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Abstract

In computational evolutionary biology, verification and benchmarking is a challenging task because the evolutionary his-
tory of studied biological entities is usually not known. Computer programs for simulating sequence evolution in silico have
shown to be viable test beds for the verification of newly developed methods and to compare different algorithms. However,
current simulation packages tend to focus either on gene-level aspects of genome evolution such as character substitutions
and insertions and deletions (indels) or on genome-level aspects such as genome rearrangement and speciation events. Here,
we introduce Artificial Life Framework (ALF), which aims at simulating the entire range of evolutionary forces that act on
genomes: nucleotide, codon, or amino acid substitution (under simple or mixture models), indels, GC-content amelioration,
gene duplication, gene loss, gene fusion, gene fission, genome rearrangement, lateral gene transfer (LGT), or speciation. The
other distinctive feature of ALF is its user-friendly yet powerful web interface. We illustrate the utility of ALF with two possible
applications: 1) we reanalyze data from a study of selection after globin gene duplication and test the statistical significance of
the original conclusions and 2) we demonstrate that LGT can dramatically decrease the accuracy of two well-established or-
thology inference methods. ALF is available as a stand-alone application or via a web interface at http://www.cbrg.ethz.ch/alf.
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Introduction

To unravel evolutionary relations among single molecu-
lar characters, genes, genomes, and species, computational
evolutionary biology methods typically infer past events
from current data. Because of the inherently unknown na-
ture of these past events, model and method validation and
comparison is notoriously difficult. Computer programs
that simulate evolution in silico provide viable test beds
to understand and characterize new models and methods.
Since simulations rely on simplifying models, they neces-
sarily lack realism. Nevertheless, they provide a way—often
the only way—to investigate and test evolutionary models,
algorithms, and implementations under controlled condi-
tions. Thus, validation by simulation is often considered an
insufficient but necessary step to propose a new method.
Programs to simulate biological sequences can be
divided into two main categories. In population genet-
ics, simulation takes into account changes within and
across populations of individuals that arise by models
of sex, recombination, or gene conversion. Simulation is
performed backward in time under the coalescent (e.g,
Hudson 2002; Spencer and Coop 2004; Schaffner et al.
2005) or forward in time (e.g, Peng and Kimmel 2005;
Hoggart et al. 2007; Chadeau-Hyam et al. 2008; Hernandez
2008; O’Fallon 2010; Peng and Liu 2010). In phylogenetics
and evolutionary biology, simulation involves single rep-
resentatives of species related by a tree and is performed
forward in time. In this latter context, various simulation
programs have been developed for different evolutionary
models. Most of them simulate evolution at the gene or

protein sequence level, as opposed to the genome level.
Darwin (Gonnet et al. 2000) offers functions for mutating
sequences along a branch, including gaps. PAML evolver
(Yang 1997), Seq-Gen (Rambaut and Grassly 1997), and its
extensions PSeq-Gen (Grassly et al. 1997) and CS-PSeq-Gen
(Tufféry 2002) were among the first popular programs that
allowed synthetic evolution of a DNA (or protein) sequence
along a given tree. They include support for several mod-
els of nucleotide substitution as well as site-specific rate
heterogeneity. None of these programs support insertions
and deletions (indels). Only very recently indel simulation
was included alongside the point mutation process and ad-
ditional sequence features such as variable over time mu-
tation rates or sequence motifs: EvolveAGene (Hall 2008),
MySSP (Rosenberg 2005), Hetero (Jermiin et al. 2003), indel-
Seq-Gen (Strope et al. 2007), Rose (Stoye et al. 1998). An-
other program, SISSI (Gesell and Haeseler 2006), simulates
site-specific interactions. Although most programs typically
use biologically very simple indel simulation, some programs
also incorporate more advanced models for indel forma-
tion and distribution: SIMPROT (Pang et al. 2005), Dawg
(Cartwright 2005), and INDELible (Fletcher and Yang 2009).
Additionally, PhyloSim (Sipos et al. 2011) simulates com-
plex rate variations and selective constraints with multiple
substitution and indel processes. To our knowledge, Evol-
Simulator (Beiko and Charlebois 2007) is the only program
to go beyond single sequence simulation and allowing ge-
nomic effects such as gene duplication or lateral gene trans-
fer (LGT). This program, however, is limited in the choice
of evolutionary models and lacks support for insertions and
deletions at the sequence level.
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Here, we introduce Artificial Life Framework (ALF), which
we developed with the long-term goal of simulating the en-
tire range of evolutionary forces that act on genomes. In
this first release, we primarily focus on species-level evolu-
tion. ALF evolves an ancestral genome, represented by an
ordered set of sequences, along a tree into a number of de-
scendant synthetic genomes. At the level of a gene, ALF can
simulate evolution at the nucleotide, codon, or amino acid
level with indels and among-site rate heterogeneity and sup-
ports most established models of character substitution. To
mimic different types of sequences (e.g, coding sequence vs.
noncoding, functional genes vs. pseudogenes, etc.), multiple
sequence classes can be defined, each with their own mod-
els of substitution, insertion—deletion, and among-site rate
variation. At a more global genomic level, ALF can simulate
GC-content amelioration (Lawrence and Ochman 1997),
gene duplication and loss, genome rearrangements, several
types of LGT, and speciation events. The user can provide
a starting (ancestral) genome or have one generated ran-
domly. The output consists of the simulated genomes, mul-
tiple sequence alignments, and gene trees of all gene fami-
lies, all ancestral sequences, the true species tree including
LGTs, and for each pair of genomes the sets of orthologous,
paralogous, and xenologous sequences. In future releases of
ALF, we aim to incorporate more evolutionary models, in-
cluding population-level events such as recombination.

This article is organized as follows. We first provide an
overview of ALFs architecture and briefly describe how to
set up a simulation scenario via ALFs web interface. We then
summarize various control experiments conducted to en-
sure ALFs correctness. Finally, we present applications of
ALF to two bioinformatics problems: First, we reanalyze data
from a study of selection after globin gene duplication and
test the statistical significance of the original conclusions;
second, we demonstrate that LGT can dramatically decrease
the accuracy of two well-established orthology inference
methods.

Methods and Materials

Overview of the Simulation Process

ALF generates a set of species genomes starting from a sin-
gle ancestral genome sequence. The ancestral genome may
be represented by biological sequences supplied by the user
or generated randomly according to user specifications. A
species tree may also be specified by the user or randomly
generated. In the course of the simulation, ALF evolves the
root genome along the tree, where each node defines a spe-
ciation event. The emerging genomes are exposed to the
evolutionary processes implemented in ALF.

Figure 1 gives a graphical overview of the ALF simula-
tion pipeline. Character substitutions occur according to
the substitution probability matrix of a selected amino acid,
codon, or nucleotide model for a given branch length. Dif-
ferent models can be specified for simulation, for exam-
ple, one codon and one nucleotide model could be used
to distinguish coding and noncoding regions, respectively.
The rate of substitution can differ over sites and genes. ALF
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FIG. 1. Overview of the ALF simulation process. A root genome is
evolved along a species tree. Events at the site, sequence and genome
level are simulated iteratively.

allows for each species to have its own underlying equilib-
rium base frequencies, for instance, to simulate drift toward
species-specific GC content.

The simulation of other evolutionary processes is based
on Gillespie’s algorithm with exponential waiting times
(Gillespie 1977), providing for realistic scenarios with
parallel simulations of events at the sequence and genome
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level. Indel events occur additionally and independently
of substitutions with separate rates for indels. Indels that
would disrupt protein function by introducing frame shifts
are not allowed when simulating coding DNA. In that case,
ALF only simulates in-frame indels of nucleotide triplets or
codons, and insertions will not contain any stop codons.
Gene duplications, gene losses, and LGT alter the content
of each genome. All three types of events can affect sin-
gle or multiple genes. Genes in a genome can also be af-
fected by gene fusion events that join neighboring genes
into one and fission events that break an existing gene into
two. Finally, rearrangement events lead to the shuffling of
the genes within a genome.

The simulation starts by reading or generating a root
genome and a species tree that defines speciation times.
Then, gene- and genome-level events are generated on each
branch by drawing a random waiting time from an exponen-
tial distribution using the total rate of all events. An event
to occur after that time interval is selected based on its rel-
ative rate. Sequence level events (substitutions and indels)
are delayed until a gene/genome level event depends on
their execution or until the end of each branch. First, substi-
tutions are performed using a substitution probability ma-
trix. Afterward, indels are generated in a similar manner as
gene/genome level events.

ALF is highly configurable, allowing the simulation of ei-
ther all or an arbitrary subset of evolutionary events. Size and
number of the resulting organisms is only limited by com-
putational power. For example, evolving 20 genomes based
on the coding sequences of Escherichia coli (4,352 sequences
with a total length of 1,368,902 codons), using the empirical
codon model by Schneider et al. (2005) takes about 4.5 h on
an single Intel Xeon core at 2.26 GHz.

Evolutionary Events

Speciation

Speciation events in ALF occur according to a species tree,
fixed prior to simulation. ALF offers three options for obtain-
ing this tree: 1) A tree is sampled according to the birth—
death process with parameters A\ and p as described by
Gernhard (2008); because the resulting trees are ultramet-
ric, an exponentially distributed deviation is applied to each
branch according to Guindon and Gascuel (2003), 2) a tree
can be obtained by sampling uniformly from a variance
weighted least squares tree on 1,038 species based on data
from the OMA project (Dessimoz and Gil 2008), and 3) A
custom tree (e.g, a priori inferred) may be specified by the
user in Newick or DARWIN format.

At a speciation event, the two new species inherit the
ancestral genome while the genome-specific parameters
such as target GC content are adapted. As the simulation
progresses, the genomes of the two species evolve indepen-
dently and start undergoing different mutations and accu-
mulating differences.

Sequence Types
For each segment of the root genome, a sequence type can
be specified, which is defined by a substitution model, an

indel model, and a model for rate heterogeneity among
sites as described below. Switches between types can oc-
cur at gene duplication and speciation events, as specified
by the user. Sequence types allow for simultaneous simula-
tion of sequences with different characteristics, for example,
for coding and noncoding sequences.

Substitution

The user can choose to simulate nucleotide, codon, and/or
amino acid substitution. When simulating codon substitu-
tion, mutations that lead to the formation of a stop codon
(nonsense mutations) are ignored. Although stop codons
may occur in nature, in particular near the end of a se-
quence, they usually have a deleterious effect on protein
function and will be selected against.

Nucleotide Substitution Models. Nucleotide substitution is
simulated using one of four well-known Markov models.
The HKY (Hasegawa et al. 1985) and F84 (Felsenstein and
Churchill 1996) models allow for a different rate of transi-
tions and transversions as well as unequal base frequencies.
The TN93 model (Tamura and Nei 1993) is more general
in that it models transitions with two parameters. Other
simpler models, such as JC and K80, can be viewed as spe-
cial cases of TN93. Finally, model GTR (Tavaré 1986) is the
most general time reversible. In addition to the equilibrium
base frequencies, it allows for six different rate parameters
describing each type of substitution.

Codon Substitution Models. Codon models recently came
into prominence, but very few programs allow simulation of
the codon substitution process (for a review, see Anisimova
and Kosiol 2009). ALF enables the simulation of protein-
coding sequences under a range of codon models: the para-
metric site models M0, M2, M3, and M8 with variable selec-
tion pressure over sites (Yang et al. 2000), empirical codon
models derived by Schneider et al. (2005) and Kosiol et al.
(2007). Alternatively, a user-specified matrix can be used.

Amino Acid Substitution Models. For simulations at the
amino acid level, ALF offers seven substitution models.
These include PAM (Dayhoff et al. 1978), Gonnet (Gonnet
et al. 1992), JTT (Jones et al. 1992), WAG (Whelan and
Goldman 2001), LG (Le and Gascuel 2008), as well as two
models for ordered and disordered proteins (Szalkowski and
Anisimova 2011). The user can also choose to provide a
custom exchangeability matrix and frequencies.

Rate Heterogeneity, Domains, and Motifs. Notall genesin an
organism mutate at the same rate. Likewise, within genes,
different regions or sites may evolve faster or slower—for ex-
ample, transmembrane regions or active sites are known to
evolve fast or slow, respectively. ALF acknowledges this fact
in two ways. On the genome level, the overall rate of each
gene can be modified by a factor drawn from the Gamma
distribution (I') with parameter c,. This factor also affects
the indel rates. On the sequence level, ALF supports the
Gamma model with invariable sites (I" 4 1) (Gu et al. 1995).
Alternatively, the sequence can be divided into a number of
domains, all having their own mutation rate. The number
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of domains for a gene is chosen at random from a uniform
distribution between 1 and a user-defined maximal value,
and the mutation rate for each domain is drawn from the
Poisson distribution with user-specified mean.

When real sequence data are used for the root genome,
the user has the possibility to provide custom rates. This tai-
lors for simulating the evolution of well-characterized pro-
teins or can be used for testing the robustness of estimates
from empirical studies. Since domains can be as small as sin-
gle amino acids and the mutation rate can be set to zero, it
is possible to construct strictly conserved motifs.

GC-Content Amelioration. When ALF is used to simulate
evolution at the nucleotide or codon level, differences in
GC content can be simulated in two ways. One possibil-
ity is to switch to different substitution models specified by
the user at the internal nodes of the species tree. The other
possibility is to assign target nucleotide frequencies to the
genomes at the leaves of the species tree, either globally for
all substitution models or for each substitution model sepa-
rately. During the simulation, these frequencies are used to
compute the mutation matrix and to create sequence frag-
ments for insertions. As a consequence, GC content con-
verges over time to the target value defined for the leaves
of the tree. The actual nucleotide frequencies follow the for-
mula 7, = 7, -e%, where 7, and 7, are the base frequencies
at the beginning and end of the branch, respectively, and the
target frequencies are used in the rate matrix Q (Yang and
Roberts 1995). The target frequencies for the internal nodes
up to the root are computed as averages weighted by the
lengths of the outgoing branches. All genes within an organ-
ism (using the same substitution model) share the same GC
content. However, LGT may work against GC amelioration,
keeping the GC content different for some genes.

Target frequencies can be set globally or per substitution
model, and the user has the choice of having target frequen-
cies generated randomly or supplying his own.

Indel Formation

Length distributions and rates can be specified separately
for indels. Several possibilities for modeling the indel length
distribution have been implemented. The first model uses
the negative binomial distribution, which takes two pa-
rameters, an integer (r) and a proportion (g). By setting
r = 1, the distribution is geometric and equivalent to the
affine scoring model with gap open and gap extension costs
(Gotoh 1982).

The second method models indel lengths using the Zip-
fian distribution with one parameter (Benner et al. 1993;
Chang and Benner 2004).

Another available model is the generalized Qian-
Goldstein indel length distribution (Qian and Goldstein
2001), which uses a mixture of exponentials and adapts to
the branch lengths. Finally, the user can specify a customized
general discrete distribution.

In order to cut the tail of the chosen indel length distri-
bution, a maximum for the length of an indel can be de-
fined at which the distribution is truncated. For insertions,
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the content of the inserted segment is drawn from the equi-
librium character distribution for the species.

ALF offers two ways of placing deletions within the
sequence: 1) Following Cartwright's model in Dawg
(Cartwright 2005), each sequence is considered to be
embedded in a longer virtual sequence. Deletions affect-
ing the simulated sequence can start and/or end in this
virtual sequence. A deletion of length L4 in a sequence of
length L can therefore start at any position in the interval
[—L4 + 1,Ls]. This method ensures equal deletion proba-
bility for all sites but biases the deletion length distribution
toward smaller deletions because gaps overlapping with the
beginning or end of sequence get truncated. 2) Deletions
are placed within the simulated sequence in their entirety.
Given a deletion length L4 and sequence length L, the dele-
tion can start at any position in the interval [1,L; — L, + 1].
This way, the length of deletions matches more closely the
distribution specified, but with this strategy, the deletion
rate is not uniform over the entire sequence: the deletion
probability for sites close to the ends of the sequence is
lower than in the middle.

Gene Duplication and Gene Loss
Gene duplication and gene loss events occur randomly and
in parallel to the evolutionary events at the sequence level.
They can comprise one or several consecutive randomly se-
lected sequences up to a user-defined maximum. The new
copies from a duplication event are inserted as new se-
quences either directly after their originals or at a random
position in the genome. Furthermore, ALF accounts for neo-
functionalization (Ohno 1970) and subfunctionalization
(Lynch and Conery 2000) by temporarily altering the muta-
tion rate of duplicates or both, originals and duplicates, by
a user-defined amount. In the case of neofunctionalization,
this behavior corresponds to the idea that an organism can
afford to mutate a copied gene at a higher rate while still
maintaining the original function. The concept of subfunc-
tionalization assumes both copies of a duplicated gene to
be freed of evolutionary constraints and evolve in a comple-
mentary fashion.

Similarly, one or more genes are removed from the
genome in a gene loss event.

Lateral Gene Transfer

Apart from gene duplication, LGT is the second evolution-
ary process allowing a genome to acquire new genes. ALF im-
plements two kinds of LGT: orthologous replacement and
“novel acquisition” (Doolittle et al. 2003). In the first case,
the newly acquired gene replaces an orthologous genein the
recipient. In the second case, the new gene is added to the
recipient genome without any replacement. For “novel ac-
quisition,” not only a single gene but a whole group of genes
can be transferred.

The donor and recipient genomes as well as the genes to
be transferred are chosen at random. In the case of “novel
acquisition,” the transferred genes are inserted at a random
position in the recipient’s genome. With orthologous re-
placement, only genes that exist in both genomes can be
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transferred, and the transferred gene replaces its ortholog
in the recipient.

Gene Fusion and Fission
ALF supports gene fission events that break a gene into two
new sequences, either at a random location or at domain
borders. Fusion events merge two or more existing genes
into one new sequence.

Genome Rearrangement

In nature, the gene positions within a genome are not
fixed. Several mechanisms may cause gene translocations
or changes in the direction of the coding strand (Sankoff
and Nadeau 2003). In ALF, these genome rearrangements
are modeled as two independent phenomena.

First, genes can be moved to a different position within
the genome. Such translocations occur at a user-defined
rate and move a random number of consecutive genes to
a random position within the genome.

The second process is the inversion of a segment of the
genome, which results from the replacement of a segment
of DNA by its reverse complement. Translocations and in-
versions can also occur simultaneously, leading to so-called
inverted translocations.

Program Output

Although the probabilities of all evolutionary processes can
be adjusted, all events occur at random positions at ran-
dom points in time. Running ALF multiple times with the
same parameters will therefore lead to generating different
genomes with different histories in each run.

ALF saves the genomes of all species that arise during the
simulation, including the ancestors of the final species, as a
DARWIN (Gonnet et al. 2000) database containing all pro-
tein and DNA sequences (for simulations at the codon or
nucleotide level) and their evolutionary history. Addition-
ally, the sequences are saved in the FASTA format. Further-
more, true alignments and evolutionary histories (including
all LGTs) are recorded during the simulation process for all
gene families. A set of all orthologous genes of a gene family
can also be assembled.

Web Interface and Stand-Alone Version

A web interface for ALF is available at http://www.cbrg.
ethz.ch/alf. It provides the user with an intuitive way for set-
ting simulation parameters and is organized hierarchically,
reflecting the level upon which each force acts (fig. 1). To
make usage of ALF as simple as possible, the user can rely
on contextual help for all parameters as well as a selection
of presets for typical applications (including those outlined
below). The web interface can be used either to prepare a
configuration file for the stand-alone version of ALF or to
run the simulation directly on our servers.

For extensive simulations, we recommend using the
stand-alone version of ALF that is available for Linux and
Mac OS X and can be downloaded freely from the same web
address.

Validation
To validate our simulation framework, we ran separate sim-
ulations to test the various processes and models of the
framework:

e We ascertained that basic properties of the simulation
were not violated. For example, without the simulation
of gene loss, sequences should not disappear from the
genomes. Similarly, the sequence lengths should not
change when no indels are simulated.

e We ensured that evolutionary distances between pairs
of resulting sequences matched the distances from the
input tree when estimated using the same model (sup-
plementary fig. 5, Supplementary Material online).

® For parametric models, we used codeml (Yang 1997)
to reestimate the parameters of the substitution rate
matrices used for the simulation. In all cases, the
parameter estimates were close to the true values (sup-
plementary table 2, Supplementary Material online for
codon models and supplementary table 3, Supplemen-
tary Material online for nucleotide models).

e We compared the distribution of indel length specified
in the simulation to the resulting distribution of gap
lengths in the true alignment between gene pairs, using
a x2-test for goodness of fit. As long as there were no or
few overlapping indel events, no significant differences
were observed. As the proportion of overlapping indels
increases, the length distribution of gaps becomes bi-
ased toward longer gaps (supplementary figs. 6 and 7,
Supplementary Material online)—an expected behav-
ior because overlapping indels appear as a single gap.

e In simulations with GC-content amelioration, we con-
firmed that, when the branch lengths are sufficiently
long, the base frequencies converge to the specified tar-
get frequencies, both for nucleotide and codon models.

e We ensured correctness of the Gillespie algorithm by
comparing the distribution of waiting times between
events to the theoretical exponential distribution us-
ing a x*-test for goodness of fit (supplementary fig. 8,
Supplementary Material online).

Results and Discussion

In order to illustrate the utility of ALF, we discuss two ex-
ample studies below. First, we investigate the accuracy of a
clade codon model (Bielawski and Yang 2004) by looking at
the empirical distribution of the parameters. In the second
study, we analyze how LGT affects prediction accuracy of
two orthology inference methods.

Testing Selection Regimes in Globin Gene Family

In vertebrates and some other species, oxygen is transported
from lungs to tissues by means of binding with hemoglobin.
In most vertebrates, hemoglobin is a tetramer of two pairs
of subunits designated o and f3. In placental mammals, two

1119


http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr268/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr268/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr268/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr268/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr268/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr268/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr268/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr268/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr268/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr268/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msr268/-/DC1
http://www.cbrg.ethz.ch/alf
http://www.cbrg.ethz.ch/alf

Dalquen etal. - doi:10.1093/molbev/msr268

MBE

Table 1. ML Estimates of Model Parameters for the Globin Data Set and the “Globin-Like” Simulated Data.

Data Set Model Parameters Estimates l
Globin data set Mo w = 0.191 —2477.82
(real data)
M3 wo = 0,pg = 0.134 —2442.4
wy = 0.072, p1 = 0.604
wy = 0.607,p; = 0.262
MD wo = 0.053,pg = 0.716 —2435.65
w1 = 0.649,p1 = 0.154
wre = 0.045,wry = 0.991,p; = 0.130
ALF simulation MO @ = 0.202
(100 replicates) M3 wo = 0.036,po = 0.426
w1 = 0.229,p; = 0374
w; = 0.761,p, = 0.200
MD @o = 0.060, pp = 0.673

©1 = 0.640,p; = 0.188
Gre = 0.191, @y = 1.150,p; = 0.139

NOTE.—w: selective pressure (dN/dS ratio), pj: proportions of w classes. For real data, log likelihoods are shown. MD is the preferred model according to the likelihood
ratio test, Akaike information criterion (AIC) and Bayesian information criterion (BIC).

paralogs (€ and y) are expressed during early development
instead of (3. The persistence of these two genes in the
genome since the duplication event about 80—100 Ma is be-
lieved to be an example of genetic cooption, that is, the shift
of a trait or gene to a new function.

Selective pressures after gene duplication in the globin
gene family has been studied using the codon model D
(MD), and a Bayesian approach was used to detect sites that
have experienced changes in selective pressure following the
genetic cooption event (Bielawski and Yang 2004). Instead
of assuming the same parameters for the whole tree, MD al-
lows for different selective pressure in two clades of the gene
tree following the duplication event. The selective pressure
on the protein is measured by the dN/dS ratio (w), which
reflects negative selection if w < 1 and positive selection if
w > 1. Among-site variation of selective pressure is mod-
eled using k discrete site classes, one of which allows differ-
ent w parameters in the two a priori specified clades. Based
on their analyses, the authors suggested that a fraction of
sites evolves with different selective pressures in the two
clades, with strict negative selection affecting clade € and
relaxed purifying selection on clade . The complexity of
their model, combined with the short sequence length of
the genes in question, makes it difficult to assess the confi-
dence in their estimate, in particular, whether the differing
selection class for the 7y globin clade indeed corresponds to
mild purifying, neutral, or even positive selection. Our re-
analysis of the data (a list of genes is included in the supple-
mentary table 1, Supplementary Material online) resulted in
slightly different values, with w,., being very close to 1, which
we attribute to the removal of columns with gaps. The maxi-
mum likelihood (ML) estimates of the model parameters are
summarized in table 1.

To assess the accuracy of MD, we used ALF to simulate
three runs of 100 “globin-like” data sets under MD (k = 3),
fixing w,, = 1 and keeping all other parameters at their
ML estimates for the original data set. We then reestimated
the model parameters for each replicate using codeml. To
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avoid local optima, we ran codeml three times using dif-
ferent starting values and chose the result with the high-
est likelihood. Finally, we compared the ML estimate of w,
obtained from the real data to the distribution of ML esti-
mates obtained from simulated replicates with w,, = 1.
As can be seen from figure 2a, the ML estimate for w,,
(0.991 here or 0.79 in the original study) lies well within
the variance of this parameter. Therefore, our observations
indicate that neutrality for this class in clade «y cannot be re-
jected, and there is no evidence for relaxed purifying selec-
tion on this clade, contrary to the conclusions of Bielawski
and Yang (2004).

In addition, we also simulated another 100 replicates with
10,000 codons to ensure that the mean estimate converges
to the true value for long sequences. Figure 2b shows that
this is indeed the case.

Our results therefore suggest that MD might be too com-
plex to give reliable estimates for the short sequences from
the globin gene family. For the simpler models M0 and M3,
on the other hand, this did not appear to be a problem, as
the variances of their parameters were much smaller on the
simulated data (mean values: table 1; distributions: supple-
mentary figures 2 and 3, Supplementary Material online).

Ortholog Prediction in Presence of LGT
LGT is widely recognized as a major force in prokaryotic
genome evolution, although the extent of LGT is still dis-
puted (Ragan and Beiko 2009). Nevertheless, orthology pre-
diction projects only consider vertical inheritance of genes.
We used ALF to analyze the influence of LGT on the per-
formance of two well-established programs for orthology
prediction, Inparanoid 4.1 (Remm et al. 2001) and OMA
(Roth et al. 2008). We simulated data sets with different
amounts of gene duplications and LGT for a tree with 30
species, sampled from the tree of y-proteobacteria (sup-
plementary fig. 4, Supplementary Material online). The
root genome of each simulation consisted of 200 ran-
domly generated sequences using amino acid frequencies
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FIG. 2. The distribution of ML estimates for w,~, from simulation with ALF (a) for one run with sequence length matching the real data (144 codons;
other data shown in supplementary fig. 1, Supplementary Material online), and (b) for sequences of 10,000 codons. Data simulated under MD with

wyy = 1, all other parameters are as in table 1.

from the WAG model (Whelan and Goldman 2001), which
was also used for substitutions. Sequence lengths followed
the I' length distribution that we fitted on data from ~-
proteobacteria. A gene loss rate was chosen that kept the
number of genes roughly constant. We then used the re-
sulting synthetic genomes as input for the two prediction
pipelines. To avoid differences attributable to homology in-
ference, we used the same procedure for both OMA and
Inparanoid, namely all-against-all Smith—Waterman align-
ment with score cutoff of 181 (roughly corresponding to an
E value of 10~ ™).

The results of the analysis are summarized in a precision-
recall plot (fig. 3), where precision is defined as the frac-
tion of true positives among predicted positives, and recall
corresponds to the fraction of true positives recovered by

Impact of duplication and lateral gene transfer on orthology inference
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FIG. 3. Precision/recall of orthology predictions with different propor-
tions of genes with a history of duplications and/or LGT. Each data
point corresponds to the mean of five independent runs using the
same parameters (with 95% confidence interval in both dimensions).

a method, that is, its statistical power. For both methods,
varying the LGT and gene duplication rates appear to have
an almost orthogonal effect on prediction accuracy. Increas-
ing the duplication rate mainly affects recall, decreasing the
fraction of recovered true positives. When a larger fraction
of genomes consists of duplicated genes, the orthology
prediction task becomes more challenging because effects
such as differential gene loss complicate the inference prob-
lem. Thus, consistent with previous studies of OMA and In-
paranoid (Altenhoff and Dessimoz 2009; Boeckmann et al.
2017; Linard et al. 2011), we observe that these methods
are relatively conservative in their predictions of difficult
scenarios.

On the other hand, increasing LGT worsens precision, re-
ducing the fraction of true positives among predicted posi-
tives. For both methods, it appears that laterally transferred
genes replacing an existing sequence in the recipient species
are more difficult to distinguish from true orthologs by ei-
ther algorithm. Indeed, both Inparanoid and OMA have
been developed under the assumption that the sequences
are related through speciation and duplication events only,
not lateral transfer events. This analysis confirms that ignor-
ing lateral transfer events can lead to a significant fraction
of false-positive orthology predictions.

Conclusion

The lack of knowledge of the evolutionary history is a ma-
jor challenge when developing new models and methods
in computational biology. Although a computer program
will never be able to describe the entire evolutionary reality
and might ignore potentially important factors, simulation
packages have proven to be useful tools for analyzing and
comparing the performance of new algorithms. In contrast
to the majority of existing tools, ALF can simulate processes
at the genomic level, rendering itself useful for a broad range
of analyses in gene and genome evolution. With the two ex-
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ample case studies, we illustrated what such analyses might
look like. Other possible applications include benchmark-
ing of alignment or tree building methods (including meth-
ods for multiple loci or based on gene rearrangement) and
strategies for gene and species tree reconciliation.

Although ALF already implements more evolutionary
models than any other publicly available simulation tool,
the long-term goal of ALF is to realistically simulate the
entire range of evolutionary forces that act on genomes.
Currently, ALF is particularly well suited for simulation of
prokaryotic evolution, where it covers many of the evolu-
tionary processes typically relevant. And yet, many impor-
tant aspects of evolution have yet to be implemented. As
next steps, we plan to incorporate models of recombination
and of promiscuous domain evolution (Basu et al. 2008).
Possible further improvements could include models of in-
teractions between sequences as well as of patterns such as
codon biases or tandem repeats on the sequence level.

As new evolutionary forces are discovered, we are confi-
dent that these can be included in ALF, allowing for more re-
alistic simulations and more thorough testing of algorithms.

Supplementary Material

Supplementary table S1 and figures S1-S4 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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