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RECENT PROGRESS OF INVERSE SCATTERING THEORY

ON NON-COMPACT MANIFOLDS

HIROSHI ISOZAKI, YAROSLAV KURYLEV, AND MATTI LASSAS

Dedicated to Gunther Uhlmann on the occasion of his 60th birthday

Abstract. We give a brief survey for the recent development of inverse scat-
tering theory on non-compact Riemannian manifolds. The main theme is the
reconstruction of the manifold and the metric from the scattering matrix.

1. Introduction

Scattering theory for waves in classical or quantum physics has a long history,
and nowadays there is an abundance of works devoted to the forward and inverse
problems of potential scattering for Schrödinger equations, and obstacle scattering
for wave equations. Much less is known, however, about the inverse scattering
on manifolds, where the main theme is the reconstruction of the manifold itself
and its Riemannian metric from the scattering matrix associated with the Laplace-
Beltrami operator. We have been working on this subject by choosing typical
examples possessing characteristic features of the problem. The aim of this paper
is to present a birds-eye view based on the results we have obtained so far.

In §2, we discuss a basic framework of our issue. Scattering of waves is a time-
dependent phenomenon, however, it is a consequence of properties of the continuous
spectrum of the underlying Laplacian. Therefore, we formulate the problem mainly
from the stationary view point with emphasis on the solution space of the Helmholtz
equation. In §3, we explain the outline of our theory for the forward and inverse
problems ignoring the detailed assumptions of the metric. In §4, we pick up four
metrics we have already studied. They are well-known standard examples, and,
viewed from the growth order of volume near infinity, range from an exponentially
growing case to an exponentially decaying case. In §5, we devote ourselves to the
case of 2-dim. arithmetic surface and discuss the inverse scattering from cusp.

In §6, we mention some recent results for metrics with intermediate behavior.
Due to the lack of space, we cannot talk about all of the important works. For

example, [12], [11], [13], [50], [54], [55] are dealing with problems related to ours
from different view points.

2. Review of forward and inverse problems

2.1. Time-dependent scattering problem. Let us consider Rn, n > 1, with
a Riemannian metric G = gijdx

idxj , where we use the Einstein summation con-
vention of omitting sum signs. We assume that asymptotically, when |x| → ∞,
gij(x) ≃ δij ,, see e.g. (4.1). How can one recover the metric tensor gij from some
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”physical” observations? One way is to consider wave motions associated with this
metric:

(2.1) ∂2t v(t, x) = ∆Gv(t, x),

where ∆G is the (negative) Laplace-Beltrami operator associated with G. In the re-
most past (i.e. t→ −∞) and in the remote future (i.e. t→ ∞), the solution to (2.1)
behaves like v± satisfying ∂2t v± = ∆v±, ∆ being the standard Euclidean Laplacian
on Rn. The mapping assigning the far-field pattern of v− to that of v+ is called
the scattering operator. It is a common belief that, under natural situations, this
scattering operator determines the original physical system, i.e. the metric, at least
up to changes of coordinates. In other words, from the observation of all far-field
patterns of waves at infinity, one can reconstruct the metric G. For elliptic in-
verse boundary value problems on compact or non-compact Riemannian manifolds
there are also non-uniqueness results; one can use the fact that the measurements
are invariant in diffeomorphisms of the manifold to create counterexamples for the
uniqueness of inverse problems and even invisibility results, see [18, 19, 35, 44] and
the references in [20, 21]

Another way is to use the wave motion of quantum mechanical particles, in which
case we use the Schrödinger equation

(2.2) i∂tv(t, x) = ∆Gv(t, x),

instead of (2.1). (See e.g. [56] or [61]). Both of these time-dependent scattering
problems are reformulated in the same stationary (time-independent) picture.

2.2. Stationary scattering theory. Consider a time-periodic motion of (2.1),
i.e. put v(t, x) = e−iktu(x) in (2.1). Then we get

(2.3) (−∆G − k2)u(x) = 0, k > 0.

Since all solution of the Helmholtz equation (2.3) with unperturbed Laplacian,
∆, can be written as superpositions of plane waves and taking into account that
gij ≃ δij , we seek a solution of (2.3) admitting the following asymptotic expansion

(2.4) u(x) ≃ eikω·x +
eikr

r(n−1)/2
a(x̂, ω; k), x̂ = x/r, as r = |x| → ∞,

where ω ∈ Sn−1. The 2nd term of the right-hand side represents the scattered
spherical wave. In the case of quantum mechanics, for a given beam of particles with
initial direction ω, |a(θ, ω; k)|2 is proportional to the number of particles scattered
to the θ-direction. This is the physical quantity observed in the experiment. Let
A(k) : L2(Sn−1) → L2(Sn−1) be the integral operator with the kernel a(x̂, ω; k). By
a suitable choice of the constant C(k), S(k) = I − C(k)A(k) is a unitary operator
on L2(Sn−1), which is the well-known Heisenberg’s S-matrix. The above mentioned
scattering operator in the time-dependent formulation is written in terms this S-
matrix.

2.3. Geometric scattering theory. Let us look at the stationary scattering the-
ory from a geometrical view point. Consider the restriction of the Fourier transform
on Sn−1:

(F0(k)
∗ϕ) (x) =

∫

Sn−1

eikω·xϕ(ω)dω, k > 0.
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This is sometimes called the Herglotz integral or the Poisson integral. It is the
eigenoperator of −∆ in the sense that it satisfies the equation

(−∆− k2)F0(k)
∗ϕ = 0.

By the stationary phase method, it admits the asymptotic expansion:

(2.5) (F0(k)
∗ϕ)(x) ≃ C+(k)

eikr

r(n−1)/2
ϕ(x̂)+C−(k)

e−ikr

r(n−1)/2
ϕ(−x̂), r = |x| → ∞.

Let us note that the spherical waves e±ikr/r(n−1)/2 appear in the asymptotic ex-

pansion of the Green functions G
(±)
0 (x, y; k) of −∆− k2 in Rn:

∫

Rn

G
(±)
0 (x, y; k)f(y)dy ≃ C̃±(k)

e±ikr

r(n−1)/2
f̂(±kx̂),

where f̂(ξ) is the Fourier transform of f(y). The unit sphere Sn−1 can be regarded
as a boundary at infinity of Rn. Therefore, for Rn with Euclidean metric, one can
associate the manifold at infinity, Sn−1, and the integral transform on it, F0(k)

∗.
It is an eigenoperator of −∆ and has the asymptotic expansion (2.5).

The stationary scattering theory asserts that these properties are transferred to
Rn with metric G. Namely, one can associate a generalized eigenoperator F(k)∗ on
L2(Sn−1) satisfying

(−∆G − k2)F(k)∗ϕ = 0, for all k2 ∈ σc(−∆G),

and admitting the asymptotic expansion (2.5) with F0(k)
∗ replaced by F(k)∗.

Moreover, by introducing a Banach space B∗ by

(2.6) B∗ ∋ u⇐⇒ sup
R>1

1

R

∫

|x|<R

|u(x)|2dx <∞,

one can show that

N (k) := {u ∈ B∗ ; (−∆G − k2)u = 0} = F(k)∗
(
L2(Sn−1)

)
,

and that for any ϕ− ∈ L2(Sn−1), there exist unique u ∈ N (k) and ϕ+ ∈ L2(Sn−1)
satisfying

u(x) ≃ C+(k)
eikr

r(n−1)/2
ϕ+(x̂) + C−(k)

e−ikr

r(n−1)/2
ϕ−(x̂), r = |x| → ∞.

Here, by f ≃ g, we mean

lim
R→∞

1

R

∫

|x|<R

|f(x)− g(x)|2dx = 0.

The mapping

Sgeo(k) : L
2(Sn−1) ∋ ϕ− → ϕ+ ∈ L2(Sn−1)

is unitary. In fact, it is related with the above S-matrix as follows:

(2.7) Sgeo(k) = JS(k),

where Jφ(ω) = φ(−ω).
Motivated by the above, let us give an overview how a geometric scattering

theory on a Riemannian manifold can be formulated. We are given a non-compact
Riemannian manifold M having the boundary at infinity M , which is a compact
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Riemannian manifold of dimension n − 1. We then construct an operator F(k)∗ :
L2(M) → L2

loc(M) such that

(−∆G − k2)F(k)∗ϕ = 0, for all k2 ∈ σc(−∆G),

with the property that, by a suitable choice of the Banach space B∗ of functions in
M,

N (k) := {u ∈ B∗ ; (−∆G − k2)u = 0} = F(k)∗
(
L2(M)

)
.

Moreover, there exist functions w±(k) ∈ B∗ such that for any ϕ− ∈ L2(M) there
exist unique u ∈ N (k) and ϕ+ ∈ L2(M) admitting the asymptotic expansion

u ≃ w+(k)ϕ+ + w−(k)ϕ−,

and the mapping

Sgeo(k) : L
2(M) ∋ ϕ− → ϕ+ ∈ L2(M)

is unitary. We then formulate our inverse problem as follows : Reconstruct the
manifold M and its metric from the knowledge of the S-matrix Sgeo(k).

2.4. Inverse scattering. The inverse potential scattering on the half-line was
solved in 1950’s by Gel’fand-Levitan andMarchenko [17], [46]. The multi-dimensional
extension was proposed by the seminal work of Faddeev [16]. We do not enter into
the detailed exposition here (see e.g. [30]), however, let us emphasize that the so
called CGO solution of the Schrödinger equation introduced by Calderón and im-
plemented into a powerfull tool by Sylvester and Uhlmann [58] (in fact, it was done
independently of Faddeev) stimulated the works of Nachman [53] and Khenkin-
Novikov [36] to bring the progress in the multi-dimensional inverse problem.

As for our inverse scattering problem, we use the boundary control (BC) method.
It is now regarded as an established theory for the inverse spectral problem, how-
ever, a long time was necessary to settle the whole idea. The precursor of the BC
method appeared in the work of M. G. Krein on the 1-dimensional wave equation
[37], [38]. Although there is a similarity of Krein’s theory to that of Gel’fand-
Levitan-Marchenko, his idea is based on the hyperbolic nature of the wave equa-
tion, i.e. finite velocity of the wave propagation and the notion of the domain of
influence. However, by passing to the Fourier transform in t, he used it in the form
of the analyticity properties with respect to the spectral parameter. Blagovestcen-
skii [9] analyzed Krein’s idea, using the finite velocity and controllability of the
filled domain, to derive a Volterra-type equation for unknown functions. In [10],
he also found a crucial idea of evaluating the inner product of waves with given
data on the boundary by the spectral data. These ideas were then extended to
the multi-dimensional case by the works of Belishev and Belishev-Blagovestcenskii
[3], [5]. Belishev and Kurylev [7] used the BC method to solve the Gel’fand inverse
problem on compact Riemannian manifolds. We must also mention that the step of
controllability was completed by Tataru [59], which gave a final form for Holmgren’s
uniqueness theorem. The BC method can also be used to reconstruct non-smooth
manifolds [2], [42] or solve inverse problems for the heat and Schrödinger equations
on Riemannian manifolds [33]. For the more detailed history of the BC method
and the related reconstruction methods, see [4, 8, 39, 32].
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3. Bird’s-eye view of the inverse scattering problem for the metric

We shall discuss here ”typical” results which we expect to hold. Therefore, we
state Theorems and Lemmas ”formally” without specfying the detailed assump-
tions.

3.1. General framework. We consider an n-dimensional, non-compact, connected,
Riemannian manifold M with the following properties :

(3.1) M = K ∪M1 ∪ · · · ∪MN ,

where K is relatively compact, and Mi’s (called ends) are non-compact. We allow
K to have an arbitrarily metric, however, each Mi is assumed to be diffeomorphic
to (1,∞)×Mi, where Mi is a compact (n− 1)-dimensional manifold endowed with
a metric hi = (hi)αβ(y)dy

αdyβ . Let us denote points of (1,∞) × Mi by (r, y).
We also assume that on each end Mi, the metric G is asymptotically equal to the
warped product:

(3.2) G ∼ (dr)2 + ρi(r)(hi)αβ(y)dy
αdyβ , as r → ∞,

with some positive function ρi(r) ∈ C∞(R). We assume M to be complete, hence
−∆G

∣∣
C∞

0
(M)

is essentially self-adjoint. For the sake of simplicity, assume that

σc(−∆G) = [E0,∞), and put

H = −∆G − E0.

The properties of the continuous spectrum of H are determined by those of ends
Mi. Therefore, we reduce our analysis to a suitable model space, whose choice
depends largely on the nature of ρi(r), and shall be discussed separately.

3.2. Analysis on the model space. To fix our assumptions, we consider the
case when the boundary ∂M is empty. Note that, however, one could consider, in
a similar manner, also the case when ∂M 6= ∅ with Neumann, Dirichlet or other
self-adjoint boundary conditions. Given ρ(r) ∈ C∞(R), we take M0 = I0 ×M0,
where I0 = (c0,∞) is an open interval such that c0 < 1, equipped with the metric
G0 = (dr)2 + ρ(r)h0. By imposing the Neumann boundary condition at r = c0, we
assume that the Laplace-Beltrami operator H0 = −∆G0

on M0 is self-adjoint in
L2(I0, L

2(M0); ρ(r)
(n−1)/2dr). Assume that σc(−∆G0

) = [E0,∞), and put H0 =
−∆G0

−E0, R0(z) = (H0− z)−1. Let us call H0 the free operator on M0. Our first
task is to prove the limiting absorption principle, which is going to be explained
below.

Let A =
∫
R
λdEA(λ) be a self-adjoint operator on a Hilbert space H. Then for

λ ∈ σ(A), (A − λ)−1 does not exist. However, for λ ∈ σc(A), sometimes one can
prove the existence of the limit

(A− λ∓ i0)−1 = lim
ǫ→0

(A− λ∓ iǫ)−1 ∈ B(H+;H−),

where B(X ;Y ) means the set of all bounded operators from a Banach space X to
a Banach space Y , and H± are suitable Banach spaces skirting H:

H+ ⊂ H ⊂ H−,

with inclusions dense and continuous, and H− = (H+)
∗ through the inner product

of H. This is called the limiting absorption principle, abbreviated as LAP. If the



6 HIROSHI ISOZAKI, YAROSLAV KURYLEV, AND MATTI LASSAS

LAP is proved on an interval I ⊂ σc(A), by Stone’s formula, we have

EA(I)H ⊂ Hac(A),

where the absolutely continuous subspace Hac(A) is defined by

Hac(A) ∋ u⇐⇒ (EA(λ)u, u) is absolutely continuous w.r.t. dλ.

In all examples we have already treated, the space H− is defined as follows.

(3.3) H− ∋ u⇐⇒ sup
R>1

1

R

∫

c0<r<R

‖u(r)‖2L2(M0)
ρ(r)(n−1)/2dr <∞.

This is a dual space of some Banach space B using a dyadic decomposition of the
manifold M0, and is denoted by B∗ below. To prove LAP, usually we need to avoid
the end points of σc(H), the eigenvalues embedded in the continuous spectrum,
and thresholds (the energies at which the nature of scattering changes). Let us call
the set of these points the exceptional set, and denote it by E0. This is shown to
be discrete with possible accumulation points 0 and on thresholds.

Our next task is to analyse the asymptotic behavior of the resolvent R0(λ± i0)
as r → ∞. For f, g ∈ H− we use the notation f ≃ g to denote

f ≃ g ⇐⇒ lim
R→∞

1

R

∫

c0<r<R

‖f(r)− g(r)‖2L2(M0)
ρ(r)(n−1)/2dr = 0.

Then for any k > 0 such that k2 6∈ E0, there exist bounded operators F
(±)
0 (k) ∈

B(B ; L2(M0)) and functions w±(k) ∈ B∗ such that for f ∈ B,

(3.4) R0(k
2 ± i0)f ≃ w±(k)F

(±)
0 (k)f.

3.3. Gluing the estimates for ends. Having established the LAP and the as-
ymptotic expansion (3.4) on each end, we need to glue them together to obtain

global results. Let {χj}Nj=0 be a partition of unity on M such that
∑N

j=0 χj = 1,

and, for j = 1, · · · , N , supp(χj) ⊂ Mj, χj(r) = 1 if r > 2. We take χ̃j ∈ C∞(Mj)
such that supp (χ̃j) ⊂ Mj and χ̃j = 1 on suppχj . Let Hfree(j) be the free
operator on Mj and assume, for simplicity, that for all j = 1, . . . , N , we have
σc(Hfree(j)) = [E0,∞). Then we put Rfree(j)(z) = (Hfree(j) − z)−1 and

A(z) =

N∑

j=1

Aj(z)χ̃j ,

Aj(z) = [H,χj ]Rfree(j)(z) + χj(H −Hfree(j))χ̃jRfree(j)(z).

Then we have

(3.5) R(z) =

N∑

j=1

χjRfree(j)(z)χ̃j +R(z)(χ0 −A(z)).

This formula and the perturbation technique enable us to prove LAP for H . Let
E =

(
∪N
j=1Ej

)
∪
(
σp(H)∩ [0,∞)

)
, Ej being the exceptional set for Hfree(j). One can

show that E is discrete with possible accumulation points 0 and on thresholds of
Hfree(j). We define the space B∗ by gluing Bj

∗ using the partition of unity, namely,

B∗ = {u ∈ L2
loc(M) : χju ∈ B∗

j }.

Theorem 3.1. For λ ∈ [0,∞) \ E, there exists a limit R(λ± i0) ∈ B(B ; B∗).
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By taking the adjoint in (3.5), we can derive the asymptotic expansion of the
resolvent on each end:

(3.6) R(k2 ± i0)f ≃ w
(±)
j (k)F

(±)
j (k)f, f ∈ B.

We now introduce the L2-space over the manifold at infinity of M:

(3.7) h∞ = ⊕N
j=1L

2(Mj).

We also put

(3.8) F (±)(k) = (F
(±)
1 (k), · · · ,F

(±)
N k)) ∈ B(B ; h∞),

(3.9) Ĥ = L2((0,∞),h∞; dk).

Here by L2(I,h; dk) with given auxiliary Hilbert space h, we mean the Hilbert
space of all h-valued L2-functions on an interval I with respect to the measure dk.

Theorem 3.2. (1) The operator F (±) defined for f ∈ B by (F (±)f)(k) = F (±)(k)f
is uniquely extended to a partial isometry on L2(M) with initial set Hac(H) and

final set Ĥ.
(2) For f ∈ D(H), we have

(F (±)Hf)(k) = k2(F (±)f)(k).

(3) F (±)(k)∗ is an eigenoperator in the sense that

(H − k2)F (±)(k)∗ϕ = 0, for all ϕ ∈ h∞.

(4) For any f ∈ Hac(H), the inversion formula holds:

f =

∫ ∞

0

F (±)(k)∗(F (±)f)(k)dk.

We have thus constructed a spectral representation (generalized Fourier trans-
formation) for H .

Lemma 3.3. For any k2 ∈ (0,∞) \ E,

N (k) := {u ∈ B∗ ; (−∆G − E0 − k2)u = 0} = F (±)(k)∗h∞.

Theorem 3.4. For any ϕ(−) = (ϕ
(−)
1 , · · · , ϕ

(−)
N ) ∈ h∞, there exist unique u ∈

N (k) and ϕ(+) = (ϕ
(+)
1 , · · · , ϕ

(+)
N ) ∈ h∞ such that on each end Mj, the asymptotic

expansion

u ≃ w
(−)
j (k)ϕ

(−)
j + w

(+)
j (k)ϕ

(+)
j

holds. Moreover the operator

Sgeo(k) : h∞ → h∞,

Sgeo(k)ϕ
(−) = ϕ(+)

is unitary.



8 HIROSHI ISOZAKI, YAROSLAV KURYLEV, AND MATTI LASSAS

3.4. Rellich’s theorem, Radiation condition. In the Euclidean case, that is,
for the manifold Rn, there are two types of boundary conditions at infinity. A
solution to the equation (−∆G − k2)u = f, k > 0, in Rn is said to satisfy the
outgoing radiation condition, if ( ∂

∂r − ik)u = o(|x|−(n−1)/2). Similarly, u is said to

satisfy the incoming radiation condition, if ( ∂
∂r + ik)u = o(|x|−(n−1)/2). Using the

space B∗, we can rewrite these conditions as

(3.10) lim
R→∞

1

R

∫

1<r<R

∥∥∥( ∂
∂r

∓ ik)u(r)
∥∥∥
2

L2(Sn−1)
r(n−1)dr = 0

Moreover, the classical Rellich theorem says that if u ∈ B∗(Rn) solves a homoge-
neous Helmholtz equation and satisfies an incoming or outgoing radiation condition
(3.10), then u = 0.

These results can be extended to a more general case. Namely, for any k > 0 such
that k2 6∈ E , it is possible to define an incoming and outgoing radiation conditions
for u ∈ B∗. They are defined by

(3.11) lim
R→∞

1

R

N∑

j=1

(∫

1<r<R

∥∥∥( ∂
∂r

− iEj(k))u(·, r)
∥∥∥
2

L2(Mj)
ρj(r)

(n−1)/2dr

)
= 0,

and

(3.12) lim
R→∞

1

R

N∑

j=1

(∫

1<r<R

∥∥∥( ∂
∂r

+ iEj(k))u(·, r)
∥∥∥
2

L2(Mj)
ρj(r)

(n−1)/2dr

)
= 0,

corrrespondingly. Here Ej(k) is some operator in L2(Mj).
In typical situations, the space B∗ enjoys the following property.

Theorem 3.5. Let u ∈ B∗ satisfies (−∆G−E0−λ)u = 0 for λ ∈ (0,∞)\E together
with an outgoing (3.11), or incoming (3.12) radiation condition. Then u = 0.

Namely, as for the decay at infinity, B∗ is the smallest space for non-trivial
solutions to the Helmholtz equation (−∆G−E0−λ)u = 0. This is a generalization
of the classical Rellich’s theorem.

Theorem 3.6. A solution u ∈ B∗ of the equation (−∆G −E0 − k2)u = f ∈ B sat-
isfying either the outgoing radiation condition, or the incoming radiation condition
is unique and is given by u = R(k2 + i0)f , or u = R(k2 − i0)f , respectively.

3.5. Inverse problem. Having completed the forward problem, we can now enter
into the inverse problem. Since M has N number of ends, the S-matrix Sgeo(k) is

an N ×N matrix-valued unitary operator, Sgeo(k) =
(
Sij(k)

)N
i,j=1

. We pick up the

entry S11(k), and try to reconstruct the whole manifold M and the Riemannain
metric from S11(k).

Take the end M1 and split M into 2 parts:

(3.13) M = Mext ∪Mint, Mext = M1 ∩ {r > 2}, Mint = M\Mext.

Let Hext be the self-adjoint unbounded operator −∆G in L2(Mext) identifed by
the Neumann boundary condition at r = 2. Let Hint be the similarly defined self-
adjoint unbounded operator −∆G in L2(Mint) with Neumann boundary condition
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at r = 2. One can then solve the boundary value problem on Mext and Mint :

(3.14)





(−∆G − E0 − k2)u = 0, in Mext,

∂u

∂r
= f, on ∂M1 = {r = 2},

u satisfies the outgoing radiation condition.

(3.15)





(−∆G − E0 − k2)u = 0, in Mint,

∂u

∂r
= f, on ∂M1 = {r = 2},

u satisfies the outgoing radiation condition if N ≥ 2.

Let Λext(k) and Λint(k) be the associated Neumann to Dirichlet maps:

(3.16) Λext(k) : f → uext
∣∣
{r=2}

,

(3.17) Λint(k) : f → uint
∣∣
{r=2}

,

uext and uint being a unique solution to (3.14) and (3.15), respectively. Here and
below, we assume that k2 is not on the exceptional sets associated with Hext and
Hint or an eigenvalue of Hint if Hint is a bounded region.

The following lemma is a bridge between the scattering problem and the interior
boundary value problem.

Lemma 3.7. Given Λext(k) for all k > 0, the S-matrix S11(k) and the ND map
Λint(k) determine each other for all k > 0, k2 6∈ E.

This is a well-known fact. The proof for the case of the Euclidean space is given
in [25], and the hyperbolic space case is deal with in [26]. In the proof of this
lemma, Rellich’s uniqueness theorem plays a crucial role.

With the aid of Lemma 3.7, assuming that we know the end M1, we can obtain
Λint(k) for all k ∈ C from the (1, 1)-component of the S-matrix S11(k) for k > 0.
One can then apply the BC method to Mint, namely we have

Theorem 3.8. Suppose we are given two (possibly non-compact) Riemannian man-

ifolds M
(1)
int, M

(2)
int such that there is a diffeomorphism ψ : ∂M

(1)
int → ∂M

(2)
int and the

Dirichlet-to-Neumann maps satisfy ψ∗(Λ
(2)
int(k)f) = Λ

(1)
int(k)ψ

∗f for all k ∈ (a, b),

b > a > 0 and f ∈ C∞
0 (∂M

(2)
int). Then M(1) and M(2) are isometric.

The detailed proof of this theorem it is too long to review here but we explain
below the sketch of the main steps of the proof. The details are seen in [7, 32] for the
case of compact manifolds and in [27, 43] for non-compact manifolds. The first step
needed to prove Theorem 3.8 is to consider the hyperbolic problem corresponding
to (3.15)

(3.18)





(∂2t −∆G)u
F (x, t) = 0, in Mint × R+,

∂uF

∂ν
= F (x, t), on ∂Mint × R+,

uF (x, t)|t=0 = 0, ∂tu
F (x, t)|t=0 = 0.

Assume next that we are given ∂Mint and the operator Λint(k) for k ∈ (a, b).
Since Λint(k) is meromorphic operator depending on k ∈ C, this data determine
Λint(k) for all k ∈ C. Since the Fourier transform (Ft→ωu

F )(x, ω) of uF (x, t) with
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respect to t satisfies (3.15) with k2 + E0 = ω2, we can determine the hyperbolic
Dirichlet-to-Neumann map Λ(h) : F 7→ uF |∂Mint×R+

. This map can be used to
compute inner products of waves.

Lemma 3.9. (Blagovestchenskii identity) Let F,H ∈ C∞
0 (∂Mint×R+) and T > 0.

Then
∫

Mint

uF (x, T )uH(x, T ) dVG(x) =(3.19)

=
1

2

∫

L

∫

∂Mint

(F (x, t)(Λ(h)H)(x, s)− (Λ(h)H)(x, t)h(x, s)) dSG(x)dtds,

where

L = {(s, t) : 0 ≤ t+ s ≤ 2T, t < s, t, s > 0}.

Proof. Let

w(t, s) =

∫

Mint

uF (x, t)uH(x, s) dVG(x).

Then, by integration by parts, we see that

(∂2t − ∂2s )w(t, s) = =

∫

Mint

[∆Gu
F (x, t)uH(x, s)− uF (x, t)∆Gu

H(x, s)] dVG(x)

=

∫

∂Mint

[∂νu
F (t)uH(s)− uF (t)∂νu

H(s)] dSG(x)

=

∫

∂Mint

[Λ(h)F (x, t)uH(x, s) − uF (x, t)Λ(h)H(x, s)] dSG(x).

Moreover,

w|t=0 = w|s=0 = 0, ∂tw|t=0 = ∂sw|s=0 = 0.

Thus, w is the solution of the initial-boundary value problem for the one-dimensional
wave equation in the domain (t, s) ∈ [0, 2T ]× [0, 2T ] with known source and zero
initial and Λ(h). Solving this problem, we determine w(t, s) in the domain where
t+ s ≤ 2T and t < s. In particular, w(T, T ) gives the assertion. �

The other result is based on the following fundamental theorem by D. Tataru
[59, 60].

Theorem 3.10. Let u = u(x, t) solve the wave equation utt−∆Gu = 0 in Mint×R

and u|Γ×(0,2T1) = ∂νu|Γ×(0,2T1) = 0, where ∅ 6= Γ ⊂ ∂Mint is open. Then

u(x, t) = 0 in KΓ,T1
,(3.20)

where

KΓ,T1
= {(x, t) ∈ Mint × R : d(x,Γ) < T1 − |t− T1|}

is the double cone of influence.

(The proof of this theorem, in full generality, is in [59]. A simplified proof for
the considered case is in [32].)

The observability Theorem 3.10 gives rise to the following approximate control-
lability:
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Corollary 3.11. For any open Γ ⊂ ∂M and T1 > 0,

clL2(Mint){u
F (·, T1) : F ∈ C∞

0 (Γ× (0, T1))} = L2(Mint(Γ, T1)).

Here

Mint(Γ, T1) = {x ∈ Mint : d(x,Γ) < T1} = KΓ,T1
∩ {t = T1}

is the domain of influence of Γ at time T1 and L2(Mint(Γ, T1)) = {a ∈ L2(Mint) :
supp(a) ⊂ Mint(Γ, T1)}.

Lemma 3.12. Let T > 0 and Γj ⊂ ∂Mint, j = 1, . . . , J , be non-empty, relatively

compact open sets, 0 ≤ T−
j < T+

j ≤ T . Assume we are given ∂Mint and the

response operator Λ(h). This data determines the inner product

JT
N (F1, F2) =

∫

N

uF1(x, t)uF2(x, t) dVG(x)

for given t > 0 and F1, F2 ∈ C∞
0 (∂Mint × R+), where

N =

J⋂

j=1

(Mint(Γj , T
+
j ) \Mint(Γj , T

−
j )) ⊂ Mint.(3.21)

We give the proof of Lemma 3.12 only for the case when J = 1 and T−
1 = 0 so

that N = Mint(Γ1, T
+
1 ). We note that when the manifold ∂Mint and the response

operator Λ(h) are given, we can determine the metric G∂Mint
of the boundary

∂Mint. We say that the manifold ∂Mint with its metric and the response operator
Λ(h) form the boundary data.

Consider first the case F1 = F2 = F . Let B = Γ1 × [T − T+
1 , T ]). For all

H ∈ C∞
0 (B) it holds that supp(uH(· , T )) ⊂ N , and thus

‖uF (T )− uH(T )‖2L2(Mint)

=

∫

N

(uF (x, T )− uH(x, T ))2dVG(x) +

∫

Mint\N

(uF (x, T ))2dVG(x).

Let χN (x) be the characteristic function of the set N . By Corollary 3.11, there is
H ∈ C∞

0 (B) such that the norm ‖χNu
F (T )−uH(T )‖L2(M,dVµ) is arbitrarily small.

This shows that JT
N (F1, F2) can be found by

JT
N (F, F ) = ‖uF (T )‖2L2(Mint)

− inf
H∈C∞

0
(B)

F(H),(3.22)

where

F(H) = ‖uF (T )− uH(T )‖2L2(Mint)
.

Since F(H) can be computed when the boundary data is given by Lemma 3.9, it
follows that we can determine JT

N (F, F ) for any F ∈ C∞
0 (∂M × R+). Now, since

JT
N (F1, F2) =

1

4
(JT

N (F1 + F2, F1 + F2)− JT
N (F1 − F2, F1 − F2)),

Lemma 3.12 follows in the case when J = 1 and T−
1 = 0.

To reconstruct (Mint, G), we use a special representation, the boundary distance
representation, R(Mint), of Mint and show that the boundary data determine
R(Mint). Consider a map R : Mint → C(∂Mint),

R(x) = rx(·); rx(z) = dg(x, z), z ∈ ∂Mint,(3.23)
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i.e., rx(·) is the distance function from x ∈ Mint to the points on ∂Mint. The image
R(Mint) ⊂ C(∂Mint) of R is called the boundary distance representation of Mint.
The set R(Mint) is a metric space with the distance inherited from C(∂Mint)
with the standard norm ‖f‖∞ = maxz∈∂Mint

|f(z)| of C(∂Mint). We denote this
distance by dC . The map R, due to the triangular inequality, is Lipschitz,

dC(rx, ry) ≤ dg(x, y).(3.24)

Note that if ∂Mint is unbounded, which corresponds to the possible case of un-
bounded Mi, rx(·) becomes unbounded and, instead of the distance dC(rx, ry), it
is convenient to use a modified one

db(rx, ry) = sup
z∈∂Mint

(
|rx(z)− ry(z)|

1 + |rx(z)− ry(z)|

)
.

When x, y run over a compact in Mint, db(rx, ry) is equivalent to dC(rx, ry).
The map R : Mint → R(Mint) ⊂ C(∂Mint) is an embedding. Many results of

differential geometry, such as Whitney or Nash embedding theorems, concern the
question how an abstract manifold can be embedded to some simple space, such as
a higher dimensional Euclidean space. In the inverse problem we need to construct
a ”copy” of the unknown manifold in some known space, and as we assume that
the boundary is given, we do this by embedding the manifold Mint to the known,
although infinite dimensional function space C(∂Mint).

The basic observation needed to construct R(Mint) is that the set N given in
(3.21) has non-zero measure if and only if

P ({(Γj , T
+
j , T

−
j ) : j = 1, . . . , J}) = sup

f
JT
N (f, f),

is non-zero.

Theorem 3.13. Let {zn}∞n=1 be a dense set on ∂Mint and r(·) ∈ C(∂Mint) be an
arbitrary continuous function. Then r ∈ R(Mint) if and only if for all L ∈ N+, it
holds that

P
({

(zj , r(zn) +
1

L
, r(zn)−

1

L
); j = 1, . . . , L

})
> 0.(3.25)

Moreover, condition (3.25) can be verified when the manifold ∂Mint and the re-
sponse operator Λ(h) are given. Hence the pair (∂Mint,Λ

(h)) determines uniquely
the boundary distance representation R(Mint) of (Mint, G).

The idea of to proof Theorem 3.13 is that we see that the set {x ∈ Mint; |d(zj , x)−
r(zn)| <

1
L for all j = 1, . . . , L} contains a point x0 for all L if and only if rx0

(z) =
r(z) for all z ∈ ∂Mint.

Next let us consider a compact manifold (Mint, G) that is geodesically regular
manifold, i.e.,

i) For any x, y ∈ Mint there is a unique geodesic γ joining these points.
ii) Any geodesic γ([a, b]) can be continued to a geodesic γ([a′, b′]) whose end-

points lie on the boundary.

Consider R(Mint) as a metric space (R(Mint), d∞) with the distance inherited
from L∞(∂Mint), d∞(rx, ry) = ‖rx − ry‖L∞(∂Mint). Then the mapping R is an
isometry, i.e.

d∞(rx, ry) = d(x, y).
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Indeed, let γ([a, b]) be the shortest geodesic from y to x. Continue this geodesic to
the shortest geodesic γ([a′, b]), where z = γ(a′) ∈ ∂Mint. Then

rx(z)− ry(z) = |γ([a′, b])| − |γ([a′, a])| = b− a = d(x, y).

Hence,
d(x, y) ≤ d∞(rx, ry).

The opposite inequality is valid by the triangular inequality, yielding that d(x, y) =
d∞(rx, ry). This means that, if we know a priori that (Mint, G) is geodesically
regular, then (R(Mint), d∞)) is isometric to (Mint, G) and the problem of the
reconstruction of (Mint, G) from the data (∂Mint,Λ

(h)) is solved. The above ideas
can be generalized to prove Theorem 3.8.

Let us note that only one diagonal entry S
(2)
11 (k) is necessary to recover the whole

manifold using Lemma 3.7 and Theorem 3.8. Therefore, our final inverse procedure
is as follows.

Theorem 3.14. Suppose we are given two non-compact Riemannian manifolds

M(1), M(2) having N1 and N2 numbers of ends, respectively. Let M
(1)
1 and M

(2)
1

be their first ends, and suppose that there exists r0 > 1 such that M
(1)
1 ∩ {r > r0}

and M
(2)
1 ∩{r > r0} are isometric. Assume furthermore that their (1, 1)-entries of

S-matrices coincide : S
(1)
11 (k) = S

(2)
11 (k) for all k > 0, k2 6∈ E(1) ∪ E(2). Then M(1)

and M(2) are isometric.

4. Examples

4.1. Model metric. Spectral properties of −∆G depends largely on the growth
of the manifold M at infinity. Looking at an end (1,∞) ×M , we pick up here 4
basic examples, and examine what is going on. We have so far studied the following
cases:

(1) G = (dr)2 + e2rh,

(2) G = (dr)2 + r2h,

(3) G = (dr)2 + h,

(4) G = (dr)2 + e−2rh,

where h is a metric on M .

These are well-known classical examples, and have some distinguished properties.

4.2. Tools for the resolvent estimates. Before going into the details, we explain
here the method for resolvent estimates. There are several ways of proving LAP
for Laplacians on manifolds. One is E. Mourre’s abstract commutator theory [51],
another is Melrose’ theory of scattering metric [48], [49]. Our method is different
from both of them. We employ the classical Eidus’ approach of integration by parts
[14]. Given the equation (−∆G0

−E0−z)u = f on the model space M0 = I0×M0,
we expand u by the eigenvectors of −∆M0

. The problem is then reduced to the 1-
dimensional case. The main step is to multiply this 1-dimensional equation by (the
derivative of ) solution and integrate by parts to obtain some identities. Standard
arguments from perturbation theory then prove the necessary resolvent estimates.
See e.g. [28], Lemmas 2.4, 2.5, Theorem 2.7, or [27], Lemmas 2.4 ∼ 2.8. This
method is no less powerful than the above two machineries, and gives us results by
elementary computation. All of the above 4 examples are treated by this method.
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4.3. Euclidean metric. Let us start with the Euclidean metric (2). In this case,
we take M0 = Rn, and the perturbed metric gijdx

idxj is assumed to satisfy

(4.1) ∂αx (gij(x)− δij) = O(|x|−1−|α|−ǫ0), for all α and some ǫ0 > 0.

There are plenty of papers dealing with scattering in the asymptotically Eu-
clidean space, and all the requisites are prepared in e.g. [27] or [61]. Consulting
them, one can see that the arguments in §3 work well, and Theorem 3.14 holds. In
this case, there are no embedded eigenvalues in (0,∞). The radiation condition is
the standard one:

lim
R→∞

1

R

∫

|x|<R

∣∣( ∂
∂r

∓ ik
)
u
∣∣2dx = 0.

4.4. Cylindrical ends. Let us consider (3). In the daily life example, it arises
as the problem of waveguide. As a model space, we take M0 to be a compact
(n− 1)-dimensional manifold without boundary. Let M0 = (1,∞)× (M0, h), and
∆0 = ∆(M0,h). The perturbed metric is assumed to satisfy

|∂αX(gij(X)− hij(x))| ≤ Cα(1 + r)−1−ǫ, for all α and some ǫ > 0

where x denotes the variable in M0, and X = (r, x).
The waveguide has many features different from the conical Euclidean metric (2).

In the first place, it may have eigenvalues embedded in the continuous spectrum.
The 2nd feature is that the scattering in the waveguide has many channels. Let
{λm}∞m=1 be the eigenvalues of −∆0. Then, since −∆G has the form

−∆G = −
( ∂
∂r

)2
−∆0,

when the total system has energy λ > 0, only the states with λm ≤ λ occur in the
scattering phenomena. The radiation condition is thus defined by

lim
R→∞

1

R

∫

1<r<R

∥∥( ∂
∂r

∓ i
√
λ+∆0

)
u(r, · )‖2L2(M0)

dr = 0.

Because of this channel property, the scattering matrix changes its size according
to the energy, higher the energy, bigger the size of the S-matrix.

To discuss the inverse scattering, we assume that one end is strictly cylindrical.
Namely, the end M1 is equal to [1,∞) × M0 with metric (dr)2 + h. We take
an artificial boundary r = 2 in M1, and split M into the exterior and interior
domains. As in §3, we derive interior N-D map from the knowledge of (1, 1)-entry
of the S-matrix. However, the physical S-matrix is not sufficient to determine the
interior N-D map. The key observation here is that the physical S-matrix S11(k)
admits an analytic continuation into the upper (physical) half plane, and, down
to the real axis, determines non-physical scattering matrix, which is defined using
the exponentially growing solutions of the reduced wave equation instead of the
physical plane wave. Therefore Theorem 3.14 holds in this case.

The exponentially growing solution is the crucial idea found by Faddeev in his
multi-dimensional inverse scattering theory, as well as Calderón’s inverse boundary
value problem. What is interesting is that this apparently artificial exponentially
growing solutions appear naturally in the waveguide problem. The details are given
in [28].

We can also allow the ends of type (2) and (3) at the same time. Namely, if our
ends M1, · · · ,MN are composed of two parts: M1, · · · ,Mµ, which are Euclidean
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ends, and Mµ+1, · · · ,MN , which are cylindrical ends, the results in subsections
4.3, 4.4 are applied as well.

4.5. Hyperbolic space. We turn to the case (1). The problem here is that in di-
mensions ≥ 3, the infinity of hyperbolic manifold may have a complicated structure.
Therefore, we restrict ourselves to the simple case, and as a model space, we take
M0 =M0 × (0,∞) equipped with the metric ((dy)2 + h(x, dx))/y2, where M0 is a
compact manifold equipped with metric h(x, dx) . This model has two infinities,
y = 0 corresponding to the infinite volume, which we call regular end, and y = ∞
corresponding to cusp. We take H0 = −∆M0

− (n− 1)2/4. Then σ(H0) = [0,∞).
We split H0 into two parts : {0 < y < 1} and {y > 1}. By the change of variable
y = e−r, the former becomes a model space for (1). The change of variable y = er

makes the latter to a model space for (4).
The perturbed metric is assumed to have the form

ds2 = y−2
(
(dy)2 + h(x, dx) +A(x, y, dx, dy)

)
,

A(x, y, dx, dy) =

n−1∑

i,j=1

aij(x, y)dx
idxj + 2

n−1∑

i=1

ain(x, y)dx
idy + ann(x, y)(dy)

2,

where aij(x, y) satisfies, for some ǫ0 > 0

|D̃α
xD

β
y a(x, y)| ≤ Cαβ(1 + | log y|)−min(|α|+β,1)−1−ǫ0, for all α, β.

Here, Dy = y∂y, D̃x = ỹ(y)∂x, ỹ(y) ∈ C∞((0,∞)), ỹ(y) = y for y > 2, ỹ(y) = 1 for
0 < y < 1.

If one of the ends is a regular infinity, there are no embedded eigenvalues. If all
the ends are cusps, there may be embedded eigenvalues. The radiation condition
is formulated as

lim
R→∞

1

logR

∫

1/R<y<1

∥∥(Dy − iσ±(k)
)
u(y)

∥∥2
L2(M0)

dy

yn
= 0,

lim
R→∞

1

logR

∫

1<y<R

∥∥(Dy − iσ∓(k)
)
u(y)

∥∥2
L2(M0)

dy

yn
= 0,

σ±(k) =
n− 1

2
∓ ik.

Note that these are standard radiation conditions
(3.11) and (3.12) since r = |log y|.
The inverse scattering from regular ends works well as in §3. Namely, suppose we

are given two such asymptotically hyperbolic manifolds M(1), M(2) whose regular

ends M
(1)
1 and M

(2)
1 are isometric, and the (1, 1) components of the S-matrix

coincide for all k. Then M(1) and M(2) are isometric. This is proven in [27].
We remark that Sá Barreto [57], using the framework of scattering metric due to

Melrose, proved the existence of isometry between two asymptotically hyperbolic

manifolds having the same scattering matrix without the assumption that M
(1)
1

and M
(2)
1 are isometric, although the decay assumption at infinity are different

from ours. In [22], it is extended to asymptotically hyperbolic complex manifolds.
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4.6. Poisson integral and the space B∗. Before entering into the problem of
cusp, we briefly look at some aspects of Poisson integral. Let us take the most basic
example of Poincaré disc : D = {z ∈ C ; |z| < 1}. It is well-known that the Poisson
integral

(4.2) u(z) =
1

2π

∫ 2π

0

(
1− |z|2

|eiθ − z|2

)s

f(θ)dθ,

f(θ) being a function on the boundary ∂D = S1, is a solution to the equation

(4.3) (−∆G − 4s(1− s))u = 0

for all s ∈ C. Our space B∗, for which f(θ) ∈ L2(S1), has the following special
feature : {u ∈ B∗ ; (−∆G− 1

4−k
2)u = 0} is the smallest space of solutions as regard

to decay at infinity. In fact, the Rellich type theorem says that the solution of (4.3)
decaying faster than the elements of B∗ vanishes identically. Although this space
is the smallest, it contains sufficiently many solutions for the inverse scattering.
The largest solution space was found by Helgason [23], namely all solutions of
(4.3) are represented as (4.2), where f(θ) is Sato’s hyperfunction. This theorem
was extended to the general symmetric spaces by Kashiwara-Kowata-Minemura-
Okamoto-Oshima-Tanaka [34]. The theorem of Helgason suggests that one may
control the solution space of the equation (−∆G − 1

4 − k2)u = 0 through function
spaces on the boundary at infinity. This enables us to extend the notion of S-matrix.
We utilize this idea for the cusp.

5. Arithmetic surface and generalized S-matrix

We restrict ourselves here to the 2-dimensional case. Lots of examples of hyper-
bolic surfaces are given by the action of discrete groups on the upper half plane. If
we consider the geometrically finite case, which implies that the associated quotient
space is a polygon with sides of finite number of geodesics, the infinity consists of
a finite number of cusp and funnel (the latter being a slightly perturbed regular
infinity discussed in 4.5). However, if the Fuchsian group contains elliptic elements,
the quotient space M has singularities. Note that M itself is an analytic manifold
without singularities, however, the hyperbolic metric induced from C+ becomes
singular at elliptic fixed points. Thus they are orbifolds, moreover, many examples
of quotient spaces appearing in number theory have only cusp at infinity. They are
non-compact, but has a finite volume. The result of the previous section cannot
be applied to this case. As a matter of fact, the S-matrix at a cusp end does not
have enough information to reconstruct the metric, since the cusp gives only one-
dimensional contribution to the continuous spectrum. A remedy lies in generalizing
the notion of S-matrix.

Assume that M1 = (1,∞) × (−1/2, 1/2) with two sides identified. Take any
solution u of the equation (H − k2)u = 0, and expand it into the Fourier series on
M1:

u(x, y) =
∑

n∈Z

e2πnxun(y).

Then un satisfies

y2
(
− ∂2y + (2ny)2

)
un(y)−

1

4
un(y) = k2un(y),
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hence is written as

un(y) =

{
ãn y

1/2I−ik(2π|n|y) + b̃n y
1/2Kik(2π|n|y), n 6= 0,

a0 y
1/2−ik + b0 y

1/2+ik, n = 0.

where Iν and Kν are modified Bessel functions. We then see that all solutions of
the equation (H − k2)u = 0 behave like

(5.1) u(x, y) ∼ a0y
1/2−ik +

∑

n6=0

ane
inx+|n|y + b0y

1/2+ik +
∑

n6=0

bne
inx−|n|y,

as y → ∞. Given an exponentially growing wave represented by the first two terms
in (5.1), one can uniquely construct a solution of (H − k2)u = 0 belonging to B∗

on ends Mj , j 6= 1, and behaving like (5.1) in M1. We call the mapping

(5.2) S11(k) : {an}n∈Z → {bn}n∈Z

the generalized S-matrix. Passing to the Fourier series, we see that to define (5.2),
we are using a class of analytic functionals bigger than Sato’s hyperfunction. Note
that S11(k) is an infinite matrix, and the usual S-matrix S11(k) is its (0, 0)-entry.
This generalized S-matrix has enough information for the inverse scattering. We
make an artificial boundary in M1 and consider the boundary value problem in the
interior domain. Then the knowledge of S11(k) for all k enables us to determine
the N-D map Λint(k), hence to apply the BC method.

In the interior domain Mint, there is a finite number singular points. Since
they have a special structure, we can deal with Mint as a manifold with conical
singularities, to which we can apply the BC method as well. We can thus prove
the following theorem.

Theorem 5.1. Suppose we are given two 2-dimensional asymptotically hyperbolic
surfaces with conical singularities M(1),M(2). Suppose they have pure cusp ends

M
(1)
1 ,M

(2)
1 , i.e. with metric ((dy)2 + (dx)2)/y2, and their generalized S-matrices

coincide : S
(1)
11 (k) = S

(2)
11 (k), for all k. Then M(1) and M(2) are isometric.

In particular, if H(i) = Γ(i)/H2 with geometrically finite Fuchsian group Γ(i),
and their generalized S-matrix coincide, Γ(1) and Γ(2) are conjugate. See [29] for
details. Also note that the results in subsections 4.5 and 5.1 also hold when M has
both regular ends and cusps.

As in the previous cases, the key idea for the proof of Theorem 5.1 is the use
of exponentially growing solutions of the Helmholtz equation, which appears natu-
rally here because of the form of hyperbolic metric. For cylindrical ends, we have
encountered a similar situation, in which case, however, the non-physical scattering
matrix is obtained by the analytic continuation of the physical scattering matrix.
This is not true for the cusp. In fact, Zelditch [62] constructed an example of
non-isometric hyperbolic surfaces with the same physical scattering matrix.

6. Works in progress

6.1. Higher dimensional asymptotically hyperbolic orbifolds. In higer di-
mensions, we have new phenomenon in the problem in §5. Consider the case of
n = 3, and let the Picard group Γ = SL(2,Z+ iZ) act on H3 through quarternions.
The resulting quotient space is a 3-dimensional hyperbolic manifold with singu-
larities, i.e. an orbifold. Unlike the 2-dimensional case, the singularities are not
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confined in a compact set. They form an unbounded curve, and the manifold at
infinity is not a smooth manifold, but a 2-dimensional orbifold (see [15]). However,
the results for the forward problem also hold in this case with no essential change,
and we are also expecting the inverse scattering results as well.

The structure of the manifold at infinity of general hyperbolic manifold is com-
plicated (see e.g. [24]). The forward and inverse scattering for this general case are
challenging problems.

6.2. Intermediate metrics. We have worked on the problems (1)–(4), however,
there is no reason that we must restrict ourselves to these cases. There is a wide area
of problems for the intermediate metrics between (1) and (4), and those outside.
For example, [40], [31] are dealing with non-existence of embedded eigenvalues,
and [41] studies the LAP. We expect that the inverse scattering theory can also be
developed in these cases.
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