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Abstract: We analyze the effectiveness of cloaking an infinite cylinder
from observations by electromagnetic waves in three dimensions. We show
that, as truncated approximations of the ideal permittivity and permeability
material parameters tend towards the singular ideal cloaking values, theD
and B fields blow up near the cloaking surface. Since the metamaterials
used to implement cloaking are based on effective medium theory, the
resulting large variation inD andB poses a challenge to the suitability of
the field-averaged characterization ofε and µ . We also consider cloaking
with and without the SHS (soft-and-hard surface) lining. Wedemonstrate
numerically that cloaking is significantly improved by the SHS lining, with
both the far field of the scattered wave significantly reducedand the blow
up ofD andB prevented.
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1. Introduction

1.1. Background and history

There has recently been much activity concerningcloaking, or rendering objects invisible to
detection by electromagnetic (EM) waves. For theoretical descriptions of EM material param-
eters of the general type considered here, see [1, 2, 3, 4, 5, 6]; for numerical and experimental
results, see [7, 8, 9, 10, 11]. Related results concerning elastic waves are in [12, 13, 14]. All
of these papers treat cloaking in the frequency domain, using time harmonic waves; this is not
unreasonable, since the metamaterials used to implement these designs seem to be inherently
prone to dispersion, for both practical and theoretical reasons [15, 16, 4]. See [17] for a treat-
ment of cloaking in the time domain. One can also use similar ideas to design electromagnetic
wormholes, which allow the passage of waves between possibly distant points while most of
the wormhole remains invisible [18, 19].

When physically constructing a cloaking (or wormhole) device, one is of course not able to
exactly match the ideal description of the EM material parameters (electric permittivityε and
magnetic permeabilityµ , for the purposes of this paper). Any actual implementationwill only
realize a discrete sampling of the values ofε andµ , and not be able to assume the ideal values at
pointsx on the cloaking surface(s), where the tensorsε(x) or µ(x) have 0 or∞ as eigenvalues.
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1.2. Approximate cloaking and linings

The purpose of the current paper is twofold. First, we wish toexplore the degradation of cloak-
ing that occurs when the ideal material parameter fields are replaced with approximations ob-
tained by limiting theanisotropy ratio, L, as described below. This was studied in two very
interesting recent papers. Ruan, Yan, Neff and Qiu [21] consider the effect on cloaking of trun-
cation of the the material parameter fields, while Yan, Ruan and Qiu [20], study the effect of
using the simplified “reduced” material parameters employed in [8, 9]. In [21], it is shown
that cloaking of passive objects, i.e., those with internalcurrentJ = 0, holds in the limit as
L → ∞, but a slow rate of convergence of the fields is noted. The current paper reproves this
and demonstrates the blow up of theB andD fields at the cloaking surface asL → ∞.

Secondly, we consider the effect of either including or not including a physical lining to
implement thesoft-and-hard surface(SHS) boundary condition, which is a boundary condi-
tion originally introduced in antenna design [22, 23, 24]. As we proved in [6], cloaking EM
active objects, i.e., objects with generic internal current J 6= 0, imposes certain hidden bound-
ary conditions on the waves propagating within the cloaked region. Any classical solution of
Maxwell’s equations having locally finite energy, or even a weak solution of Maxwell’s equa-
tions with possible singularities, must satisfy these conditions. We note that in our terminology,
the fields(E,H,D,B) are a finite energy solution if all the componentsE j , D j , H j , andB j are
locally integrable functions; the energy of the fields is locally finite; and they satisfy Maxwell’s
equations in the classical or weak sense. The reason why we concentrate on such solutions is
that the effective medium theory of metamaterial requires that the scale at which the EM fields
change significantly is larger than the size of the components (orcells) used to implement the
metamaterial; the blow up of the fields that is revealed by considering weak solutions presents
a challenge to the effective material parameters describedby such theories.

We consider a cylinder cloaked by what is called thesingle coatingconstruction in [6],
which corresponds to the cloaking considered in [1, 2, 4, 5].(Note that the reduced parameters
considered in [7, 8, 9, 20], while having similar geometry, have different material parameters
and thus different waves.) For cylindrical cloaking, we showed in [6] that the hidden boundary
conditions are the vanishing of the angular components ofE andH. This is exactly the SHS
condition associated with the angular vector field∂

∂θ . We show that using a SHS lining has
two benefits: blow up ofB at the cloaking surface, which may seriously compromise effective
medium theory for metamaterials, is prevented and secondlythe farfield pattern of the scattered
wave is greatly reduced. We remark that, although it was shown in [6] that there is no theo-
retical, frequency-dependent obstruction to cloaking, with current technology cloaking should
nevertheless be considered as essentially monochromatic,and we will work at fixed frequency
ω .

2. Single coating of a cylinder

Let us consider Maxwell’s equations onR
3,

∇×E = iωB, (1)

∇×H = −iωD,

D = εE,

B = µH,

where for simplicity we have taken the conductivityσ = 0. In empty space,ε = ε0 andµ = µ0

are isotropic and homogeneous. Throughout the paper we denote the wave number correspond-
ing to the circular frequencyω by k = ω/c, c = 1/

√ε0µ0.
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We consider here EM waves propagating in metamaterials, which allow one to specifyε
andµ fairly arbitrarily. Metamaterials are typically assembled from components whose size is
somewhat smaller than the wavelength,λ . Ideal models of cloaking constructions consist of
prescribed material parameters (tensor fields)ε,µ , describing coatings making objects invis-
ible to detection by waves with frequencyω ; physically, these would be implemented using
metamaterials designed to haveε,µ as effective parameters (at the specified frequency). Note
that in the cloaking constructions the ideal parameters aresingular on a surface surrounding the
object, thecloaking surface, which we denote byΣ throughout. As a result, discussed further
below, we need Maxwell’s equations holding not only in theclassicalsense, i.e. for regular
waves, but also in the sense of Schwartz distributions, i.e., for waves with singularities [25].
A distribution, orgeneralized function,u is a linear functional on a space of smooth test func-
tions, f , generalizing the functionalu( f ) :=

∫
u(x) f (x)dx for locally integrable functionsu. A

solution to Maxwell’s equations in the sense of distributions can be considered as a pair(E,H)
which, when measured using a smooth superposition of point measurements, satisfy the same
integral identities given by Green’s theorem as do classical (smooth) solutions.

In the following, we describe the non-existence results forfinite energy solutions with respect
to the ideal parameter fields, the consequences of approximative material configurations, and
the role of the SHS lining.

2.1. Equations for an ideal single coating

On R
3, with standard coordinatesx = (x1,x2,x3), we use cylindrical coordinates(r,θ ,z),

defined by(r,θ ,z) 7→ (r cosθ , r sinθ ,z) ∈ R
3, so thatr = |(x1,x2)|. In [6] we considered

Maxwell’s equations onR3 \Σ,

∇× Ẽ = iωB̃ , ∇× H̃ = −iωD̃+ J̃,

D̃ = ε̃Ẽ, B̃ = µ̃H̃,

whereε̃ and µ̃ correspond to the invisibility coating materials on the exterior of the infinite
cylinderN2 = {r < 1} and are homogeneous and isotropic insideN2, i.e.,ε = ε0 andµ = µ0

in N2. Outside ofN2, the material parameters̃ε and µ̃ are matrix valued functions ofx that
are singular at the cloaking surfaceΣ = {r = 1} that corresponds to the inner boundary of the
metamaterial. Asr → 1+,

max
1≤ j ,k≤3

λ j(x)

λk(x)
= O

(
(r −1)−2)→ ∞,

whereλ j(x), j = 1,2,3, are the eigenvalues of̃ε(x) or µ̃(x). In particular, we considered the
question of when there are fields̃E,H̃,D̃, B̃ that together constitute a finite energy solution of
Maxwell’s equations. It was shown in [6] that, in the presence of generic internal currents̃J
when the cloaked region is, e.g., a ball, such solutions do not generally exist. Let us discuss
why this is so. Even for cloaking passive objects, i.e.,J̃ = 0 in the cloaked region, the singular
material parameters give rise to solutions in Maxwell’s equations that correspond either to
surface currents (see below) or to the blow up in the fields at the cloaking surface. Thus, if the
material does not allow such currents to appear, then the resulting fields must blow up.

Let us next consider the scattering of a plane wave by a cloaked cylinder, that is, the case
when we have no internal currents and the EM fields have asymptotics at infinity corresponding
to a sum of a given incident plane wave(Ẽin,H̃ in) and scattered wave(Ẽsc,H̃sc) that satisfies
the Silver-Müller radiation condition

lim
r→∞

r(Ẽsc×er + H̃sc) = 0, (2)
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whereer = x/|x| is the unit radial vector. It was shown in [6] that, with respect to cylindrical
coordinates,

lim
r→1+

eθ (x) · Ẽ(x) = 0, lim
r→1+

eθ (x) ·H̃(x) = 0, (3)

whereeθ is the angular unit vector (having Euclidian length= 1). Let ez be the vertical unit
vector. For general incoming waves, we have that

lim
r→1+

ez(x) · Ẽ(x)−be(
x
|x| ) = 0, (4)

lim
r→1+

ez(x) ·H̃(x)−bh(
x
|x| ) = 0

wherebe andbh do not vanish. In the treatment of cloaking passive objects [1, 2, 4, 5] it is
assumed a priori, based on the behavior of rays on the exterior, that the inside of the cloaked
region is “dark”, that is, the fields̃E andH̃ vanish in{r < 1}. (However, see also [21, 20],
where the behavior of the fields within the cloaked region is studied.) Under this assumption,
theE andH fields have jumps acrossΣ,

(
ν × Ẽ

)
|Σ+ −

(
ν × Ẽ

)
|Σ− = ν × Ẽ|Σ+ = be(x)eθ ,

(
ν × H̃

)
|Σ+ −

(
ν × H̃

)
|Σ− = ν × H̃|Σ+ = bh(x)eθ .

(Hereν is the Euclidian normal vector ofΣ, which is just the radial unit vectorer .) This implies
that Maxwell’s equations hold weakly onR3:

∇× Ẽ = iωB̃+ K̃sur f, ∇× H̃ = −iωD̃+ J̃sur f.

Here,δΣ is the Dirac delta distribution concentrated onΣ defined by

δΣ( f ) =

∫

R3
f (x)δΣ dx :=

∫

Σ
f (x)dS(x),

wheredS= dθdz is the Euclidian surface element on the surfaceΣ, for any smooth test func-
tion f . The singular terms̃Ksur f = beeθ δΣ, J̃sur f = bheθ δΣ can be considered either as magnetic
and electric currents supported onΣ, or, as below, idealizing the blow up of̃D andB̃ nearΣ. We
refer to such strongly singular field components assurface currents.

2.2. Equations for an approximate single coating.

Next, consider the situation when a metamaterial coating only approximates this ideal invisibil-
ity coating. We show that the existence of the surface currents for the ideal cloak causes a blow
up of the fields as the approximating permittivity and permeability tend towards the singular
ideal values, which we denote bỹε andµ̃ .

To this end, we modify the construction described in the previous section, still dealing with
a cloaking structure of the single coating type. More precisely, for 1 < R < 2, consider an
infinite cylinder inR

3 given, in cylindrical coordinates, byNR
2 = {r < R}. OnNR

2 we choose the
metric to be Euclidian, so that the corresponding permittivity and permeability,ε0 andµ0, are
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homogeneous and isotropic . As described in §3, inR
3 \NR

2 , we take the Riemannian metric̃g
and the corresponding permittivity and permeabilityε̃ andµ̃ to be the single coating parameters
considered in [6] and the previous section, truncated by being restricted toNR

2 . Thus, we start
from the materials̃ε andµ̃ corresponding to the single coating metricg̃ outsideNR

2 and replace
the metric with the Euclidian metric insideNR

2 . Then theanisotropy ratio,

LR := sup
x∈R3\NR

2

(
max

λ j(x)
λk(x)

)
= O

(
(R−1)−2)→ ∞,

as the approximate cloaking construction approaches the ideal, that is,R→ 1+.
Next, we consider the wave propagation phenomena that ariseas the approximate cloaking

construction approaches the ideal.

3. Analysis of solutions

Assume that the wave numberk= ω/c is not a Neumann eigenvalue for the Euclidian Laplacian
in the two-dimensional unit disk; as will be seen later, thisis equivalent with the condition
(J0)

′(k) 6= 0. For 1< R< 2 fixed, decomposeR3 into

N0 = {r ≥ 2},
NR

1 = {R< r < 2}, and

NR
2 = {r ≤ R}.

Let ΣR = ∂NR
2 = {r = R} be the (approximate) cloaking surface andν = ∂r be its normal vector

on both sides,ΣR± . To define the approximate cloaking material parametersε̃R andµ̃R, define
a relationship between material parametersε,µ and aRiemannian metric g[1, 2, 6] . The
permittivity and permeability,ε, µ corresponding to a metricg = [g jk(x)]3j ,k=1 are then given
by

ε jk = ε0|det(g jk)|1/2g jk, µ jk = µ0|det(g jk)|1/2g jk, [g jk] = [g jk]
−1.

Define a setMR consisting of three components,

M0 = {r ≥ 2},
MR

1 = {ρ < r < 2},
MR

2 = {r ≤ R},

whereρ = 2(R−1). We identify the boundary ofM0∪MR
1 , i.e., the surface{(r,θ ,z) : r = ρ}),

with the boundary ofMR
2 , i.e., the surface{(r,θ ,z) : r = R}.

We equipMR with the Euclidian metricg and the corresponding homogeneous, isotropic
permittivity and permeability,ε = ε0, µ = µ0. With respect to the cylindrical coordinates, we
have

(5)

g = [g jk]
3
j ,k=1 =




1 0 0
0 r2 0
0 0 1


 , ε = ε0




r 0 0
0 r−1 0
0 0 r


 , µ = µ0




r 0 0
0 r−1 0
0 0 r


 .
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Next, introduce a transformationFR : MR → R
3, which in cylindrical coordinates is given by

FR : M0 → N0, FR|M0 = id,

FR : MR
1 → NR

1 , FR|MR
1
(r,θ ,z) = (r/2+1,θ ,z),

FR : MR
2 → NR

2 , FR|MR
2

= id,

see Fig. 1.

M0 N0

MR
1

NR
1

MR
2 NR

2

Fig. 1. Diagram of how the mapFR sends, in the planez= 0, the componentsMR
j of MR

to the componentsNR
j of the approximate cloaking deviceNR. Note thatNR is the union

of N0∪NR
1 andNR

2 and thus is the spaceR3, while MR is a union of componentsM0∪MR
1

andMR
2 with boundaries identified and should not be thought of as lying inR

3.

We define the metric̃gR onR
3 by the formulãgR = (FR)∗g, that is,

(g̃R) jk(y) =
3

∑
p,q=1

∂y j

∂xp

∂yk

∂xq gpq(x), y = FR(x),
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where[(g̃R) jk] = [g̃R
jk]

−1 and we use thatgpq = δ pq. Suppressing for the time being the super-

scriptR, the permittivity and permeability,̃ε, µ̃ corresponding to the metric̃g are then given by
ε̃ jk = ε0|det(g̃ jk)|1/2g̃ jk and µ̃ jk = µ0|det(g̃ jk)|1/2g̃ jk. Hereg̃, ε̃, andµ̃ are given by formula
(5) onN0 andN2, while onN1 they are given by

g̃ =




4 0 0
0 4(r −1)2 0
0 0 1


 ,

ε̃ = ε0




(r −1) 0 0
0 (r −1)−1 0
0 0 4(r −1)


 , µ̃ = µ0




(r −1) 0 0
0 (r −1)−1 0
0 0 4(r −1)


 .

In the following, we consider TE-polarized electromagnetic waves. This means that, written
componentwise with respect to either coordinate system as

Ẽ = (Ẽ1, Ẽ2, Ẽ3) = (Ẽr , Ẽθ , Ẽz),

where the coordinates are such that ifẼ is considered as a 1-form (see [26, 27]), thenẼ =
Ẽ1dx1 + Ẽ2dx2 + Ẽ2dx2 is equal toẼrdr + Ẽθ dθ + Ẽzdz, that is,

Ẽr = Ẽ1cos(θ )+ Ẽ2sin(θ ), Ẽθ = r
(
−Ẽ1sin(θ )+ Ẽ2cos(θ )

)
, Ẽz = Ẽ3.

In the case of a TE-polarized wave the electric field has a nonzero component only in thez-
direction,

Ẽ1 = Ẽ2 = Ẽr = Ẽθ = 0, Ẽ3(x) = Ẽz(r,θ ).

We denotẽEz by u, so that

H̃ =
1
iω

µ̃−1(∇× Ẽ
)

=
1
iω

µ̃−1(∇u×ez
)
.

We note thatu satisfies the (scalar) Helmholtz equation,

(∆g̃ +k2)u = 0 onR
3

where ∆g̃ is the Laplace-Beltrami operator [1, 6] corresponding to the metric g̃ and
k = ω√ε0µ0. Recall for the following thatk = ω/c, c = 1/

√ε0µ0.

3.1. Scattering problem

We consider an incoming TE polarized plane wave. InN0 such a wave has the form

Ẽin(r,θ ,z) = Aeikr cosθ ez = A

(
J0(kr)+

∞

∑
n=1

2inJn(kr)cos(nθ )

)
ez,

H̃in(r,θ ,z) =
c
ik

µ−1
0 ∇× Ẽin,
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whereA is a constant; expressed in terms ofũin = Ẽ3,in, this is

ũin = A(J0(kr)+
∞

∑
n=1

2inJn(kr)cos(nθ )).

We look for the solution of the scattering problem,

∇× Ẽ = iωB̃, ∇× H̃ = −iωD̃, (6)

D̃ = ε̃Ẽ, B̃ = µ̃H̃

onR
3, wherẽε = ε̃R, µ̃ = µ̃R so thatẼ = ẼR, etc. Suppressing again the indexR, Ẽ = Ẽin + Ẽsc,

H̃ = H̃in + H̃sc, andẼsc andH̃sc satisfy the Silver-Müller radiation condition (2). (Cylindrical
cloaking is also studied using Fourier-Bessel series in [21] .)

We now analyze the waves in the three components ofR
3, N0,N1,N2. In the domainN0 =

{r ≥ 2}, one has

Ẽsc(r.θ ,z) =

(
∞

∑
n=0

cnH(1)
n (kr)cos(nθ )

)
ez,

H̃sc(r,θ ,z) =
c
ik

µ−1
0

(
∇× Ẽsc

)
,

ũsc =
∞

∑
n=0

cnH(1)
n (kr)cos(nθ ).

Now use the change of coordinates,F : M → N to define the transformed fields onM,

Ein = F∗Ẽin, Hin = F∗H̃in,

Esc = F∗Ẽsc, Hsc = F∗H̃sc,

E = F∗Ẽ, H = F∗H̃.

In the coordinates(r ′,θ ′,z′) = F−1(r,θ ,z), θ ′ = θ ,z′ = zonM0 = F−1(N0),

∇×E = iωB, ∇×H = −iωD,

D = ε0E, B = µ0H.

In M1, i.e., forr ′ > ρ ,

E(r ′,θ ′,z′) =

(
AJ0(kr′)+c0H(1)

0 (kr′)+
∞

∑
n=0

(2inAJn(kr′)+cnH(1)
n (kr′))cos(nθ ′)

)
ez,

H(r ′,θ ′,z′) =
c
ik

µ−1
0

(
∇×E

)
,

u(r ′,θ ′) = E3(r
′,θ ′) = AJ0(kr′)+c0H(1)

0 (kr′)+

+
∞

∑
n=0

(2inAJn(kr′)+cnH
(1)
n (kr′))cos(nθ ′).
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In N1, whereR< r < 2, we have generally

Ẽr(r,θ ,z) = 2Er(2(r −1),θ ,z), Ẽθ (r,θ ,z) = Eθ (2(r −1),θ ,z),

Ẽz(r,θ ,z) = Ez(2(r −1),θ ,z).

In the case of TE-polarized fieldEr andEθ vanish. InN2, i.e., forr ≤ R,

Ẽ(r,θ ,z) =

(
∞

∑
n=0

anJn(kr)cos(nθ )

)
ez, (7)

ũ(r,θ ) =
∞

∑
n=0

anJn(kr)cos(nθ ),

H̃(r,θ ,z) =
c
ik

µ−1
0

(
∇× Ẽ

)
.

As F |MR
2

= id, the fieldsE andH and the potentialu are also given by (7) inM2.

OnΣR = ∂NR
2 , using the standard transmission conditions for the electric and magnetic fields,

which ensure that waves are at least weak solutions of Maxwell’s equations, are

Ẽθ |ΣR+ = Ẽθ |ΣR−, Ẽz|ΣR+ = Ẽz|ΣR−;

H̃θ |ΣR+ = H̃θ |ΣR−, H̃z|ΣR+ = H̃z|ΣR−;

D̃r |ΣR+ = D̃r |ΣR−; B̃r |ΣR+ = B̃r |ΣR−,

from which we get the following transmission conditions forũ:

ũ|ΣR+ = ũ|ΣR−,

(R−1)∂r ũ|ΣR+ = R∂r ũ|ΣR−.

These correspond to conditions on∂MR
2 = ∂ (MR

0 ∪MR
1 ),

u+|r=ρ+(θ ,z) = u−|r=R−(θ ,z),

ρ ∂ru
+|r=ρ+(θ ,z) = R∂ru

−|r=R−(θ ,z),

whereu+ = u|MR
1

andu− = u|MR
2
.

These conditions give rise to equations forcn andan; let us start withn = 0, which is of
particular interest. We have

a0J0(kR) = AJ0(kρ)+c0H
(1)
0 (kρ),

a0Rk(J0)
′(kR) = Aρk(J0)

′(kρ)+c0ρk(H(1)
0 )′(kρ)

Now explicitly denoting the dependence ofan and cn on R, we see that, when(J0)
′(k) 6= 0,

these imply that

c0(R) = A
ρ(J0)

′(kρ)J0(kR)−RJ0(kρ)(J0)
′(kR)

ρ(H(1)
0 )′(kρ)J0(kR)−RH(1)

0 (kρ)(J0)′(kR)
= iAπ

1
log(kρ)

(1+o(1)),

a0(R) = A
ρJ0(kρ)(H(1)

0 )′(kρ)−ρ(J0)
′(kρ)H(1)

0 (kρ)

ρ(H(1)
0 )′(kρ)J0(kR)−RH(1)

0 (kρ)(J0)′(kR)
=

−2Aπ
(J0)′(k) log(kρ)

(1+o(1)),
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where we use the asymptotics of Bessel functions near 0, see [29, pp.360–1]. Here,o(1) means
that the quantity goes to zero asR→ 1+, ρ → 0+. Similarly,an andcn satisfy the equations,

anJn(kR) = AJn(kρ)+cnH(1)
n (kρ),

anRk(Jn)
′(kR) = Aρk(Jn)

′(kρ)+cnρk(H(1)
n )′(kρ).

For generick, these yield that

cn(R) = A
ρ(Jn)

′(kρ)Jn(kR)−RJn(kρ)(Jn)
′(kR)

ρ(H(1)
n )′(kρ)Jn(kR)−RH(1)

n (kρ)(Jn)′(kR)
= O(ρ2n), (8)

an(R) = A
ρJn(kρ)(H(1)

n )′(kρ)−ρ(Jn)
′(kρ)H(1)

n (kρ)

ρ(H(1)
n )′(kρ)Jn(kR)−RH(1)

n (kρ)(Jn)′(kR)
= O(ρn).

This implies that the scattered fields (far field patterns)Ẽsc,H̃sc in N0∪NR
1 and the transmitted

fields Ẽ,H̃ in NR
2 , which, as we recall, depend onR, go to zero as the approximate cloaking

construction tends to the ideal material parameters, i.e.,R→ 1+. A similar result was obtained
in [21].

Next, we consider the behavior of the fieldsẼR,H̃R,D̃R, B̃R nearΣR. Suppressing again the
superscriptR, we write the electric and magnetic fields as

Ẽ(r,θ ,z) =
∞

∑
n=0

Ẽn(r,θ ,z), where Ẽn(r,θ ,z) = fn(kr)cos(nθ )ez; (9)

H̃(r,θ ,z) =
∞

∑
n=0

H̃n(r,θ ,z), where H̃n(r,θ ,z) =
c
ik

µ̃−1
(

∇× Ẽn(r,θ ,z)
)

,

with similar notations for the scattered and incoming fields, Ẽn
sc, H̃n

sc, etc. OnM, the decompo-
sition (9) gives rise to a similar decomposition ofE andH, which we analyze for each value
of n. First, we consider the terms corresponding ton = 0. On M0 ∪MR

1 , at y = F−1
1 (x),y =

(r ′,θ ′,z′), x∈ N0∪NR
1 ,

E0
in,z(y) = AJ0(kr′) = O(1),

E0
sc,z(y) = c0(R)H(1)

0 (kr′) = −A
ln(kr′)
ln(kρ)

(1+o(1))

asR→ 1+. Observe that, sincer ′ ≥ ρ , E0
sc,z(y) is uniformly bounded forR→ 1+. With the

magnetic field, expressed asH0 = H0
r dr + H0

θ dθ + H0
z dz. having a non-zero component only

in θ , one has

H0
in,θ (y) =

iAc
µ0

r ′ (J0)
′ (kr′) = O((r ′)2);

H0
sc,θ (y) =

iAc
µ0

r ′c0(R)
(

H(1)
0

)′
(kr′) =

iAc
µ0k ln(kρ)

(1+o(1)).

On MR
2 ,
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E0
z(y) = a0(R)J0(kr′) =

O(1)

ln(kρ)
;

H0
θ (y) =

c
µ0

ia0(R)r ′ (J0)
′ (kr′) =

O(1)

ln(kρ)
.

Returning toN and again using the transformation rules forE andH, we see that̃E0, H̃0 are
uniformly bounded, with respect toR, in NR

1 ∪NR
2 .

Now consider the magnetic flux density,B̃ = µ̃H̃ which has a similar decomposition. In
particular, onNR

1 , one has

B̃0
in,θ (r,θ ) = µ̃H̃0

in,θ (r,θ ) = µ̃H0
in,θ (2(r −1),θ ) = O(r −1), (10)

B̃0
sc,θ (r,θ ) = µ̃H̃0

sc,θ (r,θ ) = µ̃H0
sc,θ (2(r −1),θ ) =

Aci
k(r −1) ln(kρ)

(1+o(1)).

Pointwise, onNR
2 ,

B̃0
θ (r,θ ) =

O(r)
ln(kρ)

,

tending to 0 whenR→ 1+ for all points outsideΣ. To see see how̃B0
θ behaves nearΣ when

R→ 1+, observe that (10) implies that
∫ 3/2

1/2 B̃0
θ (r,θ )dr is uniformly bounded, while, for any

0 < κ < 1
2,

∫ 1+κ

1−κ
B̃0

θ (r,θ )dr =
Aci
k

∫ κ

ρ/2

1
(logρ)t

dt+o(1)→ Aci
k

whenR= ρ/2+1→ 1+.

This implies that

lim
R→1+

B̃0
θ =

Aci
k

δΣ + B̃0
b,θ ,

whereδΣ is the Dirac delta function of the cylinderΣ = {r = 1} andB̃0
b,θ is a bounded function.

Finally, consider̃D0 which has only thez−component different from 0. InNR
1 ,

D̃0
in,z(r,θ ) = ε̃Ẽ0

in,z(r,θ ) = ε0(r −1)E0
in,z(2(r −1),θ ) = O(r −1);

D̃0
sc,z(r,θ ) = ε̃Ẽ0

sc,z(r,θ ) = ε0(r −1)E0
sc,z(2(r −1),θ ) =

O((r −1) ln(r −1))

ln(kρ)
,

while in NR
2 ,

D̃0
z(r,θ ) = ε̃Ẽ0

z (r,θ ) = ε0E0
z (r,θ ) =

O(1)

ln(kρ)
.

Thus, whenR→ 1+, D̃0
in,z has a uniform limit inN0∪N1, andD̃0

sc,z, D̃0
z uniformly tend to 0 in

N0∪N1, N2, respectively.
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For n≥ 1, using (8), we obtain the following asymptotics forẼ, etc., in the various compo-
nents ofN:

In NR
1 , wherer > R, i.e. 2(r ′−1) > ρ ,

Ẽn
in,z = O((r −1)n), Ẽn

sc,z = O

(
ρ2n

(r −1)n

)
;

H̃n
in,r = O((r −1)n−1), H̃n

sc,r = O

(
ρ2n

(r −1)n+1

)
,

H̃n
in,θ = O((r −1)n), H̃n

sc,θ = O

(
ρ2n

(r −1)n

)
;

D̃n
in,z = O((r −1)n+1), D̃n

sc,z = O

(
ρ2n

(r −1)n−1

)
;

B̃n
in,r = O((r −1)n), B̃n

sc,r = O

(
ρ2n

(r −1)n

)
,

B̃n
in,θ = O((r −1)n−1), B̃n

sc,θ = O

(
ρ2n

(r −1)n+1

)
.

As for NR
2 , we have

Ẽn
z = O(ρn); D̃n

z = O(ρn);

H̃n
r = O(ρn), H̃n

θ = O(ρn);

B̃n
r = O(ρn), B̃n

θ = O(ρn).

These formulae imply that there is a uniform limit ofẼn, H̃n, D̃n, B̃n whenR→ 1+ and, more-
over, the scattered fields inN0∪N1 and transmitted fields inN2 tend to 0. These formulae also
imply that the series

∞

∑
n=1

Ẽn
sc,

∞

∑
n=1

H̃n
sc,

∞

∑
n=1

B̃n
sc,

∞

∑
n=1

D̃n
sc,

in N0∪N1; and

∞

∑
n=1

Ẽn,
∞

∑
n=1

H̃n,
∞

∑
n=1

B̃n,
∞

∑
n=1

D̃n,

all converge to zero inN2 asR→ 1+.
Summarizing, we see that, in the sense of distributions,

lim
R→1+

ẼR = Ẽb, lim
R→1+

H̃R = H̃b,

lim
R→1+

D̃R = D̃b−
1
iω

J̃sur f, J̃sur f = 0,

lim
R→1+

B̃R = B̃b +
1
iω

K̃sur f , K̃sur f = −Aeθ δΣ.
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HereẼb, H̃b, D̃b, andB̃b coincide withẼin,H̃in, B̃in, andB̃in, resp., inN0∪N1 and are equal to 0
in N2. In particular, they satisfy equations (6) separately inN0∪N1 andN2.

Note that, sending an TM-polarized wave, we get thatJ̃sur f =−Aeθ δΣ, K̃sur f = 0. Moreover,
for a general incoming electromagnetic wave, the corresponding solutionsẼR,H̃R,D̃R, B̃R tend
to Ẽlim,H̃lim,D̃lim, B̃lim, which satisfy

∇× Ẽlim = iωB̃lim + K̃sur f, ∇× H̃lim = −iωD̃lim + J̃sur f,

D̃lim = ε̃Ẽlim, B̃lim = µ̃H̃lim,

with J̃sur f = beeθ δΣ, K̃sur f = bheθ δΣ.

4. Numerical results

We next use the analytic expressions found above to compute the fields for a plane wave with
vertically polarized E-field,Ein(r,θ ,z) = Aeikr cosθ ez. The computations are made without refer-
ence to physical units; for simplicity, we useµ0 = 1, ε0 = 1, amplitudeA= 1 and wavenumber
k = 3. The waveEin is incident to a cylinder{r < R} that is coated with an approximative in-
visibility cloaking layer located in{R< r < 2}. We then numerically simulate the cases where
R= 1.01 andR= 1.05. In the simulations we have used Fourier series representation to order 6,
that is, the fields are represented using trigonometric polynomials of degree less than or equal
to six, ∑|n|≤6 fn(r)einθ . In the tables below, we give the real parts of they-component of the
total fields and the scatteredB-field on the line{(x,0,0) : x∈ [0,3]}, first in the absence of a
physical layer inside the metamaterial and then when an SHS lining is included. We note that
in the case of the SHS lining, the fields are as was claimed in [4, 7, 8, 17] without reference to
a lining, namely zero inside the cylinder{r < R}.

Below we give the numerically computed Fourier coefficientsof the scattered waves. The
values forR= 1.05, for whichLR = 1600, andR= 1.01, for whichLR = 40,000, are contained
in the following two tables.

Table 1. Fourier coefficients of scattered waves forR= 1.05

n cn with SHS lining cn with no SHS lining
0 −0.0042−0.0644i −0.7408−0.4382i
1 −0.1407−0.0099i 0.0838−0.0035i
2 0.0000−0.0016i 0.0000−0.0013i
3 0.0000+0.0000i 0.0000+0.0000i
4 0.0000+0.0000i 0.0000+0.0000i
5 0.0000+0.0000i 0.0000+0.0000i
6 0.0000+0.0000i 0.0000+0.0000i

(∑ |cn|2)1/2 0.1551 0.8648
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Table 2. Fourier coefficients of scattered waves forR= 1.01

n cn with SHS lining cn with no SHS lining
0 −0.0000−0.0028i −0.2591−0.4382i
1 −0.0057−0.0000i 0.0031−0.0000i
2 0.0000+0.0000i 0.0000+0.0000i
3 0.0000+0.0000i 0.0000+0.0000i
4 0.0000+0.0000i 0.0000+0.0000i
5 0.0000+0.0000i 0.0000+0.0000i
6 0.0000+0.0000i 0.0000+0.0000i

(∑ |cn|2)1/2 0.0063 0.5091

The results show that forRclose to 1, including the SHS lining strongly reduces the farfield
of the scattered wave; the approximative invisibility cloaking functions much better with such
a lining than without, even for cloaking passive objects.
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Fig. 2. The real part of they-component of thetotal B-field on the line{(x,0,0) : x∈ [0,3]}.
Blue solid curve is the field with no physical lining at{r = R}. Red dashed curve is the field
with SHS lining on{r = R}. In the left figure,R= 1.05 and the maximal anisotropy ratio is
LR = 1600. In the right figure,R= 1.01 and the maximal anisotropy ratio isLR = 40,000.

In Fig. 2, we see clearly that thetotal field develops a delta-type distributional singularity on
the interface when we do not have the SHS lining and the approximative cloaking approaches
the ideal, i.e.,R→ 1+. Also, in Fig. 3, we see that, far away from the coated cylinder, in both
cases thescatteredfield goes to zero, but much more quickly when the SHS lining isused.

5. Discussion

5.1. Comparison of results with and without SHS.

One observes that, without the SHS lining, theB-field grows as the approximate single coating
tends to the ideal invisibility cloak, i.e., as the anisotropy ratioLR becomes larger. In both parts
of Fig. 2, the peak nearr = 1 without the SHS lining illustrates how the delta-distribution in the
B-field develops.

#85136 - $15.00 USD Received 11 Jul 2007; revised 14 Sep 2007; accepted 16 Sep 2007; published 20 Sep 2007

(C) 2007 OSA 1 October 2007 / Vol. 15,  No. 20 / OPTICS EXPRESS  12731



0 0.5 1 1.5 2 2.5 3

−4

−2

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3

−4

−2

0

2

4

6

8

10

12

14

16

Fig. 3. The real part of they-component of thescatteredB-field on the line{(x,0,0) : x∈
[0,3]}. Blue solid curve is the field with no physical lining at{r = R}. Red dashed line is
the field with Soft-and-Hard lining on{r = R}. In the left figure,R= 1.05 and the maximal
anisotropy ratio isLR = 1600. In the right figure,R = 1.01 and the maximal anisotropy
ratio isLR = 40,000.

Note that the value of the anisotropy ratioLR is quite large in our simulation, but the resulting
fields are still not extremely large. The blow up of the fields when an SHS lining is not used
seems likely to become more significant as cloaking technology develops. The SHS boundary
lining has the additional benefit in our simulations of making the scattered wave smaller outside
of the metamaterial construction. Indeed, the scattered field when using the SHS boundary
lining is less than 2% of the scattered field without the lining. The reduction in the scattered
field with the SHS lining is further illustrated in Figs. 4 and5.

Thus, implementation of a lining significantly improves thecloaking effect.

5.2. Significance of the surface currentsJ̃sur f andK̃sur f

For generic incoming waves, asR→ 1+ fthe magnetic and electric flux densities converge to
fields that contain delta-function type components supported on the surfaceΣ. We phrase this
by saying thatsurface currentsappear. If the metamaterial in question supports such currents,
then we interpret this literally. This holds, e.g., if the metamaterials used have components near
Σ that approximate a SHS surface, such as strips of PEC and PMC materials. Alternatively, if
such highly localized currents can not be carried by the material, thenD̃ andB̃ will blow up as
the approximation of the coating material goes to the ideal limit, R→ 1+.

Effective medium theory for composite materials is proven only when the limiting fields are
relatively smooth [30]. Such rigorous effective medium theory has not yet been established for
metamaterials, but the limited work so far, e.g., [31], clearly indicate that this same restriction
will hold there as well. One can then interpret the blow up of fields as a challenge to the validity
of the material parameters that have been ascribed to the metamaterials currently employed.
Indeed, fields having a blow up are very rapidly changing functions near the cloaking surface
Σ. Thus, a physical cloaking construction that would operatewell with such fields would require
metamaterials whose cell size becomes very small close to the cloaking surface. The simplest
way to avoid these issues might be to include the SHS lining when constructing the cloaking
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Fig. 4.The magnitudes of the scatteredB-fields on the exterior for LR = 1600. The deci-
bel function 10× log10(|Bsc|/|Bin|) is shown on a color scale. The left figure corresponds
to the field in the absence of an SHS lining, while the right figure corresponds to the field
with the SHS lining.

device.

5.3. Summary

We have considered two cases when cloaking an infinite cylinder:

(1) An infinite cylinder of air or vacuum, is coated with metamaterial in {R< r < 2} but has
no lining on the interior surface of the metamaterial coating. In the limitR→ 1+, solutions to
Maxwell’s equations have singular current termsKsur f andJsur f that represent either surface
currents or the blow up of theD andB fields. A standard assumption in homogenization the-
ory is that the length scale,d, of the substructures (or cells) from which a composite medium
is formed, is much less than the free space wavelengthλ of the EM field [30]. In treatments
of homogenization for metamaterials, e.g., [31], it has been observed that effective material
parameters can often be obtained even whend is not greatly less thanλ . Although not ex-
plicitly stated, it is however required that sampled surface integrals ofE,H,B, andD not vary
greatly from point to point within a metamaterial cell. The blow up of B that we have shown
occurs when cloaking without an SHS lining thus presents a challenge to the effective medium
interpretation of the metamaterials employed.

(2) An infinite cylinder of air or vacuum is coated with metamaterial in {R < r < 2} and
equipped with an SHS-lining on the interior of the cloaking surface. The lining can be con-
sidered as parallel PEC and PMC strips, that allow surface currents in thez-directions. In this
case, whenR→ 1+, the totalE andH fields at the boundary have very smallθ -components,
that is, in the limit the tangential components ofE andH arez-directional. The non-zero tan-
gential boundary values ofE andH correspond physically to surface currents, that are now
allowed because of the SHS lining. Since the surface lining and fields are now compatible, the
fields do not blow up. In addition, the amplitude of the far field pattern is greatly reduced.
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Fig. 5.The magnitudes of the far field patterns of the scattered fields whenLR = 1600.
Black curve: far field pattern scattered from a perfectly conducting cylinder. Blue curve:
Scattering from the invisibility coating without any physical lining. Red curve: Scattering
from invisibility coated cylinder with a SHS lining.

Added in proof:See also the recent preprint [32], which studies approximate spherical cloaking
for electrostatics, i.e., atk = 0., in dimensions two and higher.
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