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Simultaneous calculation of the helical pitch and the twist elastic constant
in chiral liquid crystals from intermolecular torques
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We present a molecular simulation method that yields simultaneously the equilibrium pitch wave
numberq and the twist elastic constantK2 of a chiral nematic liquid crystal by sampling the torque
density. A simulation of an untwisted system in periodic boundary conditions gives the productK2q;
a further simulation with a uniform twist applied provides enough information to separately
determine the two factors. We test our new method for a model potential, comparing the results with
K2q from a thermodynamic integration route, and withK2 from an order fluctuation analysis. We
also present a thermodynamic perturbation theory analysis valid in the limit of weak chirality.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1475747#
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I. INTRODUCTION

Chirality is of paramount importance in chemistry
well as in liquid crystal~LC! display technology, where de
vices are often based on the interaction of chiral or twis
nematic LCs with polarized light having the same wav
length as their pitchP, that is the distance over which th
director rotates through an angle 2p.1 Therefore, there is an
understandable interest in forecasting the pitch of m
sophases, be they pure liquids of chiral molecules, or s
tions of chiral dopants in achiral solvents, from a knowled
of their molecular structures. In a molecular simulation, it
currently impractical to realize the equilibrium pitch for
given system: the length and time scales are too long. H
ever, the pitch is determined by phenomenological coe
cients in the elastic free energy, and these coefficients ma
obtained by other methods. When a finite pitch is impos
externally, for instance by the condition of compatibility wi
periodic boundary conditions~PBCs!,2 a free energy differ-
ence arises between otherwise equivalent systems of mi
image molecules. By computing the chemical potential d
ference between right- and left-handed forms of a dop
molecule, for instance, the helical twisting power may
deduced. This approach was first proposed for the case w
the dopant is a dimer, essentially composed of two solv
molecules in a particular conformation:3,4 in this case, the
chemical potential difference may be calculated with go
statistics. Later, this quantity has been calculated by a m
conventional approach, namely thermodynamic integrat
one enantiomer is slowly mutated into the other in a step-
step calculation.5 This removes the restriction to dimers, b

a!Electronic mail: germano@physik.uni-bielefeld.de
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9420021-9606/2002/116(21)/9422/9/$19.00

Downloaded 28 May 2002 to 129.70.124.134. Redistribution subject to A
d
-

-
u-
e

-
-
be
d

or-
-
nt

ere
nt

d
re
n:
-

the technique is computationally expensive, and care mus
taken: the quantity of interest is very small in comparis
with the absolute values calculated in the simulation.
whatever means the appropriate term in the free energ
obtained, it may be shown to reduce to a producth5K2q of
the twist elastic constantK2 and the wave numberq
52p/P characterizing the equilibrium pitchP.

In Sec. II we propose a new method that is also qu
general, but simpler, since it does not require a mutation
the system. Instead, the results come from equilibrium tor
measurements in runs with conventional and twisted PB
moreover, the results may be combined to yieldK2 and q
separately. In Sec. III we describe the model potential a
the simulation procedure used to test the method. The res
are presented in Sec. IV, and in the final discussion in Se
we conclude this paper.

II. THEORY

For notational convenience we assume that the total
tential energy of the system, denotedUl , may be written so
as to depend on a chirality parameterl; that changing the
sign of l gives an enantiomeric system, i.e., one with t
opposite sign of equilibrium pitch wave number, which w
denoteql ; and thatl50 corresponds to a molecular mod
that is achiral by symmetry. Later, we shall consider the c
in which l measures the strength of a chiral perturbat
term in the potential, paying attention to the limit of smalll,
but we do not make that assumption at this stage:l might
represent some internal parameter defining the molec
structure, for example, a twist angle about some bond, wh
is not necessarily small. More generally,l may be a thermo-
dynamic integration parameter.

The Frank elastic free energy for a chiral nematic~cho-
lesteric! phase with equilibrium pitchql is1
2 © 2002 American Institute of Physics
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F5
1

2 E $K1~“•n̂!21K2@ n̂•~“3n̂!1ql#2

1K3@ n̂3~“3n̂!#2%dr ; ~1!

K1 , K2 , andK3 are the splay, twist, and bend elastic co
stants; the unit vectorn̂(r ) represents the director field. In
serting the expression for the director of a phase uniform
twisted along thez axis,

n̂~r !5@cosf~z!,sinf~z!,0#,
~2!

df~z!

dz
5k5const,

and integrating over the volumeV, we get

Fk,l5
1

2
VK2~k2ql!2, ~3!

where the subscripts remind us of the dependence on
the twist wave numberk and the chirality strengthl. The
reference state of minimum~here zero! free energy hask
5ql ; nematics are called chiral ifqlÞ0 and twisted ifk
Þql . Uniform twists with kÞql are due, typically, to
boundary conditions produced by the interaction with s
faces. However, in computer simulations the same effect
be introduced in a bulk cell of fluid through the influence
the PBCs. In conventional, untwisted, PBCs, periodicity
stricts the helical pitch such that an integer number of h
turns take place in one box length. This means that

P

Lz
5

2

nz
, kLz52p

Lz

P
5nzp,

where Lz is the length of the simulation box andnz is an
integer. The state withk closest toql has the lowest free
energy, but states with nearby values ofnz are metastable
there is a free energy barrier between states of differentnz .
In twisted PBCs,2 the coordinates and orientations of ima
molecules in the neighboring simulation boxes along the6z
direction are rotated by a quarter-turn,6p/2, with respect to
their values in the reference box. In this case, the pitch m
take the values

P

Lz
5

2

nz1
1
2

, kLz52p
Lz

P
5~nz1

1
2!p.

It should be borne in mind that in computer simulations
we were to use a molecular model with a realistic degree
chirality, the state closest toql would generally bek50,
because the accessible length scales in simulations are
stantially shorter than the natural equilibrium pitches se
experimentally.

A. Thermodynamic integration method

Using Eq. ~3!, the free energy difference between tw
enantiomeric phases, that have equilibrium twist wave nu
bersq6l56ql of opposite sign, is
Downloaded 28 May 2002 to 129.70.124.134. Redistribution subject to A
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DFk,6l[Fk,l2Fk;2l

5 1
2 VK2@~k2ql!22~k1ql!2#

522VK2qlk. ~4!

This free energy difference may be computed in a simulat
by thermodynamic integration along a path that mutates
molecules into their mirror-image forms, while maintainin
the system in a state of constant nonzerok through the cho-
sen PBCs. Hence, such a technique will yield the prod
hl[K2ql , and the value ofql may be deduced from a
separate calculation ofK2 ~which may also depend onl, but
we suppress this in the notation, anticipating that the dep
dence will be higher order than linear!. Assuming that we
need only consider the excess~nonideal! contribution toF,
the explicit formula follows from the statistical mechanic
relation

]Fk,l

]l
5 K ]Ul

]l L
k,l

,

which underpins thermodynamic perturbation theory.6,7 This
gives the free energy difference between two enantiom
phases at a specified twist wave numberk,

DFk,6l5E
2l

l ]Fk,l8
]l8

dl8

5E
2l

l K ]Ul8
]l8 L

k,l8

dl8

[E
2l

l

^U l8
c &k,l8 dl8, ~5!

where^¯&k,l8 represents a simulation average conducted
chirality l8, in boundaries that impose a twist wave numb
k, and we have defined

U l
c[

]Ul

]l
. ~6!

Hence

hl[K2ql52
1

2Vk E2l

l

^U l8
c &k,l8 dl8. ~7!

Thus, we may approach the calculation of the helical pitch
the standard framework of thermodynamic linear respo
theory, but we rely on the explicit calculation of the appr
priate potential energy derivative with respect tol, Eq. ~6!.

B. Torque measurement method

The method to be examined here exploits the mic
scopic expression for the torque per unit area.2 Begin by
defining the tensor
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Pab52(
i

r iat ib

52
1

2 (
iÞ j

r i j at i j b

52
1

2 (
i , j

r i j a~t i j b2t j i b!, ~8!

with a,b5x,y,z; r i j a5r ia2r j a is thea component of the
separation of the centers of mass;t ib is theb component of
the torque acting on moleculei,

ti52êi3
]

]êi
Ul , ~9!

whereêi is a unit vector along the main molecular axis~the
molecule may not be uniaxial!. In Eq. ~8! we have assumed
thatti can be expressed in pairwise contributionsti j from all
other moleculesj; tj i is the corresponding torque exerted
j by i. With the twist axis chosen alongz, we shall be inter-
ested in the componentPzz, which we denotePl henceforth
to highlight the explicit dependence onl, while maintaining
notational simplicity. The torque per unit area may then
expressed microscopically:2

]Fk,l

]k
5^Pl&k,l . ~10!

A comparison of this equation with the macroscop
expression1

1

V

]Fk,l

]k
5K2~k2ql!, ~11!

once withk50 and once withkÞ0, gives the equations

hl[K2ql52
^Pl&0,l

V
, ~12!

K2~ql2k!52
^Pl&k,l

V
, ~13!

and hence

K25
^Pl&k,l2^Pl&0,l

Vk
5

1

V

]^Pl&k,l

]k U
0,l

, ~14!

ql5
2k^Pl&0,l

^Pl&k,l2^Pl&0,l
5

2^Pl&0,l

]^Pl&k,l /]ku0,l
. ~15!

Thus, for molecules of a given chiralityl, two simulations
with different values ofk are sufficient to determineK2 and
ql separately: this is one of the principal results of this pap
Note that in Eqs.~12!–~15!, it is not necessary to writeUl or
Pl explicitly as a function ofl, as no thermodynamic inte
gration with respect to a chirality parameter is used. T
same formulas hold equally well for pure phases, where
ery molecule is chiral, and solutions, where chiral and ach
molecules are mixed. Equation~14! has previously been
used2 to calculateK2 in fluids of achiral molecules, for
which ^P0&0,050 but ^P0&k,0Þ0; and Eq.~12! has recently
been proposed8–10 as a route tohl for chiral molecules, for
which ^Pl&0,lÞ0. We note in passing that the tensorPab
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was first introduced in expressions for the flexoelectric co
ficients of pear- and banana-shaped mesogens,11 and that
these expressions have recently been used in simulation12

We emphasize thatP is defined in terms ofinternal
molecule–molecule torques, not the torques applied to
system at the boundaries, which may be necessary to m
tain a twisted nematic state. The link with the externa
applied torque per unit area is made by analogy with
derivation of the usual virial expression for the pressure.7,13

Consider the relation

K ]

]t (i
r ia j ibL 5K (

i
v ia j ibL 1K (

i
r iat ib

totL 50,

wherej ib is a component of the intrinsic angular momentu
of molecule i and t ib

tot5tib1tib
ext is the total torque on the

molecule due to both internal and external~boundary! ef-
fects. Separating these two contributions, and noting thatv ia

and j ib are uncorrelated, gives

^Pab&5K (
i

r iat ib
extL . ~16!

This equation applies regardless of the degree of twist, or
molecular chirality. The expression on the right~divided by
V! is the macroscopic torque per unit area applied to
system; the expression on the left is entirely in terms
internal torques.

C. Weak chirality

The expressions of the previous section hold for ar
trary values of chirality strengthl. It will prove useful to
consider the case of weak chirality, anticipating linear dep
dence onl of ql andhl[K2ql :

ql5q8l, hl5h8l, ~17!

whereq8 andh8 are the proportionality constants to be d
termined. The free energy relations of interest to us, at sm
l andk, are

1

V

]Fk,l

]l U
k,0

52h8k, ~18a!

1

V

]Fk,l

]k U
0,l

52h8l, ~18b!

1

V

]2Fk,l

]l ]k U
0,0

52h8. ~18c!

We apply thermodynamic linear response theory,6,7 restrict-
ing our interest to the class of models for which the to
intermolecular~internal! potential energy of the system,Ul ,
may be decomposed into an achiral partU a and a
l-independent chiral termU c multiplied by a strength pa-
rameterl:

Ul5U a1lU c; ~19!

each term is assumed, for convenience, to be pairwise a
tive. From the definition~8!, we may decomposePl into
achiral and chiral parts, in the same way:
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Pl5Pa1lPc. ~20!

We must also carefully consider the imposed twist, genera
in a simulation by using the boundary conditions describ
earlier. For the analysis presented here, it is convenien
consider that this twist is produced by applying an exter
potential, soU tot5U1U ext. The pitch wave numberk is de-
termined byU ext, and we assume that we may divide it, lik
U, into chiral and achiral parts:U k,l

ext5U k
ext,a1lU k

ext,c . In
carrying out linear response theory it is important to inclu
both the internal and external potentials.

Now all the l dependence is explicit; for smalll we
have6,7

Fk,l5Fk,01l^U tot,c&k,02
1

2
l2b~^U tot,c2

&k,02^U tot,c&k,0
2 !

1¯ , ~21!

^U a&k,l5^U a&k,02lb~^U aU tot,c&k,02^U a&k,0̂ U tot,c&k,0!

1¯ , ~22!

^U c&k,l5^U c&k,02lb~^U cU tot,c&k,02^U c&k,0̂ U tot,c&k,0!

1¯ , ~23!

^Pa&k,l5^Pa&k,02lb~^PaU tot,c&k,02^Pa&k,0̂ U tot,c&k,0!

1¯ , ~24!

^Pc&k,l5^Pc&k,02lb~^PcU tot,c&k,02^Pc&k,0̂ U tot,c&k,0!

1¯ . ~25!

The k, 0 subscript refers to an average carried out atl50
and in the presence of an external potentialU k

ext,a , i.e., the
external potential that produces the desired twist in a sys
of purely achiral molecules. ClearlyU k

ext,a50 whenk50, as
a system of achiral molecules is already untwisted in
absence of external potentials.

Thus, we expect to see a linear dependence of mea
able properties onl: the zeroth-order term is related to th
average values for achiral molecules under the same co
tions of twist, while the first-order term reflects equilibriu
correlations withU tot,c in the l50 limit. From Eqs.~5! and
~18c! we obtain

]Fk,l

]l U
k,0

5^U tot,c&k,0

⇒h852
1

V

]2Fk,l

]k ]l U
0,0

52
1

V

]^U tot,c&k,0

]k U
0,0

. ~26!

With some care14 this may be converted into a fluctuatio
expression valid atk50:

h852
1

V
@^Pc&0,02b~^PlU tot,c&0,02^Pl&0,0̂ U c&0,0!#

52
1

V
@^Pc&0,02b^PaU tot,c&0,0#, ~27!

where we usêU tot,c&0,050 ~see the Appendix!. An alterna-
tive derivation starts from Eq.~10!:
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]Fk,l

]k U
0,l

5^Pl&0,l

⇒h852
1

V

]2Fk,l

]l ]k U
0,0

52
1

V

]^Pl&0,l

]l U
0,0

. ~28!

This last equation may be converted into a fluctuation av
age as well:

h852
1

V F K ]Pl

]l L
0,0

2b~^PlU tot,c&0,0

2^Pl&0,0̂ U tot,c&0,0!G
52

1

V
@^Pc&0,02b^PaU tot,c&0,0#, ~29!

giving the same result as Eq.~27!. This equation may be
simplified by making use of the hypervirial theorem; thus

2b^Pab
a U tot,c&0,05(

i
^r ia~t ib

c 1t ib
ext,c!&0,050.

The final equality is obtained by using Eq.~16!, where the
averages are evaluated atk50 but at nonzerol. A first-order
expansion in powers ofl gives the required result. Hence
we arrive at

h85
hl

l
52

^Pc&0,0

V
. ~30!

Equation~14!, evaluated in the limitl→0, becomes

K25
^Pa&k,0

Vk
5

1

V

]^Pa&k,0

]k U
0,0

, ~31!

where we usêPa&0,050. We note that

]

]l
^Pa&k,lU

0,0

}^PaU c&0,050,

which confirms the assumption made earlier, thatK2 is inde-
pendent ofl at low l. Dividing Eq. ~30! by Eq. ~31! and
substitutinghl5K2ql gives

q85
ql

l
52

^Pc&0,0

^Pa&k,0 /k
. ~32!

Equations~30!–~32!, valid for weakly chiral systems, const
tute the second main set of results of this paper. They sh
that the key properties may be derived from just two m
surements made on the achiral reference system: the
semble averagêPc&0,0 of the chiral part of the torque pe
unit area, and the response of the achiral term to an app
twist, ^Pa&k,0 /k. Bearing in mind that^Pc&k,05^Pc&0,0

1O(k2) ~see the Appendix!, both measurements may b
made, if desired, in a single simulation in twisted boundari

Since Eqs.~30!–~32! involve simple sums of pairwise
functions, they will give information, not only about system
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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in which all molecules are chiral, but also those in which ju
one molecule is chiral. If we define the pair average prope
for an arbitrary pair 1 and 2,

^pc&52^r 12zt12z
c &,

then for a system ofN ~weakly! chiral molecules,

h852

1
2N~N21!

V
^pc&0,0,

while for a dilute system ofn chiral dopants, interacting with
strengthl with the N achiral solvent molecules,

h852
nN

V
^pc&0,0.

Note that, in this linear response regime, the coefficient m
be expressed in terms of direct interactions between the
ant and the surroundings: perturbations of the liquid struc
are secondary and would come in at higher order, as usu6,7

Last, in this regime, the above equations may easily be w
ten in terms of the pair distribution function and used
predict the chiral properties of a wide range of perturb
molecular structures.

III. SIMULATION

To test the new method, we chose a simple model
tential for rigid chiral mesogenic particles that is a line
combination of an achiral and a chiral term, each of which
as usual, pairwise additive:

Ul5U a1lU c5(
i , j

~ui j
a 1lui j

c !. ~33!

Each pair is described by the separation vectorr i j 5r i2r j

and the unit orientation vectorsêi andêj . The achiral part is
the popular Gay–Berne potential,15

ui j
a 5ui j

GB~r i j ,êi ,êj !

54e~ r̂ i j ,êi ,êj !@% i j
212~r i j ,êi ,êj !2% i j

26~r i j ,êi ,êj !#,

~34!

with reduced distance

% i j ~r i j ,êi ,êj !5
r i j 2s~ r̂ i j ,êi ,êj !1s0

s0
, ~35!

shape function

s~ r̂ i j ,êi ,êj !5s0F12
x

2 S ~ r̂ i j •êi1 r̂ i j •êj !
2

11xêi•êj

1
~ r̂ i j •êi2 r̂ i j •êj !

2

12xêi•êj
D G21/2

, ~36!

and energy function

e~ r̂ i j ,êi ,êj !5e0@e1~ êi ,êj !#
n@e2~ r̂ i j ,êi ,êj !#

m, ~37!

e1~ êi ,êj !5@12~xêi•êj !
2#21/2, ~38!
Downloaded 28 May 2002 to 129.70.124.134. Redistribution subject to A
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e2~ r̂ i j ,êi ,êj !512
x8

2 S ~ r̂ i j •êi1 r̂ i j •êj !
2

11x8êi•êj

1
~ r̂ i j •êi2 r̂ i j •êj !

2

12x8êi•êj
D . ~39!

In the above equationsr̂ i j 5r i j /r i j . The shape function is
determined by a shape anisotropy parameter,

x5
k221

k211
, k5

send–end

sside–side
, ~40!

and the energy function by a well-depth anisotropy para
eter,

x85
k81/m21

k81/m11
, k85

eside–side

eend–end
. ~41!

In Eqs.~37!–~41! we used the Berardi–Zannoni16 parameter
valuesm51, n53, k53, k855. Henceforth, distance an
energy units are defined so that in Eqs.~35!–~37!, s05e0

51.
For the chiral part of the potential we used the for

proposed by Memmer and Kuball,17

ui j
c 5ui j

MK~r i j ,êi ,êj !54e% i j
27~ êi3êj• r̂ i j !~ êi•êj !, ~42!

where e and % i j are the same functions appearing in t
Gay–Berne potential. The combination (êi3êj• r̂ i j )(êi•êj ) is
the simplest pseudoscalar and head–tail symmetric exp
sion that can be formed withr̂ i j , êi , êj . The exponent of the
separation-dependent term% i j

27 has the asymptoticr i j
27 form

of the multipole expansion of the chiral interaction ener
arising from quantum mechanical fluctuations of the elect
distribution ~dispersion interactions!.17–19 It has been
noted8–10 that the leading term in a multipole expansion
an interaction potential based simply on summing site–
interactions must have a higher-order dependence on o
tations than the (êi3êj• r̂ i j )(êi•êj ) term considered here: in
this sense it is an idealized model.

Both parts of the pair potential were cut at the distan
r cut54s0 and shifted by an orientation-dependent quantit

ui j
a ~r i j ,êi ,êj !

5H ui j
GB~r i j ,êi ,êj !2ui j

GB~ r̂ i j r cut,êi ,êj !, r i j ,r cut,

0, r i j >r cut,
~43!

a similar equation connectsui j
c with ui j

MK .
We conducted standard canonical ensemble Monte C

simulations20 usingN51024 or 2048 particles in a rectangu
lar box with side ratiosLx :Ly :Lz51:1:2 or 1:1:4, respec-
tively, and a number density of 0.3~in the reduced units
defined earlier!. A snapshot of the 1024-particle system
twisted boundary conditions is given in Fig. 1. To help t
comparison with twisted configurations where the direc
rotates in a plane perpendicular to the twist axisz, in con-
ventional, untwisted PBCs whenk50 we constrained the
director to the samexy plane by adding a term proportiona
to (Qxz

2 1Qyz
2 ) to the energyUl defined in Eq.~33!; Q is the

order tensor:
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Qab5
1

N (
i 51

N S 3

2
êiaêib2

1

2
dabD . ~44!

We averaged 300 (N51024) or 150 (N52048) blocks of
2000 attempted moves per particle for each data point;
verified that the block size is sufficiently large that the blo
averages are independent from each other, and the
lengths such that the relative errors in simulation avera
are about 1%; the maximum particle move displacement
rotation were both set to 0.1 to give an acceptance ratio
50%. These calculations yieldedK2ql from thermodynamic
integration, Eq.~4!, and from our new method, Eq.~12! or, in
the special case of weak chirality, Eq.~30!.

To have an independent estimate ofK2 , that our new
method gives separately fromql , Eq. ~14! or, for weak
chirality, Eq. ~31!, we accessedK2 through orientational or-
der fluctuations, exploiting the fact21 that in a 123 axis sys
tem wherê Q& is diagonal withn̂5(0,0,1), if a wave vector
k is chosen such thatk250, then fork→0

W̃a3~k1 ,k3!5
9P2

2VkBT

4^uQ̃a3~k!u2&
;Kak1

21K3k3
2, ~45!

with a51, 2. In this equation,P2 is the nematic order pa
rameter, defined as the highest eigenvalue of^Q&, andQ̃(k)
is the order tensor in reciprocal space:

Q̃ab~k!5
V

N (
i 51

N S 3

2
êiaêib2

1

2
dabDexp~ ik•r i !. ~46!

For this calculation an extrapolation tok50 is required: ac-
cordingly, we employed a large system ofN516 000 mol-
ecules, and used a domain decomposition parallel molec
dynamics program. The molecular mass and moment of
ertia were chosen to be unity, and in the reduced units
time so defined, a time stepdt50.003 was found to give
satisfactory energy conservation, using theRATTLE integra-
tion algorithm.22 A simulation run length of 106 steps gave
adequate sampling of the lowest-frequency modes. To fa
tate the analysis, the director-based 123 frame was fixe
coincidence with thexyz frame of the simulation box by
adding two extra Lagrange multipliers to the dynamic

FIG. 1. Snapshot of the model system withN51024 atT52.8, l50.01,
andkLz5p/2 ~twisted PBCs!.
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equations so thatQxz5Qyz50 at every time step.23 We used
an elongated box with side ratiosLx :Ly :Lz51:1:2. The
k-dependent simulation averages required in Eq.~45! were
sampled on a 636312 grid of points in thexyz frame, and
the resultingW̃a3 surfaces were fitted with fourth-degre
polynomial functions ofk1

2 and k3
2 constrained to pass

through the originW̃a3(0,0)50. The fourth-order coeffi-
cients in the fits were very small, and the first-order coe
cients gave the desired elastic constants. Apart from the
proved, symplectic integrator with global Lagrang
constraints onQ, we followed closely the procedure o
Ref. 24.

IV. RESULTS

With our Monte Carlo program we investigated tho
oughly the temperatureT52.8 with N51024 and values of
chiral strengthulu<1.5. Although it has to be kept in mind
that only values ofulu'0.01 make physical sense if the pa
ticles are to be interpreted as molecules, we were intere
in exploring the whole range, where a uniform twisted ne
atic phase satisfying Eq.~2! is ~at least meta-! stable; we
found this to be true for valuesulu,1. In choosing values of
k and l we took advantage of the relations given in t
Appendix to symmetrize our results. Typical director ang
profiles f(z) are shown in Fig. 2; the chiral part of th
energy^U c&k,l and the torque per unit area^Pl&k,l are plot-
ted as functions of chirality strengthl in Figs. 3 and 4,
respectively. For any given value ofl, we typically find one
director configuration of well-defined wave numberk that is
stable in each of the two boundary conditions~untwisted and
twisted!. An exception is the low-chirality range20.2<l
<0.20 for which we observed three stable states:kLz50 and
kLz56p/2. On increasing the chirality we observed spo
taneous jumps inkLz : 0→p at l'0.5, p/2→3p/2 at l
50.7, with symmetrical jumps in the negativel direction.
The twist remains uniform until aboutl.1; beyond this
point progressive deviations from a linearf(z) profile arise.
This may correspond to mesophases other than the twi

FIG. 2. The anglef as a function ofz/Lz , Eq. ~2!, for different metastable
states of the system withN51024 andT52.80. An arbitrary phase facto
has been added so thatf(0)50.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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nematic, that have been described elsewhere.17 We were not
interested in studying them further, because the method
are presenting here is based on a uniformly twisted direc
Eq. ~2!.

For constant wave numberk, and over the range wher
f(z) is linear,^U c&k,l varies linearly withl; this is in agree-
ment with the prediction of liner response theory, Eq.~23!.
^Pl&k,l also varies linearly withl. In fact, the torque mea
surements conform to the behavior discussed in connec
with Eqs. ~30!–~32!, and in the Appendix: we see tha
^Pc&k,l is essentially independent of bothl andk for all of
our simulations, whilêPa&0,0 vanishes, and̂Pa&k,l is inde-
pendent ofl for fixed k. Therefore, the linear variation o
^Pl&k,l with l at fixedk arises simply through the explic
factor l in the definition~20!.

These simplifying features make the computation of
integral on the left side of Eq.~5! particularly easy: fitting a
line, Eq. ~23!, to ^U c&k,l in the interval ulu<0.7 for kLz

5p/2 yields simply

DFk,6l52l^U c&k,0 , ~47!

and inserting this into Eq.~4!,

h85
K2ql

l
52

^U c&k,0

Vk
; ~48!

FIG. 3. Chiral part of the internal energy density^U c&k,l /V as a function of
the chiral strengthl, at various twist wave numbersk for the system with
N51024 andT52.8. Where the twist is uniform the dependence is line
Circles: kLz50. Squares:kLz56p/2. Diamonds:kLz56p. Triangles:
kLz563p/2. Positive values ofk correspond to positivel, andvice versa.
The slope of the full lines~one for eachk value! and the spacing among
them are determined by a linear fit, Eq.~23!, to thekLz50 andkLz5p/2
results, which determineK2ql from thermodynamic integration, Eq.~48!.
Error bars have been omitted in this and the following figures because
are about the same size as the symbols used for the data points.
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also see Eq.~26!. The results are reported in Table I togeth
with the results from the torque measurement according
Eq. ~28!; see also Fig. 4. Moreover, Table I shows the va
of K2 from the torque measurement, Eq.~14!, and from order
fluctuation analysis, Eq.~45!. Note in Fig. 4 that̂ Pl&k,l

2^Pl&0,l , and thusK2 , is independent ofl; the order fluc-
tuation calculation was done withl50.

.

ey

FIG. 4. Torque per unit areâPl&k,l /V, and componentŝPa&k,l /V ~full
symbols! and ^Pc&k,l /V as functions of the chiral strengthl, at various
twist wave numbers, for the system withN51024 andT52.80. Where the
twist is uniform the dependence is linear. The slope of the full lines in
uppermost graph~one for eachk value! gives h8, Eq. ~28!, and hencehl

5K2ql , Eq. ~12!; the distance between them givesK2 , Eq. ~14!. Arrows
indicate the two valueŝPc&k,0 /V ~with k50 or kÞ0! and^Pa&k,0 /V ~with
kÞ0!, which in the case of weak chirality may be measured in the ach
system to yield the same quantities through Eqs.~30! and~31!. The notation
is the same as for Fig. 3.

TABLE I. A comparison between the new torque-measurement method
two reference methods: thermodynamic integration~for h85K2ql /l! and
order fluctuation analysis~for K2!; estimated statistical errors in the las
quoted digits are given in parentheses. At the two higher temperature
could not observe a uniformly twisted director according to Eq.~2!, and thus
our analysis was applicable only fork50.

T N

h8 K2

Torque
Eq. ~28!

Integration
Eq. ~4!

Torque
Eq. ~14!

Fluctuation
Eq. ~45!

2.80 1024 1.08~1! 0.94~2! 4.55~2! 4.54~11!
2.80 2048 1.08~1! 1.08~2! 4.68~3!
3.40 1024 0.63~1! ¯ ¯ 1.98~5!
3.45 1024 0.56~1! ¯ ¯ 1.59~4!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The agreement between the torque measurement an
thermodynamic integration measurement ofh8 is much bet-
ter for the 1:1:4 box of theN52048 system than for the
1:1:2 box of theN51024 system. This is most likely a finite
size effect due to the higher value ofk in the smaller box,
affecting the thermodynamic integration value, becauseh8 is
found by the torque measurement withk50. The agreemen
between different measurements ofK2 is within the sum of
the estimated standard deviations; by chance, it is bette
the smaller system.

We repeated the above calculations atT53.40 andT
53.45 varyingl in a narrower rangeulu<0.05 at intervals
of 0.01. The choice of these temperatures was motivated
the availability in the literature of reference values forK2

from order fluctuations,24 though we ended up recalculatin
them with our improved director constraint algorithm me
tioned above, that we developed to compute the refere
value forK2 atT52.80. Our new fluctuation values forK2 at
T53.40 andT53.45 are 15% higher than the old ones. U
fortunately at these temperatures we could not observe a
formly twisted director according to Eq.~2!, and thus our
analysis was applicable only fork50, i.e., we could calcu-
late onlyh8; the values are reported in Table I. We belie
that the director nonuniformity at these higher temperatu
is due to the proximity of the nematic–isotropic transiti
temperature, hereT53.57:16 the free energy barriers aroun
the metastable states are lower and can be crossed more
ily. Indeed we observed the helix switching back and fo
between its two possible senses of rotation. Although it
stricts our calculations, this switching is an interesting p
nomenon that has received theoretical attention recent25

and here we confirm that it can be observed with compu
simulation.

V. DISCUSSION

We have shown how the equilibrium pitchql of chiral
nematics can be found by computer simulation sampling
torque per unit areaPl in twisted and untwisted directo
configurations, as an alternative to thermodynamic integ
tion; moreover, theK2 elastic constant is a byproduct of th
calculation instead of a required input parameter to be fo
by another method like an analysis of the order fluctuation24

or of the direct correlation function.26–30The route toql and
K2 through ^Pl& is more convenient than with thermody
namic integration or order fluctuation because the data an
sis is easier and the computational effort smaller. With
spect to thermodynamic integration there is the additio
advantage that the simulation givinghl5K2ql can be done
with k50, and thus in a fairly small box; we have confirme
the practicality of the approach proposed in Refs. 8–10.
course, the separate determination ofK2 by this method
requires an additional simulation atkÞ0, as suggested in
Ref. 2.

In the linear response regime, for weak chirality, w
have demonstrated the possibility of calculating the helic
parameterh85K2ql /l directly from simulations in the un
twisted and achiral reference system: this allows one to
tain results for a range of weakly chiral systems from sim
lations of a single reference system, and to isolate
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features in the molecular interactions and pair structure
sponsible for chirality. If a simulation in twisted boundarie
is performed, for example, to computeK2 , then the same
simulation may be used to calculateh8 at the same time,
since this quantity does not vary~to first order! with a twist.
However, we should emphasize again that the torque m
surements are not restricted to the weakly chiral limit, nor
they require one to separate the interaction potential
chiral and achiral parts. Our prototype simulations can
repeated with realistic models of actual mesogens to c
pare with experimental measurements, at the price of a la
computational effort, if good force field parameters are av
able.
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APPENDIX A: SYMMETRY PROPERTIES

Here we derive some symmetry relations that simpl
the analysis in the main text. We assume that the poten
energy may be written in the form of Eq.~19!, and the torque
per unit area as in Eq.~20!:

Ul~r ,e!5U a~r ,e!1lU c~r ,e!,

Pl~r ,e!5Pa~r ,e!1lPc~r ,e!,

whereU a, U c, Pa, andPc are all independent of the chira
ity parameterl; we have abbreviated all molecular coord
nates and orientation vectors asr , e, respectively. Symmetry
with respect to inversionr→2r , e→2e, l→2l implies

U2l~2r ,2e!5Ul~r ,e!, P2l~2r ,2e!52Pl~r ,e!,

U a~2r ,2e!5U a~r ,e!, Pa~2r ,2e!52Pa~r ,e!,

U c~2r ,2e!52U c~r ,e!, Pc~2r ,2e!5Pc~r ,e!.

The achiral Gay–Berne potential and the chiral Memme
Kuball potential are easily shown to satisfy the above eq
tions. Symmetry dictates that the canonical ensemble di
bution function%k,l(r ,e) satisfies

%2k,2l~2r ,2e!5%k,l~r ,e!,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and this allows the following relations to be straightfo
wardly derived:

^U2l&2k,2l5^Ul&k,l , ^P2l&2k,2l52^Pl&k,l ,

^U a&2k,2l5^U a&k,l , ^Pa&2k,2l52^Pa&k,l ,

^U c&2k,2l52^U c&k,l , ^Pc&2k,2l5^Pc&k,l .

Hence, thek→0, l→0 limits of ^U c& and ^Pa& vanish:

^U c&0,050, ^Pa&0,050.

The corresponding limiting values of^U a&0,0 and^Pc&0,0 do
not vanish, but the above symmetry relations dictate t
their gradients with respect tok andl are zero:

]

]k
^U a&k,lU

0,0

5
]

]l
^U a&k,lU

0,0

50,

]

]k
^Pc&k,lU

0,0

5
]

]l
^Pc&k,lU

0,0

50.

The corresponding thermodynamic linear response co
cients vanish, for instance,

]

]l
^Pc&k,lU

0,0

50 ⇔ ^PcU c&0,050.
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