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Abstract

Systemic AA amyloidosis is a serious complication of chronic inflammation. Serum

amyloid A protein (SAA), an acute phase plasma protein, is deposited extracellularly as

insoluble amyloid fibrils which damage tissue structure and function. Clinical AA

amyloidosis is typically preceded by many years of active inflammation before

presenting, most commonly with renal involvement. Using dose dependent, doxycycline

inducible, transgenic expression of SAA in mice, we show that AA amyloid deposition

can occur independently of inflammation, and that the time before amyloid deposition is

determined by the circulating SAA concentration. High level SAA expression induced

amyloidosis in all mice after a short, slightly variable delay. SAA was rapidly

incorporated into amyloid, acutely reducing circulating SAA concentrations by up to

90%. Prolonged modest SAA overexpression occasionally produced amyloidosis after

long delays and primed most mice for explosive amyloidosis when SAA production

subsequently increased. Endogenous priming and bulk amyloid deposition are thus

separable events, each sensitive to plasma SAA concentration. Amyloid deposits slowly

regressed with restoration of normal SAA production after doxycycline withdrawal.

Reinduction of SAA overproduction revealed that, following amyloid regression all mice

were primed, especially for rapid glomerular amyloid deposition leading to renal failure,

closely resembling the rapid onset of renal failure in clinical AA amyloidosis following

acute exacerbation of inflammation. Clinical AA amyloidosis rarely involves the heart

but amyloidotic SAA transgenic mice consistently had minor cardiac amyloid deposits,

enabling us to extend to the heart the demonstrable efficacy of our novel antibody

therapy for elimination of visceral amyloid.
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AA amyloidosis is a rare but important complication of otherwise treatable chronic inflammatory

conditions (1) in which the amyloid deposits are derived from serum amyloid A protein (SAA)

(2), an apolipoprotein of HDL. SAA is a non-specific acute phase protein, with a dynamic range

of 1-> 3,000 mg/L in humans, synthesized by hepatocytes under the control of pro-inflammatory

cytokines (3). The deposition of amyloid A (AA) type amyloid in the viscera, connective tissue

and blood vessel walls damages tissue structure and function, with the kidney as the major target

organ (4). Control of inflammation and hence of SAA production in patients with AA

amyloidosis, arrests amyloid accumulation and enables its clinically beneficial regression (4, 5).

Although clinical outcomes have improved markedly in recent years through better control of

inflammation, AA amyloidosis is still fatal, and there are important gaps in our understanding of

the pathogenesis of this disease. For example, the precise nature of the relationship between

inflammation and amyloid deposition, and the factors governing the onset, progression and

anatomical distribution of amyloid deposition remain unclear.

AA amyloidosis never occurs in the absence of inflammation and the associated acute

phase response with increased circulating concentrations of SAA, but only a minority of

individuals at risk ever develop AA amyloidosis. Persistently increased plasma SAA

concentrations within the range typically seen in chronic inflammatory diseases are thus not

generally sufficient for amyloid deposition. Furthermore since all previous animal models of AA

amyloidosis depend on induction of chronic inflammation (6-9) to stimulate persistently

increased SAA production, it has not hitherto been possible to identify the respective roles of

inflammation and of increased abundance of SAA.
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Human AA amyloidosis is typically preceded by many years of active inflammatory

disease and the clinical presentation is then relatively acute, suggesting a slow or long delayed

priming process and/or a rare stochastic event which eventually triggers amyloid deposition in

some individuals. In mice greatly accelerated AA deposition can be produced by parenteral

administration of an extract of amyloidotic tissue, so called “amyloid-enhancing factor”, the

active component of which is amyloid fibrils themselves, followed by a single very aggressive

acute phase stimulus. Deposition of AA amyloid in humans may thus also be triggered by such

an amyloid fibril seed but it has not hitherto been possible to investigate this mechanism

clinically. Another weakness of previous models is that while almost all AA amyloidosis

patients present with or develop renal dysfunction, kidney involvement in murine AA

amyloidosis is late and rarely causes renal failure. The new tractable and tunable transgenic

model reported here, with hepatic SAA production induced independently of inflammation, by

oral administration of doxycycline (10) allows the underlying mechanisms to be dissected for the

first time.

Results

Regulated Overexpression of SAA in Mice. Without exposure to doxycycline, double

transgenic mice carrying both a doxycycline-inducible SAA transgene (Fig. 1A) and a

liver-specific reverse tet transactivator transgene (11), expressed SAA at the same baseline

levels, ~ 10 mg/L, as wild type C57BL/6 mice. When exposed to drinking water containing

doxycycline at 2 mg/mL, SAA production dramatically increased to values otherwise only seen

in severe inflammation (Fig. 1B). Doxycycline had no effect on SAA values in non-transgenic

and single-transgenic, SAA or rTALap-1, mice but there was a clear dose response effect in
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double-transgenic mice. Drinking water containing 0.1 mg/mL doxycycline induced SAA

production to yield plasma values of 50-250 mg/L (Fig. 1C) while exposure to 2 mg/mL

doxycycline induced values of > 1,000 mg/L (Fig. 1B). Peak SAA concentrations of

2,000-5,000 mg/L are much greater than seen in any other experimental or naturally occurring

model of AA amyloidosis, although among ~700 patients with clinical AA amyloidosis we have

seen values of ~2,500 mg/L in a few individuals. Induction of SAA expression by doxycycline

was reversible, with the serum SAA concentration falling to baseline within 72 h of doxycycline

withdrawal (Fig. 1D). As with acute phase SAA in wild type mice, the SAA produced in

response to doxycycline was associated with HDL, eluting in size exclusion chromatography of

whole serum in the trailing edge of the apoAI peak (Fig. 1E), consistent with the known

displacement by SAA of apoAI from HDL particles (12).

Deposition of AA Amyloid Without Inflammation. Neither doxycycline alone, nor massively

induced production of mouse SAA, caused increased production of murine SAP (Fig. S1).

Mouse SAP is a major murine acute phase reactant which responds sensitively to almost all

inflammatory or tissue damaging processes (13). Doxycycline-induced overexpression of SAA

is thus totally independent of inflammation. Double-transgenic mice exposed to drinking water

containing 2 mg/mL doxycycline developed major systemic amyloid deposits after median

(range), 5 (4-16) wk as shown by massive whole body retention of intravenously administered

125I-human SAP (125I-hSAP), a validated, specific, quantitative, in vivo tracer for systemic

amyloid deposits in mouse (14, 15) and man (16-18). Heavy AA amyloid deposits were

confirmed histologically in spleen and liver, correlating closely with the major organ localization

of 125I-hSAP. Significant minor amyloid deposits were also present in kidneys, heart and gut
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(Fig. S2). The total amyloid load was much greater than we have ever seen, or has been

previously reported, but organ function was preserved (Table S1). A substantial proportion, 13

of 60, of these amyloidotic mice had normal SAP concentrations ≤ 10 mg/L), showing 

unequivocally that amyloid deposition can occur in the absence of inflammation. The remaining

amyloidotic animals had only modestly elevated SAP concentrations, probably as a result of

tissue damage caused by the massive amyloid deposits. For example, in one experiment the SAP

values were mean (SD), 17.0 (5.9) mg/L in mice after deposition of amyloid compared to

7.0 (1.0) mg/L in the same animals after induction of SAA expression but before amyloid

deposition (n = 18).

Latency of Amyloid Deposition. Induction of murine AA amyloidosis by sustained chronic

inflammation typically takes several weeks (7). However mice in which AA amyloid deposits

have regressed following remission of chronic inflammation are primed for rapid reaccumulation

when they receive a new inflammatory stimulus (19) and previously untreated mice are readily

primed by intravenous injection of amyloidotic tissue extracts or isolated amyloid fibrils,

so-called amyloid enhancing factor (AEF) (20, 21). In double-transgenic mice, a single AEF

injection 4 d after starting on drinking water containing high dose doxycycline at 2 mg/mL,

produced heavy amyloid deposits just 2 d later. By 21 d there was massive amyloidosis in all

animals tested, with markedly increased liver and spleen sizes (Fig. 2). In contrast, the median

time before amyloid deposition was detected in mice receiving doxycycline treatment alone was

5 wk, demonstrating the requirement, even in the face of abundant SAA, for a delayed and/or

rare seeding or triggering event.

When only 0.1 mg/mL doxycycline was present in the drinking water, inducing more

modestly increased mouse SAA expression and a mean (SD) concentration of 120 (52) mg/L
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(n = 10), no amyloid was detected by 125I-hSAP retention in over a year. One mouse then

became amyloidotic between 58 and 66 wk, resembling the long latency and low incidence of

clinical AA amyloidosis. In principle, these findings could reflect delayed seeding of amyloid

deposition, insufficient SAA expression to permit net accumulation of amyloid, or both. When

mice received AEF and low dose doxycycline at 0.1 mg/mL in their drinking water, only 1 of 10

animals developed amyloidosis between 9-13 wk, 2 became amyloidotic after 34-50 wk, and 7

had no detectable amyloid at 58 wk. The drinking water doxycycline concentration was then

increased to 2 mg/mL and all 7 mice became amyloidotic within 4 d, demonstrating both that the

primed state persisted, and that these animals had not previously become amyloidotic because

SAA abundance was limiting. In contrast, when 8 mice which had received water containing

0.1 mg/mL of doxycycline for 21 mo were switched onto 2 mg/mL, 4 of them promptly

developed amyloidosis within 4 d, and a further 2 did so at 7 d while 2 others remained amyloid

free at 7 d. Amyloid was deposited significantly later in a control cohort of previously

unexposed, double-transgenic, age matched animals started on water containing 2 mg/mL

doxycycline at exactly the same time as the dose was increased in the long term low dose group

(Fig. S3; P = 0.022). These results clearly differentiate between endogenous priming for

amyloid deposition and bulk amyloid accumulation and show that priming can occur when levels

of SAA are elevated modestly and insufficiently for net amyloid deposition. Sustained modest

elevation of circulating SAA concentration does not potently initiate or promote amyloid

deposition but can cause amyloidosis occasionally and also primes for rapid deposition if SAA

production sharply rises.
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Sequestration of Circulating SAA During Active Amyloid Deposition. While amyloid was

being deposited, between 2-4 d following AEF injection in mice on 2 mg/mL doxycycline, we

observed a precipitous ~ 90% fall in circulating SAA concentrations (Fig. 3A). This was not an

effect of exogenous AEF as SAA values fell similarly in mice which, after long term treatment

with 0.1 mg/mL doxycycline, were then given 2 mg/mL doxycycline and developed amyloid

within 4 d (Fig. 3B). SAA values did not fall in mice which did not develop amyloid despite

receiving identical treatment (Fig. 3C). SAA mRNA abundance in the livers of doxycycline

treated mice did not differ between those receiving AEF and controls (Fig. S4A) despite the

sharp fall in circulating SAA concentration during amyloid deposition in the AEF treated group

(Fig. S4B). The evident rapid sequestration of SAA into nascent amyloid deposits was

quantitatively consistent with the increase in amyloidotic organ weights. Assuming a peak

steady state SAA concentration of 2 mg/mL, blood volume 1.5 mL, and SAA t½ 90 min (22),

maximal SAA production is 24 mg daily. Assuming constant SAA secretion rate and otherwise

normal turnover, the 90% fall in circulating SAA concentration during amyloid deposition

corresponds to loss of 21.6 mg daily from the plasma. The total of ~0.45 g over 3 wk, based on

conservative assumptions, is consistent with the observed ~2 g increase in liver weight of mice

after AEF and 3 wk on doxycycline, considering that amyloid deposits contain abundant

proteoglycans and SAP as well as amyloid fibrils (1).

Amyloid Regression, Recurrence and Onset of Renal Failure. Consistent with clinical

experience, amyloid load diminished very slowly after withdrawal of doxycycline, despite

prompt extinction of SAA transgene expression. Retention of 125I-hSAP took at least 4 mo to

return to baseline, remained abnormal after > 1 yr in some animals, and specks of typical
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Congophilic amyloid (23), undetected by the whole body method, were sometimes present

histologically. After 6 and 17 mo off doxycycline, re-exposure of previously amyloidotic mice

to drinking water containing 2 mg/mL of doxycycline triggered extremely rapid new amyloid

deposition with interestingly different pathological and clinical features. There were massive

typical splenic marginal zone and inter-follicular deposits (Fig. 4A and B) but hepatic amyloid

was predominantly in and around portal tracts and central veins rather than scattered in the

parenchyma (Fig. 4C and D). Most strikingly, major renal glomerular amyloidosis developed

(Fig. 4E-H). The glomerular amyloid deposits were far more abundant than we have previously

observed in mice and remarkably, all glomeruli were affected. Renal function monitored by

serum cystatin C assay (24) was normal before amyloid regression (Fig. 4I) or immediately prior

to doxycycline re-exposure but was markedly impaired within 3d of re-induction of SAA

expression and the ensuing renewed amyloid deposition (Fig. 4J and K).

Therapeutic Reduction of Cardiac Amyloid Deposits. We have recently shown that

administration of anti-human SAP antibodies to AA amyloidotic mice in which the amyloid

deposits had been loaded with human SAP, leads to macrophage mediated elimination of hepatic

and splenic amyloid (25). In contrast to the standard mouse AA amyloidosis model, cardiac

amyloid is consistently present in the new SAA transgenic model. SAA transgenic mice with

abundant amyloid after exposure to doxycycline were therefore given 3 daily parenteral

injections of human SAP to load up the amyloid deposits and 5 d after the last injection, when all

human SAP had left the circulation, they were treated with monoclonal mouse IgG2a anti-human

SAP antibodies. After a single dose of anti-SAP, spleen and liver amyloid deposits were, as

usual, substantially reduced (both P < 0.001 compared to amyloidotic controls not given the
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antibody), but there was no significant difference in extent of cardiac amyloid. However after a

second treatment with SAP and anti-SAP one month later, the cardiac amyloid deposits were

substantially diminished (P = 0.014; Fig. 5).

Discussion

Systemic AA amyloid deposition is always accompanied by increased SAA production, whether

triggered by tissue damage, infection or abnormal pro-inflammatory cytokine activity (26-30).

The transgenic mice reported here allowed us to induce expression of the amyloidogenic mouse

SAA isoform, SAA2, by oral administration of doxycycline, completely independently of any

inflammatory stimulus. Neither doxycycline exposure nor induction of SAA production itself

triggered an acute phase response of other proteins. Thus, contrary to claims in the literature,

circulating mouse SAA, like authentic human SAA (31), is clearly not intrinsically

pro-inflammatory. Furthermore, although AA amyloidosis has hitherto been inextricably linked

to systemic inflammation, the present results demonstrate that isolated overproduction of SAA,

without inflammation, is sufficient.

In common with models in which AA amyloidosis is evoked by potently inducing

inflammation, transgenic mice induced to express SAA at high levels deposited amyloid after a

variable latent period, and the process was accelerated and made absolutely consistent by

injection of AEF, containing preformed amyloid fibrils which seed amyloid fibrillogenesis.

In contrast with experimental AA amyloidosis in mice, human AA amyloidosis affects

only a small minority of patients with inflammatory diseases, usually presents long after the

onset of inflammation (median (range) 17 (0-68) yr) (4, 5), most commonly with proteinuria

and/or renal failure (4, 5), and plasma SAA concentrations, median (range), 28 (1-1610) mg/L

(4, 5), are typically more modest than in the mouse model. The reasons why some patients
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develop amyloidosis and most others do not, are obscure. The ability to dissociate priming and

deposition experimentally raises the possibility that either (or both) of these could be limiting in

patients. Using low dose doxycycline to induce modestly increased SAA production we

replicated the long latency of the human disease and the occasional late onset development of

amyloidosis, resembling the low frequency of its incidence in patients. Amyloid deposition

occurred only occasionally in mice in which prolonged modest overexpression of SAA was

induced after priming with AEF. Thus, SAA levels can be elevated for an extended period and

yet be insufficient to drive net accumulation of amyloid, whether or not amyloid deposition has

been primed. While extended modest overproduction of SAA did not inexorably lead to amyloid

deposition, some animals which remained free of detectable amyloid were primed for amyloid

deposition when SAA expression was increased. If these findings accurately reflect amyloid

pathogenesis in patients, a significant proportion of individuals with prolonged chronic

inflammatory disease may already be primed, and amyloid deposition may then be precipitated

by an episode of severe inflammation. In patients with a long history of chronic inflammation, it

would be wise to treat episodes of severe inflammation aggressively and without delay. Prompt

evaluation of such patients may lead to early detection of AA amyloidosis, perhaps before the

onset of significant renal failure.

Mice have two distinct acute phase SAA proteins, SAA1 and SAA2, encoded by different

genes and produced in roughly equal amounts (2) but only SAA2 is amyloidogenic. As wild

type mice with chronic inflammation become amyloidotic, the SAA1:SAA2 concentration ratio

increases sharply and the total circulating SAA value falls modestly, consistent with selective

sequestration of SAA2 into amyloid (32, 33). Our present finding of a dramatic fall of SAA2

values in all the transgenic mice as amyloid was being deposited was similarly consistent with
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such sequestration. In man, there are also two different acute phase SAA proteins (34) encoded

by different genes but, unlike in the mouse, both human acute phase SAA proteins are deposited

as amyloid fibrils (35). Our transgenic model, overexpressing only amyloidogenic murine

SAA2, thus more closely resembles the human situation than studies in wild type mice and the

present finding of rapid depletion of circulating SAA may have important implications for

clinical management. Plasma SAA values in AA amyloidosis patients correlate closely with

progression of amyloid deposition, morbidity and mortality (4, 5) and the aim of treatment is to

maximally reduce the SAA concentration. However the transgenic mouse results now suggest

that SAA values may be misleadingly low during active amyloid deposition, perhaps explaining

clinical observations of amyloid accumulation in the face of modest plasma SAA concentrations

(4). If such depression of plasma SAA does occur in patients, is likely to be most significant in

those who have the heaviest amyloid loads because the large amounts of amyloid in those

individuals will provide an abundant sink for circulating SAA.

The most common important clinical consequence of AA amyloidosis is renal dysfunction,

with > 10% of patients having end-stage renal failure at first diagnosis (4). Renal failure

developed very rapidly upon re-induction of SAA expression in transgenic mice in which

amyloid had previously been induced and spontaneously regressed. This closely parallels the

rapid onset or relapse of renal failure precipitated by intercurrent flares of inflammation in some

AA amyloidosis patients in remission (4, 5), and suggests that glomerular amyloid deposition

may be responsible, as in the transgenic mice. The factors which determine the sites of amyloid

deposition in general are unknown but the dramatically altered pattern of amyloid

reaccumulation following regression could reflect a different distribution of amyloid template.

Amyloid regresses much more rapidly in the spleen and liver than in the kidney, making the
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latter more susceptible to amyloid deposition when SAA production increases. Thus, the

presence of large amounts of template in spleen and/or liver may, through sequestration of SAA,

limit the rate of deposition in the kidney. A related phenomenon may explain the discrepancy

between clinical AA amyloidosis which is almost invariably accompanied by renal dysfunction,

and experimental murine AA amyloidosis, in which kidney function is rarely affected.

Experimental amyloidosis is usually induced rapidly in a single phase whereas clinical

amyloidosis typically occurs after many years of inflammatory disease, providing opportunity for

cycles of amyloid deposition and regression.

As well as providing insights into aspects of the pathogenesis of AA amyloidosis,

amyloidotic transgenic mice have proved to be a valuable model for applied studies, and they

offer some significant advantages over other models. Although cardiac involvement is very rare

in clinical AA amyloidosis (4), the transgenic mice reproducibly developed cardiac amyloid

deposits. The heart is usually involved in systemic monoclonal immunoglobulin light chain

(AL) disease, which is by far the most common type of human amyloidosis. Cardiac amyloid of

transthyretin type is also common in the elderly (36, 37), although until recently it was rarely

diagnosed in life. The development of cardiac amyloidosis in the transgenic model allowed us to

show that our recently developed antibody therapy (25) effectively reduces cardiac amyloid load,

as it does amyloid in the spleen and liver. The present mouse model is also proving useful for

development of novel non-invasive in vivo amyloid imaging methods (38).
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Methods

Transgenic Mice. The SAA transgene comprises the tetracycline-responsive promoter from pTRE-myc

(Clontech) linked within their respective 5’ untranslated regions to a 3.7 kb genomic DNA fragment

containing the amyloidogenic mouse SAA isoform SAA2 (2), also known as SAA1.1 (9) , with 1.25 kb of 3’

flanking sequence (ENSEMBL id. ENSMUSG00000057465). The transgene fragment was isolated from

the plasmid vector and microinjected into pronuclei of 1-cell eggs obtained from C57BL/6 X CBA F1

donors. Transgenic mice were identified by PCR with primers GTGTACGGTGGGAGGCCTAT and

CCAGGAGGTTCCACTGAGAG from the promoter and the SAA gene, respectively. Ten lines of

transgenic mice were established and crossed with rTA
Lap

-1 reverse tet-transactivator (rtTA) mice (11),

which express the reverse tet transactivator rtTA2
S
-S2 (39) in hepatocytes, obtained from the European

Mouse Mutant Archive (stock number EM:00404). Presence of the rtTA transgene was assayed by PCR

using primers CTGGGAGTTGAGCAGCCTAC and AGAGCACAGCGGAATGACTT. All of the reported

work was done with a single line of mice selected because, in conjunction with rTA
Lap

-1, they had normal

baseline serum SAA values when untreated with doxycycline and highly inducible SAA expression when

doxycycline was administered. Double transgenic mice were backcrossed onto the C57BL/6J

background. All experiments reported here used hemizygous transgenic mice.

Induction of SAA Expression and of Amyloid Deposition. Doxycycline hyclate (Sigma D9891) was

administered in drinking water containing 5% sucrose. Amyloid loads were assessed essentially as

described (14) by whole-body retention of
125

I-hSAP 24 and 48 h after injection of tracer; 0.006% w/v KI

was included in the drinking water to prevent retention of free
125

I iodide. AEF (20, 21) was administered

by tail vein injection. Abundant amyloid deposits were reliably and consistently produced by a single AEF

injection and administration of doxycycline; e.g. 2mg/mL doxycycline was administered for 3 d before and

7 d after AEF injection. The inconvenience of using (double) transgenic mice is mitigated because we

have bred mice homozygous for both transgenes. This refined transgenic model of AA amyloidosis

minimizes the severity of experimental animal procedures because it eliminates the need for injections to

stimulate severe or chronic inflammation. All animal studies were ethically reviewed and carried out in

accordance with European Directive 86/609/EEC.
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Biochemical Assays. Commercial ELISA assays were used for SAA (Tridelta or Immune Systems Ltd.),

apolipoprotein AI (USCN Life Science Inc.) and cystatin C (Biovendor), and were performed according to

the manufacturers’ instructions. Mouse SAP was assayed by electroimmunoassay with monospecific

sheep anti-mouse SAP antiserum (13). All other assays were performed at MRC Harwell using an

Olympus AU400 automated clinical chemistry analyzer. Size exclusion chromatography was performed

using a Superdex 200 column on the ÄKTA Explorer apparatus (GE Healthcare). The column was

equilibrated and eluted at 0.5 mL/min with PBS buffer containing 5 mM EDTA, pH 7.4.

qRT-PCR. Assay of SAA mRNA levels was performed by qRT-PCR using transgene-specific primers

ATAGAAGACACCGGGACCGAT and TAGCTTCATCCTGCTGGTGTCT, specific for the tet-responsive

promoter and the SAA gene, respectively. The results were normalized against reference genes SDHA

(primers TCATCACAGAAGGGTGTCGT and GCAACAGGTGCGTATCTCTC) and HPRT (primers

TCCTCCTCAGACCGCTTTT and ACCTGGTTCATCATCGCTAATC).

Histology. Formalin fixed wax-embedded tissues were sectioned at 7 µm, stained with alkaline alcoholic

Congo red (23) and viewed under strong cross polarized light.

Antibody Therapy. Amyloidosis was induced in female transgenic mice by treatment with AEF and

doxycycline, and verified by assaying whole body retention of
125

I-hSAP. For therapy, the amyloid

deposits were loaded with unlabelled human SAP by injection of 10 mg per day for 3 d. After a delay of

5 d to allow elimination of circulating hSAP, the mice were injected with 5 mg of monoclonal mouse

anti-hSAP antibody (clone SAP-5 supplied by GlaxoSmithKline) (25). Amyloid load was scored as

described (15); the values reported are the average of the scores assigned by three expert individuals

who were blinded to the treatments given.
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Fig. 1. Inducible expression of SAA. (A) Schematic of the doxycycline-responsive SAA transgene.

(B) Sustained high-level expression of SAA specifically in transgenic mice on drinking water containing

2 mg/mL doxycycline (mean ± SD; n = 5 transgenic, n = 6 controls). (C) Modest SAA expression in

transgenic mice on drinking water containing 0.1 mg/mL doxycycline (mean ± SD; n = 10 (5 ♂; 5 ♀)).  

(D) SAA concentrations rapidly return to normal baseline values following doxycycline removal

(mean ± SD; n = 8 (4 ♂; 4 ♀)).  (E) Elution profile of SAA and apoAI in size exclusion chromatography of

whole serum from mouse with high level transgenic SAA expression.
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Fig. 2. Amyloidosis in SAA overexpressing transgenic mice. (A) Retention of
125

I-human SAP in organs

of control (C) and experimental transgenic (E) mice treated with doxycycline for 3 wk after AEF injection.

The
125

I retained in spleens, livers and kidneys was counted 24 h after injection of 10
6

cpm of
125

I-labeled

human SAP. The counts retained are shown normalized to the means of the control values (spleen

8.1 x 10
2

cpm; liver 4.5 x 10
3

cpm; kidney 2.8 x 10
3

cpm). (B) Weights of amyloidotic and control mouse

organs normalized to the means of the control values (spleen 0.072 g; liver 0.846 g; kidney 0.265 g).

(C-H) Representative histology of amyloidotic spleen (C and D), liver (E and F) and kidneys (G and H) of

transgenic mice stained with Congo red. C, E, G: bright field; D, F, H: crossed polarized light.
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Fig. 3. Circulating SAA concentration falls during amyloid deposition. (A) SAA concentrations fell sharply

following AEF injection as amyloid was deposited (note the logarithmic scale for SAA values; mean ± SD;

n = 8; P < 0.0001, repeated measures ANOVA). (B and C) Circulating SAA concentrations following

increase of drinking water doxycycline content to 2 mg/mL in mice treated long-term with water containing

0.1 mg/mL doxycycline. (B) Mice amyloidotic by day 4: SAA concentrations fell (n = 4; P = 0.0062,

repeated measures ANOVA). (C) Mice not detectably amyloidotic on day 4: SAA concentrations were

stable (n = 4; P = 0.3378, repeated measures ANOVA).
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Fig. 4. Remission and relapse lead to glomerular amyloidosis and renal failure. Congo red staining of

reaccumulated amyloid in spleen (A and B), liver (C and D) and renal cortex (E to H) showing

widespread, heavy glomerular amyloid deposits; bright field illumination (A, C, E, G), crossed polarized

light (B, D, F, H). (I) Normal serum cystatin C in mice amyloidotic for the first time (mean ± SD; n = 11

controls; n = 21 amyloidotic; P = 0.135; t-test). (J and K) Increased serum cystatin C concentration

caused by renal failure in mice with massive glomerular amyloid deposition after reinduction.

(J) Comparison of reinduced (n = 6) and control (n = 5) groups (mean ± SD; P = 0.0025; Mann-Whitney

test). (K) Before and after reinduction values in individual mice (n = 6; mean ± SD; P = 0.0156; Wilcoxon

matched-pairs signed rank test).
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Fig. 5. Reduction of cardiac amyloid deposits following antibody therapy. Amyloidotic mice received an

injection of human SAP to load the amyloid deposits, followed by injection of monoclonal anti-human SAP

antibody. Control amyloidotic mice received no treatment. Half the treated and control mice were killed

30 d later and the remaining treated animals received a second identical treatment. All remaining mice

were then killed after a further 30 d. Amyloid scores of individual mice are plotted. Kruskal-Wallis test

P = 0.002; multiple comparison test: one anti-SAP dose vs control, P = 0.38; two anti-SAP doses vs

control, P = 0.019.



Supplemental Figure 1. Lack of systemic inflammation on induction of SAA expression.

(A) Serum concentrations of SAP (mean ± SD) remained unchanged when double transgenic

(n = 5) or control (n = 7) mice were treated with 2 mg/mL doxycycline. (B) Serum SAA

concentrations (mean ± SD) in the same animals showing normal baseline SAA concentrations

before exposure to doxycycline and sustained high-level SAA production when receiving

doxycycline.



Supplemental Figure 2. Representative histology of amyloidotic transgenic mice. Congo red

staining shows massive amyloid deposits in spleen and liver, with minor but significant deposits

in kidney, duodenum and heart. Above, bright field; below, crossed polarized illumination

showing the pathognomonic green birefringence of amyloid.



Supplemental Figure 3. Priming induced by long-term low-level overexpression of SAA.

Kaplan-Meier curves showing the accelerated development of amyloidosis induced by 2 mg/mL

doxycycline treatment in mice that had been maintained for 21 mo on 0.1 mg/mL doxycycline

(n = 8), compared to age-matched controls maintained on water (n = 6).



Supplemental Figure 4. The fall in circulating SAA concentration during amyloid

deposition is not caused by reduced gene expression. (A) mRNA levels were no different

between the AEF-injected and control groups (P = 0.149; unpaired t test with Welch’s

correction, one-tailed). (B) Baseline concentration of SAA in serum of mice after induction

with 2 mg/mL doxycycline and SAA values 4 d after injection of AEF or vehicle (note the

logarithmic scale; n = 10 each group). Circulating SAA concentrations fell only in the

AEF-injected group (P < 0.0001; repeated measures 2-way ANOVA).
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Supplementary Table 1. Serum biochemistry results.

Sodium (mmol/L) Potassium (mmol/L) Chloride (mmol/L) Urea (mmol/L) Creatinine (mol/L)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 9)

Amyloidotic
(n = 8)

Mean 153.2 155.8 4.33 4.025 111.5 107.3 7.34 6.975 15.4 17

SD 3.19 5.97 0.1829 0.2252 4.062 4.4 0.9709 1.547 2.956 4.66

P value 0.2818 0.0059 0.0494 0.5487 0.6296

Test Mann-Whitney unpaired t test unpaired t test unpaired t test Mann-Whitney

Calcium (mmol/L) Inorganic phosphate
(mmol/L)

ALP (units/L) ALT (units/L) AST (units/L)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 8)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Mean 2.284 2.649 2.229 2.233 104.3 87.25 36.23 85.7 122.2 136.5

SD 0.09009 0.1323 0.4428 0.4229 39.41 17.81 16.58 68.43 87.22 75.14

P value <0.0001 0.9864 0.3494 0.0858 0.7178

Test unpaired t test unpaired t test Mann-Whitney unpaired t test with
Welch’s correction for
different variances

unpaired t test

Total Protein (g/L) Albumin (g/L) Total Cholesterol
(mmol/L)

HDL Cholesterol
(mmol/L)

LDL Cholesterol
(mmol/L)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Mean 48.84 60.24 26.8 31.74 2.088 4.874 1.283 2.488 0.388 1.283

SD 4.559 5.654 2.772 3.144 0.7838 0.8647 0.5511 0.4644 0.08879 0.2669

P value 0.0002 0.0027 <0.0001 0.0002 <0.0001

Test unpaired t test unpaired t test unpaired t test unpaired t test unpaired t test with
Welch’s correction for
different variances

Glucose (mmol/L) Triglycerides (mmol/L) Glycerol (mol/L) Free Fatty Acids
(mmol/L)

Total Billirubin (mol/L)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 8)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Mean 8.582 8.28 1.064 1.965 703 939.5 0.79 1.626 4.28 4.138

SD 1.527 2.069 0.4387 0.6413 249.7 238.2 0.3746 0.4002 1.515 0.5829

P value 0.7259 0.0027 0.0730 0.0003 0.7893

Test unpaired t test unpaired t test unpaired t test unpaired t test unpaired t test with
Welch’s correction for
different variances

LDH (units/L) Iron (mol/L) Amylase (units/L) CK (units/L) Uric Acid (mol/L)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Control
(n = 9)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Mean 1429 1172 25.69 24.47 745 823.9 562.2 290 172.2 191

SD 480.6 474.3 7.473 6.889 213 247.5 730.3 86.18 43.49 55.8

P value 0.2732 0.6965 0.2743 0.2994 0.4328

Test unpaired t test Mann-Whitney Mann-Whitney unpaired t test with
Welch’s correction for
different variances

unpaired t test

Ammonia (mol/L) Dox-induced SAA (mg/L) Duration of dox treatment
(days)

Control
(n = 8)

Amyloidotic
(n = 8)

Control
(n = 9)

Amyloidotic
(n = 8)

Control
(n = 10)

Amyloidotic
(n = 8)

Mean 170.6 155 7.7 1797 51.0 42.38

SD 36.37 23.3 3.3 1717 18.91 13.09

P value 0.3243 <0.0001 0.2900

Test unpaired t test Mann-Whitney, one-tailed unpaired t test

Data that did not pass the D’Agostino & Pearson omnibus normality test were analyzed by the Mann-Whitney U test; other data were analyzed by
unpaired t test (with Welch’s correction when the variances were different). All two-tailed tests, except where stated.


