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Abstract:  We analyze the effectiveness of cloaking an infinite cylnde
from observations by electromagnetic waves in three dimnessWe show
that, as truncated approximations of the ideal permiytigitd permeability
material parameters tend towards the singular ideal agakalues, théd
and B fields blow up near the cloaking surface. Since the metamaéter
used to implement cloaking are based on effective mediuraryhehe
resulting large variation i® andB poses a challenge to the suitability of
the field-averaged characterization®find p. We also consider cloaking
with and without the SHS (soft-and-hard surface) lining. tiégnonstrate
numerically that cloaking is significantly improved by thelSlining, with
both the far field of the scattered wave significantly reduaed the blow
up of D andB prevented.
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1. Introduction

1.1. Background and history

There has recently been much activity concerrdtzgaking or rendering objects invisible to
detection by electromagnetic (EM) waves. For theoretiescdptions of EM material param-
eters of the general type considered here, see [1, 2, 3, &,y Gumerical and experimental
results, see [7, 8, 9, 10, 11]. Related results concernegfielwaves are in [12, 13, 14]. All
of these papers treat cloaking in the frequency domaingusime harmonic waves; this is not
unreasonable, since the metamaterials used to implemes# ttesigns seem to be inherently
prone to dispersion, for both practical and theoreticatoea [15, 16, 4]. See [17] for a treat-
ment of cloaking in the time domain. One can also use simileas to design electromagnetic
wormholes, which allow the passage of waves between pgsdigtiant points while most of
the wormhole remains invisible [18, 19].

When physically constructing a cloaking (or wormhole) devyione is of course not able to
exactly match the ideal description of the EM material pagtars (electric permittivityg and
magnetic permeability, for the purposes of this paper). Any actual implementatidhonly
realize a discrete sampling of the valueg @indy, and not be able to assume the ideal values at
pointsx on the cloaking surface(s), where the tensgrg or u(x) have 0 oro as eigenvalues.
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1.2. Approximate cloaking and linings

The purpose of the current paper is twofold. First, we wiskxolore the degradation of cloak-
ing that occurs when the ideal material parameter fieldsepkaced with approximations ob-
tained by limiting theanisotropy ratig L, as described below. This was studied in two very
interesting recent papers. Ruan, Yan, Neff and Qiu [21] icem$he effect on cloaking of trun-
cation of the the material parameter fields, while Yan, Ruath Qiu [20], study the effect of
using the simplified “reduced” material parameters empoye[8, 9]. In [21], it is shown
that cloaking of passive objects, i.e., those with intemalentd = 0, holds in the limit as
L — oo, but a slow rate of convergence of the fields is noted. Thesatipaper reproves this
and demonstrates the blow up of BBandD fields at the cloaking surface &s— .

Secondly, we consider the effect of either including or mmuding a physical lining to
implement thesoft-and-hard surfac¢SHS) boundary condition, which is a boundary condi-
tion originally introduced in antenna design [22, 23, 24% we proved in [6], cloaking EM
active objects, i.e., objects with generic internal curtes# 0, imposes certain hidden bound-
ary conditions on the waves propagating within the cloaleggon. Any classical solution of
Maxwell’s equations having locally finite energy, or eveneak solution of Maxwell’s equa-
tions with possible singularities, must satisfy these @k, We note that in our terminology,
the fields(E,H,D,B) are a finite energy solution if all the componeBss Dj, Hj, andB; are
locally integrable functions; the energy of the fields isdibfinite; and they satisfy Maxwell’s
equations in the classical or weak sense. The reason why meegtrate on such solutions is
that the effective medium theory of metamaterial requinas the scale at which the EM fields
change significantly is larger than the size of the compannrtells) used to implement the
metamaterial; the blow up of the fields that is revealed bysiaring weak solutions presents
a challenge to the effective material parameters deschipedich theories.

We consider a cylinder cloaked by what is called #iegle coatingconstruction in [6],
which corresponds to the cloaking considered in [1, 2, 4(Nidte that the reduced parameters
considered in [7, 8, 9, 20], while having similar geometrgyé different material parameters
and thus different waves.) For cylindrical cloaking, wewkd in [6] that the hidden boundary
conditions are the vanishing of the angular components ahdH. This is exactly the SHS
condition associated with the angular vector fi%%i We show that using a SHS lining has
two benefits: blow up oB at the cloaking surface, which may seriously compromisectife
medium theory for metamaterials, is prevented and secdhdlfarfield pattern of the scattered
wave is greatly reduced. We remark that, although it was shiowW6] that there is no theo-
retical, frequency-dependent obstruction to cloakinghwurrent technology cloaking should
nevertheless be considered as essentially monochrormatiaye will work at fixed frequency
w.

2. Single coating of a cylinder

Let us consider Maxwell’s equations &%,

Ox E=iwB, (1)
OxH=—iwD,

D =¢E,

B=uH,

where for simplicity we have taken the conductivity= 0. In empty spaces = & andu = Lg
are isotropic and homogeneous. Throughout the paper wealdreowave number correspond-
ing to the circular frequencg by k= w/c, c =1/, /€Ho.
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We consider here EM waves propagating in metamaterials;iwdllow one to specify
andu fairly arbitrarily. Metamaterials are typically assemibfeom components whose size is
somewhat smaller than the wavelengih,ldeal models of cloaking constructions consist of
prescribed material parameters (tensor fiekdg), describing coatings making objects invis-
ible to detection by waves with frequenay, physically, these would be implemented using
metamaterials designed to hawgu as effective parameters (at the specified frequency). Note
that in the cloaking constructions the ideal parametersiagalar on a surface surrounding the
object, thecloaking surfacewhich we denote by throughout. As a result, discussed further
below, we need Maxwell's equations holding not only in thassicalsense, i.e. for regular
waves, but also in the sense of Schwartz distributions,foe waves with singularities [25].

A distribution, orgeneralized functiony is a linear functional on a space of smooth test func-
tions, f, generalizing the functionai( f) := [u(x) f (x)dx for locally integrable functions. A
solution to Maxwell's equations in the sense of distribn§i@an be considered as a pd&rH)
which, when measured using a smooth superposition of pagaisorements, satisfy the same
integral identities given by Green'’s theorem as do claséstaooth) solutions.

In the following, we describe the non-existence resultsifote energy solutions with respect
to the ideal parameter fields, the consequences of appraxémaaterial configurations, and
the role of the SHS lining.

2.1. Equations for an ideal single coating

On R3, with standard coordinates = (x1,%2,X3), We use cylindrical coordinates, 8,2),
defined by(r,0,2) — (rcosf,rsind,z) € R3, so thatr = |(x1,%)|. In [6] we considered
Maxwell’'s equations ofR3\ Z,

OxE=iwB , OxH=—iwD+J,

D=¢E, B=[H,
where€ and 1 correspond to the invisibility coating materials on theegiir of the infinite
cylinderN, = {r < 1} and are homogeneous and isotropic indiei.e.,& = & andu = o
in Np. Outside ofN,, the material parameteesand i are matrix valued functions of that
are singular at the cloaking surfake= {r = 1} that corresponds to the inner boundary of the
metamaterial. As — 17,

Aj(x)

1<j k<3 Ak(X)

O((I’ — 1)72) — 00,

whereAj(x), j = 1,2,3, are the eigenvalues @f(x) or [i(x). In particular, we considered the
question of when there are fiel@sH, D, B that together constitute a finite energy solution of
Maxwell’s equations. It was shown in [6] that, in the presené generic internal currents
when the cloaked region is, e.g., a ball, such solutions dayeoerally exist. Let us discuss
why this is so. Even for cloaking passive objects, le= 0 in the cloaked region, the singular
material parameters give rise to solutions in Maxwell's &tpns that correspond either to
surface currents (see below) or to the blow up in the fieldeettoaking surface. Thus, if the
material does not allow such currents to appear, then thatiresfields must blow up.

Let us next consider the scattering of a plane wave by a ctbaiknder, that is, the case
when we have no internal currents and the EM fields have asfiopat infinity corresponding
to a sum of a given incident plane wa&", H") and scattered wau&sS, Hs°) that satisfies
the Silver-Muller radiation condition

lim r(ESCx & +HS%) =0, (2)

r—o0
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wheree = x/|x| is the unit radial vector. It was shown in [6] that, with resp® cylindrical
coordinates,

lim eg(x)-E(x) =0,  lim eg(x)-H(x) =0, 3)

whereegy is the angular unit vector (having Euclidian lengthl). Lete, be the vertical unit
vector. For general incoming waves, we have that

Jim €09 E(x) ~be( ) =0, @
Jim e09-H ()~ () =0

wherebe andby, do not vanish. In the treatment of cloaking passive objett?] 4, 5] it is
assumed a priori, based on the behavior of rays on the exttrai the inside of the cloaked
region is “dark”, that is, the field& andH vanish in{r <1}. (However, see also [21, 20],
where the behavior of the fields within the cloaked regiortusli®d.) Under this assumption,
the E andH fields have jumps acrogs

(v X E) |5+ — (v X E) |s- = v x E|s+ = be(X)eg,
(v X I—~|) |5+ — (v X I—~|) ls- = v x H|s+ = bn(x)eg.

(Herev is the Euclidian normal vector &f, which is just the radial unit vect@s.) This implies
that Maxwell’s equations hold weakly d&r:

OxE=iwB+Ksurf, OxH=—iwD+ Jsurt-

Here,ds is the Dirac delta distribution concentratedddefined by

5:(f) = [ 108 ax:= [ 1(0dSx.

wheredS= dOdzis the Euclidian surface element on the surfacér any smooth test func-
tion f. The singular termBsyrt = beeg 35, Jsurf = bpeg Os can be considered either as magnetic
and electric currents supported Byor, as below, idealizing the blow up BfandB nearg. We
refer to such strongly singular field componentsagace currents

2.2. Equations for an approximate single coating.

Next, consider the situation when a metamaterial coatimgapproximates this ideal invisibil-
ity coating. We show that the existence of the surface ctsifenthe ideal cloak causes a blow
up of the fields as the approximating permittivity and perhilés tend towards the singular
ideal values, which we denote lsyandi.

To this end, we modify the construction described in the jotevsection, still dealing with
a cloaking structure of the single coating type. More prlgjsfor 1 < R < 2, consider an
infinite cylinder inR2 given, in cylindrical coordinates, BYY = {r < R}. OnN} we choose the
metric to be Euclidian, so that the corresponding perniigtiand permeabilitygy and g, are
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homogeneous and isotropic . As described in 8Rii N, we take the Riemannian metigc
and the corresponding permittivity and permeab#ignd[i to be the single coating parameters
considered in [6] and the previous section, truncated bygoestricted tcNZR. Thus, we start
from the materialg andpi corresponding to the single coating meﬁioutsideN§ and replace
the metric with the Euclidian metric insidd}. Then theanisotropy ratiq

= )\J—(X) = — -2 — 00
LR"xei‘s‘\pN;(maxAk<x>) OR-17) =

as the approximate cloaking construction approaches #zs,ithat isR — 1.
Next, we consider the wave propagation phenomena that@sifiee approximate cloaking
construction approaches the ideal.

3. Analysis of solutions

Assume that the wave number w/cis not a Neumann eigenvalue for the Euclidian Laplacian
in the two-dimensional unit disk; as will be seen later, tlsi®quivalent with the condition
(Jo)'(K) # 0. For 1< R < 2 fixed, decomposi? into

NOZ{I' 22},
NR={R<r <2}, and
NR = {r <R}.

LetzR= 0N§ = {r =R} be the (approximate) cloaking surface ang 9, be its normal vector
on both sidesIy:. To define the approximate cloaking material paramet@mnd iR, define

a relationship between material parametgrg and aRiemannian metric g1, 2, 6] . The

permittivity and permeabilitys, u corresponding to a metrig = [gjk(x)]?lk:1 are then given
by

ek = go|det(gp )| Y20,  p = poldetgp) 20, 9™ = (o] ™
Define a seMR consisting of three components,
Mo = {r > 2},
Mf = {p <r<2},
MZ = {r <R},

wherep = 2(R—1). We identify the boundary d¥lop UME, i.e., the surfacg(r,8,2) : r = p}),
with the boundary oMY, i.e., the surfacé(r,8,z): r =R}.

We equipMR with the Euclidian metriay and the corresponding homogeneous, isotropic
permittivity and permeabilitys = &, u = L. With respect to the cylindrical coordinates, we
have

(5)
1 0 O r 0 O r 0 O
9=[03ea=( 0 r> 0|, e=g( 0 r* 0|, p=pw( o0 rto
0O 0 1 0O O r 0O O r
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Next, introduce a transformatidf* : M™ — R, which in cylindrical coordinates is given by
FR:Mo— No, FRly, =id,

FR:ME =N, FRlys(r6.2) = (r/2+1,6,2),

FR: MR — NR, FR|M§ =id,

D
No
NE
N R

see Fig. 1.

Mo
ME
ME

—

—

2

Fig. 1. Diagram of how the mapF sends, in the plane= 0, the components? of MR
to the component8IF of the approximate cloaking devid¢®. Note thatN® is the union

of NoUNF andNR and thus is the spad®, while MR is a union of componentslo UMR
and M2R with boundaries identified and should not be thought of aslyin R3.

We define the metrigR onR3 by the formulag® = (FR)*g, that is,

9y! 9y

Pq _ER
paad X y=FX),

_ 3
@y =3

p,g=1
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where[(gF) ] = [@*jf(]** and we use tha” = &PY. Suppressing for the time being the super-

scriptR, the permittivity and permeabilitg, i corresponding to the metrécare then given by
eIk — go|det(@j)|*/2g™ and i’k = po|det@ik)[*/2g™. Hereg, & and]i are given by formula
(5) onNg andNy, while onN; they are given by

4 0 0
g=( 0 4r-12 o0 |,
0 0 1

(r—1) 0 0 (r—1) 0 0
E:eo( 0 (r-17t 0 ), ﬁ:uo( 0o (-1t 0 )
0 0 4r—1) 0 0 4r—1)

In the following, we consider TE-polarized electromagoetaves. This means that, written
componentwise with respect to either coordinate system as

E = (Evlv EZ? §3) = (ﬁfv ﬁev E/Z)a
where the coordinates are such~thaEii§ considered as a 1-form (see [26, 27]), thien-
E1dxt 4 Eodx2 + E»dXE is equal toE, dr + EgdB + E,dz that is,
E; = E1cog0) + Epsin(6), Eg=r (—Elsin(e) + Ezcos(e)) , E,=E

In the case of a TE-polarized wave the electric field has a emaneomponent only in the
direction,

Ei=E,=E =Ep=0, E3(x)=E,r,0).

We denoteE; by u, so that

R R I v
H=—F (DXE)—iwu (Ouxey).

We note thati satisfies the (scalar) Helmholtz equation,

(Og+k)u=0 onR3

where Ag is the Laplace-Beltrami operator [1, 6] corresponding te tmetric g and
k = w,/€Mo. Recall for the following thak = w/c, c = 1/,/€o.

3.1. Scattering problem
We consider an incoming TE polarized plane waveNjrsuch a wave has the form

Ein(r,0,2) = Ad00g —A <Jo(kr) + 3 2"n(kn) cos(nG)) e,
n=1

. Cc -
Hin(r,0,2) = mualDXEi”’
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whereA is a constant; expressed in termsipf= Ezjn, this is

Uin = A(Jo(kr) + i 2i"Jn(kr)cognd)).
=1

We look for the solution of the scattering problem,

OxE=iwB, OxH=—iwD, (6)
D=¢E, B=[H

onRS, whereg = €R, i = [iR so thatE = ER, etc. Suppressing again the ind&€ = Ein + Esc,
H = Hin + Hse, andEsc andHsc satisfy the Silver-Muller radiation condition (2). (Cwytrical
cloaking is also studied using Fourier-Bessel series ih.J21

We now analyze the waves in the three componeni&3Ny, N, N». In the domairNg =
{r > 2}, one has

Esc(r.0,2) = <Z caHAY (kr) cos(n@)) e
n=0

_ (o ~

Hsc(r, 6,2) - muo (I:l X Esc),

Usc = ZCnHrﬁl)(kr)cos(nG).
n=0

Now use the change of coordinatés,M — N to define the transformed fields &,

Ein=F*Ein, Hin=F"Hin,
Esc: F*Esc, Hsc: F*Hsa
E=F'E, H=F"H.

In the coordinate&’, 8’,Z) = F1(r,0,2),0' = 6,Z = zonMy = F1(Np),

OxE=iwB, OxH=—iwD,
D = gE, BZIJoH.

In My, i.e., forr’ > p,

n=0

E(r,0.7) = <A.Jo(kr/)+coH(()l>(kr/) z(zlnA%(kr)JranM ))cos(nG))
H(r',6,7) = %uo’l(DxE),
u(r',0) = Es(r’,8') = Ad(kr)+ coHY (kr') +

+ i(Zi”A.L(kr/) +coHY (kr')) cogng)).
=
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In N1, whereR < r < 2, we have generally

E:(r,0,2) = 2E,(2(r—1),6,2), Eq(r,0,2) = Eg(2(r —1),6,2),
E,(r,0,2) = E,(2(r — 1),6,2).

In the case of TE-polarized fiele andEg vanish. InNy, i.e., forr <R,

E(r,0,2 = ( ianan(kr)cos(ne)> &, 7)

uar,0) = i)an‘]n(kr)cos(ne),

~ cC 3 ~
H(r,0,2 = cHo (OxE).
As F|M§ =id, the fieldskE andH and the potential are also given by (7) iM,.

OonzR= 0N2R, using the standard transmission conditions for the etemtid magnetic fields,
which ensure that waves are at least weak solutions of Mdsweejuations, are

Eolse+ = Eolsr—»  Ezlzps = Edlsps

Helset = Holse»  Halser = Halsq

ISr|ZR+ = ISr|ZR—; gr|ZR+ = gr|ZFrv
from which we get the following transmission conditions or

Usgi = Ulsg—,
(R—1)0U[sz+ = RO Ulzq-.

These correspond to conditions aMZ = d(MFUMR),

u+|r:p+(eaz) =Uu |—r (0,2,
p(?ru+|r:p+(6,z) = Raru7|r:R*(evZ)7
whereu” = u|yr andu” = ufyg.

These conditions give rise to equations égrand a,; let us start withn = 0, which is of
particular interest. We have

aoJo(kR) AJo(kp) +coHg" (kp),
aoRKJ0)'(kR) = Apk(Jo)'(kp) +copk(HS")' (kp)

Now explicitly denoting the dependenceaf and c, on R, we see that, wheflp)’ (k) # O,
these imply that

)’ (kp)Jo(kR) — Rb(kp) (o) (KR)

o D Y (ko) bR RHD (o) oy () 1ok o
L Pholkp)(H") (ko) — p(Jo) (kp)H (kp)  —2Am

o p(HSY (kp)Jo(kR) — RHS (kp) (o) (kR) ~ (J0)'(K) fog(kp) 1 oL
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where we use the asymptotics of Bessel functions near 029¢p(.360-1]. Herey(1) means
that the quantity goes to zeroBRs— 1+, p — 0". Similarly, a, andc, satisfy the equations,

Ad(kp) + caHY (kp),
Aok(3n)' (ko) + capk(HEV) (kp).

B0dn(kR)
a0RK(n)' (KR

For generid, these yield that

<Jn>'<kp>an<kR>—R41<kp><an>'<kR> n

cn(R) = A—2 —0(p™), ®)
p(H) (kp)dn(KR) — RHY (ko) (3n) (kR

(R API(kp) (HA”) (kp) — p(Jn >’<kp>Hél><kp>:o<pn)_
p(HY) (kp)In(KR) — RHY (kp) (3, (kR)

This implies that the scattered fields (far field patteag)Hsc in NoUNR and the transmitted
fieldsE,H in NZR, which, as we recall, depend &) go to zero as the approximate cloaking
construction tends to the ideal material parametersR.e:,1*. A similar result was obtained
in [21].

Next, we consider the behavior of the field8, HR, DR BR nearzR. Suppressing again the
superscripR, we write the electric and magnetic fields as

E(r,0,2 = ZJE (r,0,2), where E"(r,0,2) = fn(kr)cognb)ey; 9
H(r,0,2) = Z; "(r,0,2), where A"(r,0,2)= k“ (DxE(r,e,z)),

with similar notations for the scattered and incoming fiekls, HY., etc. OnM, the decompo-
sition (9) gives rise to a similar decomposition®fandH, which we analyze for each value
of n. First, we consider the terms correspondingite 0. OnMgU MR, aty = F{l(x),y =
(r',8,Z),xe NgUNR,

EQL(y) = Ak(k’)=0(1),
ESQZ(Y) = Co(R)H(()l)(kr’) - _Aln(kr )

In(kp)

asR— 1+. Observe that, sincé > p, ES,(y) is uniformly bounded foR — 1*. With the

magnetic field, expressed & = HAdr +HJd6 +H2dz having a non-zero component only
in 6, one has

(1+0(1)

HOo(y) = 'ﬁ(‘f (Jo)' (kr') = O((r')2);
B IAC O\ o iAc
Ho(y) = Er co(R) (Ho ) (kr') = LioKkin (ko) (1+0(1)).

onM%,
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o) .

B~ o) =
H3Y) = iaa(RY () <kr>—mo((—klg)

Returning toN and again using the transformation rules foandH, we see thakE®, H? are
uniformly bounded, with respect ®, in NRUNR.

Now consider the magnetic flux densi§,= fiH which has a similar decomposition. In
particular, orNR, one has

B0, (1,6) = HAQ (1, 6) = FiHQ, o (2(r ~ 1),6) = O(r ~ 1), (10)
B:0(1.0) = AFG(r.0) = AHG (21 ~1).6) = fr—grias(l+o(1)

Pointwise, orNg,
o(r)
In (ko)

tending to 0 wherR — 17 for all points outsideZ. To see see hoﬁg behaves neaxr when
R — 17, observe that (10) implies th: /2 Bo(r 6)dr is uniformly bounded, while, for any

BY(r,0) =

/2
0<k<3,
e Aci 1 Aci
B9 +
r,0)dr=— —dt+0(1) - — whenR=p/2+1—-1".
This implies that
lim I§0——5Z+Bb9,

R—1t

whereds is the Dirac delta function of the cylind&r= {r =1} andgg‘6 is a bounded function.
Finally, consideiD® which has only the—component different from 0. INR,

Din, z(r 6) = £E|(r)1 2(1,60) = &(r — 1)E|?1 Z(Z(I’ 1),6) =0O(r - 1);
r

ESQZ(L 9)= EESQZ(r’ 6) = &o(r — 1)Egc,z(2(r -1),0)= 2 _lf::-)(:;)() =2 )
while in N,
D(r,0) = EE(r,0) = &7 (1, 0) = |r?((k1p2)

Thus, wherR — 11, D?

In,z
No U Nz, Ny, respecuvely

has a uniform limit inN U Nz, andDZ,, D2 uniformly tend to 0 in
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Forn > 1, using (8), we obtain the following asymptotics oy etc., in the various compo-
nents ofN:
In NR, wherer >R i.e. 2r' —1) > p,

p2n
(r=1)"

En, = O((r— 1", ﬂ@:O(

N Lo pn
Hi =O((r—=1)"7), Hg, =0 (m

~ _ pn
Hine =0((r—1)"), Hge=0 (

~ . p2n
Bir:Lr =0O((r-1)"), ngr =0 (

)
)
)
Df, = O((r—1)™Y), 5%—O(T£i_>'
)
)

an n-1 an p2n
Bin,e =0((r—-1)™ )7 Bsce =0 ( (r— 1)n+l

As for NR, we have

E7 = O(p"); D}=0(p";
HP' =0(p"). Hj=0(p"):;
B =0(p"), Bj=0(p".
These formulae imply that there is a uniform limit®f, H", D", B” whenR — 1" and, more-

over, the scattered fields My UN; and transmitted fields iN, tend to 0. These formulae also
imply that the series

[ee] [ee] . [ee] . [ee] .
LA LS

in NpUNj; and

all converge to zero il asR — 17.
Summarizing, we see that, in the sense of distributions,

lim ER=E,, lim HR=H,,
R—1t R—1t
-1 - -

lim DR=Dp——=J Jsurf =0
R+ b i surf, sur f )

. ~ 1- ~

lim BR = Bo+ —Ksurf, Ksurf = —Aep0s.
R—1t 1
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HereEy, Hy, Dy, andBy coincide withEj,, Hin, Bin, andBi,, resp., inNg UN; and are equal to 0
in Np. In particular, they satisfy equations (6) separateljgt N; andN,.

Note that, sending an TM-polarized wave, we get hat = —Aeyds, Keurt = 0. Moreover,
for a general incoming electromagnetic wave, the corregipgrsolutionsEER, HR DR, BR tend
to E”m, ﬁlima 6Iima §|im, which satisfy

0 % Ejim = i@Bjim + Ksur, 0 x Hiim = —iDjim -+ Jsurf,
Diim = €Bjim,  Biim = HHiim,

with j;urf = beep S5, Ksurf = bnegds.

4. Numerical results

We next use the analytic expressions found above to competiéeids for a plane wave with
vertically polarized E-fieldEin (r, 8,2) = Ad¥"¢°Fe,. The computations are made without refer-
ence to physical units; for simplicity, we ugg = 1, &g = 1, amplitudeA = 1 and wavenumber
k = 3. The waveg, is incident to a cylindefr < R} that is coated with an approximative in-
visibility cloaking layer located i{R < r < 2}. We then numerically simulate the cases where
R=1.01 andR= 1.05. In the simulations we have used Fourier series reprats@mto order 6,
that is, the fields are represented using trigonometricrmmtyials of degree less than or equal
to siX, Y |nj<6 fo(r)€M9. In the tables below, we give the real parts of jaeomponent of the
total fields and the scatter&dfield on the line{(x,0,0) : x € [0, 3]}, first in the absence of a
physical layer inside the metamaterial and then when an 8tit8)lis included. We note that
in the case of the SHS lining, the fields are as was claimed,in,[8, 17] without reference to
a lining, namely zero inside the cylindér < R}.

Below we give the numerically computed Fourier coefficiesitshe scattered waves. The
values forR= 1.05, for whichLr = 1600, andR = 1.01, for whichLr = 40,000, are contained
in the following two tables.

Table 1. Fourier coefficients of scattered waves foR = 1.05

n ¢, with SHS lining ¢, with no SHS lining
0 —0.0042—-0.0644 —0.7408-0.4384
1 —0.1407—0.0099 0.0838— 0.0035
2 0.0000-0.0014 0.0000-0.0013
3 0.0000+ 0.000d 0.0000+ 0.0000
4 0.0000-+ 0.0000 0.0000+ 0.0000
5 0.0000-+ 0.0000 0.0000+ 0.0000
6 0.0000-+ 0.0000 0.0000+ 0.0000
(3 |cnl?) /2 0.1551 0.8648
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Table 2. Fourier coefficients of scattered waves foR = 1.01

n ¢, with SHS lining ¢, with no SHS lining
0 —0.0000- 0.0024 —0.2591-0.4384
1 —0.0057—0.000d 0.0031- 0.0000
2 0.0000+ 0.0000 0.0000+ 0.0000
3 0.0000+ 0.0000 0.0000+ 0.0000
4 0.0000+ 0.000d 0.0000+ 0.0000
5 0.0000-+ 0.0000 0.0000+ 0.0000
6 0.0000-+ 0.0000 0.0000+ 0.0000
(3 |cnl?) /2 0.0063 05091

The results show that fd® close to 1, including the SHS lining strongly reduces thdiéd
of the scattered wave; the approximative invisibility ey functions much better with such
a lining than without, even for cloaking passive objects.

16 16

14r 141
12 12
10 10
8 8

Fig. 2. The real part of the-component of théotal B-field on the line{(x,0,0) : x< [0,3]}.
Blue solid curve is the field with no physical liningfat= R}. Red dashed curve is the field
with SHS lining on{r = R}. In the left figure R= 1.05 and the maximal anisotropy ratio is
Lr = 1600. In the right figureR = 1.01 and the maximal anisotropy ratiolig = 40,000.

In Fig. 2, we see clearly that thetal field develops a delta-type distributional singularity on
the interface when we do not have the SHS lining and the appaiive cloaking approaches
the ideal, i.e.R— 17. Also, in Fig. 3, we see that, far away from the coated cylinaeboth
cases thacatteredield goes to zero, but much more quickly when the SHS liningsisd.

5. Discussion

5.1. Comparison of results with and without SHS.

One observes that, without the SHS lining, Bxéield grows as the approximate single coating
tends to the ideal invisibility cloak, i.e., as the anispiroatioLr becomes larger. In both parts
of Fig. 2, the peak near= 1 without the SHS lining illustrates how the delta-disttiba in the
B-field develops.
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16 16

Fig. 3. The real part of thg-component of thecatteredB-field on the line{(x,0,0) : x €
[0,3]}. Blue solid curve is the field with no physical lining it = R}. Red dashed line is
the field with Soft-and-Hard lining ofr = R}. In the left figure R = 1.05 and the maximal
anisotropy ratio id.r = 1600. In the right figureR = 1.01 and the maximal anisotropy
ratio isLgr = 40,000.

Note that the value of the anisotropy rattigis quite large in our simulation, but the resulting
fields are still not extremely large. The blow up of the fieldsaw an SHS lining is not used
seems likely to become more significant as cloaking tectyyodtevelops. The SHS boundary
lining has the additional benefit in our simulations of makine scattered wave smaller outside
of the metamaterial construction. Indeed, the scatteréd fiden using the SHS boundary
lining is less than 2% of the scattered field without the linifhe reduction in the scattered
field with the SHS lining is further illustrated in Figs. 4 abd

Thus, implementation of a lining significantly improves tieaking effect.

5.2. Significance of the surface curredig s and Ksyrt

For generic incoming waves, &— 1" fthe magnetic and electric flux densities converge to
fields that contain delta-function type components sugabon the surfac&. We phrase this
by saying thatsurface currentappear. If the metamaterial in question supports such cis;re
then we interpret this literally. This holds, e.qg., if thetar@aterials used have components near
> that approximate a SHS surface, such as strips of PEC and Pa&ials. Alternatively, if
such highly localized currents can not be carried by the rizat¢henD andB will blow up as

the approximation of the coating material goes to the idest,|R — 17.

Effective medium theory for composite materials is provatyavhen the limiting fields are
relatively smooth [30]. Such rigorous effective mediumdtehas not yet been established for
metamaterials, but the limited work so far, e.g., [31], dieandicate that this same restriction
will hold there as well. One can then interpret the blow up@ifi as a challenge to the validity
of the material parameters that have been ascribed to thenmatgrials currently employed.
Indeed, fields having a blow up are very rapidly changing fiems near the cloaking surface
2. Thus, a physical cloaking construction that would openagiwith such fields would require
metamaterials whose cell size becomes very small closeetoltiaking surface. The simplest
way to avoid these issues might be to include the SHS liningnadonstructing the cloaking
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Fig. 4. The magnitudes of the scattered-fields on the exterior for Lr = 160Q The deci-

bel function 10x log;o(|Bsc//|Bin|) is shown on a color scale. The left figure corresponds
to the field in the absence of an SHS lining, while the rightriégcorresponds to the field
with the SHS lining.

device.

5.3. Summary
We have considered two cases when cloaking an infinite agtind

(1) An infinite cylinder of air or vacuum, is coated with metantikin {R < r < 2} but has
no lining on the interior surface of the metamaterial caatin the limitR — 17, solutions to
Maxwell’s equations have singular current terkag,+ and Js,rt that represent either surface
currents or the blow up of thB andB fields. A standard assumption in homogenization the-
ory is that the length scalé, of the substructures (or cells) from which a composite mwedi
is formed, is much less than the free space wavelehgifithe EM field [30]. In treatments
of homogenization for metamaterials, e.g., [31], it hasnbelkserved that effective material
parameters can often be obtained even wthés not greatly less thai. Although not ex-
plicitly stated, it is however required that sampled swufategrals o, H, B, andD not vary
greatly from point to point within a metamaterial cell. Thiew up of B that we have shown
occurs when cloaking without an SHS lining thus presentsadleiige to the effective medium
interpretation of the metamaterials employed.

(2) An infinite cylinder of air or vacuum is coated with metamakm {R <r < 2} and
equipped with an SHS-lining on the interior of the cloakingface. The lining can be con-
sidered as parallel PEC and PMC strips, that allow surfaceiots in thez-directions. In this
case, wheiR — 17, the totalE andH fields at the boundary have very sméicomponents,
that is, in the limit the tangential componentstbindH arez-directional. The non-zero tan-
gential boundary values d&& andH correspond physically to surface currents, that are now
allowed because of the SHS lining. Since the surface linimfeelds are now compatible, the
fields do not blow up. In addition, the amplitude of the fardiphttern is greatly reduced.
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Fig. 5. The magnitudes of the far field patterns of the scattered field whenLg = 160Q
Black curve: far field pattern scattered from a perfectlydariing cylinder. Blue curve:
Scattering from the invisibility coating without any phgal lining. Red curve: Scattering
from invisibility coated cylinder with a SHS lining.

Added in proofSee also the recent preprint [32], which studies approxrsgtierical cloaking
for electrostatics, i.e., &= 0., in dimensions two and higher.
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