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Abstract. Random matrix theory is used to assess the significance of weak correlations and is well es-
tablished for Gaussian statistics. However, many complex systems, with stock markets as a prominent
example, exhibit statistics with power-law tails, that can be modelled with Lévy stable distributions. We
review comprehensively the derivation of an analytical expression for the spectra of covariance matrices
approximated by free Lévy stable random variables and validate it by Monte Carlo simulation.
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1 Introduction

The classical ensembles of random matrices play an im-
portant role in the modelling of physical systems, in time
series analysis and in other fields. The first notion of a
matrix ensemble in statistics was given in the 1920s by
Wishart for the purpose of correlation analysis [1]. Physi-
cists began to be interested in random matrices in the
1950s, when Wigner presented a model of nuclear energy
levels as eigenvalues of symmetric random matrices W

whose elements are random numbers drawn from a Gaus-
sian distribution N(0, σ2) [2], or actually from any sym-
metric distribution with a finite second moment [3], e.g.
equiprobable ±1 random numbers. With increasing ma-
trix size the eigenvalue spectrum tends to the semicircle
law:

ρW(λ) =
1

2πσ2

√

4σ2 − λ2. (1)

Wigner’s data were based on neutron and proton scatter-
ing. Other applications of random matrix theory in physics
include classical and quantum chaos, disordered systems,
many-body quantum systems, quantum dots, quantum
chromodynamics, quantum gravity, supersymmetric field
theory, string theory, etc. In 1998 Guhr et al. wrote a re-
view on many of these with more than 800 references [4].
In 2003 the Journal of Physics A dedicated a special issue
to random matrix theory [5]. Random matrices are used
in other fields too, e.g. operations research, for diverse
problems as bandwith efficiency in wireless communica-
tion [6,7] or optimal aircraft boarding [8,9]. In correlation

analysis the theory of random matrices can be used to
assess whether weak correlations are significant or just
noise. The mathematical link between correlation matri-
ces of time series and random matrices is the Wishart
matrix ensemble, that, together with the Wigner ensem-
ble, is one of the standard tools in the theory of random
matrices. Recent introductions to the latter including nu-
merical aspects can be found in Refs. [10,11]. Since the
1990s econophysicists have employed random matrix the-
ory for the analysis of correlation in financial time series
[12,13,14,15,16,17], with portfolio theory [18,19] as one
of the motivations; a particular attention is given to the
largest eigenvalues of the covariance matrix and the asso-
ciated eigenvectors, that correspond to the whole market
and its sectors. Recently, random matrix theory was used
also for a correlation analysis of macroeconomic time se-
ries [20].

Consider i = 1, . . . , N stochastic time series xij ob-
served at synchronous times tj , j = 0, . . . , T . The data
can be arranged in a N × T matrix M of increments
mij = xij − xi,j−1, where each row corresponds to a time
series and each column to a sampling time. Assuming that
the average of the increments is zero, the Pearson estima-
tor for the covariance of two time series i and j is

cij =
1

T

T
∑

k=1

mikmjk. (2)
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The covariances of all pairs can be collected in a N × N
symmetric matrix

C =
1

T
MM

T. (3)

The covariance matrix C is also called Wishart matrix as
it was studied by him. One is often interested in testing
the hypothesis that there are no significant correlations.
This can be done comparing the eigenvalue spectrum of an
empirical correlation matrix with the spectrum of a refer-
ence matrix built with synthetic uncorrelated time series.
If the matrix rows are random walks whose increments are
independent and identically distributed (iid) normal devi-
ates with standard deviation σ, the spectrum describing
the above null hypothesis in the limit for N, T → ∞ with
m = N/T is given analytically by the Marčenko-Pastur
law [21]:

ρC(λ) =

√

(λ+ − λ)(λ − λ−)

2πσ2mλ
(4)

λ± = σ2
(

1 ±√
m

)2
.

This result has been rediscovered a few times [11,22,23].
Indeed, for a sufficiently large matrix the exact distribu-
tion of its elements becomes less and less relevant, and the
Marčenko-Pastur law can be obtained for iid increments
drawn from any symmetric distribution with a finite sec-
ond moment σ2. This effect was evident also in Wigner’s
studies of matrices whose elements are binary random
variables assuming the values ±1 with equal probability.
In both the Wigner and Wishart ensembles the spectra
of large matrices converge to that of an infinite matrix
(respectively the semicircle law and the Marčenko-Pastur
law) as a consequence of a generalised central limit theo-
rem.

A practical use of Eq. (4) is that if the empirical spec-
trum of data shows significant differences from the the-
oretical curve, then it may be justified to reject the null
hypothesis of no true correlations. The details of the lat-
ter are then a separate issue. In principle it is possibile
to test not only correlation, but also any kind of suit-
able assumption leading to a given shape of the expected
spectrum, both theoretically and numerically. Depending
on the specific case one chooses a suitable null hypoth-
esis. For example, if the considered time series are the
log-prices of traded stocks, in a first approximation it is
reasonable to test the absence of true correlation with nor-
mally distributed log-returns [12,13,24]. Another powerful
approach requiring less knowledge of the distribution of
the increments is a bootstrap scheme that consists in re-
sampling the covariance matrix after random permuta-
tions of the empirical time series. Since the reshuffling of
the rows of M destroys any possible correlation, an ab-
sence of correlation among the original time series requires
that the eigenvalue spectrum of C does not change.

So far, the result given by Eq. (4) lies within clas-
sical random matrix theory and requires iid matrix ele-
ments with finite moments. In this work we are concerned
with the Wishart-Lévy ensemble as a natural extension of

the Wishart-Gaussian ensemble treated by the Marčenko-
Pastur theory. The situation becomes more complicated
if the elements of M are distributed with power-law tails,
as happens in numerous physical, biological and economic
data [24]. Stock markets as well as many other complex
systems exhibit a dynamics that results in power-law tailed
statistics. The Marčenko-Pastur theory is not valid any
more when the second moment is not finite, and the cor-
responding spectral densities cannot be obtained from a
simple extension of Gaussian random matrix theory. As a
consequence of the central limit theorem for scale-free pro-
cesses the distribution of many of the above phenomena
is usually assumed to be a symmetric Lévy α-stable dis-
tribution, whose pdf is given most suitably as the inverse
Fourier (cosine) transform of its characteristic function:

Lα(x) = F−1
k

[

e−|γk|α
]

(x) (5)

=
1

π

∫ ∞

0

e−(γk)α

cos(xk) dk.

The second and higher moments of Lα(x) diverge for α <
2, and for α ≤ 1 even the first moment does not exist.
If α = 2 Eq. (5) gives a Gaussian with standard devia-

tion σ =
√

2γ. However, we shall see that the functional
representation of this distribution is not required in the
derivation of the spectrum.

A matrix whose elements are iid samples from a stable
density is called a Lévy matrix. A symmetric Lévy matrix
is called a Wigner-Lévy matrix. A symmetric matrix C

built from a Lévy matrix M according to the equation

C =
1

T 2/α
MM

T (6)

is called a Wishart-Lévy matrix. Notice that the normali-
sation factor has been generalised with respect to Eq. (3)
to take into account Lévy α-stable statistics. Sampling the
elements from the probability density function

fX(x) = N2/αLα(N2/αx), (7)

the limiting spectrum becomes independent of the matrix
size N [25]. It turns out that the spectra of these matri-
ces have no longer a finite support as in the semicircle
and Marčenko-Pastur laws and are dominated by the be-
haviour of the power-law tail of Lα(x).

It was proposed to use the theory of free probabil-
ity with its convenient machinery leading to analytic re-
sults that could be obtained otherwise only by means of a
painful use of combinatorics. A free Lévy stable random
matrix has a spectrum belonging to the class of free sta-
ble laws. The contemporary physical and mathematical
literature on correlation matrix analysis with power-law
tailed uncorrelated noise is very active also in the context
of free probability. Limiting the list to physics journals, the
reader can consult Refs. [26,27,28,29,30,31,32,33,34,35,36,37,38,39].
For a review of free probability theory see Ref. [40]. The
Marčenko-Pastur spectrum can be obtained as a special
case of this more general theory.
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Our aim in this paper is to review comprehensively the
analytic derivation of the spectral density of free stable
Wishart-Lévy random matrices already solved by Burda
et al. [26,27,29,30,31,32,33,34,35] and, as a further step,
to validate numerically the analytic result by Monte Carlo
simulation. The rest of this paper is organised as follows.
Sec. 2 introduces the mathematical background of free
probability theory, whose objects are elements of an alge-
bra, usually an operator algebra, and may enjoy the prop-
erty of freeness. Sec. 3 explains free stability and presents
an approximation for the Wishart-Lèvy covariance matrix
of time series using free stable random variables. An ex-
planation of free stability is provided too. Sec. 4 derives
in detail a transcendental equation, due to Burda et al.,
whose solution gives the spectral density for the approx-
imated covariance matrix. Sec. 5 shows numerically the
validity of this equation comparing analytical and Monte
Carlo results. A summary and an appendix with computer
code conclude the paper.

2 Mathematical background

A symmetric N×N matrix X has real eigenvalues λ1, . . . , λN .
The spectral density of X can be written as

ρX(λ) =
1

N

N
∑

i=1

δ(λ − λi), (8)

where it is assumed that the weight of each eigenvalue is
the same and each eigenvalue is counted as many times as
its multiplicity. The resolvent matrix [41] is defined as

GX(z) = (z1− X)−1, z ∈ C, (9)

where 1 is the N ×N identity matrix. The Green function
is defined as

GX(z) =
1

N
trGX(z), (10)

where the trace tr of a square matrix is defined as the sum
of its diagonal elements. If X is a random matrix, the
above definition is generalised including an expectation
operator E:

GX(z) =
1

N
E[trGX(z)]. (11)

The Green function contains the same information as the
eigenvalues and the eigenvalue density of X [14]. The Green
function can be written in terms of the eigenvalues of X:

GX(z) =
1

N

N
∑

i=1

1

z − λi
. (12)

This is a special case of the definition through the Cauchy
transform of a generic spectral density:

GX(z) =

∫ +∞

−∞

1

z − λ
ρX(λ) dλ. (13)

By using the following representation of Dirac’s δ-function,

1

x ± iǫ
= PV

(

1

x

)

∓ iπδ(x), (14)

where PV denotes the principal value, the spectral density
can be obtained from the Green function:

ρX(λ) = lim
ǫ→0+

1

π
Im[GX(λ − iǫ)]. (15)

This means that the eigenvalues follow from the disconti-
nuities of GX(z) on the real axis.

Non-commutativity of matrices and, in general, of op-
erators makes it difficult to extend standard probability
theory to matrix as well as operators spaces. Among possi-
ble extensions of probability theory to operator spaces the
so-called free probability theory has the advantage that
many results can be deduced from well-known theorems
on analytic functions [34].

In order to explain the framework of free probabil-
ity, let us start from conventional classical probability.
A probability space (Ω,F , P) is a measure space, where
Ω is the sample space, F is a σ-algebra on Ω, and P :
F → [0, 1] ∈ R is a non-negative measure on sets in
F obeying Kolmogorov’s axioms; ω ∈ Ω is called an el-
emetary event, A ∈ F is called an event. A random vari-
able X : Ω → R is a measurable function that maps el-
ements from the sample space to the real numbers, and
thus elements from F to a Borel σ-algebra Σ on R. The
probability distribution of X with respect to P is described
by a measure µX on (R, Σ) defined as the image measure
of P: µX(B) = P[X−1(B)], where B is any Borel set and
X−1(B) ⊂ F is the counter-image of B. The cumulative
distribution function of X is FX(x) = µX(X ≤ x). The ex-
pectation value for any bounded Borel function g : R → R

is

E[g(X)] =

∫

R

g(x)µX(dx) =

∫

R

g(x) dFX(x). (16)

If FX(s) is differentiable, the probability density function
(pdf) of X is fX(x) = dFX(x)/dx.

This construction can be extended to non-commutative
variables, e.g. matrices or more in general operators. Let
A denote a unital algebra over a field F, i.e. a vector space
equipped with a bilinear product ◦ : A×A → A that has
an identity element I. A tracial state on A is a positive
linear function τ : A → F with the properties τ(I) = 1
and τ(XY) = τ(YX) for every X,Y ∈ A. The couple
(A, τ) is called a non-commutative probability space.

For our purposes A = B(H), where B(H) denotes the
Banach algebra of linear operators on a real separable
Hilbert space H. This is a ∗-algebra, as it is equipped with
an involution (the adjoint operation) X 7→ X

∗ : B(H) →
B(H). Considering a self-adjoint operator X ∈ B(H), it
is possible to associate a (spectral) distribution to X as
in classical probability. Thanks to the Riesz representa-
tion theorem and the Stone-Weierstrass theorem, there is
a unique measure µX on (R, Σ) satisfying

∫

R

g(x)µX(dx) = τ [g(X)] (17)
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where g : R → R is any bounded Borel function [40].
Therefore we say that the distribution of X is described
by the measure µX. For our purposes this measure is equal
to the spectral density ρX defined in Eq. (15). In random
matrix theory the Wigner semicircle law has the role of the
Gaussian law in classical probability, and the Marčenko-
Pastur law corresponds to the χ2 law.

Classically, independence between two random vari-
ables X and Y can be defined requiring that for any couple
of bounded Borel functions f, g

E[(f(X) − E[f(X)])(g(Y ) − E[g(Y )])] = 0. (18)

Analogously, two elements X and Y in a non-commutative
probability space are defined as free (of freely) indepen-
dent with respect to τ , if for any couple of bounded Borel
functions f, g

τ [(f(X) − τ [f(X)])(g(Y) − τ [g(Y)])] = 0. (19)

Defining freeness between more than two elements is a
non-trivial extension [42].

Generally, square N ×N random matrices X are non-
commutative variables with respect to the function τ(X) =
(1/N) E[trX], see Eq. (11), but for any given N no pair of
random matrices is free. Nevertheless two random matri-
ces X,Y can reach freeness asymptotically if for any inte-
ger n > 0 and any set of non-negative integers (γ1, . . . , γn)
and (β1, . . . , βn) for which in the limit N → ∞

τ(Xγ1 ) = . . . = τ(Xγn) = τ(Yβ1 ) = . . . = τ(Yβn) = 0
(20)

we have

τ(Xγ1 Y
β1 . . . X

γn Y
βn) = 0. (21)

This means that large random matrices can be good ap-
proximations of free non-commutative variables.

Given an operator X ∈ B(H), the following functions
are useful in deriving its spectral distribution µX:

1. Moment generating function, defined as

MX(z) = zGX(z) − 1. (22)

The name stems from the fact that, if the distribution
of X has finite moments of order k, mX,k = τ(Xk),

MX(z) =

∞
∑

k=1

mX,k

zk
. (23)

This can be seen inserting the sum of the geometric
series

∞
∑

k=0

qk =
1

1 − q
, |q| < 1 (24)

with q = λ/|z| into Eq. (13):

GX(z) =

∫ +∞

−∞

1

z(1 − λ/z)
ρX(λ) dλ (25)

=

∫ +∞

−∞

1

z

∞
∑

k=0

λk

zk
ρX(λ) dλ (26)

=

∞
∑

k=0

1

zk+1

∫ +∞

−∞

λkρX(λ) dλ (27)

=

∞
∑

k=0

mX,k

zk+1
. (28)

2. R-transform. In classical probability the pdf of the sum
of two independent random variables X + Y is equal
to the convolution of the individual pdfs, i.e.

fX+Y (x) = (fX ∗ fY )(x). (29)

The convolution is done conveniently in Fourier space,
where it becomes a multiplication: the characteristic
function

f̂X+Y (k) =

∫

R

fX+Y (x)eikx dx (30)

of X + Y is the product of the characteristic functions
of X and Y ,

f̂X+Y (k) = f̂X(k)f̂Y (k), (31)

and the cumulant generating function of X + Y is the
sum of the cumulant generating functions of X and Y :

log f̂X+Y (k) = log f̂X(k) + log f̂Y (k). (32)

The free analogue of the cumulant generating function
is the R-transform invented by Voiculescu [40,43,44] as
part of the functional inverse of the Green function:

GX

(

RX(z) +
1

z

)

= z. (33)

The R-transform for the sum of two free operators is
the sum of their R-transforms:

RX+Y(z) = RX(z) + RY(z). (34)

The free analogue of convolution is indicated with the
symbol ⊞:

µX+Y = µX ⊞ µY. (35)

This is computed through RX, given the connection
between the Green function GX and the spectral distri-
bution µX. Other definitions of the R-transform were
proposed later.

3. Blue function. It is convenient to introduce also an in-
verse of the Green function GX(z), called Blue function
as a pun [45]:

GX(BX(z)) = BX(GX(z)) = z. (36)

The Blue function is related to the R-transform by

BX(z) = RX(z) +
1

z
. (37)
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4. S-transform. In the same fashion as the R-transform
for the sum, another transform allows to compute the
spectral distribution of the product of two operators
from their individual spectral distributions:

SX(z) =
1 + z

z
χX(z), (38)

where χX(z) is defined through

χX(zGX(z) − 1) =
1

z
. (39)

For X 6= Y the S-transform of the product is the prod-
uct of the individual S-transforms:

SXY(z) = SX(z)SY(z). (40)

As the R-transform allows to compute the free addi-
tive convolution ⊞, the S-transform leads to the free
multiplicative convolution ⊠:

µXY = µX ⊠ µY. (41)

3 Free stable random variables and the

Wishart-Lévy ensemble

Let P be the matrix projector of size T × T , with N ones
in arbitrary positions on the diagonal and all the other
elements zero, e.g.:

P = diag(. . . , 1, 1, . . . , 0, 1, 0, 0, 1, . . . , 1, 0, . . . ). (42)

Let Λ be a (large) T × T matrix with a free stable spec-
tral distribution. This property is the analogue of clas-
sical stability. The sum of two free non-commutative µ-
distributed variables results in a new µ-distributed vari-
able. The Wishart matrix ensemble of size N ×N defined
in Eq. (3) can be approximated using the N × T matrix
M/T 1/α obtained from PΛ if only the N non-zero rows
are considered [26,27,29,30,31,32,33,34,35]. Indicating this
operation with curly braces, the approximation reads

C =
1

T 2/α
MM

T ≃ {PΛ}{ΛT
P}. (43)

The former equation is justified by very good results, both
analytic and numeric, in a similar approach for Wigner-
Lévy matrices [35].

Once we know the domain of attraction for one spe-
cific classical stable distribution, we can expect that a
sum of iid random numbers, e.g. Z = (1/Nn)

∑n
i=1 Zi

with some suitable normalisation Nn, converges to their
attractor for large n. If Zi are independent elements of
random matrices, as in Ref. [12], each of them tends to a
stable law under matrix addition. However, for free sta-
bility we must consider random matrices as a whole, and
a different procedure is needed. A fundamental point is a
property discussed by Bercovici and Pata [46], that can
be summarized as follows. If Dc(µc) and Df(µf) are the
domains of attraction of the stable laws µc and µf in

classical and free probability respectively, a distribution
ν ∈ Dc(µc) ⇔ ν ∈ Df(µf). In other words, if we are able
to recognise the classical attractor Dc of a distribution ν,
we also know its free attractor Df . Moreover, one and only
one free stable distribution corresponds to any set of pa-
rameter values characterising a classically stable distribu-
tion. The spectrum of a Wigner-Lévy matrix is symmetric
with the same tail index α of its entries, i.e. it belongs to
the domain of attraction of a well-recognised classical sta-
ble law. This means that the sum of sufficiently many free
non-commutative variables with this spectrum converges
to a non-commutative variable with a stable distribution.

Another property discussed in Refs. [40,47,48] can be
summarised for our purpose as follows. Considering two
N × N matrices Li and Lj with i 6= j and two inde-
pendent random orthogonal N × N matrices Oi and Oj ,
the matrices OiLiO

T

i and OjLjO
T

j are free in the limit
N → ∞. These properties together with the observation
that Li and OiLiO

T

i have the same spectrum justify the
equation [35]

Λ ≃ 1

(TR)1/α

R
∑

i=1

OiLiO
T

i . (44)

This means that a free stable non-commutative variable
can be approximated adding randomly rotated classical
Lévy random matrices.

To generate Lévy matrices we use the Chambers-Mal-
lows-Stuck algorithm [49,50]: a random number X drawn
from the symmetric Lévy α-stable pdf, Eq. (5), can be
obtained from two independent uniform random numbers
U, V ∈ (0, 1) through the transformation

X = γ

( − log U cosΦ

cos((1 − α)Φ)

)1− 1
α sin(αΦ)

cosΦ
, (45)

where Φ = π(V −1/2). For α = 2 Eq. (45) reduces to X =
2γ

√− logU sin Φ, i.e. the Box-Muller method for Gaussian
deviates with standard deviation σ =

√
2γ.

The QR-decomposition of a T ×T matrix H with ran-
dom Gaussian entries yields

H = OU, (46)

where O is random orthogonal and U is upper (or right)
triangular. For alternative methods to obtain a random
orthogonal matrix see Ref. [51] and references therein.

4 The analytical spectrum

The moment generating function of the T ×T matrix D =
ΛPΛ

T satisfies the transcendental equation [26,27,29,34]

− exp

(

i
2π

α

)

z M
2/α
D

(z) = (MD(z) + 1)(MD(z) + m),

(47)
which can be solved analytically for a few special values of
α = 1/4, 1/3, 1/2, 2/3, 3/4, 1, 4/3, 3/2, 2; the solution
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was published for α = 1 [27]. The equation can be solved
numerically for other values, see the Appendix. Actually,
we are interested in the spectrum of the approximation of
C provided by the rhs of Eq. (43), but the Green functions
of the matrices D and C are related by the equation [34]

GD(z) = m2 GC(mz) +
1 − m

z
, (48)

whence, noticing that m GC(mz) = GC(z),

MD(z) = z GD(z)−1 = m z GC(z)−m = m MC(z). (49)

In the following we will explain in detail the route that
leads to Eq. (47) and then to the desired spectral density
ρC(λ).

As in classical probability stable laws have an analytic
form for their Fourier transform, free stable laws have an
analytic form for their Blue transform [35,42,46,52]:

BΛ(z; α) = a + bzα−1 +
1

z
. (50)

The parameter a accounts for a horizontal shift in the
distribution of the matrix elements and can be set to zero
without loss of generality. The parameter b depends on the
distribution; for the symmetric Lévy α-stable pdf, Eq. (5),
it has the value [29]

b = eiπ(α/2−1). (51)

As discussed in the previous section, given an index α ∈
(0, 2], BΛ(z; α) indirectly but precisely defines the attrac-
tor law for the sum of free variables with α-tailed spectral
distribution. Since free probability theory is exact only
in the large size limit T, N → ∞, N/T = m, the only
variables that define the model are α and m.

Rewriting Eq. (50) with GΛ(z) in place of z and using
Eq. (36) yields

b Gα−1
Λ

(z) + G−1
Λ

(z) = z, (52)

which is equivalent to

b Gα
Λ

(z) + zGΛ(z) + 1 = 0, GΛ(z) 6= 0. (53)

In Sec. 2 we established calculation rules with the help
of which the solution of our specific problem can be put to-
gether piece by piece. First notice that thanks to Eq. (40),
if for simplicity from now on we substitute Λ with its sym-
metrised counterpart (Λ + Λ

T)/2 so that Λ = Λ
T,

SΛPΛ = SΛSPΛ = SΛSΛP = SΛΛP = SΛ2P. (54)

For the S-transform of the matrix product Λ
2 we also re-

quire the Green function. The desired relation is a conse-
quence of the fact that the spectral measure for free Lévy
α-stable operators in the Wigner ensemble is symmetric
[45]:

ρΛ(λ) = ρΛ(−λ) (55)

GΛ(z) = G−Λ(z). (56)

The Green function of Λ
2 can be expressed in terms of

the Green function of Λ exploiting the Cauchy transform
representation and the previous symmetry:

GΛ2(z) =

∫ +∞

−∞

1

z − λ2
ρΛ(λ) dλ

=

∫ +∞

−∞

[

1

2
√

z

(

1√
z − λ

+
1√

z + λ

)]

ρΛ(λ) dλ

=
1

2
√

z

(

GΛ(
√

z) + G−Λ(
√

z)
)

=
1√
z
GΛ(

√
z). (57)

The next piece in the composition of the solution is the
S-transform of the projector P, which requires its Green
function too. Inserting the spectral density of P,

ρP(λ) = mδ(λ − 1) + (1 − m)δ(λ), (58)

into the definition of the Green function of P as a Cauchy
transform yields

GP(z) =

∫

1

z − λ
ρP(λ) dλ

=

∫

1

z − λ
[mδ(λ − 1) + (1 − m)δ(λ)] dλ

=
m

z − 1
+

1 − m

z
. (59)

The moment generating function MP(z) = zGP(z) − 1
and the definition of the S-transform finally give

SP(z) =
z + 1

z + m
. (60)

Rewriting Eq. (53) with
√

z in place of z,

b Gα
Λ(

√
z) −√

zG2
Λ(

√
z) + 1 = 0, (61)

and inserting Eq. (57) yields

b zα/2Gα
Λ2(z) − zGΛ2(z) + 1 = 0. (62)

Observing that from Eq. (39)

z =
1

χΛ2(zGΛ2(z) − 1)
≡ 1

χΛ2

, (63)

Eq. (62) becomes

b χ−α/2Gα
Λ2

(

1

χΛ2

)

− 1

χΛ2

GΛ2

(

1

χΛ2

)

+ 1 = 0. (64)

Because from Eq. (38) it follows that

1

χΛ2

GΛ2

(

1

χΛ2

)

− 1 = z, (65)

Eq. (64) can be simplified to

bχ
−α/2
Λ2 Gα

Λ2

(

1

χΛ2

)

= z. (66)
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Multiplying both sides by χ
−α/2
Λ2 /b yields

χ−α
Λ2 Gα

Λ2

(

1

χΛ2

)

=
z

b
χ
−α/2
Λ2 ; (67)

then subtracting and adding 1,

(

1

χΛ2

GΛ2

(

1

χΛ2

)

− 1 + 1

)α

=
z

b
χ
−α/2
Λ2 , (68)

and inserting again Eq. (65) gives

(z + 1)α =
z

b
χ
−α/2
Λ2 , (69)

which can be written as

χΛ2 =
1

(z + 1)2

(z

b

)2/α

. (70)

Now, using the definition of the S-transform and the result

SΛ2 =
1 + z

z
χΛ2 =

1

z(1 + z)

(z

b

)2/α

, (71)

which can be used to write SD, the S-transform of the
Wishart matrix on the rhs of Eq. (43) is

SPΛ2 = SPSΛ2 =
1

z(m + z)

(z

b

)2/α

. (72)

This result is the starting point for the way back. Re-
applying the definition of the S-transform we can write

χΛ2P =
z

z + 1
SΛ2P =

1

(z + 1)(z + m)

(z

b

)2/α

(73)

and

χ−1
Λ2P

= (z + 1)(z + m)
(z

b

)−2/α

. (74)

Together with MD(z) = z GD(z) − 1 this allows to sub-
stitute χD(MD(z)) = 1/z and MD(1/χD(z)) = z. Notice
that we changed the index Λ

2
P to D to emphasise our

goal. So we can finally write

z = (MD(z) + 1)(MD(z) + m)

(

MD(z)

b

)−2/α

. (75)

Inserting Eq. (49) yields the corresponding equation for
C:

z = (m MC(z) + 1)(m MC(z) + m)

(

m MC(z)

b

)−2/α

;

(76)
gathering m:

z = m2−2/α(MC(z) + 1/m)(MC(z) + 1)

(

MC(z)

b

)−2/α

.

(77)

From Eq. (22) and from the relation between the moment
generating function and the spectrum we finally obtain

ρC(λ) =
1

πλ
Im[MC(λ + i0−)]. (78)

Inserting b from Eq. (51) and rearranging, Eq. (75) takes
the form anticipated in Eq. (47). Returning to the moti-
vation of the paper, the result described by Eq. (77) must
be considered an approximation of the curve correspond-
ing to the null hypothesis of absence of correlation in time
series with fat-tailed increments.

5 Monte Carlo validation

It has already been shown numerically that the theory
works in the Wigner-Lévy ensemble [35]. For the Wishart-
Lévy case we produced free Lévy stable random matrices
Λ of size T × T through Eq. (44); a N × N principal mi-

nor of ΛΛ
T is a free Wishart-Lévy matrix C with the

desired asymmetry ratio m = N/T ≤ 1. Such a minor
results from the action of the projectors P in Eq. (43).
Since a square matrix of size T contains n = ⌊T/N⌋ non-
overlapping principal minors of size N ≤ T , this procedure
can be repeated for the same matrix Λ with different pro-
jectors Pi, where i = 1, . . . , n labels the projector that
selects the rows from (i − 1)N + 1 to iN . Especially if m
is small, it is computationally favourable to follow closely
Eq. (43) by first building an N × T matrix Mi = {PiΛ}
made of N rows out of Λ, and then forming the product
Ci = MiM

T

i . The eigenvalues of Ci are accumulated in
a histogram that gives the spectrum. This procedure is
repeated producing enough matrices Ci until the desired
statistical accuracy is reached. All plots in Fig. 1 have been
made using an equal number of eigenvalues for the sake
of comparability. Free stable laws as defined by the Blue
function in Eq. (50) and the empirical spectra have differ-
ent normalisations. For the purpose of a comparison as in
Fig. 1, this is corrected dividing M by a factor Γ(1+α)1/α,
that can be obtained comparing the asymptotic behaviour
of the two spectra. The Appendix gives the code for the
calculation of the spectral density by Monte Carlo as just
described.

This procedure implements the definition of the Wishart
covariance matrix based on a real random rectangular
data matrix M. In this paper free probability theory has
been used to provide an analytic equation for the spec-
trum of a Wishart matrix with the simplifying assump-
tion that the matrix Λ on the right hand side of Eq. (43)
is symmetric. Therefore M may contain symmetric ele-
ments too, which is not necessary in the definition of the
Wishart ensemble. However, it is possible to see that this
does not affect the properties of MM

T. In other words,
the symmetrisation introduced for simplicity in the an-
alytic derivation does not change the original numerical
problem by introducing correlations. Actually, our Monte
Carlo scheme does not symmetrise the matrix Λ obtained
from Eq. (44) and matches the analytic spectrum.
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Fig. 1. Spectral densities from the numerical solution of the analytic equation (solid lines) and from Monte Carlo simulation
(stairs). In each case the dimension of C is N = 200, the number of addends in Eq. (44) is R = 20, and the number of sampled
eigenvalues is S = 36 000.

6 Summary

We have explained the justification as well as the math-
ematical basis with which free probability theory enters
random matrix theory, in particular in the context of the
Wishart matrix ensemble. Since the derivation of the an-
alytic solution for the spectra of free stable random ma-
trices has not been published in a self-contained way yet
[26,27,29,34,35], we recollected it in detail. Then we vali-
dated numerically with Monte Carlo calculations the ana-
lytic prediction of the eigenvalue spectrum for free stable
Wishart-Lévy matrices. Overall we find an excellent con-
sistency between theory and simulation.
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Appendix: Computer codes

The numerical solution of Eqs. (77–78) was computed with
Mathematica 6.0 in almost one line:

α = 3/2;
m = 1/3;
width = 0.01;
λmax = 5;
SOL := 2;
ρ = Table[{λ, N[Im[M/.NSolve[-Exp[I2π/α]M2/αλ
== m2−2/α(M+1/m)(M+1), M]][[SOL]]/(πλ)]},
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{λ, width, λmax, width}];
ListPlot[Abs[ρ]]

The constant SOL is a positive integer that indicates
which of the possible solutions to pick. A value of α not ex-
pressed as a fraction of integers causes a dramatic increase
in running time, which otherwise is less than a minute.

The Monte Carlo approximation of a free stable ran-
dom matrix Λ described in Sec. 3, its use to build a free
Wishart-Lévy matrix C, and the numerical computation
of the eigenvalue spectrum of the latter including the sta-
tistical averaging described in Sec. 5 were carried out with
Matlab 7.5:

alpha = 3/2; % index of Levy stable distribution

gam = 1; % scale parameter of Levy stable distribution
width = .05; % bin width of eigenvalue histogram
N = 200; % number of time series

T = 600; % points in each time series; must be >= N.
R = 20; % random rotations

S = 36000; % number of sampled eigenvalues

psi = (T*R*gamma(1+alpha))^(2/alpha); % normalisation factor
rho = []; % set up array of eigenvalues
iS = 0; % initialise normalisation counter

while (iS < S)

% approximation of a free stable matrix
L = stabrnd(alpha,0,gam,0,T,T);

for iR = 2:R
[O,U] = qr(randn(T,T)); % O is a random orthogonal matrix

L = L + O*stabrnd(alpha,0,gam,0,T,T)*O’;
end

% average over covariance matrices
for i = 1:N:T-N+1

Mi = L(i:i+N-1,:); % choose N out of T rows from L
Ci = Mi*Mi’/psi; % normalisation

rho = [rho eig(Ci)’]; % collect the eigenvalues
iS = iS + N;

if (iS >= S)
break;

end

end

end

[histrho lrho] = hist(rho,0:width:100); % build the histogram

histrho = histrho/(length(rho)*width) % normalisation
% lrho contains the abscissa and histrho the ordinate

On a 2.2 GHz AMD Athlon 64 X2 “Toledo” Dual-Core
with Fedora Core 7 Linux, all the Monte Carlo calculations
for Fig. 1 together lasted about 6.6 hours, ranging from
less than 2 minutes each for α = 1, m = 1 to about 47
minutes for α 6= 1, m = 1/6. The slow step is the ap-
proximation of Λ, i.e. the first for-loop, while the second
for-loop with the diagonalisation takes from a maximum
of 2.5% of the total time for α = 1, m = 1 down to 0.25%
for α 6= 1, m = 1/6. This matches the observation, which
we made in the range N = 10–800 and for the values of
α, m, R, S reported in Fig. 1, that the CPU time is ap-
proximatively proportional to T 2 = (N/m)2 and lower for
α = 1. In this case, corresponding to the Cauchy distri-
bution, Eq. (45) reduces to X = γ tan φ, which requires
fewer operations than the general formula.
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