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Abstract 

A nano-sized carbonaceous material was derived from bacterial cellulose (BC). BC, which is 

produced by bacteria as nano-sized material, possesses high degree of crystallinity of 90%, was 

pyrolysed at 950°C and physically activated with CO2 to produce a nano-sized activated carbon 

material. The pyrolysis of BC yielded a carbonaceous material (carbon yield of between 2% and 

20%), with a relatively low D- to G-band ratio (between 2.2 and 2.8), indicating that the 

carbonaceous material possesses a graphitic structure. Two different BC materials were 

pyrolysed; a loose fibrous (freeze-dried) and dense paper form. It was observed that a carbon 

nanofibre-like material was produced by the pyrolysis of the loose fibrous form of BC. The 

electric double layer (EDL) capacitance and the area-normalised specific capacitance in K2SO4 

solution were as high as 42 F g-1 and 1617 F cm-2, respectively. The EDL capacitance was also 

compared to commercially available activated carbon (YP-50F). 
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1. Introduction 

Energy storage devices can be categorised into three categories; fuel cells, batteries and 

capacitors. Conventional batteries have high energy density but low power density [1]. This 

implies that batteries are able to store sufficient energy for commercial use but deliver low 

power. On the other hand, conventional capacitors possess high power density and hence, 

capacitors are able to deliver high power [2] yet store little energy. It is highly desirable to 

manufacture energy storage devices that combine both high energy and power densities such that 

they can store sufficient energy and are able to deliver high power. Therefore, numerous research 

efforts have been directed into the development of high power batteries [3,4] and supercapacitors 

[5-7,2,8]. Supercapacitors or electric double layer capacitors (EDLC) utilise the electrochemical 

double layer formed between a solid surface and an electrolyte solution to store energy [5]. 

ELDC have numerous advantages over conventional batteries and capacitors, such as a longer 

cycle life [7], higher energy densities [8] and rapid energy charge-discharge cycles [9].  

Metal oxides [10,11] and polymers [12,13] have been considered as active electrode 

materials for EDLC. However, activated carbons remain the most frequently used electrode 

material for EDLC. Activated carbons are usually derived from coal, wood, coconut shells and 

fruit stones [14]. These carbons are low cost, have high surface areas (~2500 m2 g-1), are widely 

available and have an established electrode production technology [9]. Carbon nanotubes (CNT) 

are also a potential candidate as the active electrode for EDLC due to their high specific surface 

area and good conductivity [15-18]. More recently, the utilisation of lignocellulosic fibres as a 

carbon source for EDLC has been studied extensively [19-21]. Lignocellulosic fibres have 

attracted much attention due to their wide availability, low cost and porous nature, which usually 

results in high surface area of the carbon produced after pyrolysis and physical activation. 

Various types of lignocellulosic fibres have been studied as potential activated carbon source; 
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wood [22], wheat straw [20], cotton stalk [23-25], jute [26], oil palm [27], coconut husk [28] and 

sea grass [29] fibres.  

Studies have also been conducted on the carbonisation of nano-sized cellulose, namely 

bacterial cellulose (BC) and tunicate derived cellulose whiskers [30-32]. The syntheses of 

mesoporous carbon and carbon nano-needles from cellulose nanowhiskers have also been 

reported recently in literature [33,34]. The study on the carbonisation of bacterial cellulose 

however, focused on the effects of drying the cellulose from different solvents on the surface area 

of the carbonised cellulose. To the best of our knowledge, no studies have been performed to 

evaluate the physical activation of pyrolysed nano-sized BC and its application for EDLC. Here 

we provide a comprehensive investigation into the physical properties of physically activated 

carbonaceous nanomaterials derived from BC and its potential application as an active electrode 

material for EDLC. The capacitance of the carbon produced by the pyrolysis of BC was 

compared with the capacitance of commercially available activated carbon for supercapacitors 

(YP-50F). 

 

2. Experimental 

2.1 Materials 

Potassium sulphate (K2SO4) solution (Fluka, 0.5 M in water) was purchased from Sigma-Aldrich. 

Hydrochloric acid (Alfa Aesar, 0.1 N), potassium hydroxide (Alfa Aesar, 0.1 N) and acetylene 

black (50% compressed, purity > 99.9%, Alfa Aesar) were purchased from VWR. Sodium 

hydroxide (purum grade, pellets) was purchased from Acros Organics. Polytetrafluoroethylene 

(Fluon®) was purchased from AGC Chemicals. Carbon nanofibres (CNF) and a high surface area 

activated carbon (YP-50F) were used as benchmark for comparison and were kindly supplied by 

Pyrograf Products Inc (PR-19 PS, Cerdaville, Ohio, USA) and Kuraray Chemicals (Canoga Park, 
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CA, USA), respectively. Nitrogen (purity ≥ 99.998%) and carbon dioxide (purity ≥ 99.8%) were 

purchased from BOC (Morden, UK). All the materials were used as received without further 

purification. Bacterial cellulose was extracted from commercially available Nata-de-Coco 

(CHAOKOH coconut gel in syrup, Ampol Food Processing Ltd, Nakorn Pathom, Thailand). 

2.2 Extraction and purification of bacterial cellulose 

The extraction and purification of BC from Nata-de-Coco was reported elsewhere [35]. Briefly, 

the Nata-de-Coco gels from 5 jars of Nata-de-Coco were rinsed 3 times with 5 L of de-ionised 

water to remove the majority of the sugar syrup. After this washing step, the gels were blended 

for 1 min in 5 L of de-ionised water using a laboratory blender (Waring Blender LB20EG, 

Christison Particle Technology, Gateshead, UK) and homogenised for 2 min (Polytron PT 10-35 

GT, Kinematica, Lucerne, Switzerland). The homogenised gel was centrifuged at 14,000g to 

remove the excess water. In order to obtain pure BC, the centrifuged BC gel was purified by re-

dispersing it in 5 L of 0.1 M NaOH solution, heated to 80°C for 20 min to remove any soluble 

polysaccharides and microorganisms [36]. This purified BC was then successively centrifuged 

and homogenised using de-ionised water to neutral pH.  

2.3 Preparation of freeze-dried BC and dense BC paper 

BC was prepared in two different forms prior to pyrolysis; as loose nanofibrils (freeze-dried) and 

in dense paper form. Freeze dried BC was prepared by dispersing the previously extracted and 

purified BC in water at a concentration of 0.4 (g mL-1)% using a homogeniser. The dispersion 

was poured into a Petri dish, flash frozen in liquid nitrogen and freeze-dried (Heto PowerDry 

LL1500 Freeze Dryer, Thermo Scientific, UK).  

Dense BC paper was manufactured following BS EN ISO 5269:2005. The previously 

extracted and purified BC was dispersed in water at a concentration of 0.1 (g mL-1)% using a 
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homogeniser. This dispersion was filtered under vacuum using a filter paper (diameter: 125 mm, 

particle retention: 5 – 13 µm, VWR, Lutterworth, UK). The filter cake was wet pressed 3 times at 

a force of 410 kN. The wet pressed filter cake was then dried at room temperature at 50% RH to 

produce a dense BC paper. The loose fibrous (freeze-dried) BC and dense (paper) BC are referred 

to as FDBC and BCP, respectively, hereafter. 

2.4 Pyrolysis and physical activation of BC 

BC was pyrolysed and physically activated in a chamber furnace (ECF 12/30, 28 L chamber 

capacity, Lenton, Hope Valley, UK). Prior to the pyrolysis of BC, the furnace was purged with 

N2 at 2 L min-1 for 15 min. BC was pyrolysed at 950°C for 30 min under continuous N2 flow (2 L 

min-1) at a heating rate of 5°C min-1. Physical activation of BC consisted of a pyrolysis step at 

950°C for 30 min (2 L min-1 of N2 flow), directly followed by an activation step in CO2 (0.5 L 

min-1) for 10 min. The pyrolysed FDBC and BCP were termed carbonised FDBC and carbonised 

BCP, respectively, whereas the physically activated pyrolysed FDBC and BCP were termed 

activated FDBC and activated BCP, respectively. The carbon yield or burn-off was calculated 

using the equations below: 

 

ΔY = (1−
wi −wf

wi

)×100%         (1) 

 

Δm =
wi −wf

wi

×100%          (2) 

where ΔY is the carbon yield and Δm is the burn-off, wi is the initial mass before 

pyrolysis/physical activation and wf is the mass after pyrolysis/physical activation, respectively. 

2.5 Characterisation of BC, carbonised BC and CNF 

2.5.1 Scanning electron microscopy (SEM) 
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SEM was performed using a high-resolution field emission gun scanning electron microscope 

(LEO Gemini 1525 FEG-SEM, Oberkochen, Germany). It was used to characterise the 

morphology of BC before and after pyrolysis and physical activation. The accelerating voltage 

used during SEM was 5 kV. Prior to SEM, all the samples were fixed onto SEM stubs using 

carbon tabs and Cr coated with a sputter coater (K550 sputter coater, Emitech Ltd, Ashford, Kent, 

UK) for 1 min at 75 mA. 

2.5.2 ζζ-potential measurements 

The ζ-potentials of neat, pyrolysed, activated pyrolysed BC and CNF were measured using the 

electrokinetic analyser (EKA, Anton Paar, Graz, Austria) based on the streaming potential 

method in a powder cell. In order to exclude any overlaying effects due to swelling (for BC) or 

extraction of water-soluble components from the samples, the pH dependency of ζ-potential was 

measured only after a time dependent ζ-potential measurement was completed. During the ζ = 

f(t) measurement, a sample mass of approximately 50 mg was equilibrated in 1 mM KCl 

electrolyte solution by means of a single long time streaming ζ-potential measurement at 20°C. 

The pH dependency of the ζ-potential was then measured by changing the pH of the electrolyte 

solution through the titration of 0.1 N HCl or KOH into KCl solution, using a titration unit (RTU, 

Anton Paar, Graz, Austria).  

2.5.3 Specific surface area (BET) measurements 

Nitrogen adsorption/desorption isotherms were performed to determine the specific surface area 

of neat, pyrolysed, activated pyrolysed BC and CNFs using a surface area and porosity analyser 

(TriStar 3000, Micrometrics Ltd, Dunstable, UK). The specific surface area was calculated using 

the Brunauer-Emmett-Teller (BET) equation. Prior to the measurement, the samples were 

degassed at 80°C overnight to remove adsorbed water molecules.  
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2.5.4 Density measurements 

The densities of neat, pyrolysed, activated pyrolysed BC and CNFs were measured using He 

pycnometry (Accupyc 1330, Micrometrics Ltd, Dunstable, UK). The samples were weighed 

(A&D GH-252, resolution = 0.01 mg, Milton Keynes, UK) prior to placing them into the 

measuring chamber of the pycnometer. As the pressure of He rises above atmospheric value, it 

was expanded through a valve and this expanded volume was measured. Due to the expansion of 

He, the pressure inside the chamber will decrease to a constant value. By assuming that He obeys 

the ideal gas law, the density of the sample was then calculated using the equation: 

 

ρ =
m

Vc −
VE
P1
P2
−1

          (3) 

where m is the sample mass, Vc the chamber volume, VE the expanded helium volume, P1 and P2 

are the chamber’s elevated pressure and constant pressure, respectively.  

2.5.5 Thermal gravimetric analysis (TGA) 

The thermal degradation behaviour of neat, pyrolysed, activated pyrolysed BC and CNFs was 

characterised using TGA (TGA Q500, TA Instruments, UK). Samples of 5 mg were heated from 

20°C to 700°C in air at a heating rate and air flowrate of 10°C min-1 and 60 mL min-1, 

respectively.  

2.5.6 Raman spectroscopy  

Raman spectroscopy was performed using a dispersive Renishaw 1000 confocal microscope 

(Reinshaw Plc, Hillesley, Wotton-under-Edge, UK). An argon ion laser (λ = 514.5 nm), which 

has a maximum output power of 20 mW and a spot size of 1 µm, was used for this 

characterisation. The laser was focussed onto the sample using a 50× objective at ambient 

condition and the spectra were measured with a collection time of 60 s and 10 co-additions at 
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10% of the laser power from 2000 cm-1 to 1000 cm-1. Each sample was characterised at three 

randomly selected locations. The Raman spectra were peak fitted using a mixed Gaussian-

Lorentzian (G/L ratio of 30:70) curve in order to extract the structural parameter. D- to G-band 

ratio (ID/IG) was calculated by taking the integrated area under the fitted curves corresponding to 

the D-band (1350 cm-1) and G-band (1590 cm-1), respectively. The in-plane graphitic crystallite 

size [37] La was calculated from the D- to G-band intensity ratio using equation 3. This equation 

is valid for a Raman laser with (λ = 514.5 nm) [38]. 

 

La[nm]= 4.4 ×
ID
IG

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

          (4) 

2.5.7 Determination of the electric double layer capacitance  

Cyclic voltammetry (CV) was performed to characterise the double layer capacitance of the 

produced carbonaceous materials. It was conducted using an electrochemical measurement 

system (Solartron 1287, Solartron Analytical, Farnborough, UK) with a three-electrode cell. Pt 

wire and Ag/AgCl electrodes were used as the counter and reference electrodes, respectively. In 

order to fabricate the working electrode, the samples were dispersed along with acetylene black 

and polytetrafluoroethylene (PTFE) at a ratio of 87 wt%: 10 wt%: 3 wt% in ethanol using an 

ultrasonic bath. The slurry was then applied onto two flat nickel foams (RCM-4573, RECEMAT 

International BV). The foams coated with the carbon material were dried at 40°C overnight to 

remove any residual ethanol, then sandwiched and compressed under a weight of 250 kg for 

5 min. Acetylene black was used to reduce the Ohmic resistivity of the active electrode material 

[39] and PTFE as binder. It has been shown that acetylene black does not affect the capacitance 

of the active electrode material [40]. The double layer capacitance was measured in a 0.5 M 

K2SO4 electrolyte solution. CV profiles were obtained between -0.2 V and 0.2 V at various scan 

rates (1 mV s-1, 5 mV s-1, 10 mV s-1 and 20 mV s-1). The capacitance was calculated using: 
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C = Ia − Ic
2×m× dE

dt

          (5) 

where C, Ia, Ic, m and 
dt
dE  are the specific double layer capacitance, the current corresponds to 

the anodic and cathodic part of the CV curves, mass of the active samples and the scan rates, 

respectively. 

 

3. Results and discussion 

3.1 BET surface area of neat BC and BC derived carbon 

The properties of both BC starting materials, i.e. dense paper and loose freeze-dried (see Fig 1), 

and the carbon samples produced from BC are given in Table 1. It should be noted that the table 

does not contain the properties of carbonised and activated freeze-dried bacterial cellulose 

(FDBC). This is a direct result of low carbon yield (~2.3%) and large surface area (~166 m2 g-1) 

of carbonised FDBC. The physical activation of the carbon using CO2 involves the burning off of 

carbonaceous material to produce pores, with CO as a by-product [14]. As a result of the high 

burn-off after pyrolysis, the physical activation process will remove any residual material left 

over after the pyrolysis of FDBC. It is, however, possible to physically activate carbonised 

bacterial cellulose paper (BCP) as it had a higher carbon yield and smaller exposed surface area 

(see Table 1). It can also be seen from Table 1 that the carbon yield of BCP is substantially 

higher than that of FDBC, which might be a direct result of the exposed surface area.  

The total surface area of the samples (carbonised FDBC, carbonised BCP and activated 

pyrolysed BCP) increased when it was pyrolysed/carbonised and physically activated (see Table 

1). The BET surface area of our carbon materials is in agreement with the surface area of 

activated carbon produced by pyrolysis and activation of lignin and lignocellulosic material (sea 
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grass), respectively [29]. The pyrolysis and activation process increased the pore area more 

significantly compared to the external surface area for all carbon samples (Table 1). The diffusion 

of CO2 into the sample removes amorphous carbon and created a porous structure within the 

sample through the formation of CO [14]. It is well known that the pyrolysis process will result in 

micropore and mesopore formation [26], whereas the activation process will widen existing pores 

[41]. 

3.2 Morphology of carbonised BC 

The SEM images of the samples produced from BC are shown in Fig 1. FDBC possesses a 

fibrous structure, with a diameter of approximately 50 nm and several micrometres in length (Fig 

1a). When FDBC is pyrolysed, the carbon retains the fibrous structure of the BC precursor (Fig 

1b). The pyrolysis of FDBC produced a carbon nanofibre-like material. Fig 1(c) and Fig 1(d) 

show the morphology of pyrolysed BCP and activated pyrolysed BCP, respectively. There is no 

observable porosity in the pyrolysed BCP. The physical activation of carbonised BC paper, on 

the other hand, produced a porous structure within the sample. 

3.3 pH dependent streaming ζζ-potential behaviour of BC and BC derived carbon 

ζ-potential provides information regarding the surface chemistry of a material and the formation 

and composition of the double layer when this material is in contact with an electrolyte solution. 

The ζ-potential is generally assumed to approximate the electrochemical potential at the 

boundary between the immobile (Stern) layer and the diffusive (Gouy) part of the double layer 

[42]. Fig 2 shows the streaming ζ-potential of BC and carbonised BC samples in a KCl 

electrolyte as a function of pH. The formation of electrochemical double layer is predominantly 

due to the adsorption of electrolyte ions onto the surface and the dissociation of Brønstedt 

acid/base groups. Generally, ζ-potential shows a plateau at high pH for acidic surfaces or a 
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plateau at low pH for basic surfaces as all dissociable functional groups are either fully 

deprotonated for the case of acidic surfaces (COO-) or fully protonated for the case of basic 

surfaces and basic oxides. In this study, a negative ζplateau can be seen for BC and cellulose 

derived carbonaceous material (with the exception of CNF). This is an indication that the surface 

of the substrate has an acidic surface character due to the deprotonation of functional groups 

occurring at high pH. As the pH decreased, the ζ-potential becomes more positive due to (i) 

protonation of functional groups and (ii) adsorption of protons (H3O+). CNFs on the other hand, 

possess a basic surface (Fig 2), as indicated by a positive ζplateau. This is consistent with the ζ-

potentials measured for oxidised carbon fibres [43]. At pH of between 5 and 9, the surface is 

positively charged (positive ζ-potential value). This is indicative that the surface contains 

functional groups, such as basic oxides [44]. The ζ-potential increased drastically as pH 

decreased from 5.5 to 3 due to the adsorption of protons.  

Table 2 tabulates the isoelectric points iep, the point at which no net charge is present on 

the surface (ζ = 0), and the ζ-potential plateau values. The iep of BCP is higher than that of 

FDBC due to the fact that more hydroxyl groups are involved in the hydrogen bonding of the 

cellulose to form a dense paper. This resulted in a reduced amount of exposed hydroxyl groups 

and therefore a higher iep compared to FDBC. It also can be seen that the iep of BC (FDBC and 

BCP) shifted to higher pH upon carbonisation and physical activation. The shift of the iep to 

higher pH is a result of the decomposition of dissociable functional groups due to the pyrolysis of 

BC. Ishimaru et al. [45] have studied the carbonisation behaviour of cotton cellulose. It was 

found that dehydration, decarbonylation and decarboxylation on cellulose are the major reactions 

that occur between 800°C and 1000°C. The hydroxyl groups on BC are decomposed during 

pyrolysis, leading to an increase in the iep towards higher pH. In addition to this, the high oxygen 



 12 

to carbon ratio of BC will lead to the development of oxygen-containing functional groups and 

crosslinking of polyaromatic stacks after pyrolysis [45-47]. The crosslinking of the polyaromatic 

stacks led to a more hydrophobic surface. Both of these factors led to the observed decrease of 

ζplateau after pyrolysis. This is because water molecules do not like to adsorb on the hydrophobic 

carbon surface, on which now more electrolyte ions adsorb.  

It can also be seen that the magnitude of the ζplateau increased from -12.5 mV to -5 mV. 

The physical activation increased the hydrophilic character of activated carbon, as indicated by 

the increase in the magnitude of ζplateau. This shifts in iep and ζplateau can be attributed to the 

changes in chemical structure of the surface and the decrease in acidic functional groups as a 

result of physical activation. This result is consistent with the findings obtained by Julien et al. 

[48], who found that the magnitude of ζplateau increased with increasing activation temperature due 

to the burn off of functional groups from activated carbon. 

3.4 Thermal behaviour of BC and carbon samples derived from BC 

Fig 3 shows the thermal degradation behaviour of neat BC and carbon samples produced from 

BC in air. Their onset thermal degradation temperatures are tabulated in Table 2. Two distinct 

weight loss steps for both BC forms; FDBC and BCP, can be observed, indicating two different 

types of thermal decompositions. The initial weight loss between 300°C and 350°C can be 

attributed to the decomposition of smaller molecular fragments on BC and the second 

decomposition (350°C-500°C) is attributed to the degradation of the six-member cyclic structure 

of cellulose (pyran) [49,50]. Different thermal degradation behaviour can be seen between FDBC 

and BCP. Um et al. [51] studied the degradation behaviour of silk fibres and found that the 

thermal degradation behaviour of the material depends on its crystallinity, molecular weight and 

molecular orientation of the cellulose. Since the crystallinity and the molecular weight of both 
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FDBC and BCP are the same, the difference in the degradation behaviour must be attributed to 

the difference in morphology between FDBC (loose nanofibrils) and BCP (interwoven dense 

structure). Different thermal degradation behaviour was also observed between carbonised FDBC 

and carbonised BCP. This can be attributed to the differences between the starting structures of 

FDBC and BCP. The pyrolysis process involves the removal of non-carbonaceous (hydrogen and 

oxygen) material, leaving behind the skeletal structure of polyaromatic carbon [14,52]. Due to the 

loose fibrous form of FDBC, the carbonisation of FDBC might have resulted in the possible 

formation of more defective carbon compared to the carbonisation of BCP, which produced more 

graphitic carbon. In addition to this, the fabrication of BCP stretched the cellulose nanofibrils and 

this stretching of nanofibrils will result in improved orientation of graphite crystallites [53].  

3.5 Raman spectra of BC derived carbon 

Fig 4 shows the Raman spectra of BC derived carbons, in the range of 1000 cm-1 and 2000 cm-1 

wavenumbers. Two typical peaks for carbon centred around 1350 cm-1 and 1590 cm-1 can be 

observed and these peaks can be attributed to the disorganised carbon (D-band) and graphitic 

carbon (G-band), respectively with an sp2 configuration [54]. The fitted Raman spectra are shown 

as the dotted lines in Fig 4. Table 2 shows the D-band to G-band ratio (calculated using the 

integrated area of the fitted curves) and the in-plane graphitic crystallite size of the carbon 

crystallites. It can be seen that the carbon produced from BC possesses D- to G-band ratios 

comparable to commercially available CNF and the carbonised FDBC possessed more defective 

carbon (ID/IG = 2.74) compared to carbon derived from BCP (ID/IG = 2.40). This may be due to its 

loose fibrous form, which possibly resulted in the formation of more defective carbon during the 

carbonisation process. Comparing carbonised BCP and carbonised and physically activated BCP, 

the physical activation process resulted in more graphitic carbon. This is not surprising, as the 

activation process removes the defective carbon first [14]. The shift in iep to higher pH and the 
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decreasing ID/IG ratio indicates that the formation of graphitic carbon resulted in the loss of 

dissociable functional groups.  

3.6 Electric double layer capacitance of (activated) BC derived carbons and CNF 

The double layer capacitance of carbon samples derived from BC was examined using cyclic 

voltammetry (CV) over a potential range of -0.2 V to 0.2 V versus an Ag/AgCl reference 

electrode. A typical CV profile at various scan rates is shown in Fig 5. The well-defined 

rectangular shape of the CV profile is an indication that the capacitive behaviour of the sample is 

predominantly due to electrostatic attraction [8] and that this capacitive behaviour is reversible 

[19]. It can be observed from Fig 5 that the CV profile is stable within the chosen potential 

window as no oxidation and reduction peaks are observed. The capacitance of carbon samples 

derived from BC and CNF at various scan rates is tabulated in Table 3. Carbonised BCP has the 

lowest capacitance, followed by carbonised FDBC and activated pyrolysed BCP. This result is 

consistent with the total surface area of the samples; carbonised BCP had the lowest surface area, 

followed by carbonised FDBC and activated pyrolysed BCP. Comparing the capacitance of these 

results with commercially available CNF, the double layer capacitance of the nano-sized carbon 

derived from BC is 337 times (carbonised FDBC) and 520 times (activated pyrolysed BCP) 

higher than that of commercially available CNF. This result is also consistent with the total 

surface area of the nano-sized carbon derived BC (see Table 1). 

It can be seen from Table 3 that the capacitance values of carbon derived from BC are still 

lower than that of commercially available high performance activated carbon (YP-50F). This 

might be due to the high surface area of activated carbon, measured to be approximately 1938 m2 

g-1 (Table 1). However, when comparing the surface area-normalised specific capacitance of all 

samples (specific capacitance divided by specific surface area of the sample), carbonised FDBC 

and activated pyrolysed BCP showed better performance compared to YP-50F. An area-
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normalised specific capacitance of 1617 F cm-2 and 659 F cm-2 were achieved for carbonised 

FDBC and activated pyrolysed BCP, respectively, compared to YP-50F of only 365 F cm-2. In 

addition to surface area, the double layer capacitance is also related to the thickness of the 

Helmholtz layer [9]. As a first approximation, the double layer capacitance is proportional to the 

surface area and inversely proportional to the thickness of the Helmholtz layer (equation 6): 

C = ε0εrS
d

           (6) 

where C is the capacitance of the sample, ε0, εr, S and d are the static permittivity of vacuum, 

static permittivity of the medium, surface area and thickness of the Helmholtz layer, respectively. 

It can also be seen that the capacitance of all the samples is dependent on the scanning rates 

during the CV measurements. For example, at a scan rate of 10 mV s-1 the capacitance of 

activated and pyrolysed BCP decreased by as much as 30% when compared to its capacitance at 

1 mV s-1. Similar reduction was also observed for YP-50F. This is a direct result of the porous 

nature of all the carbon samples (see Table 1 for pore area of all the carbonaceous samples). 

When a higher scan rate is used, the carbonaceous samples behave like a small impedance 

element with the current will flow predominantly along the external surface and almost no 

current will flow down the pores [9].  

 

4. Conclusions 

A nano-carbon material was produced from bacterial cellulose (BC) through pyrolysis and 

physical activation of BC. It was found that the starting morphology of BC, either as loose 

nanofibrils (freeze-dried) or dense paper, affects the properties of the BC derived carbon. When 

BC in its loose fibrous (freeze-dried) form was pyrolysed, a carbon nanofibre-like material was 

formed. However, it was not possible to physically activate this material due to its low carbon 
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yield after pyrolysis. Dense BC paper, on the other hand, could be pyrolysed and physically 

activated by CO2. The total surface area of the BC derived carbon increased after physical 

activation as determined by BET surface area measurements. The D- to G-band ratio determined 

by Raman spectroscopy was found to be in the range of 2.2 to 2.8, which is comparable to 

commercially available CNFs of 2.2. The electric double layer capacitance of the activated 

carbon derived from BC was found to be as high as 42 F g-1 (carbonised and activated BCP) in 

K2SO4 electrolyte solution. This can be attributed to the high specific surface area of the 

materials. This high capacitance performance in electrolyte solution is much higher than the 

capacitance of commercially available CNF (0.17 F g-1) but still lower that that of commercially 

available activated carbon (71 F g-1). However, when comparing the area-normalised specific 

capacitance, carbonised FDBC and activated pyrolysed BCP stood out, showing a value of 1617 

F cm-2 and 659 F cm-2, respectively, compared to activated carbon of only 365 F cm-2. The good 

double layer capacitance performance shown by this nano-carbon material provides a potential 

new active material for supercapacitors and capacitive deionisation technology. 
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Fig 1. Scanning electron micrographs of (a) Freeze-dried BC, (b) carbonised freeze-dried BC, (c) carbonised 
BC paper, (d) activated pyrolysed BC paper, (e) carbon nanofibres and (f) activated carbon YP-50F. The scale 
bar in figures (a), (b), (e) and (f) represent 200 nm whereas the scale bar in figures (c) and (d) represent 1 
micrometre. 
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Fig 2. pH dependent ζζ-potential of neat BC and carbon samples derived from BC. 
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Fig 3. Thermal degradation behaviour of neat BC and carbon samples derived from BC in air. 
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Fig 4. Raman spectra of carbon samples derived from BC. (a) Carbonised FDBC, (b) carbonised BC paper 
and (c) activated pyrolysed BC paper. 
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Fig 5. Cyclic voltammetry of activated pyrolysed BC paper at different scan rates. 
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Table 1. Density (ρρ), burn-off (ΔΔm), carbon yield (ΔΔY), total surface area (Stotal), external surface area (Sext), 
micropore surface area (Spore) and pore width (dpore), respectively of neat BC and carbon samples derived 
from BC. 

Sample 
ρρ   

(g cm-3) 

ΔΔm or ΔΔY 

(%) 

Stotal  

(m2 g-1) 

Sext  

(m2 g-1) 

Spore  

(m2 g-1) 

dpore  

(nm) 

FDBC 1.42 ± 0.04 - 54.54 ± 0.03 54.38 0.16 15.2 

BCP 1.54 ± 0.01 - 7.29 ± 0.02 6.42 0.87 8.86 

Carbonised 

FDBC 
1.19 ± 0.10 2.3∗ 166.78 ± 0.17 145.10 21.68 7.95 

Carbonised 

BCP 
1.65 ± 0.02 20.3∗ 14.56 ± 0.25 0.83 13.73 1.95 

Activated 

pyrolysed BCP 
2.07 ± 0.01 2.9+ 630.96 ± 11.18 95.34 535.62 2.23 

CNF 1.67 ± 0.12 - 37.18 ± 0.16 30.26 6.92 7.60 

YP-50F 2.38 ± 0.06 - 1938.50 ± 34.55 435.11 1503.39 2.05 
∗
 Indicates carbon yield, ΔΔY 
+
 Indicates burn-off, ΔΔm 
 
Table 2. Summary of the iso-electric point (iep), the plateau of ζζ-potential (ζζplateau), the onset thermal 
degradation temperature (Td), D-band to G-band ratio (ID/IG) and the in-plane graphitic crystallite size (La) of 
neat BC and carbon samples derived from BC. 
Sample iep ζplateau (mV) Td (°°C) ID/IG La (Å) 

FDBC 3.1 -6.0 ± 0.2 277 - - 

BCP 3.7 -6.9 ± 0.2 268 - - 

Carbonised FDBC 3.7 -18.3 ± 0.8 279 2.74 ± 0.01 16.06 ± 0.04  

Carbonised BCP 3.8 -12.7 ± 0.2 432 2.40 ± 0.01 18.34 ± 0.03 

Activated pyrolysed BCP 4.1 -4.4 ± 0.4 410 2.27 ± 0.01 19.42 ± 0.04 

CNF 9.8 +6.5 ± 0.7 497 2.27 ± 0.04 19.35 ± 0.38 

YP-50F   540 2.08 ± 0.03 4.19 ± 0.22 
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Table 3. Capacitance of various carbon samples derived from BC at different scan rates. CNF and YP-50F 
were used as a comparison.  

Sample 
Capacitance (F/g) 

1 mV s-1 5 mV s-1 10 mV s-1 20 mV s-1 

Carbonised FDBC 26.97 ± 2.22 14.72 ± 0.18 11.32 ± 0.02 6.40 ± 0.21 

Carbonised BCP 0.06 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 

Activated pyrolysed BCP 41.59 ± 1.15 31.82 ± 0.49 28.08 ± 0.36 23.01 ± 0.29 

CNF 0.08 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 

YP-50F 70.85 ± 1.86 52.92 ± 0.62 49.73 ± 0.78 44.98 ± 1.06 

 
Table 4. Area-normalised specific capacitance of various carbon samples derived from BC at different scan 
rates. CNF and YP-50F were used as a comparison. 

Sample 
Area-normalised specific capacitance (F/cm2) 

1 mV s-1 5 mV s-1 10 mV s-1 20 mV s-1 

Carbonised FDBC 1617 ± 133 883 ± 11 679 ± 1 384 ± 13 

Carbonised BCP 41 ± 7 21 ± 7 14 ± 7 14 ± 7 

Activated pyrolysed BCP 659 ± 18 504 ± 8 445 ± 6 365 ± 5 

CNF 22 ± 3 11 ± 3 11 ± 3 11 ± 3 

YP-50F 365 ± 10 273 ± 3 257 ± 4 232 ± 5 

 


