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Abstract

The speed of many one-line transformation methods for the produc-
tion of, for example, Lévy alpha-stable random numbers, which generalize
Gaussian ones, and Mittag-Leffler random numbers, which generalize ex-
ponential ones, is very high and satisfactory for most purposes. However,
fast rejection techniques like the ziggurat by Marsaglia and Tsang promise
a significant speed-up for the class of decreasing probability densities, if it
is possible to complement them with a method that samples the tails of
the infinite support. This requires the fast generation of random numbers
greater or smaller than a certain value. We present a method to achieve
this, and also to generate random numbers within any arbitrary interval.
We demonstrate the method showing the properties of the transforma-
tion maps of the above mentioned distributions as examples of stable and
geometric stable random numbers used for the stochastic solution of the
space-time fractional diffusion equation.

MSC 2010: Primary 65C10; Secondary 35R11, 60G22, 33E12
Key Words and Phrases: random number generation, a-stable distri-
bution, Mittag-Leffler distribution, fractional diffusion

(© 2013 Diogenes Co., Sofia
pp. 332-353, DOI: 10.2478/s13540-013-0021-z



RANDOM NUMBERS FROM THE TAILS ... 333

1. Introduction

Many numerical methods for the generation of random numbers rep-
resent the main body of the probability density using a fast method and
the tails using an alternative method. A famous example is the ziggurat
technique by Marsaglia and Tsang [35]. Figure [l depicts the situation
schematically. A reason for this apparent complication is that the method
for the main body works best and fastest on a finite support or is specially
designed for the main body in terms of accuracy or speed. Handling the
tails efficiently is often more involved, especially with difficult non-invertible
densities with infinite support. Since rarely needed, variates from the tail
can safely be generated by a slower method [5, B3, 36]. Overall, a sig-
nificant speed-up can be achieved. In this paper we show how to sample
directly and efficiently via a rejection technique a random number X such
that | X| > a where a € (0,+00), at least within the limits of the numer-
ical representation. This is achieved by using properties of the transform
representation of the distributions. The examples we use for demonstra-
tion are the Lévy a-stable [25], B9, [40] and the Mittag-Leffler one-parameter
probability densities [19]. A transformation formula for the former is well
known [3, 51, while the transform representation of the latter was discov-
ered [0} 20} 211, 22| 23] 24], 41] and applied [9, [10] 111, 12} 13] more recently.
The two distributions are generalizations of the Gaussian and exponen-
tial distribution respectively; together they play an important role for the
solution of the space-time fractional diffusion equation.

Our rejection concept is general and can be applied to any distribution
for which an analytical transformation is known. It can sample efficiently
from arbitrary infinite or finite intervals as opposed to other existing meth-
ods that are designed especially for certain densities. In this work we do
not consider the technical details of a speed-optimized implementation,
but explain the basis of the algorithm and show example applications. The
method is based on properties of two-dimensional transform maps that
seem unnoticed yet.

The assumption for using the method introduced here is that the tail
region requires high accuracy due to high demands on statistics as well as
speed. The transformation formula by Chambers, Mallows and Stuck [3]
for example is exact and for most applications the recommended method
for the production of Lévy a-stable random numbers [51]. The replacement
of the tails by a simple invertible Pareto function is not totally appropriate
because this is only an asymptotic approximation; moreover it introduces a
transition region. The more sophisticated and smooth this transition, the
more complicated and slower the overall procedure. Such a replacement
of the tail contrasts the initial goal of speed. But the most demanding
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FIGURE 1. Schematic illustration of using two methods to
sample a distribution. A fast method may be available only
for the body, while the tails can be sampled with a slower
method.

contemporary applications of random numbers [37, [5I], such as the two
suitable examples we treat here, will require large amounts and therefore
fast production. The tails should be accurate without an approximated
transition region from the density body to its tails. In some cases fast series
expansion methods can be used, but with a compromise in accuracy [5]. A
more detailed analysis of such considerations can be found in Ref. [4§],
where most known algorithms for the Gaussian distribution (as a simple
and special case of the Lévy a-stable distribution) are analyzed in the
context of contemporary statistical applications as well as expectations of
future demands. It is argued extensively how speed of production implies
the demand for very many random numbers, which in turn requires greater
accuracy of the resulting distribution.

Consider the ziggurat rejection method by Marsaglia et al. [33] [34] [35],
that was introduced to produce Gaussian and exponential random num-
bers. It is an exact method up to the numerical limits of floating point
representation. In principle it is applicable to all decreasing or symmetric
densities, provided a suitable tail sampling method is available [32]. In
particular the implementation by Marsaglia and Tsang [36] and a more re-
cent version by Rubin and Johnson [44] are about two orders of magnitude
faster on contemporary processors than other dedicated methods for Gauss-
ian and exponential random variates; therefore it is likely to outrun any
non-trivial transformation method by at least the same factor. The hurdles
to apply the ziggurat method to other densities with infinite support, with
additional parameters and for which no closed form or simple transform
exist are: a) the costly setup of the look-up table, b) the necessity that
the rectangles covering the density as well as the area under the tail have
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equal areas, and finally c¢) a reasonably fast and accurate method to sample
the tail. Difficulty a) must be evaluated in relation to the required number
of variates, if it is possible to predict the setup costs as a function of the
density parameters. The meaning of “fast” in c) is defined by the ratio
of tail variates versus body variates and the speed of the body sampling
method. A slow sampling of the tail can always be balanced by sufficiently
infrequent calls to the latter.

Provided the complementary cumulative density function f;o f(2')da’
can be computed on demand in a sufficiently exact way, any required value
of the tail surface, and thus any relative frequency of calls to the tail sam-
pling function, can be achieved in the setup of the ziggurat by an iterative
process. For the details of the setup refer to Ref. [36] and for alternative
ideas to Ref. [44]. Independently of such considerations, the production
of Lévy a-stable random numbers in the tails, but also in arbitrary finite
intervals, are themselves examples where the method introduced in this
paper is suitable. Of course the ziggurat method is applicable also to non-
symmetric decreasing densities by representing two halves with separate
generators which have to be called alternatingly in a ratio that corresponds
to the ratio of respective areas covered by each halves.

In Section [2] we discuss the probabilistic interpretation of the space-
time fractional diffusion equation, in order to clarify the usefulness of the
method outlined in this paper. In Section [3l we introduce the Lévy a-stable
probability density on the basis of which Section @] explains our method. In
Section [B] the Mittag-Leffler distribution, its transform representation and
transform map are presented.

2. Probabilistic meaning of the space-time fractional diffusion

The probabilistic meaning of the space-time fractional diffusion equa-
tion is discussed in several papers, a good one to start is Ref. [46]. In that
paper, the relationship between the so-called compound fractional Poisson
process [30, 46] and fractional diffusion is discussed. A more complete set
of references concerning the fractional Poisson process and the compound
fractional Poisson process can be found in a recent book [IJ.

The fractional Poisson process N, (t) is a counting renewal process. If
{T,i}3°, is a sequence of independent and identically distributed positive
random variables with the survival function

P(Tyi > t) = Eq(—t%), (2.1)
where 0 < o < 1 and E,(z) is the one-parameter Mittag-Leffler function
defined in Sect. [Bl then

Ny (t) = max {n : zn:Tai < t} (2.2)

i=1
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is the fractional Poisson process.
Consider now the random walk

Yon = zn: Xoi, (2.3)

where {X,;}5°, is a sequence of independent and identically distributed
symmetric a-stable random variables (see Sect. [3). Further assume that
the sequences {T}3;}7°; and {X,;}7; are mutually independent. Then, the
compound fractlonal Poisson process is

Yaﬁ(t) = aNﬁ(t Z Xais (24)

namely, the random walk (2.3)) subordmated to the counting process (2.2)).
The probability density function of the process Y,5(t) is given by

Pap(@,t) = py, 1) (2) = E(— +ZP (N3(t) = n)Li"(z), (2.5)

where L¥*(z) is the n-fold convolution of the probability density function
Lo (z) of the symmetric a-stable random variable X,,.

Now, replace T with the rescaled variable T3, where r > 0; define
h = r%/ and replace X, with hX,. Call p,a5(u,t) the one-point density
for the rescaled process. Let r — 0. Then p,os(z,t) weakly converges to
fap(x,t), the solution of the Cauchy problem for the space-time fractional
diffusion equation [46],

1 T
where
o0 iz
Wap(x) = o Eg(—|k:\a)e R dk. (2.7)

To be more specific, f,3(x,t) is the solution of the fractional differential
equation

f(w,t)  0“f(x,t)

of = Olafe a€(0,2], B e(0,1] (2.8)
with the initial condition
f(z,07) =68(z), € (—00,+00), t € (0,+00). (2.9)

In Eq. @3), d°f(t)/dt? is the Caputo derivative with Laplace transform
sPf(s) — sP7Lf(01), whereas d®f(z)/d|z|® is the Riesz derivative with
Fourier transform —|k|* f (k).

This equation was studied in [28] and [14], in both symmetric and
non-symmetric cases. The solution in terms of the Fox H-functions was
presented in [3I] and its relationship with subordination was explored in

[29].
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The scaling procedure described above gives a nice Monte Carlo algo-
rithm to solve the Cauchy problem defined by Egs. (2.8) and (2.9)), see
[9]; hence the need of efficient algorithms to generate a-stable as well as
Mittag-Leffler deviates.

3. The Lévy a-stable probability density and its transform map

A convenient representation of the Lévy probability density function
in its most popular parametrization [39, 40, [51] is via the inverse Fourier
transform of its characteristic function,

I

La,@yé(x) = o Qﬁaﬁ“/é(k)e_ikm dk, (31)

— 0o
where

—y*|k|* (1 — iBsign(k) tan(2a)) +i6k for a#1

log ¢aﬁ'y5(k) =

—|k| (14 iBsign(k) 2 log |k|) + 6k for a=1.
(3.2)
The index or order « € (0, 2] determines the exponent of the power-law tail.
The parameter 3 € [—1, 1] governs the skewness, v € (0,00) the horizontal
scale and 0 € (—o0, o) the location. The advantage of this parametrization
is that the density and the distribution functions are jointly continuous in
all four parameters; the same applies to the convergence to the power-law
tail. The last two parameters can safely be set to 1 and 0 without loss of
generality. Other values can be obtained through

Xaﬁ'y(i = IYonﬁlO + 0. (33)

We therefore omit v and ¢ in the subscripts and also ( if equal to zero.
The symmetric case with § = 0 has the simpler form of an inverse cosine
transformation

Lo(z) = 71T /000 exp(—k®) cos(zk) dk. (3.4)

Rejection methods for Lévy a-stable random numbers that use asymptotic
series representations of the density function are sometimes used if speed
has highest priority [5]. However, the known types of series expansions for
the Lévy density tend to become inaccurate especially in the tails and also
account for a certain fraction of uniform random numbers to be lost (re-
jected) in the sampling. To achieve best performance (minimum rejection
rate and maximum accuracy) one must use different versions of the algo-
rithms and expansions depending on the combination of parameter values
and their range. This is the case in particular for 3 # 0. A review on these
methods and their deficiencies can be found in Ref. [3].
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A transformation method for Lévy a-stable random numbers by Cham-
bers, Mallows and Stuck has been available since 1976, [3]. Two indepen-
dent uniform random numbers U,V € (0,1) are mapped via a transforma-
tion X,3(U, V) such that the outcome is distributed correctly according to
L,g(z). The general case for a # 1 is given by

sin(a(® + o)) —log U cos ® 1=1/a
XU, V) = , .
(U V) cos cos(® — a(® + Dg)) (3:5)
where @ = 7 (V — 1) and @y = Jxg' 117 while for a = 1
2 2 —log U cos ®
XU V)={1 ® ) tan P — 1 . .
3(U,V) <+7r6>an w50g<1+2ﬁ<1>/7r> (3.6)
The symmetric case with # = 0 simplifies to
sin(a®) [ —log U cos ® 1-1/a
Xa U,V = 3.7
( ) cos & <cos((1 - a)<I>)> (37)
The variables X1,..., Xy are stable as well as their normalized sum
| X
X= e ;X (3.8)

This transform representation is a mixture of the form g(V)W'~1/¢  where
g(V) is a real valued random number and W is exponentially distributed.
Figures 2land Blshow symmetric and asymmetric examples of the mapping
of the random number plane (U, V') to quantiles of the probability density
L,g(z) via the map X,3(U, V). Colors are used to designate the respective
regions x; < X < x;41 separated by isolines defined by dX,3(U,V) = 0.
The pictures show isolines as borders between colors for x; = 0, +0.5, +1,
+1.5, ... The colors in the map and in the respective histogram correspond
to each other and all points (U, V') on the same isoline are mapped onto ex-
actly one unique number. Figure [4 shows the behaviour of the isolines for
lower values of a. Notice the analytic Cauchy case o = 1, whose inversion
formula depends on only one variable: this results in vertical isolines. For
values of a < 1 the overall behaviour turns over and the slopes change sign
in each half of the unit square. The pictures showing isolines are produced
with MATLAB 7.4’s contourf function on a 800 x 800 grid.

Different solutions are thinkable of how to sample uniform random
points in a specific region in the (U, V) plane. A differential equation for
the isolines can be obtained via the implicit function theorem by Ulisse
Dini [7]:
0X (u,v)

0=dX(u,v) = Py

du +

0X (u,v) '
S dv; (3.9)
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FIGURE 2. The map X, (U,V) that transforms two uniform
random numbers U,V € (0,1) into a random number with the
symmetric a-stable Lévy distribution L, (x) for different values
of a. The case a = 2 corresponds to the Box-Muller map for
the generation of Gaussian random numbers. The bottom part of

each map shows the respective histogram. Areas with equal colors
correspond to each other. Note that the transition from a = 2 to
a < 2 is discontinuous for v = 0 and v = 1 and the points (0,1)
and (1,1) develop a singularity.
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FIGURE 3. The map X,5(u,v) giving the asymmetric Lévy
distribution Lag(x) for two values of (.

rearranging

dv(u) _ <8X(u,v)>_1 0X (u,v) (3.10)

du ov ou

With an appropriate initial condition this differential equation defines the
isoline v(u) in the coordinate square spanned by w,v. The alternative
representation of u as a function of v is equally appropriate from the
mathematical point of view, but is less convenient in this case for sym-
metry reasons. We skip additional considerations on singularities and lim-
iting behaviour. For « = 2 and § = 0 Eq. (87) reduces to Xo(U,V) =
2y/—log U sin(m(V — 1/2)), i.e. the Box-Muller method for Gaussian devi-
ates with standard deviation ¢ = /2. The corresponding map is shown
in the upper left of Figure The value z in the condition X > z de-
termines the initial value for Eq. (BI0) that determines the isoline; for
a = 2 it can be chosen on the boundary of the square U,V € (0,1).
Two other analytic limit cases for § = 0, where L,(z) can be written
in terms of elementary functions, are the Cauchy distribution, with a = 1
and X1(U) = tan(n(U — 1/2)), and the Lévy distribution, with o = 1/2
and X /5(U,V) = —tan(m(V — 1/2))/(2log U cos(m(V — 1/2))). Note that
for values of av # 2 the map F' is singular in the points (0,1) and (1,1). In
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o =120, f=0.00 a=1.00, $=0.00

u u

o.=0.80, = 0.00 o =0.60, f=0.00

a=0.20, f=0.00

u

FIGURE 4. Isolines of the map X, (U, V) with U,V € (0,1)
for decreasing values of a. The regions with increasingly
divergent gradient (upper corners) are not shown beyond
|z| > 600. The slope of the isolines changes as a function of
aat a=1.



342 D. Fulger, E. Scalas, G. Germano

such cases the initial condition cannot be chosen on the boundary, which
considerably complicates the numerical evaluation.

Starting from the simplest case, the insertion of Xo(U, V') into Eq. (310
yields

dv(u)  cot(mv(u))
du  27ulog(u) (3:11)

The insertion of X, (U, V) into Eq. (310) yields

dz(:‘) —(a—1) {mltgu [tan <7r (v(u) - ;) 1- a)> (a — 1)
+cot(ru(u)) — a2 cot <7r (v(u) - ;) aﬂ }_1 . (3.12)

One way to sample directly and uniformly from the area under v(u) would
be an area-preserving map of a square domain spanned by two uniform ran-
dom numbers, e.g. U,V € (0,1), or of any other suitable two-dimensional
domain onto this area. To our knowledge this solution is not available yet.
Alternatively, the function v(u) can be obtained numerically via integra-
tion or by appropriate algorithms for the generation of isolines. Once data
points for v(u) are obtained, any method that samples uniformly the region
X < x or X > x is suitable in principle. With this, the generation of a
tail variable constitutes in itself a standard non-uniform variate generation
task. It is the initial scenario of sampling uniformly under a curve, but with
the great simplification of a finite support. However, this is not the route
we propose for three reasons. First, the numerical integration of Eq. (3:12])
is cumbersome. Second, the initial condition has to be found within the
u, v square due to the above mentioned singularities. The subsequent in-
tegration in two directions must be guaranteed to work unattended and
automatically as a black box with « and § as the only parameters. Third,
the outcome is not exact in the sense that the sampled random tail vari-
ates are distributed with respect to an approximated probability density
function based on the discretized representation of the isoline. As it will
turn out a numerical or analytic representation of the isoline is not a re-
quired piece of information and its calculation can be avoided. It can also
be shown that the isolines are monotonic in u in the regions X3(U, V) < 0
and X,g(U,V) > 0, which is a useful property exploited in Sect. @ Al-
though the approximation of density functions is commonly accepted as
a reasonable compromise in several applications, we introduce in the next
section a simple graphical method without this disadvantage.



RANDOM NUMBERS FROM THE TAILS ... 343
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X(U,V)> -1
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ACCEPT
XU, V)< —
0
0 05 1
u

FIGURE 5. Coarsely tiled example of the tiling in the u, v
square for sampling symmetric Lévy a-stable random vari-
ates with the condition X (U,V) < —1 and a = 1.8, §=0.

The tiled area can be sampled efficiently while only points
in the red shaded region are rejected. Tiles with di-
rect acceptance do not require the acceptance comparison

XU, V)<-1.

4. Sampling method and example application

We introduce the method using simple intuitive examples. The pro-
duction algorithm relies on the rejection method whose invention dates
back to von Neumann [49] and which we do not rehearse here. Figure
demonstrates a computationally efficient concept for uniform sampling in
a certain two-dimensional region. In the first example we aim at producing
Lévy a-stable random variates with parameters o = 1.8, § = 0 and the
condition X < —1. The map X;s(U,V) for this choice of parameters is
also shown in Figure It corresponds to a relatively large region in the
left part of the square.

We perform a straightforward and simple tiling of this region using
square tiles that can be refined, for example, iteratively maintaining com-
plete coverage while minimizing the excess area of the tiles that stick out
of the region defined by X;g(U,V) < x. Uniform sampling of the tiled
area accepting all X7 g(U,V) < x and rejecting all other samples achieves
the desired sampling of the tail. The size of the tiles can be chosen to
yield an arbitrarily low rejection rate. In the example shown in Figure
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FicURE 6. Two different tiling refinements of the region
corresponding to the condition X < —12, which is a narrow
strip along the left and bottom of the unit square. Only the
lower left corner is shown on a scale that magnifies the tiling
to a visible size. The row of tiles on the bottom samples
a narrow strip below the isoline. In the right panel the
rejection rate is significantly lower. The colored dots are
uniformly distributed random pairs (U, V).



RANDOM NUMBERS FROM THE TAILS ... 345

the tiling is refined only moderately to convey the situation. For tiles that
lie completely underneath the isoline the test X g(U, V) < x must not be
executed. With dense tiling this comparison is therefore hardly needed and
indeed must be avoided to yield a speed-up with respect to the transfor-
mation method. The setup and the production loop of random variates is
described as follows in pseudo code.

ALGORITHM
Input: x € R.

0: (Setup) Tile the region X (U, V) < z using a method of choice.
Index the tiles with an integer number. Save the indices of the tiles
that are intersected by the isoline X (U,V) = z.

1: Draw a random integer tile index with uniform probability.

2: Draw a random coordinate (u,v) with uniform probability within
this tile.

3: Test by a table look-up whether the tile is intersected by the isoline.
If no, accept X (U, V) and go to 1 (direct acceptance).

If yes, go to 4.

4: Test if (U, V) satisfies X(U,V) < x.

If yes, accept X, otherwise reject it. Go to 1.

For monotonic isolines the position of a tile with respect to an isoline,
i.e. whether underneath, above or intersected, can be determined by eval-
uating the map for at most two corners. Step 4 is unlikely to be carried
out if the coverage is dense, giving a rejection rate close to zero. Overall
this procedure is efficient in setup and production if the tiling is sufficiently
dense. Furthermore, with small modifications of the above acceptance and
rejection conditions, the tiling and production of random numbers on a
finite interval X € [x7,x9] is geometrically and algorithmically equivalent
to generating numbers from the tail. This requires the tiling of a region in
the u-v square between two isolines with the condition z1 < X < xs.

Figure [6lshows the map for the left tail regions of the u, v square with
X < —12, which is more realistic for the purpose of tail sampling. This
condition corresponds to sampling a narrow strip at the bottom and left
sides of the unit square. The figure only shows the corner at the origin.
The bottom layer of tiles samples an extremely narrow strip than is not
visible on this scale. The iterative tile refinement in the setup stage is
acceptably fast, below a second in our non-optimized code, down to the
level on the bottom panel of Figure [6] to achieve a rejection rate below
1%. Different values of o > 0.1 as well as not too extreme values of z have
no significant influence on the setup performance, achieving a rejection rate
of 1%. Note that the speed of random number production is independent
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of the number of tiles. In our case it amounts to 2.3 million tail variates
per second on a PC with a 2.4 GHz Intel Pentium 4 processor using the
GNU C++ compiler version 3.2.2 Linux and optimization level -O3. As
the uniform random number generator we used the XOR shift SHR3 by
Marsaglia [36]. The colouring of the acceptance and rejection regions in
Figures [6land [6] are produced by green and red coloured dots representing
the random uniform coordinates (U, V).

We would like to stress that the method of tiling as well as the form of
the tiles is in principle arbitrary. Equal size and shape is computationally
advantageous, but this issue is not the focus of the present work. Of course
any tiling technique that produces a similar result is suitable, using either
square or rectangular tiles. However, the choice of square equal tiles is
algorithmically very simple and likely to outrun in setup and also in pro-
duction an adaptive scheme with more complicated shapes. The iterative
tiling refinement, as performed in the above examples, is robust and fast
also for large values of |z|. The rejection scheme is in principle similar to
the ziggurat implementation of Ref. [36]. It also needs to set up a data
structure that covers a region by rectangles with equal areas. The details
of the more general tiling method that is applicable to random number pro-
duction directly via the probability density without using a transformation
are described in a separate work [§].

5. The Mittag-Leffler probability distribution

Our second example density is less know in scientific applications, even
less so its transform. The Mittag-Leffler probability distribution appears
e.g. in the analytic solution of the time-fractional Fokker-Planck equation
[9, 16, 17, [18]. The generalized Mittag-Leffler function is defined as [I5] [19]

[e.e]

n

z
FE,p(z) = , ze€C. 5.1

04,,3( ) nz:%F(an_i_ﬁ) ( )
For our purposes it is sufficient to restrict the example to the one-parameter
Mittag-Leffler function which plays an important role in the stochastic so-
lution of the time-fractional diffusion equation. The series representation
is

> n
z
Eu(z) = zeC 5.2
=2 ranryyr #EC (52)
leading to a pointwise representation on a finite interval. The Mittag-
Leffler function with argument z = —t%, ¢t € R, reduces to a standard

exponential decay, e~?, for « = 1; when 0 < a < 1, the Mittag-LefHler
function is approximated for small values of ¢ by a stretched exponential
decay (Weibull function), exp(—t*/T'(1 + «)), and for large values of ¢ by
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a power law, t7%/I'(1 — «); see Figure [Tl (top plot). There is an increas-
ing evidence of physical phenomena [4, [38 47, [50] and human activities
[2L [43] [45] that do not follow neither exponential nor, equivalently, Poisso-
nian statistics. The Mittag-Leffler distribution is an example of power-law
distributed waiting times. They arise as the natural survival probability
leading to time-fractional diffusion equations.
Eq. (52) is the complementary cumulative distribution function, also
called survival function; the probability density is
Ma(t) = = & Bul~1). (5.3)
In past applications Mittag-Leffler random numbers were produced by re-

jection through a pointwise representation via Eq. (5.2]), which is ineffi-
cient due to the slow convergence of the series. In some cases concepts to
avoid Mittag-Leffler random numbers were presented [26, 27] due to the
difficulty of their production. In this context it had not been recognized
immediately that transformation formulas analogous to Eq. (8.7)) are avail-

able [6l, 91 10, 20, 211, 22} 23], 24] [41]. The most convenient expression is due
to Kozubowski and Rachev [24],

sin(ar 1o
T (U, V) =logU <tan((a7ﬂ)/) = cos(om)) , (5.4)

where U,V € (0,1) are independent uniform random numbers and 7 is a
Mittag-Leffler random number. For o« = 1, Eq. (5.4]) reduces to the trans-
formation for the exponential distribution, 71 (U,V) = logU. Figure [T
shows the map T, (U, V') of the transform representation given in Eq. (5.4)
as borders between intervals corresponding to t = 0, £0.5, +1, +1.5, ...
The case a = 1 corresponds to the standard exponential function The ex-
ponential case with v = 1 depends on a single random variable in the unit
u, v square, which results in horizontal isolines. For o < 1 the left and right
edges develop singularities. It is not recommended to use Eq. (5.2]), which
requires the sum of many terms, to compute E,(—t%). A more elegant and
accurate method is presented in Refs. [15, [19] [42]. For the generation of
Mittag-Leffler random numbers we used the implementation of Ref. [11].
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a=0.90 ~dE_(~{")/dt

FIGURE 7. The Mittag-Leffler function (Continued ...)
E,(—t%) in a log-log plot (top) and the transformation map
T,(U,V), Eq. (54), in terms of isolines for five values of
«. The case o = 1 corresponds to the standard exponen-
tial function. The regions on the left side of the maps is
not shown beyond ¢ > 600 due to an increasingly divergent
gradient. The two plots at the bottom repeat the case with
a = 0.9 using colors and showing the corresponding his-
togram.

6. Summary and conclusion

We have demonstrated some properties of the Chambers-Mallows-Stuck
and Kozubowski-Rachev transformation maps, exploiting them for the effi-
cient production of Lévy alpha-stable and Mittag-Leffler random numbers,
which are relevant for the stochastic solution of the fractional diffusion equa-
tion. The interpretation as a two-dimensional map from the unit square to
the real numbers allows to associate arbitrary intervals of the support of the
density with well-defined finite regions of the map domain. The uniform
sampling of such regions produces random numbers within the respective
intervals. We have also introduced an efficient concept for the automatic
setup of a random number generator that makes use of this property. The
resulting generator can in principle produce random numbers also in dis-
connected intervals of the kind (—oo, z1] U [z, 23] U. ..U [xy, +00), x; € R.
Most importantly, the method shown here can be used to sample the tails
in fast rejection-based random number generators like the ziggurat, that
was proven to greatly outrun simple inversion methods for the Gaussian
and exponential distributions. Therefore the present work opens the route
to speed up many random number generators that rely on transformation
representations.
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