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Simultaneous calculation of the helical pitch and the twist elastic constant
in chiral liquid crystals from intermolecular torques
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We present a molecular simulation method that yields simultaneously the equilibrium pitch wave
numberg and the twist elastic constal, of a chiral nematic liquid crystal by sampling the torque
density. A simulation of an untwisted system in periodic boundary conditions gives the pkogpct

a further simulation with a uniform twist applied provides enough information to separately
determine the two factors. We test our new method for a model potential, comparing the results with
K,q from a thermodynamic integration route, and with from an order fluctuation analysis. We
also present a thermodynamic perturbation theory analysis valid in the limit of weak chirality.
© 2002 American Institute of Physic§DOI: 10.1063/1.1475747

I. INTRODUCTION the technique is computationally expensive, and care must be
taken: the quantity of interest is very small in comparison
with the absolute values calculated in the simulation. By
Jvhatever means the appropriate term in the free energy is
obtained, it may be shown to reduce to a produetk ,q of

the twist elastic constanK, and the wave numbeq

Chirality is of paramount importance in chemistry as
well as in liquid crystal(LC) display technology, where de-
vices are often based on the interaction of chiral or twiste
nematic LCs with polarized light having the same wave-
Igngth as their pitchP, that is the distance over Whlqh the —27/P characterizing the equilibrium pitch.
director rotates through an angler.2 Therefore, there is an . :

. . . : In Sec. Il we propose a new method that is also quite

understandable interest in forecasting the pitch of me- : ; : : .
Co . general, but simpler, since it does not require a mutation of
sophases, be they pure liquids of chiral molecules, or solus S
the system. Instead, the results come from equilibrium torque

tions of chiral dopants in achiral solvents, from a knowledge . ) . : i
: . ) .-~ measurements in runs with conventional and twisted PBCs;
of their molecular structures. In a molecular simulation, it is

) . ; A . moreover, the results may be combined to yi&lg and q
currently impractical to realize the equilibrium pitch for a . .
) ] . separately. In Sec. Il we describe the model potential and
given system: the length and time scales are too long. How; = . .
. . . . .the simulation procedure used to test the method. The results
ever, the pitch is determined by phenomenological coeffi- ; . ) . S
: : . S are presented in Sec. IV, and in the final discussion in Sec. V
cients in the elastic free energy, and these coefficients may bee conclude this paper
obtained by other methods. When a finite pitch is imposecyv paper.
externally, for instance by the condition of compatibility with
periodic boundary condition®BC3, a free energy differ-
ence arises between otherwise equivalent systems of mirror- For notational convenience we assume that the total po-
image molecules. By computing the chemical potential dif-tential energy of the system, denotg, may be written so
ference between right- and left-handed forms of a dopanas to depend on a chirality parametgrthat changing the
molecule, for instance, the helical twisting power may besign of A gives an enantiomeric system, i.e., one with the
deduced. This approach was first proposed for the case whe@pposite sign of equilibrium pitch wave number, which we
the dopant is a dimer, essentially composed of two solvendenoteq, ; and that\ =0 corresponds to a molecular model
molecules in a particular conformatidit:in this case, the thatis achiral by symmetry. Later, we shall consider the case
chemical potential difference may be calculated with goodn which A measures the strength of a chiral perturbation
statistics. Later, this quantity has been calculated by a morterm in the potential, paying attention to the limit of small
conventional approach, namely thermodynamic integrationbut we do not make that assumption at this stagenight
one enantiomer is slowly mutated into the other in a step-byrepresent some internal parameter defining the molecular
step calculatiorl. This removes the restriction to dimers, but structure, for example, a twist angle about some bond, which
is not necessarily small. More generallymay be a thermo-

dynamic integration parameter.

Il. THEORY
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Afk,:)\z}—k,)\_fk;—x
=3 VK[ (k—ay) %= (k+0ay)?]
+K3[AX (VX A)]}dr; (1) = —2VK,q, k. (4)

K1, K,, andKj3 are the splay, twist, and bend elastic con- ) ) ) )
stants; the unit vecto(r) represents the director field. In- This free energy difference may be computed in a simulation

serting the expression for the director of a phase uniformlyPy thermodynamic integration along a path that mutates all

F%f {Ky(V-A) 24 K[ A (VX P) + 0, ]2

twisted along the axis, molecules into their mirror-image forms, while maintaining
the system in a state of constant nonzketbrough the cho-
A(r)=[cos¢(z),sink(z),0], sen PBCs. Hence, such a technique will yield the product
(2) h,=K,q,, and the value ofgy, may be deduced from a
dé(z) K= separate calculation &, (which may also depend oqg but
dz =const, we suppress this in the notation, anticipating that the depen-
) ) dence will be higher order than lingaAssuming that we
and integrating over the volumé, we get need only consider the exceg®mnideal contribution toF,
1 the explicit formula follows from the statistical mechanical
Fir=2VKa(k=0)?, (3  relation

where the subscripts remind us of the dependence on both 9Tk :<’?_u>\>
the twist wave numbek and the chirality strength. The I\ I\ M’
reference state of minimurthere zerp free energy hak

=0, ; nematics are called chiral j,#0 and twisted ifk  which underpins thermodynamic perturbation théorihis

#0q,. Uniform twists with k#q, are due, typically, to gjves the free energy difference between two enantiomeric
boundary conditions produced by the interaction with surphases at a specified twist wave numker

faces. However, in computer simulations the same effect can

be introduced in a bulk cell of fluid through the influence of N OF
the PBCs. In conventional, untwisted, PBCs, periodicity re- A]-‘k,ﬂ=f a)\’, d\’
stricts the helical pitch such that an integer number of half- -A
turns take place in one box length. This means that N Uy
= 7 dan’
R f_h<(”\ >”'
L—Z—n—z, 7= 773—”277, N i
Eﬁhmwm,du (5)

wherel, is the length of the simulation box ang, is an
integer. The state wittk closest toq, has the lowest free
energy, but states with nearby valuesmfare metastable: where(:--), , represents a simulation average conducted at
there is a free energy barrier between states of diffement  chirality ', in boundaries that impose a twist wave number
In twisted PBCS, the coordinates and orientations of imagek, and we have defined

molecules in the neighboring simulation boxes along-tie

direction are rotated by a quarter-turhs/2, with respect to My,

their values in the reference box. In this case, the pitch may Us= N (6
take the values

P 2 Hence

—= kLZZWEZ(ﬂ‘Fl)W
L, n,+ , ‘ P 2

NI

1
h,=K,q :——f US N nr AN (7)
It should be borne in mind that in computer simulations, if ORI 2vk —x< NG

we were to use a molecular model with a realistic degree of

chirality, the state closest tq, would generally bek=0,  Thus, we may approach the calculation of the helical pitch in
because the accessible length scales in simulations are suhe standard framework of thermodynamic linear response
stantially shorter than the natural equilibrium pitches seertheory, but we rely on the explicit calculation of the appro-

experimentally. priate potential energy derivative with respect\toEq. (6).

A. Thermodynamic integration method B. Torque measurement method

Using Eq.(3), the free energy difference between two The method to be examined here exploits the micro-
enantiomeric phases, that have equilibrium twist wave numscopic expression for the torque per unit areBegin by
bersqg.,= *q, of opposite sign, is defining the tensor
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Haﬁz _2 riozTiﬁ
1
= 521 FijaTijp

1
=_§i§<:j Fija(Tij g~ Tjip), )
with @, B=X,Y,Z; I'jj,=Ti,— T}, IS the « component of the

separation of the centers of masg; is the 8 component of
the torque acting on molecule

1%
7= GXE (9)

whereg is a unit vector along the main molecular axise

molecule may not be uniaxialln Eq. (8) we have assumed

that# can be expressed in pairwise contributiafsfrom all

other moleculeg, 7;; is the corresponding torque exerted on

j by i. With the twist axis chosen alorgy we shall be inter-
ested in the componeht,,, which we denotél, henceforth
to highlight the explicit dependence anwhile maintaining

notational simplicity. The torque per unit area may then b

expressed microscopicalfy:
OF

k.~ ok (10
A comparison of this equation with the macroscopic
expressioh
LAy 11
v e - 2( _q)\)v ( )
once withk=0 and once wittk# 0, gives the equations
(I\)ox
=Ko\ = — v (12
(I )i,
Ka(oh—k)=— 7", (13
and hence
()= (Ioa 1 &Iy k|
K2= VK Vg, a4
—k(II —(I1
( x>o,>\ _ ( x)o,x (15)

q)\:<HA>k,>\_<H>\>o,x BN

Thus, for molecules of a given chirality, two simulations
with different values ok are sufficient to determini€, and

e

Germano, Allen, and Masters

was first introduced in expressions for the flexoelectric coef-
ficients of pear- and banana-shaped mesofeasd that
these expressions have recently been used in simuldfions.

We emphasize thall is defined in terms ointernal
molecule—molecule torques, not the torques applied to the
system at the boundaries, which may be necessary to main-
tain a twisted nematic state. The link with the externally
applied torque per unit area is made by analogy with the
derivation of the usual virial expression for the presstire.
Consider the relation

(73 ) ={ 3 o]+ 2 ] -0

wherej;z is a component of the intrinsic angular momentum
of moleculei and 3=+ is the total torque on the
molecule due to both internal and exterrfbundary ef-

fects. Separating these two contributions, and notinguhat

andj;z are uncorrelated, gives
<Ha,8>= < Z riaTie/)J(t> .

This equation applies regardless of the degree of twist, or the

(16)

molecular chirality. The expression on the rightvided by

V) is the macroscopic torque per unit area applied to the
system; the expression on the left is entirely in terms of
internal torques.

C. Weak chirality

The expressions of the previous section hold for arbi-
trary values of chirality strength. It will prove useful to
consider the case of weak chirality, anticipating linear depen-
dence om\ of g, andh,=K,q, :

d\=9a'\N, hy=h'\, 17

whereq’ andh’ are the proportionality constants to be de-
termined. The free energy relations of interest to us, at small
\ andk, are

LTl (183
VN |, '

L0Fal _ (180)
V ok |, '

1 PFn ,

v N ok 00——h . (18C)

q, separately: this is one of the principal results of this papenwe apply thermodynamic linear response thédryestrict-
Note that in Eqs(12)—(15), it is not necessary to writ, or ing our interest to the class of models for which the total
IT, explicitly as a function of\, as no thermodynamic inte- intermolecular(interna) potential energy of the systei, ,
gration with respect to a chirality parameter is used. Thenay be decomposed into an achiral pa#® and a
same formulas hold equally well for pure phases, where evx-independent chiral terry¢ multiplied by a strength pa-
ery molecule is chiral, and solutions, where chiral and achiratameteri:

molecules are mixed. Equatiofi4) has previously been )
used to calculateK, in fluids of achiral molecules, for U=U+NUS (19
which (I1p)o =0 but(Ilp), o#0; and Eq.(12) has recently each term is assumed, for convenience, to be pairwise addi-
been proposéd!®as a route td, for chiral molecules, for tive. From the definition8), we may decomposé#l, into
which (II, ), #0. We note in passing that the tenddy,;  achiral and chiral parts, in the same way:
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IT, = 13+ N TIC. (20)

We must also carefully consider the imposed twist, generated

in a simulation by using the boundary conditions described

earlier. For the analysis presented here, it is convenient to
consider that this twist is produced by applying an external

potential, sd/™'=/+1/®" The pitch wave numbekr is de-

Helical pitch and twist elastic constant in liquid crystals 9425
OF .\
Ik =(I)ox
[OBN
1 9°F 1 11
—h'=— o < )\>0,)\ (28)
V o\ ok 0.0 \% 2N 0.0

termined byl/®*, and we assume that we may divide it, like This last equation may be converted into a fluctuation aver-

U, into chiral and achiral partg/§ =Uy"*+ XU, In

carrying out linear response theory it is important to include

both the internal and external potentials.
Now all the N dependence is explicit; for smal we
havé’

1 2
]:k,)\ _ ]:k,0+ )\<utot,c>k’o_ E )\2’3(<utot,c >k,0_ <utot,c>ﬁ'0)

oo, (21
(U in= (U0~ NBUUU™ ) 0= (U)oU) 0)
T (22
(U= (U 0= NBUU U 0= (Ui ol Vi 0)
oo, (23
(T, = (T12) o= N BTTAU ) o= (TT%) o U )i 0)
oo, (24
(I =(TI%)y o= N B(IIU )y o= (T o UV 0)
. (29

The k, 0 subscript refers to an average carried ouk &t
and in the presence of an external potertigf'?, i.e., the

age as well:

1

[ —

oI,
Y

)~ BUILUCe),
I\ >o’0 N 0,0

—(I\)o s tc’t’°>o,o)}

1
==y {1100~ BATAU ) g, (29
giving the same result as EQ7). This equation may be
simplified by making use of the hypervirial theorem; thus

= B U )0 0= 2| (Fia( i+ 755°))0,0=0.

The final equality is obtained by using E{.6), where the
averages are evaluatedkat O but at nonzera.. A first-order
expansion in powers of gives the required result. Hence,
we arrive at

external potential that produces the desired twist in a system

of purely achiral molecules. Clearly£*'®=0 whenk=0, as

a system of achiral molecules is already untwisted in the 27 vk V. ok

absence of external potentials.

,_he o (IT%00
h'= - v (30
Equation(14), evaluated in the limih —0, becomes
e 1 (112
(Mo LM an

|0,0

Thus, we expect to see a linear dependence of measuithere we us€Il?), ,=0. We note that

able properties on: the zeroth-order term is related to the
average values for achiral molecules under the same condi-
tions of twist, while the first-order term reflects equilibrium

correlations withi/*'¢ in the A=0 limit. From Egs.(5) and
(180 we obtain

9Tk tot,c
O\ k0_<u >k,0
o1 PR _ 1 KUk (26)
V dk oN 00 Vv ok 00

With some car¥ this may be converted into a fluctuation

expression valid ak=0:

1
h'=— Vv [(T1%)0,0— BEILU ) g 0~ (1)) 0, U )00 ]

1
=TV [(T1%)0,0— B{ITRU ™ C)g o, (27)

where we usg€l/"*'¢), ;=0 (see the Appendix An alterna-
tive derivation starts from Eq10):

i

(11U ©),0=0,
0,0

which confirms the assumption made earlier, Kais inde-
pendent ofA at low A. Dividing Eq. (30) by Eq. (31) and
substitutingh, =K,q, gives

C
O (%00 ' (32)
A (IT#¥)y o/ K
Equations30)—(32), valid for weakly chiral systems, consti-
tute the second main set of results of this paper. They show
that the key properties may be derived from just two mea-
surements made on the achiral reference system: the en-
semble averagélI®),, of the chiral part of the torque per
unit area, and the response of the achiral term to an applied
twist, (I1%), o/k. Bearing in mind that(I1¢), o=(I1qq
+0O(k?) (see the Appendix both measurements may be
made, if desired, in a single simulation in twisted boundaries.
Since EQ@s.(30)—(32) involve simple sums of pairwise
functions, they will give information, not only about systems
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in which all molecules are chiral, but also those in which just

one molecule is chiral. If we define the pair average property,

R . 1+X Qe]
for an arbitrary pair 1 and 2,
(Fij-&—Fi-§)>
(%)= —(r12271%), + Ill_X,é”.éJJ (39

then for a system ol (weakly) chiral molecules, = o
y ( % In the above equationg;=r;;/r;;. The shape function is

, IN(N-1) . determined by a shape anisotropy parameter,
h'=- T(” )0,0: )
_ k=1 = Oend-end (40)
while for a dilute system ofi chiral dopants, interacting with X T side—side

strengthh with the N achiral solvent molecules, . .
and the energy function by a well-depth anisotropy param-

nN eter,
h'=— (700
Vv ’ 11
, KT 1 , _ Eside-side (41)
Note that, in this linear response regime, the coefficient may X = ey K7 €cnd—end

be expressed in terms of direct interactions between the dop-

ant and the surroundings: perturbations of the liquid structuré Egs.(37)—(41) we used the Berardi—Zanndhparameter
are secondary and would come in at higher order, as Ggual. valuesu=1, v=3, k=3, k' =5. Henceforth, distance and
Last, in this regime, the above equations may easily be writenergy units are defined so that in E¢B85)—(37), o= €

ten in terms of the pair distribution function and used to=1.

predict the chiral properties of a wide range of perturbed

molecular structures.

IIl. SIMULATION

For the chiral part of the potential we used the form
proposed by Memmer and Kuball,

uicj:ui'\j/lK(rij 8 ,é,)=4€Qﬂ7(é><éj'fij)(é'é,), (42)
where € and ¢;; are the same functions appearing in the

Gay—Berne potential. The combinatiog X &-f;;)(&- &) is

To test the new method, we chose a simple model pothe simplest pseudoscalar and head—tail symmetric expres-
tential for rigid chiral mesogenic particles that is a lineargjgn that can be formed with; , &, &. The exponent of the
combination of an achiral and a chiral term, each of which isgeparation-dependent tey * has the ;jlsymptoticﬁ7 form

as usual, pairwise additive:

Upy=UP+NU= 2 (ud+\uf). (33

i<j

Each pair is described by the separation vectper;—r;
and the unit orientation vectog andg; . The achiral part is
the popular Gay—Berne potentfal,

_ . GB. A A
uj=ui(ri; & ,8)

=4e(Pij,&,8)[0;"Ari;.&.8)—0;%r;.&.8)],

(34)
with reduced distance
. ri—oa(f;,§,8)to
0i(ri;.&.8)= ! ”0_0 : °, (39
shape function
oA A X (Fij-&+7;;-8)?
(fij'éu_fij'éj)z) o
1-x&-§ (36
and energy function
f(fij :é‘n:éj)zfo[fl(eaéj)]y[fz(fij ,é‘uéj)]“, (37
€1(8.8)=[1-(x&-8)°] 2 (38)

of the multipole expansion of the chiral interaction energy
arising from quantum mechanical fluctuations of the electron
distribution (dispersion interactions’~*° It has been
noted % that the leading term in a multipole expansion of
an interaction potential based simply on summing site—site
interactions must have a higher-order dependence on orien-
tations than the&x-;;)(&- &) term considered here: in
this sense it is an idealized model.

Both parts of the pair potential were cut at the distance
r.ut= 40 and shifted by an orientation-dependent quantity:

uia}(rij 6,8)

_ ui?B(rij 1é7éj)_ui?B(fijrcut=é!éj)v rij<rcut1 (43)

0, rijErcuta

a similar equation connectsf; with uff".

We conducted standard canonical ensemble Monte Carlo
simulation£® usingN= 1024 or 2048 particles in a rectangu-
lar box with side ratiod,:L,:L,=1:1:2 or1:1:4, respec-
tively, and a number density of 0.8n the reduced units
defined earlier A snapshot of the 1024-particle system in
twisted boundary conditions is given in Fig. 1. To help the
comparison with twisted configurations where the director
rotates in a plane perpendicular to the twist axisn con-
ventional, untwisted PBCs whek=0 we constrained the
director to the samay plane by adding a term proportional
to (Q)2(2+ Q)Z,Z) to the energy/, defined in Eq(33); Q is the
order tensor:
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FIG. 1. Snapshot of the model system with+1024 atT=2.8, A\=0.01,
andkL,= /2 (twisted PBC&

FIG. 2. The anglep as a function of/L,, Eq.(2), for different metastable
states of the system witN=1024 andT=2.80. An arbitrary phase factor
has been added so th&{0)=0.

(44)

equations so thad,,= Q,,=0 at every time step® We used

We averaged 300N=1024) or 150 N=2048) blocks of oy elongated box with side ratids, :L,:L,=1:1:2. The

2000 attempted moves per particle for each data point; WE g : ' ' .
o L - -dependent simulation averages required in &&) were
verified that the block size is sufficiently large that the bIOCksamSIed on a B6x12 grid of goints ?n the<yzfran:e and

averages are independent from each other, and the ru tina ‘ fited with fourth-d
lengths such that the relative errors in simulation average € resulingWas sSurfaces were Titted with fourth-degree

2 2
are about 1%; the maximum particle move displacement anaolynomlal functions ofk; and ks constrained to pass
rotation were both set to 0.1 to give an acceptance ratio ofirough the originW,3(0,0)=0. The fourth-order coeffi-

50%. These calculations yieldéd,q, from thermodynamic
integration, Eq(4), and from our new method, E¢L2) or, in
the special case of weak chirality, HR0).

To have an independent estimate K, that our new
method gives separately from, , Eq. (14) or, for weak
chirality, Eq.(31), we accesseH, through orientational or-
der fluctuations, exploiting the f&tthat in a 123 axis sys-
tem whereg(Q) is diagonal withii=(0,0,1), if a wave vector
k is chosen such thdt,=0, then fork—0

9P3VkgT
4(|Qas(k)1?)

with a=1, 2. In this equationP,, is the nematic order pa-

rameter, defined as the highest eigenvalué@t andQ(k)
is the order tensor in reciprocal space:

N

v
N

For this calculation an extrapolation k&= 0 is required: ac-
cordingly, we employed a large system lf=16 000 mol-

Woa(Ky,kg) = ~ Kak§ +K3kS, (45)

1 :
Eéiaéiﬁ—zéaﬁ explik-r;). (46)

baﬁ( k) =

cients in the fits were very small, and the first-order coeffi-
cients gave the desired elastic constants. Apart from the im-
proved, symplectic integrator with global Lagrange
constraints onQ, we followed closely the procedure of
Ref. 24.

IV. RESULTS

With our Monte Carlo program we investigated thor-
oughly the temperaturé= 2.8 with N=1024 and values of
chiral strength\|<1.5. Although it has to be kept in mind
that only values of\|~0.01 make physical sense if the par-
ticles are to be interpreted as molecules, we were interested
in exploring the whole range, where a uniform twisted nem-
atic phase satisfying Eq2) is (at least meta- stable; we
found this to be true for valuda |<1. In choosing values of
k and N we took advantage of the relations given in the
Appendix to symmetrize our results. Typical director angle
profiles ¢(z) are shown in Fig. 2; the chiral part of the
energy(U )y, and the torque per unit ar¢él, ), , are plot-
ted as functions of chirality strengtk in Figs. 3 and 4,
respectively. For any given value &f we typically find one

ecules, and used a domain decomposition parallel moleculalirector configuration of well-defined wave numbethat is
dynamics program. The molecular mass and moment of instable in each of the two boundary conditignstwisted and
ertia were chosen to be unity, and in the reduced units ofwisted. An exception is the low-chirality range 0.2<\

time so defined, a time steft=0.003 was found to give
satisfactory energy conservation, using #@TLE integra-
tion algorithm?? A simulation run length of 19 steps gave

=<0.20 for which we observed three stable stakés=0 and
kL,= * /2. On increasing the chirality we observed spon-
taneous jumps irkL,: 0— a7 at A\~0.5, w/2—3#/2 at \

adequate sampling of the lowest-frequency modes. To facili=0.7, with symmetrical jumps in the negatiwedirection.
tate the analysis, the director-based 123 frame was fixed ifhe twist remains uniform until about=1; beyond this

coincidence with thexyz frame of the simulation box by

point progressive deviations from a linea(z) profile arise.

adding two extra Lagrange multipliers to the dynamicalThis may correspond to mesophases other than the twisted
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FIG. 3. Chiral part of the internal energy density©), , /V as a function of
the chiral strength\, at various twist wave numbeksfor the system with
N=1024 andT=2.8. Where the twist is uniform the dependence is linear. A
Circles: kL,=0. SquareskL,==* 7/2. Diamonds:kL,= = . Triangles:
kL,= *=3m/2. Positive values ok correspond to positive, andvice versa
The slope of the full linegone for eachk valug and the spacing among

them are determined by a linear fit, E3), to thekL,=0 andkL,=7/2  qyist wave numbers, for the system with=1024 andT =2.80. Where the

results, which determiné,q, from thermodynamic integration, E{8).  twjist is uniform the dependence is linear. The slope of the full lines in the

Error bars have been omitted in this and the following figures because theMppermost graplfone for eactk value givesh’, Eq. (29), and hencéh,

are about the same size as the symbols used for the data points. =K,q, , Eq. (12); the distance between them giviss, Eq. (14). Arrows
indicate the two valuedlI®), o/V (with k=0 ork#0) and(II?) o/V (with
k#0), which in the case of weak chirality may be measured in the achiral
system to yield the same quantities through Eg6) and(31). The notation

nematic, that have been described elsewheYie were not s the same as for Fig. 3.

interested in studying them further, because the method we

are presenting here is based on a uniformly twisted director, ]
Eq. (2). also see Eq(26). The results are reported in Table | together

For constant wave numbér and over the range where with the results from the torque measurement according to
#(2) is linear (1%, , varies linearly withk; this is in agree- Eq. (28); see also Fig. 4. Moreover, Table | shows the value
ment with the prediction of liner response theory, E2g).  Of K2 from the torque measurement, Efi4), and from order
(I1,)y.» also varies linearly with\. In fact, the torque mea- fluctuation analysis, Eq(45). Note in Fig. 4 that(IT) )
surements conform to the behavior discussed in connection (IIx)ox . @nd thusk,, is independent ok; the order fluc-
with Egs. (30—(32), and in the Appendix: we see that fuation calculation was done with=0.

(IT%)y ) is essentially independent of bothandk for all of
our simulations, whiléII®), o vanishes, andI1?), , is inde-
pendent of\ for fixed k. Therefore, the linear variation of
(IT) )k with \ at fixedk arises simply through the explicit
factor A in the definition(20).

These simplifying features make the computation of th
integral on the left side of Eq5) particularly easy: fitting a
line, Eq. (23), to (U, in the interval|\|<0.7 for kL, h' K,
= 7/2 yields simply

|
-
|
o
(&3]
o
o
w
—

FIG. 4. Torque per unit aredT, )y, /V, and componentélI?), , /V (full
symbolg and (I1%) , /V as functions of the chiral strength at various

TABLE |. A comparison between the new torque-measurement method and
two reference methods: thermodynamic integrafffam h’'=K,q, /\) and
order fluctuation analysi¢for K,); estimated statistical errors in the last
quoted digits are given in parentheses. At the two higher temperatures we
ecould not observe a uniformly twisted director according to @y.and thus

our analysis was applicable only f&r=0.

Torque Integration Torque Fluctuation
AFn=2MU )0, 4n T N  Eq.(29 Eq. (4) Eq.(14  Eq. (45
. . . 2.80 1024 1.08) 0.942) 4.552) 4.5411)
and inserting this into Eq4), 280 2048 1.08) 1.082) 4.683)
c 3.40 1024 0.6Q) - 1.985)
h = Kath __ (U0, (48) 345 1024  05@) 1.594)

N Vk
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The agreement between the torque measurement and tfeatures in the molecular interactions and pair structure re-
thermodynamic integration measurementofis much bet-  sponsible for chirality. If a simulation in twisted boundaries
ter for the 1:1:4 box of theN=2048 system than for the is performed, for example, to compukg,, then the same
1:1:2 box of theN= 1024 system. This is most likely a finite- simulation may be used to calculaté at the same time,
size effect due to the higher value kfin the smaller box, since this quantity does not vafto first ordej with a twist.
affecting the thermodynamic integration value, becadusis  However, we should emphasize again that the torque mea-
found by the torque measurement witk- 0. The agreement surements are not restricted to the weakly chiral limit, nor do
between different measurementskof is within the sum of they require one to separate the interaction potential into
the estimated standard deviations; by chance, it is better iohiral and achiral parts. Our prototype simulations can be
the smaller system. repeated with realistic models of actual mesogens to com-

We repeated the above calculationsTat 3.40 andT pare with experimental measurements, at the price of a larger
=3.45 varying\ in a narrower rangé\|<0.05 at intervals computational effort, if good force field parameters are avail-
of 0.01. The choice of these temperatures was motivated bgble.
the availability in the literature of reference values 5
from order fluctuation$? though we ended up recalculating
them with our improved director constraint algorithm men-
tioned above, that we developed to compute the reference This work was supported by EPSRC, the British Council
value forK, at T=2.80. Our new fluctuation values f&, at  through the ARC program, and the Leverhulme Foundation.
T=3.40 andT =3.45 are 15% higher than the old ones. Un-part of this work was carried out while G.G. and M.P.A.
fortunately at these temperatures we could not observe a unjere at the H. H. Wills Physics Laboratory, University of
formly twisted director according to Eq2), and thus our  Bristol. Part of the work was carried out while M.P.A. was
analysis was applicable only f&r=0, i.e., we could calcu- on study leave at the Max Planck Institute for Polymer Re-
late onlyh’; the values are reported in Table I. We believesearch, Mainz, and the Institute for Physics, University of
that the director nonuniformity at these higher temperatureMainz: the support of the Alexander von Humboldt Founda-
is due to the proximity of the nematic—isotropic transition tion through a Research Fellowship, and the hospitality of K.
temperature, her€=23.57:° the free energy barriers around Kremer and K. Binder are gratefully acknowledged. Monte
the metastable states are lower and can be crossed more easrlo simulations were run on DEC A|pha workstations, an
ily. Indeed we observed the helix switching back and forthsG| Origin 2000 provided by the Joint Research Equipment
between its two possible senses of rotation. Although it reinpjtiative, and a Beowulf PC cluster at Bristol: and on a
stricts our calculations, this switching is an interesting pheSUSE SALT PC cluster and Compaq workstations at
nomenon that has received theoretical attention recéhtly, Bielefeld. Molecular dynamics simulations were run on the
and here we confirm that it can be observed with computegdinburgh Cray T3E, using the codmMEGA of the Com-
simulation. plex Fluids Consortium. The authors acknowledge a helpful

conversation with M. A. Osipov.
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V. DISCUSSION

We have shown how the equilibrium pitey of chiral  AppENDIX A: SYMMETRY PROPERTIES
nematics can be found by computer simulation sampling the

torque per unit aredl, in twisted and untwisted director Here we derive some symmetry relations that simplify
configurations, as an alternative to thermodynamic integrathe analysis in the main text. We assume that the potential
tion; moreover, thé, elastic constant is a byproduct of the energy may be written in the form of E€L9), and the torque
calculation instead of a required input parameter to beﬁ%)un@er unit area as in Eq20):

by another method like an analysis of the order fluctuations _7/a c

or of the direct correlation functiof?*°The route tag, and U(r@=Ur.e+AUTr.e).

K, through(Il,) is more convenient than with thermody- IT,(r,e)=T1%(r,e) + NII(r,e),

n_am_ic inte_gration or order fluctu_ation because the data_ anal)(/?/hereua, U°, T2, andII° are all independent of the chiral-
sis is easier and the cpm_putatmpal effort s_,maller. W'_th re"ty parameter\; we have abbreviated all molecular coordi-
spect to thermodyngmm ".“egr'?“!"” there is the addition ates and orientation vectors igs, respectively. Symmetry
advantage that the ;lmulqt|on giviig =K2dy, can be dgne with respect to inversion— —r, e—~—e, A— —\ implies
with k=0, and thus in a fairly small box; we have confirmed

the practicality of the approach proposed in Refs. 8—10. Of U_,(—r,—e)=U(r,e), II_,(-r,—e)=—1II\(r,e),
course, the separate determination Kof by this method a . a a _ a

requires an additional simulation &t 0, as suggested in UN=r,—e=Ure, II(-r,-e=-IIre),
Ref. 2. U(—r,—e)=—U(r,e), II°(—r,—e)=IIre).

In the linear response regime, for Weak chirality, .WeThe achiral Gay—Berne potential and the chiral Memmer—
have demonstrated the possibility of calculating the helicity . . :
Kuball potential are easily shown to satisfy the above equa-

o . . : 4 X
pa_rametelh K?q‘/)‘ directly from S|rnullat|ons in the un tions. Symmetry dictates that the canonical ensemble distri-
twisted and achiral reference system: this allows one to ob- " . . L

bution functiongy ,(r,€) satisfies

tain results for a range of weakly chiral systems from simu-
lations of a single reference system, and to isolate the ©o_, _\(—r,—€)=g,(r,e),
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