sensor networks,” Proc. IEEE 20th Int. Symp. On IPDPS, Apr.2006.

[41] P. Jurcik, A. Koubaa, M. Alves, E. Tovar, Z. Hanzalek, “A simulation model for the IEEE

802.15.4 protocol: delay/throughput evaluation of the GTS mechanism,” Proc. IEEE

MASCOTS, 2007.

[42] P. Park, C. Fischione and K. H. Johansson, “Performance analysis of GTS allocation in

beacon enabled IEEE 802.15.4” Proc. IEEE Secon, Jun. 2009.

[43] V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman Hall, London

1995.

[44] L. Tang, Y. Sun, O. Gurewitz, D. B. Johnson, “EM-MAC: A dynamic multichannel

energy-efficient MAC protocol for wireless sensor networks,” Proc. 12th ACM

International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc,

2011.

[45] http://www.ee.ucl.ac.uk/~iandreop/WCL2012.zip

[46] J. Song, S. Han, A.K. Mok, D. Chen, M. Lucas, and M. Nixon, “WirelessHART: Applying

wireless technology in real-time industrial process control,” IEEE Real-Time and

Embed. Tech. And Appl. Symp.,2008 RTAS’08. IEEE, pp. 377-386, 2008.

[47] A. Koubaa, A. Cunha, and M. Alves, “A time division beacon scheduling mechanism

for IEEE 802.15.4/zigbee cluster-tree wireless sensor networks,” 19th Euromicro

Conf. on Real-Time Syst., ECRTS’07, pp. 125-135, Jul. 2007.

[48] J. Kho, A. Rogers, and N.R. Jennings, “Decentralized control of adaptive sampling in

wireless sensor networks,” ACM Trans. On Sensor Netw., vol. 5, no. 3, pp. 19, 2009.

140

[49] A. McCree, K. Brady, and T.F. Quatieri, “Mulitsensor very lowbit rate speech coding

using segment quantization,” IEEE Internat. Conf. on Acoust., Speech and Signal Proc.

IEEE, pp. 3997-4000, 2008.

[50] M. Pursley and L. Davisson, “Variable rate coding for nonergodic sources and classes

of ergodic sources subject to a fidelity constraint,” IEEE Trans. On Inf. Theory, vol. 22,

no. 3, pp. 324-337, 1976.

[51] A. Koubaa, M. Alves, M. Attia, and A. Van Nieuwenhuyse, “Collision-free beacon

scheduling mechanisms for IEEE 802.15.4/zigbee cluster-tree wireless sensor

networks,” Proc. of the 7th Int. Worksh. On Appl. and Serv. In Wireless Netw. (ASWN),

2007.

[52] V. Paxson and S. Floyd, “Wide area traffic: the failure of Poisson modelling,”

IEEE/ACM Trans. On Networking, vol. 3, no. 3, pp. 226-244, Mar. 1995.

[53] K. Park, G. Kim, and M. Crovella, “On the relationship between file sizes, transport

protocols, and self-similar network traffic,” Proc. 1996 Int. Conf. on Network Prot.

IEEE, pp. 171-180, 1996.

[54] M. Dai, Y. Zhang, and D. Loguinov, “A unified traffic model for MPEG-4 and H.264

video traces,” IEEE Trans. On Multimedia, vol. 11, no. 5, pp. 1010-1023, May 2009.

[55] M. Tagliasacchi, S. Tubaro, and A. Sarti, “On the modeling of motion in Wyner-Ziv

video coding,” IEEE Int. Conf. on Image Process. IEEE, pp. 593-596, 2006.

[56] E.Y. Lam and J.W. Goodman, “A mathematical analysis of the DCT coefficient

distributions for images,” IEEE Trans. On Image Process., vol. 9, no. 10, pp. 1661-

1666, Oct. 2000.

[57] Y. Andreopoulos and I. Patras, “Incremental refinement of image salient-point

detection,” IEEE Trans. On Image Process., vol. 17, no. 9, pp. 1685-1699, 2008.

[58] G. Lu, B. Krishnamachari, and C.S. Raghavendra, “Performance evaluation of the IEEE

802.15.4 MAC for low-rate low-power wireless networks,” IEEE Int. Conf. on Perf.,

Comput., and Comm. IEEE, pp. 701-706, 2004.

[59] W.R. Gilks and P. Wild, “Adaptive rejection sampling for Gibbs sampling,” Applied

Statistics, pp. 337-348, 1992.

[60] Crossbow Technology, Inc., “Imote2 hardware reference manual,” rev. A, Sep. 2007

[61] Moteiv Corporation, “Telos (Rev B): PRELIMINARY Datasheet,” May, 2004.

141

[62] T. Nagayama and B.F. Spencer, Jr., “Structural health monitoring using smart

sensors,” NSEL Report, No. NSEL-001, Nov. 2007.

[63] J. Mo, H. S. Wilson and J. Walrand, “Comparison of multichannel MAC protocols,”

IEEE Trans. on Mob. Comput., vol. 7, no. 1, pp. 50-65, Jan, 2008.

[64] G. Zhou, C. Huang, T. Yan, T. He and J. A. Stankovic, “MMSN: Multi-Frequency media

access control for wireless sensor networks,” IEEE InfoCom. 2006.

[65] H.W. So, J. Walrand and J. Mo, “McMAC: A parallel rendezvous multi-channel MAC

protocol,” Proc. IEEE Wireless Comm. and Networking Conf. (WCNC’07), Mar. 2007.

[66] J. So and N. Vaidya, “Multi-Channel MAC for ad hoc networks: handling multi-

channel hidden terminals using a single transceiver,” Proc. ACM MobiHoc, May 2004.

[67] T. Luo, M. Motani and V. Srinivasan, “Cooperative asynchronous multichannel MAC:

design, analysis, and implementation,” IEEE Trans. on Mob. Comput., vol. 8, no. 3, Mar

2009.

[68] S.-L. Wu, Y.-C. Tseng, C.-Y. Lin and J.-P. Sheu, “A multi-channel MAC protocol with

power control for multi-hop mobile ad hoc networks,” The Computer J., vol. 45, no. 1,

pp. 101-110, 2002

[69] W.-C. Hung, K.L.E. Law and A. Leon-Garcia, “A dynamic multi-channel MAC for ad hoc

LAN,” Proc. 21st Biennial Symp. On Comm., Apr. 2002.

[70] A. Kansal, J. Hsu, S. Zahedi and M.B. Srivastava, “Power management in energy

harvesting sensor networks,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 4, Sep.

2007

[71] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: survey and

implications,” IEEE Comm. Surv. Tut., vol. 13, no. 3, pp. 443-461, quarter 2011.

[72] S. Chalasani and J.M. Conrad, “A survey of energy harvesting sources embedded

systems,” IEEE Southeastcon, 2008, pp.442-447, Apr. 2008

[73] V. Sharma, U. Mukherji, V. Joseph and S. Gupta, “Optimal energy management

policies for energy harvesting sensor nodes,” IEEE Trans. On Wireless Comm., vol. 9,

no. 4, pp. 1326-1336, Apr. 2010.

[74] B. Zhang, R. Simon and H. Aydin, “Energy management for time critical energy

harvesting wireless sensor networks,” Lecture Notes in Comp. Sc.: Stabil., Safety, and

Secur. of Distr. Syst., 2010, vol. 6366, pp. 236-251, 2010.

142

[75] C. Alippi, G. Anastasi, M. Di Francesco and M. Roveri, “Energy management in

wireless sensor networks with energy-hungry sensors,” IEEE Instr., & Meas. Mag.,

vol. 12, no. 2, pp. 16-23, 2009.

[76] C.M. Vigorito, D. Ganesan and A.G. Barto, “Adaptive control of duty cycling in energy-

harvesting wireless sensor networks,” in IEEE 4th Annual Comm. Soc. Conf. Sensor,

Mesh and Ad Hoc Comm. and Netw., pp. 21-30, Jun. 2007.

[77] H. Besbes, G. Smart, D. Buranapanichkit, C. Kloukinas and Y. Andreopoulos,

“Analytic Conditions for Energy Neutrality in Uniformly-formed Wireless Sensor

Networks,” Submitted to IEEE Transactions on Wireless Communications, - Under

review.

[78] L. Benini, A. Bogliolo and G. De Micheli, “A survey of design techniques for system-

level dynamic power management,” IEEE Trans. On Very Large Scale Integr. (VLSI)

Syst., vol. 8, no. 3, pp. 299-316, 2000.

[79] N. Pettis, L. Cai and Y.-H. Lu, “Dynamic power management for streaming data,” Proc.

of the Inter. Symp. on Low Power Elec. and Design, 2004. ISLPED '04. pp. 62-65, Aug.

2004.

[80] L. Cai and Y.-H. Lu, “Energy management using buffer memory for streaming data,”

IEEE Trans. on Comp.-Aided Design of Integ. Circ. and Syst., vol. 24, pp. 141-152, Feb.

2005.

[81] C.M. Lien, S.H. Chang, C.S. Chang, and D.S. Lee, “Anchored desynchronization,”

Proceedings IEEE INFOCOM, pp. 2966-2970, 2012.

[82] D. De Guglielmo, G. Anastasi, and M. Conti, “A localized de-synchronization algorithm

for periodic data reporting in IEEE 802.15. 4 WSNs”, IEEE Symposium on Computers

and Communications (ISCC), IEEE, pp. 605-610, 2012.

[83] T. Settawatcharawanit, S. Choochaisri, C. Intanagonwiwat, and K. Rojviboonchai, “V-

desync: Desynchronization for beacon broadcasting on vehicular networks,” IEEE

Vehicular Technology Conference (VTC Spring), IEEE, pp. 1-5, 2012.

[84] S. Choochaisri, K. Apicharttrisorn, K. Korprasertthaworn, P. Taechalertpaisarn, and

C. Intanagonwiwat, “Desynchronization with an artificial force field for wireless

networks,” ACM SIGCOMM Computer Communication Review, ACM, vol. 42, no. 2, pp.

7-15, 2012.

143

[85] J. Klinglmayr and C. Bettstetter, “Self-organizing synchronization with inhibitory-

couples oscillaotrs: convergence and robustness,” ACM Transactions on Autonomous

and Adaptive Systems (TAAS), vol. 7, no. 3, Sept. 2012.

[86] R. Pagliari and A. Scaglione, “Scalable network synchronization with pulse-coupled

oscillators,” IEEE Trans. on Mobile Computing, vol. 10, no. 3, pp. 392–405, 2011.

[87] Y.-W. Peter Hong, A. Scaglione, and R. Pagliari, “Pulse coupled oscillators’ primitive

for low complexity scheduling,” IEEE International Conference Acoustics, Speech and

Signal Processing (ICASSP), pp. 2753–2756, 2009.

[88] A. Mutazono, M. Sugano, and M. Murata, “Energy efficient self-organizing control for

wireless sensor networks inspired by calling behavior of frogs,” Computer

Communications, Elsevier, 2011.

[89] S. Ashkiani and A Scaglione, “Discrete Dithered Desynchronization,” arXiv preprint

arXiv:1210.2122, 2012.

[90] H. Yamamoto, N. Wakamiya, and M. Murata, “An Inter-Networking Mechanism with

Stepwise Synchronization for Wireless Sensor Networks,” Sensors, Molecular

Diversity Preservation International, vol. 11, no. 9, pp. 8241-8260, 2011

[91] T. Nakano, “Biologically inspired network systems: a review and future prospects,”

IEEE Trans. on Syst., Man, and Cybernetics, Part C: Applications and Reviews, IEEE, vol.

41, no 5, pp. 630-343, 2011.

[92] I. Bojic, and V. Podobnik, and I. Ljubi, and G. Jezic, and M. Kusek, “A self-optimizing

mobile network: Auto-tuning the network with firefly-synchronized agents,”

Information Sciences, Elsevier, vol. 182, no. 1, pp. 77-92, 2012.

[93] A. Cornejo, and F. Kuhn, “Deploying wireless networks with beeps,” Distributed

Computing, Springer, pp. 148-162, 2010.

[94] G. Strang, and T. Nguyen, Wavelets and filter banks, Cambridge University Press,

1996.

[95] A. Sinha, and A. P. Chandrakasan, “Dynamic power management in wireless sensor

networks,” IEEE Design & Test of Computers, vol. 18, no. 2,pp. 62-74, 2001.

[96] N. A. Pantazis, D. J. Vergados, D. D. Vergados and C. Douligeris, “Energy efficiency in

wireless sensor networks using sleep mode TDMA scheduling,” Ad Hoc Networks

,Elsevier, vol. 7, no. 2, pp. 322- 343, Mar 2009.

144

[97] F. Salvadori, M. Campos, P. S. Sausen, R. F. Camargo, C. Gehrke, C. Reach, M. A. Spohn,

and A. C. Oliveira, “Monitoring in industrial systems using wireless sensor network

with dynamic power management,” IEEE Trans. On Instrumentation And

Measurement ,vol. 58, no. 9, pp. 3104-3111, Sep 2009.

[98] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, “MAC essentials for wireless

sensor networks,” IEEE Comm. Surv. Tut., vol. 12, no. 2, pp. 222-248, quarter 2010.

[99] G. WernerAllen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity and yield in a

volcano monitoring sensor network,” 7th symposium on Operating systems design and

implementation. ACM, pp. 381-396, 2006.

[100] D. Palma, L. Bencini, G. colloid, G. Manes, F. Chiti, R. Fantacci, and A. Manes,

“Distributed monitoring systems for agriculture based on wireless sensor network

technology,” International Journal on Advances in Networks and Services, vol. 3, 2010.

[101] D. Lucarelli, and I-J. Wang, “Decentralized synchronization protocols with nearest

neighbor communication,” SenSys '04 Proceedings of the 2nd international conference

on Embedded networked sensor systems, ACM, pp. 62-68, 2004

[102] A. Tyrrell, G. Auer, and C. Bettstetter, “Biologically inspired synchronization for

wireless networks,” Series: Studies in Computational Intelligence, Springer, 2007.

[103] D. Buranapanichkit, A. Vittorioso, G. Fortino and Y. Andreopoulos, “Performance

Comparison of Centralized and Distributed Coordination for TDMA Operation in

Wireless Sensor Networks,” London Communication Symposium (LCS), 2011.

[104] A. Vittorioso, D. Buranapanichkit, G. Fortino and Y. Andreopoulos, “Coordination For

TDMA Operation In WSNs: Comparison Between Centralized and Distributed

Mechanisms,” the 9th European Conference on Wireless Sensor Networks (EWSN),

2012

[105] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: Distributed randomized TDMA

scheduling for wireless ad-hoc networks,” IEEE Trans. Mob. Comput., Oct. 2009.

[106] A. Mutazono, M. Sugano, and M. Murata, “Frog call-inspired self-organizing anti-

phase synchronization for wireless sensor networks,” Nonlinear Dynamics and

Synchronization, INDS IEEE, pp. 81 – 88, Jul. 2009.

[107] P. Taechalertpaisarn, S. Choochaisri, and C. Intanagonwiwat, “An orthodontics-

inspired desynchronization algorithm for wireless sensor networks,”

Communication Technology (ICCT), 2011 IEEE, pp. 631-636, Sept. 2011.

145

[108] H. Kang and J. L. Wong, “A localized multi-hop desynchronization algorithm for

wireless sensor networks,” INFOCOM 2009, IEEE, pp. 2906-2910, Apr. 2009.

[109] C. Mühlberger, R. Kolla, “Extended desynchronization for multi-hop topologies,”

Technical Report, Institut für Informatik, Universität Würzburg, 2009.

http://www5.informatik.uniwuerzburg.de/publications/techreports/tr_extdesync.

pdf

[110] R. Mirollo and S. Strogatz, “Synchronization of pulse-coupled biological oscillators,”

SIAM Journal of Applied Mathematics, vol. 50, no. 6, pp. 1645-1662, 1990.

[111] S. H. Strogatz and I. Stewart, “Coupled oscillators and biological synchronization,”

Scientific American, 1993

[112] Y. W. Hong and A. Scaglione, “Time synchronization and reach-back communications

with pulse-coupled oscillators for UWB wireless ad hoc networks,” Ultra Wideband

Systems and Technologies, 2003 IEEE, pp. 190-194, Nov. 2003.

[113] I. Dietrich and F. Dressler, “On the lifetime of wireless sensor networks,” ACM Trans.

Sensor Netw., vol. 5, no. 5, Feb. 2009.

[114] A. Ghosh and S. K. Das, “Coverage and connectivity issues in wireless sensor

networks: a survey,” Pervasive and Mobile Computing, Elsevier, vol. 4, no. 3, pp. 303-

334, Jun. 2008.

[115] A. S. Hu and S. D. Servetto, “On the scalability of cooperative time synchronization in

pulse-connected networks,” IEEE Trans. Information Theory, vol. 52, no. 6, pp. 2725-

2748, Jun. 2006.

[116] R. Mangharam, A. Rowe, and R. Rajkumar, “Firefly: A cross-layer platform for real-

time embedded sensor networks,” Real Time Systems Journal, Springer, vol. 37, no. 3,

pp. 183-231, Dec. 2007.

[117] X. Y. Wang and A. B. Apsel, “Pulse coupled oscillator synchronization for low power

UWB wireless transceivers,” Circuits and Systems, MWSCAS 2007, pp. 1524-1527,

Aug. 2007.

[118] E. Mallada and A. Tang, “Synchronization of phase-coupled oscillators with arbitrary

topology,” American Control Conference (ACC), 2010, pp. 1777-1782, Jul. 2010.

[119] S. R. Campbell, D. L. Wang, and C. Jayarakash, “Synchrony and desynchrony in

integrate-and-fire oscillators,” Neural Comput., vol. 11, no. 7, pp. 1595-1619, Oct.

1999.

146

[120] M. B. H. Rhouma and H. Frigui, “Self-organization of pulse-coupled oscillators with

applications to clustering,” IEEE Trans. Pattern Anal. Machine Intell., vol. 23, no. 2, pp.

180-195, Feb. 2001.

[121] R. Mathar and J. Mattfeldt, “Pulse-coupled decentral synchronization,” SIAM J. Appl.

Math., vol. 56, no. 4, pp. 1067-1116, Aug. 1996.

[122] A. Dailot, D. Dolev, and H. Parnas, “Self-stabilizing pulse synchronization inspired by

biological pacemaker networks,” Lecture Notes in Compu. Science: Self-Stabilizing

Systems, Springer, vol. 2704, pp. 32-48, 2003.

[123] http://ubi.cs.washington.edu/files/imote2/docs/PXA27x_Developers_Manual-

280000003.pdf

[124] D. J. Huang, K. J. You, and W. C. Teng, “Secured flooding time synchronization

protocol,” Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE, pp. 620-625, Oct.

2011.

[125] U. Schmid and K. Schossmaier, “Interval-based clock synchronization,” Real-Time

Systems, Springer, vol. 12, no. 2, pp. 173-228, Mar. 1997.

[126] P. Blum, L. Meier, and L. Thiele, “Improved interval-based clock synchronization in

sensor networks,” Information Processing in Sensor Networks, 2004. IPSN, pp. 349-

358, Apr. 2004.

[127] J.F. Mingorance-Puga, G. Maciá-Fernández, A. Grilo and N. M. C. Tiglao, “Efficient

multimedia transmission in wireless sensor networks,” Next Generation Internet

(NGI), 2010 6th EURO-NF Conference on IEEE, pp. 1-8, Jun. 2010.

[128] L. Shu, M. Hauswirth, L. Wang, Y. Zhang and J. H. Park, “Cross-layer optimized data

gathering in wireless multimedia sensor networks,” Computational Science and

Engineering, CSE’09 International Conference on IEEE, vol. 2, pp. 961-966, 2009.

[129] K. T. Phan, R. Fan, H. Jiang, S. A. Vorobyov and C. Tellambura, “Network lifetime

maximization with node admission in wireless multimedia sensor networks,” IEEE

Trans. on Vehicular Technology, vol. 58, no. 7, pp. 3640-3646, 2009.

[130] D. Kandris, M. Tsagkaropoulos, I. Politis, A. Tzes and S. Kotsopoulos, “Energy efficient

and perceived qos aware video routing over wireless multimedia sensor networks,”

Ad Hoc Networks, Elsevier, vol. 9, no. 4, pp. 591-607, Jun. 2011.

147

[131] A. Newell and K. Akkaya, “Self-actuation of camera sensors for redundant data

elimination in wireless multimedia sensor networks,” Communications, 2009. ICC '09.

IEEE International Conference, pp. 1-5, Jun. 2009.

[132] W. Yu, Z. Sahinoglu and A. Vetro, “Energy efficient jpeg 2000 image transmission

over wireless sensor networks,” Global Telecommunications Conference, 2004.

GLOBECOM '04. IEEE, vol. 5, pp. 2738-2743, Dec. 2004.

[133] A. Redondi, M. Cesana and M. Tagliasacchi, “Rate-accuracy optimization in visual

wireless sensor networks,” 19th IEEE International Conference on Image Processing

(ICIP), pp. 1105-1108, Oct. 2012.

[134] R. Adler, M. Flanigan, J. Huang, R. Kling, N. Kushalnagar, L. Nachman, C.-Y. Wan, and

M. Yarvis, “Intel mote 2: an advanced platform for demanding sensor network

applications,” the 3rd International Conference on Embedded Networked Sensor

Systems, vol. 2, no. 4, pp. 298–298, 2005.

[135] P. Chen, P. Ahammad, C. Boyer, S.-I. Huang, L. Lin, E. Lobaton, M. Meingast, S. Oh, S.

Wang, P. Yan, A. Yang, C. Yeo, L.-C. Chang, J. D. Tygar, and S. Sastry, “Citric: A low-

bandwidth wireless camera network platform,” Second ACM/IEEE International

Conference on Distributed Smart Cameras, ICDSC 2008, pp. 1-10, Sept. 2008.

[136] S. Paniga, L. Borsani, A. Redondi, M. Tagliasacchi and M. Cesana, “Experimental

evaluation of a video streaming system for wireless multimedia sensor networks,”

Ad Hoc Networking Workshop (Med-Hoc-Net), 2011 The 10th IFIP Annual

Mediterranean, pp. 165-170, Jun. 2011.

[137] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International

Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004.

[138] E. Rosten, R. Porter and T. Drummond, “Faster and better: A machine learning

approach to corner detection,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 32, pp. 105–119, 2010. [Online]. Available: http://lanl.arXiv.org/pdf/0810.2434

[139] M. Calonder, V. Lepetit, C. Strecha and P. Fua, “Brief: Binary robust independent

elementary features,” Computer Vision–ECCV 2010, pp. 778–792, 2010.

[140] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang, S. Glaser, and K.

Pister “OpenWSN: a standards-based low-power wireless development

environment.” Europ. Trans. on Emerg. Telecom. Technol., vol. 23, no. 5, pp. 480-493,

Aug. 2012.

148

[141] IEEE Standard for Local and Metropolitan Area Networks, Part 15.4: Low-Rate

Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer, IEEE

Computer Society, April. 16, 2012, online at: http://standards.ieee.org/getieee802/

Download/802.15.4e-2012.pdf

[142] J. Chen, S. Sheu, and C. Yang, “A New Multichannel Access Protocol for IEEE 802.11

Ad Hoc Wireless LANs,” Proc. 14th IEEE Int’l Symp. Personal, Indoor and Mobile Radio

Comm. (PIMRC ’03), vol. 3, pp. 2291-2296, Sept. 2003.

[143] http://tinyos.stanford.edu/tinyos-wiki/index.php/Main_Page

[144] http://www.contiki-os.org/index.html

[145] http://www.eecs.harvard.edu/ssc/sync

149

C. Supplementary Materials

Figure C.1: Code of SYNC algorithm

Figure C.2: Code of SYNC algorithm when considering the phase.

150

Figure C.3: Code of SYNC algorithm when transmitting data.

Figure C.4: Code for DESYNC-TDMA.

151

Figure C.5: Code for Desync-TDMA when transceiving data.

Figure C.6: Code of PCO-based inhibitory coupling.

152

We also provide a TinyOS nesC implementation of the proposed distributed

TFDMA online [45].

C.7 Distributed TFDMA Pseudocode

Events:
1 init(){

2 // configurable system parameters

3 T = 0.25 sec; alpha = 0.95; P_sw = 0.33; beta = 1.25; Z = 60; C = 3;

4 TDMA_threshold = 20 ms; // TDMA convergence threshold

5 channel_to_join = c/rand; s_d = 1; // all nodes join in a random Ch;set switch direction

6 // state flags

7 just_fired = False; TDMA = False; switch_mode = False; just_switched = False;

8 // state variables

9 next_fire = last_fire = 0; // detected Fire times of previous and next node

10 tot_sw_period = tot_Z_period = 0;// period counters during: switch mode & switching inactivity

11 W_prev = W_new = 0; // total nodes in previous & new channel (for node switching)

12 my_scheduled_fire = Now + T; // time that the node is scheduled to broadcast own Fire msg

13 // initialization here

14 call SwitchChannel(channel_to_join); call SetFireTimer(my_scheduled_fire);

15 }

16

17 on_Fire_timer_expire(){ // event to handle node’s own Fire msg broadcast

18 if (just_switched == False){

19 call SendFireMsg();

20 if (switch_mode == False){ call CheckForSwitching(); } // allows switching during convergence

21 just_fired = True; W_prev = 0;

22 }else{ call CalculateChannelToStay(); }

23 }

24

25 on_receive_Fire_Msg(){ // event to handle reception of Fire msg

26 if (just_fired == True){ // this msg came just after own Fire msg-->calc next Fire time

27 just_fired = False; next_fire = Now; call CalculateNextFireTime();

28 }else{ last_fire = Now; } // this msg becomes the last Fire msg we heard before our own

29 if (just_switched == False){ W_prev++; }else{ W_new++; }

30 }

31

32 on_receive_Switch_Msg(type){ // event to handle reception of Switch msg

33 if (type == RETURN) {

34 P_sw = P_sw/beta; s_d = -s_d; // node returns --> decrease P_sw, change switch direction

35 switch_mode = False; just_switched = False; W_prev = W_new = 0;

36 }else{ switch_mode = True; just_switched = False; }

37 }

Supporting Tasks:
38 Task CalculateNextFireTime(){ // calculates own scheduled Fire time via reactive listening

39 if (switch_mode == True){

40 my_scheduled_fire = Now + T; // in switch mode we fire every T sec

41 if (just_switched == False){ // for nodes remaining in the same channel

42 tot_sw_period++;

43 if (tot_sw_period == 2){ // no switch msg received --> increase P_sw

44 P_sw = P_sw*beta; tot_sw_period = 0;

45 }

46 }

47 }else{ my_scheduled_fire = T + (1-alpha)* Now + (alpha)*((next_fire + last_fire)/2); }

48 call SetFireTimer(my_scheduled_fire);

49 if (my_scheduled_fire - Now – T < TDMA_threshold){ TDMA = True; }else{ TDMA = False; }

50 }

51

52 Task CalculateChannelToStay(){ // decide on channel switching based on reactive listening

53 if ((W_new + 2) > W_prev){

54 call SendSwitchMsg(RETURN);// return to old Ch and broadcast RETURN msg

55 s_d = -s_d; // change switch direction (for next time)

56 } // else stay in the same channel

57 switch_mode = False; just_switched = False; W_prev = W_new = 0;

58 }

59

60 Task CheckForSwitching(){ // performs channel switching (via P_sw or after Z periods)

153

61 rand_num = rand(); // random number between (0,1)

62 if (rand_num <= P_sw OR tot_Z_period == Z){

63 call SendSwitchMsg(SWITCH) // broadcast SWITCH msg in old Ch before switching to new Ch

64 channel_to_join += s_d; // switch to the next or previous channel (since s_d = +/-1)

65 if (channel_to_join > C) channel_to_join=1;

66 if (Channel_to_join < 0) channel_to_join=C;

67 W_new = 0; call SwitchChannel(channel_to_join);

68 P_sw = P_sw/beta; just_switched = True; tot_Z_period = 0;

69 }else{ tot_Z_period++; }

70 }

Notes on Pseudocode C.7:

 Configurable system parameters: For details on the utilized parameters, please see in

chapter 3. All nodes are set by default to join channel with a random number between 1

and C or one of the ܥ available channels randomly (channel_to_join in line 5). The

provided NesC code leads to balanced TFDMA for arbitrary sets of parameters; as such

the system parameters per node can be configured according to the throughput/delay

constraints and the connectivity constraints of a particular application and they don’t

need to be identical in all sensor nodes.

 Explanation of State flags:

o just_fired: This flag becomes True once the node broadcasts its own Fire

message (line 21). It is used to identify the first Fire message received after the

node’s own Fire message (lines 26-27).

o TDMA: This flag becomes True once desynchronization to TDMA within the current

channel has been reached (line 49).

o switch_mode: This flag becomes True once a switch message is received with the

SWITCH argument (line 36). It controls: (i) if switching can be pursued by the node or

not (line 20); (ii) whether the node’s own Fire message broadcast will be repeated

every Ts (lines 39, 40), or if it will be set via reactive listening (line 47).

o just_switched: This flag becomes True once the node switches a channel (line

68) to listen to Fire messages for channel switching based on reactive listening. It

controls: (i) whether to send a Fire message, or simply check for Fire messages

received in order to decide on which channel to remain to (line 18,

CalculateChannelToStay() in line 22); (ii) whether the node will increment

W_prev or W_next (line 29); (iii) whether the node will increment the number of

periods it will wait for switch mode to expire (line 41,42), which will happen if

switch_mode = True and just_switched = False.

 General remarks:

o We do not explicitly present the handling of the case when a node joins a channel as

the only node, in which case it will have to fire independently every Ts. This requires

trivial modifications and it is already supported in the provided NesC source code.

o The provided pseudocode does not explicitly take into account whether the new

channel that the node attempts to switch to is in switch mode as well (footnote 3 of

the chapter 3). This is however taken into account in the provided source code.

o The provided pseudocode and the NesC implementation support only the case of

ܹୱ୵ = 1 that has been proven to be stable via Proposition 1 of the chapter 3.

o In the pseudocode presented, s_d alternates between +1 and -1 (lines 34 & 55). For

C>3, this is enhanced by gradually increasing s_d via the use of the values:

 [+1, -1, +2, -2, +3, -3, +4, -4, +5, -5, +6, -6, +7, -7,

+8, –8]

154

The limit is ±8 since IEEE802.15.4 supports only up to 16 channels. In general, ݏܿ is

increased up to ⌊2/ܥ⌋± to cover all possible channels, as mentioned before eq. (1) in

chapter 5. This is dealt with in a straightforward manner in the provided NesC code

via the use of a vector with the above values; we do not include this in the

pseudocode for brevity of description.

o The provided implementation handles all events via a single timer, since only the fire

messages need to be scheduled and all other decisions are reactive based on the

messages received. This follows the PCO TDMA approaches. This is an important

aspect that demonstrates the practicality of the proposed TFDMA approach: time-

frequency balancing can be achieved without requiring an additional timer or any

form of complicated hardware support.

C.2 Implementation the iMote2 for TinyOS 1.x

% TinyOS iMote2 NesC code for desynchronization
% This code produces the multi-channel desynchronization of the manuscript:
% D. Buranapanichkit and Y. Andreopoulos, "Distributed Time-Frequency Division Multiple
% Access Protocol For Wireless Sensor Networks", IEEE Wireless Communications Letters,
% submitted.

% The provided code in folder /DesyncSwitch is including only the basic functionality of
% desynchronization. This was done for ease of illustration of the algorithms tested.
% The code is set for 4 channels; the total number channels can be easily selected within the
source code.

Installing the iMote2 Development Environment for TinyOS 1.x

step 1 Installing Cygwin if you use Windows
• Download and install the latest version of Cygwin from Sourceware

(http://sourceware.org/cygwin/)
step 2 Downloading the TinyOS1.x source code

• Install the latest version of TinyOS 1.x from SourceForge
• Configuring the TinyOS1.x Tree for iMote2, see

http://shm.cs.uiuc.edu/files/GettingStarted_Imote2.pdf
(this document has complete instructions for all the steps required before you can
use the provided code for desynchronization)

step 3 Installing the NesC compiler
• Download the latest version of the compiler from SourceForge

step 4 Installing the Wasabi tool suite
• Download the wasabi tool suite from the Intel website

(http://www.intel.com/design/intelxscale/dev_tools/031121/)

Testing the application (instructions refer to Windows and Cygwin, straightforward
modifications are required for usage under Linux)

step 1 Create the new folder for the application at directory c:\tinyos\cygwin\opt\apps
step 2 Update the interface file of the TinyOS 1.x for the iMote2

• CC2420RadioM.nc file at directory
c:\tinyos\cygwin\opt\tos\lib\CC2420Radio

155

For the number of Imotes you would like to test with, repeat the steps below before using
them to measure.
step 3 Compile the application for the iMote2 in the Cygwin shell:

cd $TOSROOT/apps/Desync
ADDRESS=x make imote2

with x being the node id
step 4 Plug the USB cable to the PC and directly to the Crossbow iMote2
(http://www.xbow.com). Turn Imote2 on.
step 5 Download the iMote2 application with the USB loader:

USBLoaderHost –p build/imote2/main.bin.out

Once all motes have been loaded with the application, you can also configure another 4 Imotes
as base stations to record all messages in the 4 channels used. Switching on the base stations
and the test motes produces the results of the manuscript.

