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Equation numbers (1) through (41) refer to the published paper.

A Verification of the Transversality and no-Ponzi condi-

tions

The following proposition covers all the equilibrium paths that we discuss in the paper, and

proves that the transversality and no-Ponzi conditions hold.

Proposition 3 Let a sequence {Pt, Qt+1, Tt, Rt, Ct, Yt, At+1, Bt,Mt}∞t=0 satisfy equations (10),

(11), (15), (22), (3), (5), (14) and either (12) or (21), depending on the set Bt, and let fiscal

policy satisfy Assumption 3. Assume also that either Assumption 1 or Assumption 2 holds. Then

equations (6) and (16) hold.

We prove this proposition in 3 steps. First, we prove that At+1, as defined in (6), is well

defined. Second, we prove that (16) holds, and finally that (6) holds.

A.1 At+1 is well defined.

We work backwards on the individual components of the sum defining At+1 in equation (6).

From (12) or (21) we obtain3

max
b̂∈Bt

[b̂

(
Et+jQt+j+1 −

1

1 +Rt+j

)
] = 0. (42)

1UCL, Federal Reserve Bank of Chicago, and IFS, bassetto@nber.org
2University of Minnesota, Federal Reserve Bank of Minneapolis, and NBER, cphelan@umn.edu
3If the borrowing limit is not 0, the expression in (42) would not be 0, but it can be proven that At+1 is

nonetheless well defined.
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From either Assumption 1 or Assumption 2, it follows that the marginal disutility of work

evaluated at the optimal choice is uniformly bounded; let ũy be the bound. We then use (14) to

get

Et+1

{( j∏
v=1

Qt+v+1

)
Pt+j

}
≤ ũyEt+1

{( j∏
v=1

Qt+v+1

) Pt+j

ûy(R̂t+j)

}
=

ũyEt+1

{(j−1∏
v=1

Qt+v+1

) Pt+j

ûy(R̂t+j)
Et+jQt+j+1

}
=

ũyEt+1

{(j−1∏
v=1

Qt+v+1

) Pt+j

ûy(R̂t+j)(1 + R̂t+j)

}
=

βũyEt+1

{(j−2∏
v=1

Qt+v+1

) Pt+j−1

ûy(R̂t+j−1)(1 + R̂t+j−1)

}
=

βj−1
ũyPt+1

ûy(R̂t+1)(1 + R̂t+1)

(43)

Equation (43) implies4

Et+1

∞∑
j=1

{( j∏
v=1

Qt+v+1

)
Pt+j

}
≤ ũyPt+1

ûy(R̂t+1)(1 + R̂t+1)(1− β)
, (44)

which proves that the second piece of the infinite sum defining At+1 is well defined. From

Assumption 3, we have |Tt+j+1| ≤ TPt+j + |Bt+j|, and so∣∣∣∣∣Et+1

∞∑
j=1

{( j∏
v=1

Qt+v+1

)
Tt+j+1

}∣∣∣∣∣ ≤
∞∑
j=1

Et+1

{( j∏
v=1

Qt+v+1

)[
Pt+jT + |Bt+j|

]}
. (45)

We analyze equation (45) in pieces. Using (44), we have

T
∞∑
j=1

Et+1

{( j∏
v=1

Qt+v+1

)
Pt+j

}
≤ T ũyPt+1

ûy(R̂t+1)(1 + R̂t+1)(1− β)
. (46)

To work on the sum of debt, notice first that equation (1) continues to hold even if we replace

Rt by R̂t. This is because Bt = 0 in the periods and states of nature in which R̂t > Rt. If

Assumption 1 is retained, define S := maxR∈[0,R][ĉ(R)(1 + R)]; alternatively, if Assumption 2 is

4We can interchange the order of the sum and the expectations since all elements of the sum have the same

sign.
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adopted instead, define S := maxR∈[0,∞][ĉ(R)(1 +R)]. Under Assumption 1 it is immediate that

S <∞. Under Assumption 2,

lim
R→∞

ĉ(R)(1 +R) = lim
R→∞

−ĉ(R)
uc(ĉ(R), ĉ(R) + Ḡ)

uy(ĉ(R), ĉ(R) + Ḡ)
.

Since u(0, Ḡ) is finite, both limc→0 cuc(c, c+ Ḡ) and limc→0 uy(c, c+ Ḡ) must also be finite.

Finally, notice that Assumption 3 implies

|Tt+j −Bt+j−1| ≤ Pt+j−1(T +B) + (1− α)|Bt+j−1|. (47)

We can then use (1), (15), (14), and (47) to get

Et+1

{( j∏
v=1

Qt+v+1

)
|Bt+j|

}
= Et+1

{(j−1∏
v=1

Qt+v+1

)∣∣∣∣[Pt+j−1G−
Tt+j +Bt+j−1 + ĉ(R̂t+j−1)Pt+j−1 − ĉ(R̂t+j)Pt+j

]∣∣∣∣} =

Et+1

{(j−1∏
v=1

Qt+v+1

)∣∣∣∣[Pt+j−1G− Tt+j +Bt+j−1 + ĉ(R̂t+j−1)Pt+j−1−

βPt+j−1ĉ(R̂t+j)(1 + R̂t+j)ûy(R̂t+j)

ûy(R̂t+j−1)

]∣∣∣∣} ≤
Et+1

{(j−1∏
v=1

Qt+v+1

)[(
G+ T +B +

βũyS

ûy(R̂t+j−1)
+ ĉ(0)

)
Pt+j−1+

(1− α) |Bt+j−1|
]}
.

(48)

Using (43) and (48), we obtain (for j > 1)

Et+1

{( j∏
v=1

Qt+v+1

)
|Bt+j|

}
≤ Et+1

{ j∑
s=2

(1− α)j−s
[(s−1∏

v=1

Qt+v+1

)
·

[(
G+ T +B +

βũyS

uy(R̂t+s−1)
+ ĉ(0)

)
Pt+s−1

]}
+ (1− α)j−1

|Bt+1|
1 + R̂t+1

≤

ũyPt+1

(
G+ T +B + βS + ĉ(0)

)
ûy(R̂t+1)(1 + R̂t+1)

j∑
s=2

[
βs−2(1− α)j−s

]
+ (1− α)j−1

|Bt+1|
1 + R̂t+1

=

ũyPt+1 [(1− α)j−1 − βj−1]
(
G+ T +B + βS + ĉ(0)

)
ûy(R̂t+1)(1 + R̂t+1)(1− α− β)

+ (1− α)j−1
|Bt+1|

1 + R̂t+1

.

(49)
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Using (49) we get

∞∑
j=1

Et+1

{( j∏
v=1

Qt+v+1

)
|Bt+j|

}
≤

ũyPt+1

(
G+ T +B + βS + ĉ(0)

)
ûy(R̂t+1)(1 + R̂t+1)α(1− β)

+
|Bt+1|

α(1 + R̂t+1)

(50)

Collecting all terms, equations (44), (46), and (50) imply

|At+1| ≤
ũyPt+1

ûy(R̂t+1)(1 + R̂t+1)(1− β)

[
1 + T+(

1

α

)(
G+ T +B + βS + ĉ(0)

)]
+

|Bt+1|
α(1 + R̂t+1)

+ Pt
[
1 + ĉ(0) + T

]
+ |Bt|.

(51)

A.2 Equation (16) holds.

Use (49) to obtain

lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
|Bt|

]
≤

ũyP0

(
G+ T +B + βS + ĉ(0)

)
ûy(R̂0)(1 + R̂0)(1− α− β)

lim
t→∞

[
(1− α)t − βt

]
+

|B0|
1 + R̂0

lim
t→∞

(1− α)t = 0.

(52)

We then use (14), (51), and (52) to prove

lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
|At+1|

]
≤ ũy

1− β

[
1 + T+

(
1

α

)(
G+ T +B + βS + ĉ(0)

)]
lim
t→∞

E0

[(
t+2∏
j=1

Qj

)
Pt+1

ûy(R̂t+1)

]
+

1

α
lim
t→∞

E0

[(
t+2∏
j=1

Qj

)
|Bt+1|

]
+ ũy

[
1 + ĉ(0) + T

]
lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
Pt

ûy(R̂t)

]
+

lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
|Bt|

]
=

ũyP0

(1 + R̂0)ûy(R̂0)

{
β

1− β

[
1 + T+(

1

α

)(
G+ T +B + βS + ĉ(0)

)]
+ 1 + ĉ(0) + T

}
lim
t→∞

βt = 0.

(53)
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Equations (11), (52), and (53) imply (16).

A.3 Equation (6) holds.

The same steps used to prove (52) can also be used to prove

lim
j→∞

Et

{(j+1∏
v=1

Qt+v

)
|Bt+j|

}
= 0. (54)

As previously noted, equation (1) continues to hold even if we replace Rt with R̂t, since the two

values only differ when Bt = 0. We can then iterate (1) forward, taking expectations conditional

on time-t+ 1 information, and use (54) to obtain

Bt = Mt+1 −Mt − Tt+1 − PtG+ Et+1

{ ∞∑
s=1

[( s∏
v=1

Qt+v+1

)
·

(
Mt+s+1 −Mt+s + Tt+s+1 − Pt+sG

)]}
> At+1,

(55)

which completes the proof. Equation (55) relies on G < 1 (government spending must be less

than the maximum producible output) and on

Et+s [Mt+s(1−Qt+s+1)] =
R̂t+sMt+s

1 + R̂t+s

≥ 0.

This completes the proof of proposition 3.

B Sufficient Conditions for the Existence of Equilibria

with Positive Debt

Proposition 4 Let Assumption 3 and either Assumption 1 or Assumption 2 hold. Then equa-

tions (23), (24), and (25) are sufficient to obtain Bt > 0 in all periods t ≥ 0 in the deterministic

equilibrium constructed in Section 3 in which R̂t = Rt. Furthermore, the same conditions ensure

the existence of sunspot equilibria in which R̂t = Rt and Bt > 0 with probability 1 in all periods

t ≥ 0.
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Proof. In period 0, consumption will be equal to ĉ(R0). With R0 > 0, the cash in advance

constraint holds as an equality. The household budget constraint (5) and (24), together with

market clearing, imply B0 > 0. Equation (24) imposes an upper bound on the initial price level

P0. Equation (23) ensures that this upper bound is positive, so that there are values of P0 that

satisfy equation (24).

In subsequent periods (t > 0), using once again the cash-in-advance constraint, the household

budget constraint, and market clearing, Bt will be strictly positive in each period t > 0 if and

only if the following condition is satisfied

Tt < Pt−1G+Bt−1 +Mt−1 − PtCt (56)

In the case of a deterministic equilibrium, Ct = ĉ(Rt) and equation (14) can be used to substitute

out Pt as a function of past information and current policy:

Pt = β(1 +Rt)Pt−1
ûy(Rt)

ûy(Rt−1)
. (57)

With this substitution, equation (56) yields (25), which is thus a sufficient condition on fiscal

policy expressed purely in terms of predetermined variables.5

The proof above can be used to show that Bt > 0 in any equilibrium in which there is no

run in either period t − 1 or period t and in which the time-t allocation and price level does

not depend on the period-t sunspot; the allocation can still depend on sunspots up to period

t− 1. We exploit this fact to construct sunspot equilibria in which debt is strictly positive with

probability 1. This works by continuity. In each period t− 1, conditional on the past, we know

from the construction above that we can construct a deterministic continuation for period t that

satisfies the equilibrium conditions and positive debt. Equation (14) implies that Pt will be

close to the value in (57) even when it depends on the sunspot st, provided the support of its

distribution is sufficiently tight. Equation (25) will then be sufficient to ensure that (56) holds.

This allows us to recursively construct sunspot equilibria where, at each period t, Pt depends on

the sunspot st. QED.

5We assume that Rt is a deterministic function of the past, so that it is known when Tt is set.
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When either Assumption 1 or Assumption 2 holds, an example of a fiscal policy rule that

satisfies (27) (and thus (25)) and Assumption 3 is the following: choose Tt = αBt−1 + T̂t, with

α ∈ (0, 1) and

TPt−1 < T̂t < Pt−1G+ ĉ(Rt−1)Pt−1 −
Pt−1βuy
uy(0)

(58)

for some value T. Since the right-hand side of (58) (divided by Pt−1) is bounded under either

Assumption 1 or Assumption 2, a lower bound T that is uniformly smaller than the right-hand

side can always be found.
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